WorldWideScience

Sample records for iron fe xxv

  1. Unresolved dielectronic satellites of the resonance line of heliumlike iron (Fe XXV)

    International Nuclear Information System (INIS)

    Bitter, M.; von Goeler, S.; Hill, K.W.; Horton, R.; Johnson, D.; Roney, W.; Sauthoff, N.; Silver, E.; Stodiek, W.

    1981-02-01

    (1s 2 nl - 1s2pnl, n greater than or equal to 3) dielectronic satellites of the resonance line of Fe XXV at 1.85 A have been observed from PLT (Princeton Large Torus) tokamak discharges and are used for a detailed comparison with theory. The necessary corrections for Doppler broadening measurements are discussed, and accurate satellite to resonance line ratios allowing for a determination of the total dielectronic recombination rate of Fe XXV are derived

  2. Energy levels and transition probabilities for Fe XXV ions

    Energy Technology Data Exchange (ETDEWEB)

    Norrington, P.H.; Kingston, A.E.; Boone, A.W. [Department of Applied Maths and Theoretical Physics, Queen' s University, Belfast BT7 1NN (United Kingdom)

    2000-05-14

    The energy levels of the 1s{sup 2}, 1s2l and 1s3l states of helium-like iron Fe XXV have been calculated using two sets of configuration-interaction wavefunctions. One set of wavefunctions was generated using the fully relativistic GRASP code and the other was obtained using CIV3, in which relativistic effects are introduced using the Breit-Pauli approximation. For transitions from the ground state to the n=2 and 3 states and for transitions between the n=2 and 3 states, the calculated excitation energies obtained by these two independent methods are in very good agreement and there is good agreement between these results and recent theoretical and experimental results. However, there is considerable disagreement between the various excitation energies for the transitions among the n=2 and also among the n=3 states. The two sets of wavefunctions are also used to calculate the E1, E2, M1 and M2 transition probabilities between all of the 1s{sup 2}, 1s2l and 1s3l states of helium-like iron Fe XXV. The results from the two calculations are found to be similar and to compare very well with other recent results for {delta}n=1 or 2 transitions. For {delta}n=0 transitions the agreement is much less satisfactory; this is mainly due to differences in the excitation energies. (author)

  3. ORIGIN OF THE GALACTIC DIFFUSE X-RAY EMISSION: IRON K-SHELL LINE DIAGNOSTICS

    Energy Technology Data Exchange (ETDEWEB)

    Nobukawa, Masayoshi [Department of Teacher Training and School Education, Nara University of Education, Takabatake-cho, Nara, 630-8528 (Japan); Uchiyama, Hideki [Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529 (Japan); Nobukawa, Kumiko K.; Koyama, Katsuji [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502 (Japan); Yamauchi, Shigeo, E-mail: nobukawa@nara-edu.ac.jp [Department of Physics, Nara Women’s University, Kitauoyanishimachi, Nara, 630-8506 (Japan)

    2016-12-20

    This paper reports detailed K-shell line profiles of iron (Fe) and nickel (Ni) of the Galactic Center X-ray Emission (GCXE), Galactic Bulge X-ray Emission (GBXE), Galactic Ridge X-ray Emission (GRXE), magnetic Cataclysmic Variables (mCVs), non-magnetic Cataclysmic Variables (non-mCVs), and coronally Active Binaries (ABs). For the study of the origin of the GCXE, GBXE, and GRXE, the spectral analysis is focused on equivalent widths of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α  lines. The global spectrum of the GBXE is reproduced by a combination of the mCVs, non-mCVs, and ABs spectra. On the other hand, the GRXE spectrum shows significant data excesses at the Fe i-K α and Fe xxv-He α  line energies. This means that additional components other than mCVs, non-mCVs, and ABs are required, which have symbiotic phenomena of cold gas and very high-temperature plasma. The GCXE spectrum shows larger excesses than those found in the GRXE spectrum at all the K-shell lines of iron and nickel. Among them the largest ones are the Fe i-K α , Fe xxv-He α , Fe xxvi-Ly α , and Fe xxvi-Ly β  lines. Together with the fact that the scale heights of the Fe i-K α , Fe xxv-He α , and Fe xxvi-Ly α lines are similar to that of the central molecular zone (CMZ), the excess components would be related to high-energy activity in the extreme envelopment of the CMZ.

  4. High resolution X-ray spectra of solar flares. V. interpretation of inner-shell transitions in Fe XX-Fe XXIII

    International Nuclear Information System (INIS)

    Doschek, G.A.; Feldman, U.; Cowan, R.D.

    1981-01-01

    We discuss high-resolution solar flare iron line spectra recorded between 1.82 and 1.97 A by a spectrometer flown by the Naval Research Laboratory on an Air Force spacecraft launched on 1979 February 24. The emission line spectrum is due to inner-shell transitions in the ions Fe XX-Fe XXV. Using theoretical spectra and calculations of line intensities obtained by methods discussed by Merts, Cowan, and Magee, we derive electron temperatures as a function for time of two large class X flares. These temperatures are deduced from intensities of lines of Fe XXIII, Fe XXII, and Fe XXIV. Previous measurements by us have involved only lines of Fe XXIV and Fe XXV. We discuss the determination of the differential emission measure between about 12 x 10 6 K and 20 x 10 6 K using these temperatures. The possibility of determining electron densities in flare and tokamak plasmas using the inner-shell spectra of Fe XXI and Fe XX is discussed. We also discuss recent theoretical work by Mewe and Schrijver based on atomic data of Grineva, Safronova, and Urnov

  5. Direct Iron Coating onto Nd-Fe-B Powder by Thermal Decomposition of Iron Pentacarbonyl

    International Nuclear Information System (INIS)

    Yamamuro, S; Okano, M; Tanaka, T; Sumiyama, K; Nozawa, N; Nishiuchi, T; Hirosawa, S; Ohkubo, T

    2011-01-01

    Iron-coated Nd-Fe-B composite powder was prepared by thermal decomposition of iron pentacarbonyl in an inert organic solvent in the presence of alkylamine. Though this method is based on a modified solution-phase process to synthesize highly size-controlled iron nanoparticles, it is in turn featured by a suppressed formation of iron nanoparticles to achieve an efficient iron coating solely onto the surfaces of rare-earth magnet powder. The Nd-Fe-B magnetic powder was successfully coated by iron shells whose thicknesses were of the order of submicrometer to micrometer, being tuneable by the amount of initially loaded iron pentacarbonyl in a reaction flask. The amount of the coated iron reached to more than 10 wt.% of the initial Nd-Fe-B magnetic powder, which is practically sufficient to fabricate Nd-Fe-B/α-Fe nanocomposite permanent magnets.

  6. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  7. Comparison of explicit calculations for n = 3 to 8 dielectronic satellites of the FeXXV Kα resonance line with experimental data from the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Decaux, V.; Bitter, M.; Hsuan, H.; Hill, K.W.; von Goeler, S.; Park, H.; Bhalla, C.P.

    1991-12-01

    Dielectronic satellite spectra of the FeXXV Kα resonance line observed from the Tokamak Fusion Test Reactor (TFTR) plasmas have been compared with recent explicit calculations for the n = 3 to 8 dielectronic satellites as well as the earlier theoretical predictions, which were based on the 1/n 3 scaling law for n > 4 satellites. The analysis has been performed by least-squares fits of synthetic spectra to the experimental data. The synthetic spectra constructed from both theories are in good agreement with the observed data. However, the electron temperature values obtained from the fit of the present explicit calculations are in better agreement with independent measurements. 20 refs., 4 figs

  8. New ionization fractions for the lithium- and helium-like ionization stages of calcium and iron

    International Nuclear Information System (INIS)

    Doyle, J.G.; Raymond, J.C.

    1981-01-01

    The high resolution X-ray spectra of Ca XIX and Fe XXV observed during a solar flare on 1979 March 25 have been re-interpreted using new ionization fractions for Ca XVIII, Ca XIX, Fe XXIV and Fe XXV. These new calculations substantially change the interpretation of the spectra, implying the flare to be ionizing during the rise phase and recombining during the decay phase. The results favour the ECIP ionization rates over those of Lotz, though other interpretations are possible. (author)

  9. High purity Fe3O4 from Local Iron Sand Extraction

    Science.gov (United States)

    Gunanto, Y. E.; Izaak, M. P.; Jobiliong, E.; Cahyadi, L.; Adi, W. A.

    2018-04-01

    Indonesia has a long coastline and is rich with iron sand. The iron sand is generally rich in various elements such as iron and titanium. One of the products processing of the iron sand mineral is iron (II) (III) oxide (magnetite Fe3O4). The stages of purification process to extracting magnetite phase and discarding the other phases has been performed. Magnetite phase analysis of ironsand extraction retrieved from Indonesia have been investigated. The result of analysis element of iron sand shows that it consists of majority Fe around 65 wt%. However, there are still 17 impurities such as Ti, Al, Ce, Co, Cr, Eu, La, Mg, Mn, Na, Sc, Sm, Th, V, Yb, and Zn. After extraction process, Fe element content increases up to 94%. The iron sand powder after milling for 10 hours and separating using a magnetic separator, the iron sand powders are dissolved in acid chloride solution to form a solution of iron chloride, and this solution is sprinkled with sodium hydroxide to obtain fine powders of Fe3O4. The fine powders which formed were washed with de-mineralization water. The X-ray diffraction pattern shows that the fine powders have a single phase of Fe3O4. The analysis result shows that the sample has the chemical formula: Fe3O4 with a cubic crystal system, space group: Fd-3m and lattice parameters: a = b = c = 8.3681 (1) Å, α = β = γ = 90°. The microstructure analysis shows that the particle of Fe3O4 homogeneously shaped like spherical. The magnetic properties using vibrating sample magnetometer shows that Fe3O4 obtained have ferromagnetic behavior with soft magnetic characteristics. We concluded that this purification of iron sand had been successfully performed to obtain fine powders of Fe3O4 with high purity.

  10. A method for determination of [Fe3+]/[Fe2+] ratio in superparamagnetic iron oxide

    Science.gov (United States)

    Jiang, Changzhao; Yang, Siyu; Gan, Neng; Pan, Hongchun; Liu, Hong

    2017-10-01

    Superparamagnetic iron oxide nanoparticles (SPION), as a kind of nanophase materials, are widely used in biomedical application, such as magnetic resonance imaging (MRI), drug delivery, and magnetic field assisted therapy. The magnetic property of SPION has close connection with its crystal structure, namely it is related to the ratio of Fe3+ and Fe2+ which form the SPION. So a simple way to determine the content of the Fe3+ and Fe2+ is important for researching the property of SPION. This review covers a method for determination of the Fe3+ and Fe2+ ratio in SPION by UV-vis spectrophotometry based the reaction of Fe2+ and 1,10-phenanthroline. The standard curve of Fe with R2 = 0.9999 is used for determination the content of Fe2+ and total iron with 2.5 mL 0.01% (w/v) SPION digested by HCl, pH = 4.30 HOAc-NaAc buffer 10 mL, 0.01% (w/v) 1,10-phenanthroline 5 mL and 10% (w/v) ascorbic acid 1 mL for total iron determine independently. But the presence of Fe3+ interfere with obtaining the actual value of Fe2+ (the error close to 9%). We designed a calibration curve to eliminate the error by devising a series of solution of different ratio of [Fe3+]/[Fe2+], and obtain the calibration curve. Through the calibration curve, the error between the measured value and the actual value can be reduced to 0.4%. The R2 of linearity of the method is 0.99441 and 0.99929 for Fe2+ and total iron respectively. The error of accuracy of recovery and precision of inter-day and intra-day are both lower than 2%, which can prove the reliability of the determination method.

  11. Thermodynamic Characterization of Iron Oxide-Aqueous Fe(2+) Redox Couples.

    Science.gov (United States)

    Gorski, Christopher A; Edwards, Rebecca; Sander, Michael; Hofstetter, Thomas B; Stewart, Sydney M

    2016-08-16

    Iron is present in virtually all terrestrial and aquatic environments, where it participates in redox reactions with surrounding metals, organic compounds, contaminants, and microorganisms. The rates and extent of these redox reactions strongly depend on the speciation of the Fe2+ and Fe3+ phases, although the underlying reasons remain unclear. In particular, numerous studies have observed that Fe2+ associated with iron oxide surfaces (i.e., oxide-associated Fe2+) often reduces oxidized contaminants much faster than aqueous Fe2+ alone. Here, we tested two hypotheses related to this observation by determining if solutions containing two commonly studied iron oxides—hematite and goethite—and aqueous Fe2+ reached thermodynamic equilibrium over the course of a day. We measured reduction potential (EH) values in solutions containing these oxides at different pH values and aqueous Fe2+ concentrations using mediated potentiometry. This analysis yielded standard reduction potential (EH0) values of 768 ± 1 mV for the aqueous Fe2+–goethite redox couple and 769 ± 2 mV for the aqueous Fe2+–hematite redox couple. These values were in excellent agreement with those calculated from existing thermodynamic data, and the data could be explained by the presence of an iron oxide lowering EH values of aqueous Fe3+/Fe2+ redox couples.

  12. Higher Fe{sup 2+}/total Fe ratio in iron doped phosphate glass melted by microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Ashis K., E-mail: ashis@cgcri.res.in [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Sinha, Prasanta K. [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India); Das, Dipankar [UGC-DAE Consortium for Scientific Research, Kolkata 700098 (India); Guha, Chandan [Department of Chemical Engineering, Jadavpur University, Kolkata 700032 (India); Sen, Ranjan [CSIR-Central Glass and Ceramic Research Institute, 196 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2015-03-15

    Highlights: • Iron doped phosphate glasses prepared using microwave heating and conventional heating under air and reducing atmosphere. • Presence of iron predominantly in the ferrous oxidation state in all the glasses. • Significant concentrations of iron in the ferrous oxidation state on both octahedral and tetrahedral sites in all the glasses. • Ratio of Fe{sup 2+} with total iron is found higher in microwave prepared glasses in comparison to conventional prepared glasses. - Abstract: Iron doped phosphate glasses containing P{sub 2}O{sub 5}–MgO–ZnO–B{sub 2}O{sub 3}–Al{sub 2}O{sub 3} were melted using conventional resistance heating and microwave heating in air and under reducing atmosphere. All the glasses were characterised by UV–Vis–NIR spectroscopy, Mössbauer spectroscopy, thermogravimetric analysis and wet colorimetry analysis. Mössbauer spectroscopy revealed presence of iron predominantly in the ferrous oxidation state on two different sites in all the glasses. The intensity of the ferrous absorption peaks in UV–Vis–NIR spectrum was found to be more in glasses prepared using microwave radiation compared to the glasses prepared in a resistance heating furnace. Thermogravimetric analysis showed increasing weight gain on heating under oxygen atmosphere for glass corroborating higher ratio of FeO/(FeO + Fe{sub 2}O{sub 3}) in glass melted by direct microwave heating. Wet chemical analysis also substantiated the finding of higher ratio Fe{sup +2}/ΣFe in microwave melted glasses. It was found that iron redox ratio was highest in the glasses prepared in a microwave furnace under reducing atmosphere.

  13. Photoreduction of Terrigenous Fe-Humic Substances Leads to Bioavailable Iron in Oceans.

    Science.gov (United States)

    Blazevic, Amir; Orlowska, Ewelina; Kandioller, Wolfgang; Jirsa, Franz; Keppler, Bernhard K; Tafili-Kryeziu, Myrvete; Linert, Wolfgang; Krachler, Rudolf F; Krachler, Regina; Rompel, Annette

    2016-05-23

    Humic substances (HS) are important iron chelators responsible for the transport of iron from freshwater systems to the open sea, where iron is essential for marine organisms. Evidence suggests that iron complexed to HS comprises the bulk of the iron ligand pool in near-coastal waters and shelf seas. River-derived HS have been investigated to study their transport to, and dwell in oceanic waters. A library of iron model compounds and river-derived Fe-HS samples were probed in a combined X-ray absorption spectroscopy (XAS) and valence-to-core X-ray emission spectroscopy (VtC-XES) study at the Fe K-edge. The analyses performed revealed that iron complexation in HS samples is only dependent on oxygen-containing HS functional groups, such as carboxyl and phenol. The photoreduction mechanism of Fe III -HS in oceanic conditions into bioavailable aquatic Fe II forms, highlights the importance of river-derived HS as an iron source for marine organisms. Consequently, such mechanisms are a vital component of the upper-ocean iron biogeochemistry cycle.

  14. X-ray emission spectroscopy study of iron silicate catalyst FeZSM-5

    International Nuclear Information System (INIS)

    Csencsits, R.; Lyman, C.E.; Gronsky, R.

    1988-03-01

    Iron silicate analogs of the zeolite ZMS-5 may be directly synthesized from iron silicate gels in a manner which differs slightly from the alumino-silicate ZSM-5. The resultant white, crystalline iron silicate is referred to as FeZSM-5 in the as-synthesized form. Thermal treatment removes the organic crystal-directing agent and moves some of the framework iron into non-framework sites producing the calcined form of the molecular sieve FeZSM-5. Homogeneity in the distribution of catalytic iron throughout the particles is desired in an optimal catalyst. Distribution of the iron throughout the framework in the as-synthesized forms would affect the final distribution of catalytic iron in the calcined and steamed forms; thus, the iron distribution throughout the as-synthesized and calcined forms of FeZSM-5 were studied using the high spatial resolution on the analytical electron microscope. 7 refs., 3 figs

  15. Formation cross section of iron-60 with reactor neutrons in 59Fe(n, γ)60Fe reaction

    International Nuclear Information System (INIS)

    Sato, T.; Suzuki, T.

    1993-01-01

    Ingrowth of 60 Co radioactivity in an iron sample irradiated in a nuclear reactor has been measured for determination of formation cross section of 60 Fe in the 59 Fe(n, γ) 60 Fe reaction with reactor neutrons. After 5 years cooling, the irradiated iron was purified from 60 Co and other radioactive nuclides by an anion exchange separation method and isopropyl ether extraction in hydrochloric acid. The amount of 60 Co ingrowth was measured by γ-spectrometry using a Ge-detector coupled to a multichannel pulse height analyzer 4 years after the purification of iron. Neutron flux of the irradiation position was calculated from the amount of 55 Fe produced. The observed value of 12.5 ± 2.8 barn is slightly greater than reported value for burnup cross section of 59 Fe(n, x)X, where x refers γ, α, d, p and 2n, and X is any nuclide produced by the above reactions. (author) 8 refs.; 2 tabs

  16. Influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers, Fe/Cr/Fe- and Fe/MgO/Fe multilayers; Untersuchung der Morphologie und magnetische Eigenschaften von ionenstrahl-gesputterten Eisen-Einzelschichten, Fe/Cr/Fe- und Fe/MgO/Fe-Schichtsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Steeb, Alexandra

    2007-04-05

    In this PhD Thesis, the influence of the surface topography, morphology and structure on magnetic properties of ion beam sputtered iron layers on GaAs is examined. To analyze the structure of the produced iron films, low energy electron diffraction and scanning tunneling microscopy is employed. The utilized methods to investigate the magnetic properties are Kerr- and SQUID-magnetometry and ferromagnetic resonance. It is demonstrated that on untreated as well as on presputtered and heated GaAs substrates the sputtered iron films grow epitaxially. The least surface roughness of 1 A exhibit iron films grown on untreated GaAs, while iron films on heated GaAs have the highest roughness of 30 A. The largest crystal anisotropy constant is found for the presputtered GaAs/Fe-System. For this preparation method, two monolayers of iron are determined to be magnetically dead layers. At a film thickness of 100 A, 83% of the value for saturation magnetization of bulk iron are achieved. The small observed FMR-linewidths confirm the good bulk properties of the ion beam sputtered iron. Furthermore, an antiferromagnetic interlayer exchange coupling in sputtered Fe/Cr/Fe-films was achieved. For a thickness of 12 to 17 A of the chrome interlayer, a coupling strength up to 0.2 mJ/m{sup 2} is found. To account for the small coupling strength, a strong intermixing at the interface is assumed. Finally, epitaxial Fe/MgO/Fe/FeMn multilayers are deposited on GaAs. After the structuring, it is possible to detect tunneling processes in the tunneling contacts with current-voltage measurements. The tunnel magneto resistance values of 2% are small, which can be explained by the absence of sharp, well-defined interfaces between the Fe/FeMn and the Fe/MgO interfaces. These results demonstrate, that analog to MBE the ion beam sputtering method realizes good magnetic bulk properties. However, interface sensitive phenomena are weakened because of a strong intermixing at the interfaces. (orig.)

  17. Microbial Reducibility of Fe(III Phases Associated with the Genesis of Iron Ore Caves in the Iron Quadrangle, Minas Gerais, Brazil

    Directory of Open Access Journals (Sweden)

    Ceth W. Parker

    2013-11-01

    Full Text Available The iron mining regions of Brazil contain thousands of “iron ore caves” (IOCs that form within Fe(III-rich deposits. The mechanisms by which these IOCs form remain unclear, but the reductive dissolution of Fe(III (hydroxides by Fe(III reducing bacteria (FeRB could provide a microbiological mechanism for their formation. We evaluated the susceptibility of Fe(III deposits associated with these caves to reduction by the FeRB Shewanella oneidensis MR-1 to test this hypothesis. Canga, an Fe(III-rich duricrust, contained poorly crystalline Fe(III phases that were more susceptible to reduction than the Fe(III (predominantly hematite associated with banded iron formation (BIF, iron ore, and mine spoil. In all cases, the addition of a humic acid analogue enhanced Fe(III reduction, presumably by shuttling electrons from S. oneidensis to Fe(III phases. The particle size and quartz-Si content of the solids appeared to exert control on the rate and extent of Fe(III reduction by S. oneidensis, with more bioreduction of Fe(III associated with solid phases containing more quartz. Our results provide evidence that IOCs may be formed by the activities of Fe(III reducing bacteria (FeRB, and the rate of this formation is dependent on the physicochemical and mineralogical characteristics of the Fe(III phases of the surrounding rock.

  18. A study on the formation of iron aluminide (FeAl) from elemental powders

    Energy Technology Data Exchange (ETDEWEB)

    Sina, H.; Corneliusson, J.; Turba, K.; Iyengar, S.

    2015-07-05

    Highlights: • Fe–40 at.% Al discs with coarse iron powder showed precombustion and combustion peaks. • Loose powder mixtures and discs with fine iron powder showed only combustion peaks. • Slower heating rate and fine aluminum particles promote precombustion. • The major product formed during both the reactions was Fe{sub 2}Al{sub 5}. • Heating the samples to 1000 °C yielded a stable FeAl phase as the final product. - Abstract: The formation of iron aluminide (FeAl) during the heating of Fe–40 at.% Al powder mixture has been studied using a differential scanning calorimeter. The effect of particle size of the reactants, compaction of the powder mixtures as well as the heating rate on combustion behavior has been investigated. On heating compacted discs containing relatively coarser iron powder, DSC data show two consecutive exothermic peaks corresponding to precombustion and combustion reactions. The product formed during both these reactions is Fe{sub 2}Al{sub 5} and there is a volume expansion in the sample. The precombustion reaction could be improved by a slower heating rate as well as a better surface coverage of iron particles using relatively finer aluminum powder. The combustion reaction was observed to be weaker after a strong precombustion stage. Heating the samples to 1000 °C resulted in the formation of a single and stable FeAl phase through the diffusional reaction between Fe{sub 2}Al{sub 5} and residual iron. DSC results for compacted discs containing relatively finer iron powder and for the non-compacted samples showed a single combustion exotherm during heating, with Fe{sub 2}Al{sub 5} as the product and traces of FeAl. X-ray diffraction and EDS data confirmed the formation of FeAl as the final product after heating these samples to 1000 °C.

  19. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe(3+)).

    Science.gov (United States)

    Scheers, Nathalie; Rossander-Hulthen, Lena; Torsdottir, Inga; Sandberg, Ann-Sofie

    2016-02-01

    Lactic fermentation of foods increases the availability of iron as shown in a number of studies throughout the years. Several explanations have been provided such as decreased content of inhibitory phytate, increased solubility of iron, and increased content of lactic acid in the fermented product. However, to our knowledge, there are no data to support that the bioavailability of iron is affected by lactic fermentation. The objective of the present study was to investigate whether the bioavailability of iron from a vegetable mix was affected by lactic fermentation and to propose a mechanism for such an event, by conducting human and cell (Caco-2, HepG2) studies and iron speciation measurements (voltammetry). We also investigated whether the absorption of zinc was affected by the lactic fermentation. In human subjects, we observed that lactic-fermented vegetables served with both a high-phytate and low-phytate meal increased the absorption of iron, but not zinc. In vitro digested fermented vegetables were able to provoke a greater hepcidin response per ng Fe than fresh vegetables, indicating that Fe in the fermented mixes was more bioavailable, independent on the soluble Fe content. We measured that hydrated Fe(3+) species were increased after the lactic fermentation, while there was no significant change in hydrated Fe(2+). Furthermore, lactate addition to Caco-2 cells did not affect ferritin formation in response to Fe nor did lactate affect the hepcidin response in the Caco-2/HepG2 cell system. The mechanism for the increased bioavailability of iron from lactic-fermented vegetables is likely an effect of the increase in ferric iron (Fe(3+)) species caused by the lactic fermentation. No effect on zinc bioavailability was observed.

  20. Iron Isotopic Compositions of Troilite (FeS) Inclusions from Iron Meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David L.; Schönbächler, Maria, E-mail: david.cook@erdw.ethz.ch [Institut für Geochemie und Petrologie, ETH Zürich, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2017-10-01

    We report non-mass-dependent Fe isotopic data for troilite (FeS) inclusions from 10 iron meteorites, representing both non-magmatic (IAB) and magmatic groups (IIAB, IIIAB, IVA). No resolvable variations are present in the most neutron-rich isotope ({sup 58}Fe), but small deficits (≈−0.1 ε ) in {sup 56}Fe were observed in several inclusions. With the exception of several Ca–Al-rich inclusions in primitive meteorites, these are the first reported non-mass-dependent variations in Fe isotopes for material formed in the early solar system. Nucleosynthetic variations in Ni isotopes were previously reported in these same samples. The effects in Fe isotopes are not correlated with those in Ni, which suggests that the origins of the isotopic variations are decoupled from one another. The {sup 56}Fe deficits may represent incomplete mixing of the precursor dust in the protoplanetary disk. Alternatively, a parent body process (e.g., irradiation by galactic cosmic rays) may have modified the Fe isotopic compositions of some inclusions, which initially had homogeneous Fe isotopic compositions.

  1. Determination of Fe charge-state distributions in PLT by Bragg crystal x-ray spectroscopy

    International Nuclear Information System (INIS)

    Hill, K.W.; von Goeler, S.; Bitter, M.

    1978-08-01

    A curved-crystal Bragg x-ray spectrometer has been used to measure Kα or 1s-2p radiation from highly stripped Fe XVIII to Fe XXV impurity ions in the PLT tokamak. The spectrometer has sufficient energy resolution (approximately < 4 eV at 6400 eV) to distinguish between the different ionization states of iron by measuring the energy shift of the Kα x rays. The measured wavelengths agree well with theory and with spectra from solar flares and from laser-produced plasmas. The distribution of Fe charge states in the center of the discharge has been inferred from a comparison of the measured x-ray spectrum with theory. The shape of the spectrum depends strongly on electron temperature (T/sub e/) in the range T/sub e/ = 800 to 1500 eV. Within the factor of two uncertainty in L-shell ionization cross sections, measured intensities agree with theory, which is based on coronal equilibrium, indicating that the ion life-time in the center of the plasma is approximately equal to or greater than the equilibration time

  2. The iron uptake repressor Fep1 in the fission yeast binds Fe-S cluster through conserved cysteines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-Jin; Lee, Kang-Lok; Kim, Kyoung-Dong; Roe, Jung-Hye, E-mail: jhroe@snu.ac.kr

    2016-09-09

    Iron homeostasis is tightly regulated since iron is an essential but toxic element in the cell. The GATA-type transcription factor Fep1 and its orthologs contribute to iron homeostasis in many fungi by repressing genes for iron uptake when intracellular iron is high. Even though the function and interaction partners of Fep1 have been elucidated extensively In Schizosaccharomyces pombe, the mechanism behind iron-sensing by Fep1 remains elusive. It has been reported that Fep1 interacts with Fe-S-containing monothiol glutaredoxin Grx4 and Grx4-Fra2 complex. In this study, we demonstrate that Fep1 also binds iron, in the form of Fe-S cluster. Spectroscopic and biochemical analyses of as isolated and reconstituted Fep1 suggest that the dimeric Fep1 binds Fe-S clusters. The mutation study revealed that the cluster-binding depended on the conserved cysteines located between the two zinc fingers in the DNA binding domain. EPR analyses revealed [Fe-S]-specific peaks indicative of mixed presence of [2Fe-2S], [3Fe-4S], or [4Fe-4S]. The finding that Fep1 is an Fe-S protein fits nicely with the model that the Fe-S-trafficking Grx4 senses intracellular iron environment and modulates the activity of Fep1. - Highlights: • Fep1, a prototype fungal iron uptake regulator, was isolated stably from Schizosaccharomyces pombe. • Fep1 exhibits UV–visible absorption spectrum, characteristic of [Fe-S] proteins. • The iron and sulfide contents in purified or reconstituted Fep1 also support [Fe-S]. • The conserved cysteines are critical for [Fe-S]-binding. • EPR spectra at 5 K and 123 K suggest a mixed population of [Fe-S].

  3. Diffusion of iron in β-iron telluride (Fe1.12Te) by Moessbauer spectroscopy and tracer method

    International Nuclear Information System (INIS)

    Magara, Masaaki; Tsuji, Toshihide; Naito, Keiji

    1993-01-01

    The diffusion coefficient of iron in a β-iron telluride (Fe 1.12 Te) polycrystalline sample was measured by Moessbauer diffusional line broadening method which relates to the collapse of coherence in gamma-ray photon by the atomic jump at local sites. The diffusion coefficient of iron along the c-axis in nearly single crystal of β-iron telluride was also measured by tracer technique which shows the results of an atom transport in long distance. The activation energies for the diffusion of iron in Fe 1.12 Te obtained by the Moessbauer spectroscopy and the tracer method were 91.5±5.4 and 106±23 kJ/mol, respectively. The diffusion coefficients of iron in β-iron telluride obtained by Moessbauer line broadening are in fair agreement with the values averaged from that along c-axis obtained by tracer method and that along a- and b-axes obtained from reaction rate constant between iron and tellurium by the previous study of the present authors. (orig.)

  4. Magnetic characteristics of ultrafine Fe particles reduced from uniform iron oxide particles

    Science.gov (United States)

    Bridger, K.; Watts, J.; Tadros, M.; Xiao, Gang; Liou, S. H.; Chien, C. L.

    1987-04-01

    Uniform, cubic 0.05-μm iron oxide particles were formed by forced hydrolysis of ferric perchlorate. These particles were reduced to α-Fe by heating in hydrogen at temperatures between 300 and 500 °C. The effect of reduction temperature and various prereduction treatments on the microstructure of the iron particles will be discussed. Complete reduction to α-Fe was established by 57Fe Mössbauer spectroscopy and x-ray diffraction. Magnetic measurements on epoxy and polyurethane films containing these particles with various mass fractions gave coercivities as high as 1000 Oe. The relationship between the magnetic measurements and the microstructure will be discussed. Na2SiO3 is found to be the best coating material for the process of reducing iron oxide particles to iron.

  5. Potentiometric and electrokinetic signatures of iron(II) interactions with (α,γ)-Fe2O3.

    Science.gov (United States)

    Toczydłowska, Diana; Kędra-Królik, Karolina; Nejbert, Krzysztof; Preočanin, Tajana; Rosso, Kevin M; Zarzycki, Piotr

    2015-10-21

    The electrochemical signatures of Fe(II) interactions with iron(III) oxides are poorly understood, despite their importance in controlling the amount of mobilized iron. Here, we report the potentiometric titration of α,γ-Fe2O3 oxides exposed to Fe(II) ions. We monitored in situ surface and ζ potentials, the ratio of mobilized ferric to ferrous, and the periodically analyzed nanoparticle crystal structure using X-ray diffraction. Electrokinetic potential reveals weak but still noticeable specific sorption of Fe(II) to the oxide surface under acidic conditions, and pronounced adsorption under alkaline conditions that results in a surface potential reversal. By monitoring the aqueous iron(II/III) fraction, we found that the addition of Fe(II) ions produces platinum electrode response consistent with the iron solubility-activity curve. Although, XRD analysis showed no evidence of γ-Fe2O3 transformations along the titration pathway despite iron cycling between aqueous and solid reservoirs, the magnetite formation cannot be ruled out.

  6. [Tolerability of iron preparation Actiferol Fe® in children treated for iron deficiency anemia].

    Science.gov (United States)

    Jackowska, Teresa; Sapała-Smoczyńska, Alicja; Kamińska, Ewa

    2015-01-01

    Iron de„ciency anemia is the most frequently occurring anemia during the childhood period. Supplementation with adequate doses of iron remains a basic method of prevention and treatment. The various available products containing iron are characterized by a different degree of patient tolerability. Actiferol Fe® is a micronized, dispersible ferric pyrophosphate which improves its water solubility, and therefore it has better absorption and bioavailability. The assessment of tolerability of Actiferol Fe® in children who were administered this product to treat or prevent of iron de„ciency anemia. The methods of administration and the incidence of adverse effects were analyzed. Eighty children (64 boys and 16 girls) aged from one month to 6 years who met the criteria of an indication to be treated with iron were included into the study. The assessment of selected parameters was based on the questionnaire which included questions about tolerability, method of administration, convenience of usage and adverse e#ects. The questionnaire was „lled in by parents (usually by the mother). The study indicated that Actiferol Fe® has very good or good tolerability in 87.5% (70/80) of patients - 46.3% (37/80) and 41.2% (33/80), respectively. The most frequent method of administration was in liquid form after dissolving: in water - 31,3% (25/80), in orange juice - 18.8% (15/80) or in milk formulas - in 17.5% (14/80) of patients. The method of administration was assessed as convenient or very convenient by 84% (67/80) of participants. Out of the adverse effects reported, the most frequent were change in the stool consistency into harder, abdominal pain and constipation - in 20% (16/80), 11.25% (9/80), 10% (8/80) cases, respectively. Diarrhea, pain during defecation occurred occasionally. A dark color of the stool was reported by 55% (44/80) of patients. In only one case (1.25%) the parents resigned from the product administration and replaced it with another iron product (no

  7. Impact of Microcystis aeruginosa Exudate on the Formation and Reactivity of Iron Oxide Particles Following Fe(II) and Fe(III) Addition.

    Science.gov (United States)

    Garg, Shikha; Wang, Kai; Waite, T David

    2017-05-16

    Impact of the organic exudate secreted by a toxic strain of Microcystis aeruginosa on the formation, aggregation, and reactivity of iron oxides that are formed on addition of Fe(II) and Fe(III) salts to a solution of the exudate is investigated in this study. The exudate has a stabilizing effect on the particles formed with decreased aggregation rate and increased critical coagulant concentration required for diffusion-limited aggregation to occur. These results suggest that the presence of algal exudates from Microcystis aeruginosa may significantly influence particle aggregation both in natural water bodies where Fe(II) oxidation results in oxide formation and in water treatment where Fe(III) salts are commonly added to aid particle growth and contaminant capture. The exudate also affects the reactivity of iron oxide particles formed with exudate coated particles undergoing faster dissolution than bare iron oxide particles. This has implications to iron availability, especially where algae procure iron via dissolution of iron oxide particles as a result of either reaction with reducing moieties, light-mediated ligand to metal charge transfer and/or reaction with siderophores. The increased reactivity of exudate coated particles is attributed, for the most part, to the smaller size of these particles, higher surface area and increased accessibility of surface sites.

  8. Iron fertilization with FeEDDHA : the fate and effectiveness of FeEDDHA chelates in soil-plant systems

    OpenAIRE

    Schenkeveld, W.D.C.

    2010-01-01

    Iron deficiency chlorosis is a nutritional disorder in plants which reduces crop yields both quantitatively and qualitatively, and causes large economic losses. It occurs world-wide, predominantly in plants grown on calcareous soils, as a result of a limited bioavailability of iron related to the poor solubility of iron at high soil-pH (7.5-8.5). Iron fertilizers based on FeEDDHA (iron ethylene diamine-N,N'-bis(hydroxy phenyl acetic acid)) chelates are among the most efficient in preventing a...

  9. Study on electrolytic reduction with controlled oxygen flow for iron from molten oxide slag containing FeO

    Directory of Open Access Journals (Sweden)

    Gao Y.M.

    2013-01-01

    Full Text Available A ZrO2-based solid membrane electrolytic cell with controlled oxygen flow was constructed: graphite rod /[O]Fe+C saturated / ZrO2(MgO/(FeO slag/iron crucible. The feasibility of extraction of iron from molten oxide slag containing FeO at an applied voltage was investigated by means of the electrolytic cell. The effects of some important process factors on the FeO electrolytic reduction with the controlled oxygen flow were discussed. The results show that: solid iron can be extracted from molten oxide slag containing FeO at 1450ºC and an applied potential of 4V. These factors, such as precipitation and growth of solid iron dendrites, change of the cathode active area on the inner wall of the iron crucible and ion diffusion flux in the molten slag may affect the electrochemical reaction rate. The reduction for Fe2+ ions mainly appears on new iron dendrites of the iron crucible cathode, and a very small amount of iron are also formed on the MSZ (2.18% MgO partially stabilized zirconia tube/slag interface due to electronic conductance of MSZ tube. Internal electronic current through MSZ tube may change direction at earlier and later electrolytic reduction stage. It has a role of promoting electrolytic reduction for FeO in the molten slag at the earlier stage, but will lower the current efficiency at the later stage. The final reduction ratio of FeO in the molten slag can achieve 99%. A novel electrolytic method with controlled oxygen flow for iron from the molten oxide slag containing FeO was proposed. The theory of electrolytic reduction with the controlled oxygen flow was developed.

  10. The impact of aqueous washing on the ability of βFeOOH to corrode iron.

    Science.gov (United States)

    Watkinson, D E; Emmerson, N J

    2017-01-01

    Controlling the corrosion of historical and archaeological ferrous metal objects presents a significant challenge to conservators. Chloride is a major corrosion accelerator in coastal areas for historic ferrous metal structures and for the many chloride-containing archaeological objects within museums. Corrosion reactions involve the formation of akaganéite (βFeOOH) which incorporates chloride within its crystal structure and adsorbs it onto its surface. The mobility of the surface-adsorbed chloride in aqueous systems and atmospheric moisture means βFeOOH can itself cause iron to corrode. The extraction of chloride from βFeOOH by aqueous Soxhlet hot wash and aqueous room temperature washing is measured. The impact of this washing on the ability of βFeOOH to corrode iron is quantitatively investigated by determining the oxygen consumption of unwashed, Soxhlet-washed and room temperature-washed samples of βFeOOH mixed with iron powder and exposed to 80 % relative humidity. This acts as a proxy measurement for the corrosion rate of iron. The results are discussed relative to climatic factors for outdoor heritage objects and the treatment of archaeological iron in museums. Delivering better understanding of the properties of βFeOOH supports the development of evidence-based treatments and management procedures in heritage conservation.

  11. Effectiveness of Iron Ethylenediamine-N,N'-bis(hydroxyphenylacetic) Acid (o,o-EDDHA/Fe3+) Formulations with Different Ratios of Meso and d,l-Racemic Isomers as Iron Fertilizers.

    Science.gov (United States)

    Alcañiz, Sara; Jordá, Juana D; Cerdán, Mar

    2017-01-18

    Two o,o-EDDHA/Fe 3+ formulations (meso, 93.5% w/w of meso isomer; and d,l-racemic, 91.3% w/w of d,l-racemic mixture) were prepared, and their efficacy to avoid or to relieve iron deficiency in Fe-sufficient and Fe-deficient tomato plants grown on hydroponic solution was compared with that of the current o,o-EDDHA/Fe 3+ formulations (50% of meso and d,l-racemic isomers). The effectiveness of the three o,o-EDDHA/Fe 3+ formulations was different depending on the iron nutritional status of plants. The three o,o-EDDHA/Fe 3+ formulations tested were effective in preventing iron chlorosis in healthy plants. However, the higher the meso concentration in the formulations, the higher the effectiveness in the recovery of iron chlorotic plants from iron deficiency. Accordingly, o,o-EDDHA/Fe 3+ formulations rich in meso isomer are recommended in hydroponic systems.

  12. Moessbauer study on the distribution of iron vacancies in iron sulfide Fe sub(1-x)S

    International Nuclear Information System (INIS)

    Igaki, Kenzo; Sato, Masaki; Shinohara, Takeshi.

    1982-01-01

    The distribution of iron vacancies in iron sulfide Fe sub(1-x)S with the controlled compositions was investigated by Moessbauer spectroscopy at room temperature. Moessbauer spectrum was composed of several component spectra. These component spectra were assigned to the iron atoms with different configurations of neighboring iron vacancies. Judging from the composition dependence of intensity of each component, iron vacancies are considered to lie in every second iron layer for specimens with x between 0.125 and 0.10. For specimens with x between 0.10 and 0.09, this arrangement is nearly kept in the sample quenched from a higher temperature than 473 K, but after annealing at a lower temperature than 473 K iron vacancies are considered to lie not only in every second iron layer but also in every third iron layer or in adjacent iron layers. The iron vacancy arrangement lying in every third iron layer or in adjacent iron layers tends to dominate for specimens with x below 0.09. (author)

  13. The removal of arsenate from water using iron-modified diatomite (D-Fe): isotherm and column experiments.

    Science.gov (United States)

    Pantoja, M L; Jones, H; Garelick, H; Mohamedbakr, H G; Burkitbayev, M

    2014-01-01

    Iron hydroxide supported onto porous diatomite (D-Fe) is a low-cost material with potential to remove arsenic from contaminated water due to its affinity for the arsenate ion. This affinity was tested under varying conditions of pH, contact time, iron content in D-Fe and the presence of competitive ions, silicate and phosphate. Batch and column experiments were conducted to derive adsorption isotherms and breakthrough behaviours (50 μg L(-1)) for an initial concentration of 1,000 μg L(-1). Maximum capacity at pH 4 and 17% iron was 18.12-40.82 mg of arsenic/g of D-Fe and at pH 4 and 10% iron was 18.48-29.07 mg of arsenic/g of D-Fe. Adsorption decreased in the presence of phosphate and silicate ions. The difference in column adsorption behaviour between 10% and 17% iron was very pronounced, outweighing the impact of all other measured parameters. There was insufficient evidence of a correlation between iron content and arsenic content in isotherm experiments, suggesting that ion exchange is a negligible process occurring in arsenate adsorption using D-Fe nor is there co-precipitation of arsenate by rising iron content of the solute above saturation.

  14. Scanning tunneling microscopy on iron-chalcogenide superconductor Fe(Se, Te) single crystal

    International Nuclear Information System (INIS)

    Ukita, R.; Sugimoto, A.; Ekino, T.

    2011-01-01

    We show scanning tunneling microscopy/spectroscopy (STM/STS) results of Fe(Se, Te). STM topography shows square arrangements of spots with the lattice spacing 0.37 nm. Te and Se atoms are randomly distributed in the STM topography. The STM topography of FeTe exhibits clusters of separated iron atoms. We have investigated the iron-chalcogenide superconductor Fe(Se, Te) using a low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) technique. STM topography at 4.9 K shows clear regular square arrangements of spots with the lattice spacing ∼0.37 nm, from which what we observe are attributed to Se or Te atomic plane. In the topography, brighter and darker atomic spots are randomly distributed, which are most probably due to Te and Se atoms, respectively. For the FeTe compound, the topography exhibits clusters of the bright spots probably arising from separated iron atoms distributing over several Te lattice sites. The STS measurements clarify the existence of the large-size gap with 2Δ = 0.4-0.6 eV.

  15. A Program for Iron Economy during Deficiency Targets Specific Fe Proteins.

    Science.gov (United States)

    Hantzis, Laura J; Kroh, Gretchen E; Jahn, Courtney E; Cantrell, Michael; Peers, Graham; Pilon, Marinus; Ravet, Karl

    2018-01-01

    Iron (Fe) is an essential element for plants, utilized in nearly every cellular process. Because the adjustment of uptake under Fe limitation cannot satisfy all demands, plants need to acclimate their physiology and biochemistry, especially in their chloroplasts, which have a high demand for Fe. To investigate if a program exists for the utilization of Fe under deficiency, we analyzed how hydroponically grown Arabidopsis ( Arabidopsis thaliana ) adjusts its physiology and Fe protein composition in vegetative photosynthetic tissue during Fe deficiency. Fe deficiency first affected photosynthetic electron transport with concomitant reductions in carbon assimilation and biomass production when effects on respiration were not yet significant. Photosynthetic electron transport function and protein levels of Fe-dependent enzymes were fully recovered upon Fe resupply, indicating that the Fe depletion stress did not cause irreversible secondary damage. At the protein level, ferredoxin, the cytochrome- b 6 f complex, and Fe-containing enzymes of the plastid sulfur assimilation pathway were major targets of Fe deficiency, whereas other Fe-dependent functions were relatively less affected. In coordination, SufA and SufB, two proteins of the plastid Fe-sulfur cofactor assembly pathway, were also diminished early by Fe depletion. Iron depletion reduced mRNA levels for the majority of the affected proteins, indicating that loss of enzyme was not just due to lack of Fe cofactors. SufB and ferredoxin were early targets of transcript down-regulation. The data reveal a hierarchy for Fe utilization in photosynthetic tissue and indicate that a program is in place to acclimate to impending Fe deficiency. © 2018 American Society of Plant Biologists. All Rights Reserved.

  16. Enhanced Cr(VI) removal from groundwater by Fe0-H2O system with bio-amended iron corrosion

    DEFF Research Database (Denmark)

    Yin, Weizhao; Li, Yongtao; Wu, Jinhua

    2017-01-01

    Abstract A one-pot bio-iron system was established to investigate synergetic abiotic and biotic effects between iron and microorganisms on Cr(VI) removal. More diverse iron corrosion and reactive solids, such as green rusts, lepidocrocite and magnetite were found in the bio-iron system than...... transfer on the solid phase. The results also showed that the reduction of Cr(VI) by microorganisms was insignificant, indicating the adsorption/co-precipitation of Cr by iron oxides on iron surface was responsible for the overall Cr(VI) removal. Our study demonstrated that the bio-amended iron corrosion...... in the Fe0-H2O system, leading to 4.3 times higher Cr(VI) removal efficiency in the bio-iron system than in the Fe0-H2O system. The cycling experiment also showed that the Cr(VI) removal capacity of Fe0 in the bio-iron system was 12.4 times higher than that in the Fe0-H2O system. A 62 days of life...

  17. Iron Isotope Fractionation during Fe(II) Oxidation Mediated by the Oxygen-Producing Marine Cyanobacterium Synechococcus PCC 7002

    Energy Technology Data Exchange (ETDEWEB)

    Swanner, E. D.; Bayer, T.; Wu, W.; Hao, L.; Obst, M.; Sundman, A.; Byrne, J. M.; Michel, F. M.; Kleinhanns, I. C.; Kappler, A.; Schoenberg, R.

    2017-04-11

    In this study, we couple iron isotope analysis to microscopic and mineralogical investigation of iron speciation during circumneutral Fe(II) oxidation and Fe(III) precipitation with photosynthetically produced oxygen. In the presence of the cyanobacterium Synechococcus PCC 7002, aqueous Fe(II) (Fe(II)aq) is oxidized and precipitated as amorphous Fe(III) oxyhydroxide minerals (iron precipitates, Feppt), with distinct isotopic fractionation (ε56Fe) values determined from fitting the δ56Fe(II)aq (1.79‰ and 2.15‰) and the δ56Feppt (2.44‰ and 2.98‰) data trends from two replicate experiments. Additional Fe(II) and Fe(III) phases were detected using microscopy and chemical extractions and likely represent Fe(II) and Fe(III) sorbed to minerals and cells. The iron desorbed with sodium acetate (FeNaAc) yielded heavier δ56Fe compositions than Fe(II)aq. Modeling of the fractionation during Fe(III) sorption to cells and Fe(II) sorption to Feppt, combined with equilibration of sorbed iron and with Fe(II)aq using published fractionation factors, is consistent with our resulting δ56FeNaAc. The δ56Feppt data trend is inconsistent with complete equilibrium exchange with Fe(II)aq. Because of this and our detection of microbially excreted organics (e.g., exopolysaccharides) coating Feppt in our microscopic analysis, we suggest that electron and atom exchange is partially suppressed in this system by biologically produced organics. These results indicate that cyanobacteria influence the fate and composition of iron in sunlit environments via their role in Fe(II) oxidation through O2 production, the capacity of their cell surfaces to sorb iron, and the interaction of secreted organics with Fe(III) minerals.

  18. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC

    Directory of Open Access Journals (Sweden)

    Mojca Rangus

    2014-05-01

    Full Text Available Iron-functionalized disordered mesoporous silica (FeKIL-2 is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM. We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05. From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1 the optimal concentration of stable isolated Fe3+ in the silica support; and (2 accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2 when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41.

  19. Boron solubility in Fe-Cr-B cast irons

    International Nuclear Information System (INIS)

    Guo Changqing; Kelly, P.M.

    2003-01-01

    Boron solubility in the as-cast and solution treated martensite of Fe-Cr-B cast irons, containing approximately 1.35 wt.% of boron, 12 wt.% of chromium, as well as other alloying elements, has been investigated using conventional microanalysis. The significant microstructural variations after tempering at 750 deg. C for 0.5-4 h, compared with the original as-cast and solution treated microstructures, indicated that the matrix consisted of boron and carbon supersaturated solid solutions. The boron solubility detected by electron microprobe was between 0.185-0.515 wt.% for the as-cast martensite and 0.015-0.0589 wt.% for the solution treated martensite, much higher than the accepted value of 0.005 wt.% in pure iron. These remarkable increases are thought to be associated with some metallic alloying element addition, such as chromium, vanadium and molybdenum, which have atomic diameters larger than iron, and expand the iron lattice to sufficiently allow boron atoms to occupy the interstitial sites in iron lattice

  20. Does lead use the intestinal absorptive pathways of iron? Impact of iron status on murine 210Pb and 59Fe absorption in duodenum and ileum in vivo

    International Nuclear Information System (INIS)

    Elsenhans, Bernd; Janser, Heinz; Windisch, Wilhelm; Schuemann, Klaus

    2011-01-01

    Highlights: → Absorption of 210 Pb increases much less than that of 59 Fe in murine duodena. → 210 Pb-absorption is almost equally high in murine duodenal and ileal segments. → 59 Fe absorption is much lower in ileal than in duodenal segments. → There must be an additional DMT1-independet pathway for intestinal Pb absorption. -- Abstract: Background: Human isotope studies and epidemiological trials are controversial as to whether lead absorption shares the absorptive pathways of iron and whether body lead content can be reduced by iron supplementation. Aim: To compare the impact of iron-deficiency on 59 Fe- and 210 Pb-absorption rates in duodenal and ileal segments. Methods: 59 Fe- and 210 Pb-absorption was determined in ligated duodenal and ileal segments from juvenile and adult iron-deficient and iron-adequate C57Bl6 wild-type mice (n = 6) in vivo at luminal concentrations corresponding to human exposure (Fe: 1 and 100 μmol/L; Pb: 1 μmol/L). Results and discussion: 59 Fe-absorption increased 10-15-fold in iron-deficient duodena from adult and adolescent mice. Ileal 59 Fe-absorption was 4-6 times lower than in iron-adequate duodena showing no adaptation to iron-deficiency. This in accordance to expectation as the divalent metal transport 1 (DMT1) shows low ileal expression levels. Juvenile 59 Fe-absorption was about twice as high as in adult mice. In contrast, duodenal 210 Pb-absorption was increased only 1.5-1.8-fold in iron-deficiency in juvenile and adult mice and, again in contrast to 59 Fe, ileal 210 Pb-absorption was as high as in iron-adequate duodena. Conclusions: The findings suggest a DMT1-independent pathway to mediate lead absorption along the entire small intestine in addition to DMT1-mediated duodenal uptake. Ileal lead absorption appears substantial, due the much longer residence of ingesta in the distal small intestine. Differences in lead-solubility and -binding to luminal ligands can, thus, explain the conflicting findings regarding the

  1. Effect of Organic Substances on the Efficiency of Fe(Ii to Fe(Iii Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Directory of Open Access Journals (Sweden)

    Krupińska Izabela

    2017-09-01

    Full Text Available One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3. The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D. It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot], efficiency of Fe(II to Fe(III oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII when used as an oxidizing agent. The application of potassium manganate (VII for oxidation of Fe(II ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  2. Effect of Organic Substances on the Efficiency of Fe(Ii) to Fe(Iii) Oxidation and Removal of Iron Compounds from Groundwater in the Sedimentation Process

    Science.gov (United States)

    Krupińska, Izabela

    2017-09-01

    One of the problems with iron removal from groundwater is organic matter. The article presents the experiments involved groundwater samples with a high concentration of total iron - amounting to 7.20 mgFe/dm3 and an increased amount of organic substances (TOC from 5.50 to 7.50 mgC/dm3). The water samples examined differed in terms of the value of the ratio of the TOC concentration and the concentration of total iron (D). It was concluded that with increase in the coexistence ratio of organic substances and total iron in water (D = [TOC]/[Fetot]), efficiency of Fe(II) to Fe(III) oxidization with dissolved oxygen decreased, while the oxidation time was increasing. This rule was not demonstrated for potassium manganate (VII) when used as an oxidizing agent. The application of potassium manganate (VII) for oxidation of Fe(II) ions produced the better results in terms of total iron concentration reduction in the sedimentation process than the oxidation with dissolved oxygen.

  3. Different behaviour of 63Ni and 59Fe during absorption in iron-deficient and iron-adequate jejunal rat segments ex vivo

    International Nuclear Information System (INIS)

    Mueller-Fassbender, M.; Elsenhans, B.; McKie, A.T.; Schuemann, K.

    2003-01-01

    Nickel exhibits low oral toxicity. It shares the absorptive pathways for iron, though there are substantial quantitative differences in handling of both metals. To analyse these differences more closely, jejunal segments from iron-deficient and iron-adequate rats were luminally perfused ex vivo with 59 Fe and 63 Ni at six different concentrations (1-500 μmo1/l) under steady state conditions. 59 Fe over-all absorption increased 2.0-4.6-fold in iron-deficiency at luminal concentrations between 1 and 100 μmol/l, while 63 Ni absorption increased to a much lower extent (2.6-fold at 1 μmol/l and 1.5-fold at higher luminal concentrations). Moreover, there was a 5-7-fold higher concentration for 63 Ni in the jejunal tissue than in the absorbate at luminal concentrations above 50 μmol/l which was not observed at 1 μmol 63 Ni/l and not for 59 Fe. 63 Ni tissue load showed a linear and a saturable fraction. In iron-deficiency the saturable 63 Ni fraction increased 4-fold as compared to only 1.5-fold increments for 59 Fe. Moreover, a substantially higher share of 63 Ni was retained in the jejunal tissue at high as compare to low luminal concentrations after perfusion had been continued without luminal radioactivity. This was not found for 59 Fe and suggests a concentration-dependent block of 63 Ni export across the enterocytes' basolateral membrane. To explain these results one may speculate that 63 Ni may bind more tightly to tissue ligands than 59 Fe due to the higher thermodynamic and kinetic stability of nickel complexes. In particular, nickel may bind to a basolateral population of metal carriers and block its own basolateral transfer in a concentration-dependent manner. Tight 63 Ni binding to non-specific jejunal ligands is responsible for the unaltered high linear fraction of jejunal 63 Ni load in iron-deficient and iron-adequate segments. Binding of 63 Ni to food and tissue ligands in the small intestine may, thus, be a likely explanation for the low oral nickel

  4. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA.

    Science.gov (United States)

    Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan

    2017-09-05

    Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.

  5. Iron and zinc concentrations and 59Fe retention in developing fetuses of zinc-deficient rats

    International Nuclear Information System (INIS)

    Rogers, J.M.; Loennerdal, B.H.; Hurley, L.S.; Keen, C.L.

    1987-01-01

    Because disturbances in iron metabolism might contribute to the teratogenicity of zinc deficiency, we examined the effect of zinc deficiency on fetal iron accumulation and maternal and fetal retention of 59 Fe. Pregnant rats were fed from mating a purified diet containing 0.5, 4.5 or 100 micrograms Zn/g. Laparotomies were performed on d 12, 16, 19 and 21 of gestation. Maternal blood and concepti were analyzed for zinc and iron. Additional groups of dams fed 0.5 or 100 micrograms Zn/g diet were gavaged on d 19 with a diet containing 59 Fe. Six hours later maternal blood and tissues, fetuses and placentas were counted for 59 Fe. Maternal plasma zinc, but not iron, concentration was affected by zinc deficiency on d 12. Embryo zinc concentration on d 12 increased with increasing maternal dietary zinc, whereas iron concentration was not different among groups. On d 16-21 plasma iron was higher in dams fed 0.5 micrograms Zn/g diet than in those fed 4.5 or 100 micrograms/g, whereas plasma zinc was lower in dams fed 0.5 or 4.5 micrograms Zn/g than in those fed 100 micrograms Zn/g diet. On d 19 zinc concentration in fetuses from dams fed 0.5 micrograms/g zinc was not different from that of those fed 4.5 micrograms/g zinc, and iron concentration was higher in the 0.5 microgram Zn/g diet group. The increase in iron concentration in zinc-deficient fetuses thus occurs too late to be involved in major structural teratogenesis. Although whole blood concentration of 59 Fe was not different in zinc-deficient and control dams, zinc-deficient dams had more 59 Fe in the plasma fraction

  6. The synthesis, structure and reactivity of iron-bismuth complexes : Potential Molecular Precursors for Multiferroic BiFeO3

    OpenAIRE

    Wójcik, Katarzyna

    2009-01-01

    The thesis presented here is focused on the synthesis of iron-bismuth alkoxides and siloxides as precursors for multiferroic BiFeO3 systems. Spectrum of novel cyclopentadienyl substituted iron-bismuth complexes of the general type [{Cpy(CO)2Fe}BiX2], as potential precursors for cyclopentadienyl iron-bismuth alkoxides or siloxides [{Cpy(CO)2Fe}Bi(OR)2] (R-OtBu, OSiMe2tBu), were obtained and characterised. The use of wide range of cyclopentadienyl rings in the iron carbonyl compounds allowed fo...

  7. Environmental application of millimeter-scale sponge iron (s-Fe(0)) particles (II): the effect of surface copper.

    Science.gov (United States)

    Ju, Yongming; Liu, Xiaowen; Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande; Dionysiou, Dionysios D

    2015-04-28

    To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe(0)), Cu(2+) ions were deposited on the surface of s-Fe(0) using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu(0) loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3∼5 millimeter s-Fe(0) particles (s-Fe(0)(3∼5mm)) with 5wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu(0)-s-Fe(0) showed excellent stability after five reuse cycles. Cu(0)-s-Fe(0) possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu(0) apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe2O3 and Fe3O4 played minor role for the removal of RhB. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Extraction chromatographic separation of iron from complex liquid samples and the determination of 55Fe

    International Nuclear Information System (INIS)

    Grahek, Z.; Rozmaric Macefat, M.

    2006-01-01

    Iron separation is described from liquid samples with a high concentration of ions that enables simple determination of 55 Fe. One of the described methods consists of iron precipitation from a large volume seawater by sodium hydroxide and/or ammonium carbonate and separation from other elements (Ca, Sr, Cu, Mg, etc.) on a TRU column with 4M HCl or 8M HNO 3 . In the other procedure iron is separated directly from a mixture of seawater samples and HCl on a TRU column. In both methods, the iron recovery is almost 100%. After separation, 55 Fe is determined by counting with a liquid scintillation counter. The binding of Fe and Zn on TEVA, U/TEVA and TRU resins from seawater solutions of HCl and HNO 3 depends on the type of the resin, concentration of acid and other ions. Iron and zinc can be separated from seawater on a U/TEVA column with 2M HCl. (author)

  9. Li4FeH6: Iron-containing complex hydride with high gravimetric hydrogen density

    Directory of Open Access Journals (Sweden)

    Hiroyuki Saitoh

    2014-07-01

    Full Text Available Li4FeH6, which has the highest gravimetric hydrogen density of iron-containing complex hydrides reported so far, is synthesized by hydrogenation of a powder mixture of iron and LiH above 6.1 GPa at 900 °C. In situ synchrotron radiation X-ray diffraction measurements reveal that while kinetics require high temperature and thus high pressure for the synthesis, Li4FeH6 is expected to be thermodynamically stable slightly below room temperature at ambient pressure; further synthetic studies to suppress the kinetic effects may enable us to synthesize Li4FeH6 at moderate pressures. Li4FeH6 can be recovered at ambient conditions where Li4FeH6 is metastable.

  10. {Fe6O2}-Based Assembly of a Tetradecanuclear Iron Nanocluster

    Directory of Open Access Journals (Sweden)

    Svetlana G. Baca

    2011-01-01

    Full Text Available The tetradecanuclear FeIII pivalate nanocluster [Fe14O10(OH4(Piv18], comprising a new type of metal oxide framework, has been solvothermally synthesized from a hexanuclear iron pivalate precursor in dichlormethane/acetonitrile solution. Magnetic measurements indicate the presence of very strong antiferromagnetic interactions in the cluster core.

  11. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (I): Pretreatment of cationic triphenylmethane dyes

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Li, Zhaoyong; Kang, Juan; Wang, Xiaoyan; Zhang, Yukui; Fang, Jiande [South China Institute of Environmental Sciences, the Ministry of Environmental Protection of PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-02-11

    Graphical abstract: - Highlights: • Millimetric s-Fe{sup 0} particles effectively reduce BG, MG, CV, and EV dyes. • s-Fe{sup 0} displays similar contaminant removal efficiency compared to nZVI. • s-Fe{sup 0} shows greater economic advantages than nZVI, iron powder, and iron scurf. • The reductive mechanism of BG over s-Fe{sup 0} under US condition is elucidated. - Abstract: To investigate the removal capability of millimetric zero valent iron (mmZVI), sponge iron (s-Fe{sup 0}) particles were characterized with XRD, XPS, TEM, HRSEM and EDS techniques. Moreover, the roles of particle size, catalyst dosage, dye concentration, mixing conditions (e.g. ultrasound (US), stirring or shaking), and regeneration treatment were studied with the removal of cationic triphenylmethane dyes. Notably, the reduction process was also revealed as compared to nanoscale zero valent iron (nZVI), microscale iron power, and iron scurf. Furthermore, the reductive mechanism was exemplified with brilliant green. The results demonstrated that (1) the synergetic effect between US and s-Fe{sup 0} greatly enhanced the removal of dyes, (2) the dosage of preferred s-Fe{sup 0} (1–3 mm) particles was optimized as 30.0 g/L; (3) reuse cycles of s-Fe{sup 0} catalyst were enhanced with the assistance of diluted HCl solution; (4) the main degradation routes included the cleavage of conjugated structure reactions, N-de-ethylation reactions, hydroxylation reactions, the removal of benzene ring reactions, and opening ring reactions. Accordingly, the pretreatment of aqueous solution over s-Fe{sup 0} was hypothesized to achieve mainly through direct reduction reaction by electron transfer and indirect reductive reactions by the highly activated hydrogen atom. Additionally, decoration with noble metals was utilized to reveal the reaction mechanism.

  12. Very low sound velocities in iron-rich (Mg,Fe)O: Implications for the core-mantle boundary region

    International Nuclear Information System (INIS)

    Wicks, J.K.; Jackson, J.M.; Sturhahn, W.

    2010-01-01

    The sound velocities of (Mg .16 Fe .84 )O have been measured to 121 GPa at ambient temperature using nuclear resonant inelastic x-ray scattering. The effect of electronic environment of the iron sites on the sound velocities were tracked in situ using synchrotron Moessbauer spectroscopy. We found the sound velocities of (Mg .16 Fe .84 )O to be much lower than those in other presumed mantle phases at similar conditions, most notably at very high pressures. Conservative estimates of the effect of temperature and dilution on aggregate sound velocities show that only a small amount of iron-rich (Mg,Fe)O can greatly reduce the average sound velocity of an assemblage. We propose that iron-rich (Mg,Fe)O be a source of ultra-low velocity zones. Other properties of this phase, such as enhanced density and dynamic stability, strongly support the presence of iron-rich (Mg,Fe)O in localized patches above the core-mantle boundary.

  13. Iron intake by rats using peroral administration of /sup 55/Fe-salts of phosphatidic acids

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, P.; Kas, J. (Inst. of Chemical Technology, Prague (Czechoslovakia)); Tykva, R. (Ceskoslovenska Akademie Ved, Prague. Ustav Organicke Chemie a Biochemie)

    1984-03-15

    The utilization of /sup 55/Fe and its incorporation into rat organs was investigated after peroral administration of various salts of phosphatidic acids (PA). Iron of PA salts is utilized up to 58-94% comparing to /sup 55/Fe/sup 2 +/. The degree of iron utilization depends on the type of PA salts administered. 16 refs.

  14. Impact on the Fe redox cycling of organic ligands released by Synechococcus PCC 7002, under different iron fertilization scenarios. Modeling approach

    Science.gov (United States)

    Samperio-Ramos, Guillermo; González-Dávila, Melchor; Santana-Casiano, J. Magdalena

    2018-06-01

    The kinetics of Fe redox transformations are of crucial importance in determining the bioavailability of iron, due to inorganic Fe(II) and Fe weakly organic complexes being the most easily assimilated species by phytoplankton. The role played by the natural organic ligands excreted by the cyanobacteria Synecococcus PCC 7002 on the iron redox chemistry was studied at different stages of growth, considering changes in the organic exudation of the cyanobacteria, associated with growth under two different scenarios of iron availability. The oxidation/reduction processes of iron were studied at nanomolar levels and under different physicochemical conditions of pH (7.2- 8.2), temperature (5- 35 °C) and salinity (10- 37). The presence of natural organic exudates of Synechococcus affected the redox behavior of iron. A pH-dependent and photo-induced Fe(III) reduction process was detected in the presence of exudates produced under Fe-Low conditions. Photolytic reactions also modified the reactivity of those exudates with respect to Fe(II), increasing its lifetime in seawater. Without light mediated processes, organic ligands excreted under iron deficient conditions intensified the Fe(II) oxidation at pH redox constants between iron and the major ligands present in solution. Two organic type ligands for the exudates of Synechococcus PCC 7002, with different iron-chelation properties were included in the model. The Fe(II) speciation was radically affected when organic ligands were considered. The individual contributions to the overall Fe(II) oxidation rate demonstrated that these organic ligands played a key role in the oxidation process, although their contributions were dependent on the prescribed iron conditions. The study, therefore, suggests that the variability in the composition and nature of organic exudates released, due to iron availability conditions, might determine the redox behaviour of iron in seawater.

  15. Synthesis of novel magnetic iron metal-silica (Fe-SBA-15) and magnetite-silica (Fe{sub 3}O{sub 4}-SBA-15) nanocomposites with a high iron content using temperature-programed reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yiu, H H P [Department of Chemistry, University of Liverpool, Liverpool, Merseyside L69 7ZD (United Kingdom); Keane, M A [Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Lethbridge, Z A D [Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Lees, M R [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Haj, A J El; Dobson, J [Institute of Science and Technology in Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB (United Kingdom)], E-mail: j.p.dobson@keele.ac.uk

    2008-06-25

    Magnetic iron metal-silica and magnetite-silica nanocomposites have been prepared via temperature-programed reduction (TPR) of an iron oxide-SBA-15 (SBA: Santa Barbara Amorphous) composite. TPR of the starting SBA-15 supported Fe{sub 2}O{sub 3} generated Fe{sub 3}O{sub 4} and FeO as stepwise intermediates in the ultimate formation of Fe-SBA-15. The composite materials have been characterized by means of x-ray diffraction, high resolution transmission electron microscopy and SQUID (superconducting quantum interference device) magnetometry. The Fe oxide and metal components form a core, as nanoscale particles, that is entrapped in the SBA-15 pore network. Fe{sub 3}O{sub 4}-SBA-15 and Fe-SBA-15 exhibited superparamagnetic properties with a total magnetization value of 17 emu g{sup -1}. The magnetite-silica composite (at an Fe{sub 3}O{sub 4} loading of 30% w/w) delivered a magnetization that exceeded values reported in the literature or obtained with commercial samples. Due to the high pore volume of the mesoporous template, the magnetite content can be increased to 83% w/w with a further enhancement of magnetization.

  16. Reactions of laser-ablated iron atoms and cations with carbon monoxide: Infrared spectra of FeCO+, Fe(CO)2+, Fe(CO)x, and Fe(CO)x- (x=1-4) in solid neon

    Science.gov (United States)

    Zhou, Mingfei; Andrews, Lester

    1999-06-01

    Laser-ablated iron atoms, cations, and electrons have been reacted with CO molecules during condensation in excess neon. The FeCO molecule is observed at 1933.7 cm-1 in solid neon. Based on isotopic shifts and density functional calculations, the FeCO molecule has the same 3Σ- ground state in solid neon that has been observed at 1946.5 cm-1 in a recent high resolution gas phase investigation [Tanaka et al., J. Chem. Phys. 106, 2118 (1997)]. The C-O stretching vibration of the Fe(CO)2 molecule is observed at 1917.1 cm-1 in solid neon, which is in excellent agreement with the 1928.2 cm-1 gas phase value for the linear molecule. Anions and cations are also produced and trapped, absorptions at 1782.0, 1732.9, 1794.5, and 1859.7 cm-1 are assigned to the linear FeCO-, Fe(CO)2-, trigonal planar Fe(CO)3-, and C3v Fe(CO)4- anions, respectively, and 2123.0, 2134.0 cm-1 absorptions to the linear FeCO+ and Fe(CO)2+ cations. Doping these experiments with CCl4 virtually eliminates the anion absorptions and markedly increases the cation absorptions, which confirms the charge identifications. Higher iron carbonyl Fe(CO)3, Fe(CO)4, and Fe(CO)5 absorptions are produced on photolysis.

  17. One-step synthesis for FeBTC-MOF/iron oxide composite

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, R.F.F. do; Gentil, G.; Junior, S.A.; Azevedo, W.M. de; Rodrigues, A.R.; Campello, S.L. [Universidade Federal de Pernambuco (UFPE), PE (Brazil)

    2016-07-01

    Full text: In this work we present the assisted ultrasonic radiation synthesis for f Fe(BTC) (BTC = 1,3,5-benzenetricarboxilic acid) metal organic framework preparation. By definition Metal-organic frameworks (MOFs) belongs to a class of material prepared by the combination of metal ions and organic linkers to form a tridimensional framework which presents defined characteristics like crystallinity, high porosity and the presence of strong metal-ligand interaction. In the last decades the MOFs materials have received considerable attention not only due to scientific interest, but also because of their high potential for applications in several technological areas such as in gas storage, catalysis and drug delivery [1]. Among several Metal-organic frameworks (MOFs) the Fe-BTC structure seems to be one of promising materials, mainly due to their chemical and thermal stability, presents biocompatibility, can be used as drug delivery and as a contrast agent for magnetic resonance. Its functionalization has been reported in the literature by several works where the methods consist to mix the iron oxide Fe3O4 nanoparticles, in the solution contained the MOF'S precursor and the synthesis is prepared by solvothermal method. Typically, it has core-shell Fe3O4@MOF structures and exhibit magnetic properties. Our experimental technique proposed for the synthesis of the composite consists to use iron powder (?-Fe) as a target material dispersed in a solution of DMF/H2O (1:1) containing benzene 1,3,5 tricarboxilic acid and NaNO3. The synthesis was performed using a Ultrasound equipment model GEX500 500 W operating at 80 kHz, pulse 1s intervals for 60 min. The x-ray diffraction patterns and SEM measurements shown that the obtained materials are similar to those found in the literature and presents a rods likes morphology. The BET analysis indicate that the surface area is 1257 m²g-1 and pore volume 1.4 cm³g-1. Also the magnetic measurements indicates a paramagnetic

  18. Effects of Fe-chelate and iron oxide nanoparticles on some of the physiological characteristics of alfalfa (Medicago sativa L.

    Directory of Open Access Journals (Sweden)

    Mehri Askary

    2018-06-01

    Full Text Available Introduction Iron is an essential micronutrient for plant growth that plays an important role in plant metabolism. Iron deficiency is an abiotic stress that is often found in plants grown in calcareous and alkaline soils. The solubility of Fe+3 decreases dramatically with increasing pH. 30% of the arable land worldwide consists of calcareous and alkaline soils. Common iron fertilizers used to reduce deficiency syndromes contain iron(II sulfate heptahydrate (FeSO4.7H2O or iron chelates. Iron chelate (for example Fe-EDTA is absorbed by plants, which however depends on soil conditions especially soil pH. Nowadays , nano-Fe fertilizer can be used as a rich source of iron for plants ,because it gradually releases Fe in a wide pH range (pH 3– 11. Nanofertilizer usage leads to increase element efficiency, reduce soil toxicity and negative effects caused by the excessive consumption of chemical fertilizers and reduce the fertilizer’ s application . This research was carried out to determine the suitable type of iron fertilizer and to evaluate the effects of different concentrations of nano-Fe fertilizer on Medicago sativa Materials and methods In order to investigate the effects of Fe-deficiency and different levels of Fe2O3 nanoparticles compared to Fe-EDTA on leaf growth, photosynthetic pigments and antioxidative activity of alfalfa (Medicago sativa cv.Hamadani, an experiment was conducted based on completely randomized design with three replications in Arak University during 2015. After germination of sterilized seeds of alfalfa, 1-day seedlings were cultured in plastic vases contains perlite. Plants were maintained under 25/18°C day/night temperatures with 12-hr photoperiod. Irrigation was done weekly with 100ml complete Hoagland solution (containing iron chelate (Fe-EDTA for control plants or 100ml Hoagland solution without iron chelate and containing different concentrations of ironoxide nanoparticles (0, 5, 10, 20 and 25µM. Plants

  19. Optical and structural properties of FeSe2 thin films obtained by selenization of sprayed amorphous iron oxide films

    International Nuclear Information System (INIS)

    Ouertani, B.; Ouerfelli, J.; Saadoun, M.; Zribi, M.; Rabha, M.Ben; Bessais, B.; Ezzaouia, H.

    2006-01-01

    We report in this work the optical and structural properties of iron diselenide films (FeSe 2 ) obtained by selenization under vacuum of amorphous iron oxide films predeposited by spray pyrolysis. The structure of the FeSe 2 films was investigated by scanning electron microscopy (SEM), microprobe analyses, atomic force microscopy (AFM) and X-ray diffraction (XRD). XRD and micro-probe analyses showed that FeSe 2 as well as FeSe 2-x phases begin to appear at a selenization temperature of 500 deg. C. As the selenization temperature rises, the iron diselenide films become more stoichiometric with a dominance of the FeSe 2 phase. At 550 deg. C, a single FeSe 2 phase having good crystallinity was obtained. At 600 deg. C, two phases were detected: the major one corresponds to Fe 3 O 4 , and the minor one to FeSe 2 . SEM surface views show that FeSe 2 films have granular structure with small spherical crystallites. However, layered and clustered FeSe 2 films were found, respectively, at 550 deg. C and 600 deg. C. Absorption measurements show that iron diselenide films have a direct and an indirect gaps of about 1.03 eV and 0.3 eV, which were suggested to be due to the stoichiometric FeSe 2 phase and to a Fe-rich non-stoichiometric phase, respectively

  20. Studies on iron absorption and retention in malnourished Indian subjects, using Fe-59 and whole-body counting

    International Nuclear Information System (INIS)

    Gopalan, C.; Srikantia, S.G.

    1975-12-01

    The gastrointestinal absorption of iron under various conditions in representatives of the Indian population, and several related matters, have been investigated. Percentage absorption was determined by whole-body counting of 59Fe, or by measuring the concentration of 55Fe in the blood, at about two weeks after administration of the respective tracer. It was confirmed or established that: (1) food or supplemental iron, if available at all, tends to be absorbed from the intestines as if present there in one of two alternative pools: heme and non heme; (2) 30%-50% of iron measured chemically in Indian foods appears to be in an unavailable form, for example as a contaminant in adventitiously present dust; (3) fortification of the diet with iron may be feasible by adding FePO 4 + 2 molar NaHSO 4 to common salt under suitable conditions; (4) monkeys appear to be sufficiently similar to humans in their iron absorption characteristics that they may be the best available non-human model for preliminary experimental investigations of iron absorption; and (5) a promising preparative method for liquid scintillation counting of 55Fe present in blood is to extract it into toluene in the presence of di (2-ethyl-hexyl) phosphate (HDEHP)

  1. Transformation impacts of dissolved and solid phase Fe(II) on trichloroethylene (TCE) reduction in an iron-reducing bacteria (IRB) mixed column system: a mathematical model.

    Science.gov (United States)

    Bae, Yeunook; Kim, Dooil; Cho, Hyun-Hee; Singhal, Naresh; Park, Jae-Woo

    2012-12-01

    In this research, we conducted trichloroethylene (TCE) reduction in a column filled with iron and iron-reducing bacteria (IRB) and developed a mathematical model to investigate the critical reactions between active species in iron/IRB/contaminant systems. The formation of ferrous iron (Fe(II)) in this system with IRB and zero-valent iron (ZVI, Fe(0)) coated with a ferric iron (Fe(III)) crust significantly affected TCE reduction and IRB respiration in various ways. This study presents a new framework for transformation property and reducing ability of both dissolved (Fe(II)(dissolved)) and solid form ferrous iron (Fe(II)(solid)). Results showed that TCE reduction was strongly depressed by Fe(II)(solid) rather than by other inhibitors (e.g., Fe(III) and lactate), suggesting that Fe(II)(solid) might reduce IRB activation due to attachment to IRB cells. Newly exposed Fe(0) from the released Fe(II)(dissolved) was a strong contributor to TCE reduction compared to Fe(II)(solid). In addition, our research confirmed that less Fe(II)(solid) production strongly supported long-term TCE reduction because it may create an easier TCE approach to Fe(0) or increase IRB growth. Our findings will aid the understanding of the contributions of iron media (e.g., Fe(II)(solid), Fe(II)(dissolved), Fe(III), and Fe(0)) to IRB for decontamination in natural groundwater systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Bimetallic Porous Iron (pFe) Materials for Remediation/Removal of Tc from Aqueous Systems

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-29

    Remediation of Tc remains an unresolved challenge at SRS and other DOE sites. The objective of this project was to develop novel bimetallic porous iron (pFe) materials for Tc removal from aqueous systems. We showed that the pFe is much more effective in removing TcO4 - (×30) and ReO4 - (×8) from artificial groundwater than granular iron. Tc K-edge XANES spectroscopy indicated that Tc speciation on the pFe was 18% adsorbed TcO4 -, 28% Tc(IV) in Tc dioxide and 54% Tc(IV) into the structure of Fe hydroxide. A variety of catalytic metal nanoparticles (i.e., Ni, Cu, Zn, Ag, Sn and Pd) were successfully deposited on the pFe using scalable chemical reduction methods. The Zn-pFe was outstanding among the six bimetallic pFe materials, with a capacity increase of >100% for TcO4 - removal and of 50% for ReO4 - removal, compared to the pFe. These results provide a highly applicable platform for solving critical DOE and industrial needs related to nuclear environmental stewardship and nuclear power production.

  3. Temperature diagnostic line ratios of Fe XVII

    International Nuclear Information System (INIS)

    Raymond, J.C.; Smith, B.W.; Los Alamos National Lab., NM)

    1986-01-01

    Based on extensive calculations of the excitation rates of Fe XVII, four temperature-sensitive line ratios are investigated, paying special attention to the contribution of resonances to the excitation rates and to the contributions of dielectronic recombination satellites to the observed line intensities. The predictions are compared to FPCS observations of Puppis A and to Solar Maximum Mission (SMM) and SOLEX observations of the sun. Temperature-sensitive line ratios are also computed for emitting gas covering a broad temperature range. It is found that each ratio yields a differently weighted average for the temperature and that this accounts for some apparent discrepancies between the theoretical ratios and solar observations. The effects of this weighting on the Fe XVII temperature diagnostics and on the analogous Fe XXIV/Fe XXV satellite line temperature diagnostics are discussed. 27 references

  4. Influence of FeEDDS, FeEDTA, FeDTPA, FeEDDHA, and FeSO4 on Marigold Growth and Nutrition, and Substrate and Runoff Chemistry

    Science.gov (United States)

    Objectives of the study were to determine effects of Fe source on plant growth, plant nutrition, substrate chemistry and runoff chemistry. Iron source (FS) treatments consisted of Fe-aminopolycarboxylic acid (APCA) complexones iron ethylenediaminetetraacetic acid (FeEDTA), iron [S, S']-ethylenediam...

  5. Chemical evaluation of HBED/Fe(3+) and the novel HJB/Fe(3+) chelates as fertilizers to alleviate iron chlorosis.

    Science.gov (United States)

    López-Rayo, Sandra; Hernández, Diana; Lucena, Juan J

    2009-09-23

    Iron chelates such as ethylenediamine-N,N'-bis(2-hydroxyphenylacetic) acid (o,o-EDDHA) and their analogues are the most efficient soil fertilizers to treat iron chlorosis in plants growing in calcareous soil. A new chelating agent, HJB (N,N'-bis(2-hydroxy-5-methylphenyl)ethylendiamine-N,N'-diacetic acid) may be an alternative to o,o-EDDHA since its synthesis yields a purer product, but its chemical behavior and efficiency as chlorosis corrector should be evaluated. In this research, a known analogous HBED (N,N'-bis(2-hydroxyphenyl)ethylendiamine-N,N'-diacetic acid) has also been considered. First, an ion-pair high performance liquid chromatography (HPLC) method has been tested for the HJB/Fe(3+) and HBED/Fe(3+) determination. The ability of HJB and HBED to maintain Fe in solution has been compared with respect to o,o-EDDHA. Theoretical modelization for HBED and HJB in agronomic conditions has been done after the determination of the protonation and Ca(II), Mg(II), Fe(III), and Cu(II) stability constants for HJB. Also, batch interaction experiments with soils and soil materials have been conducted. According to our results, HJB/Fe(3+) and HBED/Fe(3+) present high stability, even when competing cations (Cu(2+), Ca(2+)) are present, and have low reactivity with soils and soil components. The chelating agent HJB dissolves a higher amount of Fe than o,o-EDDHA, and it seems as effective as o,o-EDDHA in keeping Fe in solution. These results indicate that these chelates may be very efficient products to correct Fe chlorosis, and additional plant experiments should demonstrate plants' ability to assimilate Fe from HJB/Fe(3+) and HBED/Fe(3+).

  6. Effectiveness of Iron Ethylenediamine-N,N′-bis(hydroxyphenylacetic) Acid (o,o-EDDHA/Fe3+) Formulations with Different Ratios of Meso and d,l-Racemic Isomers as Iron Fertilizers

    OpenAIRE

    Alcañiz Lucas, Sara; Jordá Guijarro, Juana Dolores; Cerdán, Mar

    2017-01-01

    Two o,o-EDDHA/Fe3+ formulations (meso, 93.5% w/w of meso isomer; and d,l-racemic, 91.3% w/w of d,l-racemic mixture) were prepared, and their efficacy to avoid or to relieve iron deficiency in Fe-sufficient and Fe-deficient tomato plants grown on hydroponic solution was compared with that of the current o,o-EDDHA/Fe3+ formulations (50% of meso and d,l-racemic isomers). The effectiveness of the three o,o-EDDHA/Fe3+ formulations was different depending on the iron nutritional status of plants. T...

  7. Bacteria attenuation by iron electrocoagulation governed by interactions between bacterial phosphate groups and Fe(III) precipitates

    NARCIS (Netherlands)

    Delaire, Caroline; van Genuchten, Case M.; Amrose, Susan E.; Gadgil, Ashok J.

    2016-01-01

    Iron electrocoagulation (Fe-EC) is a low-cost process in which Fe(II) generated from an Fe(0) anode reacts with dissolved O2 to form (1) Fe(III) precipitates with an affinity for bacterial cell walls and (2) bactericidal reactive oxidants. Previous work suggests that Fe-EC is a promising treatment

  8. Wet-chemical synthesis of nanoscale iron boride, XAFS analysis and crystallisation to α-FeB.

    Science.gov (United States)

    Rades, Steffi; Kornowski, Andreas; Weller, Horst; Albert, Barbara

    2011-06-20

    The reaction of lithium tetrahydridoborate and iron bromide in high boiling ether as reaction medium produces an ultrafine, pyrophoric and magnetic precipitate. X-ray and electron diffraction proved the product to be amorphous. According to X-ray absorption fine structure spectroscopy (XAFS) the precipitate has FeB structure up to nearly two coordination spheres around an iron absorber atom. Transmission electron microscopy (TEM) confirms the ultrafine powder to be nanoscale. Subsequent annealing at 450 °C causes the atoms to arrange in a more distinct FeB structure, and further thermal treatment to 1050 °C extends the local structure to the α-modification of FeB. Between 1050 °C and 1500 °C α-FeB is transformed into β-FeB. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Identification of Spinel Iron Oxide Nanoparticles by 57Fe NMR

    Directory of Open Access Journals (Sweden)

    SangGap Lee

    2011-12-01

    Full Text Available We have synthesized and studied monodisperse iron oxide nanoparticles of smaller than 10 nm to identify between the two spinel phases, magnetite and maghemite. It is shown that 57Fe NMR spectroscopy is a promising tool for distinguishing between the two phases.

  10. Addition of iron for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Belmares-Perales, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Zaldivar-Cadena, A.A., E-mail: azaldiva70@hotmail.com [Facultad de Ingenieria Civil, Departamento de Ecomateriales y Energia, Instituto de Ingenieria Civil, Av. Fidel Velasquez and Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, N.L. 66450 (Mexico)

    2010-10-25

    Addition of iron into the molten metal for the removal of the {beta}-AlFeSi intermetallic by refining of {alpha}-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the {alpha}-AlFeSi and {beta}-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc{sup TM} software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of {alpha}-AlFeSi and removal of {beta}-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of {beta}-AlFeSi and {alpha}-AlFeSi phases, respectively. This study shows a new method of removal of {beta}-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 {mu}m.

  11. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy

    International Nuclear Information System (INIS)

    Belmares-Perales, S.; Zaldivar-Cadena, A.A.

    2010-01-01

    Addition of iron into the molten metal for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase has been studied. Solidification conditions and composition determine the final microstructure and mechanical properties of a casting piece. It is known that increasing the iron content will produce an increasing of the α-AlFeSi and β-AlFeSi phases. This phenomenon was confirmed with calculations made by Thermo-Calc TM software and validated with experimental results, however, the technique of iron addition in this study plays an important role on the solidification kinetics of these iron phases because the refining of α-AlFeSi and removal of β-AlFeSi phases can be improved. Final results showed an improvement in mechanical properties by removal and refining of β-AlFeSi and α-AlFeSi phases, respectively. This study shows a new method of removal of β-AlFeSi that could be adopted in the aluminum smelting industry in aluminum alloys with a low cooling rate with a secondary dendritic spacing of about 37 μm.

  12. Preparation and biodistribution of {sup 59}Fe-radiolabelled iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pospisilova, Martina, E-mail: martinapospisilova@gmail.com; Zapotocky, Vojtech; Nesporova, Kristina [Contipro a.s (Czech Republic); Laznicek, Milan; Laznickova, Alice [Charles University, Faculty of Pharmacy in Hradec Králové (Czech Republic); Zidek, Ondrej; Cepa, Martin; Vagnerova, Hana; Velebny, Vladimir [Contipro a.s (Czech Republic)

    2017-02-15

    We report on the {sup 59}Fe radiolabelling of iron oxide nanoparticle cores through post-synthetic isotope exchange ({sup 59}Fe-IONP{sub ex}) and precursor labelling ({sup 59}Fe-IONP{sub pre}). Scanning electron microscopy and dynamic light scattering measurements showed no impact of radiolabelling on nanoparticle size or morphology. While incorporation efficiencies of these methods are comparable—83 and 90% for precursor labelling and post-synthetic isotope exchange, respectively—{sup 59}Fe-IONP{sub pre} exhibited much higher radiochemical stability in citrated human plasma. Quantitative ex vivo biodistribution study of {sup 59}Fe-IONP{sub pre} coated with triethylene glycol was performed in Wistar rats. Following the intravenous administration, high {sup 59}Fe concentration was observed in the lung and the organs of the reticuloendothelial system such as the liver, the spleen and the femur.

  13. The Pressure-Volume-Temperature Equation of State of Iron-Rich (Mg,Fe)O

    Science.gov (United States)

    Wicks, J. K.; Jackson, J. M.; Zhuravlev, K. K.; Prakapenka, V.

    2012-12-01

    Seismic observations near the base of the core-mantle boundary (CMB) have detected 5-20 km thick patches in which the seismic wave velocities are reduced by up to 30%. These ultra-low velocity zones (ULVZs) have been interpreted as aggregates of partially molten material (e.g. Williams and Garnero 1996, Hernlund and Jellinek, 2010) or as solid, iron-enriched residues (e.g. Knittle and Jeanloz, 1991; Mao et al., 2006; Wicks et al., 2010), typically based on proposed sources of velocity reduction. The stabilities of these structure types have been explored through dynamic models that have assembled a relationship between ULVZ stability and density (Hernlund and Tackley, 2007; Bower et al., 2010). Now, to constrain the chemistry of ULVZs, more information is needed on the relationship between density and sound velocity of candidate phases. Recently, we have shown that the characteristically low sound speeds of ULVZs can be produced by small amounts of iron-rich (Mg,Fe)O, which is likely to be found in iron-rich assemblages based on current partitioning studies (eg. Sakai et al., 2010; Tange et al., 2009). We determined the Debye velocity (VD) of (Mg.1657Fe.84)O using nuclear resonant inelastic x-ray scattering (NRIXS), and calculated the seismically relevant compressional (VP) and shear (VS) wave velocities up to 120 GPa using an equation of state of a similar composition (Wicks et al., 2010). These densities and sound velocities, in turn, are consistent with reasonable morphologies of modeled solid ULVZs (Bower et al., 2011). To increase the accuracy of density and sound velocity predictions, measurements must be made at elevated temperatures to correctly predict the properties of iron-rich (Mg,Fe)O at mantle conditions. In this study, we present the pressure-volume-temperature equation of state of (Mg.0657Fe.94)O measured up to pressures of 120 GPa and temperatures of 2000 K. Volume was measured with x-ray diffraction at beamline 13-ID-D of the Advanced Photon

  14. Investigation on effect of iron and corundum content on corrosion resistance of the NiFe-Al2O3 coatings

    International Nuclear Information System (INIS)

    Starosta, R.; Zielinski, A.

    1999-01-01

    The alloy NiFe and composite NiFe-Al 2 O 3 coatings, obtained by electrodeposition on the base of cast iron, were investigated. The iron content in alloy coatings was dependent on iron content in galvanic bath, and was estimated by means of X-ray microanalysis at 18.5 wt. pct. and 41.2 wt. pct. No existence of ordered Ni 3 Fe phase was found by diffraction technique. Both potentiodynamic and impedance measurements disclosed that a presence of Al 2 O 3 or increasing iron content in the layer caused the decrease in corrosion resistance. (author)

  15. Environmental application of millimeter-scale sponge iron (s-Fe{sup 0}) particles (II): The effect of surface copper

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming, E-mail: juyongming@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Xiaowen, E-mail: liuxiaowen@scies.org [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Liu, Runlong; Li, Guohua; Wang, Xiaoyan; Yang, Yanyan; Wei, Dongyang; Fang, Jiande [South China Institute of Environmental Sciences, The Ministry of Environmental Protection of the PRC, Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, Ohio 45221-0012 (United States)

    2015-04-28

    Highlights: • Facile reduction reaction achieves decoration of Cu{sup 0} onto the surface of s-Fe{sup 0}. • The removal efficiency of RhB over Cu{sup 0}–s-Fe{sup 0} was similar to that of Cu{sup 0}–nZVI. • Cu{sup 0}–s-Fe{sup 0} can operate under mild condition with lower cost compared to nZVI. • The reductive mechanism over Cu{sup 0}–s-Fe{sup 0} under US condition is also elucidated. - Abstract: To enhance the catalytic reactivity of millimeter-scale particles of sponge iron (s-Fe{sup 0}), Cu{sup 2+} ions were deposited on the surface of s-Fe{sup 0} using a simple direct reduction reaction, and the catalytic properties of the bimetallic system was tested for removal of rhodamine B (RhB) from an aqueous solution. The influence of Cu{sup 0} loading, catalyst dosage, particle size, initial RhB concentration, and initial pH were investigated, and the recyclability of the catalyst was also assessed. The results demonstrate that the 3 ∼ 5 millimeter s-Fe{sup 0} particles (s-Fe{sup 0}(3 ∼ 5 mm)) with 5 wt% Cu loading gave the best results. The removal of RhB followed two-step, pseudo-first-order reaction kinetics. Cu{sup 0}–s-Fe{sup 0} showed excellent stability after five reuse cycles. Cu{sup 0}–s-Fe{sup 0} possesses great advantages compared to nanoscale zero-valent iron, iron power, and iron flakes as well as its bimetals. The surface Cu{sup 0} apparently catalyzes the production of reactive hydrogen atoms for indirect reaction and generates Fe-Cu galvanic cells that enhance electron transfer for direct reaction. This bimetallic catalyst shows great potential for the pre-treatment of recalcitrant wastewaters. Additionally, some oxides containing iron element are selected to simulate the adsorption process. The results prove that the adsorption process of FeOOH, Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} played minor role for the removal of RhB.

  16. In-gap bound states induced by interstitial Fe impurities in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Degang, E-mail: degangzhang@yahoo.com

    2015-12-15

    Highlights: • We provide an explanation for the interesting STM observation of the robust zero energy bound state on the interstitial Fe impurities in iron-based superconductors. - Abstract: Based on a two-orbit four-band tight binding model, we investigate the low-lying electronic states around the interstitial excess Fe ions in the iron-based superconductors by using T-matrix approach. It is shown that the local density of states at the interstitial Fe impurity (IFI) possesses a strong resonance inside the gap, which seems to be insensitive to the doping and the pairing symmetry in the Fe–Fe plane, while a single or two resonances appear at the nearest neighboring (NN) Fe sites. The location and height of the resonance peaks only depend on the hopping t and the pairing parameter Δ{sub I} between the IFI and the NN Fe sites. These in-gap resonances are originated in the Andreev’s bound states due to the quasiparticle tunneling through the IFI, leading to the change of the magnitude of the superconducting order parameter. When both t and Δ{sub I} are small, this robust zero-energy bound state near the IFI is consistent with recent scanning tunneling microscopy observations.

  17. Spatially Resolved Distribution of Fe Species around Microbes at the Submicron Scale in Natural Bacteriogenic Iron Oxides.

    Science.gov (United States)

    Suga, Hiroki; Kikuchi, Sakiko; Takeichi, Yasuo; Miyamoto, Chihiro; Miyahara, Masaaki; Mitsunobu, Satoshi; Ohigashi, Takuji; Mase, Kazuhiko; Ono, Kanta; Takahashi, Yoshio

    2017-09-27

    Natural bacteriogenic iron oxides (BIOS) were investigated using local-analyzable synchrotron-based scanning transmission X-ray microscopy (STXM) with a submicron-scale resolution. Cell, cell sheath interface (EPS), and sheath in the BIOS were clearly depicted using C-, N-, and O- near edge X-ray absorption fine structure (NEXAFS) obtained through STXM measurements. Fe-NEXAFS obtained from different regions of BIOS indicated that the most dominant iron mineral species was ferrihydrite. Fe(II)- and/or Fe(III)-acidic polysaccharides accompanied ferrihydrite near the cell and EPS regions. Our STXM/NEXAFS analysis showed that Fe species change continuously between the cell, EPS, and sheath under several 10-nm scales.

  18. Growth and microstructure of iron nitride layers and pore formation in {epsilon}-Fe{sub 3}N

    Energy Technology Data Exchange (ETDEWEB)

    Middendorf, C.; Mader, W. [Univ. Bonn, Inst. fuer Anorganische Chemie, Bonn (Germany)

    2003-03-01

    Layers of {epsilon}-Fe{sub 3}N and {gamma}'-Fe{sub 4}N on ferrite were produced by nitriding iron single crystals or rolled sheets of iron in flowing ammonia at 520 C. The nitride layers were characterised using X-ray diffraction, light microscopy as well as scanning and transmission electron microscopy. The compound layer consists of {epsilon}-Fe{sub 3}N at the surface and of {gamma}'-Fe{sub 4}N facing the ferrite. After 4 h of nitriding, pores develop in the near surface region of {epsilon}-Fe{sub 3}N showing more or less open porosity. Growth of the entire compound layer as well as of the massive and the porous {epsilon}-Fe{sub 3}N sublayer is diffusion-controlled and follows a parabolic growth rate. The {gamma}'-Fe{sub 4}N layer is formed as a transition phase within a narrow interval of nitrogen activity, and it shows little growth in thickness. The transformation of {gamma}'-Fe{sub 4}N to {epsilon}-Fe{sub 3}N is topotactic, where the orientation of the closed-packed iron layers of the crystal structures is preserved. Determination of lattice plane spacings was possible by X-ray diffraction, and this was correlated to the nitrogen content of {epsilon}-Fe{sub 3}N. While the porous layer exhibits an enhanced nitrogen content corresponding to the chemical composition Fe{sub 3}N{sub 1.1}, the massive e Fe{sub 3}N layer corresponds to Fe{sub 3}N{sub 1.0}. The pore formation in {epsilon}-Fe{sub 3}N{sub 1.1} is concluded to be the result of excess nitrogen atoms on non-structural sites, which have a high mobility. Therefore, recombination of excess nitrogen to molecular N{sub 2} at lattice defects is preferred in {epsilon}-Fe{sub 3}N with high nitrogen content compared to stoichiometric {epsilon}-Fe{sub 3}N{sub 1.0} with nitrogen on only structural sites. (orig.)

  19. Resonance Raman detection of iron-ligand vibrations in cyano(pyridine)(octaethylporphinato)iron(III): Effects of pyridine basicity on the Fe-CN bond strength

    International Nuclear Information System (INIS)

    Uno, Tadayuki; Hatano, Keiichiro; Nishimura, Yoshifumi; Arata, Yoji

    1988-01-01

    The influence of axial ligand basicity on the bonding of iron(III) in cyano adducts of octaethylporphyrin has been studied by resonance Raman spectroscopy. In a six-coordinate ferric low-spin complex, cyano(pyridine)(octaethylporphinato)iron(III), Fe(OEP)(CN)(py), Raman lines at 449 and 191 cm -1 were assigned to the ν(Fe-CN) and ν(Fe-py) stretching modes, respectively. When pyridine was displaced with its derivatives, py-X, where X = 4-cyano, 3-acetyl, 3-methyl, 4-methyl, 3,4-dimethyl, and 4-dimethylamino, the ν(Fe-CN) stretching frequency was found to decrease in the complex with a high pyridine basicity. It was concluded that the stronger the trans pyridine basicity, the weaker the iron-carbon (cyanide) bond. A clear frequency shift was observed in the ν 4 model, though most of the porphyrin vibrations were insensitive to the ligand substitution. The frequency of the ν 4 mode, which is the C a -N(pyrrole) breathing vibration of the porphyrin skeleton, was found to increase with an increase in pyridine basicity. This is contrary to what was found in ferrous low-spin hemes as CO complexes. The ν 4 shift in the CN complexes was explained in terms of forward π donation; donation of electrons from the porphyrin π orbital to the d π vacancy of the low-spin iron(III) weakened the C a -N(pyrrole) bonds and hence decreased the ν 4 frequency. 32 references, 8 figures

  20. Studies of the rare earth-iron interactions in the orthoferrites GdFeO3 and HoFeO3

    International Nuclear Information System (INIS)

    Sakata, T.; Enomura, A.

    1979-01-01

    The magnetic behaviour of GdFeO 3 and HoFeO 3 is investigated by means of a Faraday type magnetic balance in a temperature range where rare earth ions are in the paramagnetic state. The results are analyzed in terms of an effective field at a rare earth ion site. Thereby the isotropic exchange field as well as the magnetic dipole field are taken into account. By this means the exchange integral, J/k(K), between an iron ion and a rare earth ion may be estimated to be 0.23 for GdFeO 3 and 0.25 for HoFeO 3 , respectively. (author)

  1. Whole-body iron-59 retention measurements for estimating the iron status of piglets

    International Nuclear Information System (INIS)

    Pfau, A.; Rudolphi, K.; Heinrich, H.C.; Gabbe, E.E.

    1976-01-01

    A large-volume, 4π whole-body liquid scintillation detector was used to determine 59 Fe absorption in 173 one-to-six-weeks-old piglets with normal and depleted iron stores. Values of intestinal absorption from a 10 μmole (corresponds to 0.558 mg) 59 Fe 2+ test dose were compared with levels of haemoglobin, haematocrit, and serum iron as well as with stainable diffuse iron of bone marrow reticuloendothelial cells, and the dose relationship of intestinal iron absorption from 59 Fe-labelled FeSO 4 and methaemoglobin was measured. The investigations indicated that neither blood parameters, cytochemical gradings nor absorption levels from the 59 Fe test dose alone were sufficient to describe quantitatively the various stages of iron deficiency in piglets. A synopsis of all parameters appeared to be necessary for defining normal iron status and prelatent, latent and manifest iron deficiency. Piglets fed on sows' milk only developed manifest iron deficiency within the first three weeks of age. After an access to soil and/or creep feed from the eighth day of age, or intramuscular injections of 200 mg Fe as iron-dextran at three days of age, or injections of 200 or 400 mg Fe combined with access to creep feed, stages of manifest, latent or prelatent iron deficiency could be observed. For an iron-dextran dose of 800 mg Fe injected in amounts of 400 mg Fe at 3 and 10 days of age, a normal iron status was obtained in three-week-old piglets. The iron dose relationship indicated that 20 mg Fe administered orally as FeSO 4 or 40 mg Fe as methaemoglobin-Fe daily should cover the iron requirement of piglets for the first three weeks of life, whereas a three-week total of iron given orally in a single dose would lead to unphysiological or fatal conditions in nursing pigs. (author)

  2. On the origin of discontinuity of the hyperfine fields at {sup 57}Fe nuclei in bulk iron and aerosol Fe nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Yu.I. [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Shafranovsky, E.A., E-mail: shafr@chph.ras.r [Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin str. 4, 119991, GSP-1, Moscow (Russian Federation); Casas, Ll. [Departament de Geologia, Universitat Autonoma de Barcelona, Edifici C, Campus de la UAB, 08193 Bellaterra (Spain); Molins, E. [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain)

    2011-03-14

    Advancing the early work in which a discontinuity of hyperfine fields at {sup 57}Fe nuclei in bulk iron and in aerosol Fe nanoparticles has been revealed by analyzing their Moessbauer spectra the present Letter evidences that the existence of several peaks in the hyperfine distribution (HFD) for bulk Fe is caused with the internal magnetic fields owing to its multidomain structure whereas aerosol Fe nanoparticles are single-domain and show only a unique peak in HFD. This argument has been corroborated by transformation of the HFD pattern for Fe foil after applying the external magnetic field of 0.03 T.

  3. Microstructure and properties of multiphase sintered cermets Fe-Fe{sub 2}B; Mikrostruktura i wlasnosci spiekanych reakcyjnie cermetali Fe-Fe{sub 2}B

    Energy Technology Data Exchange (ETDEWEB)

    Nowacki, J. [Wydzial Inzynierii Materialowej, Politechnika Szczecinska, Szczecin (Poland); Klimek, L. [Instytut Inzynierii Materialowej i Technik Bezwiorowych, Politechnika Lodzka, Lodz (Poland)

    1998-12-31

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe{sub 2}B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe{sub 2}B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe{sub 2}B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe{sub 2}B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe{sub 2}B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe{sub 2}B cermets are a composite material in which iron boride, Fe{sub 2}B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe{sub 2}B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe{sub 2}B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above

  4. Normal iron absorption determined by means of whole body counting and red cell incorporation of 59Fe

    International Nuclear Information System (INIS)

    Larsen, L.; Milman, N.

    1977-01-01

    Gastrointestinal iron absorption was measured in 27 normal subjects (19 females and 8 males) by means of whole body counting. Whole body retention 14 days after oral administration of 10μCi 59 Fe together with a carrier dose of 9.9 mg Fe 2+ (as sulphate), was used as an expression of absorption. The percentage incorporation in the total erythrocyte mass of administered 59 Fe (erythrocyte incorporation) and of absorbed 59 Fe (red cell utilization) was also estimated. Geometric mean iron absorption was 8.3+-2.1 (SD% in females, 9.1+-2.2 % in males and 8.5+-2.1 % in the entire series. The difference between males and females was not significant. Erythrocyte incorporation was 7.7+-2.2 (SD) % (geometric mean) in the entire series and the correlation between iron absorption and erythrocyte incorporation was highly significant (r = 0.96,P < 0.001). Red cell utilization averaged 92.9 +- 4.0 (SEM)% (arithmetic mean) in the entire series. (author)

  5. Moessbauer Study of Electrodeposited Fe/Fe-Oxide Multilayers

    International Nuclear Information System (INIS)

    Kuzmann, E.; Homonnay, Z.; Klencsar, Z.; Vertes, A.; Lakatos-Varsanyi, M.; Miko, A.; Varga, L.K.; Kalman, E.; Nagy, F.

    2005-01-01

    Iron has been deposited electrochemically by short current pulses in Na-saccharin containing FeII-chloride and sulphate solution electrolytes. Combined electrochemical techniques with initial pulse plating of iron nanolayer and its subsequent anodic oxidation under potential control have been used for production of Fe/Fe-oxide multilayers. 57Fe CEM spectra of pulse plated iron revealed the presence of a minor doublet attributed mainly to γ-FeOOH in addition to the dominant sextet of α-iron. In the case of anodically oxidized pulse plated iron and of samples after repeated deposition of anodically oxidized pulse plated iron an additional minor doublet, assigned to ferrous chloride, also appears in the Moessbauer spectra. A significant change in the magnetic anisotropy of α-iron was observed with the anodic oxidation. The thickness of the layers were estimated from the CEM spectrum data by a modified computer program of the Liljequist method. The coercive field and the power loss versus frequency data showed that the pulse plated iron cores are good inductive elements up to several kHz frequencies

  6. Sol-gel based optical sensor for determination of Fe (II): a novel probe for iron speciation.

    Science.gov (United States)

    Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat

    2015-02-05

    A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH∼3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L(-1). The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL(-1) and a detection limit of 1.68 ng mL(-1). It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL(-1) of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Spatial and temporal distribution of Fe(II) and H2O2 during EisenEx, an open ocean mescoscale iron enrichment

    NARCIS (Netherlands)

    Croot, Peter L.; Laan, Patrick; Nishioka, Jun; Strass, Volker; Cisewski, Boris; Boye, Marie; Timmermans, Klaas R.; Bellerby, Richard G.; Goldson, Laura; Nightingale, Phil; Baar, Hein J.W. de

    2005-01-01

    Measurements of Fe(II) and H2O2 were carried out in the Atlantic sector of the Southern Ocean during EisenEx, an iron enrichment experiment. Iron was added on three separate occasions, approximately every 8 days, as a ferrous sulfate (FeSO4) solution. Vertical profiles of Fe(II) showed maxima

  8. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    International Nuclear Information System (INIS)

    Singh, B.N.; Xiaoxu Huang; Taehtinen, S.; Moilamen, P.; Jacquet, P.; Dekeyser, J.

    2007-11-01

    Traditionally, the effect of irradiation on mechanical properties of metals and alloys is determined using post-irradiation tests carried out on pre-irradiated specimens and in the absence of irradiation environment. The results of these tests may not be representative of deformation behaviour of materials used in the structural components of a fission or fusion reactor where the materials will be exposed concurrently to displacement damage and external and/or internal stresses. In an effort to evaluate and understand the dynamic response of materials under these conditions, we have recently performed a series of uniaxial tensile tests on Fe-Cr and pure iron specimens in the BR-2 reactor at Mol (Belgium). The present report first provides a brief description of the test facilities and the procedure used for performing the in-reactor tests. The results on the mechanical response of materials during these tests are presented in the form of stress-displacement dose and the conventional stress-strain curves. For comparison, the results of post-irradiation tests and tests carried out on unirradiated specimens are also presented. Results of microstructural investigations on the unirradiated and deformed, irradiated and undeformed, post-irradiation deformed and the in-reactor deformed specimens are also described. During the in-reactor tests the specimens of both Fe-Cr alloy and pure iron deform in a homogeneous manner and do not exhibit the phenomenon of yield drop. An increase in the pre-yield dose increases the yield stress but not the level of maximum flow stress during the in-reactor deformation of Fe-Cr alloy. Neither the in-reactor nor the post-irradiation deformed specimens of Fe-Cr alloy and pure iron showed any evidence of cleared channel formation. Both in Fe-Cr and pure iron, the in-reactor deformation leads to accumulation of dislocations in a homogeneous fashion and only to a modest density. No dislocation cells are formed during the in-reactor or post

  9. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    Science.gov (United States)

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the

  10. Electrical and magnetic behavior of iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lenin, Nayagam; Karthik, Arumugam; Sridharpanday, Mathu; Selvam, Mohanraj; Srither, Saturappan Ravisekaran; Arunmetha, Sundarmoorthy; Paramasivam, Palanisamy; Rajendran, Venkatachalam, E-mail: veerajendran@gmail.com

    2016-01-01

    Iron doped nickel titanate (Fe{sup 3+}/NiTiO{sub 3}) ferromagnetic nanoparticles with different concentrations of Fe (0.2, 0.4, and 0.6 mol) were synthesized using precipitation route with precursor source such as nickel nitrate and iron nitrate solutions. The prepared magnetic nanopowders were investigated through X-ray diffraction (XRD), Fourier transform infrared, scanning electron microscope, X-ray fluorescence, Brunauer–Emmett–Teller, vibrating sample magnetometer, and electrochemical impedance spectroscopy to explore the structural, ferromagnetic, and dielectric properties. The obtained XRD pattern shows formation of iron doped nickel titanate in orthorhombic structure. The crystallite size ranges from 57 to 21 nm and specific surface area ranges from 11 to 137 m{sup 2} g{sup −1}. The hysteresis loops of nanomagnetic materials show ferromagnetic behavior with higher magnitude of coercivity (H{sub c}) 867–462 Oe. The impedance analysis of ferromagnetic materials explores the ferro-dielectric behavior with enhanced properties of Fe{sup 3+}/NiTiO{sub 3} nanoparticles at higher Fe content. - Highlights: • Iron doped nickel titanate magnetic nanoparticles. • Ferromagnetic magnetism behavior with higher magnitude of coercivity. • Dielectric behavior of ferromagnetic nanoparticles with increase of Fe content.

  11. Distribution of iron cations in natural chromites at different stages of oxidation: a {sup 57}Fe Moessbauer investigation

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Tapan; Mitra, Sachinath [Jadavpur Univ., Calcutta (India). Dept. of Geological Sciences; Moon, Hi-Soo [Yonsei Univ., Seoul (Korea, Republic of). Dept. of Geology

    1994-07-01

    {sup 57}Fe Moessbauer spectroscopic investigation of natural chromites from two chromite deposits of India (Sukinda and Byrapur) documents partly inverse spinel structure arising out of oxidation. The spectral fitting was based on allowing a disordering distribution of Fe{sup 2+} and Fe{sup 3+} ions at tetrahedral (A) and octahedral (B) sites. Moessbauer investigation of the samples taken from the physico-chemically distinct two horizons of Sukinda viz. brown ore and grey ores, and Byrapur area revealed three types of iron ion distribution as: Fe{sup 2+}(A), Fe{sup 3+}(A) and Fe{sup 2+}(B) (GC-group); (b)Fe{sup 3+}(A{sub 1}), Fe{sup 3+}(A{sub 2}) and Fe{sup 2+}(B) (BC-2 group), and (c) Fe{sup 3+}(A{sub 1}), Fe{sup 3+}(B) (BC-1 group). The distribution pattern of iron cations at A and B sites was linked to the degree of oxidation. These stages of oxidation could be modelled from normal to inverse form. A model suggesting `electron localisation` at the B-sites makes the intermediate stage. Iron site occupancy determined by Moessbauer spectroscopy of the presently studied samples indicates that these fall under three groups of oxidation stages. An early stage of oxidation is shown by samples of group GC, intermediate stage by group BC-2 and final stage by BC-1 group of chromite samples. The imprint of progressive oxidation manifested by Fe cation site occupancy has been correlated with the Fe{sup 2+}/{Sigma}Fe ratios, obtained for each group of samples. (author). 39 refs., 2 figs., 3 tabs.

  12. Prediction of reducible soil iron content from iron extraction data

    NARCIS (Netherlands)

    Bodegom, van P.M.; Reeven, van J.; Denier van der Gon, H.A.C.

    2003-01-01

    Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among

  13. Fe(II)/Cu(II) interaction on goethite stimulated by an iron-reducing bacteria Aeromonas Hydrophila HS01 under anaerobic conditions.

    Science.gov (United States)

    Tao, Liang; Zhu, Zhen-Ke; Li, Fang-Bai; Wang, Shan-Li

    2017-11-01

    Copper is a trace element essential for living creatures, but copper content in soil should be controlled, as it is toxic. The physical-chemical-biological features of Cu in soil have a significant correlation with the Fe(II)/Cu(II) interaction in soil. Of significant interest to the current study is the effect of Fe(II)/Cu(II) interaction conducted on goethite under anaerobic conditions stimulated by HS01 (a dissimilatory iron reduction (DIR) microbial). The following four treatments were designed: HS01 with α-FeOOH and Cu(II) (T1), HS01 with α-FeOOH (T2), HS01 with Cu(II) (T3), and α-FeOOH with Cu(II) (T4). HS01 presents a negligible impact on copper species transformation (T3), whereas the presence of α-FeOOH significantly enhanced copper aging contributing to the DIR effect (T1). Moreover, the violent reaction between adsorbed Fe(II) and Cu(II) leads to the decreased concentration of the active Fe(II) species (T1), further inhibiting reactions between Fe(II) and iron (hydr)oxides and decelerating the phase transformation of iron (hydr)oxides (T1). From this study, the effects of the Fe(II)/Cu(II) interaction on goethite under anaerobic conditions by HS01 are presented in three aspects: (1) the accelerating effect of copper aging, (2) the reductive transformation of copper, and (3) the inhibition effect of the phase transformation of iron (hydr)oxides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Ionization processes in the Fe 27 region of hot iron plasma in the field of hard gamma radiation

    International Nuclear Information System (INIS)

    Illarionov, A.F.

    1989-01-01

    A highly ionized hot plasma of an iron 26 56 Fe-type heavy element in the field of hard ionizing gamma-ray radiation is considered. The processes of ionization and recombination are discussed for a plasma consisting of the fully ionized Fe 27 and the hydrogen-like Fe 26 ions of iron in the case of large optical depth of the plasma with respect to the photoionization by gamma-ray quanta. The self-ionization process of a hot plasma with the temperature kT ≅ I (I being the ionization potential), due to the production of the own ionizing gamma-ray quanta, by the free-free (ff) and recombination (fb) radiation mechanisms, is investigated. It is noted that in the stationary situation the process of self-ionization of a hot plasma imposes the restriction upon the plasma temperature, kT<1.5 I. It is shown that the ionization of heavy-ion plasma by the impact of thermal electrons is dominating over the processes of ff- and fb-selfionization of plasma only by the large concentration of hydrogen-like iron at the periphery of the region of fully ionized iron Fe 27

  15. Assessment of polyphase sintered iron-cobalt-iron boride cermets

    International Nuclear Information System (INIS)

    Nowacki, J.; Pieczonka, T.

    2004-01-01

    Sintering of iron, cobalt and boron powders has been analysed. As a result iron-iron boride, Fe-Fe 2 B and iron/cobalt boride with a slight admixture of molybdenum, Fe - Co - (FeMoCo) 2 B cermets have been produced. Iron was introduced to the mixture as the Astalloy Mo Hoeganaes grade powder. Elemental amorphous boron powder was used, and formation of borides occurred both during heating and isothermal sintering periods causing dimensional changes of the sintered body. Dilatometry was chosen to control basic phenomena taking place during multiphase sintering of investigated systems. The microstructure and phase constituents of sintered compacts were controlled as well. The cermets produced were substituted to: metallographic tests, X-ray analysis, measurements of hardness and of microhardness, and of wear in the process of sliding dry friction. Cermets are made up of two phases; hard grains of iron - cobalt boride, (FeCo) 2 B (1800 HV) constituting the reinforcement and a relatively soft and plastic eutectic mixture Fe 2 B - Co (400-500 HV) constituting the matrix. (author)

  16. Effect of excess supply of heavy metals on the absorption and translocation of iron (/sup 59/Fe) in barley

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, C P; Bisht, S S; Agarwala, S C [Lucknow Univ. (India). Dept. of Botany

    1978-03-01

    The effects of an excess supply of manganese, copper, zinc, cobalt, and nickel on the absorption and translocation of iron tagged with /sup 59/Fe were xamined in 15 days old barley seedlings raised in solution culture. Excess heavy metal treatments and /sup 59/Fe were administered in three different ways: (i) both excess heavy metals and iron supplied through roots- Series A; (ii) excess heavy metal supplied as foliar spray and iron through roots- Series B; and (iii) excess heavy metal supplied through roots and iron as foliar spray-Series C. Results obtained revealed that excess concentrations of manganese, zinc, cobalt, and a to a lesser extent copper interfered with the absorption of iron from the rooting medium, but excess nickel enhanced the absorption and translocation of iron. Thus, unlike other metals, a toxic supply of nickel does not induce iron deficiency.

  17. Iodine as an oxidant in the topotactic deintercalation of interstitial iron in Fe(1+x)Te.

    Science.gov (United States)

    Rodriguez, Efrain E; Zavalij, Peter; Hsieh, Ping-Yen; Green, Mark A

    2010-07-28

    The layered telluride, Fe(1+x)Te, is a parent compound of the isostructural and superconducting phases, Fe(1+x)(Te, Se, S). Here we show that, through a simple reaction of I(2) vapor with both powder and single crystal samples, the interstitial iron can be removed from the FeTe framework topotactically. Neutron powder diffraction and X-ray single crystal diffraction confirm that the iron being extracted is the partially occupied site that lies between the 2-D blocks of edge-sharing FeTe(4) tetrahedra. The deintercalation process has consequences for both magnetic and crystallographic phase transitions in the compound at low temperatures. This technique could be of use for the tuning of stoichiometry of the superconducting phases and therefore enable more careful studies on how chemical composition affects magnetic and superconducting properties.

  18. Preparation and chemical stability of iron-nitride-coated iron microparticles

    International Nuclear Information System (INIS)

    Luo Xin; Liu Shixiong

    2007-01-01

    Iron-nitride-coated iron microparticles were prepared by nitridation of the surface of iron microparticles with ammonia gas at a temperature of 510 deg. C. The phases, composition, morphology, magnetic properties, and chemical stability of the particles were studied. The phases were α-Fe, ε-Fe 3 N, and γ-Fe 4 N. The composition varied from the core to the surface, with 99.8 wt% Fe in the core, and 93.8 wt% Fe and 6 wt% N in the iron-nitride coating. The thickness of the iron-nitride coating was about 0.28 μm. The chemical stability of the microparticles was greatly improved, especially the corrosion resistance in corrosive aqueous media. The saturation magnetization and the coercive force were 17.1x10 3 and 68 kA/m, respectively. It can be concluded that iron-nitride-coated iron microparticles will be very useful in many fields, such as water-based magnetorheological fluids and polishing fluids

  19. Characterising the reactivity of metallic iron in Fe 0 /As-rock/H 2 O ...

    African Journals Online (AJOL)

    The intrinsic reactivity of 4 metallic iron materials (Fe0) was investigated in batch and column experiments. The Fe0 reactivity was characterised by the extent of aqueous fixation of in-situ leached arsenic (As). Air-homogenised batch experiments were conducted for 1 month with 10.0 g/. of an As-bearing rock (ore material) ...

  20. Microstructure and properties of multiphase sintered cermets Fe-Fe2B

    International Nuclear Information System (INIS)

    Nowacki, J.; Klimek, L.

    1998-01-01

    The process of multiphase sintering of iron in the vacuum has been analysed. As a result of the process iron-iron boride cermets have been produced. Fe-Fe 2 B cermets were obtained as a result of sintering of the Fe and B pure elements in the vacuum. Attemps at sintering in the solid phase and with the participation of the liquid phase, the Fe-Fe 2 B eutectic, have been made. Metallographic qualitative and quantitative studies, X-ray structural qualitative and qauantitative analysis allowed to determine the structure of Fe 2 B cermets, as well as a description of the kinetics of quantitative changes in phase proportions in the course of sintering. It has been found that their structure varies widely depending on sintering parameters and the composition of the sinters. Measurements of the Fe-Fe 2 B cermets hardness and measurements on wear during dry friction by the pin-on-disc method have shown distinct advantages of the cermets as a modern constructional materials. The hardness of Fe-Fe 2 B cermets, depending on their chemical composition and sintering parameters, ranges widely from 150 to 1500 HV, and their resistance to wear is comparable to that of diffusively boronized steels. FeFe 2 B cermets are a composite material in which iron boride, Fe 2 B, with a hardness of about 1800 HV plays the role of the reinforcement,while iron-iron boride, Fe-Fe 2 B, with a hardness of about 500 HV plays the role of matrix. The eutectic in the spaces between iron boride grains is composed of boron solid solution plates in iron with a hardness of arround 250 HV, and iron boride, Fe 2 B, plates with a hardness of approximaly 1800 HV. The combination of such different materials, a hard reinforcement and a relatively plastic matrix produces favourable properties of the cermet thus produced high hardness (1500 HV) constant over whole cross section of the material, resistance of abrasive wear and acceptable ductility. The properties mentioned above, resulting from the cermet

  1. Absorption and translocation of 59Fe and 14C-rhodotorulate in iron-stressed tomato

    International Nuclear Information System (INIS)

    Miller, G.W.; Shigematsu, A.; Motoji, N.; Shibabe, S.

    1990-01-01

    Tomato plants, cultivars FER and Earlygirl (both iron efficient and able to use rhodotorulate- 59 Fe), were grown under low Fe conditions for 9 days. Rhodotorulate- 14 C, isolated from Rhodotorula pilimanae cultured with 14 C-sucrose, and rhodotorulate- 59 Fe were added to the Fe-stressed plants for 6-, 24- or 48-h periods. It was evident from autoradiograms and tissue sampling that 59 Fe and 14 C were abundant in roots, stems and leaves. The 14 C autoradiograms showed especially high density in the small, younger leaves, as was found also with 59 Fe. Unlike synthetic chelates, rhodotorulate (or metabolised derivatives) was readily absorbed by the roots and translocated to the leaves. (author)

  2. Environmental application of millimetre-scale sponge iron (s-Fe{sup 0}) particles (III): The effect of surface silver

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yongming [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); South China Subcenter of State Environmental Dioxin Monitoring Center, Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Yu, Yunjiang, E-mail: yuyunjiang@scies.org [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Wang, Xiaoyan [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Zhang, Sukun [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Liu, Runlong [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Innovative Laboratory for Environmental Functional Materials and Environmental Applications of Microwave Irradiation, Guangzhou 510655 (China); Fu, Jianping; Han, Jinglei; Fang, Jiande [South China Institute of Environmental Sciences, Ministry of Environmental Protection (MEP), Guangzhou 510655 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering (DBCEE), University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2015-12-15

    Highlights: • Direct reductive deposition reaction achieves surfaced decoration of s-Fe{sup 0} particles. • Ag{sup 0}-s-Fe{sup 0} displays similar removal efficiency of PCP as compared to bimetal of nZVI. • Ag{sup 0}-s-Fe{sup 0} can be utilized under mild reaction condition compared to bimetal of nZVI. • The catalytic mechanism over Ag{sup 0}-s-Fe{sup 0} under US condition is elucidated. - Abstract: To enhance the dechlorination reactivity of millimetric sponge iron (s-Fe{sup 0}), a facile one-pot method was used to decorate s-Fe{sup 0} with Ag{sup +} ions under ambient conditions. The results recorded by X-ray diffraction patterns, X-ray photoelectron spectra and high-resolution transmission electron microscopy demonstrated that the growth of Ag{sup 0} was dominated primarily by (1 1 1) plane with a mean length of ∼20 nm. The roles of Ag{sup 0} loading, catalyst dosage, particle size, initial pH and contaminant concentration were assessed during the removal of pentachlorophenol (PCP). Catalyst recyclability was also studied. The results revealed that 3–5 mm s-Fe{sup 0} particles with 5 wt% Ag{sup 0} loading exhibited the best performance with a dose of 3.0 g per 60 mL PCP solution. In addition, the dechlorination of PCP followed two-step, pseudo-first-order reaction kinetics, and Ag{sup 0}-s-Fe{sup 0} was advantageous compared with bimetals of nanoscale zero-valent iron, iron power and iron flakes. The dechlorination mechanism of PCP over Ag{sup 0}-s-Fe{sup 0} was attributed to the surface Ag{sup 0} decoration, which catalyzed the formation of reactive hydrogen atoms for indirect reaction, and the direct electron transfer via Fe–Ag{sup 0} galvanic cells for direct reaction. This suggests that Ag-based bimetals of s-Fe{sup 0} have great potential in the pretreatment of organic halogen compounds in aqueous solution.

  3. LiFePO4 Nanostructures Fabricated from Iron(III) Phosphate (FePO4 x 2H2O) by Hydrothermal Method.

    Science.gov (United States)

    Saji, Viswanathan S; Song, Hyun-Kon

    2015-01-01

    Electrode materials having nanometer scale dimensions are expected to have property enhancements due to enhanced surface area and mass/charge transport kinetics. This is particularly relevant to intrinsically low electronically conductive materials such as lithium iron phosphate (LiFePO4), which is of recent research interest as a high performance intercalation electrode material for Li-ion batteries. Many of the reported works on LiFePO4 synthesis are unattractive either due to the high cost of raw materials or due to the complex synthesis technique. In this direction, synthesis of LiFePO4 directly from inexpensive FePO4 shows promise.The present study reports LiFePO4 nanostructures prepared from iron (III) phosphate (FePO4 x 2H2O) by precipitation-hydrothermal method. The sintered powder was characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), Inductive coupled plasma-optical emission spectroscopy (ICP-OES), and Electron microscopy (SEM and TEM). Two synthesis methods, viz. bulk synthesis and anodized aluminum oxide (AAO) template-assisted synthesis are reported. By bulk synthesis, micro-sized particles having peculiar surface nanostructuring were formed at precipitation pH of 6.0 to 7.5 whereas typical nanosized LiFePO4 resulted at pH ≥ 8.0. An in-situ precipitation strategy inside the pores of AAO utilizing the spin coating was utilized for the AAO-template-assisted synthesis. The template with pores filled with the precipitate was subsequently subjected to hydrothermal process and high temperature sintering to fabricate compact rod-like structures.

  4. Extreme Ultraviolet Emission Lines of Iron Fe XI-XIII

    Science.gov (United States)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Liedahl, D. A.; Brickhouse, N. S.; Dupree, A. K.

    2013-04-01

    The extreme ultraviolet (EUV) spectral region (ca. 20--300 Å) is rich in emission lines from low- to mid-Z ions, particularly from the middle charge states of iron. Many of these emission lines are important diagnostics for astrophysical plasmas, providing information on properties such as elemental abundance, temperature, density, and even magnetic field strength. In recent years, strides have been made to understand the complexity of the atomic levels of the ions that emit the lines that contribute to the richness of the EUV region. Laboratory measurements have been made to verify and benchmark the lines. Here, we present laboratory measurements of Fe XI, Fe XII, and Fe XIII between 40-140 Å. The measurements were made at the Lawrence Livermore electron beam ion trap (EBIT) facility, which has been optimized for laboratory astrophysics, and which allows us to select specific charge states of iron to help line identification. We also present new calculations by the Hebrew University - Lawrence Livermore Atomic Code (HULLAC), which we also utilized for line identification. We found that HULLAC does a creditable job of reproducing the forest of lines we observed in the EBIT spectra, although line positions are in need of adjustment, and line intensities often differed from those observed. We identify or confirm a number of new lines for these charge states. This work was supported by the NASA Solar and Heliospheric Program under Contract NNH10AN31I and the DOE General Plasma Science program. Work was performed in part under the auspices of the Department of Energy by Lawrence Livermore National Laboratory under Contract DEAC52-07NA27344.

  5. Characterizing the production and retention of dissolved iron as Fe(II) across a natural gradient in chlorophyll concentrations in the Southern Drake Passage - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Katherine Barbeau

    2007-04-10

    Recent mesoscale iron fertilization studies in the Southern Ocean (e.g. SOIREE, EisenEx, SOFeX) have demonstrated the importance of iron as a limiting factor for phytoplankton growth in these high nutrient, low-chlorophyll (HNLC) waters. Results of these experiments have demonstrated that factors which influence the biological availability of the iron supplied to phytoplankton are crucial in bloom development, longevity, and generation of carbon export flux. These findings have important implications for the future development of iron fertilization protocols to enhance carbon sequestration in high-latitude oceans. In particular, processes which lead to the mobilization and retention of iron in dissolved form in the upper ocean are important in promoting continued biological availability of iron. Such processes can include photochemical redox cycling, which leads to the formation of soluble reduced iron, Fe(II), within iron-enriched waters. Creation of effective fertilization schemes will thus require more information about Fe(II) photoproduction in Southern Ocean waters as a means to retain new iron within the euphotic zone. To contribute to our knowledge base in this area, this project was funded by DOE with a goal of characterizing the production and retention of dissolved Fe as Fe(II) in an area of the southern Drake Passage near the Shackleton Transverse Ridge, a region with a strong recurrent chlorophyll gradient which is believed to be a site of natural iron enrichment in the Southern Ocean. This area was the focus of a multidisciplinary NSF/OPP-funded investigation in February 2004 (OPP02-30443, lead PI Greg Mitchell, SIO/UCSD) to determine the influence of mesoscale circulation and iron transport with regard to the observed patterns in sea surface chlorophyll in the region near the Shackleton Transverse Ridge. A number of parameters were assessed across this gradient in order to reveal interactions between plankton community structure and iron distributions

  6. Cadmium uptake by and translocation within rice (oryza sativa l.) seedlings as affected by iron plaque and Fe/sub 2/O/sub 3/

    International Nuclear Information System (INIS)

    Lai, Y.; Xu, B.O.; Mou, S.

    2012-01-01

    A hydroponics culture experiment was carried out to investigate the effect of iron plaque and/or Fe/sub 2/O/sub 3/ on Cadmium (Cd) uptake by and translocation within rice seedlings. Uniform rice seedlings grown in nutrient solution for two weeks were selected and transferred to nutrient solution containing ferrous iron (Fe/sup 2+/) (30 mg/L) for 24 h to induce the formation of iron plaque on the root surface. Then rice seedlings were exposed to different level of Cd (1.0 mg/L and 0.1 mg/L), and simultaneously Fe/sub 2/O/sub 3/ was added into hydroponic system for three days. At harvest Cd content in dithionite-citrate-bicarbonate (DCB) extracts, roots and shoots were determined. The results of this study showed that iron plaque could sequester more Cd on root surfaces of rice seedlings, however, Fe/sub 2/O/sub 3/ reduced Cd adsorbed on root surfaces. Both of iron plaque and/or Fe/sub 2/O/sub 3/ did not block Cd uptake by and translocation within rice seedlings. Although iron plaque could alleviate Cd toxicity to rice seedlings under low concentration of Cd (0.1 mg/L), the root tissue played more important role in reducing Cd translocation into shoot. And the long period experiment of hydroponic and soil culture was still needed to verify the potential effect of iron plaque and/or Fe/sub 2/O/sub 3/ on alleviating Cd toxicity to rice seedlings. (author)

  7. Serum iron test

    Science.gov (United States)

    Fe+2; Ferric ion; Fe++; Ferrous ion; Iron - serum; Anemia - serum iron; Hemochromatosis - serum iron ... A blood sample is needed. Iron levels are highest in the morning. Your health care provider will likely have you do this test in the morning.

  8. Synthesis, characterization and performance in arsenic removal of iron-doped activated carbons prepared by impregnation with Fe(III) and Fe(II)

    International Nuclear Information System (INIS)

    Muniz, G.; Fierro, V.; Celzard, A.; Furdin, G.; Gonzalez-Sanchez, G.; Ballinas, M.L.

    2009-01-01

    Arsenic removal from natural well water from the state of Chihuahua (Mexico) is investigated by adsorption using a commercial activated carbon (AC). The latter is used as such, or after oxidation by several chemicals in aqueous solution: nitric acid, hydrogen peroxide, and ammonium persulphate. Raw and oxidised activated carbons are fully characterised (elementary analysis, surface chemistry, pore texture parameters, pH ZC , and TEM observation). Adsorption of As is measured in the aforementioned water, containing ca. 300 ppb of arsenic: removal of As is poor with the raw AC, and only the most oxidised carbons exhibit higher performances. By contrast, iron-doped ACs are much more efficient for that purpose, though their As uptake strongly depends on their preparation conditions: a number of samples were synthesised by impregnation of raw and oxidised ACs with HCl aqueous solutions of either FeCl 3 or FeCl 2 at various concentrations and various pH. It is shown that iron(II) chloride is better for obtaining high iron contents in the resultant ACs (up to 8.34 wt.%), leading to high As uptake, close to 0.036 mg As/g C. In these conditions, 100% of the As initially present in the natural well water is removed, as soon as the Fe content of the adsorbent is higher than 2 wt.%.

  9. Phase composition of iron-rich R-Fe-Si (R=Dy, Ho, Er) alloys

    International Nuclear Information System (INIS)

    Ivanova, G.V.; Makarova, G.M.; Shcherbakova, E.V.; Belozerov, E.V.

    2005-01-01

    Phase composition is studied in iron-rich alloys of R-Fe-Si (R=Dy, Ho, Er). In the as-cast state R 2 (Fe, Si) 17 of type Th 2 Ni 17 and R(Fe, Si) 12 compounds are observed; in the alloys of rated composition of R(Fe 0.85 Si 0.15 ) 8.5 (R=Dy, Er) a compound R 2 (Fe, Si) 17 of Th 2 Zn 17 -type is revealed as well. The annealing at 1273 K results in formation of Dy 3 (Fe, Si) 29 and also the compounds with the presumed composition of Dy 4 (Fe, Si) 41 and Ho 4 (Fe, Si) 41 . As this takes place the alloys contain a transition structure as well that represents a set of small-sized areas with various type short-range order in mutual displacement of Fe-Fe(Si) dumpbell chains. The process of phase formation at 1273 K is faced with difficulties. Even the annealing for 1000 h does not result in the state of equilibrium [ru

  10. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    Science.gov (United States)

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  11. Nematic fluctuations in iron arsenides NaFeAs and LiFeAs probed by 75As NMR

    Science.gov (United States)

    Toyoda, Masayuki; Kobayashi, Yoshiaki; Itoh, Masayuki

    2018-03-01

    75As NMR measurements have been made on single crystals to study the nematic state in the iron arsenides NaFeAs, which undergoes a structural transition from a high-temperature (high-T ) tetragonal phase to a low-T orthorhombic phase at Ts=57 K and an antiferromagnetic transition at TN=42 K, and LiFeAs having a superconducting transition at Tc=18 K. We observe the in-plane anisotropy of the electric field gradient η even in the tetragonal phase of NaFeAs and LiFeAs, showing the local breaking of tetragonal C4 symmetry. Then, η is found to obey the Curie-Weiss (CW) law as well as in Ba (Fe1-xCox) 2As2 . The good agreement between η and the nematic susceptibility obtained by electronic Raman spectroscopy indicates that η is governed by the nematic susceptibility. From comparing η in NaFeAs and LiFeAs with η in Ba (Fe1-xCox) 2As2 , we discuss the carrier-doping dependence of the nematic susceptibility. The spin contribution to nematic susceptibility is also discussed from comparing the CW terms in η with the nuclear spin-lattice relaxation rate divided by temperature 1 /T1T . Finally, we discuss the nematic transition in the paramagnetic orthorhombic phase of NaFeAs from the in-plane anisotropy of 1 /T1T .

  12. Investigating the effect of ascorbate on the Fe(II)-catalyzed transformation of the poorly crystalline iron mineral ferrihydrite.

    Science.gov (United States)

    Xiao, Wei; Jones, Adele M; Collins, Richard N; Waite, T David

    2018-05-09

    The inorganic core of the iron storage protein, ferritin, is recognized as being analogous to the poorly crystalline iron mineral, ferrihydrite (Fh). Fh is also abundant in soils where it is central to the redox cycling of particular soil contaminants and trace elements. In geochemical circles, it is recognized that Fh can undergo Fe(II)-catalyzed transformation to form more crystalline iron minerals, vastly altering the reactivity of the iron oxide and, in some cases, the redox poise of the system. Of relevance to both geochemical and biological systems, we investigate here if the naturally occurring reducing agent, ascorbate, can effect such an Fe(II)-catalyzed transformation of Fh at 25 °C and circumneutral pH. The transformation of ferrihydrite to possible secondary Fe(III) mineralization products was quantified using Fourier transform infrared (FTIR) spectroscopy, with supporting data obtained using X-ray absorbance spectroscopy (XAS) and X-ray diffraction (XRD). Whilst the amount of Fe(II) formed in the presence of ascorbate has resulted in Fh transformation in previous studies, no transformation of Fh to more crystalline Fe(III) (oxyhydr)oxides was observed in this study. Further experiments indicated this was due to the ability of ascorbate to inhibit the formation of goethite, lepidocrocite and magnetite. The manner in which ascorbate associated with Fh was investigated using FTIR and total organic carbon (TOC) analysis. The majority of ascorbate was found to adsorb to the Fh surface under anoxic conditions but, under oxic conditions, ascorbate was initially adsorbed then became incorporated within the Fe(III) (oxyhydr)oxide structure (i.e., co-precipitated) over time. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A Dilute-Limit Heat of Solution of 3d Transition Metals in Iron Studied with 57Fe Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Chojcan, Jan

    2004-01-01

    The room-temperature 57 Fe Moessbauer spectra for binary iron-based solid solutions Fe 1-x D x with D=V, Cr, Mn and Co, were analysed in terms of binding energy E b between two D atoms in the Fe-D system. The extrapolated values of E b for x=0 were used for computation of the dilute-limit heat of solution of D metals in iron. The results were compared with those derived from calorimetric data concerning the heat of formation of the systems mentioned as well as with those resulting from the Miedema's model of alloys. The comparison shows that our Moessbauer spectroscopy findings are in a qualitative agreement with the available calorimetric data and they are at variance with corresponding Miedema's values for Fe-Mn and Fe-Co systems.

  14. Body retention and tissue distribution of 59Fe and 54Mn in newborn rats fed iron-supplemented cow's milk

    International Nuclear Information System (INIS)

    Gruden, Nevenka

    1980-01-01

    The effect of iron-fortified cow's milk on body 59 Fe and 54 Mn retention and selective tissue distribution has been studied in newborn rats. Six-day old rats, divided into three groups were artificially fed for 7 hrs 0,45 ml of cow's milk or cow's milk enriched with either 52 or 103 μg of Fe /ml and marked with 59 Fe and 54 Mn. After 4 days there was no significant difference in whole body or carcass activity between the groups. Iron added to milk in large amounts did not influence body 59 Fe or 54 Mn retention in newborn rats, whereas it enhanced 59 Fe deposition in the liver and the intestinal wall and, to a lesser extent, 54 Mn deposition in the liver

  15. Synthesis of LiFePO{sub 4}/polyacenes using iron oxyhydroxide as an iron source

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guiling; Zhang, Xianfa; Liu, Jing; He, Xingguang; Wang, Jiawei; Xie, Haiming; Wang, Rongshun [Institute of Functional Materials, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China); LIB Engineering Laboratory, Materials Science and Technology Center, Changchun, Jilin 130024 (China)

    2010-02-15

    LiFePO{sub 4}/polyacenes (PAS) composite is synthesized by iron oxyhydroxide as a new raw material and phenol-formaldehyde resin as both reducing agent and carbon source. The mechanism of the reaction is outlined by the analysis of XRD, FTIR as well as TG/DSC. The results show that the formation of LiFePO{sub 4} is started at 300 C, and above 550 C, the product can be mainly ascribed to olivine LiFePO{sub 4}. The electrochemical properties of the synthesized composites are investigated by charge-discharge tests. It is found that the prepared sample at 750 C (S750) has a better electrochemical performance than samples prepared at other temperatures. A discharge capacity of 158 mAh g{sup -1} is delivered at 0.2 C. Under high discharge rate of 10 C, a discharge capacity of 145 mAh g{sup -1} and good capacity retention of 93% after 800 cycles are achieved. The morphology of S750 and PAS distribution in it are investigated by SEM and TEM. (author)

  16. Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sivkov, Alexander [Institute of Power Engineering, National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Naiden, Evgenii [Faculty of Radiophysics, National Research Tomsk State University, Lenin av., 36, Tomsk 634050 (Russian Federation); Ivashutenko, Alexander [Institute of Power Engineering, National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Shanenkov, Ivan, E-mail: Swordi@list.ru [Institute of Power Engineering, National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation)

    2016-05-01

    The ultrafine iron oxide powders were successfully synthesized using the plasma dynamic synthesis method, based on the use of a coaxial magnetoplasma accelerator with the iron electrode system. The synthesis was implemented in the high-speed iron-containing plasma jet, flowing into the space of the sealed chamber, filled with the gaseous mixture of oxygen and argon at different ratios. The XRD investigations showed that the synthesized products were heterophase and consisted of three main phases such as magnetite Fe{sub 3}O{sub 4}, hematite α-Fe{sub 2}O{sub 3} and ε-Fe{sub 2}O{sub 3}. The SEM data confirmed the presence of three particle types: the hollow spheroids with sizes about hundreds of micrometers (magnetite), the particles with sizes up to 100 μm from the porous material of sintered submicron particles (hematite), and nanoscale particles (ε-phase). We found that at the higher oxygen concentration the content of ε-Fe{sub 2}O{sub 3} is increased up to ~50% at the same time with decreasing the Fe{sub 3}O{sub 4} phase. The magnetic properties of the products are mainly determined by magnetite characteristics and are significantly reduced with decreasing its content in the powder. In order to investigate the synthesized ε-Fe{sub 2}O{sub 3} on the ability to absorb the electromagnetic radiation in the millimeter wavelength range, we separated the product with the higher ε-phase concentration. The fraction mainly, consisting of ε-Fe{sub 2}O{sub 3}, showed the occurrence of the natural resonance at frequencies of 8.3 GHz and 130 GHz. - Highlights: • We synthesized iron oxide powder with high content of ε-Fe{sub 2}O{sub 3}. • Synthesis is implemented using iron-containing plasma jet flowing into O{sub 2} atm. • Synthesized powders are heterophase and consist of ε-Fe{sub 2}O{sub 3,} α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}. • ε-Fe{sub 2}O{sub 3} content increases up to 50% with increasing the O{sub 2} volume concentration. • We found the

  17. Iron monoxide photodissociation

    Science.gov (United States)

    Chestakov, D. A.; Parker, D. H.; Baklanov, A. V.

    2005-02-01

    The photodissociation of Fe56O was studied by means of the velocity map imaging technique. A molecular beam of iron atoms and iron monoxide molecules was created using an electrical discharge with an iron electrode in a supersonic expansion of molecular oxygen. The ground state iron atom Fe(D45) and FeO concentrations in the molecular beam have been estimated. The dissociation energy of the FeO XΔ5 ground electronic state was found to be D00(FeO )=4.18±0.01eV. The effective absorption cross section of FeO at 252.39nm (vac), leading to the Fe(D45)+O(P3) dissociation channel, is ˜1.2×10-18cm2. A (1+1) resonantly enhanced multiphoton ionization spectrum of Fe56O in the region 39550-39580 cm-1 with rotational structure has been observed, but not assigned. Angular distributions of Fe(D45) and Fe(D35) products for the channel FeO →Fe(D4,35)+O(P3) have been measured at several points in the 210-260nm laser light wavelength region. The anisotropy parameter varies strongly with wavelength for both channels.

  18. Iron alloy Fischer-tropsch catalysts--1. Oxidation-reduction studies of the Fe-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Unmuth, E.E.; Schwartz, L.H.; Butt, J.B.

    1980-01-01

    Catalysts containing 5% iron, nickel, or 4:1 iron-nickel on silica were hydrogen-reduced at 425/sup 0/C for 12 or 24 hr, reoxidized in air for 2 or 4 hr, reduced again in hydrogen for 12 hr, and studied at each treatment step by Moessbauer spectroscopy, X-ray diffraction, and temperature-programed desorption. The nickel was reduced directly to the metal, redispersed during the oxidation, and gave 20% smaller particles in the second reduction than in the first reduction. The ..cap alpha..-Fe/sub 2/O/sub 3/ reduced via an Fe/sub 3/O/sub 4/ intermediate and yielded approx. 70% metallic iron and the second reduction produced about the same particle size as the first reduction. The alloy catalyst reduced into a mixture of two phases, a face-centered cubic phase containing approx. 37.5% Ni, i.e., the bulk equilibrium value, and a body-centered cubic phase, and the particle sizes obtained in the first and second reductions were similar. The activation energies for the reduction were determined.

  19. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  20. Moessbauer and EXAFS studies of amorphous iron produced by thermal decomposition of carbonyl iron in liquid phase

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi; Tanaka, Junichi; Ujihira, Yusuke; Takahashi, Tamotu; Uchida, Yasuzo

    1990-01-01

    Decomposition of iron carbonyl Fe(CO) 5 and Fe 2 (CO) 9 in liquid phase gave amorphous and crystalline iron powders in the absence and presence of catalyst, respectively. The hyperfine fields were large in amorphous phases prepared from Fe(CO) 5 than from Fe 2 (CO) 9 . Crystalline iron, iron carbide and a trace amount of Fe 3 O 4 were detected in the decomposition products of the amorphous phase prepared from Fe(CO) 5 , and iron carbide was mainly included in the decomposition products of the amorphous phase prepared from Fe 2 (CO) 9 . (orig.)

  1. Long-Term Effect of a Leonardite Iron Humate Improving Fe Nutrition As Revealed in Silico, in Vivo, and in Field Experiments.

    Science.gov (United States)

    Cieschi, María T; Caballero-Molada, Marcos; Menéndez, Nieves; Naranjo, Miguel A; Lucena, Juan J

    2017-08-09

    Novel, cheap and ecofriendly fertilizers that solve the usual iron deficiency problem in calcareous soil are needed. The aim of this work is to study the long-term effect of an iron leonardite fertilizer on citrus nutrition taking into account a properly characterization, kinetic response with a ligand competition experiment, efficiency assessment using Saccharomyces cerevisiae strain and finally, in field conditions with citrus as test plants. Its efficiency was compared with the synthetic iron chelate FeEDDHA. Leonardite iron humate (LIH) is mainly humic acid with a high-condensed structure where iron is present as ferrihydrite and Fe 3+ polynuclear compounds stabilized by organic matter. Iron and humic acids form aggregates that decrease the iron release from these kinds of fertilizers. Furthermore, LIH repressed almost 50% of the expression of FET3, FTR1, SIT1, and TIS11 genes in Saccharomyces cerevisiae cells, indicating increasing iron provided in cells and improved iron nutrition in citrus.

  2. Density functional theory study of interactions between carbon monoxide and iron tetraaza macrocyclic complexes, FeTXTAA (X = -Cl, -OH, -OCH3, -NH2, and -NO2).

    Science.gov (United States)

    de Matos Mourão Neto, Isaias; Silva, Adilson Luís Pereira; Tanaka, Auro Atsushi; de Jesus Gomes Varela, Jaldyr

    2017-02-01

    This work describes a DFT level theoretical quantum study using the B3LYP functional with the Lanl2TZ(f)/6-31G* basis set to calculate parameters including the bond distances and angles, electronic configurations, interaction energies, and vibrational frequencies of FeTClTAA (iron-tetrachloro-tetraaza[14]annulene), FeTOHTAA (iron-tetrahydroxy-tetraaza[14]annulene), FeTOCH 3 TAA (iron- tetramethoxy-tetraaza[14]annulene), FeTNH 2 TAA (iron-tetraamino-tetraaza[14]annulene), and FeTNO 2 TAA (iron-tetranitro-tetraaza[14]annulene) complexes, as well as their different spin multiplicities. The calculations showed that the complexes were most stable in the triplet spin state (S = 1), while, after interaction with carbon monoxide, the singlet state was most stable. The reactivity of the complexes was evaluated using HOMO-LUMO gap calculations. Parameter correlations were performed in order to identify the best complex for back bonding (3d xz Fe → 2p x C and 3d yz Fe → 2p z C) with carbon monoxide, and the degree of back bonding increased in the order: FeTNO 2 TAA < FeTClTAA < FeTOHTAA < FeTOCH 3 TAA < FeTNH 2 TAA.

  3. Anisotropic energy-gaps of iron-based superconductivity from intra-band quasiparticle interference in LiFeAs

    Energy Technology Data Exchange (ETDEWEB)

    Rost, A.W. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Allan, M.P. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mackenzie, A.P. [SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Xie, Y. [CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Davis, J.C. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); SUPA, School of Physics and Astronomy, Univ. of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Kavli Institute at Cornell for Nanoscale Science, Cornell, Ithaca, NY 14853 (United States); Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H. [AIST, Tsukuba, Ibaraki 305-8568 (Japan); Chuang, T.M. [LASSP, Department of Physics, Cornell, Ithaca, NY 14853 (United States); CMPMS Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Inst. of Physics, Academica Sinica, Nankang, Taipei 11529, Taiwan (China)

    2012-07-01

    Cooper pairing in the Fe-based superconductors is thought to occur due to the projection of the antiferromagnetic interactions between iron atoms onto the complex momentum-space electronic structure. A key consequence is that distinct anisotropic energy gaps {Delta}{sub i}(k) with specific relative orientations should occur on the different electronic bands i. To determine this previously unresolved gap structure high-precision spectroscopy is required. Here we introduce the STM technique of intra-band Bogolyubov quasiparticle scattering interference (QPI) to iron-based superconductor studies, focusing on LiFeAs. We identify the QPI signatures of three hole-like dispersions and, by introducing a new QPI technique, determine the magnitude and relative orientations of corresponding anisotropic {Delta}{sub i}(k). Intra-band Bogolyubov QPI therefore yields the spectroscopic information required to identify the mechanism of superconductivity in Fe-based superconductors.

  4. Predictive modelling of Fe(III) precipitation in iron removal process for bioleaching circuits.

    Science.gov (United States)

    Nurmi, Pauliina; Ozkaya, Bestamin; Kaksonen, Anna H; Tuovinen, Olli H; Puhakka, Jaakko A

    2010-05-01

    In this study, the applicability of three modelling approaches was determined in an effort to describe complex relationships between process parameters and to predict the performance of an integrated process, which consisted of a fluidized bed bioreactor for Fe(3+) regeneration and a gravity settler for precipitative iron removal. Self-organizing maps were used to visually evaluate the associations between variables prior to the comparison of two different modelling methods, the multiple regression modelling and artificial neural network (ANN) modelling, for predicting Fe(III) precipitation. With the ANN model, an excellent match between the predicted and measured data was obtained (R (2) = 0.97). The best-fitting regression model also gave a good fit (R (2) = 0.87). This study demonstrates that ANNs and regression models are robust tools for predicting iron precipitation in the integrated process and can thus be used in the management of such systems.

  5. Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe3O4 composite

    International Nuclear Information System (INIS)

    Min, Dandan; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2017-01-01

    Highlights: • Flake carbonyl iron/Fe 3 O 4 composites were prepared by surface oxidation technique. • Lower permittivity and modest permeability was obtained by the FCI/Fe 3 O 4 composites. • Enhanced absorption efficiency and broader absorption band were obtained. - Abstract: Flake carbonyl iron/Fe 3 O 4 (FCI/Fe 3 O 4 ) composites with enhanced microwave absorption properties were prepared by a direct and flexible surface oxidation technique. The phase structures, morphology, magnetic properties, frequency-dependent electromagnetic and microwave absorption properties of the composites were investigated. The measurement results showed that lower permittivity as well as modest permeability was obtained by the FCI/Fe 3 O 4 composites. The calculated microwave absorption properties indicated that enhanced absorption efficiency and broader absorption band were obtained by the FCI/Fe 3 O 4 composite comparing with the FCI composite. The absorption frequency range with reflection loss (RL) below −5 dB of FCI/Fe 3 O 4 composites at reaction time of 90 min at thickness of 1.5 mm is 13.3 GHz from 4.7 to 18 GHz, while the bandwidth of the FCI composite is only 5.9 GHz from 2.6 to 8.5 GHz at the same thickness. Thus, such absorbers could act as effective and wide broadband microwave absorbers in the GHz range.

  6. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

    Science.gov (United States)

    Lill, Roland; Hoffmann, Bastian; Molik, Sabine; Pierik, Antonio J; Rietzschel, Nicole; Stehling, Oliver; Uzarska, Marta A; Webert, Holger; Wilbrecht, Claudia; Mühlenhoff, Ulrich

    2012-09-01

    Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Phase stability of iron germanate, FeGeO3, to 127 GPa

    Science.gov (United States)

    Dutta, R.; Tracy, S. J.; Stan, C. V.; Prakapenka, V. B.; Cava, R. J.; Duffy, T. S.

    2018-04-01

    The high-pressure behavior of germanates is of interest as these compounds serve as analogs for silicates of the deep Earth. Current theoretical and experimental studies of iron germanate, FeGeO3, are limited. Here, we have examined the behavior of FeGeO3 to 127 GPa using the laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction. Upon compression at room temperature, the ambient-pressure clinopyroxene phase transforms to a disordered triclinic phase [FeGeO3 (II)] at 18 GPa in agreement with earlier studies. An additional phase transition to FeGeO3 (III) occurs above 54 GPa at room temperature. Laser-heating experiments ( 1200-2200 K) were conducted at three pressures (33, 54, and 123 GPa) chosen to cover the stability regions of different GeO2 polymorphs. In all cases, we observe that FeGeO3 dissociates into GeO2 + FeO at high pressure and temperature conditions. Neither the perovskite nor the post-perovskite phase was observed up to 127 GPa at ambient or high temperatures. The results are consistent with the behavior of FeSiO3, which also dissociates into a mixture of the oxides (FeO + SiO2) at least up to 149 GPa.

  8. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  9. Iron sulfide (troilite) inclusion extracted from Sikhote-Alin iron meteorite: Composition, structure and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M.I., E-mail: oshtrakh@gmail.com [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Klencsár, Z. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest, 1117 (Hungary); Petrova, E.V.; Grokhovsky, V.I. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Chukin, A.V. [Department of Theoretical Physics and Applied Mathematics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Shtoltz, A.K. [Department of Electrophysics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Maksimova, A.A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Felner, I. [Racah Institute of Physics, The Hebrew University, Jerusalem (Israel); Kuzmann, E.; Homonnay, Z. [Institute of Chemistry, Eötvös Loránd University, Budapest (Hungary); Semionkin, V.A. [Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation); Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002 (Russian Federation)

    2016-05-01

    Iron sulfide (troilite) inclusion extracted from Sikhote-Alin IIAB iron meteorite was examined for its composition, structure and magnetic properties by means of several complementary analytical techniques such as: powder X-ray diffractometry, scanning electron microscopy combined with energy-dispersive X-ray spectroscopy, magnetization measurements, ferromagnetic resonance spectroscopy and {sup 57}Fe Mössbauer spectroscopy with a high velocity resolution. The applied techniques consistently indicated the presence of daubréelite (FeCr{sub 2}S{sub 4}) as a minority phase beside troilite proper (FeS). As revealed by {sup 57}Fe Mössbauer spectroscopy, the Fe atoms in troilite were in different microenvironments associated with either the ideal FeS structure or that of a slightly iron deficient Fe{sub 1–x}S. Phase transitions of troilite were detected above room temperature by ferromagnetic resonance spectroscopy. A novel analysis of 295 and 90 K {sup 57}Fe Mössbauer spectra was carried out and the hyperfine parameters associated with the ideal structure of troilite were determined by considering the orientation of the hyperfine magnetic field in the eigensystem of the electric field gradient at the {sup 57}Fe nucleus. - Highlights: • The presence of daubréelite in iron sulfide inclusion in Sikhote-Alin iron meteorite. • The presence of the ideal FeS and iron deficient Fe{sub 1–x}S in iron sulfide inclusion. • New way of the iron sulfide Mössbauer spectrum approximation.

  10. Spectra of copperlike and zinclike xenon: Xe XXV and Xe XXVI

    International Nuclear Information System (INIS)

    Kaufman, V.; Sugar, J.; Rowan, W.L.

    1988-01-01

    The spectra of highly ionized xenon were generated in a tokamak plasma and photographed in the region 60--350 A with a 2.2-m grazing-incidence spectrograph. The 4s 2 --4s4p transitions of Zn-like xenon (Xe XXV) and all the 4l--4(l+1) transitions of Cu-like xenon (Xe XXVI) were measured with estimated uncertainties of +- 0.005 A. These measurements have been combined with previous wavelength measurements of Xe XXVI to determine energy levels. A value for the ionization energy of Xe 25+ of 6 912 400 +- 3000 cm -1 (857.0 +- 0.4 eV) was derived

  11. Core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2004-01-01

    We present studies of the magnetic properties of core-shell iron-iron oxide nanoparticles. By combining Mossbauer and X-ray absorption spectroscopy we have been able to measure the change from a Fe3O4-like to a gamma-Fe2O3-like composition from the interface to the surface. Furthermore, we have...

  12. Nature of impurities in fertilizers containing EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+) chelates.

    Science.gov (United States)

    Alvarez-Fernández, Ana; Cremonini, Mauro A; Sierra, Miguel A; Placucci, Giuseppe; Lucena, Juan J

    2002-01-16

    Iron chelates derived from ethylenediaminedi(o-hydroxyphenylacetic) acid (EDDHA), ethylenediaminedi(o-hydroxy-p-methylphenylacetic) acid (EDDHMA), ethylenediaminedi(2-hydroxy-5-sulfophenylacetic) acid (EDDHSA), and ethylenediaminedi(5-carboxy-2-hydroxyphenylacetic) acid (EDDCHA) are remarkably efficient in correcting iron chlorosis in plants growing in alkaline soils. This work reports the determination of impurities in commercial samples of fertilizers containing EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+). The active components (EDDHMA/Fe(3+), EDDHSA/Fe(3+), and EDDCHA/Fe(3+)) were separated easily from other compounds present in the fertilizers by HPLC. Comparison of the retention times and the UV-visible spectra of the peaks obtained from commercial EDDHSA/Fe(3+) and EDDCHA/Fe(3+) samples with those of standard solutions showed that unreacted starting materials (p-hydroxybenzenesulfonic acid and p-hydroxybenzoic acid, respectively) were always present in the commercial products. 1D and 2D NMR experiments showed that commercial fertilizers based on EDDHMA/Fe(3+) contained impurities having structures tentatively assigned to iron chelates of two isomers of EDDHMA. These findings suggest that current production processes of iron chelates used in agriculture need to be improved.

  13. Iron metal production in silicate melts through the direct reduction of Fe/II/ by Ti/III/, Cr/II/, and Eu/II/. [in lunar basalts

    Science.gov (United States)

    Schreiber, H. D.; Balazs, G. B.; Shaffer, A. P.; Jamison, P. L.

    1982-01-01

    The production of metallic iron in silicate melts by chemical reactions of Ti(3+), Cr(2+), and Eu(2+) with Fe(2+) is demonstrated under experimental conditions in a simplified basaltic liquid. These reactions form a basis for interpreting the role of isochemical valency exchange models in explanations for the reduced nature of lunar basalts. The redox couples are individually investigated in the silicate melt to ascertain reference redox ratios that are independent of mutual interactions. These studies also provide calibrations of spectral absorptions of the Fe(2+) and Ti(2+) species in these glasses. Subsequent spectrophotometric analyses of Fe(2+) and Ti(2+) in glasses doped with both iron and titanium and of Fe(2+) in glasses doped with either iron and chromium or iron and europium ascertain the degree of mutual interactions in these dual-doped glasses.

  14. A universal fluorogenic switch for Fe(ii) ion based on N-oxide chemistry permits the visualization of intracellular redox equilibrium shift towards labile iron in hypoxic tumor cells.

    Science.gov (United States)

    Hirayama, Tasuku; Tsuboi, Hitomi; Niwa, Masato; Miki, Ayaji; Kadota, Satoki; Ikeshita, Yukie; Okuda, Kensuke; Nagasawa, Hideko

    2017-07-01

    Iron (Fe) species play a number of biologically and pathologically important roles. In particular, iron is a key element in oxygen sensing in living tissue where its metabolism is intimately linked with oxygen metabolism. Regulation of redox balance of labile iron species to prevent the generation of iron-catalyzed reactive oxygen species (ROS) is critical to survival. However, studies on the redox homeostasis of iron species are challenging because of a lack of a redox-state-specific detection method for iron, in particular, labile Fe 2+ . In this study, a universal fluorogenic switching system is established, which is responsive to Fe 2+ ion based on a unique N-oxide chemistry in which dialkylarylamine N-oxide is selectively deoxygenized by Fe 2+ to generate various fluorescent probes of Fe 2+ -CoNox-1 (blue), FluNox-1 (green), and SiRhoNox-1 (red). All the probes exhibited fluorescence enhancement against Fe 2+ with high selectivity both in cuvette and in living cells. Among the probes, SiRhoNox-1 showed an excellent fluorescence response with respect to both reaction rate and off/on signal contrast. Imaging studies were performed showing the intracellular redox equilibrium shift towards labile iron in response to reduced oxygen tension in living cells and 3D tumor spheroids using SiRhoNox-1, and it was found that the hypoxia induction of labile Fe 2+ is independent of iron uptake, hypoxia-induced signaling, and hypoxia-activated enzymes. The present studies demonstrate the feasibility of developing sensitive and specific fluorescent probes for Fe 2+ with refined photophysical characteristics that enable their broad application in the study of iron in various physiological and pathological conditions.

  15. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans

    Science.gov (United States)

    Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.

    2014-01-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890

  16. Separation of iron and cobalt using 59Fe and 60Co by dialysis of polyvinylpyrrolidone-metal complexes: A greener approach

    International Nuclear Information System (INIS)

    Lahiri, Susanta; Sarkar, Soumi

    2007-01-01

    An environmentally benign method to separate iron and cobalt has been developed using a safe chemical, polyvinylpyrrolidone (PVP). The method involves dialysis of PVP-Fe and PVP-Co complexes against triple-distilled water. 59 Fe and 60 Co were used as radioactive tracers of iron and cobalt throughout the experiment. No other chemicals are required for clean separation of cobalt from iron. The optimum condition for separation has been obtained at pH 5 using 10% aqueous solution of PVP. The method is applicable from trace scale to macro-scale. Very high separation factors have been obtained

  17. Evaluation of the effect of sulfate, alkalinity and disinfector on iron release of iron pipe and iron corrosion scale characteristics under water quality changing condition using response surface methodology

    Science.gov (United States)

    Yang, Fan; Shi, Baoyou; Zhang, Weiyu; Guo, Jianbo; Wu, Nana; Liu, Xinyuan

    2018-02-01

    The response surface methodology (RSM), particularly Box-Behnken design model, was used in this study to evaluate the sulfate, alkalinity and free chlorine on iron release of pipe with groundwater supply history and its iron corrosion scale characteristics under water quality changing experiment. The RSM results together with response surface contour plots indicated that the iron release of pipe section reactors was positively related with Larson Ratio and free chlorine. The thin Corrosion scales with groundwater supply history upon collection site contained Fe3O4 (18%), α-FeOOH (64%), FeCO3 (9%), β-FeOOH (8%) and γ-FeOOH (5%), besides their averaged amorphous iron oxide content was 13.6%. After the RSM water quality changing experiment, Fe3O4, amorphous iron oxide and intermediate iron products (FeCO3, Green Rust (GR)) content on scale of Cl2Rs increased, while their α-FeOOH contents decreased and β-FeOOH disappeared. The high iron released Cl2Rs receiving higher LR water (1.40-2.04) contained highest FeCO3 (20%) and amorphous iron oxide (42%), while the low iron release Cl2Rs receiving lower LR water (0.52-0.73) had higher GR(6.5%) and the amorphous iron oxide (23.7%). In high LR water (>0.73), the thin and non-protective corrosion scale containing higher amorphous iron oxide, Fe(II) derived from new produced Fe3O4 or FeCO3 or GR was easy for oxidants and sulfate ions penetration, and had higher iron release. However the same unstable corrosion scale didn’t have much iron release in low LR water (≤0.73). RSM experiment indicated that iron release of these unstable corrosion scales had close relationship with water quality (Larson Ratio and disinfectant). Optimizing the water quality of new source water and using reasonable water purification measures can help to eliminate the red water case.

  18. Higher iron bioavailability of a human-like collagen iron complex.

    Science.gov (United States)

    Zhu, Chenhui; Yang, Fan; Fan, Daidi; Wang, Ya; Yu, Yuanyuan

    2017-07-01

    Iron deficiency remains a public health problem around the world due to low iron intake and/or bioavailability. FeSO 4 , ferrous succinate, and ferrous glycinate chelate are rich in iron but have poor bioavailability. To solve the problem of iron deficiency, following previous research studies, a thiolated human-like collagen-ironcomplex supplement with a high iron content was prepared in an anaerobic workstation. In addition, cell viability tests were evaluated after conducting an MTT assay, and a quantitative analysis of the thiolated human-like collagen-iron digesta samples was performed using the SDS-PAGE method coupled with gel filtration chromatography. The iron bioavailability was assessed using Caco-2 cell monolayers and iron-deficiency anemia mice models. The results showed that (1) one mole of thiolated human-like collagen-iron possessed approximately 35.34 moles of iron; (2) thiolated human-like collagen-iron did not exhibit cytotoxity and (3) thiolated human-like collagen- iron digesta samples had higher bioavailability than other iron supplements, including FeSO 4 , ferrous succinate, ferrous glycine chelate and thiolated human-like collagen-Fe iron. Finally, the iron bioavailability was significantly enhanced by vitamin C. These results indicated that thiolated human-like collagen-iron is a promising iron supplement for use in the future.

  19. Chemical environment of iron atoms in iron oxynitride films synthesized by reactive magnetron sputtering

    International Nuclear Information System (INIS)

    Grafoute, M.; Petitjean, C.; Rousselot, C.; Pierson, J.F.; Greneche, J.M.

    2007-01-01

    An iron oxynitride film was deposited on silicon and glass substrates by magnetron sputtering in an Ar-N 2 -O 2 reactive mixture. Rutherford back-scattering spectrometry was used to determine the film composition (Fe 1.06 O 0.35 N 0.65 ). X-ray diffraction revealed the formation of a face-centred cubic (fcc) structure with a lattice parameter close to that of γ'''-FeN. X-ray photoelectron spectroscopy showed the occurrence of Fe-N and Fe-O bonds in the film. The local environment of iron atoms studied by 57 Fe Moessbauer spectrometry at both 300 and 77 K gives clear evidence that the Fe 1.06 O 0.35 N 0.65 is not a mixture of iron oxide and iron nitride phases. Despite a small amount of an iron nitride phase, the main sample consists of an iron oxynitride phase with an NaCl-type structure where oxygen atoms partially substitute for nitrogen atoms, thus indicating the formation of a iron oxynitride with an fcc structure

  20. Mechanism of Oxidation of Ethane to Ethanol at Iron(IV)-Oxo Sites in Magnesium-Diluted Fe2(dobdc).

    Science.gov (United States)

    Verma, Pragya; Vogiatzis, Konstantinos D; Planas, Nora; Borycz, Joshua; Xiao, Dianne J; Long, Jeffrey R; Gagliardi, Laura; Truhlar, Donald G

    2015-05-06

    The catalytic properties of the metal-organic framework Fe2(dobdc), containing open Fe(II) sites, include hydroxylation of phenol by pure Fe2(dobdc) and hydroxylation of ethane by its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc). In earlier work, the latter reaction was proposed to occur through a redox mechanism involving the generation of an iron(IV)-oxo species, which is an intermediate that is also observed or postulated (depending on the case) in some heme and nonheme enzymes and their model complexes. In the present work, we present a detailed mechanism by which the catalytic material, Fe0.1Mg1.9(dobdc), activates the strong C-H bonds of ethane. Kohn-Sham density functional and multireference wave function calculations have been performed to characterize the electronic structure of key species. We show that the catalytic nonheme-Fe hydroxylation of the strong C-H bond of ethane proceeds by a quintet single-state σ-attack pathway after the formation of highly reactive iron-oxo intermediate. The mechanistic pathway involves three key transition states, with the highest activation barrier for the transfer of oxygen from N2O to the Fe(II) center. The uncatalyzed reaction, where nitrous oxide directly oxidizes ethane to ethanol is found to have an activation barrier of 280 kJ/mol, in contrast to 82 kJ/mol for the slowest step in the iron(IV)-oxo catalytic mechanism. The energetics of the C-H bond activation steps of ethane and methane are also compared. Dehydrogenation and dissociation pathways that can compete with the formation of ethanol were shown to involve higher barriers than the hydroxylation pathway.

  1. Polymersomes containing iron sulfide (FeS) as primordial cell model : for the investigation of energy providing redox reactions.

    Science.gov (United States)

    Alpermann, Theodor; Rüdel, Kristin; Rüger, Ronny; Steiniger, Frank; Nietzsche, Sandor; Filiz, Volkan; Förster, Stephan; Fahr, Alfred; Weigand, Wolfgang

    2011-04-01

    According to Wächtershäuser's "Iron-Sulfur-World" one major requirement for the development of life on the prebiotic Earth is compartmentalization. Vesicles spontaneously formed from amphiphilic components containing a specific set of molecules including sulfide minerals may have lead to the first autotrophic prebiotic units. The iron sulfide minerals may have been formed by geological conversions in the environment of deep-sea volcanos (black smokers), which can be observed even today. Wächtershäuser postulated the evolution of chemical pathways as fundamentals of the origin of life on earth. In contrast to the classical Miller-Urey experiment, depending on external energy sources, the "Iron-Sulfur-World" is based on the catalytic and energy reproducing redox system FeS+H2S-->FeS2+H2. The energy release out of this redox reaction (∆RG°=-38 kJ/mol, pH 0) could be the cause for the subsequent synthesis of complex organic molecules and the precondition for the development of more complex units similar to cells known today. Here we show the possibility for precipitating iron sulfide inside vesicles composed of amphiphilic block-copolymers as a model system for a first prebiotic unit. Our findings could be an indication for a chemoautotrophic FeS based origin of life.

  2. Dechlorination of Hexachloroethane in Water Using Iron Shavings and Amended Iron Shavings: Kinetics and Pathways

    Directory of Open Access Journals (Sweden)

    D. L. Wu

    2014-01-01

    Full Text Available In contrast to previous studies which employed zero-valent iron powder, this paper investigated reductive dechlorination of hexachloroethane (HCA using iron shavings and bimetallic iron shavings modified with Cu, Ag, or Pd. Results clearly show that iron shavings offer superior reductive dechlorination of HCA. In addition, surface-normalized pseudo first-order dechlorination rates of 0.0073 L·m−2·h−1, 0.0136 L·m−2·h−1, 0.0189 L·m−2·h−1, and 0.0084 L·m−2·h−1 were observed in the presence of iron shavings (Fe0 and the bimetallic iron shavings Cu/Fe, Ag/Fe, and Pd/Fe, respectively. Bimetallic iron shavings consisting of Cu/Fe and Ag/Fe could greatly enhance the reductive reaction rate; Pd/Fe was used to achieve complete dechlorination of HCA within 5 hours. The additives of Ag and Pd shifted product distributions, and the reductive dechlorination of HCA occurred via β reductive elimination and sequential hydrogenolysis in the presence of all iron shavings. This study consequently designed a reaction pathway diagram which reflected the reaction pathway and most prevalent dechlorination products. Iron shavings are a common byproduct of mechanical processing plants. While the purity of such Fe metals may be low, these shavings are readily available at low costs and could potentially be used in engineering applications such as contamination control technologies.

  3. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement

    International Nuclear Information System (INIS)

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-01-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n b ) and apparent association constant (K app ) between iron and phosphorylated HLC were measured at n b = 23.7 and log K app = 4.57, respectively. The amount of iron (Fe 2+ sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. - Highlights: • The iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared. • One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. • The binding properties could be modulated through alterations in pH and phosphate content presented in HLC. • A novel strategy for preparing iron-binding proteins was provided

  4. Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries

    Science.gov (United States)

    Yoder, Tara S.; Tussing, Matthew; Cloud, Jacqueline E.; Yang, Yongan

    2015-01-01

    Converting iron pyrite (FeS2) from a non-cyclable to a cyclable cathode material for lithium ion batteries has been an ongoing challenge in recent years. Herein we report a promising mitigation strategy: wet-chemistry based conformal encapsulation of synthetic FeS2 nanocrystals in a resilient carbon (RC) matrix (FeS2@RC). The FeS2@RC composite was fabricated by dispersing autoclave-synthesized FeS2 nanocrystals in an aqueous glucose solution, polymerizing the glucose in a hydrothermal reactor, and finally heating the polymer/FeS2 composite in a tube furnace to partially carbonize the polymer. The FeS2@RC electrodes showed superior cyclability compared with the FeS2 electrodes, that is, 25% versus 1% of retention at the 20th cycle. Based on electrochemical analysis, XRD study, and SEM characterization, the performance enhancement was attributed to RC's ability to accommodate volume fluctuation, enhance charge transfer, alleviate detrimental side reactions, and suppress loss of the active material. Furthermore, the remaining issues associated with the current system were identified and future research directions were proposed.

  5. Electron Spectroscopy Studies of Iron, Iron Sulfides and Supported Iron Surfaces: Chemisorption of Simple Gases.

    Science.gov (United States)

    Lee, Yiu Chung

    EELS was used to investigate the chemisorption of oxygen and carbon on iron. The EELS spectra of oxidized iron show characteristic features with strong enhancement of the interband transitions involving the Fe 3d band (4.6 and 7.5 eV) and moderate enhancement of the M(,2,3) transition doublet (54.4 and 58.2 eV). The changes in the electron energy loss structures with an overlayer of graphitic or carbidic carbon were investigated. The adsorption and growth of iron on Ni(100) has been studied using the combined techniques of LEED and EELS. Initially iron grows by a layer-by-layer mechanism for the first few layers. High iron coverages result in the observation of complex LEED patterns with satellites around the main (1 x 1) diffraction sports. This is due to the formation of b.c.c. Fe(110) crystallites arranged in domains with different orientations. EELS studies show the presence of three stages in the growth of iron on Ni(100): low-coverage, film-like and bulk-like. Auger and EELS were used to study the iron sulfide (FeS(,2), Fe(,7)S(,8) and FeS) surfaces. A characteristic M(,2,3) VV Auger doublet with a separation of 5.0 eV was observed on the sulfides. An assignment of the electron energy loss peaks was made based on the energy dependence of the loss peaks and previous photoemission results. The effect of argon ion bombardment was studied. Peaks with strong iron and sulfur character were observed. Heating the damaged sulfides results in reconstruction of the sulfide surfaces. The reactions of the sulfides with simple gases, such as H(,2), CO, CH(,4), C(,2)H(,4), NH(,3) and O(,2) were also studied. Using XPS, the chemisorption of SO(,2) on CaO(100) has been studied. The chemical state of sulfur has been identified as that of sulfate. The kinetics of SO(,2) chemisorption on CaO are discussed. The binding states of Fe and Na on CaO were determined to be Fe('2+) and Na('+) respectively. At low Fe or Na coverages (< 0.5 ML), there is a large increase in the rate of

  6. Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe2O3

    Science.gov (United States)

    Sivkov, Alexander; Naiden, Evgenii; Ivashutenko, Alexander; Shanenkov, Ivan

    2016-05-01

    The ultrafine iron oxide powders were successfully synthesized using the plasma dynamic synthesis method, based on the use of a coaxial magnetoplasma accelerator with the iron electrode system. The synthesis was implemented in the high-speed iron-containing plasma jet, flowing into the space of the sealed chamber, filled with the gaseous mixture of oxygen and argon at different ratios. The XRD investigations showed that the synthesized products were heterophase and consisted of three main phases such as magnetite Fe3O4, hematite α-Fe2O3 and ε-Fe2O3. The SEM data confirmed the presence of three particle types: the hollow spheroids with sizes about hundreds of micrometers (magnetite), the particles with sizes up to 100 μm from the porous material of sintered submicron particles (hematite), and nanoscale particles (ε-phase). We found that at the higher oxygen concentration the content of ε-Fe2O3 is increased up to 50% at the same time with decreasing the Fe3O4 phase. The magnetic properties of the products are mainly determined by magnetite characteristics and are significantly reduced with decreasing its content in the powder. In order to investigate the synthesized ε-Fe2O3 on the ability to absorb the electromagnetic radiation in the millimeter wavelength range, we separated the product with the higher ε-phase concentration. The fraction mainly, consisting of ε-Fe2O3, showed the occurrence of the natural resonance at frequencies of 8.3 GHz and 130 GHz.

  7. Biomineralization associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals

    Science.gov (United States)

    Zhang, G.; Dong, H.; Jiang, H.; Kukkadapu, R.K.; Kim, J.; Eberl, D.; Xu, Z.

    2009-01-01

    Iron-reducing and oxidizing microorganisms gain energy through reduction or oxidation of iron, and by doing so play an important role in the geochemical cycling of iron. This study was undertaken to investigate mineral transformations associated with microbial reduction of Fe3+ and oxidation of Fe2+ in solid minerals. A fluid sample from the 2450 m depth of the Chinese Continental Scientific Drilling project was collected, and Fe3+-reducing and Fe2+-oxidizing microorganisms were enriched. The enrichment cultures displayed reduction of Fe3+ in nontronite and ferric citrate, and oxidation of Fe2+ in vivianite, siderite, and monosulfide (FeS). Additional experiments verified that the iron reduction and oxidation was biological. Oxidation of FeS resulted in the formation of goethite, lepidocrocite, and ferrihydrite as products. Although our molecular microbiological analyses detected Thermoan-aerobacter ethanolicus as a predominant organism in the enrichment culture, Fe3+ reduction and Fe2+ oxidation may be accomplished by a consortia of organisms. Our results have important environmental and ecological implications for iron redox cycling in solid minerals in natural environments, where iron mineral transformations may be related to the mobility and solubility of inorganic and organic contaminants.

  8. An iron-57 Moessbauer spectroscopic study of titania-supported iron- and iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1992-01-01

    57 Fe Moessbauer spectroscopy shows that titania-supported iron is reduced by treatment in hydrogen at significantly lower temperatures than corresponding silica- and alumina-supported catalysts. The metallic iron formed under hydrogen at 600deg C is partially converted to carbide by treatment in carbon monoxide and hydrogen. In contrast to its alumina- and silica-supported counterparts, the remainder of the titania-supported iron is unchanged by this gaseous mixture. The 57 Fe Moessbauer spectra of EXAFS show that iron and iridium in the titania-supported iron-iridium catalysts are reduced in hydrogen at even lower temperatures and, after treatment at 600deg C, are predominantly present as the iron-iridium alloy. The treatment of these reduced catalysts in carbon monoxide and hydrogen is shown by Moessbauer spectroscopy and EXAFS to induce the segregation of iron from the iron-iridium alloy and its conversion to iron oxide. (orig.)

  9. Effect of dietary iron source and iron status on iron bioavailability tests in the rat

    International Nuclear Information System (INIS)

    Zhang, D.; Hendricks, D.G.; Mahoney, A.W.

    1986-01-01

    Weanling male rats were made anemic in 7 days by feeding a low iron diet and bleeding. Healthy rats were fed the low iron diet supplemented with ferrous sulfate (29 ppm Fe). Each group was subdivided and fed for 10 days on test diets containing about 29 ppm iron that were formulated with meat:spinach mixtures or meat:soy mixtures to provided 100:0, 75:25, 50:50, 25:75, or 0:100% of the dietary iron from these sources or from a ferrous sulfate diet. After 3 days on the diets all rats were dosed orally with 2 or 5 micro curries of 59 Fe after a 18 hour fast and refeeding for 1.5 hours. Iron status influenced liver iron, carcass iron, liver radio activity and percent of radioactive dose retained. Diet influenced fecal iron and apparent absorption of iron. In iron bioavailability studies assessment methodology and iron status of the test subject greatly influences the estimates of the value of dietary sources of iron

  10. Influence of iron-bearing phyllosilicates on the dechlorination kinetics of 1,1,1-trichloroethane in Fe(II)/cement slurries.

    Science.gov (United States)

    Jung, Bahngmi; Batchelor, Bill

    2007-07-01

    This study examines the effect of iron-bearing phyllosilicates on dechlorination rates of chlorinated aliphatic hydrocarbons (CAHs) in iron-based degradative solidification/stabilization (DS/S-Fe(II)). Laboratory batch experiments were conducted to evaluate dechlorination rates of 1,1,1-trichloroethane (1,1,1-TCA) in a mixture solution of Fe(II), cement and three different iron-bearing phyllosilicates (biotite, vermiculite, and montmorillonite). A first-order rate model was generally used to describe the dechlorination kinetics and the rate constants were dependent on soil mineral type (biotite, vermiculite, and montmorillonite), Fe(II) dose, and the mass ratio of cement to soil mineral. The pseudo-first-order rate constant for montmorillonite was lower than that for biotite and vermiculite by factors of 11-27 when the mass ratio of cement to phyllosilicates was fixed at one. The presence of biotite and vermiculite increase and the presence of montmorillonite decrease the degradation rate that would be observed in their absence. The effect of cement/mineral ratio on rate constants with three different soil minerals indicates that biotite was more reactive than the other two phyllosilicates. This may be due to high accessible natural Fe(II) content in biotite. Montmorillonite appears to inhibit dechlorination by either inactivating Fe(II) by ion exchange or by physically blocking active sites on cement hydration products.

  11. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Jianjun; Chen, Fei; Fan, Daidi, E-mail: fandaidi@nwu.edu.cn; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-10-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein–iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (n{sub b}) and apparent association constant (K{sub app}) between iron and phosphorylated HLC were measured at n{sub b} = 23.7 and log K{sub app} = 4.57, respectively. The amount of iron (Fe{sup 2+} sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. - Highlights: • The iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared. • One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. • The binding properties could be modulated through alterations in pH and phosphate content presented in HLC. • A novel strategy for preparing iron-binding proteins was provided.

  12. Fermi surface deformation in a simple iron-based superconductor, FeSe

    Science.gov (United States)

    Coldea, Amalia; Watson, Matthew; Kim, Timur; Haghighirad, Amir; McCollam, Alix; Hoesch, Moritz; Schofield, Andrew

    2015-03-01

    One of the outstanding problems in the field superconductivity is the identification of the normal state out of which superconductivity emerges. FeSe is one of the simplest and most intriguing iron-based superconductors, since in its bulk form it undergoes a structural transition before it becomes superconducting, whereas its single-layer form is believed to be a high-temperature superconductor. The nature of the structural transition, occurring in the absence of static magnetism, is rather unusual and how the electronic structure is stabilized by breaking of the rotational symmetry is the key to understand the superconductivity in bulk FeSe. Here we report angle-resolved photoemission spectroscopy measurements on FeSe that gives direct access to the band structure and orbital-dependent effects. We complement our studies on bulk FeSe with low-temperature angular-dependent quantum oscillation measurements using applied magnetic fields that are sufficiently strong to suppress superconductivity and reach the normal state. These studies reveal a strong deformation of Fermi surface through the structural transition driven by electronic correlations and orbital-dependent effects. . This work was supported by EPSRC, UK (EP/I004475/1), Diamond Light Source, UK and HFML, Nijmegen.

  13. Roles of Fe-S proteins: from cofactor synthesis to iron homeostasis to protein synthesis.

    Science.gov (United States)

    Pain, Debkumar; Dancis, Andrew

    2016-06-01

    Fe-S cluster assembly is an essential process for all cells. Impairment of Fe-S cluster assembly creates diseases in diverse and surprising ways. In one scenario, the loss of function of lipoic acid synthase, an enzyme with Fe-S cluster cofactor in mitochondria, impairs activity of various lipoamide-dependent enzymes with drastic consequences for metabolism. In a second scenario, the heme biosynthetic pathway in red cell precursors is specifically targeted, and iron homeostasis is perturbed, but lipoic acid synthesis is unaffected. In a third scenario, tRNA modifications arising from action of the cysteine desulfurase and/or Fe-S cluster proteins are lost, which may lead to impaired protein synthesis. These defects can then result in cancer, neurologic dysfunction or type 2 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Oral histories in meteoritics and planetary science—XXV: Vagn F. Buchwald

    Science.gov (United States)

    Sears, Derek W. G.

    2014-07-01

    Vagn Buchwald (Fig. 1) was born in Copenhagen where he attended school and college. Then after 18 months of military service, he assumed a position at the Technical University of Copenhagen. A few years later, he was presented with a piece of the Cape York meteorite, which led to an interest in iron meteorites. Through a campaign of informed searching, Vagn found the 20 ton Agpalilik meteorite (part of the Cape York shower) on 31st July 1963 and by September 1967 had arranged its transport to Copenhagen. After sorting and describing the Danish collection, which included application of the Fe-Ni-P phase diagram to iron meteorite mineralogy, Vagn was invited to sort and describe other iron meteorite collections. This led to a 7 yr project to write his monumental Handbook of Iron Meteorites. Vagn spent 3 yr in the United States and visited most of the world's museums, the visit to Berlin being especially important since the war had left their iron meteorites in bad condition and without labels. During a further decade or more of iron meteorite research, he documented natural and anthropomorphic alterations experienced by iron meteorites, discovered five new minerals (roaldite, carlsbergite, akaganeite, hibbingite, and arupite); had a mineral (buchwaldite, NaCaPO4) and asteroid (3209 Buchwald 1982 BL1) named after him; and led expeditions to Chile, Namibia, and South Africa in search of iron meteorites and information on them. Vagn then turned his attention to archeological metal artifacts. This work resulted in many papers and culminated in two major books on the subject published in 2005 and 2008, after his retirement in 1998. Vagn Buchwald has received numerous Scandinavian awards and honors, and served as president of the Meteoritical Society in 1981-1982.

  15. Fabrication and Properties of Iron-based Soft Magnetic Composites Coated with NiZnFe2O4

    Directory of Open Access Journals (Sweden)

    WU Shen

    2017-07-01

    Full Text Available This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing the sol-gel method prepared Ni-Zn ferrite particles as insulating compound to coat iron powder, and the influence of NiZnFe2O4 content and molding pressure on the magnetic properties was studied. The morphology, magnetic properties and density of Ni-Zn ferrite insulated compacts were investigated. Scanning electron microscope,line-scan EDX analysis and distribution maps show that the iron particle surface is covered with a thin layer of uniform Ni-Zn ferrites. The existing of the insulating layer can effectively improve the electrical resistivity of soft magnetic composites. Magnetic measurements show that the real part of permeability decreases with the increase of the Ni-Zn ferrite content, and the sample with 3%(mass fraction, the same below Ni-Zn ferrite has an acceptable real part and minimum imaginary part of permeability in comparison with other samples. Results show that the addition of NiZnFe2O4 can dramatically decrease the internal magnetic loss, the magnetic loss of coated samples decreases by 83.8% as compared with that of uncoated samples at 100kHz. The density of the Fe-3%NiZnFe2O4 compacts reaches 7.14g/cm3 and the saturation magnetization is 1.47T when the molding pressure is 1000MPa.

  16. ErpA, an iron sulfur (Fe S) protein of the A-type essential for respiratory metabolism in E.coli.

    NARCIS (Netherlands)

    Loiseau, L.; Gerez, C.; Bekker, M.; Ollagnier-de Choudens, S.; Py, B.; Sanakis, Y.; Teixeira De Mattos, M.J.; Fontecave, M.; Barras, F.

    2007-01-01

    Understanding the biogenesis of iron-sulfur (Fe-S) proteins is relevant to many fields, including bioenergetics, gene regulation, and cancer research. Several multiprotein complexes assisting Fe-S assembly have been identified in both prokaryotes and eukaryotes. Here, we identify in Escherichia coli

  17. Effect of zero-valent iron and trivalent iron on UASB rapid start-up.

    Science.gov (United States)

    Wang, Jie; Fang, Hongyan; Jia, Hui; Yang, Guang; Gao, Fei; Liu, Wenbin

    2018-01-01

    In order to realize the rapid start-up of upflow anaerobic sludge blanket (UASB) reactor, the iron ion in different valence state was added to UASB. The results indicated that the start-up time of R3 (FeCl 3 ) was 48 h faster than that of R2 (zero-valent iron (ZVI)). It was because the FeCl 3 could rapidly promote granulation of sludge as a flocculant. However, ZVI released Fe 2+ through corrosion slowly, and then the Fe 2+ increased start-up speed by enhancing enzyme activity and enriching methanogens. In addition, the ZVI and FeCl 3 could promote hydrolysis acidification and strengthen the decomposition of long-chain fatty acids. The detection of iron ions showed that iron ions mainly existed in the sludge. Because the high concentration of Fe 2+ could inhibit anaerobic bacteria activity, excess Fe 3+ could be changed into iron hydroxide precipitation to hinder the mass transfer process of anaerobic bacteria under the alkaline condition. The FeCl 3 was suitable to be added at the initial stage of UASB start-up, and the ZVI was more fitted to be used in the middle stage of reactor start-up to improve the redox ability.

  18. Effect of radioactive iron /sup 59/Fe on the embryogeny of sea-trout (Salmo trutta L. )

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, K; Tucholski, S; Czarnocki, J

    1975-01-01

    Accumulation and diffusion of /sup 59/Fe in the eggs of Salmo trutta L. were observed under laboratory conditions. The dynamics of iron budget in the egg with developing embryo were determined. Differences were found in the accumulation and elimination of iron depending on the stage of the embryos development in the eggs at the time when they were put into the radionuclide solution and on the strength of its concentration.

  19. Fe phase complexes and their thermal stability in iron phosphate catalysts supported on silica

    Energy Technology Data Exchange (ETDEWEB)

    Dasireddy, Venkata D. B. C., E-mail: dasireddy@gmail.com; Bharuth-Ram, K.; Harilal, A.; Singh, S.; Friedrich, H. B. [University of KwaZulu-Natal, School of Chemistry and Physics (South Africa)

    2015-04-15

    Comparative XRD and Mössbauer spectroscopy studies have been conducted on the effect of temperature on the phase transformations of an iron phosphate catalyst synthesized using the ammonia gel method (CAT1) and a commercial grade FePO {sub 4} catalyst supported on silica using wet impregnation method (CAT2). The XRD patterns of both catalysts showed the presence of iron phosphate and the tridymite phase of aluminum phosphate. Mössbauer spectra of the catalysts show that the phases present in CAT1 are thermally stable up to 500 {sup ∘}C, but CAT2 shows significant changes with the tridymite phase of iron phosphate increasing from 6 % to 29 % of the spectral area at a temperature of 500 {sup ∘}C.

  20. Competing ferromagnetic and anti-ferromagnetic interactions in iron nitride ζ-Fe2N

    Science.gov (United States)

    Rao, K. Sandeep; Salunke, H. G.

    2018-03-01

    The paper discusses the magnetic state of zeta phase of iron nitride viz. ζ-Fe2N on the basis of spin polarized first principles electronic structure calculations together with a review of already published data. Results of our first principles study suggest that the ground state of ζ-Fe2N is ferromagnetic (FM) with a magnetic moment of 1.528μB on the Fe site. The FM ground state is lower than the anti-ferromagnetic (AFM) state by 8.44 meV and non-magnetic (NM) state by 191 meV per formula unit. These results are important in view of reports which claim that ζ-Fe2N undergoes an AFM transition below 10 K and others which do not observe any magnetic transition up to 4.2 K. We argue that the experimental results of AFM transition below 10 K are inconclusive and we propose the presence of competing FM and AFM superexchange interactions between Fe sites mediated by nitrogen atoms, which are consistent with Goodenough-Kanamori-Anderson rules. We find that the anti-ferromagnetically coupled Fe sites are outnumbered by ferromagnetically coupled Fe sites leading to a stable FM ground state. A Stoner analysis of the results also supports our claim of a FM ground state.

  1. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    International Nuclear Information System (INIS)

    Li, F.B.; Li, X.M.; Zhou, S.G.; Zhuang, L.; Cao, F.; Huang, D.Y.; Xu, W.; Liu, T.X.; Feng, C.H.

    2010-01-01

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (α-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of α-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe 2+ + α-FeOOH and the system of DIRB + α-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of α-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  2. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.B., E-mail: cefbli@soil.gd.c [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, X.M. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Zhou, S.G.; Zhuang, L. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Cao, F. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Huang, D.Y.; Xu, W.; Liu, T.X. [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Feng, C.H. [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China)

    2010-05-15

    The transformation of DDT was studied in an anaerobic system of dissimilatory iron-reducing bacteria (Shewanella decolorationis S12) and iron oxide (alpha-FeOOH). The results showed that S. decolorationis could reduce DDT into DDD, and DDT transformation rate was accelerated by the presence of alpha-FeOOH. DDD was observed as the primary transformation product, which was demonstrated to be transformed in the abiotic system of Fe{sup 2+} + alpha-FeOOH and the system of DIRB + alpha-FeOOH. The intermediates of DDMS and DBP were detected after 9 months, likely suggesting that reductive dechlorination was the main dechlorination pathway of DDT in the iron-reducing system. The enhanced reductive dechlorination of DDT was mainly due to biogenic Fe(II) sorbed on the surface of alpha-FeOOH, which can serve as a mediator for the transformation of DDT. This study demonstrated the important role of DIRB and iron oxide on DDT and DDD transformation under anaerobic iron-reducing environments. - This is the first case reporting the reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.

  3. Intestinal absorbtion from therapeutic iron doses

    International Nuclear Information System (INIS)

    Werner, E.

    1977-01-01

    On a total of 105 persons with normal iron stores, iron depletion, and iron deficiency the intestinal absorption from therapeutic iron doses (100 mg Fe and 50 mg Fe as ferrous glycocoll sulphate) of a special galenic form was measured. The measurements were performed by means of a whole-body counter and preparations labelled with radio iron ( 59 Fe). Mean values of absorption rates from 100 mg Fe in healthy males were 5.0% and in healthy females 5.6% whereas in latent iron deficiency and in iron deficiency anemia mean values of 10% and 13% were obtained, respectively. The maximum absorption rate of 20 to 25% is reached already in the late stage of latent iron deficiency. Advancing severeness of iron deficiency is not followed by an increase of iron absorption. Investigations an 21 persons showed no significant difference between absorption rates of the galenic preparations used when administered orally before or after breakfast, respectively. (orig.) [de

  4. Galactic cosmic ray iron composition

    International Nuclear Information System (INIS)

    Scherzer, R.; Enge, W.; Beaujean, R.

    1980-11-01

    We have studied the isotopic compostition of galactic cosmic ray iron in the energy interval 500-750 MeV/nucleon with a visual track detector system consisting of nuclear emulsion and cellulose-nitrate platic. Stopping iron nuclei were identified from ionization - range measurements in the two detector parts. Cone lengths were measured in the plastic sheets and the residual ranges of the particles were measured in plastic and in emulsion. We have determined the mass of 17 iron nuclei with an uncertainty of about 0.3 amu. The isotopic composition at the detector level was found to be 52 Fe: 53 Fe: 54 Fe: 55 Fe: 56 Fe: 57 Fe: 58 Fe = 0:1: 4:3:8:1:0. These numbers are not in conflict with the assumption that the isotopic composition of cosmic ray iron at the source is similar to the solar system composition. (author)

  5. Ferrous and hemoglobin-59Fe absorption from supplemented cow milk in infants with normal and depleted iron stores

    International Nuclear Information System (INIS)

    Heinrich, H.C.; Gabbe, E.E.; Whang, D.H.; Bender-Goetze, C.; Schaefer, K.H.; Hamburg Univ.

    1975-01-01

    Small amounts of milk do inhibit ferrous iron absorption from a 5 mg 59 Fe 2+ dose in 1- to 18-month-old infants. Only 50 ml of 2/3 cow milk reduced the absorption from 18 to 3.8% in infants with normal iron stores (inhibition index 0.21) and from 26 to 8.5% in [de

  6. Preparation of ultrafine iron particles by chemical vapor deposition of Fe(CO) sub 5. Fe(CO) sub 5 wo gebryo to suru kiso kagaku hanno ni yoru tetsuchobiryushi no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Y; Kageyama, Y. (Mitsubishi Petrochemical Co. Ltd., Tokyo (Japan)): Iwata, M. (Nagoya University, Nagoya (Japan). Faculty of Engineering)

    1991-11-10

    An ultrafine iron particle preparing process was developed, which wses gaseous phase pyrolysis in magnetic field of iron pentacarbonyl, Fe(CO){sub 5}, based on the fact that Fe(CO){sub 5} has peculiar characters that its boiling point is as low as 103{degree}C, and starts decomposing in a low temperature zone of 100{degree}C or lower. Vaporizing and introducing into a reactor an fe(CO){sub 5}, andPyrolyzing it at 200-600{degree}C while being diluted with nitrogen and applied with a magnetic field produced uitrafine iron particles of a necklace-like chain comprisinh primary particles having diameter of 15 to 25 nm with 10 to 40 of them linked in a straight chain. It was found that the specific surface area is 30-50 m{sup 2}/g, with the diameter converted from the specific surface area being relatively close to the average diameter obtained from TEM photograph, and that the particle has few pores. Magnetically the iron powder has a coercivity of 123-131 KA/m and a specific saturation magnetization of 120-140 Am{sup 2}/kg, and is expected to be applied as a high density magnetic recording medium. 5 refs.,8 figs., 3 tabs.

  7. Moessbauer study on the formation process of Fe-K composition in iron-based catalyst for dehydrogenation of ethylbenzene

    International Nuclear Information System (INIS)

    Jiang Keyu; Zhao Zhenjie; Yang Xielong

    2001-01-01

    Fe-K spinel structure is the predecessor of active phase of potassium promoted iron-based catalyst for dehydrogenation of ethylbenzene. Moessbauer spectroscopy has been used to study the formation process of Fe-K spinel structure which depends on the catalyst composition and preparing condition. The results may prove useful for production of industrial catalyst

  8. Study on iron metabolism in children using double labelling of 51Cr and 59Fe

    International Nuclear Information System (INIS)

    Kobayashi, Masatsura

    1974-01-01

    In the children before and after treatment for iron deficiency anemia and those on ingesting a long-term low caloric and iron diet, life span of Ashby Technique 1/2(AST) red cells, circulatory blood volume (CBV), plasma iron disappearance(PID), red cell-iron utility(RCIU), plasma-iron turnover rate(PITR), and red cell-ironturnover rate(RCITR) were respectively determined using double labeling of 51 Cr and 59 Fe, and the following results and conclusions were obtained: In the patients with iron deficiency anemia, the rate of RCIU was highly increased, and simultaneously the shortening in AST was observed. Among the children with the iron deficiency anemia, five patients were examined immediately after the improvement on the anemia by iron drugs; the serum iron (SFe) averaged 74μg/ml. So the erthropiesis appeared to recover to normal, yet AST has hardly changed, still more has it shortened. In five children with celebral palsy associated with disturbance of physical development, who had ingested a long-term liquid low iron diet no evident increase of RCIU was found except for high calues of RCITR. The shortening in AST was not entirely seen in contrast with that of the simple alimentary iron deficiency anemia. Besides the CBV measured par kg of weight showed the remarkable increase. (Oyama, S.)

  9. Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation.

    Science.gov (United States)

    Hilty, Florentine M; Arnold, Myrtha; Hilbe, Monika; Teleki, Alexandra; Knijnenburg, Jesper T N; Ehrensperger, Felix; Hurrell, Richard F; Pratsinis, Sotiris E; Langhans, Wolfgang; Zimmermann, Michael B

    2010-05-01

    Effective iron fortification of foods is difficult, because water-soluble compounds that are well absorbed, such as ferrous sulphate (FeSO(4)), often cause unacceptable changes in the colour or taste of foods. Poorly water-soluble compounds, on the other hand, cause fewer sensory changes, but are not well absorbed. Here, we show that poorly water-soluble nanosized Fe and Fe/Zn compounds (specific surface area approximately 190 m(2) g(-1)) made by scalable flame aerosol technology have in vivo iron bioavailability in rats comparable to FeSO(4) and cause less colour change in reactive food matrices than conventional iron fortificants. The addition of Zn to FePO(4) and Mg to Fe/Zn oxide increases Fe absorption from the compounds, and doping with Mg also improves their colour. After feeding rats with nanostructured iron-containing compounds, no stainable Fe was detected in their gut wall, gut-associated lymphatics or other tissues, suggesting no adverse effects. Nanosizing of poorly water-soluble Fe compounds sharply increases their absorption and nutritional value.

  10. ENDF/B VI iron validation onpca-replica (H2O/FE) shielding benchmark experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pescarini, M. [ENEA, Bologna (Italy). Centro Ricerche Energia `E. Clementel` - Area Energia e Innovazione

    1994-05-01

    The PCA-REPLICA (H2O/Fe) neutron shielding benchmark experiment is analysed using the SN 2-D DOT 3.5 code and the 3-D-equivalent flux synthesis method. This engineering benchmark reproduces the ex-core radial geometry of a PWR, including a mild steel reactor pressure vessel (RPV) simulator, and is dsigned to test the accuracy of the calculation of the in-vessel neutron exposure parameters (fast fluence and iron displacement rates). This accuracy is strongly dependent on the quality of the iron neutron cross section used to describe the nuclear reactions within the RPV simulator. In particular, in this report, the cross sections based on the ENDF/B VI iron data files are tested, through a comparison of the calculated integral and spectral results with the corresponding experimental data. In addition, the present results are compared, on the same benchmark experiment, with those of a preceding ENEA (Italian Agency for Energy, New Technologies and Environment)-Bologna validation of the JEF-2.1 iron cross sections. The integral result comparison indicates that, for all the thresold detectors considered (Rh-103 (n,n) Rh-103m, In-115 (n,n) In-115 (n,n) In-115m and S-32 (n.p) P-32), the ENDF/B VI iron data produce better results than the JEF-2.1 iron data. In particular, in the ENDF/B VI calcultaions, an improvement of the in-vessel C/E (Calculated/Experimental) activity ratios for the lower energy threshold detectors, Rh-103 and In-115, is observed. This improvement becomes more evident with increasing neutron penetration depth in the vessel. This is probably attributable to the fact that the inelastic scattering cross section values of the ENDF/B VI Fe-56 data file, approximately in the 0.86 - 1.5 MeV energy range, are lower then the corresponding values of the JEF-2.1 data file.

  11. Rate of Iron Transfer Through the Horse Spleen Ferritin Shell Determined by the Rate of Formation of Prussian Blue and Fe-desferrioxamine Within the Ferritin Cavity

    Science.gov (United States)

    Zhang, Bo; Watt, Richard K.; Galvez, Natividad; Dominquez-Vera, Jose M.; Watt, Gerald D.

    2005-01-01

    Iron (2+ and 3+) is believed to transfer through the three-fold channels in the ferritin shell during iron deposition and release in animal ferritins. However, the rate of iron transit in and out through these channels has not been reported. The recent synthesis of [Fe(CN)(sub 6)](3-), Prussian Blue (PB) and desferrioxamine (DES) all trapped within the horse spleen ferritin (HoSF) interior makes these measurements feasible. We report the rate of Fe(2+) penetrating into the ferritin interior by adding external Fe(2+) to [Fe(CN)(sub 6)](3-) encapsulated in the HoSF interior and measuring the rate of formation of the resulting encapsulated PB. The rate at which Fe(2+) reacts with [Fe(CN)(sub 6)](3-) in the HoSF interior is much slower than the formation of free PB in solution and is proceeded by a lag period. We assume this lag period and the difference in rate represent the transfer of Fe(2+) through the HoSF protein shell. The calculated diffusion coefficient, D approx. 5.8 x 10(exp -20) square meters per second corresponds to the measured lag time of 10-20 s before PB forms within the HoSF interior. The activation energy for Fe(2+) transfer from the outside solution through the protein shell was determined to be 52.9 kJ/mol by conducting the reactions at 10 to approximately 40 C. The reaction of Fe(3+) with encapsulated [Fe(CN)6](4-) also readily forms PB in the HoSF interior, but the rate is faster than the corresponding Fe(2+) reaction. The rate for Fe(3+) transfer through the ferritin shell was confirmed by measuring the rate of the formation of Fe-DES inside HoSF and an activation energy of 58.4 kJ/mol was determined. An attempt was made to determine the rate of iron (2+ and 3+) transit out from the ferritin interior by adding excess bipyridine or DES to PB trapped within the HoSF interior. However, the reactions are slow and occur at almost identical rates for free and HoSF-encapsulated PB, indicating that the transfer of iron from the interior through the

  12. Iron insertion and hematite segregation on Fe-doped TiO2 nanoparticles obtained from sol-gel and hydrothermal methods.

    Science.gov (United States)

    Santos, Reginaldo da S; Faria, Guilherme A; Giles, Carlos; Leite, Carlos A P; Barbosa, Herbert de S; Arruda, Marco A Z; Longo, Claudia

    2012-10-24

    Iron-doped TiO(2) (Fe:TiO(2)) nanoparticles were synthesized by the sol-gel method (with Fe/Ti molar ratio corresponding to 1, 3, and 5%), followed by hydrothermal treatment, drying, and annealing. A similar methodology was used to synthesize TiO(2) and α-Fe(2)O(3) nanoparticles. For comparison, a mixture hematite/titania, with Fe/Ti = 4% was also investigated. Characterization of the samples using Rietveld refinement of X-ray diffraction data revealed that TiO(2) consisted of 82% anatase and 18% brookite; for Fe:TiO(2), brookite increased to 30% and hematite was also identified (0.5, 1.0, and 1.2 wt % for samples prepared with 1, 3, and 5% of Fe/Ti). For hematite/titania mixture, Fe/Ti was estimated as 4.4%, indicating the Rietveld method reliability for estimation of phase composition. Because the band gap energy, estimated as 3.2 eV for TiO(2), gradually ranged from 3.0 to 2.7 eV with increasing Fe content at Fe:TiO(2), it can be assumed that a Fe fraction was also inserted as dopant in the TiO(2) lattice. Extended X-ray absorption fine structure spectra obtained for the Ti K-edge and Fe K-edge indicated that absorbing Fe occupied a Ti site in the TiO(2) lattice, but hematite features were not observed. Hematite particles also could not be identified in the images obtained by transmission electron microscopy, in spite of iron identification by elemental mapping, suggesting that hematite can be segregated at the grain boundaries of Fe:TiO(2).

  13. Investigation of iron spin crossover pressure in Fe-bearing MgO using hybrid functional

    Science.gov (United States)

    Cheng, Ya; Wang, Xianlong; Zhang, Jie; Yang, Kaishuai; Zhang, Chuanguo; Zeng, Zhi; Lin, Haiqin

    2018-04-01

    Pressure-induced spin crossover behaviors of Fe-bearing MgO were widely investigated by using an LDA  +  U functional for describing the strongly correlated Fe–O bonding. Moreover, the simulated spin crossover pressures depend on the applied U values, which are sensitive to environments and parameters. In this work, the spin crossover pressures of (Mg1‑x ,Fe x )O are investigated by using the hybrid functional with a uniform parameter. Our results indicate that the spin crossover pressures increase with increasing iron concentration. For example, the spin crossover pressure of (Mg0.03125,Fe0.96875)O and FeO was 56 GPa and 127 GPa, respectively. The calculated crossover pressures agreed well with the experimental observations. Therefore, the hybrid functional should be an effective method for describing the pressure-induced spin crossover behaviors in transition metal oxides.

  14. Efficacy of iron-fortified whole maize flour on iron status of schoolchildren in Kenya: a randomised controlled trial

    NARCIS (Netherlands)

    Andang'o, P.E.A.; Osendarp, S.J.M.; Ayah, R.; West, C.E.; Mwaniki, D.; Wolf, de C.A.; Kraaijenhagen, R.; Kok, F.J.; Verhoef, H.

    2007-01-01

    Background Sodium iron edetic acid (NaFeEDTA) might be a more bioavailable source of iron than electrolytic iron, when added to maize flour. We aimed to assess the effect, on children's iron status, of consumption of whole maize flour fortified with iron as NaFeEDTA or electrolytic iron. Methods 516

  15. Iron-biofortified rice improves the iron stores of nonanemic Filipino women.

    Science.gov (United States)

    Haas, Jere D; Beard, John L; Murray-Kolb, Laura E; del Mundo, Angelita M; Felix, Angelina; Gregorio, Glenn B

    2005-12-01

    Iron deficiency is endemic in much of the world, and food system-based approaches to eradication may be viable with new plant breeding approaches to increase the micronutrient content in staple crops. It is thought that conventional plant breeding approaches provide varieties of rice that have 400-500% higher iron contents than varieties commonly consumed in much of Asia. The efficacy of consuming high-iron rice was tested during a 9-mo feeding trial with a double-blind dietary intervention in 192 religious sisters living in 10 convents around metro Manila, the Philippines. Subjects were randomly assigned to consume either high-iron rice (3.21 mg/kg Fe) or a local variety of control rice (0.57 mg/kg Fe), and daily food consumption was monitored. The high-iron rice contributed 1.79 mg Fe/d to the diet in contrast to 0.37 mg Fe/d from the control rice. The 17% difference in total dietary iron consumption compared with controls (10.16 +/- 1.06 vs. 8.44 +/- 1.82 mg/d) resulted in a modest increase in serum ferritin (P = 0.10) and total body iron (P = 0.06) and no increase in hemoglobin (P = 0.59). However, the response was greater in nonanemic subjects for ferritin (P = 0.02) and body iron (P = 0.05), representing a 20% increase after controlling for baseline values and daily rice consumption. The greatest improvements in iron status were seen in those nonanemic women who had the lowest baseline iron status and in those who consumed the most iron from rice. Consumption of biofortified rice, without any other changes in diet, is efficacious in improving iron stores of women with iron-poor diets in the developing world.

  16. Formation and characterization of iron-binding phosphorylated human-like collagen as a potential iron supplement.

    Science.gov (United States)

    Deng, Jianjun; Chen, Fei; Fan, Daidi; Zhu, Chenhui; Ma, Xiaoxuan; Xue, Wenjiao

    2013-10-01

    Iron incorporated into food can induce precipitation and unwanted interaction with other components in food. Iron-binding proteins represent a possibility to avoid these problems and other side effects, as the iron is protected. However, there are several technical problems associated with protein-iron complex formation. In this paper, the iron-binding phosphorylated human-like collagen (Fe-G6P-HLC) was prepared under physiological conditions through phosphorylated modification. One molecule of Fe-G6P-HLC possesses about 24 atoms of Fe. Spectroscopy analysis, differential scanning calorimetry (DSC) and equilibrium dialysis techniques were employed to investigate the characteristics of the Fe-G6P-HLC. The binding sites (nb) and apparent association constant (Kapp) between iron and phosphorylated HLC were measured at nb=23.7 and log Kapp=4.57, respectively. The amount of iron (Fe(2+) sulfate) binding to phosphorylated HLC was found to be a function of pH and phosphate content. In addition, the solubility and thermal stability of HLC were not significantly affected. The results should facilitate the utilization of HLC as a bioactive iron supplement in the food and medical industry and provide an important theoretical evidence for the application of HLC chelates. © 2013.

  17. Diffusion in ordered Fe-Si alloys

    International Nuclear Information System (INIS)

    Sepiol, B.; Vogl, G.

    1995-01-01

    The measurement of the diffusional Moessbauer line broadening in single crystalline samples at high temperatures provides microscopic information about atomic jumps. We can separate jumps of iron atoms between the various sublattices of Fe-Si intermetallic alloys (D0 3 structure) and measure their frequencies. The diffusion of iron in Fe-Si samples with Fe concentrations between 75 and 82 at% shows a drastic composition dependence: the jump frequency and the proportion between jumps on Fe sublattices and into antistructure (Si) sublattice positions change greatly. Close to Fe 3 Si stoichiometry iron diffusion is extremely fast and jumps are performed exclusively between the three Fe sublattices. The change in the diffusion process when changing the alloy composition from stoichiometric Fe 3 Si to the iron-rich side is discussed. (orig.)

  18. Interactions of iron-bound frataxin with ISCU and ferredoxin on the cysteine desulfurase complex leading to Fe-S cluster assembly.

    Science.gov (United States)

    Cai, Kai; Frederick, Ronnie O; Tonelli, Marco; Markley, John L

    2018-06-01

    Frataxin (FXN) is involved in mitochondrial iron‑sulfur (Fe-S) cluster biogenesis and serves to accelerate Fe-S cluster formation. FXN deficiency is associated with Friedreich ataxia, a neurodegenerative disease. We have used a combination of isothermal titration calorimetry and multinuclear NMR spectroscopy to investigate interactions among the components of the biological machine that carries out the assembly of iron‑sulfur clusters in human mitochondria. Our results show that FXN tightly binds a single Fe 2+ but not Fe 3+ . While FXN (with or without bound Fe 2+ ) does not bind the scaffold protein ISCU directly, the two proteins interact mutually when each is bound to the cysteine desulfurase complex ([NFS1] 2 :[ISD11] 2 :[Acp] 2 ), abbreviated as (NIA) 2 , where "N" represents the cysteine desulfurase (NFS1), "I" represents the accessory protein (ISD11), and "A" represents acyl carrier protein (Acp). FXN binds (NIA) 2 weakly in the absence of ISCU but more strongly in its presence. Fe 2+ -FXN binds to the (NIA) 2 -ISCU 2 complex without release of iron. However, upon the addition of both l-cysteine and a reductant (either reduced FDX2 or DTT), Fe 2+ is released from FXN as consistent with Fe 2+ -FXN being the proximal source of iron for Fe-S cluster assembly. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Ferritin levels, inflammatory biomarkers, and mortality in peripheral arterial disease: a substudy of the Iron (Fe) and Atherosclerosis Study (FeAST) Trial.

    Science.gov (United States)

    Depalma, Ralph G; Hayes, Virginia W; Chow, Bruce K; Shamayeva, Galina; May, Patricia E; Zacharski, Leo R

    2010-06-01

    This study delineated correlations between ferritin, inflammatory biomarkers, and mortality in a cohort of 100 cancer-free patients with peripheral arterial disease (PAD) participating in the Veterans Affairs (VA) Cooperative Study #410, the Iron (Fe) and Atherosclerosis Study (FeAST). FeAST, a prospective, randomized, single-blind clinical trial, tested the hypothesis that reduction of iron stores using phlebotomy would influence clinical outcomes in 1227 PAD patients randomized to iron reduction or control groups. The effects of statin administration were also examined in the Sierra Nevada Health Care (SNHC) cohort by measuring serum ferritin levels at entry and during the 6-year study period. No difference was documented between treatment groups in all-cause mortality and secondary outcomes of death plus nonfatal myocardial infarction and stroke. Iron reduction in the main study caused a significant age-related improvement in cardiovascular disease outcomes, new cancer diagnoses, and cancer-specific death. Tumor necrosis factor (TNF)-alpha, TNF-alpha receptors 1 and 2, interleukin (IL)-2, IL-6, IL-10, and high-sensitivity C reactive protein (hs-CRP) were measured at entry and at 6-month intervals for 6 years. Average levels of ferritin and lipids at entry and at the end of the study were compared. The clinical course and ferritin levels of 23 participants who died during the study were reviewed. At entry, mean age of entry was 67 +/- 9 years for the SNHCS cohort, comparable to FeAST and clinical and laboratory parameters were equivalent in substudy participants randomized to iron reduction (n = 51) or control (n = 49). At baseline, 53 participants on statins had slightly lower mean entry-level ferritin values (114.06 ng/mL; 95% confidence interval [CI] 93.43-134.69) vs the 47 off statins (127.62 ng/mL; 95% CI, 103.21-152.02). Longitudinal analysis of follow-up data, after adjusting for the phlebotomy treatment effect, showed that statin use was associated with

  20. RESEARCH CONCERNING THE Fe CIRCUIT IN THE ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    MARIOARA NICOLETA FILIMON

    2007-01-01

    Full Text Available The iron is an organogenous chemical element which, although in small quantities, is absolutely needed for live. The iron can be present in nature under 2 forms: bivalent or trivalent. Microorganism has an important role concerning the iron circuit in the biosphere. The iron cycle has 4 microbial processes: mineralizing the organic iron, forming the organic compounds with iron, the bivalent iron oxidity and the reduction of the trivalent iron. The Fe III and Fe II reduction, under the action of iron reductive bacteria, has a biological significance and a special a practical importance. Several proceedings used in mining, pottery and in the discovery of toxicity of certain compounds, at the level of anaerobic environment, are based on this process of reduction. The Fe III and Fe II reductive process can also have dangerous negative effects, due to the huge quantity of the accumulated Fe II. This huge quantity of Fe II is a big problem for the level of underground water, because Fe II compromises the water quality and the damaged metal plumbing. Under the action of microbial population, the trivalent iron is reduced to bivalent one, which is soluble. The bivalent iron is mostly evidenced with α,α-dipiridil reactive.

  1. Effect of Ca-Fe oxides additives on NOx reduction in iron ore sintering

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan Yu; Xiao-hui Fan; Min Gan; Xu-ling Chen

    2017-01-01

    As the emission control regulations get stricter, the NOx reduction in the sintering process becomes an important environmental concern owing to its role in the formation of photochemical smog and acid rain. The NOx emissions from the sintering machine account for 48% of total amount from the iron and steel industry.Thus, it is essential to reduce NOx emissions from the sintering machine, for the achievement of clean production of sinter.Ca-Fe oxides, serving as the main binding phase in the sinter, are therefore used as additives into the sintering mixture to reduce NOx emissions.The results show that the NOx re-duction ratio achieves 27.76% with 8% Ca-Fe oxides additives since the Ca-Fe oxides can advance the ig-nition and inhibit the nitrogen oxidation compared with the conventional condition.Meanwhile, the exist-ence of Ca-Fe oxides was beneficial to the sinter quality since they were typical low melting point com-pounds.The optimal mass fraction of Ca-Fe oxides additives should be less than 8% since the permeability of sintering bed was significantly decreased with a further increase of the Ca-Fe oxides fines, inhibiting the mineralization reaction of sintering mixture.Additionally, the appropriate particle size can be obtained when mixing an equal amount of Ca-Fe oxides additives of -0.5 mm and 0.5-3.0 mm in size.

  2. Facile preparation and enhanced microwave absorption properties of flake carbonyl iron/Fe{sub 3}O{sub 4} composite

    Energy Technology Data Exchange (ETDEWEB)

    Min, Dandan, E-mail: mdd4776@126.com; Zhou, Wancheng; Luo, Fa; Zhu, Dongmei

    2017-08-01

    Highlights: • Flake carbonyl iron/Fe{sub 3}O{sub 4} composites were prepared by surface oxidation technique. • Lower permittivity and modest permeability was obtained by the FCI/Fe{sub 3}O{sub 4} composites. • Enhanced absorption efficiency and broader absorption band were obtained. - Abstract: Flake carbonyl iron/Fe{sub 3}O{sub 4} (FCI/Fe{sub 3}O{sub 4}) composites with enhanced microwave absorption properties were prepared by a direct and flexible surface oxidation technique. The phase structures, morphology, magnetic properties, frequency-dependent electromagnetic and microwave absorption properties of the composites were investigated. The measurement results showed that lower permittivity as well as modest permeability was obtained by the FCI/Fe{sub 3}O{sub 4} composites. The calculated microwave absorption properties indicated that enhanced absorption efficiency and broader absorption band were obtained by the FCI/Fe{sub 3}O{sub 4} composite comparing with the FCI composite. The absorption frequency range with reflection loss (RL) below −5 dB of FCI/Fe{sub 3}O{sub 4} composites at reaction time of 90 min at thickness of 1.5 mm is 13.3 GHz from 4.7 to 18 GHz, while the bandwidth of the FCI composite is only 5.9 GHz from 2.6 to 8.5 GHz at the same thickness. Thus, such absorbers could act as effective and wide broadband microwave absorbers in the GHz range.

  3. Photoelectron Spectroscopy and Density Functional Theory Studies of Iron Sulfur (FeS)m- (m = 2-8) Cluster Anions: Coexisting Multiple Spin States.

    Science.gov (United States)

    Yin, Shi; Bernstein, Elliot R

    2017-10-05

    Iron sulfur cluster anions (FeS) m - (m = 2-8) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The most probable structures and ground state spin multiplicities for (FeS) m - (m = 2-8) clusters are tentatively assigned through a comparison of their theoretical and experiment first vertical detachment energy (VDE) values. Many spin states lie within 0.5 eV of the ground spin state for the larger (FeS) m - (m ≥ 4) clusters. Theoretical VDEs of these low lying spin states are in good agreement with the experimental VDE values. Therefore, multiple spin states of each of these iron sulfur cluster anions probably coexist under the current experimental conditions. Such available multiple spin states must be considered when evaluating the properties and behavior of these iron sulfur clusters in real chemical and biological systems. The experimental first VDEs of (FeS) m - (m = 1-8) clusters are observed to change with the cluster size (number m). The first VDE trends noted can be related to the different properties of the highest singly occupied molecular orbitals (NBO, HSOMOs) of each cluster anion. The changing nature of the NBO/HSOMO of these (FeS) m - (m = 1-8) clusters from a p orbital on S, to a d orbital on Fe, and to an Fe-Fe bonding orbital is probably responsible for the observed increasing trend for their first VDEs with respect to m.

  4. Preparation of Fe3O4/Bentonite Nanocomposite from Natural Iron Sand by Co-precipitation Method for Adsorbents Materials

    Science.gov (United States)

    Sebayang, Perdamean; Kurniawan, Candra; Aryanto, Didik; Arief Setiadi, Eko; Tamba, Konni; Djuhana; Sudiro, Toto

    2018-03-01

    An adsorption method is one of the effective ways to filter the heavy metals wastes in aqueous system. In this paper, the Fe3O4/bentonite nanocomposites were successfully prepared from natural iron sand by co-precipitation method. The chemical process was carried out by dissolving and hot stirring the milled iron sand and bentonite in acid solution and precipitating it by NH4OH. The sediment was then washed using distilled water to neutralize pH and dried at 100 °C for 5 hours to produce Fe3O4/bentonite powders. The samples were characterized by XRD, FTIR, BET, TEM, VSM and AAS. All samples were composed by Fe3O4 single phase with a spinnel structure and lattice parameter of 8.373 Å. The transmittance peak of FTIR curve proved that the Fe3O4 particles and bentonite had a molecular bonding. The addition of bentonite to Fe3O4 nanoparticles generally reduced the magnetic properties of Fe3O4/bentonite nanocomposites. The optimum condition of 30 wt% bentonite resulted 105.9 m2/g in surface area, 14 nm in an average particle size and 3.2 nm in pore size. It can be used as Cu and Pb adsorbent materials.

  5. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  6. Inverse isotope effect in iron-based superconductor

    International Nuclear Information System (INIS)

    Shirage, Parasharam M.; Kihou, Kunihiro; Miyazawa, Kiichi; Lee, Chul-Ho; Kito, Hijiri; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Tanaka, Yasumoto; Iyo, Akira

    2010-01-01

    We have found that (Ba, K)Fe 2 As 2 superconductor (a transition temperature, T c ∼ 38 K) shows an inverse Iron isotope effect (α Fe = -0.18 ± 0.03, where T c ∼ M -αFe and M is the iron isotope mass), i.e. the sample containing the larger iron mass depicts higher T c . Systematic studies using three types of Fe-isotopes ( 54 Fe, natural Fe and 57 Fe) reveal a clear inverse shift on T c by measurements of temperature dependent magnetization and resistivity. The inverse isotope effect that is the first case in high-T c superconductors strongly suggests that superconducting mechanism of the iron-based system is not explained by conventional BCS theory mediated by phonons.

  7. Competition of dipositive metal ions for Fe (III) binding sites in chelation therapy of Iron Load

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.

    2005-01-01

    Iron overload is a condition in which excessive iron deposited in the liver, kidney and spleen of human beings in the patients of beta thalassemia and sickle cell anemia. Instead of its importance iron could be toxic when in excess, it damages the tissues. For the treatment of iron overload, a drug desferrioxamine mesylate has been used. It is linear trihydroxamic acid, a natural siderophore produced by streptomyces which removes the extra iron from body. Salicylhydroxamate type siderphore. In present research salicylhydroxamate was used for the complexation with dipositive metal ions which are available in biological environments such as Mn (II), Co (II), Ni (II) and Cu (II). The aim of our work was to study the competition reactions between Fe (III) and other dipositive ions; to calculate the thermodynamic data of chelation of these metal ions complexes with hydroxamate by computer program and comparison with hydroxamate complexes. (author)

  8. Jendl-3.1 iron validation on the PCA-REPLICA (H2O/Fe) shielding benchmark experiment

    International Nuclear Information System (INIS)

    Pescarini, M.; Borgia, M. G.

    1997-03-01

    The PCA-REPLICA (H 2 O/Fe) neutron shielding benchmarks experiment is analysed using the SN 2-D DOT 3.5-E code and the 3-D-equivalent flux synthesis method. This engineering benchmark reproduces the ex-core radial geometry of a PWR, including a mild steel reactor pressure vessel (RPV) simulator, and is designed to test the accuracy of the calculation of the in-vessel neutron exposure parameters. This accuracy is strongly dependent on the quality of the iron neutron cross sections used to describe the nuclear reactions within the RPV simulator. In particular, in this report, the cross sections based on the JENDL-3.1 iron data files are tested, through a comparison of the calculated integral and spectral results with the corresponding experimental data. In addition, the present results are compared, on the same benchmark experiment, with those of a preceding ENEA-Bologna validation of the ENDF/B VI iron cross sections. The integral result comparison indicates that, for all the threshold detectors considered (Rh-103 (n, n') Rh-103m, In-115 (n, n') In-115m and S-32 (n, p) P-32), the JENDL-3.1 natural iron data produce satisfactory results similar to those obtained with the ENDF/B VI iron data. On the contrary, when the JENDL/3.1 Fe-56 data file is used, strongly underestimated results are obtained for the lower energy threshold detectors, Rh-103 and In-115. This fact, in particular, becomes more evident with increasing the neutron penetration depth in the RPV simulator

  9. Strong anisotropy effect in an iron-based superconductor CaFe0.882Co0.118AsF

    Science.gov (United States)

    Ma, Yonghui; Ji, Qiucheng; Hu, Kangkang; Gao, Bo; Li, Wei; Mu, Gang; Xie, Xiaoming

    2017-07-01

    The anisotropy of iron-based superconductors is much smaller than that of the cuprates and that predicted by theoretical calculations. A credible understanding for this experimental fact is still lacking up to now. Here we experimentally study the magnetic-field-angle dependence of electronic resistivity in the superconducting phase of an iron-based superconductor CaFe{}0.882Co{}0.118AsF, and find the strongest anisotropy effect of the upper critical field among the iron-based superconductors based on the framework of Ginzburg-Landau theory. The evidence of the energy band structure and charge density distribution from electronic structure calculations demonstrates that the observed strong anisotropic effect mainly comes from the strong ionic bonding in between the ions of Ca2+ and F-, which weakens the interlayer coupling between the layers of FeAs and CaF. This finding provides a significant insight into the nature of the experimentally-observed strong anisotropic effect of electronic resistivity, and also paves the way for designing exotic two-dimensional artificial unconventional superconductors in the future.

  10. Iron cycling at corroding carbon steel surfaces

    Science.gov (United States)

    Lee, Jason S.; McBeth, Joyce M.; Ray, Richard I.; Little, Brenda J.; Emerson, David

    2013-01-01

    Surfaces of carbon steel (CS) exposed to mixed cultures of iron-oxidizing bacteria (FeOB) and dissimilatory iron-reducing bacteria (FeRB) in seawater media under aerobic conditions were rougher than surfaces of CS exposed to pure cultures of either type of microorganism. The roughened surface, demonstrated by profilometry, is an indication of loss of metal from the surface. In the presence of CS, aerobically grown FeOB produced tight, twisted helical stalks encrusted with iron oxides. When CS was exposed anaerobically in the presence of FeRB, some surface oxides were removed. However, when the same FeOB and FeRB were grown together in an aerobic medium, FeOB stalks were less encrusted with iron oxides and appeared less tightly coiled. These observations suggest that iron oxides on the stalks were reduced and solubilized by the FeRB. Roughened surfaces of CS and denuded stalks were replicated with three culture combinations of different species of FeOB and FeRB under three experimental conditions. Measurements of electrochemical polarization resistance established different rates of corrosion of CS in aerobic and anaerobic media, but could not differentiate rate differences between sterile controls and inoculated exposures for a given bulk concentration of dissolved oxygen. Similarly, total iron in the electrolyte could not be used to differentiate treatments. The experiments demonstrate the potential for iron cycling (oxidation and reduction) on corroding CS in aerobic seawater media. PMID:24093730

  11. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria.

    Science.gov (United States)

    Si, Youbin; Zou, Yan; Liu, Xiaohong; Si, Xiongyuan; Mao, Jingdong

    2015-03-01

    Iron reduction and mercury methylation by dissimilatory iron-reducing bacteria (DIRB), Geobacter sulfurreducens and Shewanella oneidensis, were studied, and the relationship of mercury methylation coupled to iron reduction was determined. The ability of both bacteria for reducing iron was tested, and Fe(III) reduction occurred with the highest rate when ferric oxyhydroxide was used as a terminal electron acceptor. G. sulfurreducens had proven to mediate the production of methylmercury (MeHg), and a notable increase of MeHg following the addition of inorganic Hg was observed. When the initial concentration of HgCl2 was 500nM, about 177.03nM of MeHg was determined at 8d after G. sulfurreducens inoculation. S. oneidensis was tested negligible for Hg methylation and only 12.06nM of MeHg was determined. Iron reduction could potentially influence Hg methylation rates. The increase in MeHg was consistent with high rate of iron reduction, indicating that Fe(III) reduction stimulated the formation of MeHg. Furthermore, the net MeHg concentration increased at low Fe(III) additions from 1.78 to 3.57mM, and then decreased when the added Fe(III) was high from 7.14 to 17.85mM. The mercury methylation rate was suppressed with high Fe(III) additions, which might have been attributable to mercury complexation and low availability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Consumption of galacto-oligosaccharides increases iron absorption from a micronutrient powder containing ferrous fumarate and sodium iron EDTA: a stable-isotope study in Kenyan infants.

    Science.gov (United States)

    Paganini, Daniela; Uyoga, Mary A; Cercamondi, Colin I; Moretti, Diego; Mwasi, Edith; Schwab, Clarissa; Bechtler, Salome; Mutuku, Francis M; Galetti, Valeria; Lacroix, Christophe; Karanja, Simon; Zimmermann, Michael B

    2017-10-01

    Background: Whether consumption of prebiotics increases iron absorption in infants is unclear. Objective: We set out to determine whether prebiotic consumption affects iron absorption from a micronutrient powder (MNP) containing a mixture of ferrous fumarate and sodium iron EDTA (FeFum+NaFeEDTA) in Kenyan infants. Design: Infants ( n = 50; aged 6-14 mo) consumed maize porridge that was fortified with an MNP containing FeFum+NaFeEDTA and 7.5 g galacto-oligosaccharides (GOSs) (Fe+GOS group, n = 22) or the same MNP without GOSs (Fe group, n = 28) each day for 3 wk. Then, on 2 consecutive days, we fed all infants isotopically labeled maize porridge and MNP test meals containing 5 mg Fe as 57 FeFum+Na 58 FeEDTA or ferrous sulfate ( 54 FeSO 4 ). Iron absorption was measured as the erythrocyte incorporation of stable isotopes. Iron markers, fecal pH, and bacterial groups were assessed at baseline and 3 wk. Comparisons within and between groups were done with the use of mixed-effects models. Results: There was a significant group-by-compound interaction on iron absorption ( P = 0.011). The median percentages of fractional iron absorption from FeFum+NaFeEDTA and from FeSO 4 in the Fe group were 11.6% (IQR: 6.9-19.9%) and 20.3% (IQR: 14.2-25.7%), respectively, ( P iron absorption was greater from the FeFum+NaFeEDTA ( P = 0.047) in the Fe+GOS group but not from the FeSO 4 ( P = 0.653). The relative iron bioavailability from FeFum+NaFeEDTA compared with FeSO 4 was higher in the Fe+GOS group than in the Fe group (88% compared with 63%; P = 0.006). There was a significant time-by-group interaction on Bifidobacterium spp. ( P = 0.008) and Lactobacillus / Pediococcus / Leuconostoc spp. ( P = 0.018); Lactobacillus / Pediococcus / Leuconostoc spp. decreased in the Fe group ( P = 0.013), and there was a nonsignificant trend toward higher Bifidobacterium spp. in the Fe+GOS group ( P = 0.099). At 3 wk, iron absorption was negatively correlated with fecal pH ( P iron absorption by 62

  13. Iron Requirement and Iron Uptake from Various Iron Compounds by Different Plant Species

    Science.gov (United States)

    Christ, Rudolf A.

    1974-01-01

    The Fe requirements of four monocotyledonous plant species (Avena sativa L., Triticum aestivum L., Oryza sativa L., Zea mays L.) and of three dicotyledonous species (Lycopersicum esculentum Mill., Cucumis sativus L., Glycine maxima (L.) Merr.) in hydroponic cultures were ascertained. Fe was given as NaFe-EDDHA chelate (Fe ethylenediamine di (O-hydroxyphenylacetate). I found that the monocotyledonous species required a substantially higher Fe concentration in the nutrient solution in order to attain optimum growth than did the dicotyledonous species. Analyses showed that the process of iron uptake was less efficient with the monocotyledonous species. When the results obtained by using chelated Fe were compared with those using ionic Fe, it was shown that the inefficient species were equally inefficient in utilizing Fe3+ ions. However, the differences between the efficient and the inefficient species disappeared when Fe2+ was used. This confirms the work of others who postulated that Fe3+ is reduced before uptake of chelated iron by the root. In addition, it was shown that reduction also takes place when Fe is used in ionic form. The efficiency of Fe uptake seems to depend on the efficiency of the root system of the particular plant species in reducing Fe3+. The removal of Fe from the chelate complex after reduction to Fe2+ seems to present no difficulties to the various plant species. PMID:16658933

  14. The effect of change in pH on the solubility of iron bis-glycinate chelate and other iron compounds.

    Science.gov (United States)

    García-Casal, M N; Layrisse, M

    2001-03-01

    The effect of a pH change from 2 to 6 was tested on the solubility of ferrous sulfate, ferrous fumarate, iron bis-glycine chelate (Ferrochel) and sodium-iron ethylenediaminetetraacetic acid (NaFeEDTA). It was found that at pH 2 ferrous sulfate, Ferrochel and NaFeEDTA were completely soluble and only 75% of iron from ferrous fumarate was soluble. When pH was raised to 6, iron from amino acid chelate and NaFeEDTA remained completely soluble while solubility from ferrous sulfate and ferrous fumarate decreased 64 and 74%, respectively compared to the amount of iron initially soluble at pH 2. These results suggest that iron solubility from iron bis-glycine chelate and NaFeEDTA is not affected by pH changes within the ranges tested, probably because iron remained associated to the respective compounds.

  15. Synthesis of novel spherical Fe_3O_4@Ni_3S_2 composite as improved anode material for rechargeable nickel-iron batteries

    International Nuclear Information System (INIS)

    Li, Jing; Guo, Litan; Shangguan, Enbo; Yue, Mingzhu; Xu, Min; Wang, Dong; Chang, Zhaorong; Li, Quanmin

    2017-01-01

    Highlights: • Fe_3O_4@Ni_3S_2 microspheres are fabricated through a facile method for the first time. • Fe_3O_4@Ni_3S_2 is firstly proposed as alkaline anode materials for Ni/Fe batteries. • Fe_3O_4@Ni_3S_2 shows enhanced high-rate capability and improved cycle stability. • Ni_3S_2 can suppress the passivation and hydrogen evolution behavior of the iron anode. - Abstract: Fe_3O_4@Ni_3S_2 microspheres as a novel alkaline anode material have been successfully fabricated through a four-step process for the first time. In this composite, Ni_3S_2 nanoparticles are coated tightly on the surface of Fe_3O_4 microspheres. Compared with the pure Fe_3O_4 and Fe_3O_4@NiO microspheres, the proposed Fe_3O_4@Ni_3S_2 delivers a significantly improved high-rate performance and enhanced cycling stability. At a high discharge rate of 1200 mA g"−"1, the specific capacity of the Fe_3O_4@Ni_3S_2 is ∼481.2 mAh g"−"1 in comparison with ∼83.7 mAh g"−"1 for the pure Fe_3O_4. After 100 cycles at 120 mA g"−"1, the Fe_3O_4@Ni_3S_2 can achieve a capacity retention of 95.1%, while the value for the pure Fe_3O_4 electrode is only 52.5%. The favorable electrochemical performance of the Fe_3O_4@Ni_3S_2 is mainly attributed to the beneficial impact of Ni_3S_2. The Ni_3S_2 layer as a useful additive is significantly conducive to lessening the formation of Fe(OH)_2 passivation layer, enhancing the electronic conductivity, improving the reaction reversibility and suppressing the hydrogen evolution reaction of the alkaline iron anode. Owing to its outstanding electrochemical properties, we believe that the novel Fe_3O_4@Ni_3S_2 composite is potentially a promising candidate for anode material of alkaline iron-based batteries.

  16. Novel iron-cobalt derivatised lithium iron phosphate nanocomposite for lithium ion battery cathode

    CSIR Research Space (South Africa)

    Ikpo, CO

    2013-01-01

    Full Text Available Described herein is the electrochemical study conducted on lithium ion battery cathode material consisting of composite of lithium iron phosphate (LiFePO(sub4), iron-cobalt derivatised carbon nanotubes (FeCo-CNT) and polyaniline (PA) nanomaterials...

  17. Anodic oxidation of Ta/Fe alloys

    International Nuclear Information System (INIS)

    Mato, S.; Alcala, G.; Thompson, G.E.; Skeldon, P.; Shimizu, K.; Habazaki, H.; Quance, T.; Graham, M.J.; Masheder, D.

    2003-01-01

    The behaviour of iron during anodizing of sputter-deposited Ta/Fe alloys in ammonium pentaborate electrolyte has been examined by transmission electron microscopy, Rutherford backscattering spectroscopy, glow discharge optical emission spectroscopy and X-ray photoelectron spectroscopy. Anodic films on Ta/1.5 at.% Fe, Ta/3 at.% Fe and Ta/7 at.% Fe alloys are amorphous and featureless and develop at high current efficiency with respective formation ratios of 1.67, 1.60 and 1.55 nm V -1 . Anodic oxidation of the alloys proceeds without significant enrichment of iron in the alloy in the vicinity of the alloy/film interface and without oxygen generation during film growth, unlike the behaviour of Al/Fe alloys containing similar concentrations of iron. The higher migration rate of iron species relative to that of tantalum ions leads to the formation of an outer iron-rich layer at the film surface

  18. Zinc and the iron donor frataxin regulate oligomerization of the scaffold protein to form new Fe-S cluster assembly centers.

    Science.gov (United States)

    Galeano, B K; Ranatunga, W; Gakh, O; Smith, D Y; Thompson, J R; Isaya, G

    2017-06-21

    Early studies of the bacterial Fe-S cluster assembly system provided structural details for how the scaffold protein and the cysteine desulfurase interact. This work and additional work on the yeast and human systems elucidated a conserved mechanism for sulfur donation but did not provide any conclusive insights into the mechanism for iron delivery from the iron donor, frataxin, to the scaffold. We previously showed that oligomerization is a mechanism by which yeast frataxin (Yfh1) can promote assembly of the core machinery for Fe-S cluster synthesis both in vitro and in cells, in such a manner that the scaffold protein, Isu1, can bind to Yfh1 independent of the presence of the cysteine desulfurase, Nfs1. Here, in the absence of Yfh1, Isu1 was found to exist in two forms, one mostly monomeric with limited tendency to dimerize, and one with a strong propensity to oligomerize. Whereas the monomeric form is stabilized by zinc, the loss of zinc promotes formation of dimer and higher order oligomers. However, upon binding to oligomeric Yfh1, both forms take on a similar symmetrical trimeric configuration that places the Fe-S cluster coordinating residues of Isu1 in close proximity of iron-binding residues of Yfh1. This configuration is suitable for docking of Nfs1 in a manner that provides a structural context for coordinate iron and sulfur donation to the scaffold. Moreover, distinct structural features suggest that in physiological conditions the zinc-regulated abundance of monomeric vs. oligomeric Isu1 yields [Yfh1]·[Isu1] complexes with different Isu1 configurations that afford unique functional properties for Fe-S cluster assembly and delivery.

  19. Iron isotope biogeochemistry of Neoproterozoic marine shales

    Science.gov (United States)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe(II) to the ferrous seawater iron reservoir could have caused the reservoir to decrease in size

  20. The Bradyrhizobium japonicum Ferrous Iron Transporter FeoAB Is Required for Ferric Iron Utilization in Free Living Aerobic Cells and for Symbiosis.

    Science.gov (United States)

    Sankari, Siva; O'Brian, Mark R

    2016-07-22

    The bacterium Bradyrhizobium japonicum USDA110 does not synthesize siderophores for iron utilization in aerobic environments, and the mechanism of iron uptake within symbiotic soybean root nodules is unknown. An mbfA bfr double mutant defective in iron export and storage activities cannot grow aerobically in very high iron medium. Here, we found that this phenotype was suppressed by loss of function mutations in the feoAB operon encoding ferrous (Fe(2+)) iron uptake proteins. Expression of the feoAB operon genes was elevated under iron limitation, but mutants defective in either gene were unable to grow aerobically over a wide external ferric (Fe(3+)) iron (FeCl3) concentration range. Thus, FeoAB accommodates iron acquisition under iron limited and iron replete conditions. Incorporation of radiolabel from either (55)Fe(2+) or (59)Fe(3+) into cells was severely defective in the feoA and feoB strains, suggesting Fe(3+) reduction to Fe(2+) prior to traversal across the cytoplasmic membrane by FeoAB. The feoA or feoB deletion strains elicited small, ineffective nodules on soybean roots, containing few bacteria and lacking nitrogen fixation activity. A feoA(E40K) mutant contained partial iron uptake activity in culture that supported normal growth and established an effective symbiosis. The feoA(E40K) strain had partial iron uptake activity in situ within nodules and in isolated cells, indicating that FeoAB is the iron transporter in symbiosis. We conclude that FeoAB supports iron acquisition under limited conditions of soil and in the iron-rich environment of a symbiotic nodule. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Cosmic Magnetic Fields : XXV Canary Islands Winter School of Astrophysics

    CERN Document Server

    Martinez Gonzalez, Maria Jesus

    2018-01-01

    Magnetic fields pervade the universe and play an important role in many astrophysical processes. However, they require specialised observational tools, and are challenging to model and understand. This volume provides a unified view of magnetic fields across astrophysical and cosmological contexts, drawing together disparate topics that are rarely covered together. Written by the lecturers of the XXV Canary Islands Winter School, it offers a self-contained introduction to cosmic magnetic fields on a range of scales. The connections between the behaviours of magnetic fields in these varying contexts are particularly emphasised, from the relatively small and close ranges of the Sun, planets and stars, to galaxies and clusters of galaxies, as well as on cosmological scales. Aimed at young researchers and graduate students, this up-to-date review uniquely brings together a subject often tackled by disconnected communities, conveying the latest advances as well as highlighting the limits of our current understandi...

  2. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    Science.gov (United States)

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  3. Iron(III) species formed during iron(II) oxidation and iron-core formation in bacterioferritin of Escherichia coli

    International Nuclear Information System (INIS)

    Hawkins, C.; Treffry, A.; Mackey, J.; Williams, J.M.; Andrews, S.C.; Guest, J.R.; Harrison, P.M.

    1996-01-01

    This paper describes a preliminary investigation of the mechanisms of Fe(II) oxidation and storage of Fe(III) in the bacterioferritin of Escherichia coli (EcBFR). Using Moessbauer spectroscopy to examine the initial oxidation of iron by EcBFR it is confirmed that this ferritin exhibits 'ferroxidase' activity and is shown that dimeric and monomeric iron species are produced as intermediates. The characteristics of ferroxidase activity in EcBFR is compare d with those of human H-chain ferritin (HuHF) and discuss the different Moessbauer parameters of their dimeric iron with reference to the structures of their di-metal sites. In addition, it is presented preliminary findings suggesting that after an initial 'burst', the rate of oxidation is greatly reduced, possibly due to blockage of the ferroxidase centre by bound iron. A new component, not found in HuHF and probably representing a small cluster of Fe(III) atoms, is reported

  4. Adrenaline and triiodothyronine modify the iron handling in the freshwater air-breathing fish Anabas testudineus Bloch: role of ferric reductase in iron acquisition.

    Science.gov (United States)

    Rejitha, V; Peter, M C Subhash

    2013-01-15

    The effects of in vivo adrenaline and triiodothyronine (T(3)) on ferric reductase (FR) activity, a membrane-bound enzyme that reduces Fe(III) to Fe(II) iron, were studied in the organs of climbing perch (Anabas testudineus Bloch). Adrenaline injection (10 ng g(-1)) for 30 min produced significant inhibition of FR activity in the liver and kidney and that suggests a role for this stress hormone in iron acquisition in this fish. Short-term T(3) injection (40 ng g(-1)) reduced FR activity in the gills of fed fish but not in the unfed fish. Similar reduction of FR activity was also obtained in the intestine and kidney of fed fish after T(3) injection. Feeding produced pronounced decline in FR activity in the spleen but T(3) challenge in fed and unfed fish increased its activity in this iron storing organ and that point to the sensitivity of FR system to feeding activity. The in vitro effects of Fe on FR activity in the gill explants of freshwater fish showed correlations of FR with Na(+), K(+)-ATPase and H(+)-ATPase activities. Substantial increase in the FR activity was found in the gill explants incubated with all the tested doses of Fe(II) iron (1.80, 3.59 and 7.18 μM) and Fe(III) iron (1.25, 2.51 and 5.02 μM) and this indicate that FR and Na pump activity are positively correlated. On the contrary, substantial reduction of gill H(+)-ATPase activity was found in the gill explants incubated with Fe(II) iron and Fe(III) iron indicating that perch gills may not require a high acidic microenvironment for the reduction of Fe(III) iron. Accumulation of iron in the gill explants after Fe(III) iron incubation implies a direct relationship between Fe acquisition and FR activity in this tissue. The inverse correlation between FR activity and H(+)-ATPase activity in Fe(II) or Fe(III) loaded gills and the significant positive correlations of FR activity with total [Fe] content in the Fe(III) loaded gills substantiate that FR which shows sensitivity to sodium and proton pumps

  5. Arsenic removal with iron(II) and iron(III) in waters with high silicate and phosphate concentrations.

    Science.gov (United States)

    Roberts, Linda C; Hug, Stephan J; Ruettimann, Thomas; Billah, Morsaline; Khan, Abdul Wahab; Rahman, Mohammad Tariqur

    2004-01-01

    Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.

  6. Jendl-3.1 iron validation on the PCA-REPLICA (H{sub 2}O/Fe) shielding benchmark experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pescarini, M.; Borgia, M. G. [ENEA, Centro Ricerche ``Ezio Clementel``, Bologna (Italy). Dipt. Energia

    1997-03-01

    The PCA-REPLICA (H{sub 2}O/Fe) neutron shielding benchmarks experiment is analysed using the SN 2-D DOT 3.5-E code and the 3-D-equivalent flux synthesis method. This engineering benchmark reproduces the ex-core radial geometry of a PWR, including a mild steel reactor pressure vessel (RPV) simulator, and is designed to test the accuracy of the calculation of the in-vessel neutron exposure parameters. This accuracy is strongly dependent on the quality of the iron neutron cross sections used to describe the nuclear reactions within the RPV simulator. In particular, in this report, the cross sections based on the JENDL-3.1 iron data files are tested, through a comparison of the calculated integral and spectral results with the corresponding experimental data. In addition, the present results are compared, on the same benchmark experiment, with those of a preceding ENEA-Bologna validation of the ENDF/B VI iron cross sections. The integral result comparison indicates that, for all the threshold detectors considered (Rh-103 (n, n`) Rh-103m, In-115 (n, n`) In-115m and S-32 (n, p) P-32), the JENDL-3.1 natural iron data produce satisfactory results similar to those obtained with the ENDF/B VI iron data. On the contrary, when the JENDL/3.1 Fe-56 data file is used, strongly underestimated results are obtained for the lower energy threshold detectors, Rh-103 and In-115. This fact, in particular, becomes more evident with increasing the neutron penetration depth in the RPV simulator.

  7. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  8. Banded Iron Formations

    DEFF Research Database (Denmark)

    Posth, Nicole R; Konhauser, Kurt O; Kappler, Andreas

    2011-01-01

    Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga).......Sedimentary deposits of alternating iron-rich (20–40% Fe) and iron-poor, siliceous (40–50% SiO2) mineral layers that primarily precipitated throughout much of the late Archean (2.7–2.5 Ga) and Paleoproterozoic (2.5– 1.8 Ga), but then remerged in the Neoproterozoic (0.8 Ga)....

  9. Iron forms in some egyptian soils

    International Nuclear Information System (INIS)

    EL Kholi, A.F.; Massoud, M.A.; EL-Naggar, H.A.; Gadallah, A.

    1990-01-01

    The present study is an attempt to find out the available forms of iron (Fe 2+ and Fe 3+ ) in five egyptian soils samples, representing alluvial, calcareous and sandy soils. Concerning the iron content of soil either Fe 2+ or Fe 3+ , the tested soil types were relatively arranged in the order alluvial> calcareous> sandy soil. In spite of the considerable variations in the soil content of iron cations, the Fe 2+ /Fe 3+ ratio was almost kept constant around 0.83. The uniformity of the ferrous : ferric ratio in the different tested soil types indicates their similarity in their redox-potential, pH and their environmental conditions, particularly, the aeration and partial O 2 - pressure degree. Fe 2+ /Fe 3+ being less than unity suggests that the Fe 2+ Fe 3+ reaction tends towards the forward direction, i.e., to the Fe 3+ formation. As a result of the pot experiment, significant correlations have been found between the laboratory determined soil Fe 2+ and both of the plant Fe-uptake and the plant dry matter weight

  10. Iron aluminide composites

    International Nuclear Information System (INIS)

    Schneibel, J.H.

    1999-01-01

    Iron aluminides with the B2 structure are highly oxidation and corrosion resistant. They are thermodynamically compatible with a wide range of ceramics such as TiC, WC, TiB 2 , and ZrB 2 . In addition, liquid iron aluminides wet these ceramics very well. Therefore, FeAl/ceramic composites may be produced by techniques such as liquid phase sintering of powder mixtures, or pressureless melt infiltration of ceramic powders with liquid FeAl. These techniques, the resulting microstructures, and their advantages as well as limitations are described. Iron aluminide composites can be very strong. Room temperature flexure strengths as high as 1.8 GPa have been observed for FeAl/WC. Substantial gains in strength of elevated temperatures (1,073 K) have also been demonstrated. Above 40 vol.% WC the room temperature flexure strength becomes flaw-limited. This is thought to be due to processing flaws and limited interfacial strength. The fracture toughness of FeAl/WC is unexpectedly high and follows a rule of mixtures. Interestingly, sufficiently thin (<1 microm) FeAl ligaments between adjacent WC particles fracture not by cleavage, but in a ductile manner. For these thin ligaments the dislocation pile-ups formed during deformation are not long enough to nucleate cleavage fracture, and their fracture mode is therefore ductile. For several reasons, this brittle-to-ductile size transition does not improve the fracture toughness of the composites significantly. However, since no cleavage cracks are nucleated in sufficiently thin FeAl ligaments, slow crack growth due to ambient water vapor does not occur. Therefore, as compared to monolithic iron aluminides, environmental embrittlement is dramatically reduced in iron aluminide composites

  11. Evolution of the mössbauer spectra of ludwigite Co3 - x Fe x O2BO3 with substitution of iron for cobalt

    Science.gov (United States)

    Knyazev, Yu. V.; Ivanova, N. B.; Bayukov, O. A.; Kazak, N. V.; Bezmaternykh, L. N.; Vasiliev, A. D.

    2013-06-01

    A concentration series of single crystals of iron-cobalt ludwigites Co3 - x Fe x O2BO3 ( x = 0.0125, 0.025, 0.050, 0.10, 1.0) has been synthesized. The structure has been studied using X-ray diffraction and Mössbauer effect. A preferred occupation of nonequivalent crystallographic positions by iron in the ludwigite structure has been revealed. It has been found that the valence of substituting iron ions is three. It has been revealed that the structure of the γ-resonance spectrum of Co2FeO2BO3 is complicated due to a composition disorder in the system.

  12. Magneto-optical imaging of iron-oxypnictide SmFeAsO1-xFx and SmFeAsO1-y

    International Nuclear Information System (INIS)

    Tamegai, T.; Nakajima, Y.; Tsuchiya, Y.; Iyo, A.; Miyazawa, K.; Shirage, P.M.; Kito, H.; Eisaki, H.

    2009-01-01

    We have prepared iron-oxypnictide SmFeAsO 1-x F x by ambient-pressure technique and SmFeAsO 1-y by high-pressure technique, and characterized their bulk and local magnetic properties by using SQUID magnetometer and magneto-optical imaging. While the high-pressure samples have densities close to the theoretical value, the ambient-pressure samples have several small voids. Despite these structural differences between the two kinds of samples, they both have superconducting transition temperature above 50 K. In addition, magneto-optical images for both samples show similar kinds of inhomogeneities with large current concentrated in several grains and with small intergranular current. The estimated intragranular currents for both samples are over 10 5 A/cm 2 at low temperatures and low fields.

  13. Redox process catalysed by growing crystal-strengite, FePO4,2H2O, crystallizing from solution with iron(II) and hydroxylamine

    Science.gov (United States)

    Lundager Madsen, Hans Erik

    2014-09-01

    In an attempt to grow pure crystals of the iron(II) phosphate vivianite, Fe3(PO4)2,8H2O, from a solution of Mohr's salt, Fe(NH4)2(SO4)2,6H2O, added to a solution of ammonium phosphate, hydroxylammonium chloride, NH3OHCl, was added to the iron(II) stock solution to eliminate oxidation of iron(II) by oxygen from the air. However, the effect turned out to be the opposite of the expected: whereas hydroxylamine reduces iron(III) in bulk solution, it acted as a strong oxidant in the presence of growing iron phosphate crystals, causing the crystallization of the iron(III) phosphate strengite, FePO4,2H2O, as the only solid phase. Evidently the crystal surface catalyses oxidation of iron(II) by hydroxylamine. The usual composite kinetics of spiral growth and surface nucleation was found. The surface-nucleation part yielded edge free energy λ in the range 12-45 pJ/m, virtually independent of temperature and in the range typical for phosphates of divalent metals. The scatter of values for λ presumably arises from contributions from different crystal forms to the overall growth rate. The low mean value points to strong adsorption of iron(II), which is subsequently oxidized at the crystal surface, forming strengite. The state of the system did not tend to thermodynamic equilibrium, but to a metastable state, presumably controlled by the iron(II) rich surface layer of the crystal. In addition to crystal growth, it was possible to measure nucleation kinetics by light scattering (turbidimetry). A point of transition from heterogeneous to homogeneous nucleation was found, and from the results for the homogeneous domain a rather precise value of crystal surface free energy γ=55 mJ/m2 was found. This is a relatively low value as well, indicating that the redox process plays a role already at the nucleation stage.

  14. Characterization of accumulated precipitates during subsurface iron removal

    International Nuclear Information System (INIS)

    Halem, Doris van; Vet, Weren de; Verberk, Jasper; Amy, Gary; Dijk, Hans van

    2011-01-01

    Research highlights: → Accumulated iron was not found to clog the well or aquifer after 12 years of subsurface iron removal. → 56-100% of accumulated iron hydroxides were found to be crystalline. → Subsurface iron removal favoured certain soil layers, either due to hydraulics or mineralogy. → Other groundwater constituents, such as manganese and arsenic were found to co-accumulate with iron. - Abstract: The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O 2 -rich water oxidizes adsorbed Fe 2+ , creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO 3 , showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in

  15. From iron coordination compounds to metal oxide nanoparticles.

    Science.gov (United States)

    Iacob, Mihail; Racles, Carmen; Tugui, Codrin; Stiubianu, George; Bele, Adrian; Sacarescu, Liviu; Timpu, Daniel; Cazacu, Maria

    2016-01-01

    Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe 2 III Fe II O(CH 3 COO) 6 (H 2 O) 3 ]·2H 2 O (FeAc1), μ 3 -oxo trinuclear iron(III) acetate, [Fe 3 O(CH 3 COO) 6 (H 2 O) 3 ]NO 3 ∙4H 2 O (FeAc2), iron furoate, [Fe 3 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeF), iron chromium furoate, FeCr 2 O(C 4 H 3 OCOO) 6 (CH 3 OH) 3 ]NO 3 ∙2CH 3 OH (FeCrF), and an iron complex with an original macromolecular ligand (FePAZ) were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination) or using a nonconventional energy source (i.e., microwave or ultrasonic treatment) to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  16. When Density Functional Approximations Meet Iron Oxides.

    Science.gov (United States)

    Meng, Yu; Liu, Xing-Wu; Huo, Chun-Fang; Guo, Wen-Ping; Cao, Dong-Bo; Peng, Qing; Dearden, Albert; Gonze, Xavier; Yang, Yong; Wang, Jianguo; Jiao, Haijun; Li, Yongwang; Wen, Xiao-Dong

    2016-10-11

    Three density functional approximations (DFAs), PBE, PBE+U, and Heyd-Scuseria-Ernzerhof screened hybrid functional (HSE), were employed to investigate the geometric, electronic, magnetic, and thermodynamic properties of four iron oxides, namely, α-FeOOH, α-Fe 2 O 3 , Fe 3 O 4 , and FeO. Comparing our calculated results with available experimental data, we found that HSE (a = 0.15) (containing 15% "screened" Hartree-Fock exchange) can provide reliable values of lattice constants, Fe magnetic moments, band gaps, and formation energies of all four iron oxides, while standard HSE (a = 0.25) seriously overestimates the band gaps and formation energies. For PBE+U, a suitable U value can give quite good results for the electronic properties of each iron oxide, but it is challenging to accurately get other properties of the four iron oxides using the same U value. Subsequently, we calculated the Gibbs free energies of transformation reactions among iron oxides using the HSE (a = 0.15) functional and plotted the equilibrium phase diagrams of the iron oxide system under various conditions, which provide reliable theoretical insight into the phase transformations of iron oxides.

  17. Iron valence in double-perovskite (Ba,Sr,Ca)2FeMoO6: isovalent substitution effect

    International Nuclear Information System (INIS)

    Yasukawa, Y.; Linden, J.; Chan, T.S.; Liu, R.S.; Yamauchi, H.; Karppinen, M.

    2004-01-01

    In the Fe-Mo based B-site ordered double-perovskite, A 2 FeMoO 6.0 , with iron in the mixed-valence II/III state, the valence value of Fe is not precisely fixed at 2.5 but may be fine-tuned by means of applying chemical pressure at the A-cation site. This is shown through a systematic 57 Fe Moessbauer spectroscopy study using a series of A 2 FeMoO 6.0 [A=(Ba,Sr) or (Sr,Ca)] samples with high degree of Fe/Mo order, the same stoichiometric oxygen content and also almost the same grain size. The isomer shift values and other hyperfine parameters obtained from the Moessbauer spectra confirm that Fe remains in the mixed-valence state within the whole range of A constituents. However, upon increasing the average cation size at the A site the precise valence of Fe is found to decrease such that within the A=(Ba,Sr) regime the valence of Fe is closer to II, while within the A=(Sr,Ca) regime it is closer to the actual mixed-valence II/III state. As the valence of Fe approaches II, the difference in charges between Fe and Mo increases, and parallel with this the degree of Fe/Mo order increases. Additionally, for the less-ordered samples an increased tendency of clustering of the antisite Fe atoms is deduced from the Moessbauer data

  18. Moessbauer study of iron uptake in cucumber root

    Energy Technology Data Exchange (ETDEWEB)

    Kovacs, K.; Kuzmann, E., E-mail: kuzmann@para.chem.elte.hu [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Fodor, F. [Eoetvoes Lorand University, Department of Plant Physiology and Molecular Plant Biology (Hungary); Vertes, A. [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Kamnev, A. A. [Russian Academy of Sciences, Institute of Biochemistry and Physiology of Plants and Microorganisms (Russian Federation)

    2005-09-15

    {sup 57}Fe Moessbauer spectroscopy was used to study the uptake and distribution of iron in the root of cucumber plants grown in iron-deficient modified Hoagland nutrient solution and put into iron-containing solution with 10 {mu}M Fe citrate enriched with {sup 57}Fe (90%) only before harvesting. The Moessbauer spectra of the frozen roots exhibited two Fe{sup 3+} components with typical average Moessbauer parameters of {delta} = 0.5 mm s{sup -1}, {Delta} = 0.46 mm s{sup -1} and {delta} = 0.5 mm s{sup -1}, {Delta} = 1.2 mm s{sup -1} at 78 K and the presence of an Fe{sup 2+} doublet, assigned to the ferrous hexaaqua complex. This finding gives a direct evidence for the existence of Fe{sup 2+} ions produced via root-associated reduction according to the mechanism proposed for iron uptake for dicotyledonous plants. Monotonous changes in the relative content of the components were found with the time period of iron supply. The Moessbauer results are interpreted in terms of iron uptake and transport through the cell wall and membranes.

  19. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Burtron H. Davis

    1999-01-01

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe(sub 3)O(sub 4). Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to(epsilon)(prime)-Fe(sub 2.2)C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to(chi)-Fe(sub 5)C(sub 2) and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe(sub 3)O(sub 4); however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94%(chi)-Fe(sub 5)C(sub 2), deactivated rapidly as the carbide was oxidized to Fe(sub 3)O(sub 4). No difference in activity, stability or deactivation rate was found for(chi)-Fe(sub 5)C(sub 2) and(epsilon)(prime)-Fe(sub 2.2)C

  20. TECHNOLOGY DEVELOPMENT FOR IRON AND COBALT FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Burtron H. Davis

    1999-04-30

    The impact of activation procedure on the phase composition of precipitated iron Fischer-Tropsch (FT) catalysts has been studied. Catalyst samples taken during activation and FT synthesis have been characterized by Moessbauer spectroscopy. Formation of iron carbide is necessary for high FT activity. Hydrogen activation of precipitated iron catalysts results in reduction to predominantly metallic iron and Fe{sub 3}O{sub 4}. Metallic iron is not stable under FT 3 4 conditions and is rapidly converted to {epsilon}{prime}-Fe{sub 2.2}C. Activation with carbon monoxide or syngas 2.2 with low hydrogen partial pressure reduces catalysts to {chi}-Fe{sub 5}C{sub 2} and a small amount of 5 2 superparamagnetic carbide. Exposure to FT conditions partially oxidizes iron carbide to Fe{sub 3}O{sub 4}; however, catalysts promoted with potassium or potassium and copper maintain a constant carbide content and activity after the initial oxidation. An unpromoted iron catalyst which was activated with carbon monoxide to produce 94% {chi}-Fe{sub 5}C{sub 2}, deactivated rapidly as the carbide was oxidized to Fe{sub 3}O{sub 4}. No difference in activity, stability or deactivation rate was found for {chi}-Fe{sub 5}C{sub 2} and {epsilon}{prime}-Fe{sub 2.2}C.

  1. Comparative biogeochemical behaviors of iron-55 and stable iron in the marine environment

    International Nuclear Information System (INIS)

    Weimer, W.C.; Langford, J.C.; Jenkins, C.E.

    1978-01-01

    Studies of atmospheric aerosols have demonstrated that much of the 55 Fe associated with the aerosol input to the oceans is present as either an amorphous or hydrous iron oxide or as very small particulate species attached to the surfaces of the large aerosol particles. By comparison, nearly all of the stable iron is bound in the mineral phase of aerosol particles. This difference in the chemical and physical forms of the radioactive and stable iron isotopes results in the 55 Fe being more biologically available than is the stable iron. This difference in availability is responsible for the transfer of a much higher specific activity 55 Fe to certain ocean organisms and man relative to the specific activity of the total aerosol or of sea water. This differential biological uptake of the radioactive element and its stable element counterpart points out that natural levels of stable elements in the marine environment may not effectively dilute radioelements or other stable elements of anthropogenic sources. The effectiveness of dilution by natural sources depends on the chemical and physical forms of the materials in both the source terms and the receiving environments. The large difference in specific activities of 55 Fe in aerosols and sea water relative to ocean organisms reflects the independent behaviors of 55 Fe and stable iron

  2. Fe and Fe-P Foam for Biodegradable Bone Replacement Material: Morphology, Corrosion Behaviour, and Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Monika Hrubovčáková

    2016-01-01

    Full Text Available Iron and iron-phosphorus open-cell foams were manufactured by a replica method based on a powder metallurgical approach to serve as a temporary biodegradable bone replacement material. Iron foams alloyed with phosphorus were prepared with the aim of enhancing the mechanical properties and manipulating the corrosion rate. Two different types of Fe-P foams containing 0.5 wt.% of P were prepared: Fe-P(I foams from a phosphated carbonyl iron powder and Fe-P(II foams from a mixture of carbonyl iron and commercial Fe3P. The microstructure of foams was analyzed using scanning electron microscopy. The mechanical properties and the corrosion behaviour were studied by compression tests and potentiodynamic polarization in Hank’s solution and a physiological saline solution. The results showed that the manufactured foams exhibited an open, interconnected, microstructure similar to that of a cancellous bone. The presence of phosphorus improved the mechanical properties of the foams and decreased the corrosion rate as compared to pure iron foams.

  3. Environmental association of iron minerals and iron concentrations ...

    African Journals Online (AJOL)

    Environmental association of iron (Fe) minerals and Fe concentrations in soils close to the Kgwakgwe Mn oxide ore abandoned mine, Botswana are investigated in this study. Four hundred soil samples were obtained from a 4 km2 area close to the abandoned mine. The Fe minerals in the soil samples were identified by ...

  4. Transmission electron microscope study of fusion-environment radiation damage in iron and iron-chromium alloys

    International Nuclear Information System (INIS)

    Horton, L.L.S.

    1982-07-01

    A transmission electron microscopy study of radiation damage microstructures in iron and iron-chromium alloys has been performed. This study consisted of both qualitative and quantitative characterization of the dislocation and cavity microstructures, including determination of vacancy/interstitial character and Burgers vectors for dislocation loops and analysis of the cavity morphology. The effects of irradiation temperature, fluence, helium implantation, and chromium content were investigated. Neutron irradiation (iron specimens, 1 dpa, 455 to 1000 K) and triple-beam ion irradiation (Fe-10% Cr specimens, 10 dpa, 725 to 950 K; Fe-10% Cr specimens, 850 K, 0.3 to 100 dpa; and Fe, Fe-5% Cr, Fe-10% Cr specimens, 850 K, 10 dpa) were employed. In the triple-beam ion irradiation procedure, simultaneous bombardment with 4 MeV Fe ++ ions and energetic He + and D 2 + ions was used to simulate the fusion environment (10 at. ppM He/dpa and 41 at. ppM D/dpa). In addition, single-beam 4 MeV Fe ++ ion irradiations of Fe-10% Cr both with and without pre-injection of helium and deuterium were performed

  5. 57Fe Moessbauer spectroscopic study of the thermal decomposition of Fe(IO3)3

    International Nuclear Information System (INIS)

    Music, S.; Simmons, G.W.; Leidheiser, H. Jr

    1981-01-01

    Thermal decomposition of iron(III) iodate at temperatures up to 600 deg C has been followed by 57 Fe Moessbauer spectroscopy. The 57 Fe Moessbauer spectrum of iron(III) iodate is characterized by a single absorption peak. A magnetic splitting component of small intensity appears after 42 h heating at 370 deg C. Iron(III) iodate is completely decomposed after 1 h heating at 470 deg C. Moessbauer parameters of the component yielding the magnetic hyperfine split spectrum correspond to α-Fe 2 O 3 with crystal defects. Quantitative experimental data are summarized and discussed. (author)

  6. Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits

    Science.gov (United States)

    Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Lundstrom, Craig C.; Gajos, Norbert; Bindeman, Ilya; Barra, Fernando; Munizaga, Rodrigo

    2016-03-01

    Iron oxide-apatite (IOA) ore deposits occur globally and can host millions to billions of tons of Fe in addition to economic reserves of other metals such as rare earth elements, which are critical for the expected growth of technology and renewable energy resources. In this study, we pair the stable Fe and O isotope compositions of magnetite samples from several IOA deposits to constrain the source reservoir of these elements in IOAs. Since magnetite constitutes up to 90 modal% of many IOAs, identifying the source of Fe and O within the magnetite may elucidate high-temperature and/or lower-temperature processes responsible for their formation. Here, we focus on the world-class Los Colorados IOA in the Chilean iron belt (CIB), and present data for magnetite from other Fe oxide deposits in the CIB (El Laco, Mariela). We also report Fe and O isotopic values for other IOA deposits, including Mineville, New York (USA) and the type locale, Kiruna (Sweden). The ranges of Fe isotopic composition (δ56Fe, 56Fe/54Fe relative to IRMM-14) of magnetite from the Chilean deposits are: Los Colorados, δ56Fe (±2σ) = 0.08 ± 0.03‰ to 0.24 ± 0.08‰; El Laco, δ56Fe = 0.20 ± 0.03‰ to 0.53 ± 0.03‰; Mariela, δ56Fe = 0.13 ± 0.03‰. The O isotopic composition (δ18O, 18O/16O relative to VSMOW) of the same Chilean magnetite samples are: Los Colorados, δ18O (±2σ) = 1.92 ± 0.08‰ to 3.17 ± 0.03‰; El Laco, δ18O = 4.00 ± 0.10‰ to 4.34 ± 0.10‰; Mariela, δ18O = (1.48 ± 0.04‰). The δ18O and δ56Fe values for Kiruna magnetite yield an average of 1.76 ± 0.25‰ and 0.16 ± 0.07‰, respectively. The Fe and O isotope data from the Chilean IOAs fit unequivocally within the range of magnetite formed by high-temperature magmatic or magmatic-hydrothermal processes (i.e., δ56Fe 0.06-0.49‰ and δ18O = 1.0-4.5‰), consistent with a high-temperature origin for Chilean IOA deposits. Additionally, minimum formation temperatures calculated by using the measured Δ18O

  7. From iron coordination compounds to metal oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mihail Iacob

    2016-12-01

    Full Text Available Various types, shapes and sizes of iron oxide nanoparticles were obtained depending on the nature of the precursor, preparation method and reaction conditions. The mixed valence trinuclear iron acetate, [Fe2IIIFeIIO(CH3COO6(H2O3]·2H2O (FeAc1, μ3-oxo trinuclear iron(III acetate, [Fe3O(CH3COO6(H2O3]NO3∙4H2O (FeAc2, iron furoate, [Fe3O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeF, iron chromium furoate, FeCr2O(C4H3OCOO6(CH3OH3]NO3∙2CH3OH (FeCrF, and an iron complex with an original macromolecular ligand (FePAZ were used as precursors for the corresponding oxide nanoparticles. Five series of nanoparticle samples were prepared employing either a classical thermal pathway (i.e., thermal decomposition in solution, solvothermal method, dry thermal decomposition/calcination or using a nonconventional energy source (i.e., microwave or ultrasonic treatment to convert precursors into iron oxides. The resulting materials were structurally characterized by wide-angle X-ray diffraction and Fourier transform infrared, Raman, energy-dispersive X-ray, and X-ray fluorescence spectroscopies, as well as thermogravimetric analysis. The morphology was characterized by transmission electron microscopy, atomic force microscopy and dynamic light scattering. The parameters were varied within each route to fine tune the size and shape of the formed nanoparticles.

  8. Characterization of iron uptake from hydroxamate siderophores by Chlorella vulgaris

    International Nuclear Information System (INIS)

    Allnutt, F.C.T.

    1985-01-01

    Iron uptake by Chlorella vulgaris from ferric-hydroxamate siderophores and the possible production of siderophores by these algae was investigated. No production of siderophores or organic acids was observed. Iron from the two hydroxamate siderophores tested, ferrioximine B (Fe 3+ -DFOB) and ferric-rhodotorulate (Fe 3+ -RA), was taken up at the same rate as iron chelated by citrate or caffeate. Two synthetic chelates, Fe 3+ -EDTA and Fe 3+ -EDDHA, provided iron at a slower rate. Iron uptake was inhibited by 50 μM CCCP or 1 mM vanadate. Cyanide (100 μM KCN) or 25 μM antimycin A failed to demonstrate a link between uptake and respiration. Labeled iron ( 55 Fe) was taken up while labeled ligands ([ 14 C] citrate or RA) were not accumulated. Cation competition from Ni 2+ and Co 2+ observed using Fe 3+ -DFOB and Fe 3+ -RA while iron uptake from Fe 3+ -citrate was stimulated. Iron-stress induced iron uptake from the hydroxamate siderophores. Ferric reduction from the ferric-siderophores was investigated with electron paramagnetic resonance (EPR) and bathophenathroline disulfonate (BPDS). Ferric reduction was induced by iron-stress and inhibited by CCCP. A close correlation between iron uptake and ferric reduction was measured by the EPR method. Ferric reduction measured by the BPDS method was greater than that measure by EPR. BPDS reduction was interpreted to indicate a potential for reduction while EPR measures the physiological rate of reduction. BPDS inhibition of iron uptake and ferricyanide interference with reduction indicate that reduction and uptake occur exposed to the external medium. Presumptive evidence using a binding dose response curve for Fe 3+ -DFOB indicated that a receptor may be involved in this mechanism

  9. Synthesis, chemical and biological studies on new Fe(3+)-glycosilated beta-diketo complexes for the treatment of iron deficiency.

    Science.gov (United States)

    Arezzini, Beatrice; Ferrali, Marco; Ferrari, Erika; Frassineti, Chiara; Lazzari, Sandra; Marverti, Gaetano; Spagnolo, Ferdinando; Saladini, Monica

    2008-11-01

    A simple synthetic pathway to obtain glycosilated beta-diketo derivatives is proposed. These compounds show a good iron(III) affinity therefore we may suggest the use of their Fe(3+)-complexes as oral iron supplements in the treatment of anaemia. The glycosilated compounds (6-GlcH, 6-GlcOH and 6-GlcOCH(3)) are characterized by means of spectroscopic (UV, (1)H and (13)C NMR) and potentiometric techniques; they have a good water solubility, are kinetically stable in physiological condition (t(1/2)>100h) and show a low cytotoxicity also in high concentrations (IC(50)>400 microM). They are able to bind Fe(3+) ion in acid condition (pH approximately 2) forming complex species thermodynamically more stable than those of other ligands commonly used in the treatment of iron deficiency. The iron complexes show also a good kinetic stability both in acidic and physiological pH and have a good lypophilicity (logP>-0.7) that suggests an efficient gastrointestinal absorption in view of their possible use in oral therapy. In addition they demonstrate a poor affinity for competitive biological metal ion such as Ca(2+), and in particular 6-GlcOCH(3) is able to inhibit lipid peroxidation.

  10. Consuming Iron Biofortified Beans Increases Iron Status in Rwandan Women after 128 Days in a Randomized Controlled Feeding Trial.

    Science.gov (United States)

    Haas, Jere D; Luna, Sarah V; Lung'aho, Mercy G; Wenger, Michael J; Murray-Kolb, Laura E; Beebe, Stephen; Gahutu, Jean-Bosco; Egli, Ines M

    2016-08-01

    Food-based strategies to reduce nutritional iron deficiency have not been universally successful. Biofortification has the potential to become a sustainable, inexpensive, and effective solution. This randomized controlled trial was conducted to determine the efficacy of iron-biofortified beans (Fe-Beans) to improve iron status in Rwandan women. A total of 195 women (aged 18-27 y) with serum ferritin Beans, with 86 mg Fe/kg, or standard unfortified beans (Control-Beans), with 50 mg Fe/kg, 2 times/d for 128 d in Huye, Rwanda. Iron status was assessed by hemoglobin, serum ferritin, soluble transferrin receptor (sTfR), and body iron (BI); inflammation was assessed by serum C-reactive protein (CRP) and serum α1-acid glycoprotein (AGP). Anthropometric measurements were performed at baseline and at end line. Random weekly serial sampling was used to collect blood during the middle 8 wk of the feeding trial. Mixed-effects regression analysis with repeated measurements was used to evaluate the effect of Fe-Beans compared with Control-Beans on iron biomarkers throughout the course of the study. At baseline, 86% of subjects were iron-deficient (serum ferritin beans/d. The Fe-Beans group consumed 14.5 ± 1.6 mg Fe/d from biofortified beans, whereas the Control-Beans group consumed 8.6 ± 0.8 mg Fe/d from standard beans (P Beans group had significantly greater increases in hemoglobin (3.8 g/L), log serum ferritin (0.1 log μg/L), and BI (0.5 mg/kg) than did controls after 128 d. For every 1 g Fe consumed from beans over the 128 study days, there was a significant 4.2-g/L increase in hemoglobin (P beans significantly improved iron status in Rwandan women. This trial was registered at clinicaltrials.gov as NCT01594359. © 2016 American Society for Nutrition.

  11. Controllable synthesis, magnetic and biocompatible properties of Fe3O4 and α-Fe2O3 nanocrystals

    International Nuclear Information System (INIS)

    Zhou, Xi; Shi, Yanfeng; Ren, Lei; Bao, Shixiong; Han, Yu; Wu, Shichao; Zhang, Honggang; Zhong, Lubin; Zhang, Qiqing

    2012-01-01

    Iron oxide nanocrystals (NCs) with a series of well-controlled morphologies (octahedron, rod, wire, cube and plate) and compositions (Fe 3 O 4 and α-Fe 2 O 3 ) were synthesized via a facile hydrothermal process. The morphological and compositional control of various iron oxide NCs was based on the regulations of precursor thermolysis kinetics and surfactants. The obtained samples were characterized by XRD, SEM, TEM, SQUID and cytotoxicity test. These as-prepared iron oxide NCs showed excellent magnetic properties and good biocompatibility, paving the way for their high-efficiency bio-separation and bio-detection applications. - Graphical Abstract: Schematic illustration for the formation of iron oxide NCs (Fe 3 O 4 and α-Fe 2 O 3 ) with different controlled morphologies and compositions. Highlights: ► Iron oxide NCs with a series of well-controlled morphologies (octahedron, rod, wire, cube, and plate) and compositions (Fe 3 O 4 and α-Fe 2 O 3 ) were synthesized via a facile hydrothermal method. ► The mechanism of the morphological and compositional control process is directly related to precursor thermolysis kinetics and surfactants. ► These iron oxide NCs exhibited excellent magnetic response and good biocompatibility, which should have great applications in the cell separation and biodetection.

  12. Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (As{sup III}) uptake: The evolution of the Fe-phases under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Y., E-mail: yiannisgeorgiou@hotmail.com [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Mouzourakis, E., E-mail: emouzou@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bourlinos, A.B., E-mail: bourlino@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Zboril, R., E-mail: radek.zboril@upol.cz [Regional Centre of Advanced Technologies and Materials, Faculty of Science, Department of Physical Chemistry and Experimental Physics, Palacky University in Olomouc, 77146 (Czech Republic); Karakassides, M.A., E-mail: mkarakas@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Douvalis, A.P., E-mail: adouval@uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Bakas, Th., E-mail: tbakas@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece); Deligiannakis, Y., E-mail: ideligia@cc.uoi.gr [Physics Department, University of Ioannina, Ioannina 45110 (Greece)

    2016-07-15

    Highlights: • Novel hybrid based on carbon nitride and iron nanoparticles (gC{sub 3}N{sub 4}-rFe). • gC{sub 3}N{sub 4}-rFe superior As{sup III} sorbent(76.5 mg g{sup −1}). • Surface complexation modeling of As{sup III} adsorption. • Dual mode EPR,monitoring of Fe{sup 2+} and Fe{sup 3+} evolution. - Abstract: A novel hybrid material (gC{sub 3}N{sub 4}-rFe) consisting of amine-rich graphitic carbon nitride (gC{sub 3}N{sub 4}), decorated with reduced iron nanoparticles (rFe) is presented. XRD and TEM show that gC{sub 3}N{sub 4}-rFe bears aggregation-free Fe-nanoparticles (10 nm) uniformly dispersed over the gC{sub 3}N{sub 4} surface. In contrast, non-supported iron nanoparticles are strongly aggregated, with non-uniform size distribution (20–100 nm). {sup 57}Fe-Mössbauer spectroscopy, dual-mode electron paramagnetic resonance (EPR) and magnetization measurements, allow a detailed mapping of the evolution of the Fe-phases after exposure to ambient O{sub 2}. The as-prepared gC{sub 3}N{sub 4}-rFe bears Fe{sup 2+} and Fe° phases, however only after long exposure to ambient O{sub 2}, a Fe-oxide layer is formed around the Fe° core. In this [Fe°/Fe-oxide] core-shell configuration, the gC{sub 3}N{sub 4}-rFe hybrid shows enhanced As{sup III} uptake capacity of 76.5 mg g{sup −1}, i.e., ca 90% higher than the unmodified carbonaceous support, and 300% higher than the non-supported Fe-nanoparticles. gC{sub 3}N{sub 4}-rFe is a superior As{sup III} sorbent i.e., compared to its single counterparts or vs. graphite/graphite oxide or activated carbon analogues (11–36 mg g{sup −1}). The present results demonstrate that the gC{sub 3}N{sub 4} matrix is not simply a net that holds the particles, but rather an active component that determines particle formation dynamics and ultimately their redox profile, size and surface dispersion homogeneity.

  13. Electrical resistivity surface for FeO-Fe2O3-P2O5 glasses

    Science.gov (United States)

    Vaughan, J. G.; Kinser, D. L.

    1975-01-01

    The dc electrical properties and microstructure of x(FeO-Fe2O3)-(100-x)P2O5 glasses were investigated up to a maximum of x = 75 mol %. Results indicate that, in general, the minimum resistivity of the glass does not occur at equal Fe(2+) and Fe(3+) concentrations, although for the special case where x = 55 mol % the minimum does occur at Fe(2+)/Fe total = 0.5, as reported by other investigators. Evidence presented shows that the position of the minimum resistivity is a function of total iron content. The minimum shifts to glasses richer in Fe(2+) at higher total iron concentrations.

  14. Distinguishing iron-reducing from sulfate-reducing conditions

    Science.gov (United States)

    Chapelle, F.H.; Bradley, P.M.; Thomas, M.A.; McMahon, P.B.

    2009-01-01

    Ground water systems dominated by iron- or sulfate-reducing conditions may be distinguished by observing concentrations of dissolved iron (Fe2+) and sulfide (sum of H2S, HS-, and S= species and denoted here as "H2S"). This approach is based on the observation that concentrations of Fe2+ and H2S in ground water systems tend to be inversely related according to a hyperbolic function. That is, when Fe2+ concentrations are high, H2S concentrations tend to be low and vice versa. This relation partly reflects the rapid reaction kinetics of Fe2+ with H2S to produce relatively insoluble ferrous sulfides (FeS). This relation also reflects competition for organic substrates between the iron- and the sulfate-reducing microorganisms that catalyze the production of Fe2+ and H 2S. These solubility and microbial constraints operate in tandem, resulting in the observed hyperbolic relation between Fe2+ and H 2S concentrations. Concentrations of redox indicators, including dissolved hydrogen (H2) measured in a shallow aquifer in Hanahan, South Carolina, suggest that if the Fe2+/H2S mass ratio (units of mg/L) exceeded 10, the screened interval being tapped was consistently iron reducing (H2 ???0.2 to 0.8 nM). Conversely, if the Fe 2+/H2S ratio was less than 0.30, consistent sulfate-reducing (H2 ???1 to 5 nM) conditions were observed over time. Concomitantly high Fe2+ and H2S concentrations were associated with H2 concentrations that varied between 0.2 and 5.0 nM over time, suggesting mixing of water from adjacent iron- and sulfate-reducing zones or concomitant iron and sulfate reduction under nonelectron donor-limited conditions. These observations suggest that Fe2+/H2S mass ratios may provide useful information concerning the occurrence and distribution of iron and sulfate reduction in ground water systems. ?? 2009 National Ground Water Association.

  15. Magnetic Mineralogy of Troilite-Inclusions and their Fe-Ni Host Alloys in IAB Iron Meteorites

    Science.gov (United States)

    Kontny, A. M.; Kramar, U.; Luecke, W.

    2011-12-01

    Iron-nickel meteorites often contain isolated, mostly rounded troilite nodules enclosed in a bulk of Fe-Ni alloy. As sulfur has a low solubility in metal, it is excluded from the crystallization of metal during cooling. Therefore troilite nodules are interpreted to be trapped droplets of residual sulfur-enriched melts. Microscopic examinations of the interface (mm-range) between troilite inclusions and Fe-Ni alloy yield clear mineralogical differences compared to the troilite inclusion. Such rims around troilite nodules seem to occur exclusively in Fe-Ni meteorites with slow cooling rates, and therefore might provide interesting clues on segregation, fractional crystallization and reequilibration processes between the Fe-Ni alloy and the sulfide phases. These interfaces however are also highly sensitive to terrestrial weathering. We present microscopic observations in combination with temperature-dependent magnetic susceptibility (k-T curves) in order to identify the magnetic mineralogy of the Morasko (Poland) and Coahuila (Mexico) meteorites, which both geochemically belong to the non-magmatic IAB or IIICD group. In the k-T curves both, rim and troilite nodule are characterized by Curie temperatures (TC) that can be related to magnetite, daubreelite (FeCr2O4), Fe-hydroxide and sometimes cohenite. Therefore the interface seems to be geochemically more similar to the troilite nodule than the Fe-Ni alloy. Optical microscopy in combination with the ferrofluid method revealed complex microstructures of intergrown magnetic (TC = 780-785 °C) and non-magnetic phases in the Fe-Ni alloy, which differ in their Ni-concentration. Towards the rim of the troilite nodule the concentration of magnetic cohenite ((Fe,Ni)3C) and especially schreibersite ((Fe,Ni)3P), which are both intergrown with the metal, increases. Cohenite is easily identified microscopically by a very characteristic stripe-like magnetic domain structure and it shows a TC at about 200 °C. The carbon-rich, dark

  16. Reactivity of Fe3(CO)12 with Alkynes R-C≡-C-R':Syntheses and Crystal Structures of Substituted Cyclic Ketones and Carbonyl Iron Complexes

    Institute of Scientific and Technical Information of China (English)

    SUO Quan-Ling; WU Le; SU Qian; ZHU Ning; GAO Yuan-Yuan; HONG Hai-Long; XIE Rui-Jun; HAN Li-Min

    2017-01-01

    The reactivity of carbonyl iron cluster with alkynes has been studied by the thermal reaction of Fe3(CO)12 with R-C≡C-R'(R =Fc (Ferrocenyl);R'=Ph (Phenyl),Fc,H).The hexacarbonyldiiron cluster with ferracyclopentadiene ring (μ2,η4-C4Ph4)Fe2(CO)6 (1) and one tetraphenyl substituted cyclopentadienone (Ph4C4CO) (2) were simultaneously obtained by the reaction of Fe3(CO)12 with alkyne (Ph-C≡C-Ph).Only one ferrole cluster (μ2,η4-C4Fc2H2)Fe2(CO)6 (3) was separated by using Fc-C≡C-H as alkyne.One tri-carbonyl iron complex (η4-C4Fc4CO)Fe(CO)3 (4) and an unexpected new cyclic ketone compound 2,2,4,5-tetraferrocenylcyclopenta-4-en-l,3-di-one [Fc4C3(CO)2] (5) were obtained by using Fc-C≡C-Fc as alkyne.A new complex (η4-2,4-diphenyl-3,5-diferrocenylcyclopenta-2,4-dien-l-one)-tricarbonyl iron (η4-C4Ph2Fc2CO)Fe(CO)3 (6)was synthesized by the reaction of Fe3(CO)12 with Fc-C≡C-Ph.The structures of compounds 1~6 were determined by X-ray single-crystal diffraction and spectroscopic characterization.The crystal structures of two new compounds 5 and 6 were analyzed.Our experimental results reveal the structural models of the reaction products are affected by the kinds of substituents from alkynes R-C≡C-R'.

  17. Iron Carbides in Fischer–Tropsch Synthesis: Theoretical and Experimental Understanding in Epsilon-Iron Carbide Phase Assignment

    International Nuclear Information System (INIS)

    Liu, Xing-Wu; Cao, Zhi; Zhao, Shu; Gao, Rui

    2017-01-01

    As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2 C and ε’-Fe 2.2 C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe x C, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectra for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2 C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2 C has six sets of chemically distinct Fe atoms.

  18. Phytic Acid-to-Iron Molar Ratio Rather than Polyphenol Concentration Determines Iron Bioavailability in Whole-Cowpea Meal among Young Women

    NARCIS (Netherlands)

    Abizari, A.R.; Moretti, D.; Zimmerman, M.B.; Armar-Klemesu, M.; Brouwer, I.D.

    2012-01-01

    Limited data exist on iron absorption from NaFeEDTA and FeSO(4) in legume-based flours. The current study compared iron absorption from NaFeEDTA and FeSO(4) as fortificants within and between red and white varieties of cowpea with different concentrations of polyphenols (PP) but similar phytic acid

  19. Iron-57 and iridium-193 Moessbauer spectroscopic studies of supported iron-iridium catalysts

    International Nuclear Information System (INIS)

    Berry, F.J.; Jobson, S.

    1988-01-01

    57 Fe and 193 Ir Moessbauer spectroscopy shows that silica- and alumina-supported iron-iridium catalysts formed by calcination in air contain mixtures of small particle iron(III) oxide and iridium(IV) oxide. The iridium dioxide in both supported catalysts is reduced in hydrogen to metallic iridium. The α-Fe 2 O 3 in the silica supported materials is predominantly reduced in hydrogen to an iron-iridium alloy whilst in the alumina-supported catalyst the iron is stabilised by treatment in hydrogen as iron(II). Treatment of a hydrogen-reduced silica-supported iron catalyst in hydrogen and carbon monoxide is accompanied by the formation of iron carbides. Carbide formation is not observed when the iron-iridium catalysts are treated in similar atmospheres. The results from the bimetallic catalysts are discussed in terms of the hydrogenation of associatively adsorbed carbon monoxide and the selectivity of supported iron-iridium catalysts to methanol formation. (orig.)

  20. Synthesis, structure and properties of layered iron-oxychalcogenides Nd2Fe2Se2−xSxO3

    International Nuclear Information System (INIS)

    Liu, Y.; Zhang, S.B.; Tan, S.G.; Yuan, B.; Kan, X.C.; Zu, L.; Sun, Y.P.

    2015-01-01

    A new series of sulfur-substituted iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 (0≤x≤0.4) was synthesized by solid state reaction method, and investigated by structure, transport, magnetic and specific heat measurements. The compounds crystallize in the layered tetragonal structure with I4/mmm space group, and show semiconducting behavior. The large discrepancy between the activation energies for conductivity, E ρ (152–202 meV), and thermopower, E S (15.6–39.8 meV), indicates the polaronic transport mechanism of the carrier. The parent compound Nd 2 Fe 2 Se 2 O 3 exhibits a frustrated antiferromagnetic (AFM) ground state, and the S-substitution induces an enhanced ferromagnetic (FM) component and possible increased degree of frustration. - Graphical abstract: The crystal structure of Nd 2 Nd 2 Fe 2 Se 2−x S x O 3 is built up by stacking fluorite-like Nd 2 O 2 layers and anti-CuO 2 -type Fe 2 O(Se/S) 2 layers with Fe 2+ cations coordinated by two in-plane O 2- and four Se 2- above and below the square Fe 2 O plane. - Highlights: • We have synthesized a new series of layered iron-oxychalcogenides Nd 2 Fe 2 Se 2−x S x O 3 . • They crystallize in layered tetragonal structure and show semiconducting behavior. • The transport analysis indicates the polaronic transport mechanism of the carrier. • The parent compound shows a frustrated antiferromagnetic (AFM) ground state. • The S-substitution induces an enhanced ferromagnetic (FM) component

  1. Performance of Iron Plaque of Wetland Plants for Regulating Iron, Manganese, and Phosphorus from Agricultural Drainage Water

    Directory of Open Access Journals (Sweden)

    Xueying Jia

    2018-01-01

    Full Text Available Agricultural drainage water continues to impact watersheds and their receiving water bodies. One approach to mitigate this problem is to use surrounding natural wetlands. Our objectives were to determine the effect of iron (Fe-rich groundwater on phosphorus (P removal and nutrient absorption by the utilization of the iron plaque on the root surface of Glyceria spiculosa (Fr. Schmidt. Rosh. The experiment was comprised of two main factors with three regimes: Fe2+ (0, 1, 20, 100, 500 mg·L−1 and P (0.01, 0.1, 0.5 mg·L−1. The deposition and structure of iron plaque was examined through a scanning electron microscope and energy-dispersive X-ray analyzer. Iron could, however, also impose toxic effects on the biota. We therefore provide the scanning electron microscopy (SEM on iron plaques, showing the essential elements were iron (Fe, oxygen (O, aluminum (Al, manganese (Mn, P, and sulphur (S. Results showed that (1 Iron plaque increased with increasing Fe2+ supply, and P-deficiency promoted its formation; (2 Depending on the amount of iron plaque on roots, nutrient uptake was enhanced at low levels, but at higher levels, it inhibited element accumulation and translocation; (3 The absorption of manganese was particularly affected by iron plague, which also enhanced phosphorus uptake until the external iron concentration exceeded 100 mg·L−1. Therefore, the presence of iron plaque on the root surface would increase the uptake of P, which depends on the concentration of iron-rich groundwater.

  2. Modeling Equilibrium Fe Isotope Fractionation in Fe-Organic Complexes: Implications for the use of Fe Isotopes as a Biomarker and Trends Based on the Properties of Bound Ligands

    Science.gov (United States)

    Domagal-Goldman, S.; Kubicki, J. D.

    2006-05-01

    Fe Isotopes have been proposed as a useful tracer of biological and geochemical processes. Key to understanding the effects these various processes have on Fe isotopes is accurate modeling of the reactions responsible for the isotope fractionations. In this study, we examined the theoretical basis for the claims that Fe isotopes can be used as a biomarker. This was done by using molecular orbital/density functional theory (MO/DFT) calculations to predict the equilibrium fractionation of Fe isotopes due to changes in the redox state and the bonding environment of Fe. Specifically, we predicted vibrational frequencies for iron desferrioxamine (Fe-DFOB), iron triscatechol (Fe(cat)3), iron trisoxalate (Fe(ox)3), and hexaaquo iron (Fe(H2O)6) for complexes containing both ferrous (Fe2+) and ferric (Fe3+) iron. Using these vibrational frequencies, we then predicted fractionation factors between these six complexes. The predicted fractionation factors resulting from changes in the redox state of Fe fell in the range 2.5- 3.5‰. The fractionation factors resulting from changes in the bonding environment of Fe ranged from 0.2 to 1.4‰. These results indicate that changes in the bonding strength of Fe ligands are less important to Fe isotope fractionation processes than are changes to the redox state of Fe. The implications for use of Fe as a tracer of biological processes is clear: abiological redox changes must be ruled out in a sample before Fe isotopes are considered as a potential biomarker. Furthermore, the use of Fe isotopes to measure the redox state of the Earths surface environment through time is supported by this work, since changes in the redox state of Fe appear to be the more important driver of isotopic fractionations. In addition to the large differences between redox-driven fractionations and ligand-driven fractionations, we will also show general trends in the demand for heavy Fe isotopes as a function of properties of the bound ligand. This will help the

  3. Distribution and forms of iron in the vertisols of Serbia

    Directory of Open Access Journals (Sweden)

    DRAGIŠA S. MILOŠEV

    2011-05-01

    Full Text Available Soil of arable land and meadows from the Ap horizon, taken from ten different localities, were investigated for different forms of Fe, including total (HF, pseudo-total (HNO3, 0.1 M HCl extractable and DTPA (diethylenetriaminepentaacetic acid-extractable. A sequential fractional procedure was employed to separate the Fe into fractions: water soluble and exchangeable Fe (I, Fe specifically adsorbed with carbonates (II, reducibly releasable Fe in oxides (III, Fe bonded with organic matter (IV and Fe structurally bonded in silicates (residual fraction (V. The soil pH, cation exchange capacity, and size fractions (clay and silt had a strongest influence on the distribution of the different forms of Fe. The different extraction methods showed similar patterns of the Fe content in arable and meadow soils. However, the DTPA iron did not correspond with the total iron, which confirms the widespread incidence of iron-deficiency in vertisols is independent of the total iron in soils. The amount of exchangeable (fraction I and specifically adsorbed (II iron showed no dependence on its content in the other fractions, indicating low mobility of iron in vertisols. The strong positive correlation (r = 0.812 and 0.956 between the content of iron in HNO3 and HF and its contents in the primary and secondary minerals (fraction – V indicate a low content of plant accessible iron in the vertisol. The sequential fractional procedure was confirmed as suitable for accessing the content and availability of iron in the vertisols of Serbia.

  4. Method of simultaneous continuous determination of transfer rates of iron and chromium into solution during Fe-Cr alloys dissolution

    International Nuclear Information System (INIS)

    Shirinov, T.I.; Florianovich, G.M.; Skuratnik, Ya.B.

    1978-01-01

    Radiometry method of simultaneous continuous registration of transfer rates of iron and chromium into solution from Fe-Cr alloys with various composition has been developed. Using gamma-spectrometer components of Fe-Cr alloys can be determined with high sensitivity in separate samples according to Fe 59 and Cr 51 radioactive labels, obtained by neutron activation. The above method is applied to estimate Fe and Cr transfer rates into H 2 SO 4 solution at the temperature of 50 deg from Fe - 28% Cr alloy during its active dissolution. It is established, that beginning with some seconds of alloy and solution contact, its components transfer into the solution in the same composition, as in the alloy. The method enables to determine Fe with the accuracy of up to 5% and Cr with that of up to 10%

  5. Accumulation and distribution of iron, cadmium, lead and nickel in cucumber plants grown in hydroponics containing two different chelated iron supplies.

    Science.gov (United States)

    Csog, Árpád; Mihucz, Victor G; Tatár, Eniko; Fodor, Ferenc; Virág, István; Majdik, Cornelia; Záray, Gyula

    2011-07-01

    Cucumber plants grown in hydroponics containing 10 μM Cd(II), Ni(II) and Pb(II), and iron supplied as Fe(III) EDTA or Fe(III) citrate in identical concentrations, were investigated by total-reflection X-ray fluorescence spectrometry with special emphasis on the determination of iron accumulation and distribution within the different plant compartments (root, stem, cotyledon and leaves). The extent of Cd, Ni and Pb accumulation and distribution were also determined. Generally, iron and heavy-metal contaminant accumulation was higher when Fe(III) citrate was used. The accumulation of nickel and lead was higher by about 20% and 100%, respectively, if the iron supply was Fe(III) citrate. The accumulation of Cd was similar. In the case of Fe(III) citrate, the total amounts of Fe taken up were similar in the control and heavy-metal-treated plants (27-31 μmol/plant). Further, the amounts of iron transported from the root towards the shoot of the control, lead- and nickel-contaminated plants were independent of the iron(III) form. Although Fe mobility could be characterized as being low, its distribution within the shoot was not significantly affected by the heavy metals investigated. Copyright © 2011 Elsevier GmbH. All rights reserved.

  6. Iron: a versatile element to produce materials for environmental applications

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Ana Paula C.; Araujo, Maria H.; Oliveira, Luiz C.A.; Moura, Flavia C.C.; Lago, Rochel M., E-mail: rochel@ufmg.br, E-mail: anapct@ufmg.br [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil); Tristao, Juliana C. [Universidade Federal de Vicosa, Florestal, MG (Brazil); Ardisson, Jose D. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Lab. de Fisica Aplicada; Amorim, Camila C., E-mail: juliana@ufv.br [Departamento de Engenharia Sanitaria e Ambiental, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-09-15

    Iron is a versatile element forming several phases with different oxidation states and {sup s}tructures, such as Fe{sup 0}, FeO, Fe{sub 3}O{sub 4}, {gamma}-Fe{sub 2}O{sub 3}, {alpha}-Fe{sub 2}O{sub 3} and FeOOH. All these phases have unique physicochemical properties which can be used for different applications. In this work, it is described the use of different iron compounds, synthetic and also from natural and waste sources, in environmental and technological applications. Two main research areas are described. The first one is related to strategies to increase the reactivity of Fe phases, mainly by the formation of Fe{sup 0}/iron oxide composites and by the introduction of new metals in the iron oxide structure to promote new surface reactions. The second area is the use of the magnetic properties of some iron phases to produce versatile magnetic materials with focus in adsorption, catalysis and emulsions. (author)

  7. Extending hydraulic lifetime of iron walls

    International Nuclear Information System (INIS)

    Mackenzie, P.D.; Sivavec, T.M.; Horney, D.P.

    1997-01-01

    Iron walls for control of groundwaters contaminated with chlorinated solvents and reducible metals are becoming much more widely used and field studies of this technology have proven successful to date. However, there is still much uncertainty in predicting long-term performance. This work focuses on two factors affecting the lifetime of the iron media: plugging at the treatment zone entrance and precipitation in the bulk iron media. Plugging at the system entrance is due principally to dissolved oxygen in the incoming water and is an issue in aerobic aquifers or in ex-situ canister tests. In an in-situ treatment system, plugging would result in a dramatic reduction in flow through the iron zone. Designs to minimize plugging in field applications include use of larger iron particles and admixing sand of comparable size with the iron particles. Mineral precipitation in the bulk iron media can lead to porosity losses in the media, again reducing flow through the treatment zone. Decreases in reactivity of the iron media may also occur. The nature of the mineral precipitation and the factors that affect extent of mineral precipitation are examined by a variety of tools, including tracer tests, aqueous inorganic profiles, and surface analysis techniques. At short treatment times, measured porosity losses are due mainly to entrapment of a film of H 2 gas on the iron surfaces and also to Fe(OH) 2 precipitation. Over longer treatment times precipitation of Fe(OH) 2 and FeCO 3 in low carbonate waters and of Fe(OH) 2 , FeCO 3 and CaCO 3 in higher carbonate waters will begin to dominate porosity losses. Preliminary results of an on-going study to control pH in an iron zone by admixing iron sulfide with iron show no difference in extent of carbonate precipitation versus a 100% iron system, suggesting that these systems are supersaturated with respect to carbonate precipitation

  8. Autoionization resonances in the photoabsorption spectra of Fe{sup n+} iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Konovalov, A. V., E-mail: alkonvit@yandex.ru; Ipatov, A. N., E-mail: andrei-ipatov@mail.ru [Peter the Great St. Petersburg State Polytechnic University (Russian Federation)

    2016-11-15

    The photoabsorption cross sections of a neutral iron atom, as well as positive Fe{sup +} and Fe{sup 2+} ions, are calculated in the relativistic random-phase approximation with exchange in the energy range 20–160 eV. The wavefunctions of the ground and excited states are calculated in the single-configuration Hartree–Fock–Dirac approximation. The resultant photoabsorption spectra are compared with experimental data and with the results of calculations based on the nonrelativistic spin-polarized version of the random-phase approximation with exchange. Series of autoionization resonance peaks, as well as giant autoionization resonance lines corresponding to discrete transitions 3p → 3d, are clearly observed in the photoabsorption cross sections. The conformity of the positions of calculated peaks of giant autoionization resonances with experimental data is substantially improved by taking into account additionally the correlation electron–electron interaction based on the model of the dynamic polarization potential.

  9. Stable Fe isotope fractionation during anaerobic microbial dissimilatory iron reduction at low pH

    Science.gov (United States)

    Chanda, P.; Amenabar, M. J.; Boyd, E. S.; Beard, B. L.; Johnson, C.

    2017-12-01

    In low-temperature anaerobic environments microbial dissimilatory iron reduction (DIR) plays an important role in Fe cycling. At neutral pH, sorption of aqueous Fe(II) (Fe(II)aq, produced by DIR) catalyzes isotopic exchange between Fe(II) and solid Fe(III), producing 56Fe/54Fe fractionations on the order of 3‰ during DIR[1,2,3]. At low pH, however, the absence of sorbed Fe(II) produces only limited abiologic isotopic exchange[4]. Here we investigated the scope of isotopic exchange between Fe(II)aq and ferric (hydr)oxides (ferrihydrite and goethite) and the associated stable Fe isotope fractionation during DIR by Acidianus strain DS80 at pH 3.0 and 80°C[5]. Over 19 days, 13% reduction of both minerals via microbial DIR was observed. The δ56Fe values of the fluid varied from -2.31 to -1.63‰ (ferrihydrite) and -0.45 to 0.02‰ (goethite). Partial leaching of bulk solid from each reactor with dilute HCl showed no sorption of Fe(II), and the surface layers of the solids were composed of Fe(III) with high δ56Fe values (ferrihydrite: 0.20 to 0.48‰ and goethite: 1.20 to 1.30‰). These results contrast with the lack of Fe isotope exchange in abiologic low-pH systems and indicate a key role for biology in catalyzing Fe isotope exchange between Fe(II)aq and Fe(III) solids, despite the absence of sorbed Fe(II). The estimated fractionation factor (ΔFeFe(III) -Fe(II)aq 2.6‰) from leaching of ferrihydrite is similar to the abiologic equilibrium fractionation factor ( 3.0‰)[3]. The fractionation factor (ΔFeFe(III) -Fe(II)aq 2.0‰) for goethite is higher than the abiologic fractionation factor ( 1.05‰)[2], but is consistent with the previously proposed "distorted surface layer" of goethite produced during the exchange with Fe(II)aq at neutral pH[1]. This study indicates that significant variations in Fe isotope compositions may be produced in low-pH environments where biological cycling of Fe occurs, in contrast to the expected lack of isotopic fractionation in

  10. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films

    International Nuclear Information System (INIS)

    Zhai, Guangmei; Xie, Rongwei; Wang, Heng; Zhang, Jitao; Yang, Yongzhen; Wang, Hua; Li, Xuemin; Liu, Xuguang; Xu, Bingshe

    2016-01-01

    In this work, the optical and electronic properties of iron pyrite FeS 2 nanocrystals and solid thin films with various capping ligands were systematically investigated by UV–Vis–NIR absorption spectroscopy, cyclic voltammetry and current density–voltage characteristic measurements. The iron pyrite nanocrystals with various ligands have an indirect band gap of around 1.05 eV and broad absorption spanning into the near-infrared region, exhibiting favorable optical properties for their photovoltaic applications. The electron affinities and ionization potentials of FeS 2 nanocrystals determined through cyclic voltammetry measurements show strong ligand dependence. An energy level shift of up to 190 meV was obtained among the pyrite nanocrystals capped with the ligands employed in this work. The iron pyrite nanocrystal films capped with iodide and 1,2-ethanedithiol exhibit the largest band edge energy shift and conductivity, respectively. Our results not only provide several useful optical and electronic parameters of pyrite nanocrystals for their further use in optoelectronic devices as active layers and/or infrared optical absorption materials, but also highlight the relationship between their surface chemistry and electronic energies. - Highlights: • The energy levels of FeS 2 nanocrystals with various ligands were determined via electrochemical measurements. • The energy levels of FeS 2 nanocrystals showed strong ligand-dependence. • An energy level shift of up to 190 meV was obtained for the pyrite nanocrystals studied in the work. • The conductivities of FeS 2 nanocrystals with different ligands were obtained by current density–voltage measurements.

  11. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): Iron biogeochemistry

    NARCIS (Netherlands)

    Gerringa, L.J.A.; Alderkamp, A.C.; Laan, P.; Thuróczy, C.E.; de Baar, H.J.W.; Mills, M.M.; van Dijken, G.L.; van Haren, H.; Arrigo, K.R.

    2012-01-01

    Dissolved iron (DFe) and total dissolvable Fe (TDFe) were measured in January-February 2009 in Pine Island Bay, as well as in the Pine Island and Amundsen polynyas (Amundsen Sea, Southern Ocean). Iron (Fe) has been shown to be a limiting nutrient for phytoplankton growth, even in the productive

  12. Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean) : Iron biogeochemistry

    NARCIS (Netherlands)

    Gerringa, Loes J. A.; Alderkamp, Anne-Carlijn; Laan, Patrick; Thuroczy, Charles-Edouard; De Baar, Hein J. W.; Mills, Matthew M.; van Dijken, Gert L.; van Haren, Hans; Arrigo, Kevin R.

    2012-01-01

    Dissolved iron (DFe) and total dissolvable Fe (TDFe) were measured in January-February 2009 in Pine Island Bay, as well as in the Pine Island and Amundsen polynyas (Amundsen Sea, Southern Ocean). Iron (Fe) has been shown to be a limiting nutrient for phytoplankton growth, even in the productive

  13. Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture.

    Science.gov (United States)

    Radzki, W; Gutierrez Mañero, F J; Algar, E; Lucas García, J A; García-Villaraco, A; Ramos Solano, B

    2013-09-01

    Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.

  14. Monocyte transferrin-iron uptake in hereditary hemochromatosis

    International Nuclear Information System (INIS)

    Sizemore, D.J.; Bassett, M.L.

    1984-01-01

    Transferrin-iron uptake by peripheral blood monocytes was studied in vitro to test the hypothesis that the relative paucity of mononuclear phagocyte iron loading in hereditary hemochromatosis results from a defect in uptake of iron from transferrin. Monocytes from nine control subjects and 17 patients with hemochromatosis were cultured in the presence of 59Fe-labelled human transferrin. There was no difference in 59Fe uptake between monocytes from control subjects and monocytes from patients with hemochromatosis who had been treated by phlebotomy and who had normal body iron stores. However, 59Fe uptake by monocytes from iron-loaded patients with hemochromatosis was significantly reduced compared with either control subjects or treated hemochromatosis patients. It is likely that this was a secondary effect of iron loading since iron uptake by monocytes from treated hemochromatosis patients was normal. Assuming that monocytes in culture reflect mononuclear phagocyte iron metabolism in vivo, this study suggests that the relative paucity of mononuclear phagocyte iron loading in hemochromatosis is not related to an abnormality in transferrin-iron uptake by these cells

  15. Iron porphyrins doped sol-gel glasses: a chemometric study

    International Nuclear Information System (INIS)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R.

    2000-01-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na) 4 Cl and Fe TCPP(Na) 4 Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established . The variables (Solvent volume, fractional factorial design in two levels, 2 5-1 type, generating 16 total experiments for each Fe P studied. (author)

  16. Transmission electron microscope study of fusion-environment radiation damage in iron and iron-chromium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Horton, L.L.S.

    1982-07-01

    A transmission electron microscopy study of radiation damage microstructures in iron and iron-chromium alloys has been performed. This study consisted of both qualitative and quantitative characterization of the dislocation and cavity microstructures, including determination of vacancy/interstitial character and Burgers vectors for dislocation loops and analysis of the cavity morphology. The effects of irradiation temperature, fluence, helium implantation, and chromium content were investigated. Neutron irradiation (iron specimens, 1 dpa, 455 to 1000 K) and triple-beam ion irradiation (Fe-10% Cr specimens, 10 dpa, 725 to 950 K; Fe-10% Cr specimens, 850 K, 0.3 to 100 dpa; and Fe, Fe-5% Cr, Fe-10% Cr specimens, 850 K, 10 dpa) were employed. In the triple-beam ion irradiation procedure, simultaneous bombardment with 4 MeV Fe/sup + +/ ions and energetic He/sup +/ and D/sub 2//sup +/ ions was used to simulate the fusion environment (10 at. ppM He/dpa and 41 at. ppM D/dpa). In addition, single-beam 4 MeV Fe/sup + +/ ion irradiations of Fe-10% Cr both with and without pre-injection of helium and deuterium were performed.

  17. Formation of poorly crystalline iron monosulfides: Surface redox reactions on high purity iron, spectroelectrochemical studies

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, E.B. [Geological Institute, University of Copenhagen, Oster Voldgade 10, Copenhagen K, DK-1350 (Denmark); Odziemkowski, M.S. [Department of Earth Sciences, University of Waterloo, Waterloo, Ont., N2L 3G1 (Canada)]. E-mail: marek@sciborg.uwaterloo.ca; Gillham, R.W. [Department of Earth Sciences, University of Waterloo, Waterloo, Ont., N2L 3G1 (Canada)

    2006-11-15

    In the use of iron for reductive dehalogenation of chlorinated solvents in ground water, due to presence of sulfate-reducing bacteria the formation of hydrogen sulfide is expected. To simulate those processes the interface between 99.99% pure iron and 0.1 M NaHCO{sub 3} deoxygenated solution with 3.1 x 10{sup -5}-7.8 x 10{sup -3} M Na{sub 2}S . 9H{sub 2}O added was studied. The surface processes were characterised by the in situ normal Raman spectroscopy (NRS) and ex situ techniques; X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray (EDX). The open circuit potential (OCP) was monitored during in situ NRS measurements, and potentiodynamic anodic polarization measurements were carried out to reveal electrochemical behaviour of iron electrode. Open circuit potential-time transients indicated that the native oxide is unstable in deaerated bicarbonate solution and undergoes reductive dissolution (i.e. autoreduction) leaving the metallic Fe covered by Fe(OH){sub 2}, adsorbed OH{sup -}, and patches of 'magnetite-like' oxide. Immediately upon injection of the Na{sub 2}S-solution the iron interface undergoes complex redox surface processes and a poorly crystalline FeS film forms. Potentiodynamic anodic polarization measurements indicated a mechanical breakdown of the FeS film. The origin and initiation of this breakdown process is not clear but is probably a result of internal stress developed during film growth. Based on surface studies supported by electrochemical measurements, a conceptual model for the complex redox processes occurring at the iron interface is proposed. This model describes the structural development of a poorly crystalline FeS, which breaks down, allowing further dissolution of the Fe and formation of FeOOH at the interface. Simultaneously and despite the existence of thick layer of FeS the entrance of hydrogen was evident as the typical hydrogen cracks in bulk of the

  18. ABSORBABLE IRON IN BREAD: PROCEDURES OF ITS AUGMENTATION

    Directory of Open Access Journals (Sweden)

    M SABZEVARY

    2001-12-01

    Full Text Available Introduction: As many as 35 percent of the world population suffer from some degree of iron deficiency anemia. According to recent reports published by WHO and ICN (International Congress of Nutrition 20-40 percent of women are suffering from iron deficiency. Iron deficiency anemia is caused by lack of intake of the necessary doses of Fe+2 called Heme. The recommended intake dose is 10-17 mg Fe + 2/day. In Iran, bread is the main source of daily iron intake. However, the iron content of bread is Fe+3 which is not absorbable. The objectives of this study is to determine the levels of absorbable iron (Fe + 2 in two common types of Iranian bread and identify the means of raising these to an adequate levels.
    Methods: Random sampling method together with the normal distribution curve was employed in testing 120 samples of flour and bread. Quantification was carried out on each sample in duplicate using spectrophotometer at 510 mu, micrometer wave length. The effect of three organic acids (lactic ascorbic and acetic acid converting of Fe+3 to Fe + 2 was investigated. Two groups of bread was tested. One group was baked in tratitional oven (Noon-e-Tanoori and the second group through the common Iranian hot rotating iron plate baking machine (Noon-e-Machini.
    Results: Our results showed that the amount of absorbable Fe+2 in breads baked in rotatory oven (Noon-e-Tanoori is 0.8 ± 0.32 mg and the amount of unabsorbable Fe+3 in dried bread is 2.34 ± 0.25 mg/100 gm while the amount of absorbable Fe + 2 baked in traditional ovens is only 0.3±0.11 mg versus of unabsorbable Fe  + 3 1.9±0.13 mg/100 gm of dried bread. Meanwhile it was found that lactic and ascorbic acids can convert Fe+3 to Fe+2. Therefore, addition of one of these two acids to bread can catalyze conversion of unabsorbable Fe+3 to absorbable Fe + 2.
    Discussion: On the average an Iranian consumes 370 gm of

  19. Insights into the Structure and Metabolic Function of Microbes That Shape Pelagic Iron-Rich Aggregates ( Iron Snow )

    Energy Technology Data Exchange (ETDEWEB)

    Lu, S [Friedrich Schiller University Jena, Jena Germany; Chourey, Karuna [ORNL; REICHE, M [Friedrich Schiller University Jena, Jena Germany; Nietzsche, S [Friedrich Schiller University Jena, Jena Germany; Shah, Manesh B [ORNL; Hettich, Robert {Bob} L [ORNL; Kusel, K [Friedrich Schiller University Jena, Jena Germany

    2013-01-01

    Metaproteomics combined with total nucleic acid-based methods aided in deciphering the roles of microorganisms in the formation and transformation of iron-rich macroscopic aggregates (iron snow) formed in the redoxcline of an acidic lignite mine lake. Iron snow had high total bacterial 16S rRNA gene copies, with 2 x 109 copies g (dry wt)-1 in the acidic (pH 3.5) central lake basin and 4 x 1010 copies g (dry wt)-1 in the less acidic (pH 5.5) northern lake basin. Active microbial communities in the central basin were dominated by Alphaproteobacteria (36.6%) and Actinobacteria (21.4%), and by Betaproteobacteria (36.2%) in the northern basin. Microbial Fe-cycling appeared to be the dominant metabolism in the schwertmannite-rich iron snow, because cloning and qPCR assigned up to 61% of active bacteria as Fe-cycling bacteria (FeB). Metaproteomics revealed 70 unique proteins from central basin iron snow and 283 unique proteins from 43 genera from northern basin. Protein identification provided a glimpse into in situ processes, such as primary production, motility, metabolism of acidophilic FeB, and survival strategies of neutrophilic FeB. Expression of carboxysome shell proteins and RubisCO indicated active CO2 fixation by Fe(II) oxidizers. Flagellar proteins from heterotrophs indicated their activity to reach and attach surfaces. Gas vesicle proteins related to CO2-fixing Chlorobium suggested that microbes could influence iron snow sinking. We suggest that iron snow formed by autotrophs in the redoxcline acts as a microbial parachute, since it is colonized by motile heterotrophs during sinking which start to dissolve schwertmannite.

  20. Versatile and biomass synthesis of iron-based nanoparticles supported on carbon matrix with high iron content and tunable reactivity

    International Nuclear Information System (INIS)

    Zhang Dongmao; Shi, Sheldon Q.; Pittman, Charles U.; Jiang Dongping; Che Wen; Gai Zheng; Howe, Jane Y.; More, Karren L.; Antonyraj, Arockiasamy

    2012-01-01

    Iron-based nanoparticles supported on carbon (FeNPs-C) have enormous potential for environmental applications. Reported is a biomass-based method for FeNP-C synthesis that involves pyrolysis of bleached wood fiber pre-mixed with Fe 3 O 4 nanoparticles. This method allows synthesis of iron-based nanoparticles with tunable chemical reactivity by changing the pyrolysis temperature. The FeNP-C synthesized at a pyrolysis temperature of 500 °C (FeNP-C-500) reacts violently (pyrophoric) when exposed to air, while FeNP-C prepared at 800 °C (FeNP-C-800) remains stable in ambient condition for at least 3 months. The FeNPs in FeNP-C-800 are mostly below 50 nm in diameter and are surrounded by carbon. The immediate carbon layer (within 5–15 nm radius) on the FeNPs is graphitized. Proof-of-concept environmental applications of FeNPs-C-800 were demonstrated by Rhodamine 6G and arsenate (V) removal from water. This biomass-based method provides an effective way for iron-based nanoparticle fabrication and biomass utilization.

  1. Structural transformations of heat-treated bacterial iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideki, E-mail: hideki-h@cc.okayama-u.ac.jp [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan); Fujii, Tatsuo [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198 (Japan); Nakanishi, Koji [Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji 611-0011 (Japan); Yogi, Chihiro [SR Center, Ritsumeikan University, Kusatsu, Shiga 525-8577 (Japan); Peterlik, Herwig [Faculty of Physics, University of Vienna, A-1090 Vienna (Austria); Nakanishi, Makoto [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); Takada, Jun [Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530 (Japan); JST, CREST, Okayama 700-8530 (Japan)

    2015-04-01

    A bacterial siliceous iron oxide microtubule (diameter: ca. 1 μm, 15Fe{sub 2}O{sub 3}·8SiO{sub 2}·P{sub 2}O{sub 5}·30H{sub 2}O) produced by Leptothrix ochracea was heat treated in air and its structural transformation was investigated in detail by microscopy, diffractometry, and spectroscopy. Although the heat-treated bacterial iron oxide retained its original microtubular structure, its nanoscopic, middle-range, and local structures changed drastically. Upon heat treatment, nanosized pores were formed and their size changed depending on temperature. The Fe–O–Si linkages were gradually cleaved with increasing temperature, causing the progressive separation of Fe and Si ions into iron oxide and amorphous silicate phases, respectively. Concomitantly, global connectivity and local structure of FeO{sub 6} octahedra in the iron oxide nanoparticles systematically changed depending on temperature. These comprehensive investigations clearly revealed various structural changes of the bacterial iron oxide which is an important guideline for the future exploration of novel bio-inspired materials. - Highlights: • Structural transformation of a bacterial iron oxide microtubule was investigated. • Si–O–Fe was cleaved with increasing temperature to form α-Fe{sub 2}O{sub 3}/silicate composite. • Crystallization to 2Fh started at 500 °C to give α-Fe{sub 2}O{sub 3} >700 °C. • FeO{sub 6} octahedra were highly distorted <500 °C. • Formation of face-sharing FeO{sub 6} was promoted >500 °C, releasing the local strain of FeO{sub 6}.

  2. Structure and property correlations in FeS

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, S.J. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Department of Physics , University of Notre Dame , Notre Dame , IN 46556 (United States); Kidder, M.K. [Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Parker, D.S. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Cruz, C. dela [Quantum Condensed Matter Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); McGuire, M.A.; Chance, W.M.; Li, Li [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Debeer-Schmitt, L. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Ermentrout, J. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Littrell, K.C. [Chemical and Engineering Materials Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States); Eskildsen, M.R. [Department of Physics , University of Notre Dame , Notre Dame , IN 46556 (United States); Sefat, A.S. [Materials Science & Technology Division, Oak Ridge National Laboratory , Oak Ridge , TN 37831 (United States)

    2017-03-15

    Highlights: • Similar to other iron chalcogenides of FeSe and FeTe, the structure and composition of FeS is highly correlated to its superconductivity. For iron-sulfide (FeS), we report the correlation between the structural details with its magnetic and superconducting properties. • While our FeS with a = 3.6772(7) Å is a filamentary superconductor coexisting with an antiferromagnetic phase, previously reported samples with a > 3.68 Å are bulk superconductors with no magnetism, and those with a ≈ 3.674 Å show magnetic properties. The a lattice of ≥3.68 Å seem to be crucial for causing bulk superconductivity in the tetragonal phase, which is relevant to iron stoichiometry and sulfur height from the iron plane. • For Fe{sub 0.93}S, we report evidence for the coexistence of antiferromagnetism at T{sub N} = 116 and filamentary superconductivity below T{sub c} = 4 K. While temperature neutron diffraction data reveals antiferromagnetic commensurate ordering with wave vector k{sub m} = (0.25,0.25,0), our magnetization results shows shielding and diamagnetism. - Abstract: For iron-sulfide (FeS), we investigate the correlation between the structural details, including its dimensionality and composition, with its magnetic and superconducting properties. We compare, theoretically and experimentally, the two-dimensional (2D) layered tetragonal (“t-FeS”) phase with the 3D hexagonal ('h-FeS') phase. X-ray diffraction reveals iron-deficient chemical compositions of t-Fe{sub 0.93(1)}S and h-Fe{sub 0.84(1)}S that show no low-temperature structural transitions. First-principles calculations reveal a high sensitivity of the 2D structure to the electronic and magnetic properties, predicting marginal antiferromagnetic instability for our compound (sulfur height of z{sub S} = 0.252) with an ordering energy of about 11 meV/Fe, while the 3D phase is magnetically stable. Experimentally, h-Fe{sub 0.84}S orders magnetically well above room

  3. Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition.

    Science.gov (United States)

    Smith, A J B; Beukes, N J; Gutzmer, J; Czaja, A D; Johnson, C M; Nhleko, N

    2017-11-01

    We document the discovery of the first granular iron formation (GIF) of Archaean age and present textural and geochemical results that suggest these formed through microbial iron oxidation. The GIF occurs in the Nconga Formation of the ca. 3.0-2.8 Ga Pongola Supergroup in South Africa and Swaziland. It is interbedded with oxide and silicate facies micritic iron formation (MIF). There is a strong textural control on iron mineralization in the GIF not observed in the associated MIF. The GIF is marked by oncoids with chert cores surrounded by magnetite and calcite rims. These rims show laminated domal textures, similar in appearance to microstromatolites. The GIF is enriched in silica and depleted in Fe relative to the interbedded MIF. Very low Al and trace element contents in the GIF indicate that chemically precipitated chert was reworked above wave base into granules in an environment devoid of siliciclastic input. Microbially mediated iron precipitation resulted in the formation of irregular, domal rims around the chert granules. During storm surges, oncoids were transported and deposited in deeper water environments. Textural features, along with positive δ 56 Fe values in magnetite, suggest that iron precipitation occurred through incomplete oxidation of hydrothermal Fe 2+ by iron-oxidizing bacteria. The initial Fe 3+ -oxyhydroxide precipitates were then post-depositionally transformed to magnetite. Comparison of the Fe isotope compositions of the oncoidal GIF with those reported for the interbedded deeper water iron formation (IF) illustrates that the Fe 2+ pathways and sources for these units were distinct. It is suggested that the deeper water IF was deposited from the evolved margin of a buoyant Fe 2+ aq -rich hydrothermal plume distal to its source. In contrast, oncolitic magnetite rims of chert granules were sourced from ambient Fe 2+ aq -depleted shallow ocean water beyond the plume. © 2017 John Wiley & Sons Ltd.

  4. Thermally stimulated iron oxide transformations and magnetic behaviour of cerium dioxide/iron oxide reactive sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Luňáček, J., E-mail: jiri.lunacek@vsb.cz [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Životský, O. [Department of Physics, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Department 606, VŠB – Technical University of Ostrava, 17, listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Jirásková, Y. [CEITEC IPM, Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Buršík, J. [Institute of Physics of Materials, Academy of Sciences of the Czech Republic, Žižkova 22, 616 62 Brno (Czech Republic); Janoš, P. [Faculty of the Environment, University of Jan Evangelista Purkyně, Králova Výšina 7, 400 96 Ústí nad Labem (Czech Republic)

    2016-10-15

    The present paper is devoted to detailed study of the magnetically separable sorbents based on a cerium dioxide/iron oxide composite annealed at temperatures T{sub a} = 773 K, 873 K, and 973 K. The X-ray diffraction and high resolution transmission electron microscopy are used to determine the phase composition and microstructure morphology. Mössbauer spectroscopy at room (300 K) and low (5 K) temperatures has contributed to more exact identification of iron oxides and their transformations Fe{sub 3}O{sub 4} → γ-Fe{sub 2}O{sub 3} (ε-Fe{sub 2}O{sub 3}) → α-Fe{sub 2}O{sub 3} in dependence on calcination temperature. Different iron oxide phase compositions and grain size distributions influence the magnetic characteristics determined from the room- and low-temperature hysteresis loop measurements. The results are supported by zero-field-cooled and field-cooled magnetization measurements allowing a quantitative estimation of the grain size distribution and its effect on the iron oxide transformations. - Highlights: •Magnetically separable sorbents based on a CeO{sub 2}/Fe{sub 2}O{sub 3} composite were investigated. •Microstructure of sorbents was determined by XRD, TEM and Mössbauer spectroscopy. •Magnetic properties were studied by hysteresis loops at room- and low-temperatures. •Phase transitions of iron oxides with increasing annealing temperature are observed.

  5. The nanosphere iron mineral(s) in Mars soil

    Science.gov (United States)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these 'Mars-soil analogs' were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxyl mineral such as 'green rust', or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable meaghemite (gamma-Fe203) by mild heat treatment and then to nanophase hematite (aplha-Fe203) by extensive heat treatment. Their chemical reactivity offers a plausible mechanism for the somewhat puzzling observations of the Viking biology experiments. Their unique chemical reactivities are attributed to the combined catalytic effects of the iron oxide/oxyhydroxide and silicate phase surfaces. The mode of formation of these (nanophase) iron oxides on Mars is still unknown.

  6. Effect of Initial Iron Content in a Zinc Bath on the Dissolution Rate of Iron During a Hot Dip Galvanizing Process

    Science.gov (United States)

    Lee, Sang Myung; Lee, Suk Kyu; Paik, Doo-Jin; Park, Joo Hyun

    2017-04-01

    The mechanism of iron dissolution and the effect of initial Fe content in a Zn bath on the dissolution rate of iron were investigated using a finger rotating method (FRM). When the initial iron content, [Fe]°, in the zinc bath was less than the solubility limit, the iron content in the zinc bath showed a rapid increase, whereas a moderate increase was observed when [Fe]° was close to the solubility limit. Based on Eisenberg's kinetic model, the mass transfer coefficient of iron in the present experimental condition was calculated to be k M = 1.2 × 10-5 m/s, which was similar to the results derived by Giorgi et al. under industrial practice conditions. A dissolution of iron occurred even when the initial iron content in the zinc bath was greater than the solubility limit, which was explained by the interfacial thermodynamics in conjunction with the morphology of the surface coating layer. By analyzing the diffraction patterns using TEM, the outermost dendritic-structured coating layer was confirmed as FeZn13 ( ζ). In order to satisfy the local equilibrium based on the Gibbs-Thomson equation, iron in the dendrite-structured phase spontaneously dissolved into the zinc bath, resulting in the enrichment of iron in front of the dendrite tip. Through the diffusion boundary layer in front of the dendritic-structured layer, dissolved Fe atoms diffused out and reacted with Zn and small amounts of Al, resulting in the formation of dross particles such as FeZn10Al x ( δ). It was experimentally confirmed that the smaller the difference between the initial iron content in the zinc bath and the iron solubility limit at a given temperature, the lower the number of formed dross particles.

  7. Discovery of the double Doppler-shifted emission-line systems in the X-ray spectrum of SS 433

    Science.gov (United States)

    Kotani, Taro; Kawai, Nobuyuki; Aoki, Takashi; Doty, John; Matsuoka, Masaru; Mitsuda, Kazuhisa; Nagase, Fumiaki; Ricker, George; White, Nick E.

    1994-01-01

    We have used the CCD X-ray spectrometers on ASCA and resolved the X-ray emission line from the jet of SS 433 both into Doppler-shifted components with two distinct velocities, and into emission from different ionization states of iron, i.e., Fe XXV and Fe XXVI. This is the first direct detection of the two Doppler shifted beams in the X-ray spectra of SS 433 and allows the radial velocity of the jet along the line of sight to be determined with an accuracy comparable to the optical spectroscopy. We also found pairs of emission lines from other atomic species, such as ionized silicon and sulfur, with the Doppler shifts consistent with each other. This confirms the origin of the X-ray emission in the high temperature plasma in the jets.

  8. Study on adsorption of 99Tc on Fe, Fe2O3 and Fe3O4

    International Nuclear Information System (INIS)

    Liu Dejun; Fan Xianhua; Zhang Yingjie; Yao Jun; Zhou Duo; Wang Yong

    2004-01-01

    The absorption behavior of 99 Tc on Fe, Fe 2 O 3 and Fe 3 O 4 powders from aqueous 99 TcO 4 - solutions is studied by batch method in atmospheric conditions. After the adsorption reaches equilibrium, the valence state of 99 Tc in the aqueous solution is examined by extraction with tetraphenylarsonium chloride. The experimental results show that the adsorption ratio of 99 Tc on iron powders decreases with the increase of pH (in the range of 5-8) and of CO 3 2- concentration (in the range of 1 x 10 -8 -1 x 10 -2 mol/L). In opposite, the two factors have no significant influence on the absorption of 99 Tc on both Fe 2 O 3 and Fe 3 O 4 powders. The adsorption isotherms of 99 TcO 4 - on Fe, Fe 2 O 3 and Fe 3 O 4 powders can be well described by the Freundlich's equation. The major valence state of 99 Tc is deduced to be Tc(IV) when iron powders is used as the absorbent. In the case of Fe 2 O 3 or Fe 3 O 4 as an absorbent, the 99 Tc remains as the TcO 4 - form

  9. Redox properties of iron in porous ferrisilicates

    International Nuclear Information System (INIS)

    Lazar, K.; Pal-Borbely, G.; Szegedi, A.; Fejes, P.; Martinez, F.

    2006-01-01

    Insertion of iron into porous ferrisilicates may result in changes of the original structures. For example, this insertion enables the structure to take part in reversible Fe 2+ ↔ Fe 3+ redox process. This process may play an important role e.g. in catalytic procedures. The structure of the host may provide different locations for the iron. In microporous systems (analogous with zeolites, with characteristic pore sizes of 0.5 nm) the framework vs. extra-framework distinction is obvious, since these structures are strictly crystalline (in three dimensions). In contrast, mesoporous structures of 3 - 5 nm characteristic pore dimension, exhibit crystallinity uppermost in two dimensions, since their pore walls are partly amorphous. The appearance of the Fe 2+ ↔ Fe 3+ redox behaviour of iron in micro- and mesoporous systems, its correlation with coordination changes strongly depend on the structure. In general, crystallinity stabilizes the Fe 3+ state, and the Fe 3+ ↔ Fe 2+ change may be correlated with change of the position occupied in the structure. For demonstration, some examples are to be presented by comparing the behaviour of iron located in in microporous (MFI, FER, MCM-22) and mesoporous (MCM-41 and SBA-15) structures. (authors)

  10. Iron Oxide Deposition from Aqueous Solution and Iron Formations on Mars

    Science.gov (United States)

    Catling, David; Moore, Jeff

    2000-01-01

    Iron formations are ancient, laminated chemical sediments containing at least 15 wt% Fe. We discuss possible mechanisms for their formation in aqueous environments on early Mars. Such iron oxide deposits may be detectable today.

  11. Utilizing Waste Thermocol Sheets and Rusted Iron Wires to Fabricate Carbon-Fe3O4 Nanocomposite Based Supercapacitors: Turning Wastes into Value-Added Materials.

    Science.gov (United States)

    Vadiyar, Madagonda M; Liu, Xudong; Ye, Zhibin

    2018-05-14

    In the present work, we demonstrate the synthesis of porous activated carbon (specific surface area, 1,883 m2 g-1), Fe3O4 nanoparticles, and carbon-Fe3O4 nanocomposites using local waste thermocol sheets and rusted iron wires. The resulting carbon, Fe3O4 nanoparticles, and carbon-Fe3O4 composites are used as electrode materials for supercapacitor application. In particular, C-Fe3O4 composite electrodes exhibit a high specific capacitance of 1,375 F g-1 at 1 A g-1 and longer cyclic stability with 98 % of capacitance retention over 10,000 cycles. Subsequently, asymmetric supercapacitor, i. e., C-Fe3O4//Ni(OH)2/CNT device exhibits a high energy density of 91.1 Wh kg-1 and a remarkable cyclic stability, showing 98% of capacitance retention over 10,000 cycles. Thus, this work has important implications not only for the fabrication of low-cost electrodes for high-performance supercapacitors but also for the recycling of waste thermocol sheets and rust iron wires for value-added reuse. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Iron porphyrins doped sol-gel glasses: a chemometric study

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Herica C.; Vidoto, Ednalva A.; Nascimento, Otaciro R. [Soap Paulo Univ (USP), Sao Carlos (Brazil). Inst. de Fisica; Biazzotto, Juliana C.; Serra, Osvaldo A.; Iamamoto, Yassuko [Sao Paulo Univ. (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras; Ciuffi, Katia J.; Mello, Cesar A.; Oliveira, Daniela C. de [Universidade de Franca , SP (Brazil)

    2000-07-01

    This paper describes the optimized conditions for preparation of iron porphyrin-template doped silica Fe (PDS-template) obtained by the sol-gel process. The following porphyrins (Fe P) were used: Fe TFPP Cl, Fe TDCSPP(Na){sub 4}Cl and Fe TCPP(Na){sub 4} Cl. Pyridine or 4-phenylimidazole was used as template. The variables that present significant influence on iron porphyrin loading on xerogel were identified and the values that maximize the iron porphyrin loading on xerogel were established. The variables Solvent volume, fractional factorial design in two levels, 2{sup 5-1} type, generating 16 total experiments for each Fe P studied. (author)

  13. Iron Polymerization and Arsenic Removal During In-Situ Iron Electrocoagulation in Synthetic Bangladeshi Groundwater

    Science.gov (United States)

    van Genuchten, C. M.; Pena, J.; Addy, S.; Gadgil, A.

    2010-12-01

    Millions of people worldwide are exposed to arsenic-contamination in groundwater drinking supplies. The majority of affected people live in rural Bangladesh. Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy that is based on the generation of iron precipitates with a high affinity for arsenic through the electrochemical dissolution of a sacrificial iron anode. Many studies of iron hydrolysis in the presence of co-occurring ions in groundwater such as PO43-, SiO44-, and AsO43- suggest that these ions influence the polymerization and formation of iron oxide phases. However, the combined impact of these ions on precipitates generated by EC is not well understood. X-ray absorption spectroscopy (XAS) was used to examine EC precipitates generated in synthetic Bangladeshi groundwater (SBGW). The iron oxide structure and arsenic binding geometry were investigated as a function of EC operating conditions. As and Fe k-edge spectra were similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm2) used during sample generation. This result suggests that current density does not play a large role in the formation EC precipitates in SBGW. Shell-by-shell fits of Fe K-edge data revealed the presence of a single Fe-Fe interatomic distance at approximately 3.06 Å. The absence of longer ranged Fe-Fe correlations suggests that EC precipitates consist of nano-scale chains (polymers) of FeO6 octahedra sharing equatorial edges. Shell-by-shell fits of As K-edge spectra show arsenic bound in primarily bidentate, binuclear corner sharing complexes. In this coordination geometry, arsenic prevents the formation of FeO6 corner-sharing linkages, which are necessary for 3-dimensional crystal growth. The individual and combined effects of other anions, such as PO43- and SiO44- present in SBGW are currently being investigated to determine the role of these ions in stunting crystal growth. The results provided by this

  14. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Bojesen, A.; Timmermann, L.

    2002-01-01

    We present studies of the structural and magnetic properties of core-shell iron-iron oxide nanoparticles. alpha-Fe nanoparticles were fabricated by sputtering and subsequently covered with a protective nanocrystalline oxide shell consisting of either maghaemite (gamma-Fe2O3) or partially oxidized...... magnetite (Fe3O4). We observed that the nanoparticles were stable against further oxidation, and Mossbauer spectroscopy at high applied magnetic fields and low temperatures revealed a stable form of partly oxidized magnetite. The nanocrystalline structure of the oxide shell results in strong canting...... of the spin structure in the oxide shell, which thereby modifies the magnetic properties of the core-shell nanoparticles....

  15. Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA) isomers by strategy I and II plants.

    Science.gov (United States)

    Cerdán, Mar; Alcañiz, Sara; Juárez, Margarita; Jordá, Juana D; Bermúdez, Dolores

    2006-02-22

    One of the most efficient fertilizers to correct Fe deficiency in calcareous soils and waters with high bicarbonate content is based on ferric ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid [Fe(o,o-EDDHA)]. Fe(o,o-EDDHA) forms two groups of geometric isomers known as meso and D,L-racemic. To determine the Fe uptake from meso and D,L-racemic Fe(o,o-EDDHA), four iron-efficient plants, two plants representative of strategy I (tomato and pepper) and two plants representative of strategy II (wheat and oats), were grown in hydroponic culture. Results indicated that strategy II plants took up iron from both Fe(o,o-EDDHA) isomers equally. However, strategy I plants took mainly the iron associated with the meso form (the lowest stability isomer).

  16. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS{sub 2} nanocrystals and solid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Guangmei, E-mail: zhaiguangmei@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Jiangsu Key Laboratory for Solar Cell Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164 (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Xie, Rongwei; Wang, Heng; Zhang, Jitao; Yang, Yongzhen; Wang, Hua; Li, Xuemin [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China); Xu, Bingshe [Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education of the People' s Republic of China, Research Centre of Advanced Materials Science and Technology of Taiyuan University of Technology, Taiyuan, Shanxi 030024 (China)

    2016-07-25

    In this work, the optical and electronic properties of iron pyrite FeS{sub 2} nanocrystals and solid thin films with various capping ligands were systematically investigated by UV–Vis–NIR absorption spectroscopy, cyclic voltammetry and current density–voltage characteristic measurements. The iron pyrite nanocrystals with various ligands have an indirect band gap of around 1.05 eV and broad absorption spanning into the near-infrared region, exhibiting favorable optical properties for their photovoltaic applications. The electron affinities and ionization potentials of FeS{sub 2} nanocrystals determined through cyclic voltammetry measurements show strong ligand dependence. An energy level shift of up to 190 meV was obtained among the pyrite nanocrystals capped with the ligands employed in this work. The iron pyrite nanocrystal films capped with iodide and 1,2-ethanedithiol exhibit the largest band edge energy shift and conductivity, respectively. Our results not only provide several useful optical and electronic parameters of pyrite nanocrystals for their further use in optoelectronic devices as active layers and/or infrared optical absorption materials, but also highlight the relationship between their surface chemistry and electronic energies. - Highlights: • The energy levels of FeS{sub 2} nanocrystals with various ligands were determined via electrochemical measurements. • The energy levels of FeS{sub 2} nanocrystals showed strong ligand-dependence. • An energy level shift of up to 190 meV was obtained for the pyrite nanocrystals studied in the work. • The conductivities of FeS{sub 2} nanocrystals with different ligands were obtained by current density–voltage measurements.

  17. Altered sterol metabolism in budding yeast affects mitochondrial iron-sulfur (Fe-S) cluster synthesis.

    Science.gov (United States)

    Ward, Diane M; Chen, Opal S; Li, Liangtao; Kaplan, Jerry; Bhuiyan, Shah Alam; Natarajan, Selvamuthu K; Bard, Martin; Cox, James E

    2018-05-17

    Ergosterol synthesis is essential for cellular growth and viability of the budding yeast Saccharomyces cerevisiae, and intracellular sterol distribution and homeostasis are therefore highly regulated in this species. Erg25 is an iron-containing C4-methyl sterol oxidase that contributes to the conversion of 4,4-dimethylzymosterol to zymosterol, a precursor of ergosterol. The ERG29 gene encodes an endoplasmic reticulum (ER)-associated protein, and here we identified a role for Erg29 in the methyl sterol oxidase step of ergosterol synthesis. ERG29 deletion resulted in lethality in respiring cells, but respiration-incompetent (Rho- or Rho0) cells survived, suggesting that Erg29 loss leads to accumulation of oxidized sterol metabolites that affect cell viability. Down-regulation of ERG29 expression in Δerg29 cells indeed led to accumulation of methyl sterol metabolites, resulting in increased mitochondrial oxidants and a decreased ability of mitochondria to synthesize iron-sulfur (Fe-S) clusters due to reduced levels of Yfh1, the mammalian frataxin homolog, which is involved in mitochondrial Fe metabolism. Using a high-copy genomic library, we identified suppressor genes that permitted growth of Δerg29 cells on respiratory substrates, and these included genes encoding the mitochondrial proteins Yfh1, Mmt1, Mmt2, and Pet20, which reversed all phenotypes associated with loss of ERG29. Of note, loss of Erg25 also resulted in accumulation of methyl sterol metabolites and also increased mitochondrial oxidants and degradation of Yfh1. We propose that accumulation of toxic intermediates of the methyl sterol oxidase reaction increase mitochondrial oxidants, which affect Yfh1 protein stability. These results indicate an interaction between sterols generated by ER proteins and mitochondrial iron metabolism. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Wear and Corrosion Resistance of Fe Based Coatings by HVOF Sprayed on Gray Cast-Iron for Automotive Application

    Directory of Open Access Journals (Sweden)

    M.S. Priyan

    2014-12-01

    Full Text Available In this study, commercially available FeSiNiCr and FeBCr alloy powders were designed with suitable compositions, gas atomized and then coated on gray cast-iron substrate. The microstructures of the feed stock Fe based alloy powders and the coatings were investigated by means of optical microscopy (OM, X-Ray diffraction (XRD, Thermogravimetric analysis (TGA and Scanning Electron Microscopy (SEM. In the present study, both the coating materials experienced two-body wear mechanisms. The results showed that for loads of 0.05 N, 0.1 N and 0.2 N, the wear resistance of FeBCr coating was less than FeSiNiCr by 44 %, 40 % and 31 %, respectively. The results indicated that the coated substrates exhibited lower corrosion current densities and lower corrosion rates, when placed in 20 wt.% H2SO4 solutions. In addition, the use of optimal spraying parameters/conditions gave improvements to the corrosion resistance of the substrates that had been treated with the crystalline coating.

  19. Comparing soluble ferric pyrophosphate to common iron salts and chelates as sources of bioavailable iron in a Caco-2 cell culture model.

    Science.gov (United States)

    Zhu, Le; Glahn, Raymond P; Nelson, Deanna; Miller, Dennis D

    2009-06-10

    Iron bioavailability from supplements and fortificants varies depending upon the form of the iron and the presence or absence of iron absorption enhancers and inhibitors. Our objectives were to compare the effects of pH and selected enhancers and inhibitors and food matrices on the bioavailability of iron in soluble ferric pyrophosphate (SFP) to other iron fortificants using a Caco-2 cell culture model with or without the combination of in vitro digestion. Ferritin formation was the highest in cells treated with SFP compared to those treated with other iron compounds or chelates. Exposure to pH 2 followed by adjustment to pH 7 markedly decreased FeSO(4) bioavailability but had a smaller effect on bioavailabilities from SFP and sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA), suggesting that chelating agents minimize the effects of pH on iron bioavailability. Adding ascorbic acid (AA) and cysteine to SFP in a 20:1 molar ratio increased ferritin formation by 3- and 2-fold, respectively, whereas adding citrate had no significant effect on the bioavailability of SFP. Adding phytic acid (10:1) and tannic acid (1:1) to iron decreased iron bioavailability from SFP by 91 and 99%, respectively. The addition of zinc had a marked inhibitory effect on iron bioavailability. Calcium and magnesium also inhibited iron bioavailability but to a lesser extent. Incorporating SFP in rice greatly reduced iron bioavailability from SFP, but this effect can be partially reversed with the addition of AA. SFP and FeSO(4) were taken up similarly when added to nonfat dry milk. Our results suggest that dietary factors known to enhance and inhibit iron bioavailability from various iron sources affect iron bioavailability from SFP in similar directions. However, the magnitude of the effects of iron absorption inhibitors on SFP iron appears to be smaller than on iron salts, such as FeSO(4) and FeCl(3). This supports the hypothesis that SFP is a promising iron source for food fortification

  20. Silicon enhances leaf remobilization of iron in cucumber under limited iron conditions

    DEFF Research Database (Denmark)

    Pavlovic, Jelena; Samardzic, Jelena; Kostic, Ljiljana

    2016-01-01

    leaves and the subsequent retranslocation of Fe to young leaves of cucumber (Cucumis sativus) plants growing under Fe-limiting conditions was investigated. METHODS: Iron ((57)Fe or naturally occurring isotopes) was measured in leaves at different positions on plants hydroponically growing with or without...

  1. How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms

    Science.gov (United States)

    Stripp, Sven T.; Goldet, Gabrielle; Brandmayr, Caterina; Sanganas, Oliver; Vincent, Kylie A.; Haumann, Michael; Armstrong, Fraser A.; Happe, Thomas

    2009-01-01

    Green algae such as Chlamydomonas reinhardtii synthesize an [FeFe] hydrogenase that is highly active in hydrogen evolution. However, the extreme sensitivity of [FeFe] hydrogenases to oxygen presents a major challenge for exploiting these organisms to achieve sustainable photosynthetic hydrogen production. In this study, the mechanism of oxygen inactivation of the [FeFe] hydrogenase CrHydA1 from C. reinhardtii has been investigated. X-ray absorption spectroscopy shows that reaction with oxygen results in destruction of the [4Fe-4S] domain of the active site H-cluster while leaving the di-iron domain (2FeH) essentially intact. By protein film electrochemistry we were able to determine the order of events leading up to this destruction. Carbon monoxide, a competitive inhibitor of CrHydA1 which binds to an Fe atom of the 2FeH domain and is otherwise not known to attack FeS clusters in proteins, reacts nearly two orders of magnitude faster than oxygen and protects the enzyme against oxygen damage. These results therefore show that destruction of the [4Fe-4S] cluster is initiated by binding and reduction of oxygen at the di-iron domain—a key step that is blocked by carbon monoxide. The relatively slow attack by oxygen compared to carbon monoxide suggests that a very high level of discrimination can be achieved by subtle factors such as electronic effects (specific orbital overlap requirements) and steric constraints at the active site. PMID:19805068

  2. Iron Absorption from Two Milk Formulas Fortified with Iron Sulfate Stabilized with Maltodextrin and Citric Acid

    Directory of Open Access Journals (Sweden)

    Fernando Pizarro

    2015-10-01

    Full Text Available Background: Fortification of milk formulas with iron is a strategy widely used, but the absorption of non-heme iron is low. The purpose of this study was to measure the bioavailability of two iron fortified milk formulas designed to cover toddlers´ nutritional needs. These milks were fortified with iron sulfate stabilized with maltodextrin and citric acid. Methods: 15 women (33–47 years old participated in study. They received on different days, after an overnight fast, 200 mL of Formula A; 200 mL of Formula B; 30 mL of a solution of iron and ascorbic acid as reference dose and 200 mL of full fat cow’s milk fortified with iron as ferrous sulfate. Milk formulas and reference dose were labeled with radioisotopes 59Fe or 55Fe, and the absorption of iron measured by erythrocyte incorporation of radioactive Fe. Results: The geometric mean iron absorption corrected to 40% of the reference dose was 20.6% for Formula A and 20.7% for Formula B, versus 7.5% of iron fortified cow’s milk (p < 0.001. The post hoc Sheffé indeed differences between the milk formulas and the cow’s milk (p < 0.001. Conclusion: Formulas A and B contain highly bioavailable iron, which contributes to covering toddlers´ requirements of this micronutrient.

  3. Iron films deposited on porous alumina substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yasuhiro, E-mail: yyasu@rs.kagu.tus.ac.jp; Tanabe, Kenichi; Nishida, Naoki [Tokyo University of Science (Japan); Kobayashi, Yoshio [The University of Electro-Communications (Japan)

    2016-12-15

    Iron films were deposited on porous alumina substrates using an arc plasma gun. The pore sizes (120 – 250 nm) of the substrates were controlled by changing the temperature during the anodic oxidation of aluminum plates. Iron atoms penetrated into pores with diameters of less than 160 nm, and were stabilized by forming γ-Fe, whereas α-Fe was produced as a flat plane covering the pores. For porous alumina substrates with pore sizes larger than 200 nm, the deposited iron films contained many defects and the resulting α-Fe had smaller hyperfine magnetic fields. In addition, only a very small amount of γ-Fe was obtained. It was demonstrated that the composition and structure of an iron film can be affected by the surface morphology of the porous alumina substrate on which the film is grown.

  4. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Science.gov (United States)

    Saito, Tatsuya; Tsuruta, Hijiri; Watanabe, Asako; Ishimine, Tomoyuki; Ueno, Tomoyuki

    2018-04-01

    We developed Fe/FeSiAl soft magnetic powder cores (SMCs) for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (˜20 kHz). We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k) of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  5. Pure-iron/iron-based-alloy hybrid soft magnetic powder cores compacted at ultra-high pressure

    Directory of Open Access Journals (Sweden)

    Tatsuya Saito

    2018-04-01

    Full Text Available We developed Fe/FeSiAl soft magnetic powder cores (SMCs for realizing the miniaturization and high efficiency of an electromagnetic conversion coil in the high-frequency range (∼20 kHz. We found that Fe/FeSiAl SMCs can be formed with a higher density under higher compaction pressure than pure-iron SMCs. These SMCs delivered a saturation magnetic flux density of 1.7 T and iron loss (W1/20k of 158 kW/m3. The proposed SMCs exhibited similar excellent characteristics even in block shapes, which are closer to the product shapes.

  6. The role of sedimentology, oceanography, and alteration on the δ56Fe value of the Sokoman Iron Formation, Labrador Trough, Canada

    Science.gov (United States)

    Raye, Urmidola; Pufahl, Peir K.; Kyser, T. Kurtis; Ricard, Estelle; Hiatt, Eric E.

    2015-09-01

    The Sokoman Formation is a ca. 100-m-thick succession of interbedded iron formation and fine-grained siliciclastics deposited at 1.88 Ga. Accumulation occurred on a dynamic paleoshelf where oxygen stratification, coastal upwelling of hydrothermally derived Fe and Si, microbial processes, tide and storm currents, diagenesis, and low-grade prehnite-pumpellyite metamorphism controlled lithofacies character and produced complex associations of multigenerational chert, hematite, magnetite, greenalite, stilpnomelane and Fe carbonate. Hematite-rich facies were deposited along suboxic segments of the coastline where photosynthetic oxygen oases impinged on the seafloor. Hematitic, cross-stratified grainstones were formed by winnowing and reworking of freshly precipitated Fe-(oxyhydr)oxide and opal-A by waves and currents into subaqueous dunes. Magnetite-rich facies contain varying proportions of greenalite and stilpnomelane and record deposition in anoxic middle shelf environments beneath an oxygen chemocline. Minor negative Ce anomalies in hematitic facies, but prominent positive Ce and Eu anomalies and high LREE/HREE ratios in magnetite-rich facies imply the existence of a weakly oxygenated surface ocean above anoxic bottom waters. The Fe isotopic composition of 31 whole rock (-0.46 ⩽ δ56Fe ⩽ 0.47‰) and 21 magnetite samples (-0.29 ⩽ δ56Fe ⩽ 0.22‰) from suboxic and anoxic lithofacies was controlled primarily by the physical oceanography of the paleoshelf. Despite low-grade metamorphism recorded by the δ18O values of paragenetically related quartz and magnetite, the Sokoman Formation preserves a robust primary Fe isotopic signal. Coastal upwelling is interpreted to have affected the isotopic equilibria between Fe2+aq and Fe-(oxyhydr)oxide in open marine versus coastal environments, which controlled the Fe isotopic composition of lithofacies. Unlike previous work that focuses on microbial and abiotic fractionation processes with little regard for

  7. Glutathione, Glutaredoxins, and Iron.

    Science.gov (United States)

    Berndt, Carsten; Lillig, Christopher Horst

    2017-11-20

    Glutathione (GSH) is the most abundant cellular low-molecular-weight thiol in the majority of organisms in all kingdoms of life. Therefore, functions of GSH and disturbed regulation of its concentration are associated with numerous physiological and pathological situations. Recent Advances: The function of GSH as redox buffer or antioxidant is increasingly being questioned. New functions, especially functions connected to the cellular iron homeostasis, were elucidated. Via the formation of iron complexes, GSH is an important player in all aspects of iron metabolism: sensing and regulation of iron levels, iron trafficking, and biosynthesis of iron cofactors. The variety of GSH coordinated iron complexes and their functions with a special focus on FeS-glutaredoxins are summarized in this review. Interestingly, GSH analogues that function as major low-molecular-weight thiols in organisms lacking GSH resemble the functions in iron homeostasis. Since these iron-related functions are most likely also connected to thiol redox chemistry, it is difficult to distinguish between mechanisms related to either redox or iron metabolisms. The ability of GSH to coordinate iron in different complexes with or without proteins needs further investigation. The discovery of new Fe-GSH complexes and their physiological functions will significantly advance our understanding of cellular iron homeostasis. Antioxid. Redox Signal. 27, 1235-1251.

  8. New method for simultaneous determination of 55Fe and 59Fe in blood serum samples

    International Nuclear Information System (INIS)

    Saukkonen, H.; Uhlenius, R.

    1978-01-01

    Routine methods for the measurement of 55 Fe and 59 Fe activities in biological samples are frequently required in metabolic studies of iron. A new simple method for the simultaneous determination of 59 Fe and 55 Fe concentration in 5 cm 3 samples of blood is described and carefully evaluated. Before the measurement of the activity, organic matter was eliminated by HNO 3 -HClO 4 wet ashing and iron was electroplated onto a copper plate. The accuracy of results was studied by assessing samples, which contained known amounts of radioactivity and determining the counts per nanocurie in each case. The accuracy of the results of 59 Fe and 55 Fe determinations was found to be about 5%. The method has been routinely used to determine iron resorption in patients using the double isotope method. The determination proved to be satisfactory and not too laborious. When performing the yield determination there is a way of detecting and correcting mistakes or incompleteness in different stages of the measurement, thus leading to a high degree of reliability. (T.G.)

  9. Iron chemistry of Hawaiian rainforest soil solution: Biogeochemical implications of multiple Fe redox cycles

    Science.gov (United States)

    Thompson, A.; Chorover, J.; Chadwick, O.

    2003-12-01

    Iron (Fe)-oxides are important sorbents for nutrients, pollutants and natural organic matter (NOM). When flucutations in soil oxygen status exist, Fe can cycle through reduced and oxidized forms and thus greatly affect the aqueous conc. of nutrients and metals. We are examining the influence of oscillating oxic/anoxic conditions on Fe-oxide formation and biogeochemical processes (microbial community composition, and carbon, nutrient and trace metal availability). Our work makes use of a natural rainfall gradient ranging from 2.2 to 4.2 m mean annual precipitation (MAP) on the island of Maui, Hawaii, USA. All sites developed on a 400ky basaltic lava flow and comprise soils under similar vegetation. Solid phase Fe concentration and oxidation state vary systematically across this rainfall gradient with a sharp decrease in pedogenic Fe between 2.8 m and 3.5 m MAP that corresponds with an Eh of 330 mV (1-yr ave.). Fe isotopic composition and Fe-oxide associated rare earth elements (REE) also suggest a shift from ligand-promoted to redutive Fe dissolution with increasing rainfall. To examine the effects of multiple Fe oxidation/reduction cycles, we constructed a set of redox-stat reactors that maintain Eh values within a set range by small Eh-triggered additions of oxygen. Triplicate soil slurry reactors are subjected to redox (Eh) oscillations such that Fe is repeatedly cycled from oxidized to reduced forms. During our current experiment, we measure pH and Eh dynamics and monitor the distribution of Fe(II) and Fe(III), major ion and anion concentrations, a range of trace metals including the REE, and total organic carbon (TOC) in three Stokes-effective particle size fractions (DNA fingerprinting is used to track changes in the microbial community. Prior to implementing the rigorous sampling procedure above, we completed two preliminary reactor experiments focusing only on Fe distribution between aqueous, HCl, and oxalate extractions. These experiments illustrated (1) a

  10. Characterisation and application of the Fe(II)/Fe(III) redox reaction in an ionic liquid analogue

    International Nuclear Information System (INIS)

    Lloyd, David; Vainikka, Tuomas; Ronkainen, Markus; Kontturi, Kyösti

    2013-01-01

    Highlights: • The Fe(II)/Fe(III) reaction is shown to be facile using a wall-jet electrode and RDE. • Deposition/stripping of iron has equally slow kinetics as in aqueous systems. • An IL based all-iron RFB is reported for the first time, energy efficiency is 37%. • An Zn–Fe complex is shown to form. In an RFB this gives an energy efficiency of 78%. • Problems resulting from the use of redox probes and urea-based DES are demonstrated. -- Abstract: In this paper we report the properties of the Fe(II)/Fe(III) reaction in a deep eutectic solvent based on choline chloride and ethylene glycol. This reaction is shown to be facile using a wall-jet electrode and rotating disc electrode. The deposition and stripping of iron exhibits equally slow kinetics as in aqueous systems. Using these two reactions an all-iron redox flow battery based on ionic liquids is reported for the first time. An energy efficiency of 37% is attained at a current density of 0.5 mA cm −2 . A Zn(II)–Fe(II) complex is shown to form when zinc is oxidized by Fe(III). When this complex is applied in a redox flow battery energy efficiencies of 78% are achieved at a current density of 0.5 mA cm −2

  11. Exchange interactions and the state of iron atoms in Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ}

    Energy Technology Data Exchange (ETDEWEB)

    Chezhina, N.V., E-mail: chezhina@nc2490.spb.edu [St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 (Russian Federation); Korolev, D.A. [St. Petersburg State University, 7/9 Universitetskaya Nab., 199034 (Russian Federation); Zhuk, N.A. [Syktyvkar State University (Russian Federation); Lutoev, V.P.; Makeev, B.A. [Institute of Geology Komi Scientific Center of Ural branch of Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2017-03-15

    On the basis of the results of magnetic susceptibility and ESR studies of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions iron atoms in the solid solutions of cubic modification of bismuth niobate were found to exist as Fe(III) monomers and exchange bound Fe(III)-O-Fe(III) dimers with antiferro- and ferromagnetic type of superexchange. The exchange parameters and the distribution of monomers and dimers in the solid solutions were calculated as a function of paramagnetic atom content. - Graphical abstract: The study of the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions showed that the introduction of iron atoms into the structure of Bi{sub 3}NbO{sub 7} stabilizes the cubic structure of bismuth niobate making the phase transition tetragonal ↔ cubic structure irreversible. In the Bi{sub 3}Nb{sub 1−x}Fe{sub x}O{sub 7−δ} solid solutions we observe the formation of dimers with antiferro- and ferromagnetic exchange. Such clusters are partially retained even at the infinite dilution of the solid solution, which testifies for their rigidity. A sufficiently high parameter of ferromagnetic exchange in a dimer (+53 cm{sup −1}) seems to result from iron atoms being located in the vicinity of oxygen vacancy. - Highlights: • The reversible transition cubic – tetragonal modifications in Bi{sub 3}NbO{sub 7} becomes irreversible. • Only cubic modification of Bi{sub 3}Nb{sub 1-x}Fe{sub x}O{sub 7-δ} is stable due to clusters of Fe atoms. • These clusters are sufficiently strong and retained even at the infinite dilution. • The calculations of magnetic susceptibility give the distribution of the clusters and single atoms.

  12. Solid-state Water-mediated Transport Reduction of Nanostructured Iron Oxides

    International Nuclear Information System (INIS)

    Smirnov, Vladimir M.; Povarov, Vladimir G.; Voronkov, Gennadii P.; Semenov, Valentin G.; Murin, Igor' V.; Gittsovich, Viktor N.; Sinel'nikov, Boris M.

    2001-01-01

    The Fe 2+ /Fe 3+ ratio in two-dimensional iron oxide nanosructures (nanolayers with a thickness of 0.3-1.5 nm on silica surface) may be precisely controlled using the transport reduction (TR) technique. The species ≡-O-Fe(OH) 2 and (≡Si-O-) 2 -FeOH forming the surface monolayer are not reduced at 400-600 deg. C because of their covalent bonding to the silica surface, as demonstrated by Moessbauer spectroscopy. Iron oxide microparticles (microstructures) obtained by the impregnation technique, being chemically unbound to silica, are subjected to reduction at T ≥ 500 deg. C with formation of metallic iron in the form of α-Fe. Transport reduction of supported nanostructures (consisting of 1 or 4 monolayers) at T ≥ 600 deg. C produces bulk iron(II) silicate and metallic iron phases. The structural-chemical transformations occurring in transport reduction of supported iron oxide nanolayers are proved to be governed by specific phase processes in the nanostructures themselves

  13. Strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy

    International Nuclear Information System (INIS)

    Shi, Guodong; Chen, Xiaohua; Jiang, Han; Wang, Zidong; Tang, Hao; Fan, Yongquan

    2015-01-01

    A single crystal Cu–Fe alloy with finely dispersed precipitate Fe nanoparticles was fabricated in this study. The interface relationship of iron nanoparticle and copper matrix was analyzed with a high-resolution transmission electron microscope (HRTEM), and the effect of Fe nanoparticles on mechanical properties of single crystal Cu–Fe alloy was discussed. Results show that, the finely dispersed Fe nanoparticles can be obtained under the directional solidification condition, with the size of 5–50 nm and the coherent interface between the iron nanoparticle and the copper matrix. Single crystal Cu–Fe alloy possesses improved tensile strength of 194.64 MPa, and total elongation of 44.72%, respectively, at room temperature, in contrast to pure Cu sample. Nanoparticles which have coherent interface with matrix can improve the dislocation motion state. Some dislocations can slip through the nanoparticle along the coherent interface and some dislocations can enter into the nanoparticles. Thus to improve the tensile strength of single crystal Cu–Fe alloy without sacrificing the ductility simultaneously. Based on the above analyses, strengthening mechanisms of Fe nanoparticles for single crystal Cu–Fe alloy was described

  14. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    Science.gov (United States)

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  15. Microwave-Assisted Combustion Synthesis of Nano Iron Oxide/Iron-Coated Activated Carbon, Anthracite, Cellulose Fiber, and Silica, with Arsenic Adsorption Studies

    Directory of Open Access Journals (Sweden)

    Mallikarjuna N. Nadagouda

    2011-01-01

    Full Text Available Combustion synthesis of iron oxide/iron coated carbons such as activated carbon, anthracite, cellulose fiber, and silica is described. The reactions were carried out in alumina crucibles using a Panasonic kitchen microwave with inverter technology, and the reaction process was completed within a few minutes. The method used no additional fuel and nitrate, which is present in the precursor itself, to drive the reaction. The obtained samples were then characterized with X-ray mapping, scanning electron microscopy (SEM, energy dispersive X-ray analysis (EDS, selected area diffraction pattern (SAED, transmission electron microscopy (TEM, X-ray diffraction (XRD, and inductively coupled plasma (ICP spectroscopy. The size of the iron oxide/iron nanoparticle-coated activated carbon, anthracite, cellulose fiber, and silica samples were found to be in the nano range (50–400 nm. The iron oxide/iron nanoparticles mostly crystallized into cubic symmetry which was confirmed by SAED. The XRD pattern indicated that iron oxide/iron nano particles existed in four major phases. That is, γ-Fe2O3, α-Fe2O3, Fe3O4, and Fe. These iron-coated activated carbon, anthracite, cellulose fiber, and silica samples were tested for arsenic adsorption through batch experiments, revealing that few samples had significant arsenic adsorption.

  16. Magnetization measurements and XMCD studies on ion irradiated iron oxide and core-shell iron/iron-oxide nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Pearce, Carolyn; McCloy, John S.

    2014-12-02

    Magnetite (Fe3O4) and core-shell iron/iron-oxide (Fe/Fe3O4) nanomaterials prepared by a cluster deposition system were irradiated with 5.5 MeV Si2+ ions and the structures determined by x-ray diffraction as consisting of 100% magnetite and 36/64 wt% Fe/FeO, respectively. However, x-ray magnetic circular dichroism (XMCD) indicates similar surfaces in the two samples, slightly oxidized and so having more Fe3+ than the expected magnetite structure, with XMCD intensity much lower for the irradiated core-shell samples indicating weaker magnetism. X-ray absorption spectroscopy (XAS) data lack the signature for FeO, but the irradiated core-shell system consists of Fe-cores with ~13 nm of separating oxide crystallite, so it is likely that FeO exists deeper than the probe depth of the XAS (~5 nm). Exchange bias (Hex) for both samples becomes increasingly negative as temperature is lowered, but the irradiated Fe3O4 sample shows greater sensitivity of cooling field on Hex. Loop asymmetries and Hex sensitivities of the irradiated Fe3O4 sample are due to interfaces and interactions between grains which were not present in samples before irradiation as well as surface oxidation. Asymmetries in the hysteresis curves of the irradiated core/shell sample are related to the reversal mechanism of the antiferromagnetic FeO and possibly some near surface oxidation.

  17. Studies on the absorption of iron after oral administration in piglets

    International Nuclear Information System (INIS)

    Thoren-Tolling, K.

    1975-01-01

    72 newborn piglets from 9 litters were used to determinate the retention and distribution in the body of labelled iron given either orally as ferrous fumarate (100 mg Fe 2+ ) or iron dextran (200 mg Fe 3+ ), or by injection as iron dextran (100 mg Fe 3+ ). About 25-30 % of the radioiron from a single oral dose of labelled ferrous fumarate (100 mg Fe 2+ ), and about 55-60 % from a single oral dose of labelled iron dextran (200 mg Fe 3+ ) were absorbed by the body. As iron is excreted throughout the experiment, only about 20% and 40-50% respectively of the radio-iron from these iron compounds were recovered 3 weeks after treatment. The total amounts of labelled iron retained in the body after oral administration of the same doses of these iron compounds, alone or in combination, were compared. A slight retardation of the absorption of ferrous iron was observed when iron dextran was administered simultaneeously. The absorption of iron dextran was not influenced by the simultaneous administration of ferrous fumarate. The importance of the liver as the main iron storage site was shown, and the rapid utilization of iron from storage sites, about 2-3 weeks after treatment was demonstrated. The concentration of labelled iron in urine and some lymphglands was measured. Only minute quantities of radio-iron were excreted in the urine throughout the entire experiment. The lymph nodes seem to act as iron stones after administration of iron dextran. The importance of the lymphatic tissue in absorption and storage of labelled iron is discussed. (author)

  18. A model for Cryogenian iron formation

    Science.gov (United States)

    Cox, Grant M.; Halverson, Galen P.; Poirier, André; Le Heron, Daniel; Strauss, Justin V.; Stevenson, Ross

    2016-01-01

    The Neoproterozoic Tatonduk (Alaska) and Holowilena (South Australia) iron formations share many characteristics including their broadly coeval (Sturtian) ages, intimate association with glaciogenic sediments, and mineralogy. We show that these shared characteristics extend to their neodymium (εNd) and iron isotope (δ56Fe) systematics. In both regions δ56Fe values display a distinct up-section trend to isotopically heavier values, while εNd values are primitive and similar to non-ferruginous mudstones within these successions. The δ56Fe profiles are consistent with oxidation of ferruginous waters during marine transgression, and the εNd values imply that much of this iron was sourced from the leaching of continental margin sediments largely derived from continental flood basalts. Rare earth element data indicate a secondary hydrothermal source for this iron.

  19. Efficacy of Fe(o,o-EDDHA) and Fe(o,p-EDDHA) isomers in supplying Fe to strategy I plants differs in nutrient solution and calcareous soil.

    Science.gov (United States)

    Rojas, Carmen L; Romera, Francisco J; Alcántara, Esteban; Pérez-Vicente, Rafael; Sariego, Cristina; Garcaí-Alonso, J Ignacio; Boned, Javier; Marti, Gabriel

    2008-11-26

    The FeEDDHA [iron(3+) ethylenediamine di(o-hydroxyphenylacetic) acid] is one of the most efficient iron chelates employed in the correction of iron clorosis in calcareous soils. FeEDDHA presents different positional isomers: the ortho-ortho (o,o), the ortho-para (o,p), and the para-para (p,p). Of these isomers, the p,p cannot chelate Fe in soil solution in a wide range of pH values, while both o,o and o,p can. The objective of this work was to compare the efficiency of both isomers (o,o and o,p) to provide Fe to two Strategy I plants (tomato and peach) in nutrient solution (pH approximately 6.0), as well as in calcareous soil (pH approximately 8.4; CALCIXEREPT). For this, chelates of both o,o-EDDHA and o,p-EDDHA with 57Fe (a nonradioactive isotope of Fe) were used, where the 57Fe acts as a tracer. The results obtained showed that the o,o isomer is capable of providing sufficient Fe to plants in both nutrient solution and calcareous soil. However, the o,p isomer is capable of providing sufficient Fe to plants in nutrient solution but not in calcareous soil.

  20. Iron oxides characterization by Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Basurto Sanchez, R.

    1993-01-01

    In this work rust development on low carbon wire surface after the conformation process at different temperatures was studied by Moessbauer spectroscopy. The characterization was made by determining the following spectral parameters; 1) Quadrupole splitting, 2) Isomer shift, and 3) Magnetic splitting. The area quantification determined the percentage amount of three different iron oxides. These iron oxides were: a) Wustite (Fe O), b) Hematite (Fe 2 O 3 ), and c) Magnetite (Fe 3 O 4 ) which were present in the rust studied. With the results it was possible to establish the best temperature to favor the development of each of these iron oxides. (Author)

  1. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean.

    Science.gov (United States)

    Bin, Levi M; Weng, Liping; Bugter, Marcel H J

    2016-11-09

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD), plant dry matter yield, and the mass fractions of important mineral elements in the plant were quantified in a greenhouse pot experiment. All three Fe chelates increased SPAD index and dry matter yield compared to the control. The effect of FeHBED on chlorophyll production was visible over a longer time span than that of FeEDDHA and FeEDDHMA. Additionally, FeHBED did not suppress Mn uptake as much as the other Fe chelates. Compared to the other Fe chelates, total Fe content in the young leaves was lower in the FeHBED treatment; however, total Fe content was not directly related to chlorophyll production and biomass yield. For each chelate, the ortho-ortho isomer was found to be more effective than the other isomers evaluated.

  2. Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice.

    Science.gov (United States)

    Bashir, Khurram; Ishimaru, Yasuhiro; Itai, Reiko Nakanishi; Senoura, Takeshi; Takahashi, Michiko; An, Gynheung; Oikawa, Takaya; Ueda, Minoru; Sato, Aiko; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K

    2015-05-01

    The molecular mechanism of iron (Fe) uptake and transport in plants are well-characterized; however, many components of Fe homeostasis remain unclear. We cloned iron-deficiency-regulated oligopeptide transporter 7 (OsOPT7) from rice. OsOPT7 localized to the plasma membrane and did not transport Fe(III)-DMA or Fe(II)-NA and GSH in Xenopus laevis oocytes. Furthermore OsOPT7 did not complement the growth of yeast fet3fet4 mutant. OsOPT7 was specifically upregulated in response to Fe-deficiency. Promoter GUS analysis revealed that OsOPT7 expresses in root tips, root vascular tissue and shoots as well as during seed development. Microarray analysis of OsOPT7 knockout 1 (opt7-1) revealed the upregulation of Fe-deficiency-responsive genes in plants grown under Fe-sufficient conditions, despite the high Fe and ferritin concentrations in shoot tissue indicating that Fe may not be available for physiological functions. Plants overexpressing OsOPT7 do not exhibit any phenotype and do not accumulate more Fe compared to wild type plants. These results indicate that OsOPT7 may be involved in Fe transport in rice.

  3. Observation of the anisotropic Dirac cone in the band dispersion of 112-structured iron-based superconductor Ca{sub 0.9}La{sub 0.1}FeAs{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z. T.; Li, M. Y.; Fan, C. C.; Yang, H. F.; Liu, J. S.; Wang, Z. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); Xing, X. Z.; Zhou, W.; Sun, Y.; Shi, Z. X. [Department of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189 (China); Yao, Q. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433 (China); Li, W. [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200433 (China); CAS-Shanghai Science Research Center, Shanghai 201203 (China); Shen, D. W., E-mail: dwshen@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology (SIMIT), Chinese Academy of Sciences, Shanghai 200050 (China); CAS-Shanghai Science Research Center, Shanghai 201203 (China); CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050 (China)

    2016-07-25

    CaFeAs{sub 2} is a parent compound of recently discovered 112-type iron-based superconductors. It is predicted to be a staggered intercalation compound that naturally integrates both quantum spin Hall insulating and superconducting layers and an ideal system for the realization of Majorana modes. We performed a systematical angle-resolved photoemission spectroscopy and first-principles calculation study of the slightly electron-doped CaFeAs{sub 2}. We found that the zigzag As chain of 112-type iron-based superconductors play a considerable role in the low-energy electronic structure, resulting in the characteristic Dirac-cone like band dispersion as the prediction. Our experimental results further confirm that these Dirac cones only exist around the X but not Y points in the Brillouin zone, breaking the S{sub 4} symmetry at iron sites. Our findings present the compelling support to the theoretical prediction that the 112-type iron-based superconductors might host the topological nontrivial edge states. The slightly electron doped CaFeAs{sub 2} would provide us a unique opportunity to realize and explore Majorana fermion physics.

  4. On the structure and reactivity of small iron clusters with benzene, [Fe{sub n}–C{sub 6}H{sub 6}]{sup 0,+,−}, n ⩽ 7: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Valencia, Israel, E-mail: israelv@unam.mx

    2016-09-12

    Highlights: • Optimized structures of iron clusters capped with one benzene molecule. • Adsorption of benzene molecules quenches the magnetic moment of Fe clusters. • Adsorption of benzene on iron clusters leads to activation of non IR active vibrations of benzene. • Adsorption of benzene in small Fe{sub n} clusters is explained by the charge transfer model. • Relation between Fe{sub n}–benzene electron affinity and reactivity is observed. - Abstract: The structural, energetic, electronic, vibrational, and magnetic properties of iron–benzene clusters, Fe{sub n}–C{sub 6}H{sub 6}, n ⩽ 7, were calculated using an all-electron density functional theory, DFT, with the generalized gradient approximation and the 6−311++G(2d,2p) basis set. A proposal regarding the mechanism of the adsorption of benzene on iron clusters related to the charge transfer model is described. A direct relation between the calculated electron affinity, EA, of the Fe{sub n}–C{sub 6}H{sub 6} clusters and their reactivity were also determined.

  5. Application Of Bacterial Iron Reduction For The Removal Of Iron Impurities From Industrial Silica Sand And Kaolin

    Science.gov (United States)

    Zegeye, A.; Yahaya, S.; Fialips, C. I.; White, M.; Manning, D. A.; Gray, N.

    2008-12-01

    Biogeochemical evidence exists to support the potential importance of crystalline or amorphous Fe minerals as electron acceptor for Fe reducing bacteria in soils and subsurface sediments. This microbial metabolic activity can be exploited as alternative method in different industrial applications. For instance, the removal of ferric iron impurities from minerals for the glass and paper industries currently rely on physical and chemical treatments having substantial economical and environmental disadvantages. The ability to remove iron by other means, such as bacterial iron reduction, may reduce costs, allow lower grade material to be mined, and improve the efficiency of mineral processing. Kaolin clay and silica sand are used in a wide range of industrial applications, particularly in paper, ceramics and glass manufacturing. Depending on the geological conditions of deposition, they are often associated with iron (hydr)oxides that are either adsorbed to the mineral surfaces or admixed as separate iron bearing minerals. In this study, we have examined the Fe(III) removal efficiency from kaolin and silica sand by a series of iron- reducing bacteria from the Shewanella species (S. alga BrY, S. oneidensis MR-1, S. putrefaciens CN32 and S. putrefaciens ATCC 8071) in the presence of anthraquinone 2,6 disulfonate (AQDS). We have also investigated the effectiveness of a natural organic matter, extracted with the silica sand, as a substitute to AQDS for enhancing Fe(III) reduction kinetics. The microbial reduction of Fe(III) was achieved using batch cultures under non-growth conditions. The rate and the extent of Fe(III) reduction was monitored as a function of the initial Fe(III) content, Shewanella species and temperature. The bacterially- treated minerals were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD) to observe any textural and mineralogical transformation. The whiteness and ISO brightness of the kaolin was also measured by

  6. Fe-C-S systematics in Bengal Fan sediments

    Science.gov (United States)

    Volvoikar, S. P.; Mazumdar, A.; Goswami, H.; Pujari, S.; Peketi, A.

    2017-12-01

    Global biogeochemical cycles of iron, carbon and sulfur (Fe-C-S) are interrelated. Sulfate reduction in marine sediments is the major factor controlling the cycling and burial of carbon, sulfur and iron. Organoclastic sulfate reduction and anaerobic oxidation of methane (AOM) are the two main processes responsible for sulfate reduction in marine sediments. The amount and reactivity of organic matter, iron minerals and concentrations of dissolved sulfide in pore water control the burial of iron sulfide and organic bound sulfur in marine sediments. Here we investigate the sulfidization process in a sediment core from the western part of upper Bay of Bengal fan characterized by efficient burial of organic matter with siliclastic load. A 30 m long sediment core (MD 161/29, Lat. 170 18.04' N, Long. 870 22.56' E, water depth: 2434m) was collected onboard Marion Dufresne (May, 2007) and studied for Fe-S speciation and organic matter characterization. Buffered dithionite extractable iron (FeD) varies from 0.71 to 1.43 wt % (Avg. 0.79 wt %). FeD represents Fe oxides and oxyhydroxides mainly, ferrihydrite, lepidocrocite, goethite and hematite. Acid volatile sulfur (AVS) varies from 0.0015 to 0.63 wt % (avg: 0.058 wt %), while chromium reducible sulfur (CRS) varies from 0.00047 to 0.29 wt % (avg. 0.054 wt %). Based on the vertical distribution patterns of FeD, AVS and CRS, the core is divided into three zones, the lower (3000 to 1833 cm), middle (1833 to 398 cm) and upper (398 cm to surface) zones. FeD shows higher concentration in the lower zone. FeTR (FeOx + FeD + FeCRS + FeAVS) also exhibit higher concentration in this zone, suggesting higher availability of reactive iron for iron sulfide precipitation. AVS, elemental sulfur, spikes of CRS and gradual enrichment of δ34SAVS and δ34SCRS with sharp peaks in-between is noted in the lower zone. The gradual enrichment of δ34SAVS and δ34SCRS is the outcome of late diagenetic pyritization with higher availability of sulfide

  7. Novel iron complexes bearing N6-substituted adenosine derivatives: Synthesis, magnetic, Fe-57 Mossbauer, DFT, and in vitro cytotoxicity studies

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Mikulík, J.; Čajan, Michal; Zbořil, R.; Popa, Igor

    2008-01-01

    Roč. 16, č. 18 (2008), s. 8719-8728 ISSN 0968-0896 Institutional research plan: CEZ:AV0Z50380511 Keywords : iron complexes * adenosine derivatives * Fe-57 Mossbauer spectroscopy Subject RIV: CE - Biochemistry Impact factor: 3.075, year: 2008

  8. Ecological aspects of Moessbauer study of iron-containing atmospheric aerosols

    International Nuclear Information System (INIS)

    Kopcewicz, B.; Kopcewicz, M.

    2000-01-01

    Moessbauer spectroscopy was applied to analyze the iron compounds in atmospheric aerosol. Seasonal variations of iron concentration in atmospheric air measured over twenty years in Poland are discussed. It was observed that the concentration of iron sulfides (FeS, FeS 2 ) related to coal combustion dropped significantly, however, concentration of iron oxides and iron oxyhydroxides related to fuel combustion increased

  9. Development of iron aluminides

    International Nuclear Information System (INIS)

    McKamey, C.G.; Viswanathan, S.; Goodwin, G.M.; Sikka, V.K.

    1994-01-01

    Recent studies demonstrating that improved engineering ductility (to 10-15% in Fe 3 Al) can be achieved in wrought Fe 3 Al-based iron aluminide alloys through control of composition and microstructure are discussed. Accompanying this improvement has been an increased understanding of the causes for ambient temperature embrittlement in this system. Because of these advances, iron aluminide alloys are being considered for many structural uses, especially for applications where their excellent corrosion resistance is needed. The understanding and control of cast structures are important steps in making iron-aluminide alloys viable engineering materials. This includes understanding the various components of cast structure, their evolution, their properties, their behavior during further processing, and, finally, their effect on mechanical properties. The first phase of the study of cast Fe 3 Al-based alloys characterized the various components of the cast structure in the FA-129 alloy, while the current phase of the research involves characterizing the as-cast mechanical properties of Fe 3 Al-based alloys. The investigation of the room temperature mechanical properties of as-cast Fe 3 Al, including tensile tests in air, oxygen, and water vapor environments is described. Studies have begun to refine the grain size of the cast structure. An investigation of the effect of environmental hydrogen embrittlement on the weldability of wrought alloys was also initiated during this period with the aim of understanding the role of environment in the cold-cracking of iron aluminides

  10. Doping dependence of the anisotropic quasiparticle interference in NaFe(1-x)Co(x)As iron-based superconductors.

    Science.gov (United States)

    Cai, Peng; Ruan, Wei; Zhou, Xiaodong; Ye, Cun; Wang, Aifeng; Chen, Xianhui; Lee, Dung-Hai; Wang, Yayu

    2014-03-28

    We use scanning tunneling microscopy to investigate the doping dependence of quasiparticle interference (QPI) in NaFe1-xCoxAs iron-based superconductors. The goal is to study the relation between nematic fluctuations and Cooper pairing. In the parent and underdoped compounds, where fourfold rotational symmetry is broken macroscopically, the QPI patterns reveal strong rotational anisotropy. At optimal doping, however, the QPI patterns are always fourfold symmetric. We argue this implies small nematic susceptibility and, hence, insignificant nematic fluctuation in optimally doped iron pnictides. Since TC is the highest this suggests nematic fluctuation is not a prerequistite for strong Cooper pairing.

  11. Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.).

    Science.gov (United States)

    Li, Junli; Hu, Jing; Ma, Chuanxin; Wang, Yunqiang; Wu, Chan; Huang, Jin; Xing, Baoshan

    2016-09-01

    Iron oxide nanoparticles (γ-Fe2O3 NPs) have emerged as an innovative and promising method of iron application in agricultural systems. However, the possible toxicity of γ-Fe2O3 NPs and its uptake and translocation require further study prior to large-scale field application. In this study, we investigated uptake and distribution of γ-Fe2O3 NPs in corn (Zea mays L.) and its impacts on seed germination, antioxidant enzyme activity, malondialdehyde (MDA) content, and chlorophyll content were determined. 20 mg/L of γ-Fe2O3 NPs significantly promoted root elongation by 11.5%, and increased germination index and vigor index by 27.2% and 39.6%, respectively. However, 50 and 100 mg/L γ-Fe2O3 NPs remarkably decreased root length by 13.5% and 12.5%, respectively. Additionally, evidence for γ-Fe2O3 NPs induced oxidative stress was exclusively found in the root. Exposures of different concentrations of NPs induced notably high levels of MDA in corn roots, and the MDA levels of corn roots treated by γ-Fe2O3 NPs (20-100 mg/L) were 5-7-fold higher than that observed in the control plants. Meanwhile, the chlorophyll contents were decreased by 11.6%, 39.9% and 19.6%, respectively, upon NPs treatment relative to the control group. Images from fluorescence and transmission electron microscopy (TEM) indicated that γ-Fe2O3 NPs could enter plant roots and migrate apoplastically from the epidermis to the endodermis and accumulate the vacuole. Furthermore, we found that NPs mostly existed around the epidermis of root and no translocation of NPs from roots to shoots was observed. Our results will be highly meaningful on understanding the fate and physiological effects of γ-Fe2O3 NPs in plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Crystallographic phases and magnetic properties of iron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ke [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Liu, Yan; Zhao, Rui-Bin [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Shen, Jun-Jie [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Hou, Deng-Lu, E-mail: houdenglu@mail.hebtu.edu.cn [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-08-31

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe.

  13. Crystallographic phases and magnetic properties of iron nitride films

    International Nuclear Information System (INIS)

    Li, Guo-Ke; Liu, Yan; Zhao, Rui-Bin; Shen, Jun-Jie; Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian; Hou, Deng-Lu

    2015-01-01

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe 4 N, ε-Fe 3−x N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe 4 N, ε-Fe 3−x N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe

  14. Iron Fortification of Lentil (Lens culinaris Medik.) to Address Iron Deficiency.

    Science.gov (United States)

    Podder, Rajib; Tar'an, Bunyamin; Tyler, Robert T; Henry, Carol J; DellaValle, Diane M; Vandenberg, Albert

    2017-08-11

    Iron (Fe) deficiency is a major human health concern in areas of the world in which diets are often Fe deficient. In the current study, we aimed to identify appropriate methods and optimal dosage for Fe fortification of lentil ( Lens culinaris Medik.) dal with FeSO₄·7H₂O (ferrous sulphate hepta-hydrate), NaFeEDTA (ethylenediaminetetraacetic acid iron (III) sodium salt) and FeSO₄·H₂O (ferrous sulphate mono-hydrate). We used a colorimetric method to determine the appearance of the dal fortified with fortificants at different Fe concentrations and under different storage conditions. Relative Fe bioavailability was assessed using an in vitro cell culture bioassay. We found that NaFeEDTA was the most suitable fortificant for red lentil dal, and at 1600 ppm, NaFeEDTA provides 13-14 mg of additional Fe per 100 g of dal. Lentil dal sprayed with fortificant solutions, followed by shaking and drying at 75 °C, performed best with respect to drying time and color change. Total Fe and phytic acid concentrations differed significantly between cooked unfortified and fortified lentil, ranging from 68.7 to 238.5 ppm and 7.2 to 8.0 mg g -1 , respectively. The relative Fe bioavailability of cooked fortified lentil was increased by 32.2-36.6% compared to unfortified cooked lentil. We conclude that fortification of lentil dal is effective and could provide significant health benefits to dal-consuming populations vulnerable to Fe deficiency.

  15. Preparation of nanocrystalline iron-carbon materials as fillers for polymers

    International Nuclear Information System (INIS)

    Narkiewicz, U; Pelech, I; Roslaniec, Z; Kwiatkowska, M; Arabczyk, W

    2007-01-01

    This paper presents a method of preparing nanocrystalline iron-carbon materials which can be applied as fillers for polymers. Nanocrystalline iron samples were carburized either under ethylene/hydrogen mixture or under pure ethylene. Three kinds of samples were prepared: cementite/carbon (Fe 3 C/C), iron/cementite (Fe/Fe 3 C) and iron/carbon (Fe/C) ones. After carburization the samples were characterized using XRD and SEM methods. The obtained samples of iron-carbon nanoparticles were applied as fillers to polymer nanocomposites prepared in a polycondensation reaction (in situ) in a poly(ether-ester) matrix. The nanofillers were dispersed in monomers (diols) using a sonificator and a high-speed rotary stirrer. The obtained nanocomposites were characterized as regards their structure (SEM method) and mechanical behaviour

  16. Superconducting properties of iron chalcogenide thin films

    Directory of Open Access Journals (Sweden)

    Paolo Mele

    2012-01-01

    Full Text Available Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i easy fabrication and epitaxial growth on common single-crystal substrates; (ii strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate; (iii high critical current density (Jc ~ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition with a weak dependence on magnetic field; (iv high upper critical field (~50 T for FeTe0.5Se0.5, Bc2(0, with a low anisotropy, γ ~ 2. These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T and low temperatures (2–10 K.

  17. Characterization of accumulated precipitates during subsurface iron removal

    KAUST Repository

    Van Halem, Doris

    2011-01-01

    The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe 2+, creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO3, showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in normal production wells. Other groundwater constituents, such as Mn, As and Sr were found to co-accumulate with Fe. Acid extraction and ESEM-EDX showed that Ca occurred together with Fe and by X-ray Powder Diffraction it was identified as calcite. © 2010 Elsevier Ltd. All rights reserved.

  18. High-Resolution X-Ray Spectra of the Symbiotic Star SS73 17

    Science.gov (United States)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-01-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of "hard X-ray emitting symbiotics." Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe K(alpha) fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si xiv and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe xxv lines shows that these lines are thermal, not photoionized, in origin.With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  19. HIGH-RESOLUTION X-RAY SPECTRA OF THE SYMBIOTIC STAR SS73 17

    International Nuclear Information System (INIS)

    Eze, R. N. C.; Luna, G. J. M.; Smith, R. K.

    2010-01-01

    SS73 17 was an innocuous Mira-type symbiotic star until the International Gamma-Ray Astrophysics Laboratory and Swift discovered its bright hard X-ray emission, adding it to the small class of 'hard X-ray emitting symbiotics'. Suzaku observations in 2006 then showed it emits three bright iron lines as well, with little to no emission in the 0.3-2.0 keV bandpass. We present here follow-up observations with the Chandra High Energy Transmission Grating and Suzaku that confirm the earlier detection of strong emission lines of Fe Kα fluorescence, Fe XXV and Fe XXVI but also show significantly more soft X-ray emission. The high-resolution spectrum also shows emission lines of other highly ionized ions as Si XIV and possibly S XVI. In addition, a re-analysis of the 2006 Suzaku data using the latest calibration shows that the hard (15-50 keV) X-ray emission is brighter than previously thought and remains constant in both the 2006 and 2008 data. The G ratio calculated from the Fe XXV lines shows that these lines are thermal, not photoionized, in origin. With the exception of the hard X-ray emission, the spectra from both epochs can be fit using thermal radiation assuming a differential emission measure based on a cooling-flow model combined with a full and partial absorber. We show that acceptable fits can be obtained for all the data in the 1-10 keV band varying only the partial absorber. Based on the temperature and accretion rate, the thermal emission appears to be arising from the boundary layer between the accreting white dwarf and the accretion disk.

  20. Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: Integrating molecular surveys, geochemical processes and isolation of novel Fe-active microorganisms

    Directory of Open Access Journals (Sweden)

    Mark A Kozubal

    2012-03-01

    Full Text Available Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park (YNP. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 84 °C and pH 2.4 to 3.6. All iron-oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65-70 °C, but increased in diversity below 60 °C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were observed for M. yellowstonensis str. MK1 and Sulfolobales str. MK5 cultures, and these rates are close to those measured in situ. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88 oC.

  1. Efficiency of carbon removal per added iron in ocean iron fertilization

    NARCIS (Netherlands)

    de Baar, Hein J. W.; Gerringa, Loes J. A.; Laan, Patrick; Timmermans, Klaas R.

    2008-01-01

    The major response to ocean iron fertilization is by large diatoms, which at Fe-replete ambient seawater show an optimum C:Fe elemental ratio of similar to 23 000 and a higher ratio of similar to 160 000 or more under Fe-limited conditions. The efficiency of CO2 drawdown during the several weeks of

  2. Magneto-optical study of holmium iron garnet Ho3Fe5O12

    Science.gov (United States)

    Kalashnikova, A. M.; Pavlov, V. V.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th.; Pisarev, R. V.

    2012-09-01

    Bulk holmium iron garnet Ho3Fe5O12 is a cubic ferrimagnet with Curie temperature TC = 567 K and magnetization compensation point in the range 130-140 K. The magneto-optical data are presented for a holmium iron garnet Ho3Fe5O12 film, ˜10 μm thick, epitaxially grown on a (111)-type gadolinium-gallium garnet Gd3Ga5O12 substrate. A specific feature of this structure is that the parameters of the bulk material, from which the film was grown, closely match the substrate ones. The temperature and field dependences of Faraday rotation as well as the temperature dependence of the domain structure in zero field were investigated. The compensation point of the structure was found to be Tcomp = 127 K. It was shown that the temperature dependence of the characteristic size of domain structure diverges at this point. Based on the obtained results we established that the magnetic anisotropy of the material is determined by both uniaxial and cubic contributions, each characterized by different temperature dependence. A complex shape of hysteresis loops and sharp changes of the domain pattern with temperature indicate the presence of collinear-noncollinear phase transitions. Study of the optical second harmonic generation was carried out using 100 fs laser pulses with central photon energy E = 1.55 eV. The electric dipole contribution (both crystallographic and magnetic) to the second harmonic generation was observed with high reliability despite a small mismatch of the film and substrate parameters.

  3. Diagnostic relevance of radioiron-absorption-measurements and immunoradiometric serum-ferritin-assay in the evaluation of iron stores

    International Nuclear Information System (INIS)

    Heinrich, H.C.

    1978-01-01

    Negative iron balance and enhanced iron demand respectively causes deficient iron stores (prelatent iron deficiency) with increased iron absorption, later on decrease of serum iron and increase of transferrin (latent Fe deficiency) and at least iron deficient anemia (manifest iron deficiency). In prelatend iron deficiency diagnostic 59 Fe 2+ absorption is increased and the RES cells do not show storage iron cytochemically. In latent iron deficiency in addition serum iron, transferrin iron saturation and serum ferritin is decreased and hypochromic mikrocytic anemia completes the signs of manifest iron deficiency. Besides rare cases of primary hemochromatosis and marked hyperdasia of ineffective erythropoiesis in homocygotic beta-thalassemia, hereditary non-spherocytic hemolytic anemia caused by pyruvate kinase deficiency and some sideroblastic anemias increased 59 Fe 2+ absorption is a reliable measure of exhausted iron stores. In these exceptional cases differential diagnosis between sideroachrestic and siderosensitive iron deficiency anemia can be made by measurement of serum iron and serum ferritin respectively. The etiology of iron deficiency is to be cleared by measurement of 59 Fe absorption from 59 Fe 2+ and 59 Fe-marked meat with consecutive estimation of whole body 59 Fe elimination. Shortly after completion or during oral iron therapy serum ferritin concentration is not suitable to evaluate the content of iron stores. (orig.) [de

  4. Heterotrophic Bioleaching of Sulfur, Iron, and Silicon Impurities from Coal by Fusarium oxysporum FE and Exophiala spinifera FM with Growing and Resting Cells.

    Science.gov (United States)

    Etemadzadeh, Shekoofeh Sadat; Emtiazi, Giti; Etemadifar, Zahra

    2016-06-01

    Coal is the most abundant fossil fuel containing sulfur and other elements which promote environmental pollution after burning. Also the silicon impurities make the transportation of coal expensive. In this research, two isolated fungi from oil contaminated soil with accessory number KF554100 (Fusarium oxysporum FE) and KC925672 (Exophiala spinifera FM) were used for heterotrophic biological leaching of coal. The leaching were detected by FTIR, CHNS, XRF analyzer and compared with iron and sulfate released in the supernatant. The results showed that E. spinifera FM produced more acidic metabolites in growing cells, promoting the iron and sulfate ions removal while resting cells of F. oxysporum FE enhanced the removal of aromatic sulfur. XRF analysis showed that the resting cells of E. spinifera FM proceeded maximum leaching for iron and silicon (48.8, 43.2 %, respectively). CHNS analysis demonstrated that 34.21 % of sulfur leaching was due to the activities of resting cells of F. oxysporum FE. Also F. oxysporum FE removed organic sulfur more than E. spinifera FM in both growing and resting cells. FTIR data showed that both fungi had the ability to remove pyrite and quartz from coal. These data indicated that inoculations of these fungi to the coal are cheap and impurity removals were faster than autotrophic bacteria. Also due to the removal of dibenzothiophene, pyrite, and quartz, we speculated that they are excellent candidates for bioleaching of coal, oil, and gas.

  5. Magnetic properties of Fe-oxide and (Fe, Co) oxide nanoparticles synthesized in polystyrene resin matrix

    Science.gov (United States)

    Rodak, D.; Kroll, E.; Tsoi, G. M.; Vaishnava, P. P.; Naik, R.; Wenger, L. E.; Suryanarayanan, R.; Naik, V. M.; Boolchand, P.

    2003-03-01

    Magnetic nanoparticles have potential applications ranging from drug delivery and imaging in the medical field to sensing and memory storage in technology. The preparation, structure, and physical properties of iron oxide-based nanoparticles synthesized by ion exchange in a polystyrene resin matrix have been investigated. Employing a synthesis method developed originally by Ziolo, et. al^1, nanoparticles were prepared in a sulfonated divinyl benzene polystyrene resin matrix using various aqueous solutions of (1) FeCl_2, (2) FeCl_3, (3) FeCl2 : 2FeCl3 , (4) 9FeCl2 : CoCl_2, and (5) 4FeCl2 : CoCl_2. Powder x-ray diffraction measurements were used to identify the phases present while transmission electron microscopy was used for particle size distribution determinations. SQUID magnetization measurements (field-cooled and zero-field-cooled) and Fe^57 Mössbauer effect measurements indicate the presence of ferromagnetic iron oxide phases and a superparamagnetic behavior with blocking temperatures (T_B) varying from 50 K to room temperature. Nanoparticles synthesized using a stoichiometric mixture of FeCl2 and FeCl3 exhibit the lowest TB and smallest particle size distribution. The Mössbauer effect measurements have also been used to identify the iron oxides phases present and their relative amounts in the nanoparticles ^1R.F. Ziolo, et al., Science 207, 219 (1992). *Permanent address: Kettering University, Flint, MI 48504

  6. Iron and iron oxide nanoparticles are highly toxic to Culex quinquefasciatus with little non-target effects on larvivorous fishes.

    Science.gov (United States)

    Murugan, Kadarkarai; Dinesh, Devakumar; Nataraj, Devaraj; Subramaniam, Jayapal; Amuthavalli, Pandiyan; Madhavan, Jagannathan; Rajasekar, Aruliah; Rajan, Mariappan; Thiruppathi, Kulandhaivel Palani; Kumar, Suresh; Higuchi, Akon; Nicoletti, Marcello; Benelli, Giovanni

    2018-04-01

    The control of filariasis vectors has been enhanced in several areas, but there are main challenges, including increasing resistance to insecticides and lack of cheap and eco-friendly products. The toxicity of iron (Fe 0 ) and iron oxide (Fe 2 O 3 ) nanoparticles has been scarcely investigated yet. We studied the larvicidal and pupicidal activity of Fe 0 and Fe 2 O 3 nanoparticles against Culex quinquefasciatus. Fe 0 and Fe 2 O 3 nanoparticles produced by green (using a Ficus natalensis aqueous extract) and chemical nanosynthesis, respectively, were analyzed by UV-Vis spectrophotometry, FT-IR spectroscopy, XRD analysis, SEM, and EDX assays. In larvicidal and pupicidal experiments on Cx. quinquefasciatus, LC 50 of Fe 0 nanoparticles ranged from 20.9 (I instar larvae) to 43.7 ppm (pupae) and from 4.5 (I) to 22.1 ppm (pupae) for Fe 2 O 3 nanoparticles synthesized chemically. Furthermore, the predation efficiency of the guppy fish, Poecilia reticulata, after a single treatment with sub-lethal doses of Fe 0 and Fe 2 O 3 nanoparticles was magnified. Overall, this work provides new insights about the toxicity of Fe 0 and Fe 2 O 3 nanoparticles against mosquito vectors; we suggested that green and chemical fabricated nano-iron may be considered to develop novel and effective pesticides.

  7. Mitochondrial Iron Transport and Homeostasis in Plants

    Directory of Open Access Journals (Sweden)

    Anshika eJain

    2013-09-01

    Full Text Available Iron (Fe is an essential nutrient for plants and although the mechanisms controlling iron uptake from the soil are relatively well understood, comparatively little is known about subcellular trafficking of iron in plant cells. Mitochondria represent a significant iron sink within cells, as iron is required for the proper functioning of respiratory chain protein complexes. Mitochondria are a site of Fe-S cluster synthesis, and possibly heme synthesis as well. Here we review recent insights into the molecular mechanisms controlling mitochondrial iron transport and homeostasis. We focus on the recent identification of a mitochondrial iron uptake transporter in rice and a possible role for metalloreductases in iron uptake by mitochondria. In addition, we highlight recent advances in mitochondrial iron homeostasis with an emphasis on the roles of frataxin and ferritin in iron trafficking and storage within mitochondria.

  8. Acquisition of iron from transferrin regulates reticulocyte heme synthesis

    International Nuclear Information System (INIS)

    Ponka, P.; Schulman, H.M.

    1985-01-01

    Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up 59 Fe from [ 59 Fe]SIH and incorporate it into heme to a much greater extent than from saturating concentrations of [ 59 Fe]transferrin. Also, Fe-SIH stimulates [2- 14 C]glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate 59 Fe incorporation into heme from either [ 59 Fe]transferrin or [ 59 Fe]SIH but does reverse the inhibition of 59 Fe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes

  9. Iron transport and storage in the coccolithophore: Emiliania huxleyi.

    Science.gov (United States)

    Hartnett, Andrej; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-11-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving soil acidification and induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the coccolithophore Emiliania huxleyi. Short term radio-iron uptake studies indicate that iron is taken up by Emiliania in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor studies it appears that iron is taken up directly as Fe(iii). However if a reductive step is involved the Fe(II) must not be accessible to the external environment. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and XAS spectroscopies, to identify a single metabolite which displays spectral features similar to the phosphorus-rich mineral core of bacterial and plant ferritins.

  10. Iron-Tolerant Cyanobacteria: Ecophysiology and Fingerprinting

    Science.gov (United States)

    Brown, I. I.; Mummey, D.; Lindsey, J.; McKay, D. S.

    2006-01-01

    Although the iron-dependent physiology of marine and freshwater cyanobacterial strains has been the focus of extensive study, very few studies dedicated to the physiology and diversity of cyanobacteria inhabiting iron-depositing hot springs have been conducted. One of the few studies that have been conducted [B. Pierson, 1999] found that cyanobacterial members of iron depositing bacterial mat communities might increase the rate of iron oxidation in situ and that ferrous iron concentrations up to 1 mM significantly stimulated light dependent consumption of bicarbonate, suggesting a specific role for elevated iron in photosynthesis of cyanobacteria inhabiting iron-depositing hot springs. Our recent studies pertaining to the diversity and physiology of cyanobacteria populating iron-depositing hot springs in Great Yellowstone area (Western USA) indicated a number of different isolates exhibiting elevated tolerance to Fe(3+) (up to 1 mM). Moreover, stimulation of growth was observed with increased Fe(3+) (0.02-0.4 mM). Molecular fingerprinting of unialgal isolates revealed a new cyanobacterial genus and species Chroogloeocystis siderophila, an unicellular cyanobacterium with significant EPS sheath harboring colloidal Fe(3+) from iron enriched media. Our preliminary data suggest that some filamentous species of iron-tolerant cyanobacteria are capable of exocytosis of iron precipitated in cytoplasm. Prior to 2.4 Ga global oceans were likely significantly enriched in soluble iron [Lindsay et al, 2003], conditions which are not conducive to growth of most contemporary oxygenic cyanobacteria. Thus, iron-tolerant CB may have played important physiological and evolutionary roles in Earths history.

  11. Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys

    Directory of Open Access Journals (Sweden)

    Farida Benhalla-Haddad

    2012-01-01

    Full Text Available This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of these alloys show the presence of two primary crystallization phases (δ(Fe and graphite as well as two univariante lines : peritectic L+(Fe↔(Fe and eutectic L↔(Fe+Cgraphite. The ternary alloys were thereafter studied in nondeaerated solution of 10−3 M NaHCO3 + 10−3 M Na2SO4, at 25°C, by means of the potentiodynamic technique. The results indicate that the corrosion resistance of the FeCoC alloys depends on the carbon amount and the morphology of the phases present in the studied alloys.

  12. Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides.

    Science.gov (United States)

    Stewart, Brandy D; Cismasu, A Cristina; Williams, Kenneth H; Peyton, Brent M; Nico, Peter S

    2015-09-01

    Determining key reaction pathways involving uranium and iron oxyhydroxides under oxic and anoxic conditions is essential for understanding uranium mobility as well as other iron oxyhydroxide mediated processes, particularly near redox boundaries where redox conditions change rapidly in time and space. Here we examine the reactivity of a ferrihydrite-rich sediment from a surface seep adjacent to a redox boundary at the Rifle, Colorado field site. Iron(II)-sediment incubation experiments indicate that the natural ferrihydrite fraction of the sediment is not susceptible to reductive transformation under conditions that trigger significant mineralogical transformations of synthetic ferrihydrite. No measurable Fe(II)-promoted transformation was observed when the Rifle sediment was exposed to 30 mM Fe(II) for up to 2 weeks. Incubation of the Rifle sediment with 3 mM Fe(II) and 0.2 mM U(VI) for 15 days shows no measurable incorporation of U(VI) into the mineral structure or reduction of U(VI) to U(IV). Results indicate a significantly decreased reactivity of naturally occurring Fe oxyhydroxides as compared to synthetic minerals, likely due to the association of impurities (e.g., Si, organic matter), with implications for the mobility and bioavailability of uranium and other associated species in field environments.

  13. Iron pnictide superconductors

    International Nuclear Information System (INIS)

    Tegel, Marcus Christian

    2011-01-01

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co x Fe 1-x )PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr 2 Si 2 -type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba 0.6 K 0.4 Fe 2 As 2 , is unveiled. A detailed examination of the complete solid solution series (Ba 1-x K x )Fe 2 As 2 is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe 2 As 2 and EuFe 2 As 2 are characterised and the superconductors Sr 1-x K x Fe 2 As 2 and Ca 1-x Na x Fe 2 As 2 are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se 1-x Te x ) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr 3 Sc 2 O 5 Fe 2 As 2 are presented and Ba 2 ScO 3 FeAs and Sr 2 CrO 3 FeAs, the first two members of the new 21311-type are portrayed. Sr 2 CrO 3 FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound is given. Finally, the superconductor Sr 2 VO 3 FeAs is scrutinised and necessary prerequisites for superconductivity in this compound are suggested. (orig.)

  14. Studies of plutonium-iron and uranium-plutonium-iron alloys; Etudes d'alliages plutonium-fer et d'alliages uranium-plutonium-fer

    Energy Technology Data Exchange (ETDEWEB)

    Avivi, Ehud [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1964-01-15

    We study the plutonium-iron system, by means of dilatometry, X rays and metallography, especially in the domain between PuFe{sub 2} and Fe. We determine the solubilities of Fe in PuFe{sub 2} and of Pu in Fe. We show the presence of an hexagonal PuFe{sub 2} phase and we propose a modification in the Pu-Fe phase diagram. Some low iron concentration U-Pu-Fe alloys have also been investigated. We characterise the different phases. We confirm that adding some iron lowers the quantity of the zeta U-Pu phase. We emphasize some characteristics of the alloys having the global concentration (U, Pu){sub 6} Fe. (authors) [French] On etudie par dilatometrie, rayons X et micrographie le systeme plutonium-fer, principalement dans la region comprise entre PuFe{sub 2} et Fe, On determine les solubilites du fer dans PuFe{sub 2}, et de Pu dans Fe. On met en evidence une phase PuFe{sub 2} hexagonale et on propose une modification du diagramme d'equilibre Pu-Fe. Certains alliages U-Pu-Fe a faibles concentrations en fer sont egalement etudies. On caracterise les phases en presence. On confirme que l'addition de fer diminue rapidement la quantite de phase U-Pu zeta. Enfin on revele certaines caracteristiques des alliages de composition globale (U, Pu){sub 6} Fe. (auteurs)

  15. Final report on in-reactor uniaxial tensile deformation of pure iron and Fe-Cr alloy

    DEFF Research Database (Denmark)

    Singh, Bachu Narain; Huang, X.; Tähtinen, S.

    , the in-reactor deformation leads to accumulation of dislocations in a homogeneous fashion and only to a modest density. No dislocation cells are formed during the in-reactor or post-irradiation deformation of Fe-Cr and pure iron. Furthermore, in both cases, the slip systems even in the planes with Schmid...... factor value of almost zero get activated during the in-reactor as well as post-irradiation deformation. The main implications of these results are briefly discussed....

  16. 57Fe Moessbauer effect in borosilicate glasses

    International Nuclear Information System (INIS)

    Music, S.

    1989-01-01

    The present study was carried out to elucidate the valence state of iron and its co-ordination in borosilicate glasses, which are being investigated as possible solidification matrices for the immobilization of a simulated nuclear waste. 57 Fe Mossbauer spectroscopy was used as the experimental technique. The chemical compositions of glass samples and the experimental conditions for the preparation of these samples are given. Iron in the form of haematite (α-Fe 2 O 3 ) was used as doping material. Details of the experimental procedure have previously been described. Isomer shifts are calculated relative to α-iron. The results indicate a strong dependence of the valency of the iron and its coordination on the chemical composition of the glass and the Fe 2 O 3 content. The method of preparing the glasses also influences the state of the iron in oxide glasses. (Author)

  17. Comparison of Deferoxamine, Activated Charcoal, and Vitamin C in Changing the Serum Level of Fe in Iron Overloaded Rats

    Directory of Open Access Journals (Sweden)

    Reza Ghafari

    2014-02-01

    Full Text Available Background: Iron is an essential mineral for normal cellular physiology but its overload can lead to cell injury. For many years, deferoxamine injection has been used as an iron chelator for treatment of iron overload. The aim of this study is to compare oral deferoxamine, activated charcoal, and vitamin C, as an absorbent factor of Fe, in changing the serum level of iron in iron overload rats. Methods: In this experimental study, all groups were administered 150 mg iron dextran orally by gavage. After eight hours, rats in the first group received oral deferoxamine while those in the second and third groups received oral activated charcoal 1 mg/kg and oral vitamin C 150 mg, respectively. Then, serum levels of iron ware measured in all rats. Results: The mean serum level of iron in rats that received oral deferoxamine was 258.11±10.49 µg/dl, whereas mean levels of iron in charcoal and vitamin C groups were 380.88±11.21 µg/dl and 401.22±13.28 µg/dl, respectively. None of the measurements were within safety limits of serum iron. Conclusion: It seems that oral deferoxamine per se may not help physicians in the management of cases presented with iron toxicity. Activated charcoal did not reduce serum iron significantly in this study and further investigations may be warranted to assess the potential clinical utility of its mixture with oral deferoxamine as an adjunct in the clinical management of iron ingestions.

  18. A facile approach to the synthesis of hydrophobic iron tetrasulfophthalocyanine (FeTSPc) nano-aggregates on multi-walled carbon nanotubes: A potential electrocatalyst for the detection of dopamine

    CSIR Research Space (South Africa)

    Fashedemi, OO

    2011-07-01

    Full Text Available A facile method has been utilized to synthesize ahydrophobic form of nano-scaled iron (II) tetrasulfophthalocyanine (nanoFeTSPc), integrated with functionalized multi-walled carbon nanotubes (fMWCNT-nanoFeTSPc). The nanocomposite was characterized...

  19. Manufacture of barium hexaferrite (BaO3.98Fe2O3) from iron oxide waste of grinding process by using calcination process

    Science.gov (United States)

    Idayanti, N.; Dedi; Kristiantoro, T.; Mulyadi, D.; Sudrajat, N.; Alam, G. F. N.

    2018-03-01

    The utilization of iron oxide waste of grinding process as raw materials for making barium hexaferrite has been completed by powder metallurgy method. The iron oxide waste was purified by roasting at 800 °C temperature for 3 hours. The method used varying calcination temperature at 1000, 1100, 1200, and 1250 °C for 3 hours. The starting iron oxide waste (Fe2O3) and barium carbonate (BaCO3) were prepared by mol ratio of Fe2O3:BaCO3 from the formula BaO3.98Fe2O3. Some additives such as calcium oxide (CaO), silicon dioxide (SiO2), and polyvinyl alcohol (PVA) were added after calcination process. The samples were formed at the pressure of 2 ton/cm2 and sintered at the temperature of 1250 °C for 1 hour. The formation of barium hexaferrite compounds after calcination is determined by X-Ray diffraction. The magnetic properties were observed by Permagraph-Magnet Physik with the optimum characteristic at calcination temperature of 1250 °C with the induction of remanence (Br) = 1.38 kG, coercivity (HcJ) = 4.533 kOe, product energy maximum (BHmax) = 1.086 MGOe, and density = 4.33 g/cm3.

  20. A Mesoproterozoic iron formation

    Science.gov (United States)

    Canfield, Donald E.; Zhang, Shuichang; Wang, Huajian; Wang, Xiaomei; Zhao, Wenzhi; Su, Jin; Bjerrum, Christian J.; Haxen, Emma R.; Hammarlund, Emma U.

    2018-04-01

    We describe a 1,400 million-year old (Ma) iron formation (IF) from the Xiamaling Formation of the North China Craton. We estimate this IF to have contained at least 520 gigatons of authigenic Fe, comparable in size to many IFs of the Paleoproterozoic Era (2,500–1,600 Ma). Therefore, substantial IFs formed in the time window between 1,800 and 800 Ma, where they are generally believed to have been absent. The Xiamaling IF is of exceptionally low thermal maturity, allowing the preservation of organic biomarkers and an unprecedented view of iron-cycle dynamics during IF emplacement. We identify tetramethyl aryl isoprenoid (TMAI) biomarkers linked to anoxygenic photosynthetic bacteria and thus phototrophic Fe oxidation. Although we cannot rule out other pathways of Fe oxidation, iron and organic matter likely deposited to the sediment in a ratio similar to that expected for anoxygenic photosynthesis. Fe reduction was likely a dominant and efficient pathway of organic matter mineralization, as indicated by organic matter maturation by Rock Eval pyrolysis combined with carbon isotope analyses: Indeed, Fe reduction was seemingly as efficient as oxic respiration. Overall, this Mesoproterozoic-aged IF shows many similarities to Archean-aged (>2,500 Ma) banded IFs (BIFs), but with an exceptional state of preservation, allowing an unprecedented exploration of Fe-cycle dynamics in IF deposition.

  1. Bismuth iron oxide thin films using atomic layer deposition of alternating bismuth oxide and iron oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Puttaswamy, Manjunath; Vehkamäki, Marko [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Kukli, Kaupo, E-mail: kaupo.kukli@helsinki.fi [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); University of Tartu, Institute of Physics, W. Ostwald 1, EE-50411 Tartu (Estonia); Dimri, Mukesh Chandra [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Kemell, Marianna; Hatanpää, Timo; Heikkilä, Mikko J. [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland); Mizohata, Kenichiro [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 Helsinki (Finland); Stern, Raivo [National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, EE-12618 Tallinn (Estonia); Ritala, Mikko; Leskelä, Markku [University of Helsinki, Department of Chemistry, P.O. Box 55, FI-00014 Helsinki (Finland)

    2016-07-29

    Bismuth iron oxide films with varying contributions from Fe{sub 2}O{sub 3} or Bi{sub 2}O{sub 3} were prepared using atomic layer deposition. Bismuth (III) 2,3-dimethyl-2-butoxide, was used as the bismuth source, iron(III) tert-butoxide as the iron source and water vapor as the oxygen source. The films were deposited as stacks of alternate Bi{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} layers. Films grown at 140 °C to the thickness of 200–220 nm were amorphous, but crystallized upon post-deposition annealing at 500 °C in nitrogen. Annealing of films with intermittent bismuth and iron oxide layers grown to different thicknesses influenced their surface morphology, crystal structure, composition, electrical and magnetic properties. Implications of multiferroic performance were recognized in the films with the remanent charge polarization varying from 1 to 5 μC/cm{sup 2} and magnetic coercivity varying from a few up to 8000 A/m. - Highlights: • Bismuth iron oxide thin films were grown by atomic layer deposition at 140 °C. • The major phase formed in the films upon annealing at 500 °C was BiFeO{sub 3}. • BiFeO{sub 3} films and films containing excess Bi favored electrical charge polarization. • Slight excess of iron oxide enhanced saturative magnetization behavior.

  2. Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal.

    Science.gov (United States)

    Min, Xiaobo; Li, Yangwenjun; Ke, Yong; Shi, Meiqing; Chai, Liyuan; Xue, Ke

    2017-07-01

    Arsenic is one of the major pollutants and a worldwide concern because of its toxicity and chronic effects on human health. An adsorbent of Fe-FeS 2 mixture for effective arsenic removal was successfully prepared by mechanical ball milling. The products before and after arsenic adsorption were characterized with scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent shows high arsenic removal efficiency when molar ratio of iron to pyrite is 5:5. The experimental data of As(III) adsorption are fitted well with the Langmuir isotherm model with a maximal adsorption capacity of 101.123 mg/g. And As(V) data were described perfectly by the Freundlich model with a maximal adsorption capacity of 58.341 L/mg. As(III) is partial oxidized to As(V) during the adsorption process. High arsenic uptake capability and cost-effectiveness of waste make it potentially attractive for arsenic removal.

  3. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    International Nuclear Information System (INIS)

    Pachmayr, Ursula Elisabeth

    2017-01-01

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe_1_-_xS_x was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li_0_._8Fe_0_._2)OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li_0_._8Fe_0_._2)OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe_4 tetrahedra were found via this synthesis method. The iron selenides A_2Fe_4Se_6 (A = K, Rb, Cs) consist of double chains of [Fe_2Se_3]"1"-, whereas a new compound Na_6(H_2O)_1_8Fe_4Se_8 exhibits [Fe_4Se_8]"6"- 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard to iron-chalcogenide based superconductors this synthesis strategy is encouraging. It seems probable

  4. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pachmayr, Ursula Elisabeth

    2017-04-06

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe{sub 1-x}S{sub x} was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li{sub 0.8}Fe{sub 0.2})OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li{sub 0.8}Fe{sub 0.2})OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe{sub 4} tetrahedra were found via this synthesis method. The iron selenides A{sub 2}Fe{sub 4}Se{sub 6} (A = K, Rb, Cs) consist of double chains of [Fe{sub 2}Se{sub 3}]{sup 1-}, whereas a new compound Na{sub 6}(H{sub 2}O){sub 18}Fe{sub 4}Se{sub 8} exhibits [Fe{sub 4}Se{sub 8}]{sup 6-} 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard

  5. Effects of Exogenous Antioxidants on Dietary Iron Overload

    OpenAIRE

    Asare, George A.; Kew, Michael C.; Mossanda, Kensese S.; Paterson, Alan C.; Siziba, Kwanele; Kahler-Venter, Christiana P.

    2008-01-01

    In dietary iron overload, excess hepatic iron promotes liver damage. The aim was to attenuate free radical-induced liver damage using vitamins. Four groups of 60 Wistar rats were studied: group 1 (control) was fed normal diet, group 2 (Fe) 2.5% pentacarbonyl iron (CI) followed by 0.5% Ferrocene, group 3 (Fe + V gp) CI, Ferrocene, plus vitamins A and E (42× and 10× RDA, respectively), group 4 (Fe – V gp) CI, Ferrocene diet, minus vitamins A and E. At 20 months, glutathione peroxidase (GPx), su...

  6. Fe-S Cluster Biogenesis in Isolated Mammalian Mitochondria

    Science.gov (United States)

    Pandey, Alok; Pain, Jayashree; Ghosh, Arnab K.; Dancis, Andrew; Pain, Debkumar

    2015-01-01

    Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [35S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-35S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the 35S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia. PMID:25398879

  7. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    International Nuclear Information System (INIS)

    Omran, Mamdouh; Fabritius, Timo; Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A.; El-Aref, Mortada; Elmanawi, Abd El-Hamid

    2015-01-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe 2 O 3 and P 2 O 5 contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe 3+ ) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases

  8. In-depth study of the mechanical properties for Fe_3Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    International Nuclear Information System (INIS)

    Shen, Chen; Pan, Zengxi; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-01-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe_3Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe_3AlC_0_._5 precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  9. Visible light activated catalytic effect of iron containing soda-lime silicate glass characterized by 57Fe-Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Shiro Kubuki; Jun Iwanuma; Yusuke Takahashi; Kazuhiko Akiyama; Ernoe Kuzmann; Hungarian Academy of Sciences, Budapest; Tetsuaki Nishida

    2014-01-01

    A relationship between local structure and visible light activated catalytic effect of iron containing soda lime silicate glass with the composition of 15Na 2 O·15CaO·xFe 2 O 3 ·(70-x)SiO 2 , x = 5-50 mass %, abbreviated as NCFSx was investigated by means of 57 Fe-Moessbauer spectroscopy, X-ray diffractometry (XRD), small angle X-ray scattering (SAXS), electrospray ionization mass spectrometry (ESI-MS) and ultraviolet-visible light absorption spectroscopy (UV-Vis). Moessbauer spectra of NCFSx glass with 'x' being equal to or larger than 30 after isothermal annealing at 1,000 deg C for 100 min consisted of a paramagnetic doublet and a magnetic sextet. The former had isomer shift (δ) of 0.24 mm s -1 and quadrupole splitting (Δ) of 0.99 mm s -1 due to distorted Fe III O 4 tetrahedra, and the latter had δ of 0.36 mm s -1 and internal magnetic field (H int ) of 51.8 T due to hematite (α-Fe 2 O 3 ). The absorption area (A) of α-Fe 2 O 3 varied from 47.2 to 75.9, 93.1, 64.8 and 47.9 % with 'x' from 30 to 35, 40, 45 and 50, indicating that the amount of precipitated α-Fe 2 O 3 varied with the Fe 2 O 3 content of NCFSx glass. The precipitation of α-Fe 2 O 3 was also confirmed by XRD study of annealed NCFS glass with 'x' larger than 30. A relaxed sexted with δ, H int and Γ of 0.34 mm s -1 and 37.9 T and 1.32 mm s -1 was observed from the Moessbauer spectra of annealed NCFSx glass with 'x' of 45 and 50, implying that the precipitation of non-stoichiometric iron hydroxide oxide with the composition of Fe 1.833 (OH) 0.5 O 2.5 having the similar structure of α-Fe 2 O 3 and α-FeOOH. A remarkable decrease in the concentration of methylene blue (MB) from 10 to 0.0 μmol L -1 with the first-order rate constant (k) of 2.87 × 10 -2 h -1 was observed for 10-day leaching test using annealed NCFS50 glass under visible light irradiation. ESI-MS study indicated that existence of fragments with m/z value of 129, 117 and 207 etc. originating from MB having m/z of 284. This

  10. Iron Fortified Complementary Foods Containing a Mixture of Sodium Iron EDTA with Either Ferrous Fumarate or Ferric Pyrophosphate Reduce Iron Deficiency Anemia in 12- to 36-Month-Old Children in a Malaria Endemic Setting: A Secondary Analysis of a Cluster-Randomized Controlled Trial.

    Science.gov (United States)

    Glinz, Dominik; Wegmüller, Rita; Ouattara, Mamadou; Diakité, Victorine G; Aaron, Grant J; Hofer, Lorenz; Zimmermann, Michael B; Adiossan, Lukas G; Utzinger, Jürg; N'Goran, Eliézer K; Hurrell, Richard F

    2017-07-14

    Iron deficiency anemia (IDA) is a major public health problem in sub-Saharan Africa. The efficacy of iron fortification against IDA is uncertain in malaria-endemic settings. The objective of this study was to evaluate the efficacy of a complementary food (CF) fortified with sodium iron EDTA (NaFeEDTA) plus either ferrous fumarate (FeFum) or ferric pyrophosphate (FePP) to combat IDA in preschool-age children in a highly malaria endemic region. This is a secondary analysis of a nine-month cluster-randomized controlled trial conducted in south-central Côte d'Ivoire. 378 children aged 12-36 months were randomly assigned to no food intervention ( n = 125; control group), CF fortified with 2 mg NaFeEDTA plus 3.8 mg FeFum for six days/week ( n = 126; FeFum group), and CF fortified with 2 mg NaFeEDTA and 3.8 mg FePP for six days/week ( n = 127; FePP group). The outcome measures were hemoglobin (Hb), plasma ferritin (PF), iron deficiency (PF anemia (Hb iron deficiency with or without anemia ( p = 0.068). IDA prevalence sharply decreased in the FeFum (32.8% to 1.2%, p anemia. These data indicate that, despite the high endemicity of malaria and elevated inflammation biomarkers (C-reactive protein or α-1-acid-glycoprotein), IDA was markedly reduced by provision of iron fortified CF to preschool-age children for 9 months, with no significant differences between a combination of NaFeEDTA with FeFum or NaFeEDTA with FePP. However, there was no overall effect on anemia, suggesting most of the anemia in this setting is not due to ID. This trial is registered at clinicaltrials.gov (NCT01634945).

  11. Smectite alteration by anaerobic iron corrosion

    International Nuclear Information System (INIS)

    Sanders, D.; Kaufhold, S.; Hassel, A.W.; Dohrmann, R.

    2010-01-01

    Document available in extended abstract form only. The interaction of smectites with corroding steel/iron represents a crucial topic in the estimation of the long term confinement properties of clay barriers for the encasement of steel/iron containers. Especially in case of engineered clay barriers a possible deterioration of favourable smectite properties as response to corrosion could reduce the barrier capacity. The extent of this reduction is unknown, yet. The essential properties of bentonite clays in this context are on the one hand the relatively high swelling pressure together with low hydraulic conductivity, which results from the well known expandability of smectite interlayers in aqueous environments. On the other hand smectites are cation exchangers being able to long term encase radioactive cations in a way that negative charges of silicate layers are compensated by easily exchangeable hydrated cations. Both properties are directly related to the crystal and chemical composition of smectites. The nature of the corrosion of steel canisters in clay barriers will - after a first short aerobic phase - predominantly be anaerobic resulting in the formation of Fe(II) and two equivalents of hydroxide ions. In a set of exposition experiments anaerobic corroding iron in bentonite gels was studied in order to determine alteration of the smectite fraction. During the exposition a green coloration of the bentonite neighbouring to corroding iron was observed. Upon contact to oxygen in a humid state the bentonite turned reddish indicating the oxidation of Fe(II) to Fe(III). This observation is in accordance with reported results indicating the formation of an iron rich smectite. Chemical analysis of the 'green bentonite' reveals an increase of iron fraction e.g. from 3.4% mass to 9.3% mass . The adsorbed iron is predominantly Fe(II) which was proven by chromato-metric titration. The estimated ratio between silicon to increased iron content is Si: Fe ≅ 2

  12. Effect of iron status on iron absorption in different habitual meals in young south Indian women

    Directory of Open Access Journals (Sweden)

    Suneeta Kalasuramath

    2013-01-01

    Full Text Available Background & objectives: Iron deficiency (ID affects a large number of women in India. An inverse relationship exists between iron (Fe status and Fe absorption. Dietary inhibitory and enhancing factors exert a profound influence on bioavailability of Fe. Although the current recommended dietary allowance (RDA for Fe is based on 8 per cent bioavailability, it is not clear if this holds good for the usual highly inhibitory Indian diet matrix. This study was aimed to determine Fe absorption from several habitually consumed south Indian food and to evaluate the interaction of Fe status with absorption. Methods: Four Fe absorption studies were performed on 60 apparently healthy young women, aged 18-35 years. Based on blood biochemistry, 45 of them were ID and 15 were iron replete (IR. The habitual meals assessed were rice, millet and wheat based meals in the ID subjects and rice based meal alone in the IR subjects. Each subject received the test meal labelled with 3 mg of [57] Fe and Fe absorption was measured based on erythrocyte incorporation of isotope label 14 days following administration. Results: Mean fractional Fe absorption from the rice, wheat and millet based meals in the ID subjects were 8.3, 11.2 and 4.6 per cent, respectively. Fe absorption from the rice-based meals was 2.5 per cent in IR subjects. Interpretation & conclusions: Fe absorption is dictated by Fe status from low bioavailability meals. Millet based meals have the lowest bioavailability, while the rice and wheat based meals had moderate to good bioavailability. In millet based meals, it is prudent to consider ways to improve Fe absorption.

  13. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  14. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    International Nuclear Information System (INIS)

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-01-01

    Highlights: → Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. → Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. → Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. → Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex

  15. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.

    Science.gov (United States)

    Grettenberger, Christen L; Pearce, Alexandra R; Bibby, Kyle J; Jones, Daniel S; Burgos, William D; Macalady, Jennifer L

    2017-04-01

    Acid mine drainage (AMD) is a major environmental problem affecting tens of thousands of kilometers of waterways worldwide. Passive bioremediation of AMD relies on microbial communities to oxidize and remove iron from the system; however, iron oxidation rates in AMD environments are highly variable among sites. At Scalp Level Run (Cambria County, PA), first-order iron oxidation rates are 10 times greater than at other coal-associated iron mounds in the Appalachians. We examined the bacterial community at Scalp Level Run to determine whether a unique community is responsible for the rapid iron oxidation rate. Despite strong geochemical gradients, including a >10-fold change in the concentration of ferrous iron from 57.3 mg/liter at the emergence to 2.5 mg/liter at the base of the coal tailings pile, the bacterial community composition was nearly constant with distance from the spring outflow. Scalp Level Run contains many of the same taxa present in other AMD sites, but the community is dominated by two strains of Ferrovum myxofaciens , a species that is associated with high rates of Fe(II) oxidation in laboratory studies. IMPORTANCE Acid mine drainage pollutes more than 19,300 km of rivers and streams and 72,000 ha of lakes worldwide. Remediation is frequently ineffective and costly, upwards of $100 billion globally and nearly $5 billion in Pennsylvania alone. Microbial Fe(II) oxidation is more efficient than abiotic Fe(II) oxidation at low pH (P. C. Singer and W. Stumm, Science 167:1121-1123, 1970, https://doi.org/10.1126/science.167.3921.1121). Therefore, AMD bioremediation could harness microbial Fe(II) oxidation to fuel more-cost-effective treatments. Advances will require a deeper understanding of the ecology of Fe(II)-oxidizing microbial communities and the factors that control their distribution and rates of Fe(II) oxidation. We investigated bacterial communities that inhabit an AMD site with rapid Fe(II) oxidation and found that they were dominated by two

  16. Experimental study of absorption of iron in foods using whole-body counter

    International Nuclear Information System (INIS)

    Nakamura, Tadamitsu

    1978-01-01

    Male rats of Wistar strain which showed normal hematological picture were given 59 Fe-labeled foods orally, and the iron absorption rate was determined by an animal whole body counter. When 59 Fe was given in a mixture with each of gruel, spinach, cow's milk, the yolk, and the yolk with orange juice, the iron absorption rates in each food were 9.4%, 8.9%, 6.6%, 10.8% and 7.2% respectively. None of these foods seemed to inhibit the 59 Fe absorption. When 59 Fe was given in a mixture with chicken, the iron absorption rate was 35.8%. This result suggested that the chicken promoted the 59 Fe absorption. When the yolk labeled in vivo with 59 Fe was given, the iron absorption rate was 4.9%. If the yolk labeled in vitro was used, the absorption rate was 10.8%. When the yolk labeled in vivo with 59 Fe was given with orange juice, the iron absorption rate was 13.3%. If the yolk labeled in vivo with 59 Fe was given, the absorption rate was 7.2%. Orange juice had no effect on the iron absorption when the yolk labeled in vitro was used. After chicken eggs labeled in vivo with 59 Fe was given to children, the iron absorption was determined by a whole body counter; the rate averaged 5.4 in the children without anemia and 24.7 in those with anemia. (Ueda, J.)

  17. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Guan, E-mail: huangg66@126.com; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-30

    Graphical abstract: A biomimetic catalyst of iron-tetrakis(4-sulfonatophenyl)porphyrin immobilized on powdered chitosan achieves efficient cyclohexane oxidation with high ketone and alcohol yields. - Highlights: • Fe (TPPS)/pd-CTS is an excellent catalyst for cyclohexane oxidation. • Amino ligation alters the electron cloud density around the iron cation. • Amino coordination likely reduces the activation energy of Fe (TPPS). • The catalyst achieved 22.9 mol% yields of cyclohexanone and cyclohexanol. - Abstract: This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O{sub 2}. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  18. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    Science.gov (United States)

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used 55 Fe and 59 Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  19. Ferromagnetic resonance on oxideless magnetic Fe and FeRh nanoparticles; Ferromagnetische Resonanz an oxidfreien magnetischen Fe und FeRh Nanopartikeln

    Energy Technology Data Exchange (ETDEWEB)

    Trunova, Anastasia

    2009-05-25

    This work is dedicated to investigations of structural and magnetic properties of the colloidal Fe/Fe{sub x}O{sub y} nanocubes (13 nm) and the Fe{sub x}Rh{sub 100-x} core/shell nanoparticles (2 nm). As compared with other works, where the measurements on oxidized nanoparticles were carried out, we additionally performed investigations on nanoparticles in an oxide free state. In order to make the measurements on oxide free particles possible, oxygen- and hydrogenplasma was used to remove the ligands and reduce the oxide shell of the Fe nanocubes. The oxide free Fe nanocubes were covered with a Ag/Pt protective coating to prevent them from new oxidation. This method allowed carrying out the magnetic measurements on oxide free Fe nanocubes. Micromagnetic simulations as well as simulations of the high frequency susceptibility were used for the data analysing. It was found that both the g-factor g=2.09{+-}0.01 and the anisotropy constant K{sub 4}=(4.8{+-}0.5).10{sup 4} J/m{sup 3} coincide with that of bulk iron. However, the saturation magnetization M{sub S}(5 K)=(1.2{+-}0.12).10{sup 6} A/m differs from the bulk value by 30%. The reduction by 30% compared to the bulk value in the case of nanoparticles may be caused by the following possible reasons: a) the presence of inner oxide layer (approx. 10 at.%) that cannot be reduced; b) the anti-parallel order between magnetic moments of iron core and magnetic moments of antiferomagnetic iron oxide; c) some structural changes of the surface after plasma treatment. The obtained damping parameter {alpha}=0.03{+-}0.005 is ten times larger than that of the Fe layers as it is known for nanoparticles systems in general. The core/shell Fe{sub x}Rh{sub 100-x} nanoparticles (x=80,50) were produced under Ar-atmosphere and were sealed into a quartz tube to prevent oxidation. The analysis of g-factors shows that the value for the FePh nanoparticles with Fe-rich core is larger (g=2.08{+-}0.01) than that for the nanoparticles with Rh

  20. Radiation absorbed doses from iron-52, iron-55, and iron-59 used to study ferrokinetics

    International Nuclear Information System (INIS)

    Robertson, J.S.; Price, R.R.; Budinger, T.F.; Fairbanks, V.F.; Pollycove, M.

    1983-01-01

    Biological data obtained principally with Fe-59 citrate are used with physical data to calculate radiation absorbed doses for ionic or weak chelate forms of Fe-52, Fe-55, and Fe-59, administered by intravenous injection. Doses are calculated for normal subjects, primary hemochromatosis (also called idiopathic or hereditary hemochromatosis), pernicious anemia in relapse, iron-deficiency anemia, and polycythemia vera. The Fe-52 doses include the dose from the Mn-52m daughter generated after injection of Fe-52. Special attention has been given to the dose to the spleen, which has a relatively high concentration of RBCs and therefore of radioiron, and which varies significantly in size in both health and disease

  1. Correlation of flow accelerated corrosion rate with iron solubility

    International Nuclear Information System (INIS)

    Fujiwara, K.; Domae, M.; Yoneda, K.; Inada, F.; Ohira, T.; Hisamune, K.; Takiguchi, H.

    2009-01-01

    Flow Accelerated Corrosion (FAC) of carbon steel is one of the most important subjects in coolant systems of power plants. FAC is influenced by material, flow condition, temperature, and water chemistry. It is considered that solubility is the most important factor to determine the effect of water chemistry on FAC. In the present study, effect of specific oxide on FAC rate was studied from the thermodynamic solubility of iron. The effects of temperature and pH on the iron solubility were evaluated by taking into consideration hydrolysis reactions of ferrous iron, dissolution equilibria of Fe 3 O 4 , FeO, and Fe(OH) 2 , and charge balance. The correlation between the iron solubility and FAC behavior was evaluated by using the normalized mass transfer coefficient. It is clarified that the product of iron solubility equilibrated with Fe 3 O 4 and normalized mass transfer coefficient can explain the temperature and pH dependence of FAC. These results indicate presence of magnetite on the surface of carbon steel. Diffusion of iron from the saturated layer determines the FAC rate from water chemistry aspect. (author)

  2. Production of iron from metallurgical waste

    Science.gov (United States)

    Hendrickson, David W; Iwasaki, Iwao

    2013-09-17

    A method of recovering metallic iron from iron-bearing metallurgical waste in steelmaking comprising steps of providing an iron-bearing metallurgical waste containing more than 55% by weight FeO and FeO equivalent and a particle size of at least 80% less than 10 mesh, mixing the iron-bearing metallurgical waste with a carbonaceous material to form a reducible mixture where the carbonaceous material is between 80 and 110% of the stoichiometric amount needed to reduce the iron-bearing waste to metallic iron, and as needed additions to provide a silica content between 0.8 and 8% by weight and a ratio of CaO/SiO.sub.2 between 1.4 and 1.8, forming agglomerates of the reducible mixture over a hearth material layer to protect the hearth, heating the agglomerates to a higher temperature above the melting point of iron to form nodules of metallic iron and slag material from the agglomerates by melting.

  3. Active tracer analysis of iron in anemia children's diet

    International Nuclear Information System (INIS)

    Zhang Yunhui; Xiao Lun

    1994-01-01

    With stable 58 Fe as tracer the absorption rate of iron in anemia children's diet is determined by INAA. Children are four to five years old. FeCl 2 solution of enriched 58 Fe is taken orally. The feces five days ever since are collected, dried and irradiated in the reactor and activity of 59 Fe is measured. This method is accurate, reliable, applicable and harmless. It may be applied to determine Zn, Ca and other elements. The experimental results show that: (1) Soybean protein makes no contribution to, or may even inhibit, the absorption of iron from the diet. (2) With vitamin C added to soybean protein, the absorption rate of iron is increased. (3) Specifically treated soybean sprouts powder or fermented soybean powder enhances the biological utilization of iron

  4. Wastewater engineering applications of BioIronTech process based on the biogeochemical cycle of iron bioreduction and (biooxidation

    Directory of Open Access Journals (Sweden)

    Volodymyr Ivanov

    2014-12-01

    Full Text Available Bioreduction of Fe(III and biooxidation of Fe(II can be used in wastewater engineering as an innovative biotechnology BioIronTech, which is protected for commercial applications by US patent 7393452 and Singapore patent 106658 “Compositions and methods for the treatment of wastewater and other waste”. The BioIronTech process comprises the following steps: 1 anoxic bacterial reduction of Fe(III, for example in iron ore powder; 2 surface renovation of iron ore particles due to the formation of dissolved Fe2+ ions; 3 precipitation of insoluble ferrous salts of inorganic anions (phosphate or organic anions (phenols and organic acids; 4 (biooxidation of ferrous compunds with the formation of negatively, positively, or neutrally charged ferric hydroxides, which are good adsorbents of many pollutants; 5 disposal or thermal regeration of ferric (hydroxide. Different organic substances can be used as electron donors in bioreduction of Fe(III. Ferrous ions and fresh ferrous or ferric hydroxides that are produced after iron bioreduction and (biooxidation adsorb and precipitate diferent negatively charged molecules, for example chlorinated compounds of sucralose production wastewater or other halogenated organics, as well as phenols, organic acids, phosphate, and sulphide. Reject water (return liquor from the stage of sewage sludge dewatering on municipal wastewater treatment plants represents from 10 to 50% of phosphorus load when being recycled to the aeration tank. BioIronTech process can remove/recover more than 90% of phosphorous from this reject water thus replacing the conventional process of phosphate precipitation by ferric/ferrous salts, which are 20–100 times more expensive than iron ore, which is used in BioIronTech process. BioIronTech process can remarkably improve the aerobic and anaerobic treatments of municipal and industrial wastewaters, especially anaerobic digestion of lipid- and sulphate-containing food-processing wastewater. It

  5. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    Science.gov (United States)

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time.

  6. First principles calculations of the magnetic and hyperfine properties of Fe/N/Fe and Fe/O/Fe multilayers in the ground state of cohesive energy

    Science.gov (United States)

    dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.

    2015-01-01

    The ground state properties of Fe/N/Fe and Fe/O/Fe multilayers were investigated using the first principles calculations. The calculations were performed using the Linearized Augmented Plane Wave (LAPW) method implemented in the Wien2k code. A supercell consisting of one layer of nitride (or oxide) between two layers of Fe in the bcc structure was used to model the structure of the multilayer. The research in new materials also stimulated theoretical and experimental studies of iron-based nitrides due to their variety of structural and magnetic properties for the potential applications as in high strength steels and for high corrosion resistance. It is obvious from many reports that magnetic iron nitrides such as γ-Fe4N and α-Fe16N2 have interesting magnetic properties, among these a high magnetisation saturation and a high density crimp. However, although Fe-N films and multilayers have many potential applications, they can be produced in many ways and are being extensively studied from the theoretical point of view there is no detailed knowledge of their electronic structure. Clearly, efforts to understand the influence of the nitrogen atoms on the entire electronic structure are needed as to correctly interpret the observed changes in the magnetic properties when going from Fe-N bulk compounds to multilayer structures. Nevertheless, the N atoms are not solely responsible for electronics alterations in solid compounds. Theoretical results showed that Fe4X bulk compounds, where X is a variable atom with increasing atomic number (Z), the nature of bonding between X and adjacent Fe atoms changes from more covalent to more ionic and the magnetic moments of Fe also increase for Z=7, i.e. N. This is an indicative that atoms with a Z number higher than 7, i.e., O, can produce several new alterations in the entire magnetic properties of Fe multilayers. This paper presents the first results of an ab-initio electronic structure calculations, performed for Fe-N and Fe

  7. Fast decolorization of azo methyl orange via heterogeneous Fenton and Fenton-like reactions using alginate-Fe2+/Fe3+ films as catalysts.

    Science.gov (United States)

    Quadrado, Rafael F N; Fajardo, André R

    2017-12-01

    The efficiency of Fenton and Fenton-like processes can be seriously affected by the continuous loss of iron ions and by the formation of solid sludge. Here, alginate (Alg) films were synthesized to stabilize iron ions (Fe 2+ and Fe 3+ ) and to enhance their catalytic activities towards the decolorization of methyl orange via heterogeneous Fenton and Fenton-like processes. Iron ions were ionically bond to the Alg molecules resulting in a three-dimensional network with specific structural and morphological features according to the valence states of iron. Our results demonstrated that both Alg-Fe 2+ and Alg-Fe 3+ films show highlighted catalytic activity for the decolorization of MO and high decolorization rates. Reuse experiments demonstrated that both films could be employed in at least five consecutive decolorization processes without losing their catalytic efficiency or stability. Taken together, our findings reveal that the Alg-Fe 2+ and Alg-Fe 3+ films may be suitable low-cost catalysts in heterogeneous Fenton and Fenton-like processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Growth of Fe2O3/SnO2 nanobelt arrays on iron foil for efficient photocatalytic degradation of methylene blue

    Science.gov (United States)

    Lei, Rui; Ni, Hongwei; Chen, Rongsheng; Zhang, Bowei; Zhan, Weiting; Li, Yang

    2017-04-01

    Tin(IV) oxide has been intensively employed in optoelectronic devices due to its excellent electrical and optical properties. But the high recombination rates of the photogenerated electron-hole pairs of SnO2 nanomaterials often results in low photocatalytic efficiency. Herein, we proposed a facile route to prepare a novel Fe2O3/SnO2 heterojunction structure. The nanobelt arrays grown on iron foil naturally form a Schottky-type contact and provide a direct pathway for the photogenerated excitons. Hence, the Fe2O3/SnO2 nanobelt arrays exhibit much improved photocatalytic performance with the degradation rate constant on the Fe2O3/SnO2 film of approximately 12 times to that of α-Fe2O3 nanobelt arrays.

  9. Iron plaque decreases cadmium accumulation in Oryza sativa L. and serves as a source of iron.

    Science.gov (United States)

    Sebastian, A; Prasad, M N V

    2016-11-01

    Cadmium (Cd) contamination occurs in paddy soils; hence it is necessary to reduce Cd content of rice. Application and mode of action of ferrous sulphate in minimizing Cd in rice was monitored in the present study. Pot culture with Indian rice variety Swarna (MTU 7029) was maintained in Cd-spiked soil containing ferrous sulphates, which is expected to reduce Cd accumulation in rice. Responses in rhizosphere pH, root surface, metal accumulation in plant and molecular physiological processes were monitored. Iron plaque was induced on root surfaces after FeSO4 application and the amount of Fe in plaque reduced with increases in Cd in the soil. Rhizosphere pH decreased during plaque formation and became more acidic due to secretion of organic acids from the roots under Cd treatment. Moreover, iron chelate reductase activity increased with Cd treatment, but in the absence of Cd, activity of this enzyme increased in plaque-induced plants. Cd treatment caused expression of OsYSL18, whereas OsYSL15 was expressed only in roots without iron plaque. Fe content of plants increased during plaque formation, which protected plants from Cd-induced Fe deficiency and metal toxicity. This was corroborated with increased biomass, chlorophyll content and quantum efficiency of photo-synthesis among plaque-induced plants. We conclude that ferrous sulphate-induced iron plaque prevents Cd accumulation and Fe deficiency in rice. Iron released from plaque via organic acid mediated dissolution during Cd stress. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Effect of sodium iron ethylenediaminetetraacetic acid on the absorption of various trace elements in anemic rats

    International Nuclear Information System (INIS)

    Igarashi, Kaori; Sasaki, Ayako; Yoda, Yoko; Inage, Hiroko; Nakanishi, Yukiko; Kimura, Shuichi; Yanagiya, Takahiro; Hirunuma, Rieko; Enomoto, Shuichi

    2001-01-01

    Iron deficiency in developing countries is attributed to the bioavailability of iron derived from staple food such as grains, vegetables and legumes. Sodium iron ethylenediaminetetraacetic acid (NaFeEDTA), a strong metal chelator, is one of the food additives for iron fortification and it has been for improvement of iron deficiency in the world. However, the effect of NaFeEDTA on the absorption of trace elements other than Fe has been poorly understood. In the present study, to investigate the effect of NaFeEDTA on the absorption of trace elements, we determined the uptake rate of various metals using a multitracer technique. The uptake rates of Zn, Co, and Na in rats fed with NaFeEDTA diet were significantly lower than those in rats fed with ferrous sulfate (FS) diet, suggesting that iron fortification by NaFeEDTA lowers the bioavailability of various elements compared with FS. On the other hand, iron fortification using the FS diet in the presence of tannic acid decreased the bioavailability of Zn and Rb. However, no effect of tannic acid on the uptake rate of metal was observed in NaFeEDTA diet, suggesting that iron fortification using NaFeEDTA is less affected by tannic acid than that using the FS diet. These results indicate that iron fortification using NaFeEDTA is an effective method for improving iron deficiency. (author)

  11. Iron Availability in Tropical Soils and Iron Uptake by Plants

    Directory of Open Access Journals (Sweden)

    Guilherme Furlan Mielki

    Full Text Available ABSTRACT Given the increase in crop yields and the expansion of agriculture in low fertility soils, deficiency of micronutrients, such as iron, in plants grown in tropical soils has been observed. The aim of this study was to evaluate Fe availability and Fe uptake by corn (Zea mays L. plants in 13 different soils, at two depths. Iron was extracted by Mehlich-1, Mehlich-3, and CaCl2 (Fe-CC and was fractionated in forms related to low (Feo and high (Fed crystallinity pedogenic oxyhydroxides, and organic matter (Fep using ammonium oxalate, dithionite-citrate, and sodium pyrophosphate, respectively. In order to relate Fe availability to soil properties and plant growth, an experiment was carried out in a semi-hydroponic system in which part of the roots developed in a nutrient solution (without Fe and part in the soil (the only source of Fe. Forty-five days after seeding, we quantified shoot dry matter and leaf Fe concentration and content. Fed levels were high, from 5 to 132 g kg-1, and Feo and Fe-CC levels were low, indicating the predominance of Fe as crystalline oxyhydroxides and a low content of Fe readily available to plants. The extraction solutions showed significant correlations with various soil properties, many common to both, indicating that they act similarly. The correlation between the Mehlich-1 and Mehlich-3 extraction solutions was highly significant. However, these two extraction methods were inefficient in predicting Fe availability to plants. There was a positive correlation between dry matter and Fe levels in plant shoots, even within the ranges considered adequate in the soil and in the plant. Dry matter production and leaf Fe concentration and content were positively correlated with Fep concentration, indicating that the Fe fraction related to soil organic matter most contributes to Fe availability to plants.

  12. The hydrolysis of iron(III) and iron(ll) ions between 25 deg C and 375 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Derek

    1971-11-15

    Some data on the stabilities of the known iron (III) and iron (II) ions are presented, that have been obtained in a theoretical study of the iron-water system at temperatures up to the critical temperature. In this study, estimates of the stability constants of the various ions in dilute solution have been made by a method based on the equations of classical thermodynamics and empirical equations for the change with temperature of ionic heat capacity. The data indicate that hydrolysis increases so rapidly with temperature that the Fe+3 - ion is practically non-existent above about 150 deg C and, except in very acid solutions, the Fe+2 - ion is a relatively minor constituent above about 250 deg C. The most stable of the ions over a wide range of conditions are probably Fe(OH){sub 2}+ , Fe(OH)+ and HFeO{sub 2}-

  13. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore

    Energy Technology Data Exchange (ETDEWEB)

    Omran, Mamdouh, E-mail: mamdouh.omran@oulu.fi [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); Fabritius, Timo [Process Metallurgy Research Group, Faculty of Technology, University of Oulu (Finland); Elmahdy, Ahmed M.; Abdel-Khalek, Nagui A. [Mineral Processing and Agglomeration Lab, Central Metallurgical Research and Development Institute, Cairo (Egypt); El-Aref, Mortada; Elmanawi, Abd El-Hamid [Geology Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2015-08-01

    Highlights: • The effect of microwave radiation on structure and chemical state of high phosphorus iron ore was studied. • FTIR analyses showed that after microwave radiation the functional chemical groups of phosphorus bearing minerals (fluorapatite) dissociated. • High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). • Microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases. - Abstract: A growing interest in microwave heating has emerged recently. Several potential microwave applications regarding minerals’ processing have been investigated. This paper investigates the effect of microwave radiation on Egyptian high phosphorus iron ore. Three different iron ore samples have varying Fe{sub 2}O{sub 3} and P{sub 2}O{sub 5} contents and mineralogical textures were studied. A comparative study has been carried out between untreated and microwave treated iron ore. XRD and FTIR analyses showed that after microwave radiation the crystallinity of iron bearing minerals (hematite) increased, while the functional chemical groups of phosphorus bearing minerals (fluorapatite) and other gangues dissociated. High resolution XPS analyses of Fe 2p peaks showed that after microwave radiation a portion of Fe(+III) was reduced to Fe(+II). This means that after microwave radiation iron oxide (hematite, Fe{sup 3+}) transformed into more magnetic phase. The results indicated that microwave radiation had a positive effect on the magnetic properties of iron oxide, through formation of ferromagnetic phases.

  14. Preservation of Fe Isotope Proxies in the Rock Record

    Science.gov (United States)

    Johnson, C.; Beard, B.; Valley, J.; Valaas, E.

    2005-12-01

    Iron isotope variations provide powerful constraints on redox conditions and pathways involved during biogeochemical cycling of Fe in surface and near-surface environments. The relative isotopic homogeneity of igneous rocks and most bulk weathering products contrasts with the significant isotopic variations (4 per mil in 56Fe/54Fe) that accompany oxidation of Fe(II)aq, precipitation of sulfides, and reduction by bacteria. These isotopic variations often reflect intrinsic (equilibrium) Fe isotope fractionations between minerals and aqueous species whose interactions may be directly or indirectly catalyzed by bacteria. In addition, Fe isotope exchange may be limited between reactive Fe pools in low-temperature aqueous-sediment environments, fundamentally reflecting disequilibrium effects. In the absence of significant sulfide, dissimilatory Fe(III) reduction by bacteria produces relatively low 56Fe/54Fe ratios for Fe(II)aq and associated biogenic minerals such as magnetite and siderite. In contrast, Fe(II)aq that exchanges with Fe sulfides (FeS and pyrite) is relatively enriched in 56Fe/54Fe ratios. In modern and ancient environments, anoxic diagenesis tends to produce products that have low 56Fe/54Fe ratios, whereas oxidation of Fe(II)aq from hydrothermal sources tends to produce ferric Fe products that have high 56Fe/54Fe ratios. Redox cycling by bacteria tends to produce reactive ferric Fe reservoirs that have low 56Fe/54Fe ratios. Application of Fe isotopes as a proxy for redox conditions in the ancient rock record depends upon the preservation potential during metamorphism, given the fact that most Archean sedimentary sequences have been subjected to regional greenschist- to granulite-facies metamorphism. The 1.9 Ga banded iron formations (BIFs) of the Lake Superior region that are intruded by large ~1 Ga intrusions (e.g., Duluth gabbro) provide a test of the preservation potential for primary, low-temperature Fe isotope variations in sedimentary rocks. 56Fe/54

  15. DFT investigation on the selective complexation of Fe3+ and Al3+ with hydroxypyridinones used for treatment of the aluminium and iron overload diseases.

    Science.gov (United States)

    Kaviani, Sadegh; Izadyar, Mohammad; Housaindokht, Mohammad Reza

    2018-03-01

    The chelating agents for Al 3+ and Fe 3+ metal cations with therapeutic applications have been considered in the recent years. In designing of the hydroxypyridinones (HPOs) as the therapeutic chelating agents for iron and aluminium overload pathologies, quantum mechanical (QM) calculations are necessary for predicting the binding energies and thermodynamic parameters of the metal-HPO complexes. Three derivatives of the HPOs called 3-hydroxy-1,2-dimethylpyridin-4(1H)-one (DFP), 3-hydroxy-4(1H)-pyridinone (HOPO) and 5-hydroxy-2-(hydroxymethyl)pyridin-4(1H)-one (P1) were investigated for complexation with Fe 3+ and Al 3+ metal ions. Because of the maximum interaction between Fe 3+ and HPOs, all HPOs form stable complexes with Fe 3+ metal ion. Moreover, it was found that [Fe-P1] 2+ is a more stable complex than [Fe-DFP] 2+ and [Fe-3,4-HOPO] 2+ in the gas phase and water, confirming that P1 is the strongest selective iron chelator. The more stability of [Fe-P1] 2+ was attributed to an intramolecular hydrogen bond formation between the hydrogen atom of NH group and the oxygen atom of CH 2 OH chain. All complexes of the HPOs with Fe 3+ and Al 3+ were formed through the oxygen atoms of the CO and OH groups of the HPO. Natural bond orbital analysis showed that the interaction of the lone pair electrons of the oxygen atom of the chelator and antibonding orbitals of the Al 3+ and Fe 3+ are important in the complex formation. Topological parameters at the bond critical points confirmed the effective interaction between the Al 3+ and Fe 3+ metal ions and HPO as well as the nature of the metal-oxygen bonds. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Role of iron in Na {sub 1.5}Fe {sub 0.5}Ti {sub 1.5}(PO {sub 4}) {sub 3}/C as electrode material for Na-ion batteries studied by operando Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Difi, Siham [Université de Montpellier, Institut Charles Gerhardt, UMR 5253 CNRS (France); Saadoune, Ismael [Université Cadi Ayyad, Laboratoire de Chimie des Matériaux et de l’Environnement (Morocco); Sougrati, Moulay Tahar [Université de Montpellier, Institut Charles Gerhardt, UMR 5253 CNRS (France); Hakkou, Rachid [Université Cadi Ayyad, Laboratoire de Chimie des Matériaux et de l’Environnement (Morocco); Edstrom, Kristina [Uppsala University, Department of Chemistry - Ångström laboratory (Sweden); Lippens, Pierre-Emmanuel, E-mail: lippens@univ-montp2.fr [Université de Montpellier, Institut Charles Gerhardt, UMR 5253 CNRS (France)

    2016-12-15

    The role of iron in Na {sub 1.5}Fe {sub 0.5}Ti {sub 1.5}(PO {sub 4}){sub 3}/C electrode material for Na batteries has been studied by {sup 57}Fe Mössbauer spectroscopy in operando mode. The potential profile obtained in the galvanostatic regime shows three plateaus at different voltages due to different reaction mechanisms. Two of them, at 2.2 and 0.3 V vs Na {sup +}/Na {sup 0}, have been associated to redox processes involving iron and titanium in Na {sub 1.5}Fe {sub 0.5}Ti {sub 1.5}(PO {sub 4}){sub 3}. The role of titanium was previously elucidated for NaTi {sub 2}(PO {sub 4}){sub 3} and the effect of the substitution of Fe for Ti was investigated with {sup 57}Fe Mössbauer spectroscopy. We show that iron is an electrochemically active center at 2.2 V with the reversible Fe {sup 3+}/Fe {sup 2+} transformation and then remains at the oxidation state Fe {sup 2+} along the sodiation until the end of discharge at 0 V.

  17. Fe2(AsO4)F: A new three-dimensional condensed fluoro-arsenate iron(II) compound with antiferromagnetic interactions

    International Nuclear Information System (INIS)

    Berrocal, Teresa; Mesa, Jose L.; Pizarro, Jose L.; Urtiaga, Miren K.; Arriortua, Maria I.; Rojo, Teofilo

    2006-01-01

    Fe 2 (AsO 4 )F has been synthesized under mild hydrothermal conditions in the form of single crystals. The compound crystallizes in C2/c monoclinic space group with the unit cell parameters a=13.214(1), b=6.623(1), c=10.045(1)A and β=116.90(2) deg. with Z=8. The crystal structure consists of a three-dimensional framework constructed by two kinds of chains, A and B, with 50% of population. In the chains, the environments for the iron(II) cations show penta- and hexa-coordination. The chains establish an angle of approximately 120 deg. between them. The disordered fluoride anions in these chains given rise to [Fe(1)O 4 F(1) 0.5 (F(2) 0.5 ) 2 ] and [Fe(2)O 4 (F(1) 0.5 ) 2 F(2) 0.5 ] edge-shared polyhedra in which the fluoride anions have occupancy factors of 50% over two distinct crystallographic sites. The IR spectrum shows the characteristic bands of the (AsO 4 ) 3- groups. From the diffuse reflectance spectrum a D q parameter of 650cm -1 has been calculated for the Fe(II) d 6 high spin cation. The Mossbauer spectrum in the paramagnetic state shows a doublet that has been fitted, according to the existence of two crystallographically independent iron environments, with two Lorentzian doublets. Magnetic measurements performed between room temperature and 5K exhibit a maximum at 22.6K, characteristic of antiferromagnetic interactions with a estimated 'J'-exchange parameter of -1.2K

  18. Iron Mineralogy and Speciation in Clay-Sized Fractions of Chinese Desert Sediments

    Science.gov (United States)

    Lu, Wanyi; Zhao, Wancang; Balsam, William; Lu, Huayu; Liu, Pan; Lu, Zunli; Ji, Junfeng

    2017-12-01

    Iron released from Asian desert dust may be an important source of bioavailable iron for the North Pacific Ocean and thereby may stimulate primary productivity. However, the Fe species of the fine dusts from this source region are poorly characterized. Here we investigate iron species and mineralogy in the clay-sized fractions (iron phases (ferrihydrite and lepidocrocite) and reducible iron oxides (dominated by goethite) are 0.81 wt % and 2.39 wt %, respectively, and Fe dissolved from phyllosilicates extracted by boiling HCl (dominated by chlorite) is 3.15 wt %. Dusts originating from deserts in northwestern China, particularly the Taklimakan desert, are relatively enriched in easily reducible Fe phases, probably due to abundant Fe contained in fresh weathering products resulting from the rapid erosion associated with active uplift of mountains to the west. Data about Fe speciation and mineralogy in Asian dust sources will be useful for improving the quantification of soluble Fe supplied to the oceans, especially in dust models.

  19. Moessbauer effect studies of magnetic interactions in iron and dilute iron alloys

    International Nuclear Information System (INIS)

    Woude, F. van der; Schurer, P.J.; Sawatzky, G.A.

    1975-01-01

    A temperature-dependent Moessbauer study was conducted in FeX alloys, where X = Al, Si, Ti, V, Cr, Mn, Co, and Ni, aimed at solving the problem of 'what is localized and what is itinerant in iron ferromagnetism'. The experimental results are interpreted using a phenomenological model based on a modified Zener-Vonsovskij theory. Absorption spectra of FeX alloys were measured as a function of temperature. It was found that the 3d magnetic moments in iron were mainly localized while exchange coupling was provided by partly itinerant 3d electrons. (L.D.)

  20. Multisensor system for determination of iron(II), iron(III) and uranium(VI) in complex solutions

    International Nuclear Information System (INIS)

    Legin, A.V.; Seleznev, B.L.; Rudnitskaya, A.M.; Vlasov, Yu.G.

    1998-01-01

    The aim of the present paper is the development and analytical evaluation of a multisensor system for determination of low content of iron(II), iron(III) and uranium(VI) in complex aqueous media. Sensor array included sensors on the basis of chalcogenide vitreous materials with redox and ionic cross-sensitivities, crystalline silver sulphide electrode, noble metal electrodes Pt, Au, Ag and redox sensor on the basis of oxide glass. Potentiometric measurements have been taken in a conventional electrochemical cell vs. a standard Ag/AgCl reference electrode. All measurements have been taken at room temperature. Calibration solutions contained UO 2 (NO 3 ) 2 in concentration range 10 -6 -1,610 -5 mol/L, K 3 Fe(CN) 6 and K 4 Fe(CN) 6 or FeSO 4 (NH 4 ) 2 SO 4 and FeCl 3 , with the ratio of Fe(II)/Fe(III) concentration from 100:1 to 1:100, the total concentration of Fe was 10 -4 and 10 -5 mol/L. All solutions have been made on the background electrolyte of calcium and magnesium chlorides and sulphates with the fixed content of 5-27 mmol/L of each component which is a typical one for groundwater or mining water. Sensor potentials have been processed by a back-propagation artificial neural net. Average error of determination of Fe(II) and Fe(III) is about 20 %, of uranium(VI) - 40 %. It was found that sensitivity of the sensor array to iron and uranium is irrespective of the chemical form of these species

  1. Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2010-05-01

    Full Text Available The chemical composition and the soluble fraction were determined in aerosol samples collected during flights of AMMA-SOP0/DABEX campaign, which were conducted in the West African Sahel during dry season (2006. Two aerosol types are encountered in this period: dust particles (DUST and biomass burning aerosol (BB. Chemical analysis and microscope observations showed that the iron (Fe found in BB samples mainly originates from dust particles mostly internally mixed in the biomass burning layer. Chemical analyses of samples showed that the Fe solubility is lower in African dust samples than in biomass burning aerosols. Our data provide a first idea of the variability of iron dust solubility in the source region (0.1% and 3.4%. We found a relationship between iron solubility/clay content/source which partly confirms that the variability of iron solubility in this source region is related to the character and origin of the aerosols themselves. In the biomass burning samples, no relationship were found between Fe solubility and either the concentrations of acidic species (SO42−, NO3 or oxalate or the content of carbon (TC, OC, BC. Therefore, we were unable to determine what processes are involved in this increase of iron solubility. In terms of supply of soluble Fe to oceanic ecosystems on a global scale, the higher solubility observed for Fe in biomass burning could imply an indirect source of Fe to marine ecosystems. But these aerosols are probably not significant because the Sahara is easily the dominant source of Fe to the Atlantic Ocean.

  2. Compression of Fe-Si-H alloys

    Science.gov (United States)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  3. Iron fixation in Egyptian soils using tracer technique

    International Nuclear Information System (INIS)

    Massoud, M.A.; Abd-El-Sabour, M.F.; Omar, M.A.

    1983-01-01

    An experiment was carried out in order to investigate the Fe-fixation in Egyptian soils. Different forms of iron were used for the study, i.e., inorganic form, Fe 2 (So 4 ) 3 and chelated forms, i.e., Fe-EDDHA and Fe-DTPA. The forms were labelled with 59Fe. Data showed that the percent fixed Fe values corresponding to Fe 2 (So 4 ) 3 , Fe-EDDHA and Fe-DTPA were 90, 55, 28 respectively. In addition, the absorbed Fe percentage values were 3, 10.7, 24.3 for the three Fe forms respectively. Also the Fe-soluble percentages values were 5.4, 31.6 and 48.1 respectively. The results indicate the effect of Fe fixed. Also it indicates that the soil application of inorganic salt to supply soluble iron to plants seems unpromising due to the high capacity of investigated soils to retain Fe

  4. Solid - solid and solid - liquid phase transitions of iron and iron alloys under laser shock compression

    Science.gov (United States)

    Harmand, M.; Krygier, A.; Appel, K.; Galtier, E.; Hartley, N.; Konopkova, Z.; Lee, H. J.; McBride, E. E.; Miyanishi, K.; Nagler, B.; Nemausat, R.; Vinci, T.; Zhu, D.; Ozaki, N.; Fiquet, G.

    2017-12-01

    An accurate knowledge of the properties of iron and iron alloys at high pressures and temperatures is crucial for understanding and modelling planetary interiors. While Earth-size and Super-Earth Exoplanets are being discovered in increasingly large numbers, access to detailed information on liquid properties, melting curves and even solid phases of iron and iron at the pressures and temperatures of their interiors is still strongly limited. In this context, XFEL sources coupled with high-energy lasers afford unique opportunities to measure microscopic structural properties at far extreme conditions. Also the achievable time resolution allows the shock history and phase transition mechanisms to be followed during laser compression, improving our understanding of the high pressure and high strain experiments. Here we present recent studies devoted to investigate the solid-solid and solid-liquid transition in laser-shocked iron and iron alloys (Fe-Si, Fe-C and Fe-O alloys) using X-ray diffraction and X-ray diffuse scattering. Experiment were performed at the MEC end-station of the LCLS facility at SLAC (USA). Detection of the diffuse scattering allowed the identification of the first liquid peak position along the Hugoniot, up to 4 Mbar. The time resolution shows ultrafast (between several tens and several hundreds of picoseconds) solid-solid and solid-liquid phase transitions. Future developments at XFEL facilities will enable detailed studies of the solid and liquid structures of iron and iron alloys as well as out-of-Hugoniot studies.

  5. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.

    Science.gov (United States)

    Miot, J; Benzerara, K; Morin, G; Bernard, S; Beyssac, O; Larquet, E; Kappler, A; Guyot, F

    2009-06-01

    In phosphate-rich environments, vivianite (Fe(II)(3)(PO(4))(2), 8H(2)O) is an important sink for dissolved Fe(II) and is considered as a very stable mineral due to its low solubility at neutral pH. In the present study, we report the mineralogical transformation of vivianite in cultures of the nitrate-reducing iron-oxidizing bacterial strain BoFeN1 in the presence of dissolved Fe(II). Vivianite was first transformed into a greenish phase consisting mostly of an amorphous mixed valence Fe-phosphate. This precipitate became progressively orange and the final product of iron oxidation consisted of an amorphous Fe(III)-phosphate. The sub-micrometer analysis by scanning transmission X-ray microscopy of the iron redox state in samples collected at different stages of the culture indicated that iron was progressively oxidized at the contact of the bacteria and at a distance from the cells in extracellular minerals. Iron oxidation in the extracellular minerals was delayed by a few days compared with cell-associated Fe-minerals. This led to strong differences of Fe redox in between these two types of minerals and finally to local heterogeneities of redox within the sample. In the absence of dissolved Fe(II), vivianite was not significantly transformed by BoFeN1. Whereas Fe(II) oxidation at the cell contact is most probably directly catalyzed by the bacteria, vivianite transformation at a distance from the cells might result from oxidation by nitrite. In addition, processes leading to the export of Fe(III) from bacterial oxidation sites to extracellular minerals are discussed including some involving colloids observed by cryo-transmission electron microscopy in the culture medium.

  6. Heterogeneous biomimetic catalysis using iron porphyrin for cyclohexane oxidation promoted by chitosan

    Science.gov (United States)

    Huang, Guan; Liu, Yao; Cai, Jing Li; Chen, Xiang Feng; Zhao, Shu Kai; Guo, Yong An; Wei, Su Juan; Li, Xu

    2017-04-01

    This study investigates how ligands modulate metalloporphyrin activity with the goal of producing a practical biomimetic catalyst for use in the chemical industry. We immobilized iron porphyrinate [iron-tetrakis-(4-sulfonatophenyl)-porphyrin; Fe(III) (TPPS)] on powdered chitosan (pd-CTS) to form an immobilized catalyst Fe(III) (TPPS)/pd-CTS, which was characterized using modern spectroscopic techniques and used for catalytic oxidation of cyclohexane with O2. Amino coordination to iron porphyrin in Fe(III) (TPPS)/pd-CTS altered the electron cloud density around the iron cation, probably by reducing the activation energy of Fe(III) (TPPS) and raising the reactivity of the iron ion catalytic center, thereby improving the catalytic efficiency. One milligram of Fe(III) (TPPS) catalyst can be reused three times for the oxidation reaction to yield an average of 22.9 mol% of cyclohexanone and cyclohexanol.

  7. Iron economy in Naegleria gruberi reflects its metabolic flexibility.

    Science.gov (United States)

    Mach, Jan; Bíla, Jarmila; Ženíšková, Kateřina; Arbon, Dominik; Malych, Ronald; Glavanakovová, Marie; Nývltová, Eva; Sutak, Robert

    2018-05-05

    Naegleria gruberi is a free-living amoeba, closely related to the human pathogen Naegleria fowleri, the causative agent of the deadly human disease primary amoebic meningoencephalitis. Herein, we investigated the effect of iron limitation on different aspects of N. gruberi metabolism. Iron metabolism is among the most conserved pathways found in all eukaryotes. It includes the delivery, storage and utilisation of iron in many cell processes. Nevertheless, most of the iron metabolism pathways of N. gruberi are still not characterised, even though iron balance within the cell is crucial. We found a single homolog of ferritin in the N. gruberi genome and showed its localisation in the mitochondrion. Using comparative mass spectrometry, we identified 229 upregulated and 184 down-regulated proteins under iron-limited conditions. The most down-regulated protein under iron-limited conditions was hemerythrin, and a similar effect on the expression of hemerythrin was found in N. fowleri. Among the other down-regulated proteins were [FeFe]-hydrogenase and its maturase HydG and several heme-containing proteins. The activities of [FeFe]-hydrogenase, as well as alcohol dehydrogenase, were also decreased by iron deficiency. Our results indicate that N. gruberi is able to rearrange its metabolism according to iron availability, prioritising mitochondrial pathways. We hypothesise that the mitochondrion is the center for iron homeostasis in N. gruberi, with mitochondrially localised ferritin as a potential key component of this process. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  8. Multi-configuration Dirac-Hartree-Fock (MCDHF) calculations for Ni XXV

    Science.gov (United States)

    Singh, Narendra; Aggarwal, Sunny

    2018-03-01

    We present accurate 165 fine-structure energy levels related to the configurations 1s22s2, 1s22p2, 1s2nƖn‧l‧ (n = 2, n‧ = 2, 3, 4, 5, Ɩ = s,p Ɩ‧ = s, p, d, f, g) of Ni XXV which may be useful ion for astrophysical and fusion plasma. For the calculations of energy levels and radiative rates, we have used the multiconfiguration Dirac-Hartree-Fock (MCDHF) method employed in GRASP2K code. The calculations are carried out in the active space approximation with the inclusion of the Breit interaction, the finite nuclear size effect, and quantum electrodynamic corrections. The transition wavelengths, transition probabilities, line strengths, and absorption oscillator strengths are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), magnetic quadrupole (M2) transitions from the ground state. We have compared our calculated results with available theoretical and experimental data and good agreement is achieved. We predict new energy levels, oscillator strengths, line strengths and transition probabilities, where no other experimental or theoretical results are available. The present complete set of results should be of great help in line identification and the interpretation of spectra, as well as in the modelling and diagnostics of astrophysical and fusion plasmas.

  9. Iron absorption from beans with different contents of iron, evaluated by stable isotopes.

    Science.gov (United States)

    Junqueira-Franco, Márcia Varella Morandi; Dutra de Oliveira, José Eduardo; Nutti, Marilia Regini; Pereira, Helton Santos; Carvalho, José Luiz Vianna de; Abrams, Steven A; Brandão, Camila Fernanda Cunha; Marchini, Júlio Sérgio

    2018-06-01

    The introduction of biofortified foods such as beans with higher iron content may be a useful tool in preventing iron deficiency. The biofortification aims to reach the root of the problem of malnutrition, targets the neediest population, uses embedded distribution mechanisms, is scientifically feasible and effective in terms of cost, and complements other ongoing interventions to control micronutrient deficiency. However, to ensure effectiveness, measurement of the absorption of minerals is essential. The objective of this study was to evaluate the iron bioavailability of common bean BRS Pontal (PO), targeted for biofortification, compared with common bean BRS Estilo in man through reliable techniques that have not been previously used in Brazil. The study included 29 young adult volunteers divided into 2 groups: Group CB (13 subjects) received 100 g of common beans (BRS-Estilo) cooked labeled with iron-58 ( 58 Fe) and Group TBB (16 patients) received 100 g common bean target for iron biofortification (BRS-Pontal), cooked and labeled with iron58 ( 58 Fe). The next day they received the reference dose of ferrous sulfate enriched iron-57 ( 57 Fe). Isotopic evaluation of iron for measurement of iron incorporation into erythrocytes was performed 14 days after consumption. The beans used, were produced, through conventional breeding program, by EMBRAPA/Rice and Beans. The iron absorption was evaluated by assessing the isotopic enrichment of the stable isotope. Mean iron absorption from the meal with common beans was 0.409% (±0.040%) and mean iron incorporation from the meal with target beans for biofortification 0.407% (±0.038%) and did not differ between the groups. This study tested the iron absorption from a single bean meal in healthy volunteers or non anemics, In the present study the iron absorption ratio from common bean Pontal (PO), targeted for biofortification and compared with common bean BRS Estilo was not significantly different. The iron concentration

  10. Fe-bentonite. Experiments and modelling of the interactions of bentonites with iron

    Energy Technology Data Exchange (ETDEWEB)

    Herbert, Horst-Juergen; Xie, Mingliang [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Koeln (Germany); Kasbohm, Joern; Lan, Nguyen T. [Greifswald Univ. (Germany); Hoang Thi Minh Thao [Hanoi Univ. of Science (Viet Nam)

    2011-11-15

    The main objectives of this study were to enhance the understanding of the interactions of bentonites with steel containers in the near field of a repository in salt formations and to determine missing experimental thermo-hydraulical-chemical and mineralogical data needed for the THC modelling of the interactions of bentonites with iron. At the beginning of this project a literature review helped to clarify the state of the art regarding the above mentioned objectives prior to the start of the experimental work. In the following experimental programme the hydraulic changes in the pore space of compacted MX80 bentonites containing metallic iron powder and in contact with three solutions of different ionic strength containing different concentrations of Fe{sup 2+} have been investigated. The alterations of MX80 and several other bentonites have been assessed in contact with the low ionic strength Opalinus Clay Pore Water (OCPW) and the saturated salt solutions NaCl solution and IP21 solution. Under repository relevant boundary conditions we determined on compacted MX80 samples with the raw density of 1.6 g/cm{sup 3} simultaneously interdependent properties like swelling pressures, hydraulic parameters (permeabilities and porosities), mineralogical data (changes of the smectite composition and iron corrosion products), transport parameters (diffusion coefficients) and thermal data (temperature dependent reaction progresses). The information and data resulting from the experiments have been used in geochemical modelling calculations and the existing possibilities and limitations to simulate these very complex near field processes were demonstrated. The main conclusion of this study is that the alteration of bentonites in contact with iron is accentuated and accelerated. Alterations in contact with solutions of different ionic strength identified by the authors in previous studies were found be much more intensive in contact with metallic iron and at elevated

  11. 57Fe-Mössbauer spectroscopy and electrochemical activities of graphitic layer encapsulated iron electrocatalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Zhong, Lijie; Frandsen, Cathrine; Mørup, Steen

    2018-01-01

    Graphitic layer encapsulated iron based nanoparticles (G@FeNPs) have recently been disclosed as an interesting type of highly active electrocatalysts for the oxygen reduction reaction (ORR). However, the complex composition of the metal-containing components and their contributions in catalysis r...

  12. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Radu, T., E-mail: Teodora.Radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania); Iacovita, C. [Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349, Cluj-Napoca (Romania); Benea, D. [Faculty of Physics, Babes Bolyai University, 400271, Cluj-Napoca (Romania); Turcu, R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania)

    2017-05-31

    Highlights: • Characterization of three types of iron oxides magnetic nanoparticles. • A correlation between valence band XPS and the degree of iron oxidation is proposed. • Theoretical contributions of Fe in tetragonal and octahedral environment are shown. - Abstract: We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe{sub 3}O{sub 4}) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe{sub 2}O{sub 3} (by oxygen dissociation) which in turn was transformed into α-Fe{sub 2}O{sub 3}. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  13. Iron exclusion in rice genotypes as affected by different vapor pressure deficit conditions

    Directory of Open Access Journals (Sweden)

    Ram Kumar Shrestha

    2015-08-01

    Full Text Available Root iron (Fe exclusion capacity of four lowland rice genotypes were evaluated in increasing rate of Fe2+ stresses (0, 500, 1000 and 1500 mg/L in growing medium under the conditions of low and high vapor pressure deficit. Rice root excluded significantly higher amount of iron under dry atmospheric condition (655 mg Fe/g root dry matter than moist atmospheric condition (118 mg Fe/g root dry matter. But their iron exclusion capacity reduced when they were gradually exposed to the higher levels of Fe stress. Tolerant genotype such as TOX3107 excluded more iron when they were exposed to dry atmospheric condition.

  14. In-depth study of the mechanical properties for Fe{sub 3}Al based iron aluminide fabricated using the wire-arc additive manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen; Pan, Zengxi, E-mail: zengxi@uow.edu.au; Cuiuri, Dominic; Dong, Bosheng; Li, Huijun

    2016-07-04

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate iron aluminide alloy in-situ, through separate feeding of pure Fe and Al wires into a molten pool that is generated by the gas tungsten arc welding (GTAW) process. This paper investigates the morphologies, chemical compositions and mechanical properties of the as-fabricated 30 at% Al iron aluminide wall components, and how these properties vary at different locations within the buildup wall. The tensile properties are also measured in different loading orientations; as epitaxial growth of large columnar grains is observed in the microstructures. Fe{sub 3}Al is the only phase detected in the middle buildup section of the wall structure, which constitutes the majority of the deposited material. The bottom section of the structure contains a dilution affected region where some acicular Fe{sub 3}AlC{sub 0.5} precipitates can be observed, induced by carbon from the steel substrate that was used for fabrication. The microhardness and chemical composition indicate relatively homogeneous material properties throughout the buildup wall. However, the tensile properties are very different in the longitudinal direction and normal directions, due to epitaxial growth of large columnar grains. In general, the results have demonstrated that the WAAM process is capable of producing full density in-situ-alloyed iron aluminide components with tensile properties that are comparable to powder metallurgy methods.

  15. Selective uptake of 55Fe from seawater by zooplankton

    International Nuclear Information System (INIS)

    Jennings, C.D.

    1978-01-01

    Iron-55 was measured in water and mixed zooplankton collected in the South Pacific Ocean. The ratios of the specific activity of 55 Fe (pCi/g Fe) between plankton and water from the same locations appear to be about 100, which suggests that zooplankton took up 55 Fe in preference to stable iron in the South Pacific Ocean

  16. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    Science.gov (United States)

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  17. Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal

    Directory of Open Access Journals (Sweden)

    Rajib Podder

    2018-03-01

    Full Text Available Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g−1 and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA, and relative Fe bioavailability (RFeB%. Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g−1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g−1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant (p ≤ 0.01 Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.

  18. Relative Bioavailability of Iron in Bangladeshi Traditional Meals Prepared with Iron-Fortified Lentil Dal.

    Science.gov (United States)

    Podder, Rajib; M DellaValle, Diane; T Tyler, Robert; P Glahn, Raymond; Tako, Elad; Vandenberg, Albert

    2018-03-15

    Due to low Fe bioavailability and low consumption per meal, lentil must be fortified to contribute significant bioavailable Fe in the Bangladeshi diet. Moreover, since red lentil is dehulled prior to consumption, an opportunity exists at this point to fortify lentil with Fe. Thus, in the present study, lentil was Fe-fortified (using a fortificant Fe concentration of 2800 µg g -1 ) and used in 30 traditional Bangladeshi meals with broad differences in concentrations of iron, phytic acid (PA), and relative Fe bioavailability (RFeB%). Fortification with NaFeEDTA increased the iron concentration in lentil from 60 to 439 µg g -1 and resulted in a 79% increase in the amount of available Fe as estimated by Caco-2 cell ferritin formation. Phytic acid levels were reduced from 6.2 to 4.6 mg g -1 when fortified lentil was added, thereby reducing the PA:Fe molar ratio from 8.8 to 0.9. This effect was presumably due to dephytinization of fortified lentil during the fortification process. A significant ( p ≤ 0.01) Pearson correlation was observed between Fe concentration and RFeB% and between RFeB% and PA:Fe molar ratio in meals with fortified lentil, but not for the meal with unfortified lentil. In conclusion, fortified lentil can contribute significant bioavailable Fe to populations at risk of Fe deficiency.

  19. Moessbauer study of iron-sugar complexes

    International Nuclear Information System (INIS)

    Tonkovic, M.; Music, S.; Hadzija, O.; Nagy-Czako, I.; Vertes, A.

    1982-01-01

    Ferric-fructose complex has been prepared using FeCl 3 and Fe(NO 3 ) 3 solutions. Molecular weight determination and Moessbauer spectroscopic measurements proved that the ferric-fructose complex is polymeric in solid state and also in aqueous solution. The synthesis of a new iron-sorbose complex has been performed. Its Moessbauer spectra indicate a structure similar to that of the iron-fructose complex. (author)

  20. Heat capacity and solid solubility of iron in scandium

    International Nuclear Information System (INIS)

    Tsang, T.-W.E.

    1981-01-01

    The maximum solid solubility of iron in scandium was determined to be between 50 and 85 at.ppm in the as-cast condition. As the concentration of iron increases, it segregates along the grain boundary, as is evident from optical metallography and electron microprobe examinations. Annealing also causes the iron dissolved in scandium to separate out and cluster along the grain boundary. Heat capacity measurements show an anomaly in the C/T versus T 2 plots for iron concentrations of 19 at.ppm or greater. For iron dissolved in solid scandium the excess entropy due to the iron impurity is in agreement with the theoretical prediction of ck ln(2S + 1) for an impurity-conduction electron (Kondo) interaction, but is 4 - 8 times larger than the theoretical prediction when iron segregates along the grain boundary. Furthermore, our results suggest that most of the previously reported low temperature physical properties of scandium are probably in error because of either iron impurity-conduction electron interactions or Fe-Fe interactions in the precipitated second-phase Sc-Fe compound. (Auth.)

  1. A Global Atmospheric Model of Meteoric Iron

    Science.gov (United States)

    Feng, Wuhu; Marsh, Daniel R.; Chipperfield, Martyn P.; Janches, Diego; Hoffner, Josef; Yi, Fan; Plane, John M. C.

    2013-01-01

    The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100 km. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+ concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport.

  2. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean

    NARCIS (Netherlands)

    Bin, Levi M.; Weng, Liping; Bugter, Marcel H.J.

    2016-01-01

    The performance of FeHBED in preventing Fe deficiency chlorosis in soybean (Glycine max (L.) Merr.) in comparison to FeEDDHA and FeEDDHMA was studied, as well as the importance of the ortho-ortho and ortho-para/rest isomers in defining the performance. To this end, chlorophyll production (SPAD),

  3. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  4. Molecular dynamics simulation of nanoindentation of Fe{sub 3}C and Fe{sub 4}C

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Saurav, E-mail: s.goel@qub.ac.uk [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast BT95AH (United Kingdom); Joshi, Suhas S. [Department of Mechanical Engineering, Indian Institute of Technology, Bombay 400076 (India); Abdelal, Gasser [School of Mechanical and Aerospace Engineering, Queen' s University, Belfast BT95AH (United Kingdom); Agrawal, Anupam [Department of Business Administration, University of Illinois at Urbana Champaign, IL 61820 (United States)

    2014-03-01

    Study of nanomechanical response of iron carbides is important because presence of iron carbides greatly influences the performance and longevity of steel components. This work contributes to the literature by exploring nanoindentation of Fe{sub 3}C and tetrahedral-Fe{sub 4}C using molecular dynamics simulation. The chemical interactions of iron and carbon were described through an analytical bond order inter-atomic potential (ABOP) energy function. The indentations were performed at an indentation speed of 50 m/s and a repeat trial was performed at 5 m/s. Load–displacement (P–h) curve for both these carbides showed residual indentation depth and maximum indentation depth (h{sub f}/h{sub max}) ratio to be higher than 0.7 i.e. a circumstance where Oliver and Pharr method was not appropriate to be applied to evaluate the material properties. Alternate evaluation revealed Fe{sub 3}C to be much harder than Fe{sub 4}C. Gibbs free energy of formation and radial distribution function, coupled with state of the average local temperature and von Mises stresses indicate the formation of a new phase of iron-carbide. Formation of this newer phase was found to be due to deviatoric strain rather than the high temperature induced in the substrate during nanoindentation.

  5. The mechanism of stereospecific C-H oxidation by Fe(Pytacn) complexes: bioinspired non-heme iron catalysts containing cis-labile exchangeable sites.

    Science.gov (United States)

    Prat, Irene; Company, Anna; Postils, Verònica; Ribas, Xavi; Que, Lawrence; Luis, Josep M; Costas, Miquel

    2013-05-17

    A detailed mechanistic study of the hydroxylation of alkane C-H bonds using H2O2 by a family of mononuclear non heme iron catalysts with the formula [Fe(II)(CF3SO3)2(L)] is described, in which L is a tetradentate ligand containing a triazacyclononane tripod and a pyridine ring bearing different substituents at the α and γ positions, which tune the electronic or steric properties of the corresponding iron complexes. Two inequivalent cis-labile exchangeable sites, occupied by triflate ions, complete the octahedral iron coordination sphere. The C-H hydroxylation mediated by this family of complexes takes place with retention of configuration. Oxygen atoms from water are incorporated into hydroxylated products and the extent of this incorporation depends in a systematic manner on the nature of the catalyst, and the substrate. Mechanistic probes and isotopic analyses, in combination with detailed density functional theory (DFT) calculations, provide strong evidence that C-H hydroxylation is performed by highly electrophilic [Fe(V)(O)(OH)L] species through a concerted asynchronous mechanism, involving homolytic breakage of the C-H bond, followed by rebound of the hydroxyl ligand. The [Fe(V)(O)(OH)L] species can exist in two tautomeric forms, differing in the position of oxo and hydroxide ligands. Isotopic-labeling analysis shows that the relative reactivities of the two tautomeric forms are sensitively affected by the α substituent of the pyridine, and this reactivity behavior is rationalized by computational methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Characterization of tetraethylene glycol passivated iron nanoparticles

    International Nuclear Information System (INIS)

    Nunes, Eloiza da Silva; Viali, Wesley Renato; Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de; Morais, Paulo César; Jafelicci Júnior, Miguel

    2014-01-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe 3 O 4 with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe 3 O 4 ) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g −1 and 131 emu g −1 , respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy

  7. Melting relations in the Fe-rich portion of the system FeFeS at 30 kb pressure

    Science.gov (United States)

    Brett, R.; Bell, P.M.

    1969-01-01

    The melting relations of FeFeS mixtures covering the composition range from Fe to Fe67S33 have been determined at 30 kb pressure. The phase relations are similar to those at low pressure. The eutectic has a composition of Fe72.9S27.1 and a temperature of 990??C. Solubility of S in Fe at elevated temperatures at 30 kb is of the same order of magnitude as at low pressure. Sulfur may have significantly lowered the melting point of iron in the upper mantle during the period of coalescence of metal prior to core formation in the primitive earth. ?? 1969.

  8. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast

    DEFF Research Database (Denmark)

    Pavlovic, Jelena; Samardzic, Jelena; Maksimović, Vuk

    2013-01-01

    Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. A combined approach...

  9. Colorimetric determination of Fe2+/Fe3+ ratio in radioactive glasses

    International Nuclear Information System (INIS)

    Coleman, C.J.; Baumann, E.W.; Bibler, N.E.

    1992-01-01

    In the vitrification of nuclear wastes, the Fe 2+ /Fe 3+ ratio in the glass is a measure of the redox properties of the glass melt. It is necessary to measure this ratio to ensure that the melt redox properties are suitable for the glass melter. A colorimetric method for measuring the Fe 2+ /Fe 3+ ratio in highly radioactive glasses was developed and tested remotely in a shielded cell. The tests were performed on glasses similar in composition and radioactivity to those that will be produced in the Savannah River Site Defense Waste Processing Facility. The first step of the method is dissolution of finely crushed glass with a hydrofluoric/sulfuric acid mixture with ammonium vanadate added to preserve the Fe 2+ content of the glass during the dissolution. Boric acid is then added to complex fluoride and to destroy iron-fluoride complexes. After adjusting the solution to pH 5, FerroZine TM (trademark of the Hach Company, Loveland, CO) reagent is added to form a magenta-colored complex with Fe 2+ . The absorbance at 562 nm is measured by using a fiber optic-coupled photodiode array spectrophotometer. Ascorbic acid is then used to reduce all the iron in solution to Fe 2+ and the absorbance is again measured. The difference in absorbance measurements corresponds to the Fe 3+ in the sample and the Fe 2+ /Fe 3+ ratio can be calculated

  10. Composition of MBE-grown iron oxide films

    NARCIS (Netherlands)

    Voogt, F.C; Hibma, T; Smulders, P.J M; Niesen, L

    A wide range of iron oxides have been grown epitaxially on MgO(100) substrates using a dual beam technique in which the deposited iron is oxidised by a beam of NO2 particles. At high fluxes magnetite (Fe3-deltaO4) phases with compositions between near-stoichiometric magnetite (Fe3O4, delta = 0) and

  11. Iron fixation in Egyptian soils using tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M.A.; Abd-El-Sabour, M.F. (Faculty of Agriculture, Al-Azhar Univ. (Egypt)); Omar, M.A. (Ain Shams Univ., Cairo (Egypt). Faculty of Agriculture)

    1983-01-01

    An experiment was carried out in order to investigate the Fe-fixation in Egyptian soils. Different forms of iron were used for the study, i.e., inorganic form, Fe/sub 2/(So/sub 4/)/sub 3/ and chelated forms, i.e., Fe-EDDHA and Fe-DTPA. The forms were labelled with 59Fe. Data showed that the percent fixed Fe values corresponding to Fe/sub 2/(So/sub 4/)/sub 3/, Fe-EDDHA and Fe-DTPA were 90, 55, 28 respectively. In addition, the absorbed Fe percentage values were 3, 10.7, 24.3 for the three Fe forms respectively. Also the Fe-soluble percentages values were 5.4, 31.6 and 48.1 respectively. The results indicate the effect of Fe fixed. Also it indicates that the soil application of inorganic salt to supply soluble iron to plants seems unpromising due to the high capacity of investigated soils to retain Fe.

  12. Structural features of layered iron pnictide oxides (Fe{sub 2}As{sub 2})(Sr{sub 4}M{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Ogino, H., E-mail: tuogino@mail.ecc.u-tokyo.ac.j [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Sato, S.; Matsumura, Y.; Kawaguchi, N.; Ushiyama, K. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Katsura, Y. [Magnetic Materials Laboratory, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Horii, S. [JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan); Kochi University of Technology, Kami, Kochi 782-8502 (Japan); Kishio, K.; Shimoyama, J. [Department of Applied Chemistry, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); JST-TRIP, Sanban-cho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2010-12-15

    Structural features of newly found perovskite-based iron pnictide oxide system have been studied. Compared to REFePnO system, perovskite-based system tend to have smaller Pn-Fe-Pn angle and higher pnictogen height owing to low electronegativity of alkaline earth metal and small repulsive force between pnictogen and oxigen atoms. As-Fe-As angles of (Fe{sub 2}As{sub 2})(Sr{sub 4}Cr{sub 2}O{sub 6}), (Fe{sub 2}As{sub 2})(Sr{sub 4}V{sub 2}O{sub 6}) and (Fe{sub 2}Pn{sub 2})(Sr{sub 4}MgTiO{sub 6}) are close to ideal tetrahedron and those pnictogen heights of about 1.40 A are close to NdFeAsO with optimized carrier concentration. These structural features of this system may lead to realization of high-T{sub c} superconductivity in this system.

  13. Virtual iron concentration imaging based on dual-energy CT for noninvasive quantification and grading of liver iron content: An iron overload rabbit model study

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xian Fu; Yang, Yi; Xie, Xue Qian; Zhang, Huan; Chai, Wei Min; Yan, Fu Hua [Shanghai Jiao Tong University School of Medicine, Department of Radiology, Ruijin Hospital, Shanghai (China); Yan, Jing [Siemens Shanghai Medical Equipment Ltd., Shanghai (China); Wang, Li [Fudan University, Center of Analysis and Measurement, Shanghai (China); Schmidt, Bernhard [Siemens AG, Healthcare Sector, Forchheim (Germany)

    2015-09-15

    To assess the accuracy of liver iron content (LIC) quantification and grading ability associated with clinical LIC stratification using virtual iron concentration (VIC) imaging on dual-energy CT (DECT) in an iron overload rabbit model. Fifty-one rabbits were prepared as iron-loaded models by intravenous injection of iron dextran. DECT was performed at 80 and 140 kVp. VIC images were derived from an iron-specific algorithm. Postmortem LIC assessments were conducted on an inductively coupled plasma (ICP) spectrometer. Correlation between VIC and LIC was analyzed. VIC were stratified according to the corresponding clinical LIC thresholds of 1.8, 3.2, 7.0, and 15.0 mg Fe/g. Diagnostic performance of stratification was evaluated by receiver operating characteristic analysis. VIC linearly correlated with LIC (r = 0.977, P < 0.01). No significant difference was observed between VIC-derived LICs and ICP (P > 0.05). For the four clinical LIC thresholds, the corresponding cutoff values of VIC were 19.6, 25.3, 36.9, and 61.5 HU, respectively. The highest sensitivity (100 %) and specificity (100 %) were achieved at the threshold of 15.0 mg Fe/g. Virtual iron concentration imaging on DECT showed potential ability to accurately quantify and stratify hepatic iron accumulation in the iron overload rabbit model. (orig.)

  14. Rhombohedral iron trifluoride with a hierarchized macroporous/mesoporous texture from gaseous fluorination of iron disilicide

    Energy Technology Data Exchange (ETDEWEB)

    Guérin, Katia, E-mail: katia.araujo_da_silva@univ-bpclermont.fr [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubière (France); Delbègue, Diane; Louvain, Nicolas; Doubtsof, Léa; Hamwi, André [Université Clermont Auvergne, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6296, ICCF, F-63171 Aubière (France); Laik, Barbara; Pereira-Ramos, Jean-Pierre [Université Paris Est Créteil, Institut de Chimie et des Matériaux Paris-Est, UMR CNRS 7182, Thiais (France); Tahar-sougrati, Moulay; Jumas, Jean-Claude [Université Montpellier II, Institut Charles Gerhardt de Montpellier, UMR CNRS 5253, Montpellier (France); Willmann, Patrick; Cénac-Morthe, Céline [Centre National d' Etudes Spatiales, Toulouse (France)

    2016-04-15

    Stable low temperature rhombohedral iron trifluoride has been obtained by the fluorination under the pure fluorine gas of iron disilicide. The combination of both unusual fluorination process and precursor avoids to get unhydrated crystalline FeF{sub 3} particles and allows the formation of hierarchized channels of mesoporous/macroporous texture favorable for lithium diffusion. The fluorination mechanism proceeds by temperature steps from the formation, for a fluorination temperature below 200 °C, of an amorphous phase and an intermediate iron difluoride identified mainly by {sup 57}Fe Mössbauer spectroscopy before getting, as soon as a fluorination temperature of 260 °C is reached, the rhombohedral FeF{sub 3}. Both amorphous and crystallized samples display good ability for electrochemical process when used as cathode in lithium-ion battery. The low diameter of rhombohedral structure channels is balanced by an appropriate mesoporous texture and a capacity of 225 mAh.g{sup −1} after 5 cycles for a discharge cut-off of 2.5 V vs. Li{sup +}/Li at a current density of C/20 has been obtained and stabilized at 95 mAh.g{sup −1} after 116 cycles. - Highlights: • We investigated the synthesis of rhombohedral FeF{sub 3} by solid–gas reaction from iron disilicide. • We demonstrated that depending on the fluorination temperature various phases are stabilized. • We got a hierarchized macroporous/mesoporous texture. • We studied the electrochemical performances of amorphous and crystallized FeF{sub 3}. • Crystallized FeF{sub 3} presents a high faradic yield at first cycle focusing on insertion process.

  15. Fabrication, characterization and applications of iron selenide

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Lal, Bhajan [Department of Energy Systems Engineering, Sukkur Institute of Business Administration (Pakistan)

    2016-11-15

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed. • Superconducting, catalytic and fuel cell application of FeSe have been presented.

  16. Iron phosphate glass containing simulated fast reactor waste: Characterization and comparison with pristine iron phosphate glass

    International Nuclear Information System (INIS)

    Joseph, Kitheri; Asuvathraman, R.; Venkata Krishnan, R.; Ravindran, T.R.; Govindaraj, R.; Govindan Kutty, K.V.; Vasudeva Rao, P.R.

    2014-01-01

    Detailed characterization was carried out on an iron phosphate glass waste form containing 20 wt.% of a simulated nuclear waste. High temperature viscosity measurement was carried out by the rotating spindle method. The Fe 3+ /Fe ratio and structure of this waste loaded iron phosphate glass was investigated using Mössbauer and Raman spectroscopy respectively. Specific heat measurement was carried out in the temperature range of 300–700 K using differential scanning calorimeter. Isoconversional kinetic analysis was employed to understand the crystallization behavior of the waste loaded iron phosphate glass. The glass forming ability and glass stability of the waste loaded glass were also evaluated. All the measured properties of the waste loaded glass were compared with the characteristics of pristine iron phosphate glass

  17. Integrity of the iron transport process in mice with X-linked anaemia

    International Nuclear Information System (INIS)

    Thomson, A.B.R.; Valberg, L.S.

    1975-01-01

    The defect in iron (Fe) absorption in X-linked anaemia (sla) remains an enigma; absorption of a tracer dose of Fe is impaired in mice raised on an iron-containing cube diet but not in those raised on an iron-deficient diet. Because cobalt (Co) shares a similar intestinal transport pathway with Fe, a study was made of the effect of iron deficient diet on Co absorption. The duodenum of sla and genetically normal mice was perfused for 30 min with labelled solutions containing Co or Fe. Co uptake and transfer were similar in sla and normals fed cubes whereas Fe uptake and transfer were less in sla than in normals. The iron deficient diet caused an increase in the uptake and transfer of Co and Fe in sla and normals. When Co and Fe were perfused together in sla fed deficient diet, the uptake and transfer of each metal was less than when perfused alone. The distribution of Fe and Co in subcellular mucosal fractions was determined by a differential centrifugation technique. Deficient diet resulted in a directionally similar change in the subcellular distribution of Co and Fe in sla and normals. The increase in Co as well as Fe absorption in the sla on an iron deficient diet to the same high level found in genetically normal animals, and the inhibitory effect of each metal on the absorption of the other suggests that the absorption defect in sla is unlikely to be due to a primary defect in the function of the transport carrier. (author)

  18. Moessbauer spectroscopic study of iron in Japanese cedar bark (Paper No. HF-02)

    International Nuclear Information System (INIS)

    Singh, T.B.; Ichikuni, M.

    1990-02-01

    The bark samples of Japanese cedar collected from mountainous and urban areas were characterised by Moessbauer spectroscopy. The Moessbauer spectra showed that iron in the bark samples was distributed among paramagnetic Fe 2+ , Fe 3+ and magnetic iron and their relative abundance changed appreciably from one area to other. Further, low Fe 2+ /Fe 3+ ratio and high magnetic iron in urban samples indicated an influence of human activities. (author). 1 tab., 1 fig

  19. Influence of iron redox transformations on plutonium sorption to sediments

    Energy Technology Data Exchange (ETDEWEB)

    Hixon, A.E.; Powell, B.A. [Environmental Engineering and Earth Sciences, Clemson Univ., Clemson, SC (United States); Hu, Y.J.; Nitsche, H. [Dept. of Chemistry, Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab., Berkeley, CA (United States); Kaplan, D.I. [Savannah River National Lab., Aiken, SC (United States); Kukkadapu, R.K.; Qafoku, O. [Pacific Northwest National Lab., Richland, WA (United States)

    2010-07-01

    Plutonium subsurface mobility is primarily controlled by its oxidation state, which in turn is loosely coupled to the oxidation state of iron in the system. Experiments were conducted to examine the effect of sediment iron mineral composition and oxidation state on plutonium sorption and reduction. A pH 6.3 vadose zone sediment containing iron oxides and iron-containing phyllosilicates was treated with various complexants (ammonium oxalate) and reductants (hydroxylamine hydrochloride and dithionite-citrate-bicarbonate (DCB)) to selectively leach and/or reduce iron oxide and phyllosilicate/clay Fe(III). {sup 57}Fe-Moessbauer spectroscopy was used to identify initial iron mineral composition of the sediment and monitor dissolution and reduction of iron oxides and reduction of phyllosilicate Fe(III). {sup 57}Fe-Moessbauer spectroscopy showed that the Fe-mineral composition of the untreated sediment is: 25-30% hematite, 60-65% small-particle/Al-goethite, and < 10% Fe(III) in phyllosilicate; there was no detectable Fe(II). Upon reduction with a strong chemical reductant (dithionite-citrate-bicarbonate buffer), much of the hematite and goethite was removed. Partial reduction of phyllosilicate Fe(III) was evident in the sediments subjected to DCB treatment. Sorption of Pu(V) was monitored over one week for the untreated and each of five treated sediment fractions. Plutonium oxidation state speciation in the aqueous and solid phases was monitored using solvent extraction, coprecipitation, and XANES. The rate of sorption appears to correlate with the fraction of Fe(II) in the sediment (untreated or treated). Pu(V) was the only oxidation state measured in the aqueous phase, irrespective of treatment, whereas Pu(IV) and much smaller amounts of Pu(V) and Pu(VI) were measured in the solid phase. Surface-mediated reduction of Pu(V) to Pu(IV) occurred in treated and untreated sediment samples; Pu(V) remained on untreated sediment surface for two days before reducing to Pu

  20. Siderophore-mediated iron dissolution from nontronites is controlled by mineral cristallochemistry

    Directory of Open Access Journals (Sweden)

    Damien eParrello

    2016-03-01

    Full Text Available Bacteria living in oxic environments experience iron deficiency due to limited solubility and slow dissolution kinetics of iron-bearing minerals. To cope with iron deprivation, aerobic bacteria have evolved various strategies, including release of siderophores or other organic acids that scavenge external Fe(III and deliver it to the cells. This research investigated the role of siderophores produced by Pseudomonas aeruginosa in the acquisition of Fe(III from two iron-bearing colloidal nontronites (NAu-1 and NAu-2, comparing differences in bioavailability related with site occupancy and distribution of Fe(III in the two lattices. To avoid both the direct contact of the mineral colloids with the bacterial cells and the uncontrolled particle aggregation, nontronite suspensions were homogenously dispersed in a porous silica gel before the dissolution experiments. A multiparametric approach coupling UV-vis spectroscopy and spectral decomposition algorithm was implemented to monitor simultaneously the solubilisation of Fe and the production of pyoverdine in microplate-based batch experiments. Both nontronites released Fe in a particle concentration-dependent manner when incubated with the wild-type P. aeruginosa strain, however iron released from NAu-2 was substantially greater than from NAu-1. The profile of organic acids produced in both cases was similar and may not account for the difference in the iron dissolution efficiency. In contrast, a pyoverdine-deficient mutant was unable to mobilise Fe(III from either nontronite, whereas iron dissolution occurred in abiotic experiments conducted with purified pyoverdine. Overall, our data provide evidence that P. aeruginosa indirectly mobilise Fe from nontronites primarily through the production of pyoverdine. The structural Fe present on the edges of Nau-2 rather than Nau-1 particles appears to be more bio-accessible, indicating that the distribution of Fe, in the tetrahedron and/or in the octahedron

  1. Nitric oxide and plant iron homeostasis.

    Science.gov (United States)

    Buet, Agustina; Simontacchi, Marcela

    2015-03-01

    Like all living organisms, plants demand iron (Fe) for important biochemical and metabolic processes. Internal imbalances, as a consequence of insufficient or excess Fe in the environment, lead to growth restriction and affect crop yield. Knowledge of signals and factors affecting each step in Fe uptake from the soil and distribution (long-distance transport, remobilization from old to young leaves, and storage in seeds) is necessary to improve our understanding of plant mineral nutrition. In this context, the role of nitric oxide (NO) is discussed as a key player in maintaining Fe homeostasis through its cross talk with hormones, ferritin, and frataxin and the ability to form nitrosyl-iron complexes. © 2015 New York Academy of Sciences.

  2. Temperature dependence of nitrogen solubility in iron base multicomponent melts

    International Nuclear Information System (INIS)

    Sokolov, V.M.; Koval'chuk, L.A.

    1986-01-01

    Method for calculating temperature dependence of nitrogen solubility in iron base multicomponent melts is suggested. Application areas of existing methods were determined and advantages of the new method for calculating nitrogen solubility in multicomponent-doped iron melts (Fe-Ni-Cr-Mo, Fe-Ni-Cr-Mn, Fe-Mo-V) at 1773-2073 K are shown

  3. The structure of high-quality aluminium cast iron

    Directory of Open Access Journals (Sweden)

    D. Kopyciński

    2012-01-01

    Full Text Available In this study presents the analyse of aluminium iron cast structure (as-cast condition which are used in high temperature. While producing the casts of aluminium iron major influence has been preserve the structure of technological process parameters. The addition to Fe-C-Al alloy V, Ti, Cr leads to the improvement of functional and mechanical cast qualities. In this study, a method was investigated to eliminate the presence of undesirable Al4C3 phases in a aluminium cast iron structure and thus improve the production process. V and Ti additions in aluminium cast iron allows to development of FeAl - VC or TiC alloys. In particular, V or Ti contents above 5 wt.% were found to totally eliminate the presence of Al4C3. In addition, preliminary work indicates that the alloy with the FeAl - VC or TiC structure reveals high oxidation resistance. The introduction of 5 wt.% chromium to aluminium cast iron strengthened Al4C3 precipitate. Thus, the resultant alloy can be considered an intermetallic FeAl matrix strengthened by VC and TiC or modified Al4C3 reinforcements.

  4. Effect of Soil Parameters on the Kinetics of the Displacement of Fe from FeEDDHA Chelates by Cu

    NARCIS (Netherlands)

    Schenkeveld, W.D.C.; Reichwein, A.M.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2012-01-01

    In soil application, o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) is the active ingredient of FeEDDHA chelate-based Fe fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the displacement of Fe from FeEDDHA by Cu. The actual impact

  5. Assessment of iron deficiency in pregnant women by determining iron status

    International Nuclear Information System (INIS)

    Raza, N.; Munazza, B.; Ayub, M.; Sarwar, I

    2011-01-01

    Background: Pregnant women constitute a high risk group for iron deficiency. Maternal iron deficiency and particularly iron deficiency anaemia may be associated with detrimental effects on maternal and infant function and particularly with a higher risk of preterm delivery and delivery of low birth weight neonates. Objective of this study was to assess and compare the iron status of normal healthy non-pregnant women with that of pregnant women of Hazara Division. Methods: This study was conducted at Faculty of Health Sciences, Hazara University, and Ayub Medical College, Abbottabad from first March to /31 August 2006. Altogether 120 women, 90 pregnant at various stages of pregnancy and 30 non-pregnant women as control group were included in this study by convenience sampling. Their iron status was assessed by determination of haemoglobin (Hb), Serum ferritin, Serum-iron, Total Iron Binding Capacity (TIBC), Unsaturated Iron Binding Capacity (UIBC), and Percentage saturation of transferrin. Data generated on these variables were subjected to ANOVA and correlation analysis. Results: The salient finding of this study is a significant decrease in Hb, Serum ferritin, Serum iron, percentage saturation of transferrin and a significant increase in values of TIBC and a pronounced increase in UIBC in second and third trimester compared to first trimester in iron deficient pregnant women. The mean values of Hb, SF, and Fe/TIBC% were significantly lower in the cases than in the control and significantly higher values of TIBC and UIBC were observed in the cases compared to controls. Significant correlations were observed for TIBC, UIBC and Fe/TIBC% against serum iron in different trimesters of pregnancy. Conclusion: A high percentage of the pregnant women are iron deficient due to factors such as high parity, poor dietary habits and socioeconomic status. (author)

  6. Iron migration from the anode surface in alumina electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravleva, Elena N.; Drozdova, Tatiana N.; Ponomareva, Svetlana V. [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Kirik, Sergei D., E-mail: kiriksd@yandex.ru [Siberian Federal University, Krasnoyarsk, 660041 (Russian Federation); Institute of Chemistry and Chemical Technology SB RAS, Krasnoyarsk, 660036 (Russian Federation)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Corrosion destruction of two-component iron-based alloys in high-temperature aluminum electrolysis in the cryolite alumina melt has been studied. Black-Right-Pointing-Pointer It was found that at the first stage oxidative polarization of iron atoms on the anode surface into Fe{sup 2+} takes place. Black-Right-Pointing-Pointer Fe{sup 2+} interacts with cryolite melt producing FeF{sub 2}. Black-Right-Pointing-Pointer FeF{sub 2} gives oxides FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Black-Right-Pointing-Pointer The participation of oxygen in the corrosion has not been observed. - Abstract: Corrosion destruction of two-component iron-based alloys used as an anode in high-temperature alumina electrolysis in the melt of NaF/KF/AlF{sub 3} electrolyte has been considered. Ni, Si, Cu, Cr, Mn, Al, Ti in the amount of up to 10% have been tested as the dopants to an anode alloys. The composition of the corrosion products has been studied using X-ray diffraction, scanning electron microscopy and electron microprobe analysis. It has been established that the anode corrosion is induced by a surface electrochemical polarization and iron atom oxidation. Iron ions come into an exchange interaction with the fluoride components of the melted electrolyte, producing FeF{sub 2}. The last interacts with oxyfluoride species transforming into the oxide forms: FeAl{sub 2}O{sub 4}, Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3}. Due to the low solubility, the iron oxides are accumulated in the near-electrode sheath. The only small part of iron from anode migrates to cathode that makes an production of high purity aluminum of a real task. The alloy dopants are also subjected to corrosion in accordance with electromotive series resulting corrosion tunnels on the anode surface. The oxides are final compounds which collect in the same area. The corrosion products form an anode shell which is electronic conductor at electrolysis temperature. The

  7. Effect of NaFeEDTA-fortified soy sauce on zinc absorption in children.

    Science.gov (United States)

    Li, Min; Wu, Jinghuan; Ren, Tongxiang; Wang, Rui; Li, Weidong; Piao, Jianhua; Wang, Jun; Yang, Xiaoguang

    2015-03-01

    NaFeEDTA has been applied in many foods as an iron fortificant and is used to prevent iron deficiency in Fe-depleted populations. In China, soy sauce is fortified with NaFeEDTA to control iron deficiency. However, it is unclear whether Fe-fortified soy sauce affects zinc absorption. To investigate whether NaFeEDTA-fortified soy sauce affects zinc absorption in children, sixty children were enrolled in this study and randomly assigned to three groups (10 male children and 10 female children in each group). All children received daily 3 mg of (67)Zn and 1.2 mg of dysprosium orally, while the children in the three groups were supplemented with NaFeEDTA-fortified soy sauce (6 mg Fe, NaFeEDTA group), FeSO₄-fortified soy sauce (6 mg Fe, FeSO₄ group), and no iron-fortified soy sauce (control group), respectively. Fecal samples were collected during the experimental period and analyzed for the Zn content, (67)Zn isotope ratio and dysprosium content. The Fe intake from NaFeEDTA-fortified and FeSO₄-fortified groups was significantly higher than that in the control group (P sauce does not affect Zn bioavailability in children.

  8. High pressure Moessbauer spectroscopy of perovskite iron oxide

    International Nuclear Information System (INIS)

    Nasu, Saburo; Suenaga, Tomoya; Morimoto, Shotaro; Kawakami, Takateru; Kuzushita, Kaori; Takano, Mikio

    2003-01-01

    High-pressure 57 Fe Moessbauer spectroscopy using a diamond anvil cell has been performed for perovskite iron oxides SrFeO 3 , CaFeO 3 and La 1/3 Sr 2/3 O 3 . The charge states and the magnetic dependency to pressure were determined. Pressure magnetic phase diagrams of these perovskite iron oxides are determined up to about 70 GPa. To be clear the magnetic ordered state, they are measured up to 7.8 T external magnetic fields at 4.5K. The phase transition of these perovskite oxides to ferromagnetisms with high magnetic ordered temperature is observed. In higher pressure, high spin-low spin transition of oxides besides CaFeO 3 is generated. The feature of Moessbauer spectroscopy, perovskite iron oxide and Moessbauer spectroscopy under high pressure are explained. (S.Y.)

  9. Assessment of Iron Fortification Influence on Organoleptics and Physico-Chemical Properties of Yogurt

    Directory of Open Access Journals (Sweden)

    N. Askary

    2013-08-01

    Full Text Available Innumerable percentage of the world population suffers from shortage of vitamins and minerals which is usually called malnutrition. Enough perception and access of such essential vitamins and minerals have close relationship with eternity, physical and mental developments, good health, general welfare of individuals and societies. In this research, the fortification of yogurt with iron has been studied. The kinds of iron used in this study include: FeCl3 (H2O6, The whey protein-chelated iron (Fe-W