WorldWideScience

Sample records for ir-uv pump-probe delay

  1. Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser

    International Nuclear Information System (INIS)

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric; Schirmel, Nora; Redlin, Harald

    2017-01-01

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6 H 3 F 2 I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the origin of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.

  2. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  3. High-repetition-rate setup for pump-probe time-resolved XUV-IR experiments employing ion and electron momentum imaging

    Science.gov (United States)

    Pathak, Shashank; Robatjazi, Seyyed Javad; Wright Lee, Pearson; Raju Pandiri, Kanaka; Rolles, Daniel; Rudenko, Artem

    2017-04-01

    J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan KS, USA We report on the development of a versatile experimental setup for XUV-IR pump-probe experiments using a 10 kHz high-harmonic generation (HHG) source and two different charged-particle momentum imaging spectrometers. The HHG source, based on a commercial KM Labs eXtreme Ultraviolet Ultrafast Source, is capable of delivering XUV radiation of less than 30 fs pulse duration in the photon energy range of 17 eV to 100 eV. It can be coupled either to a conventional velocity map imaging (VMI) setup with an atomic, molecular, or nanoparticle target; or to a novel double-sided VMI spectrometer equipped with two delay-line detectors for coincidence studies. An overview of the setup and results of first pump-probe experiments including studies of two-color double ionization of Xe and time-resolved dynamics of photoionized CO2 molecule will be presented. This project is supported in part by National Science Foundation (NSF-EPSCOR) Award No. IIA-1430493 and in part by the Chemical science, Geosciences, and Bio-Science division, Office of Basic Energy Science, Office of science, U.S. Department of Energy. K.

  4. Monte Carlo wave-packet approach to trace nuclear dynamics in molecular excited states by XUV-pump-IR-probe spectroscopy

    Science.gov (United States)

    Jing, Qingli; Bello, Roger Y.; Martín, Fernando; Palacios, Alicia; Madsen, Lars Bojer

    2018-04-01

    Recent research interests have been raised in uncovering and controlling ultrafast dynamics in excited neutral molecules. In this work we generalize the Monte Carlo wave packet (MCWP) approach to XUV-pump-IR-probe schemes to simulate the process of dissociative double ionization of H2 where singly excited states in H2 are involved. The XUV pulse is chosen to resonantly excite the initial ground state of H2 to the lowest excited electronic state of 1Σu + symmetry in H2 within the Franck-Condon region. The delayed intense IR pulse couples the excited states of 1Σu + symmetry with the nearby excited states of 1Σg + symmetry. It also induces the first ionization from H2 to H2 + and the second ionization from H2 + to H++H+. To reduce the computational costs in the MCWP approach, a sampling method is proposed to determine in time the dominant ionization events from H2 to H2+. By conducting a trajectory analysis, which is a unique possibility within the MCWP approach, the origins of the characteristic features in the nuclear kinetic energy release spectra are identified for delays ranging from 0 to 140 fs and the nuclear dynamics in the singly excited states in H2 is mapped out.

  5. Vibrational dynamics of adsorbed molecules under conditions of photodesorption: Pump-probe SFG spectra of CO/Pt(111)

    Science.gov (United States)

    Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard

    2004-09-01

    Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR+visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.

  6. Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range

    Science.gov (United States)

    Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.

    2005-11-01

    An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.

  7. Femtosecond visible/visible and visible/mid-IR pump-probe study of the photosystem II core antenna complex CP47

    NARCIS (Netherlands)

    Groot, M.L.; Breton, J.; van Wilderen, L.; Dekker, J.P.; van Grondelle, R.

    2004-01-01

    CP47 is one of the two core antenna proteins of Photosystem II involved in the transfer of solar energy toward the photochemically active reaction center, the D1D2cytb559 complex. We have performed vis/vis and vis/mid-IR pump-probe experiments at room temperature as a first step in linking the

  8. Development of an X-ray delay unit for correlation spectroscopy and pump-probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Roseker, Wojciech

    2008-07-15

    Probing condensed matter on time scales ranging from femtoseconds to nanoseconds will be one of the key topics for future X-ray Free Electron Laser (XFEL) sources. The accessible time windows are, however, compromised by the intrinsic time structure of the sources. One way to overcome this limitation is the usage of a time delay unit. A prototype device capable of splitting an X-ray pulse into two adjustable fractions, delaying one of them with the aim to perform X-ray Photon Correlation Spectroscopy and pump-probe type studies was designed and manufactured. The device utilizes eight perfect crystals in vertical 90 scattering geometry. Its performance has been verified with 8.39 keV and 12.4 keV Xrays at various synchrotron sources. The measured throughput of the device with a Si(333) monochromator at 8.39 keV under ambient conditions is 0.6%. The stability was verified at 12.4 keV and operation without realignment and feedback was possible for more than 30 minutes. Time delays up to 2.95 ns have been achieved. The highest resolution achieved in an experiment was 15.4 ps, a value entirely determined by the diagnostics system. The influence of the delay unit optics on the coherence properties of the beam was investigated by means of Fraunhofer diffraction and static speckle analysis. The obtained high fringe visibility and contrast values larger than 23% indicate the feasibility of performing coherence based experiments with the delay line. (orig.)

  9. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  10. Pump-probe study of atoms and small molecules with laser driven high order harmonics

    Science.gov (United States)

    Cao, Wei

    A commercially available modern laser can emit over 1015 photons within a time window of a few tens of femtoseconds (10-15second), which can be focused into a spot size of about 10 mum, resulting in a peak intensity above 1014W/cm2. This paves the way for table-top strong field physics studies such as above threshold ionization (ATI), non-sequential double ionization (NSDI), high order harmonic generation (HHG), etc.. Among these strong laser-matter interactions, high order harmonic generation, which combines many photons of the fundamental laser field into a single photon, offers a unique way to generate light sources in the vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) region. High order harmonic photons are emitted within a short time window from a few tens of femtoseconds down to a few hundreds of attoseconds (10 -18second). This highly coherent nature of HHG allows it to be synchronized with an infrared (IR) laser pulse, and the pump-probe technique can be adopted to study ultrafast dynamic processes in a quantum system. The major work of this thesis is to develop a table-top VUV(EUV) light source based on HHG, and use it to study dynamic processes in atoms and small molecules with the VUV(EUV)-pump IR-probe method. A Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) apparatus is used for momentum imaging of the interaction products. Two types of high harmonic pump pulses are generated and applied for pump-probe studies. The first one consists of several harmonics forming a short attosecond pulse train (APT) in the EUV regime (around 40 eV). We demonstrate that, (1) the auto-ionization process triggered by the EUV in cation carbon-monoxide and oxygen molecules can be modified by scanning the EUV-IR delay, (2) the phase information of quantum trajectories in bifurcated high harmonics can be extracted by performing an EUV-IR cross-correlation experiment, thus disclosing the macroscopic quantum control in HHG. The second type of high harmonic source

  11. New horizons for Supercontinuum light sources: from UV to mid-IR

    DEFF Research Database (Denmark)

    Thomsen, Carsten L.; Nielsen, Frederik Donbæk; Johansen, Jeppe

    2013-01-01

    Commercially available supercontinuum sources continue to experience a strong growth in a wide range of industrial and scientific applications. In addition, there is a significant research effort focused on extending the wavelength coverage both towards UV and Mid-IR. Broadband sources covering...... and novel pumping schemes, whereas shifting the spectrum further towards the UV has been based on sophisticated microstructure fiber designs. Here we present our latest developments in tailoring the power and spectral coverage of spatially coherent broadband supercontinuum sources....

  12. Increase in the temperature of a laser plasma formed by two-frequency UV - IR irradiation of metal targets

    International Nuclear Information System (INIS)

    Antipov, A A; Grasyuk, Arkadii Z; Efimovskii, S V; Kurbasov, Sergei V; Losev, Leonid L; Soskov, V I

    1998-01-01

    An experimental investigation was made of a laser plasma formed by successive irradiation of a metal target with 30-ps UV and IR laser pulses. The UV prepulse, of 266 nm wavelength, was of relatively low intensity (∼ 10 12 W cm -2 ), whereas the intensity of an IR pulse, of 10.6 μm wavelength, was considerably higher (∼3 x 10 14 W cm -2 ) and it was delayed by 0 - 6 ns (the optimal delay was 2 ns). Such two-frequency UV - IR irradiation produced a laser plasma with an electron temperature 5 times higher than that of a plasma created by singe-frequency IR pulses of the same (∼3 x 10 14 W cm -2 ) intensity. (interaction of laser radiation with matter. laser plasma)

  13. Frequency-resolved pump-probe characterization of femtosecond infrared pulses

    NARCIS (Netherlands)

    Yeremenko, S.; Baltuška, A.; Haan, F. de; Pshenichnikov, M.S.; Wiersma, D.A.

    2002-01-01

    A novel method for ultrashort IR pulse characterization is presented. The technique utilizes a frequency-resolved pump-probe geometry that is common in applications of ultrafast spectroscopy, without any modifications of the setup. The experimental demonstration of the method was carried out to

  14. Probing Dynamics in Colloidal Crystals with Pump-Probe Experiments at LCLS: Methodology and Analysis

    Directory of Open Access Journals (Sweden)

    Nastasia Mukharamova

    2017-05-01

    Full Text Available We present results of the studies of dynamics in colloidal crystals performed by pump-probe experiments using an X-ray free-electron laser (XFEL. Colloidal crystals were pumped with an infrared laser at a wavelength of 800 nm with varying power and probed by XFEL pulses at an energy of 8 keV with a time delay up to 1000 ps. The positions of the Bragg peaks, and their radial and azimuthal widths were analyzed as a function of the time delay. The spectral analysis of the data did not reveal significant enhancement of frequencies expected in this experiment. This allowed us to conclude that the amplitude of vibrational modes excited in colloidal crystals was less than the systematic error caused by the noise level.

  15. New IR-UV gas sensor to energy and transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Fateev, A.; Clausen, S.

    2010-12-15

    In situ simultaneous measurements of gas temperature and gas composition are of great interest in combustion research and give useful information about conditions, chemical reactions and gas mixing in many industrial processes. An optically based technique is beneficial because it is non-intrusive, accurate, fast and can be performed in situ for various extremely hard conditions. In humid and hot gas flows UV technique is more sensitive than FTIR one for fast gas concentration measurements of NO and SO{sub 2} and gives a great opportunity for simultaneous measurements of O{sub 2} concentration. Analysis of the fine structure of the UV absorption bands of, for example, NO, SO{sub 2} or O{sub 2} allows also to determine a value of the gas temperature. Absorption cross sections of CO{sub 2}, H{sub 2}O and SO{sub 2} measured using Risoe DTU's hot gas cell facility at elevated temperatures up to 1500 deg. C are reported. Design of a new developed 9-m long water-cooled fiber-optic probe with removable optical head suitable for fast IR/UV local gas absorption/emission measurements is described. The probe performance was successfully tested in several trial measurements on full scale multi-fuel fired boiler. A concept of fast time/spectralresolved measurements has been used in measurements on a large ship engine based on IR and UV broad band spectroscopy. (Author)

  16. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    Directory of Open Access Journals (Sweden)

    Jasper J. van Thor

    2015-01-01

    Full Text Available In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe” which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  17. Airborne pipeline leak detection: UV or IR?

    Science.gov (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  18. Time zero determination for FEL pump-probe studies based on ultrafast melting of bismuth.

    Science.gov (United States)

    Epp, S W; Hada, M; Zhong, Y; Kumagai, Y; Motomura, K; Mizote, S; Ono, T; Owada, S; Axford, D; Bakhtiarzadeh, S; Fukuzawa, H; Hayashi, Y; Katayama, T; Marx, A; Müller-Werkmeister, H M; Owen, R L; Sherrell, D A; Tono, K; Ueda, K; Westermeier, F; Miller, R J D

    2017-09-01

    A common challenge for pump-probe studies of structural dynamics at X-ray free-electron lasers (XFELs) is the determination of time zero (T 0 )-the time an optical pulse (e.g., an optical laser) arrives coincidently with the probe pulse (e.g., a XFEL pulse) at the sample position. In some cases, T 0 might be extracted from the structural dynamics of the sample's observed response itself, but generally, an independent robust method is required or would be superior to the inferred determination of T 0 . In this paper, we present how the structural dynamics in ultrafast melting of bismuth can be exploited for a quickly performed, reliable and accurate determination of T 0 with a precision below 20 fs and an overall experimental accuracy of 50 fs to 150 fs (estimated). Our approach is potentially useful and applicable for fixed-target XFEL experiments, such as serial femtosecond crystallography, utilizing an optical pump pulse in the ultraviolet to near infrared spectral range and a pixelated 2D photon detector for recording crystallographic diffraction patterns in transmission geometry. In comparison to many other suitable approaches, our method is fairly independent of the pumping wavelength (UV-IR) as well as of the X-ray energy and offers a favorable signal contrast. The technique is exploitable not only for the determination of temporal characteristics of the experiment at the interaction point but also for investigating important conditions affecting experimental control such as spatial overlap and beam spot sizes.

  19. IR emission and UV extinction in two open clusters

    International Nuclear Information System (INIS)

    Hackwell, J.A.; Hecht, J.H.

    1989-01-01

    Recent models of interstellar extinction have shown the importance of understanding both the UV and IR properties of interstellar dust grains. IRAS data have shown variations in 60 and 100 micron emissions presumably due to the presence of IR cirrus, while recent observations in the UV by Fitzpatrick and Massa have identified components in the UV extinction curve which vary in different star regions. A Draine and Anderson model connects these results by proposing that different size variations in interstellar grains would cause distinct changes in both the IR emission and the UV extinction. In order to test this model it is necessary to make observations in well defined locations away from peculiar extinction regions. In the infrared this means looking away from the galactic plane so as to limit non-local sources of IR radiation. Two open clusters that are out of the galactic plane and which contain a number of late B and early A stars suitable for UV extinction studies, and whose IRAS data show variations in the 60/100 micron ratio were studied. Based on the Drain and Anderson model, variations were expected in their UV extinction curves that correlate with the IR cirrus emission

  20. Electron streaking in the autoionization region of H2

    International Nuclear Information System (INIS)

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2015-01-01

    We use a UV-pump/IR-probe scheme, combining a single attosecond UV pulse and a 750 nm IR pulse, to explore laser-assisted photoionization of the hydrogen molecule in the autoionization region. The electron energy distributions exhibit unusual streaking patterns that are explored for different angles of the electron ejection with respect to the polarization vector and the molecular axis. Moreover, by controlling the time delay between the pulses, we observe that one can suppress the autoionization channel. (paper)

  1. High Speed Pump-Probe Apparatus for Observation of Transitional Effects in Ultrafast Laser Micromachining Processes

    Directory of Open Access Journals (Sweden)

    Ilya Alexeev

    2015-12-01

    Full Text Available A pump-probe experimental approach has been shown to be a very efficient tool for the observation and analysis of various laser matter interaction effects. In those setups, synchronized laser pulses are used to create an event (pump and to simultaneously observe it (probe. In general, the physical effects that can be investigated with such an apparatus are restricted by the temporal resolution of the probe pulse and the observation window. The latter can be greatly extended by adjusting the pump-probe time delay under the assumption that the interaction process remains fairly reproducible. Unfortunately, this assumption becomes invalid in the case of high-repetition-rate ultrafast laser material processing, where the irradiation history strongly affects the ongoing interaction process. In this contribution, the authors present an extension of the pump-probe setup that allows to investigate transitional and dynamic effects present during ultrafast laser machining performed at high pulse repetition frequencies.

  2. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution

    NARCIS (Netherlands)

    Papagiannakis, E.; Vengris, M.; Larsen, D.S.; van Stokkum, I.H.M.; Hiller, R.G.; van Grondelle, R.

    2006-01-01

    Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited

  3. Real-time ultrafast dynamics of dense, hot matter measured by pump-probe Doppler spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lad, Amit D; Mondal, S; Narayanan, V; Ahmed, Saima; Kumar, G Ravindra; Rajeev, P P; Robinson, A P L [Central Laser Facility, Rutherford-Appleton Laboratory, Chilton, Oxfordshire (United Kingdom); Pasley, J, E-mail: amitlad@tifr.res.i [Department of Physics, University of York, Heslington, York (United Kingdom)

    2010-08-01

    A detailed understanding of the critical surface motion of high intensity laser produced plasma is very crucial for understanding the interaction. We employ the two colour pump-probe technique to report the first ever femtosecond scale ultrafast dynamics measurement of the critical surface of a solid plasma produced by a relativistically intense, femtosecond pump laser beam (10{sup 18} W/cm{sup 2}, 30 fs, 800 nm) on an aluminium target. We observe the Doppler shift of a time delayed probe laser beam (10{sup 12} W/cm{sup 2}, 80 fs, 400 nm) up to delays of 30 ps. Such unravelling of dynamics has not been possible in earlier measurements, which typically used the self reflection of a powerful pump pulse. We observe time dependent red and blue shifts and measure their magnitudes to infer plasma expansion velocity and acceleration and thereby the plasma profile. Our results are very well reproduced by 1D hydrodynamic simulation (HYADES code).

  4. Ultrafast laser pump/x-ray probe experiments

    International Nuclear Information System (INIS)

    Larsson, J.; Judd, E.; Schuck, P.J.

    1997-01-01

    In an ongoing project aimed at probing solids using x-rays obtained at the ALS synchrotron with a sub-picosecond time resolution following interactions with a 100 fs laser pulse, the authors have successfully performed pump-probe experiments limited by the temporal duration of ALS-pulse. They observe a drop in the diffraction efficiency following laser heating. They can attribute this to a disordering of the crystal. Studies with higher temporal resolution are required to determine the mechanism. The authors have also incorporated a low-jitter streakcamera as a diagnostic for observing time-dependant x-ray diffraction. The streakcamera triggered by a photoconductive switch was operated at kHz repetition rates. Using UV-pulses, the authors obtain a temporal response of 2 ps when averaging 5000 laser pulses. They demonstrate the ability to detect monochromatized x-ray radiation from a bend-magnet with the streak camera by measuring the pulse duration of a x-ray pulse to 70 ps. In conclusion, the authors show a rapid disordering of an InSb crystal. The resolution was determined by the duration of the ALS pulse. They also demonstrate that they can detect x-ray radiation from a synchrotron source with a temporal resolution of 2ps, by using an ultrafast x-ray streak camera. Their set-up will allow them to pursue laser pump/x-ray probe experiments to monitor structural changes in materials with ultrafast time resolution

  5. Femtosecond Pump-Push-Probe and Pump-Dump-Probe Spectroscopy of Conjugated Polymers: New Insight and Opportunities.

    Science.gov (United States)

    Kee, Tak W

    2014-09-18

    Conjugated polymers are an important class of soft materials that exhibit a wide range of applications. The excited states of conjugated polymers, often referred to as excitons, can either deactivate to yield the ground state or dissociate in the presence of an electron acceptor to form charge carriers. These interesting properties give rise to their luminescence and the photovoltaic effect. Femtosecond spectroscopy is a crucial tool for studying conjugated polymers. Recently, more elaborate experimental configurations utilizing three optical pulses, namely, pump-push-probe and pump-dump-probe, have been employed to investigate the properties of excitons and charge-transfer states of conjugated polymers. These studies have revealed new insight into femtosecond torsional relaxation and detrapping of bound charge pairs of conjugated polymers. This Perspective highlights (1) the recent achievements by several research groups in using pump-push-probe and pump-dump-probe spectroscopy to study conjugated polymers and (2) future opportunities and potential challenges of these techniques.

  6. Electron streaking and dissociation in laser-assisted photoionization of molecular hydrogen

    International Nuclear Information System (INIS)

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2014-01-01

    We report ab initio calculations on laser-assisted photoionization of the hydrogen molecule in the energy region where autoionization from doubly excited states is expected to occur. We use a UV-pump/IR-probe scheme in which an isolated attosecond UV pulse and a 750 nm IR pulse are combined. The IR pulse has a relatively low intensity (10 12 W cm −2 ), which allows us to perform a perturbative analysis of the calculated ionization probabilities differential in either electron or nuclear energy or both. We show that, for dissociative ionization, the electron energy distributions as a function of time delay exhibit unusual streaking patterns that are due to the presence of autoionizing states. These patterns significantly differ from the standard ones observed in direct single ionization of atoms and molecules. We also show that, by using such a pump–probe scheme, one can suppress autoionization from doubly excited states for time delays between 0 and 4 fs. (paper)

  7. UV, visible and IR laser interaction with gelatine

    International Nuclear Information System (INIS)

    Oujja, M; Rebollar, E; Abrusci, C; Amo, A Del; Catalina, F; Castillejo, M

    2007-01-01

    In this work we investigate the effects on gelatine films of nanosecond pulsed laser irradiation at different laser wavelengths from the UV to the IR at 248, 266, 355, 532 and 1064 nm. We compared gelatines differing in gel strength values (Bloom 75 and 225) and in crosslinking degree. Formation of bubbles at the wavelengths in the UV (248 and 266 nm), melting and resolidification at 355 nm, and formation of craters by ablation in the VIS and IR (532 and 1064 nm) are the observed morphological changes. On the other hand, changes of the fluorescence behaviour of the films upon UV irradiation reveal chemical modifications of photolabile chromophores

  8. Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1.

    Science.gov (United States)

    Fitzpatrick, Ann E; Lincoln, Craig N; van Wilderen, Luuk J G W; van Thor, Jasper J

    2012-01-26

    The primary photoreactions of the red absorbing ground state (Pr) of the cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 involve C15═C16 Z-E photoisomerization of its phycocyanobilin chromophore. The first observable product intermediate in pump-probe measurements of the photocycle, "Lumi-R", is formed with picosecond kinetics and involves excited state decay reactions that have 3 and 14 ps time constants. Here, we have studied the photochemical formation of the Lumi-R intermediate using multipulse picosecond visible spectroscopy. Pump-dump-probe (PDP) and pump-repump-probe (PRP) experiments were carried out by employing two femtosecond visible pulses with 1, 14, and 160 ps delays, together with a broadband dispersive visible probe. The time delays between the two excitation pulses have been selected to allow interaction with the dominant (3 and 14 ps) kinetic phases of Lumi-R formation. The frequency dependence of the PDP and PRP amplitudes was investigated at 620, 640, 660, and 680 nm, covering excited state absorption (λ(max) = 620 nm), ground state absorption (λ(max) = 660 nm), and stimulated emission (λ(max) = 680 nm) cross sections. Experimental double difference transient absorbance signals (ΔΔOD), from the PDP and PRP measurements, required corrections to remove contributions from ground state repumping. The sensitivity of the resulting ΔΔOD signals was systematically investigated for possible connectivity schemes and photochemical parameters. When applying a homogeneous (sequentially decaying) connectivity scheme in both the 3 and 14 ps kinetic phases, evidence for repumping of an intermediate that has an electronic ground state configuration (GSI) is taken from the dump-induced S1 formation with 620, 640, and 660 nm wavelengths and 1 and 14 ps repump delays. Evidence for repumping a GSI is also seen, for the same excitation wavelengths, when imposing a target connectivity scheme proposed in the literature for the 1 ps repump delay. In

  9. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  10. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    Science.gov (United States)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  11. Deciphering excited state evolution in halorhodopsin with stimulated emission pumping.

    Science.gov (United States)

    Bismuth, Oshrat; Komm, Pavel; Friedman, Noga; Eliash, Tamar; Sheves, Mordechai; Ruhman, Sanford

    2010-03-04

    The primary photochemical dynamics of Hb. pharaonis Halorhodopsin (pHR) are investigated by femtosecond visible pump-near IR dump-hyperspectral probe spectroscopy. The efficiency of excited state depletion is deduced from transient changes in absorption, recorded with and without stimulated emission pumping (SEP), as a function of the dump delay. The concomitant reduction of photocycle population is assessed by probing the "K" intermediate difference spectrum. Results show that the cross section for stimulating emission is nearly constant throughout the fluorescent state lifetime. Probing "K" demonstrates that dumping produces a proportionate reduction in photocycle yields. We conclude that, despite its nonexponential internal conversion (IC) kinetics, the fluorescent state in pHR constitutes a single intermediate in the photocycle. This contrasts with conclusions drawn from the study of primary events in the related chloride pump from Hb. salinarum (sHR), believed to produce the "K" intermediate from a distinct short-lived subpopulation in the excited state. Our discoveries concerning internal conversion dynamics in pHR are discussed in light of recent expectations for similar excited state dynamics in both proteins.

  12. Holography and thermalization in optical pump-probe spectroscopy

    Science.gov (United States)

    Bagrov, A.; Craps, B.; Galli, F.; Keränen, V.; Keski-Vakkuri, E.; Zaanen, J.

    2018-04-01

    Using holography, we model experiments in which a 2 +1 D strange metal is pumped by a laser pulse into a highly excited state, after which the time evolution of the optical conductivity is probed. We consider a finite-density state with mildly broken translation invariance and excite it by oscillating electric field pulses. At zero density, the optical conductivity would assume its thermalized value immediately after the pumping has ended. At finite density, pulses with significant dc components give rise to slow exponential relaxation, governed by a vector quasinormal mode. In contrast, for high-frequency pulses the amplitude of the quasinormal mode is strongly suppressed, so that the optical conductivity assumes its thermalized value effectively instantaneously. This surprising prediction may provide a stimulus for taking up the challenge to realize these experiments in the laboratory. Such experiments would test a crucial open question faced by applied holography: are its predictions artifacts of the large N limit or do they enjoy sufficient UV independence to hold at least qualitatively in real-world systems?

  13. Synchronized and configurable source of electrical pulses for x-ray pump-probe experiments

    International Nuclear Information System (INIS)

    Strachan, J. P.; Chembrolu, V.; Yu, X. W.; Tyliszczak, T.; Acremann, Y.

    2007-01-01

    A method is described for the generation of software tunable patterns of nanosecond electrical pulses. The bipolar, high repetition rate (up to 250 MHz), fast rise time (<30 ps), square pulses are suitable for applications such as the excitation sequence in dynamic pump-probe experiments. Synchronization with the time structure of a synchrotron facility is possible as well as fine control of the relative delay in steps of 10 ps. The pulse generator described here is used to excite magnetic nanostructures with current pulses. Having an excitation system which can match the high repetition rate of a synchrotron allows for utilization of the full x-ray flux and is needed in experiments which require a large photon flux. The fast rise times allow for picosecond time resolution in pump-probe experiments. All pulse pattern parameters are configurable by software

  14. From UV/IR mixing to closed strings

    International Nuclear Information System (INIS)

    Lopez, Esperanza

    2003-01-01

    It was shown in [1] that the leading UV/IR mixing effects in noncommutative gauge theories on D-branes are able to capture information about the closed string spectrum of the parent string theory. The analysis was carried out for D-branes on nonsupersymmetric C 3 /Z N orbifolds of Type IIB. In this paper we consider D-branes on twisted circles compactifications of Type II string theory. We find that the signs of the leading UV/IR mixing effects know about the (mass) 2 gap between the lowest modes in NSNS and RR closed string towers. Moreover, the relevant piece of the field theory effective action can be reproduced purely in the language of closed strings. Remarkably, this approach unifies in a single structure, that of a closed string exchange between D-branes, both the leading planar and nonplanar effects associated to the absence of supersymmetry. (author)

  15. Twisted Poincare invariance, noncommutative gauge theories and UV-IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, A.P. [Department of Physics, Syracuse University, Syracuse NY, 13244-1130 (United States)], E-mail: bal@physics.syr.edu; Pinzul, A. [Insituto de Fisica, Universidade de Sao Paulo, C.P. 66318, 05315-970 Sao Paulo, SP (Brazil)], E-mail: apinzul@fma.if.usp.br; Queiroz, A.R. [Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, C.P. 04667, Brasilia, DF (Brazil); Universidade Federal de Goias, Campus Avancado de Catalao, Departamento de Fisica, St. Universitario - 75700-000, Catalao-GO (Brazil)], E-mail: amilcarq@gmail.com

    2008-10-09

    In the absence of gauge fields, quantum field theories on the Groenewold-Moyal (GM) plane are invariant under a twisted action of the Poincare group if they are formulated following [M. Chaichian, P.P. Kulish, K. Nishijima, A. Tureanu, Phys. Lett. B 604 (2004) 98, (hep-th/0408069); P. Aschieri, C. Blohmann, M. Dimitrijevic, F. Meyer, P. Schupp, J. Wess, Class. Quantum Grav. 22 (2005) 3511, (hep-th/0504183); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (hep-th/0608138); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.0069 [hep-th]); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.1379 [hep-th]); A.P. Balachandran, A. Pinzul, B.A. Qureshi, (arXiv: 0708.1779 [hep-th])]. In that formulation, such theories also have no UV-IR mixing [A.P. Balachandran, A. Pinzul, B.A. Qureshi, Phys. Lett. B 634 (2006) 434, (hep-th/0508151)]. Here we investigate UV-IR mixing in gauge theories with matter following the approach of [A.P. Balachandran, A. Pinzul, B. A. Qureshi, S. Vaidya, (hep-th/0608138); A.P. Balachandran, A. Pinzul, B.A. Qureshi, S. Vaidya, (arXiv: 0708.0069 [hep-th])]. We prove that there is UV-IR mixing in the one-loop diagram of the S-matrix involving a coupling between gauge and matter fields on the GM plane, the gauge field being non-Abelian. There is no UV-IR mixing if it is Abelian.

  16. Infrared-x-ray pump-probe spectroscopy of the NO molecule

    International Nuclear Information System (INIS)

    Guimaraes, F.F.; Felicissimo, V.C.; Kimberg, V.; Gel'mukhanov, F.; Aagren, H.; Cesar, A.

    2005-01-01

    Two color infrared-x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation

  17. Infrared x-ray pump-probe spectroscopy of the NO molecule

    Science.gov (United States)

    Guimarães, F. F.; Kimberg, V.; Felicíssimo, V. C.; Gel'Mukhanov, F.; Cesar, A.; Ågren, H.

    2005-07-01

    Two color infrared x-ray pump-probe spectroscopy of the NO molecule is studied theoretically and numerically in order to obtain a deeper insight of the underlying physics and of the potential of this suggested technology. From the theoretical investigation a number of conclusions could be drawn: It is found that the phase of the infrared field strongly influences the trajectory of the nuclear wave packet, and hence, the x-ray spectrum. The trajectory experiences fast oscillations with the vibrational frequency with a modulation due to the anharmonicity of the potential. The dependences of the x-ray spectra on the delay time, the duration, and the shape of the pulses are studied in detail. It is shown that the x-ray spectrum keep memory about the infrared phase after the pump field left the system. This memory effect is sensitive to the time of switching-off the pump field and the Rabi frequency. The phase effect takes maximum value when the duration of the x-ray pulse is one-fourth of the infrared field period, and can be enhanced by a proper control of the duration and intensity of the pump pulse. The manifestation of the phase is different for oriented and disordered molecules and depends strongly on the intensity of the pump radiation.

  18. Cold, Gas-Phase UV and IR Spectroscopy of Protonated Leucine Enkephalin and its Analogues

    Science.gov (United States)

    Burke, Nicole L.; Redwine, James; Dean, Jacob C.; McLuckey, Scott A.; Zwier, Timothy S.

    2014-06-01

    The conformational preferences of peptide backbones and the resulting hydrogen bonding patterns provide critical biochemical information regarding the structure-function relationship of peptides and proteins. The spectroscopic study of cryogenically-cooled peptide ions in a mass spectrometer probes these H-bonding arrangements and provides information regarding the influence of a charge site. Leucine enkephalin, a biologically active endogenous opiod peptide, has been extensively studied as a model peptide in mass spectrometry. This talk will present a study of the UV and IR spectroscopy of protonated leucine enkephalin [YGGFL+H]+ and two of its analogues: the sodiated [YGGFL+Na]+ and C-terminally methyl esterified [YGGFL-OMe+H]+ forms. All experiments were performed in a recently completed multi-stage mass spectrometer outfitted with a cryocooled ion trap. Ions are generated via nano-electrospray ionization and the analyte of interest is isolated in a linear ion trap. The analyte ions are trapped in a 22-pole ion trap held at 5 K by a closed cycle helium cryostat and interrogated via UV and IR lasers. Photofragments are trapped and isolated in a second LIT and mass analyzed. Double-resonance UV and IR methods were used to assign the conformation of [YGGFL+H]+, using the NH/OH stretch, Amide I, and Amide II regions of the infrared spectrum. The assigned structure contains a single backbone conformation at vibrational/rotational temperatures of 10 K held together with multiple H-bonds that self-solvate the NH3+ site. A "proton wire" between the N and C termini reinforces the H-bonding activity of the COO-H group to the F-L peptide bond, whose cleavage results in formation of the b4 ion, which is a prevalent, low-energy fragmentation pathway for [YGGFL+H]+. The reinforced H-bonding network in conjunction with the mobile proton theory may help explain the prevalence of the b4 pathway. In order to elucidate structural changes caused by modifying this H-bonding activity

  19. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers

    International Nuclear Information System (INIS)

    Jana, Dipankar; Porwal, S.; Sharma, T. K.; Oak, S. M.; Kumar, Shailendra

    2014-01-01

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates

  20. In vivo pump-probe microscopy of melanoma and pigmented lesions

    Science.gov (United States)

    Wilson, Jesse W.; Degan, Simone; Mitropoulos, Tanya; Selim, M. Angelica; Zhang, Jennifer Y.; Warren, Warren S.

    2012-03-01

    A growing number of dermatologists and pathologists are concerned that the rapidly rising incidence of melanoma reflects not a true 'epidemic' but an increasing tendency to overdiagnose pigmented lesions. Addressing this problem requires both a better understanding of early-stage melanoma and new diagnostic criteria based on more than just cellular morphology and architecture. Here we present a method for in-vivo optical microscopy that utilizes pump-probe spectroscopy to image the distribution of the two forms of melanin in skin: eumelanin and pheomelanin. Images are acquired in a scanning microscope with a sensitive modulation transfer technique by analyzing back-scattered probe light with a lock-in amplifier. Early-stage melanoma is studied in a human skin xenografted mouse model. Individual melanocytes have been observed, in addition to pigmented keratinocytes. Combining the pump-probe images simultaneously with other noninvasive laser microscopy methods (confocal reflectance, multiphoton autofluorescence, and second harmonic generation) allows visualization of the skin architecture, framing the functional pump-probe image in the context of the surrounding tissue morphology. It is found that pump-probe images of melanin can be acquired with low peak intensities, enabling wide field-of-view pigmentation surveys. Finally, we investigate the diagnostic potential of the additional chemical information available from pump-probe microscopy.

  1. Wavelength dependent delay in the onset of FEL tissue ablation

    International Nuclear Information System (INIS)

    Tribble, J.A.; Edwards, G.S.; Lamb, J.A.

    1995-01-01

    We are investigating the wavelength dependence of the onset of laser tissue ablation in the IR Visible and UV ranges. Toward this end, we have made simultaneous measurements of the ejected material (using a HeNe probe beam tangential to the front surface) and the residual stress transient in the tissue (using traditional piezoelectric detection behind the thin samples). For the IR studies we have used the Vanderbilt FEL and for the UV and Vis range we have used a Q-switched ND:Yag with frequency doubling and quadrupling. To satisfy the conditions of the near field limit for the detection of the stress transient, the duration of the IR FEL macropulse must be as short as possible. We have obtained macropulses as short as 100 ns using Pockels Cell technology. The recording of the signals from both the photodiode monitoring the HeNe probe beam and the acoustic detector are synchronized with the arrival of the 100 ns macropulse. With subablative intensities, the resulting stress transient is bipolar with its positive peak separated from its negative peak by 100 ns in agreement with theory. Of particular interest is the comparison of ablative results using 3 μm and 6.45 μm pulses. Both the stress transient and the ejection of material suffer a greater delay (with respect to the arrival of the 100 ns pulse) when the FEL is tuned to 3 μm as compared to 6.45 μm. A comparison of IR Vis and UV data will be discussed in terms of microscopic mechanisms governing the laser ablation process

  2. Coherent evolution of parahydrogen induced polarisation using laser pump, NMR probe spectroscopy: Theoretical framework and experimental observation.

    Science.gov (United States)

    Halse, Meghan E; Procacci, Barbara; Henshaw, Sarah-Louise; Perutz, Robin N; Duckett, Simon B

    2017-05-01

    We recently reported a pump-probe method that uses a single laser pulse to introduce parahydrogen (p-H 2 ) into a metal dihydride complex and then follows the time-evolution of the p-H 2 -derived nuclear spin states by NMR. We present here a theoretical framework to describe the oscillatory behaviour of the resultant hyperpolarised NMR signals using a product operator formalism. We consider the cases where the p-H 2 -derived protons form part of an AX, AXY, AXYZ or AA'XX' spin system in the product molecule. We use this framework to predict the patterns for 2D pump-probe NMR spectra, where the indirect dimension represents the evolution during the pump-probe delay and the positions of the cross-peaks depend on the difference in chemical shift of the p-H 2 -derived protons and the difference in their couplings to other nuclei. The evolution of the NMR signals of the p-H 2 -derived protons, as well as the transfer of hyperpolarisation to other NMR-active nuclei in the product, is described. The theoretical framework is tested experimentally for a set of ruthenium dihydride complexes representing the different spin systems. Theoretical predictions and experimental results agree to within experimental error for all features of the hyperpolarised 1 H and 31 P pump-probe NMR spectra. Thus we establish the laser pump, NMR probe approach as a robust way to directly observe and quantitatively analyse the coherent evolution of p-H 2 -derived spin order over micro-to-millisecond timescales. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. UV / IR mixing in noncommutative field theory via open string loops

    International Nuclear Information System (INIS)

    Kiem, Youngjai; Lee, Sangmin

    2000-01-01

    We explicitly evaluate one-loop (annulus) planar and nonplanar open string amplitudes in the presence of the background NS-NS two-form field. In the decoupling limit of Seiberg and Witten, we find that the nonplanar string amplitudes reproduce the UV/IR mixing of noncommutative field theories. In particular, the investigation of the UV regime of the open string amplitudes shows that certain IR closed string degrees of freedom survive the decoupling limit as previously predicted from the noncommutative field theory analysis. These degrees of freedom are responsible for the quadratic, linear and logarithmic IR singularities when the D-branes embedded in space-time have the codimension zero, one and two, respectively. The analysis is given for both bosonic and supersymmetric open strings

  4. UV/IR mixing and the Goldstone theorem in noncommutative field theory

    International Nuclear Information System (INIS)

    Ruiz Ruiz, F.

    2002-01-01

    Noncommutative IR singularities and UV/IR mixing in relation with the Goldstone theorem for complex scalar field theory are investigated. The classical model has two coupling constants, λ 1 and λ 2 , associated to the two noncommutative extensions phi*starphistarphi* starphi and phistarphi*starphistarphi of the interaction term vertical bar phi vertical bar 4 on commutative spacetime. It is shown that the symmetric phase is one-loop renormalizable for all λ 1 and λ 2 compatible with perturbation theory, whereas the broken phase is proved to exist at one loop only if λ 2 =0, a condition required by the Ward identities for global U(1) invariance. Explicit expressions for the noncommutative IR singularities in the 1PI Green functions of both phases are given. They show that UV/IR duality does not hold for any of the phases and that the broken phase is free of quadratic noncommutative IR singularities. More remarkably, the pion selfenergy does not have noncommutative IR singularities at all, which proves essential to formulate the Goldstone theorem at one loop for all values of the spacetime noncommutativity parameter θ

  5. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution.

    Science.gov (United States)

    Papagiannakis, Emmanouil; Vengris, Mikas; Larsen, Delmar S; van Stokkum, Ivo H M; Hiller, Roger G; van Grondelle, Rienk

    2006-01-12

    Optical pump-induced dynamics of the highly asymmetric carotenoid peridinin in methanol was studied by dispersed pump-probe, pump-dump-probe, and pump-repump-probe transient absorption spectroscopy in the visible region. Dispersed pump-probe measurements show that the decay of the initially excited S2 state populates two excited states, the S1 and the intramolecular charge-transfer (ICT) state, at a ratio determined by the excitation wavelength. The ensuing spectral evolution occurs on the time scale of a few picoseconds and suggests the equilibration of these states. Dumping the stimulated emission of the ICT state with an additional 800-nm pulse after 400- and 530-nm excitation preferentially removes the ICT state contribution from the broad excited-state absorption, allowing for its spectral characterization. At the same time, an unrelaxed ground-state species, which has a subpicosecond lifetime, is populated. The application of the 800-nm pulse at early times, when the S2 state is still populated, led to direct generation of the peridinin cation, observed for the first time in a transient absorption experiment. The excited and ground electronic states manifold of peridinin has been reconstructed using target analysis; this approach combined with the measured multipulse spectroscopic data allows us to estimate the spectra and time scales of the corresponding transient states.

  6. Vitamin C affects the antioxidative/oxidative status in rats irradiated with ultraviolet (UV) and infrared (IR) light

    DEFF Research Database (Denmark)

    Niemiec, T.; Sawosz, E.; Chwalibog, André

    2006-01-01

    Four grups of twenty growing Wistar rats were irradiated with either UV, IR, UV+IR light or were not irradiated (control). Ten rats from each group received a diet supplemented with 0.6% of L-ascorbic acid. The effects of the mega-dose of vitamin C were evaluated by changes in the antioxidative....../oxidative status. UV and IR radiation promoted oxidative DNA degradation in rat livers and supplementation with ascorbic acid strengthened the prooxidative effects on DNA oxidation in rats irradiated with UV or IR light. Vitamin C also increased the tiobarbituric acid reactive substances (TBARS) concentration...

  7. MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT z < 1.4

    International Nuclear Information System (INIS)

    Salim, Samir; Dickinson, Mark; Michael Rich, R.; Charlot, Stephane; Lee, Janice C.; Schiminovich, David; Perez-Gonzalez, Pablo G.; Ashby, Matthew L. N.; Noeske, Kai; Papovich, Casey; Weiner, Benjamin J.; Faber, S. M.; Ivison, Rob J.; Frayer, David T.; Walton, Josiah M.; Chary, Ranga-Ram; Bundy, Kevin; Koekemoer, Anton M.

    2009-01-01

    Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z 10 -10 12 L sun ). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z IR >10 11 L sun , yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ∼50% to the mid-IR luminosity, and we see no evidence for a large population of 'IR excess' galaxies.

  8. Photodissociation Spectroscopy of Cold Protonated Synephrine: Surprising Differences between IR-UV Hole-Burning and IR Photodissociation Spectroscopy of the O-H and N-H Modes.

    Science.gov (United States)

    Nieuwjaer, N; Desfrançois, C; Lecomte, F; Manil, B; Soorkia, S; Broquier, M; Grégoire, G

    2018-04-19

    We report the UV and IR photofragmentation spectroscopies of protonated synephrine in a cryogenically cooled Paul trap. Single (UV or IR) and double (UV-UV and IR-UV) resonance spectroscopies have been performed and compared to quantum chemistry calculations, allowing the assignment of the lowest-energy conformer with two rotamers depending on the orientation of the phenol hydroxyl (OH) group. The IR-UV hole burning spectrum exhibits the four expected vibrational modes in the 3 μm region, i.e., the phenol OH, C β -OH, and two NH 2 + stretches. The striking difference is that, among these modes, only the free phenol OH mode is active through IRPD. The protonated amino group acts as a proton donor in the internal hydrogen bond and displays large frequency shifts upon isomerization expected during the multiphoton absorption process, leading to the so-called IRMPD transparency. More interestingly, while the C β -OH is a proton acceptor group with moderate frequency shift for the different conformations, this mode is still inactive through IRPD.

  9. Looking at Art in the IR and UV

    Science.gov (United States)

    Falco, Charles

    2013-03-01

    Starting with the very earliest cave paintings art has been created to be viewed by the unaided eye and, until very recently, it wasn't even possible to see it at wavelengths outside the visible spectrum. However, it is now possible to view paintings, sculptures, manuscripts, and other cultural artifacts at wavelengths from the x-ray, through the ultraviolet (UV), to well into the infrared (IR). Further, thanks to recent advances in technology, this is becoming possible with hand-held instruments that can be used in locations that were previously inaccessible to anything but laboratory-scale image capture equipment. But, what can be learned from such ``non-visible'' images? In this talk I will briefly describe the characteristics of high resolution UV and IR imaging systems I developed for this purpose by modifying high resolution digital cameras. The sensitivity of the IR camera makes it possible to obtain images of art ``in situ'' with standard museum lighting, resolving features finer than 0.35 mm on a 1.0x0.67 m painting. I also have used both it and the UV camera in remote locations with battery-powered illumination sources. I will illustrate their capabilities with images of various examples of Western, Asian, and Islamic art in museums on three continents, describing how these images have revealed important new information about the working practices of artists as famous as Jan van Eyck. I also will describe what will be possible for this type of work with new capabilities that could be developed within the next few years. This work is based on a collaboration with David Hockney, and benefitted from image analys research supported by ARO grant W911NF-06-1-0359-P00001.

  10. Stringy horizons and UV/IR mixing

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Israel, Roy [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel); Giveon, Amit [Racah Institute of Physics, The Hebrew University,Jerusalem, 91904 (Israel); Itzhaki, Nissan; Liram, Lior [Physics Department, Tel-Aviv University Israel,Ramat-Aviv, 69978 (Israel)

    2015-11-24

    The target-space interpretation of the exact (in α{sup ′}) reflection coefficient for scattering from Euclidean black-hole horizons in classical string theory is studied. For concreteness, we focus on the solvable SL(2,ℝ){sub k}/U(1) black hole. It is shown that it exhibits a fascinating UV/IR mixing, dramatically modifying the late-time behavior of general relativity. We speculate that this might play an important role in the black-hole information puzzle, as well as in clarifying features related with the non-locality of Little String Theory.

  11. Superluminal travel, UV/IR mixing, and turbulence in a (1+1)-dimensional world

    International Nuclear Information System (INIS)

    Dubovsky, Sergei; Gorbenko, Victor

    2011-01-01

    We study renormalizable Lorentz invariant stable quantum field theories in two space-time dimensions with instantaneous causal structure (causal ordering induced by the light 'cone' time ordering). These models provide a candidate UV completion of the two-dimensional ghost condensate. They exhibit a peculiar UV/IR mixing - energies of all excitations become arbitrarily small at high spatial momenta. We discuss several phenomena associated with this mixing. These include the impossibility to reach a thermal equilibrium and metastability of all excitations towards decay into short-wavelength modes resulting in an indefinite turbulent cascade. In spite of the UV/IR mixing in many cases the UV physics can still be decoupled from low-energy phenomena. However, a patient observer in the Lineland is able to produce arbitrarily heavy particles simply by waiting for a long enough time.

  12. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    Science.gov (United States)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  13. UV dissociation of vibrationally excited UF6

    International Nuclear Information System (INIS)

    Alexandre, M.; Clerc, M.; Gagnon, R.; Gilbert, M.; Isnard, P.; Nectoux, P.; Rigny, P.; Weulersse, J.M.

    1983-01-01

    Before application of laser photodissociation of UF 6 to the separation of uranium isotopes becomes practical, isotopic selectivity should be optimized. We present here results on the cross sections involved in the irradiation of UF 6 simultaneously with infrared and ultraviolet lasers, as a function of wavelengths, fluence and temperature (at 293 K and 105 K, in an adiabatic expansion). The experiment uses a Nd 3+ YAG pumped lithium niobate optical parametric oscillator as a tunable 16 μ light source. Energies of the order of 1 mJ can be obtained with linewidths smaller than 0.1 cm - . The UV source used is based on ND 3+ YAG pumped dye laser and various frequency mixing schemes. At low temperature the frequency variation of the absorbed infrared energy per molecule depends markedly on the IR fluence phisub(IR) with a maximum value varying as phisub(IR)sup(-1/2) and a frequency extension far beyond the low level absorption spectrum. The absorbed vibrational energy leads to a change in the UV cross section comparable with the effect of a rise in temperature. Using this a model is put forward to express the isotopic selectivity 235 U/ 238 U as a function of UV wavelength and IR irradiation conditions. Experimental results agree with this model, and yield to maximum selectivity close to two [fr

  14. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides.

    Science.gov (United States)

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W

    2012-05-01

    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Scheme for femtosecond-resolution pump-probe experiments at XFELs with two-color ten GW-level X-ray pulses

    International Nuclear Information System (INIS)

    Geloni, Gianluca; Kocharyan, Vitali; Saldin, Evgeni

    2010-01-01

    This paper describes a scheme for pump-probe experiments that can be performed at LCLS and at the European XFEL and determines what additional hardware development will be required to bring these experiments to fruition. It is proposed to derive both pump and probe pulses from the same electron bunch, but from different parts of the tunable-gap baseline undulator. This eliminates the need for synchronization and cancels jitter problems. The method has the further advantage to make a wide frequency range accessible at high peak-power and high repetition-rate. An important feature of the proposed scheme is that the hardware requirement is minimal. Our technique is based in essence on the ''fresh'' bunch technique. For its implementation it is sufficient to substitute a single undulator module with short magnetic delay line, i.e. a weak magnetic chicane, which delays the electron bunch with respect to the SASE pulse of half of the bunch length in the linear stage of amplification. This installation does not perturb the baseline mode of operation. We present a feasibility study and we make exemplifications with the parameters of the SASE2 line of the European XFEL. (orig.)

  16. Braškių 'Senga Sengana' prisitaikymas prie diferencijuoto ir kompleksinio UV-B spinduliuotės ir ozono poveikio

    OpenAIRE

    Brazaitytė, Aušra; Sakalauskaitė, Jurga; Duchovskis, Pavelas; Šikšnianienė, Jūratė Bronė; Samuolienė, Giedrė; Ulinskaitė, Raimonda; Baranauskis, Kęstutis; Urbonavičiūtė, Akvilė; Šabajevienė, Gintarė; Gelvonauskis, Bronislovas; Uselis, Nobertas; Vagusevičienė, Ilona

    2007-01-01

    2005 m. Lietuvos sodininkystės ir daržininkystės instituto fitotrono komplekse nustatytas diferencijuotas ir kompleksinis UV-B spinduliuotės bei ozono poveikis braškių augimui ir fotosintezės pigmentų pokyčiams bei jų prisitaikymo prie šių stresorių galimybės. Poveikis stresą sukeliančiais veiksniais buvo skirstomas į du laikotarpius: adaptacijos ir pagrindinį. Ozono koncentracija adaptacijos laikotarpiu buvo 80 µg m-3, o pagrindinio poveikio – 240 µg m-3. Tokia koncentracija buvo palaikoma 7...

  17. Analysis of femtosecond pump-probe photoelectron-photoion coincidence measurements applying Bayesian probability theory

    Science.gov (United States)

    Rumetshofer, M.; Heim, P.; Thaler, B.; Ernst, W. E.; Koch, M.; von der Linden, W.

    2018-06-01

    Ultrafast dynamical processes in photoexcited molecules can be observed with pump-probe measurements, in which information about the dynamics is obtained from the transient signal associated with the excited state. Background signals provoked by pump and/or probe pulses alone often obscure these excited-state signals. Simple subtraction of pump-only and/or probe-only measurements from the pump-probe measurement, as commonly applied, results in a degradation of the signal-to-noise ratio and, in the case of coincidence detection, the danger of overrated background subtraction. Coincidence measurements additionally suffer from false coincidences, requiring long data-acquisition times to keep erroneous signals at an acceptable level. Here we present a probabilistic approach based on Bayesian probability theory that overcomes these problems. For a pump-probe experiment with photoelectron-photoion coincidence detection, we reconstruct the interesting excited-state spectrum from pump-probe and pump-only measurements. This approach allows us to treat background and false coincidences consistently and on the same footing. We demonstrate that the Bayesian formalism has the following advantages over simple signal subtraction: (i) the signal-to-noise ratio is significantly increased, (ii) the pump-only contribution is not overestimated, (iii) false coincidences are excluded, (iv) prior knowledge, such as positivity, is consistently incorporated, (v) confidence intervals are provided for the reconstructed spectrum, and (vi) it is applicable to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, the Bayesian approach allows us to run experiments at higher ionization rates, resulting in a significant reduction of data acquisition times. The probabilistic approach is thoroughly scrutinized by challenging mock data. The application to pump-probe coincidence measurements on acetone molecules enables quantitative interpretations

  18. Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons

    International Nuclear Information System (INIS)

    Sokell, E.; Zamith, S.; Bouchene, M.A.; Girard, B.

    2000-01-01

    The precession of orbital and spin angular momentum vectors has been observed in a pump-probe study of the 4P fine-structure states of atomic potassium. A femtosecond pump pulse prepared a coherent superposition of the two fine-structure components. A time-delayed probe pulse then ionized the system after it had been allowed to evolve freely. Oscillations recorded in the ion signal reflect the evolution of the orientation of the orbital and spin angular momentum due to spin-orbit coupling. This interpretation gives physical insight into the cause of the half-period phase shift observed when the relative polarizations of the laser pulses were changed from parallel to perpendicular. Finally, it is shown that these changes in the orientation of the spin momentum vector of the system can be utilized to produce highly spin-polarized free electrons on the femtosecond scale. (author)

  19. Rydberg excitation of neutral nitric oxide molecules in strong UV and near-IR laser fields

    International Nuclear Information System (INIS)

    Lv Hang; Zhang Jun-Feng; Zuo Wan-Long; Xu Hai-Feng; Jin Ming-Xing; Ding Da-Jun

    2015-01-01

    Rydberg state excitations of neutral nitric oxide molecules are studied in strong ultraviolet (UV) and near-infra-red (IR) laser fields using a linear time-of-flight (TOF) mass spectrometer with the pulsed electronic field ionization method. The yield of Rydberg molecules is measured as a function of laser intensity and ellipticity, and the results in UV laser fields are compared with those in near-IR laser fields. The present study provides the first experimental evidence of neutral Rydberg molecules surviving in a strong laser field. The results indicate that a rescattering-after-tunneling process is the main contribution to the formation of Rydberg molecules in strong near-IR laser fields, while multi-photon excitation may play an important role in the strong UV laser fields. (paper)

  20. Techniques for Pump-Probe Synchronisation of Fsec Radiation Pulses

    CERN Document Server

    Schlarb, Holger

    2005-01-01

    The increasing interest on the production of ultra-short photon pulses in future generations of Free-Electron Lasers operating in the UV, VUV or X-ray regime demands new techniques to reliably measure and control the arrival time of the FEL-pulses at the experiment. For pump-probe experiments using external optical lasers the desired synchronisation is in the order of tens of femtoseconds, the typical duration of the FEL pulse. Since, the accelerators are large scale facilities of the length of several hundred meters or even kilometers, the problem of synchronisation has to be attacked twofold. First, the RF acceleration sections upstream of the magnetic bunch compressors need to be stabilised in amplitude and phase to high precision. Second, the remain electron beam timing jitter needs to be determined with femtosecond accuracy for off-line analysis. In this talk, several techniques using the electron or the FEL beam to monitor the arrival time are presented, and the proposed layout of the synchronisation sy...

  1. Generation of various carbon nanostructures in water using IR/UV laser ablation

    International Nuclear Information System (INIS)

    Mortazavi, Seyedeh Zahra; Parvin, Parviz; Reyhani, Ali; Mirershadi, Soghra; Sadighi-Bonabi, Rasoul

    2013-01-01

    A wide variety of carbon nanostructures were generated by a Q-switched Nd : YAG laser (1064 nm) while mostly nanodiamonds were created by an ArF excimer laser (193 nm) in deionized water. They were characterized by transmission electron microscopy, Raman spectroscopy and x-ray photoelectron spectroscopy. It was found that the IR laser affected the morphology and structure of the nanostructures due to the higher inverse bremsstrahlung absorption rate within the plasma plume with respect to the UV laser. Moreover, laser-induced breakdown spectroscopy was carried out so that the plasma created by the IR laser was more energetic than that generated by the UV laser. (paper)

  2. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  3. UV-IR mixing in nonassociative Snyder ϕ4 theory

    Science.gov (United States)

    Meljanac, Stjepan; Mignemi, Salvatore; Trampetic, Josip; You, Jiangyang

    2018-03-01

    Using a quantization of the nonassociative and noncommutative Snyder ϕ4 scalar field theory in a Hermitian realization, we present in this article analytical formulas for the momentum-conserving part of the one-loop two-point function of this theory in D -, 4-, and 3-dimensional Euclidean spaces, which are exact with respect to the noncommutative deformation parameter β . We prove that these integrals are regularized by the Snyder deformation. These results indicate that the Snyder deformation does partially regularize the UV divergences of the undeformed theory, as it was proposed decades ago. Furthermore, it is observed that different nonassociative ϕ4 products can generate different momentum-conserving integrals. Finally, most importantly, a logarithmic infrared divergence emerges in one of these interaction terms. We then analyze sample momentum nonconserving integral qualitatively and show that it could exhibit IR divergence too. Therefore, infrared divergences should exist, in general, in the Snyder ϕ4 theory. We consider infrared divergences at the limit p →0 as UV/IR mixings induced by nonassociativity, since they are associated to the matching UV divergence in the zero-momentum limit and appear in specific types of nonassociative ϕ4 products. We also discuss the extrapolation of the Snyder deformation parameter β to negative values as well as certain general properties of one-loop quantum corrections in Snyder ϕ4 theory at the zero-momentum limit.

  4. Kompleksinis UV-B spinduliuotės ir temperatūros poveikis braškių fiziologiniams rodikliams

    OpenAIRE

    Urbonavičiūtė, Akvilė; Samuolienė, Giedrė; Sakalauskaitė, Jurga; Duchovskis, Pavelas; Brazaitytė, Aušra; Šikšnianienė, Jūratė Bronė; Šabajevienė, Gintarė; Baranauskis, Kęstutis; Sakalauskienė, Sandra; Uselis, Nobertas; Gelvonauskis, Bronislovas

    2006-01-01

    2005–2006 metais Lietuvos sodininkystės ir daržininkystės institute fitotrono komplekse atliktų tyrimų tikslas – įvertinti kompleksinį UV-B spinduliuotės ir temperatūros poveikį braškių fiziologiniams rodikliams. Tirta, kaip 9 dienų trukmės švitinimas 0, 2 ir 4 kJ UV-B spinduliuotės dozėmis veikia braškių augimą, pigmentų ir cukrų biosintezę esant 21/14°C ir 25/16°C aplinkos temperatūrai. Chlorofilų ir karotinoidų koncentracija nustatyta spektrofotometriniu, cukrų – chromatografiniu metodu. T...

  5. Light-like noncommutativity, light-front quantization and new light on UV/IR mixing

    International Nuclear Information System (INIS)

    Sheikh-Jabbari, M.M.; Tureanu, A.

    2011-01-01

    We revisit the problem of quantizing field theories on noncommutative Moyal space-time with light-like noncommutativity. To tackle the issues arising from noncommuting and hence nonlocal time, we argue that for this case light-front quantization procedure should be employed. In this appropriate quantization scheme we perform the non-planar loop analysis for the light-like noncommutative field theories. One of the important and peculiar features of light-front quantization is that the UV cutoff of the light-cone Hamiltonian manifests itself as an IR cutoff for the light-cone momentum, p + . Due to this feature, the naive results of covariant quantization for the light-like case allude to the absence of the UV/IR mixing in the light-front quantization. However, by a careful analysis of non-planar loop integrals we show that this is not the case and the UV/IR mixing persists. In addition, we argue in favour of the perturbative unitarity of light-like noncommutative field theories in the light-front quantization scheme.

  6. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    International Nuclear Information System (INIS)

    Azima, Armin

    2009-07-01

    timing diagnostic was part of a series of two-color near-infrared/XUV pump-probe experiments. It was used to correct the measurement delay times of the experiments a posteriori and thus compensate for the temporal jitter of FLASH. By this means the temporal resolution of two-color pump-probe experiments at FLASH was improved by more than a factor 4 from 250 fs RMS or worse to just 60 fs RMS. A pump-probe experiment performed on a Gallium-Arsenide waver using the FLASH XUV pulse as pump pulse revealed an optical light reflectivity modulation induced by FLASH. The temporal dynamics of this process was investigated in detail due to the jitter corrections of the timing diagnostic. The improved temporal resolution lead to a high degree in the understanding and interpretation of the underlying physical processes of the observed reflectivity modulation. Meanwhile the timing diagnostic advanced to a standard diagnostic, which is regularly utilized by pump-probe experimental groups of the FLASH user facility. (orig.)

  7. An electro-optical timing diagnostic for pump-probe experiments at the free-electron laser in Hamburg FLASH

    Energy Technology Data Exchange (ETDEWEB)

    Azima, Armin

    2009-07-15

    timing diagnostic was part of a series of two-color near-infrared/XUV pump-probe experiments. It was used to correct the measurement delay times of the experiments a posteriori and thus compensate for the temporal jitter of FLASH. By this means the temporal resolution of two-color pump-probe experiments at FLASH was improved by more than a factor 4 from 250 fs RMS or worse to just 60 fs RMS. A pump-probe experiment performed on a Gallium-Arsenide waver using the FLASH XUV pulse as pump pulse revealed an optical light reflectivity modulation induced by FLASH. The temporal dynamics of this process was investigated in detail due to the jitter corrections of the timing diagnostic. The improved temporal resolution lead to a high degree in the understanding and interpretation of the underlying physical processes of the observed reflectivity modulation. Meanwhile the timing diagnostic advanced to a standard diagnostic, which is regularly utilized by pump-probe experimental groups of the FLASH user facility. (orig.)

  8. Conductivity of strongly pumped superconductors. An electron-phonon system far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Krull, Holger

    2015-01-29

    The study of nonequilibrium physics is of great interest, because one can capture novel phenomena and properties which are hidden at equilibrium, e.g., one can study relaxation processes. A common way to study the nonequilibrium dynamics of a sample is a pump-probe experiment. In a pump probe experiment an intense laser pulse, the so called pump pulse, excites the sample and takes it out of equilibrium. After a certain delay time a second pulse, the probe pulse, measures the actual state of the sample. In this thesis, we theoretically study the pump-probe response of superconductors. On the one hand we are interest in the effect of a pump pulse and on the other hand we want to provide the pump-probe response, such that experimental measurement can be easily interpreted. In order to do this, we use the density matrix formalism to compute the pump-probe response of the system. In the density matrix formalism equations of motion are set up for expectation values of interest. In order to study the dynamics induced by a pump pulse, we compute the temporal evolution of the quasiparticle densities and the mean phonon amplitude. We find that the induced dynamics of the system depends on characteristics of the pump pulse. For short pulses, the system is pushed into the nonadiabatic regime. In this regime, the order parameter is lowered during the pump pulse and shows a 1/(√(t))-decaying oscillation afterwards. In addition, coherent phonons are generated, which is resonantly enhanced if the frequency of the order parameter oscillation is equal to the phonon frequency. For long pulses, the system is pushed into the adiabatic regime. In this regime, the order parameter is lowered during the pulse and remains almost constant afterwards. Further, there is almost no generation of coherent phonons. For the pump-probe response we compute the conductivity induced by the probe pulse. The conductivity is a typical observable in real pump-probe experiments. Hence, it is possible to

  9. Conductivity of strongly pumped superconductors. An electron-phonon system far from equilibrium

    International Nuclear Information System (INIS)

    Krull, Holger

    2015-01-01

    The study of nonequilibrium physics is of great interest, because one can capture novel phenomena and properties which are hidden at equilibrium, e.g., one can study relaxation processes. A common way to study the nonequilibrium dynamics of a sample is a pump-probe experiment. In a pump probe experiment an intense laser pulse, the so called pump pulse, excites the sample and takes it out of equilibrium. After a certain delay time a second pulse, the probe pulse, measures the actual state of the sample. In this thesis, we theoretically study the pump-probe response of superconductors. On the one hand we are interest in the effect of a pump pulse and on the other hand we want to provide the pump-probe response, such that experimental measurement can be easily interpreted. In order to do this, we use the density matrix formalism to compute the pump-probe response of the system. In the density matrix formalism equations of motion are set up for expectation values of interest. In order to study the dynamics induced by a pump pulse, we compute the temporal evolution of the quasiparticle densities and the mean phonon amplitude. We find that the induced dynamics of the system depends on characteristics of the pump pulse. For short pulses, the system is pushed into the nonadiabatic regime. In this regime, the order parameter is lowered during the pump pulse and shows a 1/(√(t))-decaying oscillation afterwards. In addition, coherent phonons are generated, which is resonantly enhanced if the frequency of the order parameter oscillation is equal to the phonon frequency. For long pulses, the system is pushed into the adiabatic regime. In this regime, the order parameter is lowered during the pulse and remains almost constant afterwards. Further, there is almost no generation of coherent phonons. For the pump-probe response we compute the conductivity induced by the probe pulse. The conductivity is a typical observable in real pump-probe experiments. Hence, it is possible to

  10. Probing behaviors of Sitobion avenae (Hemiptera: Aphididae on enhanced UV-B irradiated plants

    Directory of Open Access Journals (Sweden)

    Hu Zu-Qing

    2013-01-01

    Full Text Available UV-B induced changes in plants can influence sap-feeding insects through mechanisms that have not been studied. Herein the grain aphid, Sitobion avenae (Fabricius (Hemiptera: Aphididae, was monitored on barley plants under the treatments of control [0 kJ/ (m2.d], ambient UV-B [60 kJ/ (m2.d], and enhanced UV-B [120 kJ/ (m2.d] irradiation. Electrical penetration graph (EPG techniques were used to record aphid probing behaviors. Enhanced UV-B irradiated plants negatively affected probing behaviors of S. avenae compared with control plants. In particular, phloem factors that could diminish sieve element acceptance appeared to be involved, as reflected by smaller number of phloem phase, shorter phloem ingestion, and fewer aphids reaching the sustained phloem ingestion phase (E2>10min. On the other hand, factors from leaf surface, epidermis, and mesophyll cannot be excluded, as reflected by higher number of non-probing, longer non-probing and pathway phase, and later the time to first probe.

  11. Two-tint pump-probe measurements using a femtosecond laser oscillator and sharp-edged optical filters.

    Science.gov (United States)

    Kang, Kwangu; Koh, Yee Kan; Chiritescu, Catalin; Zheng, Xuan; Cahill, David G

    2008-11-01

    We describe a simple approach for rejecting unwanted scattered light in two types of time-resolved pump-probe measurements, time-domain thermoreflectance (TDTR) and time-resolved incoherent anti-Stokes Raman scattering (TRIARS). Sharp edged optical filters are used to create spectrally distinct pump and probe beams from the broad spectral output of a femtosecond Ti:sapphire laser oscillator. For TDTR, the diffusely scattered pump light is then blocked by a third optical filter. For TRIARS, depolarized scattering created by the pump is shifted in frequency by approximately 250 cm(-1) relative to the polarized scattering created by the probe; therefore, spectral features created by the pump and probe scattering can be easily distinguished.

  12. Time zero determination for FEL pump-probe studies based on ultrafast melting of bismuth

    Directory of Open Access Journals (Sweden)

    S. W. Epp

    2017-09-01

    Full Text Available A common challenge for pump-probe studies of structural dynamics at X-ray free-electron lasers (XFELs is the determination of time zero (T0—the time an optical pulse (e.g., an optical laser arrives coincidently with the probe pulse (e.g., a XFEL pulse at the sample position. In some cases, T0 might be extracted from the structural dynamics of the sample's observed response itself, but generally, an independent robust method is required or would be superior to the inferred determination of T0. In this paper, we present how the structural dynamics in ultrafast melting of bismuth can be exploited for a quickly performed, reliable and accurate determination of T0 with a precision below 20 fs and an overall experimental accuracy of 50 fs to 150 fs (estimated. Our approach is potentially useful and applicable for fixed-target XFEL experiments, such as serial femtosecond crystallography, utilizing an optical pump pulse in the ultraviolet to near infrared spectral range and a pixelated 2D photon detector for recording crystallographic diffraction patterns in transmission geometry. In comparison to many other suitable approaches, our method is fairly independent of the pumping wavelength (UV–IR as well as of the X-ray energy and offers a favorable signal contrast. The technique is exploitable not only for the determination of temporal characteristics of the experiment at the interaction point but also for investigating important conditions affecting experimental control such as spatial overlap and beam spot sizes.

  13. IR-safe and UV-safe integrands in the EFTofLSS with exact time dependence

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Matthew [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS, 91191 Gif-sur-Yvette (France); Senatore, Leonardo, E-mail: matthew.lewandowski@ipht.fr, E-mail: senatore@stanford.edu [Stanford Institute for Theoretical Physics, Stanford University, Stanford, 94306 CA (United States)

    2017-08-01

    Because large-scale structure surveys may very well be the next leading sources of cosmological information, it is important to have a precise understanding of the cosmological observables; for this reason, the Effective Field Theory of Large-Scale Structure (EFTofLSS) was developed. So far, most results in the EFTofLSS have used the so-called Einstein-de Sitter approximation, an approximation of the time dependence which is known to be accurate to better than one percent. However, in order to reach even higher accuracy, the full time dependence must be used. The computation with exact time dependence is sensitive to both infrared (IR) and ultraviolet (UV) effects in the loop integrands, and while these effects must cancel because of diffeomorphism invariance, they make numerical computation much less efficient. We provide a formulation of the one-loop, equal-time exact-time-dependence power spectrum of density perturbations which is manifestly free of these spurious IR and UV divergences at the level of the integrand. We extend our results to the total matter mode with clustering quintessence, show that IR and UV divergences cancel, and provide the associated IR- and UV-safe integrand. This also establishes that the consistency conditions are satisfied in this system. We then use our one-loop result to do an improved precision comparison of the two-loop dark-matter power spectrum with the Dark Sky N -body simulation.

  14. A Note on UV/IR Mixing and Non-Commutative Instanton Calculus

    CERN Document Server

    Bichl, A A

    2003-01-01

    We estimate the instanton-induced vacuum energy in non-commutative U(1) Yang-Mills theory in four dimensions. In the dilute gas approximation, it is found to be plagued by infrared divergences, as a result of UV/IR mixing.

  15. Neutron dosimetry by UV and IR spectrophotometry of the newly developed dyed ECE tracks

    International Nuclear Information System (INIS)

    Sohrabi, M.; Sadeghi Bajd, S.

    1990-01-01

    New, large and high-contrasted dyed ECE recoil tracks have been successfully developed. The chief reason for this development has been the provision of large photon-absorbing sites on a non-absorbing unaffected polymer surface for UV and IR spectrophotometry. In this approach, ECE recoil tracks in polycarbonate were dyed using our optimised conditions; sensitisation in 20% by weight acrylic acid at 75 0 C for 3.5 h and dyeing in 3% by weight eosin at 95 0 C for 4 h. Spectrophotometry by UV and IR, track counting and optical densitometry were applied to the samples. These preliminary studies showed some promise for UV absorbance measurements for routine large-scale applications. the results of which are presented and discussed. (author)

  16. Mid-infrared picosecond pump-dump-probe and pump-repump-probe experiments to resolve a ground-state intermediate in cyanobacterial phytochrome Cph1.

    Science.gov (United States)

    van Wilderen, Luuk J G W; Clark, Ian P; Towrie, Michael; van Thor, Jasper J

    2009-12-24

    Multipulse picosecond mid-infrared spectroscopy has been used to study photochemical reactions of the cyanobacterial phytochrome photoreceptor Cph1. Different photophysical schemes have been discussed in the literature to describe the pathways after photoexcitation, particularly, to identify reaction phases that are linked to photoisomerisation and electronic decay in the 1566-1772 cm(-1) region that probes C=C and C=O stretching modes of the tetrapyrrole chromophore. Here, multipulse spectroscopy is employed, where, compared to conventional visible pump-mid-infrared probe spectroscopy, an additional visible pulse is incorporated that interacts with populations that are evolving on the excited- and ground-state potential energy surfaces. The time delays between the pump and the dump pulse are chosen such that the dump pulse interacts with different phases in the reaction process. The pump and dump pulses are at the same wavelength, 640 nm, and are resonant with the Pr ground state as well as with the excited state and intermediates. Because the dump pulse additionally pumps the remaining, partially recovered, and partially oriented ground-state population, theory is developed for estimating the fraction of excited-state molecules. The calculations take into account the model-dependent ground-state recovery fraction, the angular dependence of the population transfer resulting from the finite bleach that occurs with linearly polarized intense femtosecond optical excitation, and the partially oriented population for the dump field. Distinct differences between the results from the experiments that use a 1 or a 14 ps dump time favor a branching evolution from S1 to an excited state or reconfigured chromophore and to a newly identified ground-state intermediate (GSI). Optical dumping at 1 ps shows the instantaneous induced absorption of a delocalized C=C stretching mode at 1608 cm(-1), where the increased cross section is associated with the electronic ground

  17. Invited Article: Multiple-octave spanning high-energy mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    Directory of Open Access Journals (Sweden)

    Binbin Zhou

    2016-08-01

    Full Text Available Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 μm range with 85 fs 50 μJ pulse energy, with the broadest supercontinuum covering 1.6-7.0 μm. We measured up 30 μJ energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.

  18. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.; Xiao, Dequan; Batista, Victor S.; Nibbering, Erik Theodorus Johannes

    2014-01-01

    of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ

  19. Development of a pump-probe facility with sub-picosecond time resolution combining a high-power ultraviolet regenerative FEL amplifier and a soft X-ray SASE FEL

    International Nuclear Information System (INIS)

    Faatz, B.; Fateev, A.A.; Feldhaus, J.; Krzywinski, J.; Pflueger, J.; Rossbach, J.; Saldin, E.L.; Schneidmiller, E.A.; Yurkov, M.V.

    2001-01-01

    This paper presents the conceptual design of a high power radiation source with laser-like characteristics in the ultraviolet spectral range at the TESLA Test Facility (TTF). The concept is based on the generation of radiation in a regenerative FEL amplifier (RAFEL). The RAFEL described in this paper covers a wavelength range of 200-400 nm and provides 200 fs pulses with 2 mJ of optical energy per pulse. The linac operates at 1% duty factor and the average output radiation power exceeds 100 W. The RAFEL will be driven by the spent electron beam leaving the soft X-ray FEL, thus providing minimal interference between these two devices. The RAFEL output radiation has the same time structure as the X-ray FEL and the UV pulses are naturally synchronized with the soft X-ray pulses from the TTF FEL. Therefore, it should be possible to achieve synchronization close to the duration of the radiation pulses (200 fs) for pump-probe techniques using either an UV pulse as a pump and soft X-ray pulse as a probe, or vice versa

  20. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  1. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  2. IR and UV spectroscopic analysis of TBP complexes

    International Nuclear Information System (INIS)

    Azzouz, A.; Berrak, A.; Seridi, L.; Attou, M.

    1985-06-01

    The complexity of TBP molecule and the limited number of references stimulated the elaboration of this report. The spectroscopic of TBP and its complexes in the IR and UV fields permitted to elucidate or to confirm certain aspects concerning the solvation phenomenum. In IR spectroscopy, the stretching band of the P→O bond only is characteristic of the complex formed. The position of this band gives sufficient information about the kind and the stability of a complex. The TBP electronic spectra are characterized by two bands (200-220 nm) 1 and (268-290 nm) 2 whose intensity ratio (2/1) is about 0,13. The solvent nature seems to influence the positions of these bands and that of the inflexion point. The band 2 disappears when the TBP is complexed and the position and the intensity of the band 1 depend upon the complex nature

  3. Radical protection by differently composed creams in the UV/VIS and IR spectral ranges.

    Science.gov (United States)

    Meinke, Martina C; Syring, Felicia; Schanzer, Sabine; Haag, Stefan F; Graf, Rüdiger; Loch, Manuela; Gersonde, Ingo; Groth, Norbert; Pflücker, Frank; Lademann, Jürgen

    2013-01-01

    Modern sunscreens are well suited to provide sufficient protection in the UV range because the filter substances absorb or scatter UV radiation. Although up to 50% of radicals are formed in the visible and infrared spectral range during solar radiation protection strategies are not provided in this range. Previous investigations of commercially available products have shown that in addition to physical filters, antioxidants (AO) are necessary to provide protective effects in the infrared range by neutralizing already formed radicals. In this study, the efficacy of filter substances and AO to reduce radical formation in both spectral ranges was investigated after UV/VIS or IR irradiation. Optical properties and radical protection were determined for the investigated creams. It was found that organic UV filters lower radical formation in the UV/VIS range to 35% compared to untreated skin, independent of the presence of AO. Further reduction to 14% was reached by addition of 2% physical filters, whereas physical filters alone were ineffective in the UV/VIS range due to the low concentration. In contrast, this filter type reduced radical formation in the IR range significantly to 65%; similar effects were aroused after application of AO. Sunscreens which contain organic UV filters, physical filters and AO ensure protection in the complete solar spectrum. © 2013 The American Society of Photobiology.

  4. Pump-probe experiments in atoms involving laser and synchrotron radiation: an overview

    International Nuclear Information System (INIS)

    Wuilleumier, F J; Meyer, M

    2006-01-01

    The combined use of laser and synchrotron radiations for atomic photoionization studies started in the early 1980s. The strong potential of these pump-probe experiments to gain information on excited atomic states is illustrated through some exemplary studies. The first series of experiments carried out with the early synchrotron sources, from 1960 to about 1995, are reviewed, including photoionization of unpolarized and polarized excited atoms, and time-resolved laser-synchrotron studies. With the most advanced generation of synchrotron sources, a whole new class of pump-probe experiments benefiting from the high brightness of the new synchrotron beams has been developed since 1996. A detailed review of these studies as well as possible future applications of pump-probe experiments using third generation synchrotron sources and free electron lasers is presented. (topical review)

  5. Choice of Eye-Safe Radiation Wavelength in UV and Near IR Spectral Bands for Remote Sensing

    Directory of Open Access Journals (Sweden)

    M. L. Belov

    2016-01-01

    Full Text Available The introduction of laser remote sensing systems carries a particular risk to the human’s sense of vision. A structure of the eye, and especially the retina, is the main critical organ as related to the laser radiation.The work uses the optical models of the atmosphere, correctly working in both the UV and the near-IR band, to select the eye-safe radiation wavelengths in the UV (0.355 m and near-IR (~ 1.54 and ~ 2 m spectral bands from the point of view of recorded lidar signal value to fulfill the tasks of laser sensing the natural formations and laser aerosol sensing in the atmosphere.It is shown that the remote sensing lasers with appropriate characteristics can be selected both in the UV band (at a wavelength of 0.355 μm and in the near-IR band (at wavelengths of 1.54 ~ or ~ 2 μm.Molecular scattering has its maximum (for the selected wavelength at a wavelength of 0.355 μm in the UV band, and the minimum at the wavelengths of 1.54 and 2.09 μm in the near -IR band. The main contribution to the molecular absorption at a wavelength of 0.355 μm is made by ozone. In the near-IR spectral band the radiation is absorbed due to water vapor and carbon dioxide.Calculations show that the total effect of the molecular absorption and scattering has no influence on radiation transmission for both the wavelength of 0.355 μm in the UV band, and the wavelengths of 1.54 and 2.09 μm in the near-IR band for sensing trails ~ 1 km.One of the main factors of laser radiation attenuation in the Earth's atmosphere is radiation scattering by aerosol particles.The results of calculations at wavelengths of 0.355 μm, 1.54 μm and 2.09 μm for the several models of the atmosphere show that a choice of the most effective (in terms of the recorded signal of lidar and eye-safe radiation wavelength depends strongly on the task of sensing.To fulfill the task of laser sensing the natural formations, among the eye-safe wavelengths there is one significantly advantageous

  6. Effective temporal resolution in pump-probe spectroscopy with strongly chirped pulses

    International Nuclear Information System (INIS)

    Polli, D.; Lanzani, G.; Brida, D.; Cerullo, G.; Mukamel, S.

    2010-01-01

    This paper introduces a general theoretical description of femtosecond pump-probe spectroscopy with chirped pulses whose joint spectral and temporal profile is expressed by Wigner spectrograms. We demonstrate that the actual experimental time resolution intimately depends on the pulse-sample interaction and that the commonly used instrumental response function needs to be replaced by a sample-dependent effective response function. We also show that, using the proper configurations in excitation and/or detection, it is possible to overcome the temporal smearing of the measured dynamics due to chirp-induced pulse broadening and recover the temporal resolution that would be afforded by the transform-limited pulses. We verify these predictions with experiments using broadband chirped pump and probe pulses. Our results allow optimization of the temporal resolution in the common case when the chirp of the pump and/or probe pulse is not corrected and may be extended to a broad range of time-resolved experiments.

  7. Morphology of IR and UV Laser-induced Structural Changes on Silicon Surfaces

    International Nuclear Information System (INIS)

    Jimenez-Jarquin, J.; Haro-Poniatowski, E.; Fernandez-Guasti, M.; Hernandez-Pozos, J.L.

    2005-01-01

    Using scanning electronic microscopy, we analyze the structural changes induced in silicon (100) wafers by focused IR (1064 nm) and UV (355 nm) nanosecond laser pulses. The experiments were performed in the laser ablation regime. When a silicon surface is irradiated by laser pulses in an O2 atmosphere conical microstructures are obtained. The changes in silicon surface morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however the final result consist of an array of microcones when the experiment is carried out in oxygen. We employ a random scanning technique to irradiate silicon surfaces over large areas. In this form we have obtained large patterned areas

  8. Characterization of diffraction gratings scattering in uv and ir for space applications

    Science.gov (United States)

    Achour, Sakina; Kuperman-Le Bihan, Quentin; Etcheto, Pierre

    2017-09-01

    The use of Bidirectional Scatter Distribution Function (BSDF) in space industry and especially when designing telescopes is a key feature. Indeed when speaking about space industry, one can immediately think about stray light issues. Those important phenomena are directly linked to light scattering. Standard BSDF measurement goniophotometers often have a resolution of about 0.1° and are mainly working in or close to the visible spectrum. This resolution is far too loose to characterize ultra-polished surfaces. Besides, wavelength range of BSDF measurements for space projects needs to be done far from visible range. How can we measure BSDF of ultra-polished surfaces and diffraction gratings in the UV and IR range with high resolution? We worked on developing a new goniophometer bench in order to be able to characterize scattering of ultra-polished surfaces and diffraction gratings used in everyday space applications. This ten meters long bench was developed using a collimated beam approach as opposed to goniophotometer using focused beam. Sources used for IR characterization were CO2 (10.6?m) and Helium Neon (3.39?m) lasers. Regarding UV sources, a collimated and spatially filtered UV LED was used. The detection was ensure by a photomultiplier coupled with synchronous detection as well as a MCT InSb detector. The so-built BSDF measurement instrument allowed us to measure BSDF of ultra-polished surfaces as well as diffraction gratings with an angular resolution of 0.02° and a dynamic of 1013 in the visible range. In IR as well as in UV we manage to get 109 with same angular resolution of 0.02°. The 1m arm and translation stages allows us to measure samples up to 200mm. Thanks to such a device allowing ultra-polished materials as well as diffraction gratings scattering characterization, it is possible to implement those BSDF measurements into simulation software and predict stray light issues. This is a big help for space industry engineers to apprehend stray light

  9. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump-probe experiments.

    Science.gov (United States)

    Scoby, Cheyne M; Li, R K; Musumeci, P

    2013-04-01

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Pump-flow-probe x-ray absorption spectroscopy as a tool for studying aintermediate states of photocatalytic systems

    DEFF Research Database (Denmark)

    Smolentsev, Grigory; Guda, Alexander; Zhang, Xiaoyi

    2013-01-01

    -millimolar concentrations. A continuous wave laser is used for the photoexcitation, with the distance between laser and X-ray beams and velocity of liquid flow determining the time delay, while the focusing of both beams and the flow speed profile define the time resolution. This method is compared with the alternative...... measurement technique that utilizes a 1 kHz repetition rate laser and multiple X-ray probe pulses. Such an experiment was performed at beamline 11ID-D of the Advanced Photon Source. Advantages, limitations, and potential for improvement of the pump-flow-probe setup are discussed by analyzing the photon...... statistics. Both methods with Co K-edge probing were applied to the investigation of a cobaloxime-based photocatalytic reaction. The interplay between optimizing for efficient photoexcitation and time resolution as well and the effect of sample degradation for these two setups are discussed. © 2013 American...

  11. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy.

    Science.gov (United States)

    Rupenyan, Alisa; van Stokkum, Ivo H M; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Groot, Marie Louise

    2009-12-17

    Proteorhodopsin (pR) is a membrane-embedded proton pump from the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization on the femtosecond to picosecond time scales. Here, we report a study on the photoisomerization dynamics of the retinal chromophore of pR, using dispersed ultrafast pump-dump-probe spectroscopy. The application of a pump pulse initiates the photocycle, and with an appropriately tuned dump pulse applied at a time delay after the dump, the molecules in the initial stages of the photochemical process can be de-excited and driven back to the ground state. In this way, we were able to resolve an intermediate on the electronic ground state that represents chromophores that are unsuccessful in isomerization. In particular, the fractions of molecules that undergo slow isomerization (20 ps) have a high probability to enter this state rather than the isomerized K-state. On the ground state reaction surface, return to the stable ground state conformation via a structural or vibrational relaxation occurs in 2-3 ps. Inclusion of this intermediate in the kinetic scheme led to more consistent spectra of the retinal-excited state, and to a more accurate estimation of the quantum yield of isomerization (Phi = 0.4 at pH 6).

  12. Invited Review Article: Pump-probe microscopy

    Science.gov (United States)

    Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  13. Invited Review Article: Pump-probe microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Martin C., E-mail: Martin.Fischer@duke.edu; Wilson, Jesse W.; Robles, Francisco E. [Department of Chemistry, Duke University, Durham, North Carolina 27708 (United States); Warren, Warren S. [Departments of Chemistry, Biomedical Engineering, Physics, and Radiology, Duke University, Durham, North Carolina 27708 (United States)

    2016-03-15

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  14. Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

    International Nuclear Information System (INIS)

    Segre, Gino P.

    2001-01-01

    Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very low energies are visible to a high-energy probe. Also discussed are basic recombination processes which may play a role in the observed decay

  15. Relaxation dynamics of the LH2 complex from a photosynthetic purple bacterium Thiorhodospira sibirica studied by the near-IR femtosecond pump-probe method

    International Nuclear Information System (INIS)

    Razjivin, A P; Pishchal'nikov, R Yu; Kozlovskii, V S; Kompanets, V O; Chekalin, Sergei V; Moskalenko, A A; Makhneva, Z K

    2005-01-01

    Photoinduced changes in the absorption spectrum of the LH2 (B800-830-850) complex from a Thiorhodospira sibirica (Trs. sibirica) bacterium are studied by the pump-probe method. The complex has the anomalous absorption spectrum exhibiting three bands in the near-IR region at 793, 826.5, and 846.5 nm. At room temperature, the excitation energy transfer from the B800, B830, and B859 bands was detected with the time constants τ 1 ∼0.5 ps, τ 2 ∼2.5 ps, and τ 3 of the order of a few hundreds of picoseconds, respectively. A rapid energy transfer from the B830 band compared to energy transfer from the B850 band (τ 2 ||τ 3 ) suggests that all the three bands belong to the same complex (i.e., that the LH2 complex from Trs. sibirica is homogeneous). A slower energy transfer (by three - five times) from the B830 band of the LH2 complex from Trs. sibirica compared to energy transfer from the B800 band of the LH2 complexes (B800-850 and especially B800-820) from other purple bacteria suggests that the electronic structures of ensembles of bacteriochlorophyll molecules in these complexes are substantially different. (laser applications and other topics in quantum electronics)

  16. Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.

    Science.gov (United States)

    Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S

    2013-01-01

    This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

  17. Time-resolved pump-probe experiments at the LCLS

    Energy Technology Data Exchange (ETDEWEB)

    Glownia, James; /SLAC /Stanford U., Appl. Phys. Dept.; Cryan, J.; /SLAC /Stanford U., Phys. Dept.; Andreasson, J.; /Uppsala U.; Belkacem, A.; /LBNL, Berkeley; Berrah, N.; /Western Michigan U.; Blaga, C.L.; /Ohio State U.; Bostedt, C.; Bozek, J.; /SLAC; DiMauro, L.F.; /Ohio State U.; Fang, L.; /Western Michigan U.; Frisch, J.; /SLAC; Gessner, O.; /LBNL; Guhr, M.; /SLAC; Hajdu, J.; /Uppsala U.; Hertlein, M.P.; /LBNL; Hoener, M.; /Western Michigan U. /LBNL; Huang, G.; Kornilov, O.; /LBNL; Marangos, J.P.; /Imperial Coll., London; March, A.M.; /Argonne; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  18. Choice of Eye-Safe Radiation Wavelength in UV and Near IR Spectral Bands for Remote Sensing

    OpenAIRE

    M. L. Belov; V. A. Gorodnichev; D. A. Kravtsov; A. A. Cherpakova

    2016-01-01

    The introduction of laser remote sensing systems carries a particular risk to the human’s sense of vision. A structure of the eye, and especially the retina, is the main critical organ as related to the laser radiation.The work uses the optical models of the atmosphere, correctly working in both the UV and the near-IR band, to select the eye-safe radiation wavelengths in the UV (0.355 m) and near-IR (~ 1.54 and ~ 2 m) spectral bands from the point of view of recorded lidar signal value to ful...

  19. Tracking of the nuclear wavepacket motion in cyanine photoisomerization by ultrafast pump-dump-probe spectroscopy.

    Science.gov (United States)

    Wei, Zhengrong; Nakamura, Takumi; Takeuchi, Satoshi; Tahara, Tahei

    2011-06-01

    Understanding ultrafast reactions, which proceed on a time scale of nuclear motions, requires a quantitative characterization of the structural dynamics. To track such structural changes with time, we studied a nuclear wavepacket motion in photoisomerization of a prototype cyanine dye, 1,1'-diethyl-4,4'-cyanine, by ultrafast pump-dump-probe measurements in solution. The temporal evolution of wavepacket motion was examined by monitoring the efficiency of stimulated emission dumping, which was obtained from the recovery of a ground-state bleaching signal. The dump efficiency versus pump-dump delay exhibited a finite rise time, and it became longer (97 fs → 330 fs → 390 fs) as the dump pulse was tuned to longer wavelengths (690 nm → 950 nm → 1200 nm). This result demonstrates a continuous migration of the leading edge of the wavepacket on the excited-state potential from the Franck-Condon region toward the potential minimum. A slowly decaying feature of the dump efficiency indicated a considerable broadening of the wavepacket over a wide range of the potential, which results in the spread of a population distribution on the flat S(1) potential energy surface. The rapid migration as well as broadening of the wavepacket manifests a continuous nature of the structural dynamics and provides an intuitive visualization of this ultrafast reaction. We also discussed experimental strategies to evaluate reliable dump efficiencies separately from other ultrafast processes and showed a high capability and possibility of the pump-dump-probe method for spectroscopic investigation of unexplored potential regions such as conical intersections. © 2011 American Chemical Society

  20. Excited-State Dynamics of a DNA Duplex in a Deep Eutectic Solvent Probed by Femtosecond Time-Resolved IR Spectroscopy.

    Science.gov (United States)

    de La Harpe, Kimberly; Kohl, Forrest R; Zhang, Yuyuan; Kohler, Bern

    2018-03-08

    To better understand how the solvent influences excited-state deactivation in DNA strands, femtosecond time-resolved IR (fs-TRIR) pump-probe measurements were performed on a d(AT) 9 ·d(AT) 9 duplex dissolved in a deep eutectic solvent (DES) made from choline chloride and ethylene glycol in a 1:2 mol ratio. This solvent, known as ethaline, is a member of a class of ionic liquids capable of solubilizing DNA with minimal disruption to its secondary structure. UV melting analysis reveals that the duplex studied here melts at 18 °C in ethaline compared to 50 °C in aqueous solution. Ethaline has an excellent transparency window that facilitates TRIR measurements in the double-bond stretching region. Transient spectra recorded in deuterated ethaline at room temperature indicate that photoinduced intrastrand charge transfer occurs from A to T, yielding the same exciplex state previously detected in aqueous solution. This state decays via charge recombination with a lifetime of 380 ± 10 ps compared to the 300 ± 10 ps lifetime measured earlier in D 2 O solution. The TRIR data strongly suggest that the long-lived exciplex forms exclusively in the solvated duplex, and not in the denatured single strands, which appear to have little, if any, base stacking. The longer lifetime of the exciplex state in the DES compared to aqueous solution is suggested to arise from reduced stabilization of the charge transfer state, resulting in slower charge recombination on account of Marcus inverted behavior.

  1. A New Method for Calibrating the Time Delay of a Piezoelectric Probe

    DEFF Research Database (Denmark)

    Hansen, Bengt Hurup

    1974-01-01

    A simple method for calibrating the time delay of a piezoelectric probe of the type often used in plasma physics is described.......A simple method for calibrating the time delay of a piezoelectric probe of the type often used in plasma physics is described....

  2. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy.

    Science.gov (United States)

    de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D

    2005-05-15

    We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

  3. Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs

    Science.gov (United States)

    Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric

    2016-06-01

    Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution

  4. Pump-probe study of the formation of rubidium molecules by ultrafast photoassociation of ultracold atoms

    Science.gov (United States)

    McCabe, David J.; England, Duncan G.; Martay, Hugo E. L.; Friedman, Melissa E.; Petrovic, Jovana; Dimova, Emiliya; Chatel, Béatrice; Walmsley, Ian A.

    2009-09-01

    An experimental pump-probe study of the photoassociative creation of translationally ultracold rubidium molecules is presented together with numerical simulations of the process. The formation of loosely bound excited-state dimers is observed as a first step toward a fully coherent pump-dump approach to the stabilization of Rb2 into its lowest ground vibrational states. The population that contributes to the pump-probe process is characterized and found to be distinct from a background population of preassociated molecules.

  5. Resolution enhancement of pump-probe microscope with an inverse-annular filter

    Science.gov (United States)

    Kobayashi, Takayoshi; Kawasumi, Koshi; Miyazaki, Jun; Nakata, Kazuaki

    2018-04-01

    Optical pump-probe microscopy can provide images by detecting changes in probe light intensity induced by stimulated emission, photoinduced absorbance change, or photothermal-induced refractive index change in either transmission or reflection mode. Photothermal microscopy, which is one type of optical pump-probe microscopy, has intrinsically super resolution capability due to the bilinear dependence of signal intensity of pump and probe. We introduce new techniques for further resolution enhancement and fast imaging in photothermal microscope. First, we introduce a new pupil filter, an inverse-annular pupil filter in a pump-probe photothermal microscope, which provides resolution enhancement in three dimensions. The resolutions are proved to be improved in lateral and axial directions by imaging experiment using 20-nm gold nanoparticles. The improvement in X (perpendicular to the common pump and probe polarization direction), Y (parallel to the polarization direction), and Z (axial direction) are by 15 ± 6, 8 ± 8, and 21 ± 2% from the resolution without a pupil filter. The resolution enhancement is even better than the calculation using vector field, which predicts the corresponding enhancement of 11, 8, and 6%. The discussion is made to explain the unexpected results. We also demonstrate the photothermal imaging of thick biological samples (cells from rabbit intestine and kidney) stained with hematoxylin and eosin dye with the inverse-annular filter. Second, a fast, high-sensitivity photothermal microscope is developed by implementing a spatially segmented balanced detection scheme into a laser scanning microscope using a Galvano mirror. We confirm a 4.9 times improvement in signal-to-noise ratio in the spatially segmented balanced detection compared with that of conventional detection. The system demonstrates simultaneous bi-modal photothermal and confocal fluorescence imaging of transgenic mouse brain tissue with a pixel dwell time of 20 µs. The

  6. Formation of quasi-periodic nano- and microstructures on silicon surface under IR and UV femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Golosov, E V; Kolobov, Yu R; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Novoselov, Yurii N; Seleznev, L V; Sinitsyn, D V

    2011-01-01

    Quasi-periodic nano- and microstructures have been formed on silicon surface using IR ( λ ≈ 744 nm) and UV ( λ ≈ 248 nm) femtosecond laser pulses. The influence of the incident energy density and the number of pulses on the structured surface topology has been investigated. The silicon nanostructurisation thresholds have been determined for the above-mentioned wavelengths. Modulation of the surface relief at the doubled spatial frequency is revealed and explained qualitatively. The periods of the nanostructures formed on the silicon surface under IR and UV femtosecond laser pulses are comparatively analysed and discussed.

  7. A conformational study of protonated noradrenaline by UV-UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method.

    Science.gov (United States)

    Wako, Hiromichi; Ishiuchi, Shun-Ichi; Kato, Daichi; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Fujii, Masaaki

    2017-05-03

    The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S 1 state, with the aid of relative stabilization energies of each conformer in the S 0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm -1 from the others. The significant red-shift was explained by a large contribution of the πσ* state to S 1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.

  8. CP monitoring by IR free potential probe through a remote control system

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, L. [Politecnico di Milano, Milan (Italy); Bazzoni, B. [Cescor srl, Milan (Italy); Benedetto, S. [Italgas SpA, Turin (Italy)

    2004-07-01

    This paper presents the results of field tests on measurement of true potential of pipelines by means of a IR drop free potential probe and a remote control system. The probe used is composed of a steel coupon, simulating a coating defect, and a reference electrode of Mixed Metal Oxide (MMO) titanium activated type, both embedded in an alkaline mortar. Laboratory and field tests confirmed the probe to be reliable and enable to eliminate the IR drop contribution in all conditions and especially in presence of stray current. A remote control system was tested for a reliable and continuous monitoring of CP parameters with the aim to operate CP systems in compliance with regulations and to reduce maintenance costs. The remote control system consists of Acquisition Units for continuous field data gathering, a Data Centre pilot all functions such as query, download and processing data, and an Internet web site for remote connections. Field data obtained in various situations are presented and discussed. (authors)

  9. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy.

    Science.gov (United States)

    Zani, Maurizio; Sala, Vittorio; Irde, Gabriele; Pietralunga, Silvia Maria; Manzoni, Cristian; Cerullo, Giulio; Lanzani, Guglielmo; Tagliaferri, Alberto

    2018-04-01

    The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Versatile ultrafast pump-probe imaging with high sensitivity CCD camera

    OpenAIRE

    Pezeril , Thomas; Klieber , Christoph; Temnov , Vasily; Huntzinger , Jean-Roch; Anane , Abdelmadjid

    2012-01-01

    International audience; A powerful imaging technique based on femtosecond time-resolved measurements with a high dynamic range, commercial CCD camera is presented. Ultrafast phenomena induced by a femtosecond laser pump are visualized through the lock-in type acquisition of images recorded by a femtosecond laser probe. This technique allows time-resolved measurements of laser excited phenomena at multiple probe wavelengths (spectrometer mode) or conventional imaging of the sample surface (ima...

  11. IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Jarquin, J.; Fernandez-Guasti, M.; Haro-Poniatowski, E.; Hernandez-Pozos, J.L. [Laboratorio de Optica Cuantica, Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico D.F. (Mexico)

    2005-08-01

    We irradiated silicon (100) wafers with IR (1064 nm) and UV (355 nm) nanosecond laser pulses with energy densities within the ablation regime and used scanning electron microscopy to analyze the morphological changes induced on the Si surface. The changes in the wafer morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however if the experiment is carried out in O{sub 2} the final result is an array of microcones. We also employed a random scanning technique to irradiate the silicon wafer over large areas, in this case the microstructure patterns consist of a ''semi-ordered'' array of micron-sized cones. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Laser separation of nitrogen isotopes by the IR+UV dissociation of ammonia molecules

    International Nuclear Information System (INIS)

    Apatin, V M; Klimin, S A; Laptev, V B; Lokhman, V N; Ogurok, D D; Pigul'skii, S V; Ryabov, E A

    2008-01-01

    The separation of nitrogen isotopes is studied upon successive single-photon IR excitation and UV dissociation of ammonia molecules. The excitation selectivity was provided by tuning a CO 2 laser to resonance with 14 NH 3 molecules [the 9R(30) laser line] or with 15 NH 3 molecules [the 9R(10) laser line]. Isotopic mixtures containing 4.8% and 0.37% (natural content) of the 15 NH isotope were investigated. The dependences of the selectivity and the dissociation yield for each isotopic component on the buffer gas pressure (N 2 , O 2 , Ar) and the ammonia pressure were obtained. In the limit of low NH 3 pressures (0.5-2 Torr), the dissociation selectivity α(15/14) for 15 N was 17. The selectivity mechanism of the IR+UV dissociation is discussed and the outlook is considered for the development of the nitrogen isotope separation process based on this approach. (laser isotope separation)

  13. Delayed expression of enhanced reactivation and decreased mutagenesis of UV-irradiated adenovirus in UV-irradiated ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Bennett, C.B.; Rainbow, A.J.

    1988-01-01

    In this study the authors examined UV-enhanced reactivation (UVER) and UV-enhanced mutagenesis (UVEM) of UV-irradiated adenovirus in AT fibroblasts. UVER factors for Ad V antigen expression were significantly less than normal in AT strains tested when infection occurred immediately after UV-irradiation of cells. However, UVER factors were >1 and similar to those found for normal strains when cells were infected 24 h after UV-irradiation, indicating delay in the expression of UVER for Ad V antigen in AT cells. UV-irradiation of both normal and AT cells 24 h prior to infection also resulted in a significant increase in progeny survival for UV-irradiated Ad. In normal cells, this progeny UVER was concomitant with a significant increase in the mutation frequency for UV-irradiated virus (increase in targeted mutagenesis) suggesting existence of an inducible error-prone DNA repair mode in normal human cells. In contrast, pre-UV-irradiation of AT cells resulted in a significant decrease in the mutation frequency for UV-irradiated virus. (author)

  14. Laguerre-Gauss beam generation in IR and UV by subwavelength surface-relief gratings

    DEFF Research Database (Denmark)

    Vertchenko, Larissa; Shkondin, Evgeniy; Malureanu, Radu

    2017-01-01

    layerdepositions and dry etch techniques. We exploit the phenomenon of formbirefringence to give rise to the spin-to-orbital angular momentum conversion.We demonstrate that these plates can generate beams with high quality for theUV and IR range, allowing them to interact with high power laser sources orinside...... laser cavities....

  15. Helium nanodroplets. Pump-probe ionization of alkali dopings and spin-echo scattering on undoped drops; Helium-Nanotroepfchen. Pump-Probe-Ionisation von Alkalidotierungen und Spinechostreuung an undotierten Tropfen

    Energy Technology Data Exchange (ETDEWEB)

    Droppelmann, G.

    2005-09-15

    In the framework of this thesis several aspects of the properties of helium nanodroplets and their dopings. The formation of the exciplexes RbHe and KHe on helium droplets was studied by means of pump-probe ionization in real time, whereby the main interest lied on the influence of the applied helium isotopes. The experiments with cesium atoms on the droplet surface aimed on the elucidation of the relaxation dynamics of the surface under regardment both of isotope and size effects. From the pump-probe measurements on the formation of the exciplex RbHe on helium nanodroplets performed in the framework of this thesis formation times of 8.5 ps for Rb{sup 4}He and 11.6 ps for Rb{sup 3}He resulted.

  16. Time-domain SFG spectroscopy using mid-IR pulse shaping: practical and intrinsic advantages.

    Science.gov (United States)

    Laaser, Jennifer E; Xiong, Wei; Zanni, Martin T

    2011-03-24

    Sum-frequency generation (SFG) spectroscopy is a ubiquitous tool in the surface sciences. It provides infrared transition frequencies and line shapes that probe the structure and environment of molecules at interfaces. In this article, we apply techniques learned from the multidimensional spectroscopy community to SFG spectroscopy. We implement balanced heterodyne detection to remove scatter and the local oscillator background. Heterodyning also separates the resonant and nonresonant signals by acquiring both the real and imaginary parts of the spectrum. We utilize mid-IR pulse shaping to control the phase and delay of the mid-IR pump pulse. Pulse shaping allows phase cycling for data collection in the rotating frame and additional background subtraction. We also demonstrate time-domain data collection, which is a Fourier transform technique, and has many advantages in signal throughput, frequency resolution, and line shape accuracy over existing frequency domain methods. To demonstrate time-domain SFG spectroscopy, we study an aryl isocyanide on gold, and find that the system has an inhomogeneous structural distribution, in agreement with computational results, but which was not resolved by previous frequency-domain SFG studies. The ability to rapidly and actively manipulate the mid-IR pulse in an SFG pules sequence makes possible new experiments and more accurate spectra. © 2011 American Chemical Society

  17. Controlling the optical bistability and multistability in a two-level pumped-probe system

    International Nuclear Information System (INIS)

    Mahmoudi, Mohammad; Sahrai, Mostafa; Masoumeh Mousavi, Seyede

    2010-01-01

    We study the behavior of the optical bistability (OB) and multistability (OM) in a two-level pumped-probe atomic system by means of a unidirectional ring cavity. We show that the optical bistability in a two-level atomic system can be controlled by adjusting the intensity of the pump field and the detuning between two fields. We find that applying the pumping field decreases the threshold of the optical bistability.

  18. Gas phase UV and IR absorption spectra of CxF2x+1CHO (x=1-4)

    DEFF Research Database (Denmark)

    Hashikawa, Y; Kawasaki, M; Waterland, RL

    2004-01-01

    The UV and IR spectra of CxF2x+1 CHO (x = 1-4) were investigated using computational and experimental techniques. CxF2x+1CHO (x = 1-4) have broad UV absorption features centered at 300-310 nm. The maximum absorption cross-section increases significantly and shifts slightly to the red with increased...

  19. Dynamic characterization of silicon nanowires using a terahertz optical asymmetric demultiplexer-based pump-probe scheme

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.

    2012-01-01

    Dynamic phase and amplitude all-optical responses of silicon nanowires are characterized using a terahertz optical asymmetric demultiplexer (TOAD) based pump-probe scheme. Ultra-fast recovery is observed for moderate pump powers....

  20. Compact and portable multiline UV and visible Raman lasers in hydrogen-filled HC-PCF.

    Science.gov (United States)

    Wang, Y Y; Couny, F; Light, P S; Mangan, B J; Benabid, F

    2010-04-15

    We report on the realization of compact UV visible multiline Raman lasers based on two types of hydrogen-filled hollow-core photonic crystal fiber. The first, with a large pitch Kagome lattice structure, offers a broad spectral coverage from near IR through to the much sought after yellow, deep-blue and UV, whereas the other, based on photonic bandgap guidance, presents a pump conversion concentrated in the visible region. The high Raman efficiency achieved through these fibers allows for compact, portable diode-pumped solid-state lasers to be used as pumps. Each discrete component of this laser system exhibits a spectral density several orders of magnitude larger than what is achieved with supercontinuum sources and a narrow linewidth, making it an ideal candidate for forensics and biomedical applications.

  1. Thirteen pump-probe resonances of the sodium D1 line

    International Nuclear Information System (INIS)

    Wong, Vincent; Boyd, Robert W.; Stroud, C. R. Jr.; Bennink, Ryan S.; Marino, Alberto M.

    2003-01-01

    We present the results of a pump-probe laser spectroscopic investigation of the Doppler-broadened sodium D1 resonance line. We find 13 resonances in the resulting spectra. These observations are well described by the numerical predictions of a four-level atomic model of the hyperfine structure of the sodium D1 line. We also find that many, but not all, of these features can be understood in terms of processes originating in a two-level or three-level subset of the full four-level model. The processes we observed include forward near-degenerate four-wave mixing and saturation in a two-level system, difference-frequency crossing and nondegenerate four-wave mixing in a three-level V system, electromagnetically induced transparency and optical pumping in a three-level lambda system, cross-transition resonance in a four-level double-lambda system, and conventional optical pumping. Most of these processes lead to sub-Doppler or even subnatural linewidths. The dependence of these resonances on the pump intensity and pump detuning from atomic resonance are also studied

  2. A new approach for a pump-probe photothermal experiment

    International Nuclear Information System (INIS)

    Marcano O, A.; Castillo, J.

    1992-01-01

    Calculations of the signal, observed in a pump-probe photo-thermal experimental, are performed using a close field nonlinear geometrical optics approximation. Dependence of the thermo-optical signal from the position of the detector and magnitude of the beams spots size is studied. It is shown that the possibilities of the thermo-optical experiment, as a highly sensitive technique for light detection, can be substantially improved by increasing the probe beam spot size and varying the position of the detector in the vicinity of the sample cell. preliminary experimental results are shown for the situation of weak absorbing liquids. A good qualitative agreement between theory and experiments is obtained. (author)

  3. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    CERN Document Server

    Tang Xiu Zhang; Gong Kun; Ma Wei Yi; Shan Yu Sheng; Wang Nai Yan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 sup 1 sup 9 W/cm sup 2 in recently years

  4. Amplification of UV ultrashort pulse laser in e-beam pumped KrF amplifier

    International Nuclear Information System (INIS)

    Tang Xiuzhang; Zhang Haifeng; Gong Kun; Ma Weiyi; Shan Yusheng; Wang Naiyan

    2002-01-01

    Experimental investigations were performed for amplification of ultrashort pulse laser with Heaven-I e-beam pumped KrF amplifier in CIAE. A 50 mJ, 420 fs UV ultrashort pulse was amplified to 2-3 J energy, 1.2 ps pulse duration, and 2TW laser power. Experimental technique such as synchronization were describe, some parameters such as nonlinear absorb coefficient were measured in experiment. As a result, it is possible to achieve ultra-strong UV laser with intensity higher than 10 19 W/cm 2 in recently years

  5. Evaluation of the influence of UV/IR radiation on iron release from ferritin

    International Nuclear Information System (INIS)

    Gritzkov, M.; Kochev, V.; Vladimirova, L

    2010-01-01

    In the present work the influence of UV/IR radiation on the iron-releasing process from ferritin is investigated. The ferritins are a family of iron-storing proteins playing a key role in the biochemical reactions between iron and oxygen-processes of exclusive importance for the existence of all living organisms. The iron is stored within the ferritin core in the form of insoluble crystals containing Fe(III). Therefore for its release, the mineral matrix has to be decomposed, usually through a reduction of Fe(III) to Fe(II). Our study considers the action of UV/IR radiation on the structure of the protein molecule. Eventual changes in the ferritin conformation under the irradiation could result in the change of channel forming regions responsible for the iron efflux. This can be assess by the quantity of Fe (II) obtained in a subsequent mobilization procedure evoked by exogenous reducing agents. In our case the content of the reduced iron is determined electrochemically by the method of potentiometric titration. As already was shown, this method promises to become highly useful for quantitative evaluation of released Fe 2+ . (Author)

  6. Atomic Data for Stellar Astrophysics: from the UV to the IR

    Science.gov (United States)

    Wahlgren, Glenn M.

    2011-01-01

    The study of stars and stellar evolution relies heavily on the analysis of stellar spectra. The need for atomic line data from the ultraviolet (UV) to the infrared (lR) regions is greater now than ever. In the past twenty years, the time since the launch of the Hubble Space Telescope, great progress has been made in acquiring atomic data for UV transitions. The optical wavelength region, now expanded by progress in detector technology, continues to provide motivation for new atomic data. In addition, investments in new instrumentation for ground-based and space observatories has lead to the availability of high-quality spectra at IR wavelengths, where the need for atomic data is most critical. In this review, examples are provided of the progress made in generating atomic data for stellar studies, with a look to the future for addressing the accuracy and completeness of atomic data for anticipated needs.

  7. Phase-Sensitive Control Of Molecular Dissociation Through Attosecond Pump/Strong-Field Mid-IR Probe Spectroscopy

    Science.gov (United States)

    2016-04-15

    splitter (consisting of a thin, uncoated, silicon plate at brewsters angle) and the beams were focused onto the OPA crystal. For this work two...experiments in the future. These technologies include • Two-color driven (EUV/mid-IR) ion spectroscopy: we designed an interferometer combining EUV...isolated single-femtosecond EUV pulse generation: combining the use of low ionization threshold gas, an annual near-IR drive beam , polarization

  8. Enhancement of cutaneous delayed hypersensitivity reactions by a single exposure to UV-A or PUVA

    International Nuclear Information System (INIS)

    Moberg, S.; Mobacken, H.

    1982-01-01

    The influence of irradiation with UV-A and PUVA (8-methoxy-psoralen and UV-A) on delayed hypersensitivity reactions to microbial antigens was studied in healthy human individuals. Skin reactions to Candida albicans antigen and PPD were enhanced by UV-A als well as by PUVA compared with nonirradiated tests. A statistically significant difference was reached with UV-A for both antigens. For PUVA, erythemogenic doses to Candida tests produced a significant increase of response. (orig.)

  9. Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Mørk, Jesper

    1999-01-01

    We demonstrate a new detection scheme for pump-probe and four-wave mixing heterodyne experiments, using balanced detection and a dual-phase lock-in for spectral filtering. The technique allows the use of low repetition-rate laser systems, as is demonstrated on an InGaAsP/InP bulk optical amplifier...... at 1.53 mym. Ultrafast pump-induced changes in the amplitude and phase of the transmitted probe signal are simultaneously measured, going from small to large signal changes and with no need of an absolute phase calibration, showing the versatility and the sensitivity of this detection scheme....... The results for small perturbations are consistent with previous pump-probe experiments reported in literature. Time-resolved four-wave mixing in the absorption regime of the device is measured, and compared with numerical simulations, indicating a 100 fs dephasing time....

  10. Diagnostics of Coronal Magnetic Fields through the Hanle Effect in UV and IR Lines

    Energy Technology Data Exchange (ETDEWEB)

    Raouafi, Nour E. [The John Hopkins University Applied Physics Laboratory, Laurel, MD (United States); Riley, Pete [Predictive Science Inc., San Diego, CA (United States); Gibson, Sarah [High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO (United States); Fineschi, Silvano [The Astrophysical Observatory of Turin, National Institute for Astrophysics, Turin (Italy); Solanki, Sami K., E-mail: noureddine.raouafi@jhuapl.edu [Max-Planck-Institut für Sonnensystemforschung, Göttingen (Germany); School of Space Research, Kyung Hee University, Yongin, South (Korea, Republic of)

    2016-06-22

    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H i Ly-α and the He i 10,830 Å lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.

  11. Constraints from the UV delay in dwarf nova outbursts

    International Nuclear Information System (INIS)

    Meyer, F.; Meyer-Hofmeister, E.

    1989-01-01

    Observations of outbursts of the dwarf nova system VW Hydri show a delay of the rise of the UV flux with respect to that of the optical flux. We discuss the difficulties in modeling this feature in the context of the accretion disk instability and propose a modified limit cycle based on the same value of the frictional parameter α for the cool disk before transition and the hot disk afterwards. This is in contrast with the idea that α must be lower on the cool than on the hot branch. For the modeling of the disk evolution we further assume a continuing depletion of the disk after outburst, which results in a delay of the change over to the hot state during the following outburst

  12. Quasi-simultaneous observations of BL Lac object Mrk 501 in X-ray, UV, visible, IR, and radio frequencies

    Science.gov (United States)

    Kondo, Y.; Worrall, D. M.; Oke, J. B.; Yee, H. K. C.; Neugebauer, G.; Matthews, K.; Feldman, P. A.; Mushotzky, R. F.; Hackney, R. L.; Hackney, K. R. H.

    1981-01-01

    Observations in the X-ray, UV, visible, IR and radio regions of the BL Lac object Mrk 501 made over the course of two months are reported. The measurements were made with the A2 experiment on HEAO 1 (X-ray), the SWP and LWR cameras on IUE (UV), the 5-m Hale telescope (visible), the 2.5-m telescope at Mount Wilson (IR), the NRAO 92-m radio telescope at Green Bank (4750 MHz) and the 46-m radio telescope at the Algonquin Observatory (10275 and 10650 MHz). The quasi-simultaneously observed spectral slope is found to be positive and continuous from the X-ray to the UV, but to gradually flatten and possibly turn down from the mid-UV to the visible; the optical-radio emission cannot be accounted for by a single power law. The total spectrum is shown to be compatible with a synchrotron self-Compton emission mechanism, while the spectrum from the visible to the X-ray is consistent with synchrotron radiation or inverse-Compton scattering by a hot thermal electron cloud. The continuity of the spectrum from the UV to the X-ray is noted to imply a total luminosity greater than previous estimates by a factor of 3-4.

  13. Unraveling the Mechanism of a Reversible Photoactivated Molecular Proton Crane

    NARCIS (Netherlands)

    van der Loop, T.H.; Ruesink, F.; Amirjalayer, S.; Sanders, H. J.; Buma, W.J.; Woutersen, S.

    2014-01-01

    Structural dynamics of the photoactivated mol. proton crane 7-​hydroxy-​8-​(morpholinomethyl)​quinoline has been studied using femtosecond UV-​pump IR-​probe spectroscopy. Upon electronic excitation, a proton is transferred from the hydroxy to the amine group located on the rotatable morpholino side

  14. Gauge invariance in the theoretical description of time-resolved angle-resolved pump/probe photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Freericks, J. K.; Krishnamurthy, H. R.; Sentef, M. A.; Devereaux, T. P.

    2015-10-01

    Nonequilibrium calculations in the presence of an electric field are usually performed in a gauge, and need to be transformed to reveal the gauge-invariant observables. In this work, we discuss the issue of gauge invariance in the context of time-resolved angle-resolved pump/probe photoemission. If the probe is applied while the pump is still on, one must ensure that the calculations of the observed photocurrent are gauge invariant. We also discuss the requirement of the photoemission signal to be positive and the relationship of this constraint to gauge invariance. We end by discussing some technical details related to the perturbative derivation of the photoemission spectra, which involve processes where the pump pulse photoexcites electrons due to nonequilibrium effects.

  15. Spatially resolved star formation and dust attenuation in Mrk 848: Comparison of the integral field spectra and the UV-to-IR SED

    Science.gov (United States)

    Yuan, Fang-Ting; Argudo-Fernández, María; Shen, Shiyin; Hao, Lei; Jiang, Chunyan; Yin, Jun; Boquien, Médéric; Lin, Lihwai

    2018-05-01

    We investigate the star formation history and the dust attenuation in the galaxy merger Mrk 848. Thanks to the multiwavelength photometry from the ultraviolet (UV) to the infrared (IR), and MaNGA's integral field spectroscopy, we are able to study this merger in a detailed way. We divide the whole merger into the core and tail regions, and fit both the optical spectrum and the multi-band spectral energy distribution (SED) to models to obtain the star formation properties for each region respectively. We find that the color excess of stars in the galaxy E(B-V)sSED measured with the multi-band SED fitting is consistent with that estimated both from the infrared excess (the ratio of IR to UV flux) and from the slope of the UV continuum. Furthermore, the reliability of the E(B-V)sSED is examined with a set of mock SEDs, showing that the dust attenuation of the stars can be well constrained by the UV-to-IR broadband SED fitting. The dust attenuation obtained from optical continuum E(B-V)sspec is only about half of E(B-V)sSED. The ratio of the E(B-V)sspec to the E(B-V)g obtained from the Balmer decrement is consistent with the local value (around 0.5). The difference between the results from the UV-to-IR data and the optical data is consistent with the picture that younger stellar populations are attenuated by an extra dust component from the birth clouds compared to older stellar populations which are only attenuated by the diffuse dust. Both with the UV-to-IR SED fitting and the spectral fitting, we find that there is a starburst younger than 100 Myr in one of the two core regions, consistent with the scenario that the interaction-induced gas inflow can enhance the star formation in the center of galaxies.

  16. Anomalous phase behavior and apparent anharmonicity of the pump-probe signal in a two-dimensional harmonic potential system

    International Nuclear Information System (INIS)

    Taneichi, T.; Kobayashi, T.

    2007-01-01

    Discussion on wavelength dependent 'anharmonic' effects in a pump-probe signal for a system of wavepacket on one- and two-dimensional harmonic potentials was given. The Fourier power spectrum of the signal, calculated for a model composed of a three-state electronic system coupled to a set of displaced harmonic oscillators, depends on the pulse duration. Condition under which the wavepacket motion in the harmonic potential substantially deviates from that of the classical point mass is derived. The Fourier power spectrum has enhanced components with frequencies of harmonics even in a system composed of ideally harmonic potentials. Utility of the Fourier analysis of the spectrum for clarification of the squeezed molecular vibrational state is discussed. Calculated oscillatory behavior in phase of a pump-probe signal, as a function of probe frequency, was discussed in terms of a two-dimensional effect on a pump-probe signal

  17. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  18. Asbestos as 'toxic short-circuit' optic-fibre for UV within the cell-net: — Likely roles and hazards for secret UV and IR metabolism

    International Nuclear Information System (INIS)

    Traill, Robert R

    2011-01-01

    The most toxic asbestos fibres have widths 250nm-10nm, and this toxicity is 'physical', which could mean either mechanical or optical: Tangling with chromosomes is a mechanical hazard occasionally reported, and fibres 100nm wide — or chrysotile (white asbestos) is >150nm. In both cases, UV A /UV B -transmission would then predominate. (Chrysotile 150nm might be benign — escaping both mechanical and optical!). But what would generate such UV, and why would its transmission be toxic? Thar and Kühl (J.Theor.Biol.:2004) explain that the long mitochondria on microtubules may be able to act as UV-lasers, (and many observers since Gurwitsch 1923 have reported ultraweak UV emissions escaping from all types of living bio-tissue). That all suggests some universal secret role for UV, apparently related to mitosis. Insertion of fibre 'short-circuits' could then cause upsets in mitosis-control, and hence DNA irregularities. Such UV-control could parallel similar lower-powered Infra-Red control-systems (as considered elsewhere for coaxial myelin; or as portrayed by G.Albrecht-Buehler's online animations etc.); and the traditional short mitochondria seem better suited for this IR task.

  19. Experimental and theoretical studies on IR, Raman, and UV-Vis spectra of quinoline-7-carboxaldehyde.

    Science.gov (United States)

    Kumru, M; Küçük, V; Kocademir, M; Alfanda, H M; Altun, A; Sarı, L

    2015-01-05

    Spectroscopic properties of quinoline-7-carboxaldehyde (Q7C) have been studied in detail both experimentally and theoretically. The FT-IR (4000-50 cm(-1)), FT-Raman (4000-50 cm(-1)), dispersive-Raman (3500-50 cm(-1)), and UV-Vis (200-400 nm) spectra of Q7C were recorded at room temperature (25 °C). Geometry parameters, potential energy surface about CCH(O) bond, harmonic vibrational frequencies, IR and Raman intensities, UV-Vis spectrum, and thermodynamic characteristics (at 298.15K) of Q7C were computed at Hartree-Fock (HF) and density functional B3LYP levels employing the 6-311++G(d,p) basis set. Frontier molecular orbitals, molecular electrostatic potential, and Mulliken charge analyses of Q7C have also been performed. Q7C has two stable conformers that are energetically very close to each other with slight preference to the conformer that has oxygen atom of the aldehyde away from the nitrogen atom of the quinoline. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mode structure of delay-coupled semiconductor lasers: influence of the pump current

    International Nuclear Information System (INIS)

    Erzgraeber, Hartmut; Krauskopf, Bernd; Lenstra, Daan

    2005-01-01

    We consider two identical, mutually delay-coupled semiconductor lasers and show that their compound laser modes (CLMs)-the basic continuous wave solutions-depend rather sensitively on the pump current of the lasers. Specifically, we show with figures and accompanying animations how the underlying CLM structure and the associated locking region, where both lasers operate stably with the same frequency, change as a function of the pump current. Our results provide a natural transition between rather different CLM structures that have been reported in the literature. Moreover, we demonstrate how the locking region as well as the different types of instabilities at its boundary depend on the pump current. This is of fundamental interest for the dynamics of coupled lasers and their possible application

  1. Delay Pressure Detection Method to Eliminate Pump Pressure Interference on the Downhole Mud Pressure Signals

    Directory of Open Access Journals (Sweden)

    Yue Shen

    2013-01-01

    Full Text Available The feasibility of applying delay pressure detection method to eliminate mud pump pressure interference on the downhole mud pressure signals is studied. Two pressure sensors mounted on the mud pipe in some distance apart are provided to detect the downhole mud continuous pressure wave signals on the surface according to the delayed time produced by mud pressure wave transmitting between the two sensors. A mathematical model of delay pressure detection is built by analysis of transmission path between mud pump pressure interference and downhole mud pressure signals. Considering pressure signal transmission characteristics of the mud pipe, a mathematical model of ideal low-pass filter for limited frequency band signal is introduced to study the pole frequency impact on the signal reconstruction and the constraints of pressure sensor distance are obtained by pole frequencies analysis. Theoretical calculation and numerical simulation show that the method can effectively eliminate mud pump pressure interference and the downhole mud continuous pressure wave signals can be reconstructed successfully with a significant improvement in signal-to-noise ratio (SNR in the condition of satisfying the constraints of pressure sensor distance.

  2. Geographic identification of Boletus mushrooms by data fusion of FT-IR and UV spectroscopies combined with multivariate statistical analysis

    Science.gov (United States)

    Yao, Sen; Li, Tao; Li, JieQing; Liu, HongGao; Wang, YuanZhong

    2018-06-01

    Boletus griseus and Boletus edulis are two well-known wild-grown edible mushrooms which have high nutrition, delicious flavor and high economic value distributing in Yunnan Province. In this study, a rapid method using Fourier transform infrared (FT-IR) and ultraviolet (UV) spectroscopies coupled with data fusion was established for the discrimination of Boletus mushrooms from seven different geographical origins with pattern recognition method. Initially, the spectra of 332 mushroom samples obtained from the two spectroscopic techniques were analyzed individually and then the classification performance based on data fusion strategy was investigated. Meanwhile, the latent variables (LVs) of FT-IR and UV spectra were extracted by partial least square discriminant analysis (PLS-DA) and two datasets were concatenated into a new matrix for data fusion. Then, the fusion matrix was further analyzed by support vector machine (SVM). Compared with single spectroscopic technique, data fusion strategy can improve the classification performance effectively. In particular, the accuracy of correct classification of SVM model in training and test sets were 99.10% and 100.00%, respectively. The results demonstrated that data fusion of FT-IR and UV spectra can provide higher synergic effect for the discrimination of different geographical origins of Boletus mushrooms, which may be benefit for further authentication and quality assessment of edible mushrooms.

  3. Heterodyne pump probe measurements of nonlinear dynamics in an indium phosphide photonic crystal cavity

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Combrié, S.; Lehoucq, G.

    2013-01-01

    Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated with the wid......Using a sensitive two-color heterodyne pump-probe technique, we investigate the carrier dynamics of an InP photonic crystal nanocavity. The heterodyne technique provides unambiguous results for all wavelength configurations, including the degenerate case, which cannot be investigated...... with the widely used homodyne technique. A model based on coupled mode theory including two carrier distributions is introduced to account for the relaxation dynamics, which is assumed to be governed by both diffusion and recombination....

  4. Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

    Science.gov (United States)

    Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.

    2018-02-01

    To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.

  5. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    Science.gov (United States)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  6. The MEL-X project at the Lawrence Livermore National Laboratory: a mirror-based delay line for x-rays

    Science.gov (United States)

    Pardini, Tom; Hill, Randy; Decker, Todd; Alameda, Jennifer; Soufli, Regina; Aquila, Andy; Guillet, Serge; Boutet, Sébastien; Hau-Riege, Stefan P.

    2015-09-01

    At the Lawrence Livermore National Laboratory (LLNL) in collaboration with the Linac Coherent Light Source (LCLS) we are developing a mirror-based delay line for x-rays (MEL-X) to enable x-ray pump/x-ray probe experiments at Free Electron Lasers (XFELs). The goal of this project is the development and deployment of a proof-of-principle delay line featuring coated x-ray optics. The four-mirror design of the MEL-X is motivated by the need for ease of alignment and use. In order to simplify the overlap of the pump and the probe beam after each delay time change, a scheme involving super-polished rails and mirror-to-motor decoupling has been adopted. The MEL-X, used in combination with a bright pulsed source like LCLS, features a capability for a high intensity pump beam. Its Iridium coating allows it to work at hard x-ray energies all the way up to 9 keV, with a probe beam transmission of 35% up to 8keV, and 14% at 9keV. The delay time can be tailored to each particular experiment, with a nominal range of 70 - 350 fs for this prototype. The MEL-X, combined with established techniques such as x-ray diffraction, absorption or emission, could provide new insights on ultra-fast transitions in highly excited states of matter.

  7. FT-IR, FT-Raman and UV-visible spectra of potassium 3-furoyltrifluoroborate salt

    Science.gov (United States)

    Iramain, Maximiliano A.; Davies, Lilian; Brandán, Silvia Antonia

    2018-04-01

    The potassium 3-furoyltrifluoroborate salt has been experimentally characterized by means of FT-IR, FT-Raman and UV-Visible spectroscopies. Here, the predicted FT-IR, FT-Raman and UV-visible spectra by using theoretical B3LYP/6-31G* and 6-311++G** calculations show very good correlations with the corresponding experimental ones. The solvation energies were predicted by using both levels of calculations. The NBO analyses reveal the high stability of the salt by using the B3LYP/6-31G* level of theory while the AIM studies evidence the ionic characteristics of the salt in both media. The strong blue colour observed on the K atom by using the molecular electrostatic potential mapped suggests that this region act as typical electrophilic site. The gap values have revealed that the salt in gas phase is more reactive than in solution, as was reported in the literature while, the F13⋯H6 interaction together with the Ksbnd O bond observed by the studies of their charges could probably modulate the reactivities of this salt in aqueous solution. The force fields were computed with the SQMFF methodology and the Molvib program to perform the complete vibrational analysis. Then, the 39 vibration normal modes classified as 26 A'+ 13 A″ were completely assigned and their force constants are also reported.

  8. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency

  9. Formulation comprising silicon microparticles, as a pigment that can absorb visible UV radiation and reflect ir radiation

    OpenAIRE

    Rodríguez, Marie-Isabelle; Fenollosa Esteve, Roberto; Meseguer, Francisco

    2011-01-01

    [EN] The invention relates to a formulation characterised in that it comprises silicon microparticles having a size between 0.010 um and 50 um in diameter, and to the use thereof as a pigment that can absorb visible UV radiation and reflect IR radiation.

  10. The Cosmic Evolution Through UV Spectroscopy (CETUS) Probe Mission Concept

    Science.gov (United States)

    Danchi, William; Heap, Sara; Woodruff, Robert; Hull, Anthony; Kendrick, Stephen E.; Purves, Lloyd; McCandliss, Stephan; Kelly Dodson, Greg Mehle, James Burge, Martin Valente, Michael Rhee, Walter Smith, Michael Choi, Eric Stoneking

    2018-01-01

    CETUS is a mission concept for an all-UV telescope with 3 scientific instruments: a wide-field camera, a wide-field multi-object spectrograph, and a point-source high-resolution and medium resolution spectrograph. It is primarily intended to work with other survey telescopes in the 2020’s (e.g. E-ROSITA (X-ray), LSST, Subaru, WFIRST (optical-near-IR), SKA (radio) to solve major, outstanding problems in astrophysics. In this poster presentation, we give an overview of CETUS key science goals and a progress report on the CETUS mission and instrument design.

  11. Langmuir probe measurements in the TEXTOR tokamak during ALT-I pump limiter experiments

    International Nuclear Information System (INIS)

    Goebel, D.M.; Campbell, G.A.; Conn, R.W.; Leung, W.K.; Dippel, K.H.; Finken, K.H.; Thomas, G.J.; Pontau, A.E.

    1986-04-01

    Langmuir probes have been used to characterize the edge plasma of the TEXTOR tokamak and measure the parameters of the plasma incident on the ALT-I pump limiter during ohmic and ICRH heating. Probes mounted directly on the ALT limiter, and a scanning probe located 90 0 toroidally from the limiter, provide data for the evaluation of pump limiter performance and its effect on the edge plasma. The edge plasma is characterized by density and flux e-folding lengths of about 1.8cm when ALT is the main limiter. These scrape-off lengths do not vary significantly as ALT is moved between the normal 42-46cm minor radii, but increase to over 2.2cm when ALT is inserted to 40cm. The flux to probes at a fixed position in the limiter shadow varies by less than 25% for core density changes of a factor of five. This suggests that the global particle confinement time tau/sub p/, scales as the core density. Estimates from the probes indicate that tau/sub p/ is on the order of the energy confinement time, tau/sub E/. The edge electron temperature, T/sub e/, typically decreases by a factor of two when the core density is raised from 1 to 4 x 10 13 cm -3 . The T/sub e/ profile is essentially flat in the limiter shadow, with values of 10-25 eV depending on the core plasma density and ICRH power. ICRH heating increases the electron temperature and flux in proportion to the coupled power. With ALT as the primary limiter and no direct shadowing, the ion side receives 2 to 3 times the flux of the electron side during both ohmic and ICRH heating. The edge plasma is not directly modified by pump limiter operation, but changes with the core plasma density as particle removal lowers the recycling of neutrals in the boundary

  12. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb 3+ ). Single-stranded oligonucleotides greatly enhance the Tb 3+ emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb 3+ /hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb 3+ , producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb 3+ /hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb 3+ /hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage

  13. Pump-probe nonlinear magneto-optical rotation with frequency-modulated light

    International Nuclear Information System (INIS)

    Pustelny, S.; Gawlik, W.; Jackson Kimball, D. F.; Rochester, S. M.; Yashchuk, V. V.; Budker, D.

    2006-01-01

    Specific types of atomic coherences between Zeeman sublevels can be generated and detected using a method based on nonlinear magneto-optical rotation with frequency-modulated light. Linearly polarized, frequency-modulated light is employed to selectively generate ground-state coherences between Zeeman sublevels for which Δm=2 and Δm=4 in 85 Rb and 87 Rb atoms, and additionally Δm=6 in 85 Rb. The atomic coherences are detected with a separate, unmodulated probe light beam. Separation of the pump and probe beams enables independent investigation of the processes of creation and detection of the atomic coherences. With the present technique the transfer of the Zeeman coherences, including high-order coherences, from excited to ground state by spontaneous emission has been observed

  14. Parasitic lasing suppression in large-aperture Ti:sapphire amplifiers by optimizing the seed–pump time delay

    International Nuclear Information System (INIS)

    Chu, Y X; Liang, X Y; Yu, L H; Xu, L; Lu, X M; Liu, Y Q; Leng, Y X; Li, R X; Xu, Z Z

    2013-01-01

    Theoretical and experimental investigations are carried out to determine the influence of the time delay between the input seed pulse and pump pulses on transverse parasitic lasing in a Ti:sapphire amplifier with a diameter of 80 mm, which is clad by a refractive index-matched liquid doped with an absorber. When the time delay is optimized, a maximum output energy of 50.8 J is achieved at a pump energy of 105 J, which corresponds to a conversion efficiency of 47.5%. Based on the existing compressor, the laser system achieves a peak power of 1.26 PW with a 29.0 fs pulse duration. (letter)

  15. On the Spatially Resolved Star Formation History in M51. I. Hybrid UV+IR Star Formation Laws and IR Emission from Dust Heated by Old Stars

    Science.gov (United States)

    Eufrasio, R. T.; Lehmer, B. D.; Zezas, A.; Dwek, E.; Arendt, R. G.; Basu-Zych, A.; Wiklind, T.; Yukita, M.; Fragos, T.; Hornschemeier, A. E.; Markwardt, L.; Ptak, A.; Tzanavaris, P.

    2017-12-01

    We present LIGHTNING, a new spectral energy distribution fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. LIGHTNING consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive far-UV-to-far-IR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the past 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover an SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51 and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars and that the IR emission from M51b is primarily powered by stars older than 5 Gyr.

  16. Far-UV photochemical bond cleavage of n-amyl nitrite: bypassing a repulsive surface.

    Science.gov (United States)

    Minitti, Michael P; Zhang, Yao; Rosenberg, Martin; Brogaard, Rasmus Y; Deb, Sanghamitra; Sølling, Theis I; Weber, Peter M

    2012-01-19

    We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.

  17. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming; Satija, Aman; Lucht, Robert P.

    2018-01-01

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced

  18. A ZnGeP{sub 2} Optical Parametric Oscillator with Mid-IR Output Power 3 W Pumped by a Tm, Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Guo-Li, Zhu; You-Lun, Ju; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080 (China)

    2009-02-15

    We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The 10-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of 10kHz at wavelength of 2.048 {mu}m. The ZnGeP{sub 2} (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8 {mu}m and 4.45-4.65 {mu}m simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2 {mu}m pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.

  19. Helium nanodroplets. Pump-probe ionization of alkali dopings and spin-echo scattering on undoped drops

    International Nuclear Information System (INIS)

    Droppelmann, G.

    2005-09-01

    In the framework of this thesis several aspects of the properties of helium nanodroplets and their dopings. The formation of the exciplexes RbHe and KHe on helium droplets was studied by means of pump-probe ionization in real time, whereby the main interest lied on the influence of the applied helium isotopes. The experiments with cesium atoms on the droplet surface aimed on the elucidation of the relaxation dynamics of the surface under regardment both of isotope and size effects. From the pump-probe measurements on the formation of the exciplex RbHe on helium nanodroplets performed in the framework of this thesis formation times of 8.5 ps for Rb 4 He and 11.6 ps for Rb 3 He resulted

  20. Ultrasonic inspection of primary pump casing by means of focussing probes

    International Nuclear Information System (INIS)

    Dombret, Ph.; Cermak, J.

    1985-01-01

    This paper describes a study conducted in laboratory on ultrasonic defect detection capabilities in primary pump casings and welds, in the framework of the joint research programme appointed by Framatome, EdF, CEA and Westinghouse, and devoted to improving the ultrasonic inspection of austenitic stainless steel components. Several transducers, including focussing probes and transmitter-receivers, were designed and compared on two 180 mm thick blocks strictly representative of the statically cast casing and of the electroslag welding, and containing various artificial and simulated reflectors. Detection trial results show that focussing probes can achieve fair sensitivity levels even through the full thickness, and appear promising as for on-site applications of this technique. 5 refs

  1. Ultrafast carrier dynamics in bilayer graphene studied by broadband infrared pump-probe spectroscopy

    Science.gov (United States)

    Limmer, Thomas; da Como, Enrico; Niggebaum, Alexander; Feldmann, Jochen

    2010-03-01

    Recently, bilayer graphene gained a large interest because of its electrically tunable gap appearing in the middle infrared part of the electromagnetic spectrum. This feature is expected to open a number of applications of bilayer graphene in optoelectronics. In this communication we report on the first pump-probe experiment on a single bilayer flake with an unprecedented probe photon energy interval (0.25 -- 1.3 eV). Single flakes were prepared by mechanical exfoliation of graphite and transferred to calcium fluoride substrates. When illuminated with 800 nm (1.5 eV) pump pulses the induced change in transmission shows an ultrafast saturation of the interband transitions from 1.3 to 0.5 eV. In this energy range the saturation recovery occurs within 3 ps and is consistent with an ultrafast relaxation of hot carriers. Interestingly, we report on the observation of a resonance at 0.4 eV characterized by a longer dynamics. The results are discussed considering many-body interactions.

  2. Investigation of UV curing reaction of dicyclopentadienyl acrylate by FT-IR

    International Nuclear Information System (INIS)

    Lu Qiting; Hou Yibin

    1999-01-01

    Dicyclopentadienyl acrylate (DCPA) is characterized by low odor, low volatility, high flash point, low toxicity and low shrinkage on cure. Another advantage of DCPA is its insensitiveness to the inhibiting effect of oxygen. DCPA have wide industrial applications. It was used for the preparation of adhesives, UV-curable coatings and polymer concreted). The advantages of DCPA result from its particular structure. There are two unsaturated bonds, one acrylic double bond and one cyclic double bond, in each DCPA molecule. But, few reports on reaction behavior of the two type double bonds were issued up to date. In this paper, reaction behavior of the acrylic and the cyclic double bond of DCPA during and after LTV-curing were investigated by Fourier Transform-Infrared(FT-IR)

  3. Simulations of a FIR Oscillator with Large Slippage parameter at Jefferson Lab for FIR/UV pump-probe experiments

    International Nuclear Information System (INIS)

    Benson, Stephen V.; Campbell, L. T.; McNeil, B.W.T.; Neil, George R.; Shinn, Michelle D.; Williams, Gwyn P.

    2014-01-01

    We previously proposed a dual FEL configuration on the UV Demo FEL at Jefferson Lab that would allow simultaneous lasing at FIR and UV wavelengths. The FIR source would be an FEL oscillator with a short wiggler providing diffraction-limited pulses with pulse energy exceeding 50 microJoules, using the exhaust beam from a UVFEL as the input electron beam. Since the UV FEL requires very short pulses, the input to the FIR FEL is extremely short compared to a slippage length and the usual Slowly Varying Envelope Approximation (SVEA) does not apply. We use a non-SVEA code to simulate this system both with a small energy spread (UV laser off) and with large energy spread (UV laser on)

  4. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, A.I., E-mail: aifigueg@gmail.com [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Baker, A.A. [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom); Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Collins-McIntyre, L.J.; Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU (United Kingdom); Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot OX11 0DE (United Kingdom)

    2016-02-15

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  5. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    International Nuclear Information System (INIS)

    Figueroa, A.I.; Baker, A.A.; Collins-McIntyre, L.J.; Hesjedal, T.; Laan, G. van der

    2016-01-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics. - Highlights: • X-ray detected ferromagnetic resonance is used to study the spin pumping phenomenon. • We show a powerful way to get information of spin transfer between magnetic layers. • We observe spin pumping through a topological insulators at room temperature. • Topological insulators function as efficient spin sinks.

  6. Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )

    Science.gov (United States)

    Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.

    2002-04-01

    Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.

  7. Photochemistry of Fe:H2O Adducts in Argon Matrixes: A Combined Experimental and Theoretical Study in the Mid-IR and UV-Visible Regions.

    Science.gov (United States)

    Deguin, Vincent; Mascetti, Joëlle; Simon, Aude; Ben Amor, Nadia; Aupetit, Christian; Latournerie, Sandra; Noble, Jennifer A

    2018-01-18

    The photochemistry of Fe:H 2 O adducts is of interest in fields as diverse as catalysis and astrochemistry. Industrially, iron can be used as a catalyst to convert H 2 O to H 2 , whereas in the interstellar medium it may be an important component of dust grains, influencing the chemistry on their icy surfaces. This study consisted of the deposition and spectral characterization of binary systems of atomic iron with H 2 O in cryogenic argon matrixes. In this way, we were able to obtain information about the interaction of the two species; we observed the formation of adducts of iron monomers and dimers with water molecules in the mid-IR and UV-visible spectral domains. Upon irradiation with a UV radiation source, the iron species were inserted into the water molecules to form HFeOH and HFe 2 OH, leading in some cases to the formation of FeO possibly accompanied by the production of H 2 . DFT and correlated multireference wave function calculations confirmed our attributions. This combination of IR and UV-visible spectroscopy with theoretical calculations allowed us to determine, for the first time, the spectral characteristics of iron adducts and their photoproducts in the UV-visible and in the OH stretching region of the mid-IR domain.

  8. IL 6: 2D-IR spectroscopy: chemistry and biophysics in real time

    International Nuclear Information System (INIS)

    Bredenbeck, Jens

    2010-01-01

    Pulsed multidimensional experiments, daily business in the field of NMR spectroscopy, have been demonstrated only relatively recently in IR spectroscopy. Similar as nuclear spins in multidimensional NMR, molecular vibrations are employed in multidimensional IR experiments as probes of molecular structure and dynamics, albeit with femtosecond time resolution. Different types of multidimensional IR experiments have been implemented, resembling basic NMR experiments such as NOESY, COSY and EXSY. In contrast to one-dimensional linear spectroscopy, such multidimensional experiments reveal couplings and correlations of vibrations, which are closely linked to molecular structure and its change in time. The use of mixed IR/VIS pulse sequences further extends the potential of multidimensional IR spectroscopy, enabling studies of ultrafast non-equilibrium processes as well as surface specific, highly sensitive experiments. A UV/VIS pulse preceding the IR pulse sequence can be used to prepare the system under study in a non-equilibrium state. 2D-IR snapshots of the evolving non-equilibrium system are then taken, for example during a photochemical reaction or during the photo-cycle of a light sensitive protein. Preparing the system in a non-equilibrium state by UV/Vis excitation during the IR pulse sequence allows for correlating states of reactant and product of the light triggered process via their 2D-IR cross peaks - a technique that has been used to map the connectivity between different binding sites of a ligand as it migrates through a protein. Introduction of a non-resonant VIS pulse at the end of the IR part of the experiment allows to selectively up-convert the infrared signal of interfacial molecules to the visible spectral range by sum frequency generation. In this way, femtosecond interfacial 2D-IR spectroscopy can be implemented, achieving sub-monolayer sensitivity. (author)

  9. User oriented end-station on VUV pump-probe magneto-optical ellipsometry at ELI beamlines

    Science.gov (United States)

    Espinoza, Shirly; Neuber, Gerd; Brooks, Christopher D.; Besner, Bastian; Hashemi, Maryam; Rübhausen, Michael; Andreasson, Jakob

    2017-11-01

    A state of the art ellipsometer for user operations is being implemented at ELI Beamlines in Prague, Czech Republic. It combines three of the most promising and exotic forms of ellipsometry: VUV, pump-probe and magneto-optical ellipsometry. This new ellipsometer covers a spectral operational range from the NIR up to the VUV, with high through-put between 1 and 40 eV. The ellipsometer also allows measurements of magneto-optical spectra with a 1 kHz switchable magnetic field of up to 1.5 T across the sample combining ellipsometry and Kerr spectroscopy measurements in an unprecedented spectral range. This form of generalized ellipsometry enables users to address diagonal and off-diagonal components of the dielectric tensor within one measurement. Pump-probe measurements enable users to study the dynamic behaviour of the dielectric tensor in order to resolve the time-domain phenomena in the femto to 100 ns range.

  10. Detecting strain wave propagation through quantum dots by pump-probe spectroscopy: A theoretical analysis

    International Nuclear Information System (INIS)

    Huneke, J; Kuhn, T; Axt, V M

    2010-01-01

    The influence of strain waves traveling across a quantum dot structure on its optical response is studied for two different situations: First, a strain wave is created by the optical excitation of a single quantum dot near a surface which, after reflection at the surface, reenters the dot; second, a phonon wave packet is emitted by the excitation of a nearby second dot and then travels across the quantum dot. Pump-probe type excitations are simulated for quantum dots in the strong confinement limit. We show that the optical signals allow us to monitor crossing strain waves for both structures in the real-time response as well as in the corresponding pump-probe spectra. In the time-derivative of the phase of the polarization a distinct trace reflects the instantaneous shifts of the transition energy during the passage while in the spectra pronounced oscillations reveal the passage of the strain waves.

  11. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    Directory of Open Access Journals (Sweden)

    L. van Rensburg

    2010-01-01

    Full Text Available Measurements of ultrafast transient processes, of temporal durations in the picosecond and femtosecond regime, are made possible by femtosecond pump probe transient absorption spectroscopy. Such an ultrafast pump probe transient absorption setup has been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper we report on our first results obtained with Malachite green as a benchmark. Malachite green was chosen because the lifetime of its excited state is well known. We also present experimental results of the ultrafast energy transfer of light-harvesting complexes in samples prepared from spinach leaves. Various pump wavelengths in the range 600–680 nm were used; the probe was a white light continuum spanning 420–700 nm. The experimental setup is described in detail in this paper. Results obtained with these samples are consistent with those expected and achieved by other researchers in this field.

  12. Optical-response properties in an atom-assisted optomechanical system with a mechanical pump

    Science.gov (United States)

    Sun, Xue-Jian; Chen, Hao; Liu, Wen-Xiao; Li, Hong-Rong

    2017-05-01

    We investigate the optical-response properties of a coherent-mechanical pumped optomechanical system (OMS) coupled to a Λ-type three-level atomic ensemble. Due to the optomechanical and the cavity-atom couplings, the optomechanically induced transparency (OMIT) and electromagnetically induced transparency (EIT) phenomena could both be observed from our proposal. In the presence of a coherent mechanical pump, we show that the OMIT behavior of the probe field exhibits a phase-dependent effect, leading to the switch from OMIT to optomechanically induced absorption or amplification, while the feature of EIT remains unchanged. The distinctly different effects of the mechanical pump on OMIT and EIT behavior assure us that the absorption (amplification) and transparency of the output probe field can be simultaneously observed. Moreover, a tunable switch from slow to fast light can also be realized by tuning the phase and amplitude of the mechanical pump. In particular, the presence of the atomic ensemble can further adjust the group delay, providing additional flexibility for achieving the tunable switch.

  13. Diagnosis and staging of female genital tract melanocytic lesions using pump-probe microscopy (Conference Presentation)

    Science.gov (United States)

    Robles, Francisco E.; Selim, Maria A.; Warren, Warren S.

    2016-02-01

    Melanoma of the vulva is the second most common type of malignancy afflicting that organ. This disease caries poor prognosis, and shows tendencies to recur locally and develop distant metastases through hematogenous dissemination. Further, there exists significant clinical overlap between early-stage melanomas and melanotic macules, benign lesions that are believed to develop in about 10% of the general female population. In this work we apply a novel nonlinear optical method, pump-probe microscopy, to quantitatively analyze female genitalia tract melanocytic lesions. Pump-probe microscopy provides chemical information of endogenous pigments by probing their electronic excited state dynamics, with subcellular resolution. Using unstained biopsy sections from 31 patients, we find significant differences between melanin type and structure in tissue regions with invasive melanoma, melanoma in-situ and non-malignant melanocytic proliferations (e.g., nevi, melanocytic macules). The molecular images of non-malignant lesion have a well-organized structure, with relatively homogenous pigment chemistry, most often consistent with that of eumelanin with large aggregate size or void of metals, such as iron. On the other hand, pigment type and structure observed in melanomas in-situ and invasive melanomas is typically much more heterogeneous, with larger contributions from pheomelanin, melanins with larger metal content, and/or melanins with smaller aggregate size. Of most significance, clear differences can be observed between melanocytic macules and vulvar melanoma in-situ, which, as discussed above, can be difficult to clinically distinguish. This initial study demonstrates pump-probe microscopy's potential as an adjuvant diagnostic tool by revealing systematic chemical and morphological differences in melanin pigmentation among invasive melanoma, melanoma in-situ and non-malignant melanocytic lesions.

  14. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer

    Science.gov (United States)

    Stadnytskyi, Valentyn; Orf, Gregory S.; Blankenship, Robert E.; Savikhin, Sergei

    2018-03-01

    We describe an optical near shot-noise limited time-resolved circular dichroism (TRCD) pump-probe spectrometer capable of reliably measuring circular dichroism signals in the order of μdeg with nanosecond time resolution. Such sensitivity is achieved through a modification of existing TRCD designs and introduction of a new data processing protocol that eliminates approximations that have caused substantial nonlinearities in past measurements and allows the measurement of absorption and circular dichroism transients simultaneously with a single pump pulse. The exceptional signal-to-noise ratio of the described setup makes the TRCD technique applicable to a large range of non-biological and biological systems. The spectrometer was used to record, for the first time, weak TRCD kinetics associated with the triplet state energy transfer in the photosynthetic Fenna-Matthews-Olson antenna pigment-protein complex.

  15. Respiratory failure following delayed intrathecal morphine pump refill: a valuable, but costly lesson.

    Science.gov (United States)

    Ruan, Xiulu; Couch, J Patrick; Liu, HaiNan; Shah, Rinoo V; Wang, Frank; Chiravuri, Srinivas

    2010-01-01

    Spinal analgesia, mediated by opioid receptors, requires only a fraction of the opioid dose that is needed systemically. By infusing a small amount of opioid into the cerebrospinal fluid in close proximity to the receptor sites in the spinal cord, profound analgesia may be achieved while sparing some of the side effects due to systemic opioids. Intraspinal drug delivery (IDD) has been increasingly used in patients with intractable chronic pain, when these patients have developed untoward side effects with systemic opioid usage. The introduction of intrathecal opioids has been considered one of the most important breakthroughs in pain management in the past three decades. A variety of side effects associated with the long-term usage of IDD have been recognized. Among them, respiratory depression is the most feared. To describe a severe adverse event, i.e., respiratory failure, following delayed intrathecal morphine pump refill. A 65-year-old woman with intractable chronic low back pain, due to degenerative disc disease, and was referred to our clinic for an intraspinal drug delivery evaluation, after failing to respond to multidisciplinary pain treatment. Following a psychological evaluation confirming her candidacy, she underwent an outpatient patient-controlled continuous epidural morphine infusion trial. The infusion trial lasted 12 days and was beneficial in controlling her pain. The patient reported more than 90% pain reduction with improved distance for ambulation. She subsequently consented and was scheduled for permanent intrathecal morphine pump implantation. The intrathecal catheter was inserted at right paramedian L3-L4, with catheter tip advanced to L1, confirmed under fluoroscopy. Intrathecal catheter placement was confirmed by positive CSF flow and by myelogram. A non-programmable Codman 3000 constant-flow rate infusion pump was placed in the right mid quandrant between right rib cage and right iliac crest. The intrathecal infusion consisted of

  16. Toward single-mode UV to near-IR guidance using hollow-core anti-resonant silica fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Antonio-Lopez, Jose Enrique; Van Newkirk, Amy

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers with a “negative-curvature” of the core-cladding boundary have been extensively studied over the past few years owing to their low loss and wide transmission bandwidths. The key unique feature of the HC-AR fiber is that the coupling between the core and cl...... a silica HC-AR fiber having a single ring of 7 non-touching capillaries, designed to have effectively single-mode operation and low loss from UV to near-IR....

  17. Sol–gel glass-ceramics comprising rare-earth doped SnO2 and LaF3 nanocrystals: an efficient simultaneous UV and IR to visible converter

    International Nuclear Information System (INIS)

    Yanes, A. C.; Castillo, J. del; Méndez-Ramos, J.; Rodríguez, V. D.

    2011-01-01

    We report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot), and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.Graphical AbstractWe report a novel class of nanostructured glass-ceramics comprising two co-existing rare-earth doped nanocrystalline phases, SnO 2 semiconductor nanocrystal (quantum dot) and LaF 3 , presenting sizes at around 4.6 and 9.8 nm, respectively, embedded into a silica glass matrix for an efficient simultaneous UV and IR to visible photon conversion. On one hand, the wide and strong UV absorption by SnO 2 quantum dot and subsequent efficient energy transfer to Eu 3+ and, on the other hand, the also very efficient IR to visible up-conversion with the pair Yb 3+ –Er 3+ partitioned into low phonon LaF 3 nanocrystalline environment, yield to visible emissions with application in improving the spectral response of photovoltaic solar cells.

  18. Development of a Pump-Probe System using a Non-Coated ZnSe Beam Splitter Cube for an MIR-FEL

    CERN Document Server

    Heya, Manabu; Horiike, Hiroshi; Ishii, Katsonuri; Suzuki, Sachiko

    2004-01-01

    A pump-probe technique is essential for a proper understanding of laser interaction with tissue and material. Our pump-probe system divides the incident mid-infrared Free Electron Laser (MIR-FEL) into two beams with equal intensity, and crosses simultaneously the two incoming beams at the same position. One is for a pump beam, another is for a probe beam. Time-resolved absorption spectroscopy involving this technique gives us information on the vibrational dynamics of molecules. We have developed this system for an MIR-FEL using a non-coating ZnSe beam splitter cube. The beam splitter cube is composed of two ZnSe prisms in the shape like a trapezoid. The two pulses with equal intensity are generated due to Fresnel reflection and transmission at the boundary between two prisms, then are reflected due to total reflection at other side boundaries between each prism and air, and illuminate simultaneously the same spot. We have conducted a proof-of-concept of experiment of this system using an MIR-FEL. We showed t...

  19. Probe for intracellular concentrations of drugs: delayed fluorescence from acridine orange

    International Nuclear Information System (INIS)

    Wardman, P.; Dennis, M.F.; White, J.

    1989-01-01

    The aim of this work is to develop fluorescent probes that will indicate effective concentrations of therapeutic agents, or endogenous protectors, at important cellular sites. Acridine orange associates with nucleic acids and emits a 'delayed' fluorescence signal. This signal is quenched by oxidants such as oxygen, nitroaryl radiosensitizers, adriamycin and mitomycin-c, and reductants such as thiols, ascorbate and other radioprotectors. The quenching of the acridine orange delayed fluorescence reflects the effective concentration of these therapeutically-important oxidants and reductants near DNA. The relative concentration of basic radiosensitizers such as pimonidazole (Ro 03-8799) near the DNA is greater than that of misonidazole. Thiols quench the delayed fluorescence signal according to the degree of ionization of the thiol function; this may model the reactivity of thiols with guanine radical sites in DNA. Ascorbate and aminopyrine do not quench the delayed fluorescence from cells stained with acridine orange as these compounds are taken up by cells very inefficiently

  20. Fiber-based modulated optical reflectance configuration allowing for offset pump and probe beams

    Science.gov (United States)

    Fleming, A.; Folsom, C.; Jensen, C.; Ban, H.

    2016-12-01

    A new fiber-based modulated optical reflectance configuration is developed in this work. The technique maintains the fiber-based heating laser (pump) and detection laser (probe) in close proximity at a fixed separation distance in a ceramic ferrule. The pump beam periodically heats the sample inducing thermal waves into the sample. The probe beam measures the temperature response at a known distance from the pump beam over a range of heating modulation frequencies. The thermal diffusivity of the sample may be calculated from the phase response between the input heat flux and the temperature response of a sample having a reflective surface. The unique measurement configuration is ideal for in situ measurements and has many advantages for laboratory-based systems. The design and development of the system are reported along with theoretical justification for the experimental design. The thermal diffusivities of Ge and SiC are measured and found to be within 10% of reported literature values. The diffusivity for SiO2 is measured with a relative difference of approximately 100% from the literature value when the ferrule is in contact with the sample. An additional measurement was made on the SiO2 sample with the ferrule not in contact resulting in a difference of less than 2% from the literature value. The difference in the SiO2 measurement when the ferrule is in contact with the sample is likely due to a parallel heat transfer path through the dual-fiber ferrule assembly.

  1. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B. [Department of Physics, Technion (Israel); Brosch, Noah [The Wise Observatory and School of Physics and Astronomy, Tel Aviv University (Israel); Tielens, Alexander G. G. M. [Leiden Observatory, Leiden University (Netherlands)

    2017-02-20

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  2. Observational Evidence Linking Interstellar UV Absorption to PAH Molecules

    International Nuclear Information System (INIS)

    Blasberger, Avi; Behar, Ehud; Perets, Hagai B.; Brosch, Noah; Tielens, Alexander G. G. M.

    2017-01-01

    The 2175 Å UV extinction feature was discovered in the mid-1960s, yet its physical origin remains poorly understood. One suggestion is absorption by polycyclic aromatic hydrocarbon (PAH) molecules, which is supported by theoretical molecular structure computations and by laboratory experiments. PAHs are positively detected by their 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m IR emission bands, which are specified by their modes of vibration. A definitive empirical link between the 2175 Å UV extinction and the IR PAH emission bands, however, is still missing. We present a new sample of hot stars that have both 2175 Å absorption and IR PAH emission. We find significant shifts of the central wavelength of the UV absorption feature, up to 2350 Å, but predominantly in stars that also have IR PAH emission. These UV shifts depend on stellar temperature in a fashion that is similar to the shifts of the 6.2 and 7.7 μ m IR PAH bands, that is, the features are increasingly more redshifted as the stellar temperature decreases, but only below ∼15 kK. Above 15 kK both UV and IR features retain their nominal values. Moreover, we find a suggestive correlation between the UV and IR shifts. We hypothesize that these similar dependences of both the UV and IR features on stellar temperature hint at a common origin of the two in PAH molecules and may establish the missing link between the UV and IR observations. We further suggest that the shifts depend on molecular size, and that the critical temperature of ∼15 kK above which no shifts are observed is related to the onset of UV-driven hot-star winds and their associated shocks.

  3. Thermalization in 2D critical quench and UV/IR mixing

    Science.gov (United States)

    Mandal, Gautam; Paranjape, Shruti; Sorokhaibam, Nilakash

    2018-01-01

    We consider quantum quenches in models of free scalars and fermions with a generic time-dependent mass m( t) that goes from m 0 to zero. We prove that, as anticipated in MSS [1], the post-quench dynamics can be described in terms of a state of the generalized Calabrese-Cardy form | ψ〉 = exp[- κ 2 H - ∑ n >2 ∞ κ n W n ]|Bd〉. The W n ( n = 2, 3, . . ., W 2 = H) here represent the conserved W ∞ charges and |Bd〉 represents a conformal boundary state. Our result holds irrespective of whether the pre-quench state is a ground state or a squeezed state, and is proved without recourse to perturbation expansion in the κ n 's as in MSS. We compute exact time-dependent correlators for some specific quench protocols m( t). The correlators explicitly show thermalization to a generalized Gibbs ensemble (GGE), with inverse temperature β = 4 κ 2, and chemical potentials μ n = 4 κ n . In case the pre-quench state is a ground state, it is possible to retrieve the exact quench protocol m( t) from the final GGE, by an application of inverse scattering techniques. Another notable result, which we interpret as a UV/IR mixing, is that the long distance and long time (IR) behaviour of some correlators depends crucially on all κ n 's, although they are highly irrelevant couplings in the usual RG parlance. This indicates subtleties in RG arguments when applied to non-equilibrium dynamics.

  4. An enhancement of spin polarization by multiphoton pumping in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-08-15

    Highlights: {yields} Multiphoton pumping and spin generation in semiconductors. {yields} Optical selection rules for inter-band transitions. {yields} Calculations of spin polarization using band-energy model and the second order perturbation theory. {yields} Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  5. An enhancement of spin polarization by multiphoton pumping in semiconductors

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    Highlights: → Multiphoton pumping and spin generation in semiconductors. → Optical selection rules for inter-band transitions. → Calculations of spin polarization using band-energy model and the second order perturbation theory. → Enhancement of the electronic spin polarization. - Abstract: A pump-probe spectroscopic study has been carried out in zinc-blende bulk semiconductors. In the semiconductor samples, a spin-polarized carrier population is produced by the absorption of a monochromatic circularly polarized light beam with two-photon energy above the direct band gap in bulk semiconductors. The production of a carrier population with a net spin is a consequence of the optical selection rules for the heavy-hole and light-hole valence-to-conduction band transitions. This production is probed by the spin-dependent transmission of the samples in the time domain. The spin polarization of the conduction-band-electrons in dependences of delay of the probe beam as well as of pumping photon energy is estimated. The spin polarization is found to depolarize rapidly for pumping energy larger than the energy gap of the split-off band to the conduction band. From the polarization decays, the spin relaxation times are also estimated. Compared to one-photon pumping, the results, however, show that an enhancement of the spin-polarization is achieved by multiphoton excitation of the samples. The experimental results are compared with those obtained in calculations using second order perturbation theory of the spin transport model. A good agreement between experiment and theory is obtained. The observed results are discussed in details.

  6. Ultrawide spectral broadening and compression of single extremely short pulses in the visible, uv-vuv, and middle infrared by high-order stimulated Raman scattering

    International Nuclear Information System (INIS)

    Kalosha, V. P.; Herrmann, J.

    2003-01-01

    We present the results of a comprehensive analytical and numerical study of ultrawide spectral broadening and compression of isolated extremely short visible, uv-vuv and middle infrared (MIR) pulses by high-order stimulated Raman scattering in hollow waveguides. Spectral and temporal characteristics of the output pulses and the mechanism of pulse compression using dispersion of the gas filling and output glass window are investigated without the slowly varying envelope approximation. Physical limitations due to phase mismatch, velocity walk off, and pump-pulse depletion as well as improvements through the use of pump-pulse sequences and dispersion control are studied. It is shown that phase-locked pulses as short as ∼2 fs in the visible and uv-vuv, and 6.5 fs in the MIR can be generated by coherent scattering in impulsively excited Raman media without the necessity of external phase control. Using pump-pulse sequences, shortest durations in the range of about 1 fs for visible and uv-vuv probe pulses are predicted

  7. Spin pumping through a topological insulator probed by x-ray detected ferromagnetic resonance

    Science.gov (United States)

    Figueroa, A. I.; Baker, A. A.; Collins-McIntyre, L. J.; Hesjedal, T.; van der Laan, G.

    2016-02-01

    In the field of spintronics, the generation of a pure spin current (without macroscopic charge flow) through spin pumping of a ferromagnetic (FM) layer opens up the perspective of a new generation of dissipation-less devices. Microwave driven ferromagnetic resonance (FMR) can generate a pure spin current that enters adjacent layers, allowing for both magnetization reversal (through spin-transfer torque) and to probe spin coherence in non-magnetic materials. However, standard FMR is unable to probe multilayer dynamics directly, since the measurement averages over the contributions from the whole system. The synchrotron radiation-based technique of x-ray detected FMR (XFMR) offers an elegant solution to this drawback, giving access to element-, site-, and layer-specific dynamical measurements in heterostructures. In this work, we show how XFMR has provided unique information to understand spin pumping and spin transfer torque effects through a topological insulator (TI) layer in a pseudo-spin valve heterostructure. We demonstrate that TIs function as efficient spin sinks, while also allowing a limited dynamic coupling between ferromagnetic layers. These results shed new light on the spin dynamics of this novel class of materials, and suggest future directions for the development of room temperature TI-based spintronics.

  8. Small interfering RNA targeted to IGF-IR delays tumor growth and induces proinflammatory cytokines in a mouse breast cancer model.

    Directory of Open Access Journals (Sweden)

    Tiphanie Durfort

    Full Text Available Insulin-like growth factor I (IGF-I and its type I receptor (IGF-IR play significant roles in tumorigenesis and in immune response. Here, we wanted to know whether an RNA interference approach targeted to IGF-IR could be used for specific antitumor immunostimulation in a breast cancer model. For that, we evaluated short interfering RNA (siRNAs for inhibition of in vivo tumor growth and immunological stimulation in immunocompetent mice. We designed 2'-O-methyl-modified siRNAs to inhibit expression of IGF-IR in two murine breast cancer cell lines (EMT6, C4HD. Cell transfection of IGF-IR siRNAs decreased proliferation, diminished phosphorylation of downstream signaling pathway proteins, AKT and ERK, and caused a G0/G1 cell cycle block. The IGF-IR silencing also induced secretion of two proinflammatory cytokines, TNF- α and IFN-γ. When we transfected C4HD cells with siRNAs targeting IGF-IR, mammary tumor growth was strongly delayed in syngenic mice. Histology of developing tumors in mice grafted with IGF-IR siRNA treated C4HD cells revealed a low mitotic index, and infiltration of lymphocytes and polymorphonuclear neutrophils, suggesting activation of an antitumor immune response. When we used C4HD cells treated with siRNA as an immunogen, we observed an increase in delayed-type hypersensitivity and the presence of cytotoxic splenocytes against wild-type C4HD cells, indicative of evolving immune response. Our findings show that silencing IGF-IR using synthetic siRNA bearing 2'-O-methyl nucleotides may offer a new clinical approach for treatment of mammary tumors expressing IGF-IR. Interestingly, our work also suggests that crosstalk between IGF-I axis and antitumor immune response can mobilize proinflammatory cytokines.

  9. Label-Free Imaging of Female Genital Tract Melanocytic Lesions With Pump-Probe Microscopy: A Promising Diagnostic Tool.

    Science.gov (United States)

    Robles, Francisco E; Deb, Sanghamitra; Fischer, Martin C; Warren, Warren S; Selim, Maria Angelica

    2017-04-01

    Melanomas of the female genital tract present a unique clinical challenge. Not only are these lesions in an anatomically sensitive area, but also they tend to be multifocal and have high recurrence rates. Furthermore, several benign melanocytic proliferations resemble early-stage melanoma clinically and/or histopathologically. Thus, there is a significant need for additional tools that can help correctly diagnose and stage these lesions. Here, we quantitatively and nondestructively analyze the chemical composition of melanin in excised pigmented lesions of the female genital tract using pump-probe microscopy, a high-resolution optical imaging technique that is sensitive to many biochemical properties of melanin. Thirty-one thin (~5 μm) tissue sections previously excised from female genital tract melanocytic lesions were imaged with pump-probe microscopy and analyzed. We find significant quantitative differences in melanin type and structure between melanoma and nonmalignant melanocytic proliferations. Our analysis also suggests a link between the molecular signatures of melanins and lesion-specific genetic mutations. Finally, significant differences are found between metastatic and nonmetastatic melanomas. The limitations of this work include the fact that molecular information is restricted to melanin pigment and the sample size is relatively small. Pump-probe microscopy provides unique information regarding the biochemical composition of genital tract melanocytic lesions, which can be used to improve the diagnosis and staging of vulvar melanomas.

  10. Organic and inorganic interpretations of the martian UV-IR reflectance spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Pang, K D; Ajello, J M [Jet Propulsion Lab., Pasadena, CA (USA); Chun, S F.S. [California Univ., San Francisco (USA). School of Medicine; Nansheng, Z [Beijing Planetarium (China); Minji, L [Beijing Glass Institute (China)

    1982-01-07

    The Viking gas chromatography-mass spectrometer analysis of martian soil samples are discussed, in particular why no organic molecules were detected at the landing sites, whether the sterility of the two sites is representative of the entire planet and if there are locations on Mars more conducive to the formation and preservation of organics. The destruction of organic compounds has been simulated in Mars-like laboratory conditions and the possible planetwide destructive mechanism considered. The UV and IR reflectance spectra of Mars has been re-examined for any evidence of organic molecules and an upper limit on the organic carbon content of average martian soil has been set. The results reveal that the average martian soil is organic-poor, makes an unfavourable habitat for life forms based on carbon chemistry, and there is no reason to believe that organic molecules are preferentially preserved anywhere on the planet.

  11. Organic and inorganic interpretations of the martian UV-IR reflectance spectrum

    International Nuclear Information System (INIS)

    Pang, K.D.; Ajello, J.M.; Chun, S.F.S.; Minji, L.

    1982-01-01

    The Viking gas chromatography-mass spectrometer analysis of martian soil samples are discussed, in particular why no organic molecules were detected at the landing sites, whether the sterility of the two sites is representative of the entire planet and if there are locations on Mars more conducive to the formation and preservation of organics. The destruction of organic compounds has been simulated in Mars-like laboratory conditions and the possible planetwide destructive mechanism considered. The UV and IR reflectance spectra of Mars has been re-examined for any evidence of organic molecules and an upper limit on the organic carbon content of average martian soil has been set. The results reveal that the average martian soil is organic-poor, makes an unfavourable habitat for life forms based on carbon chemistry, and there is no reason to believe that organic molecules are preferentially preserved anywhere on the planet. (U.K.)

  12. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    Science.gov (United States)

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-01-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781

  13. Organic conjugated small molecule materials based optical probe for rapid, colorimetric and UV-vis spectral detection of phosphorylated protein in placental tissue.

    Science.gov (United States)

    Wang, Yanfang; Yang, Na; Liu, Yi

    2018-04-05

    A novel organic small molecule with D-Pi-A structure was prepared, which was found to be a promising colorimetric and ratiometric UV-vis spetral probe for detection of phosphorylated proteins with the help of tetravalent zirconium ion. Such optical probe based on chromophore WYF-1 shows a rapid response (within 10s) and high selectivity and sensitivity for phosphorylated proteins, giving distinct colorimetric and ratiometric UV-vis changes at 720 and 560nm. The detection limit for phosphorylated proteins was estimated to be 100nM. In addition, detection of phosphorylated proteins in placental tissue samples with this probe was successfully applied, which indicates that this probe holds great potential for phosphorylated proteins detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Ultrafast Photodissociation Dynamics of the F State of Sulfur Dioxide by Femtosecond Time-Resolved Pump-Probe Method

    International Nuclear Information System (INIS)

    Zhang Dong-Dong; Ni Qiang; Luo Si-Zuo; Zhang Jing; Liu Hang; Xu Hai-Feng; Jin Ming-Xing; Ding Da-Jun

    2011-01-01

    A femtosecond pump-probe method is employed to study the dissociation dynamics of sulfur dioxide. SO 2 molecules are excited to the F state by absorbing two photons of 267 nm femtosecond laser pulses, and ionized by 400 nm laser pulses at different delay times between the two lasers. Transients of both parent ions (SO + 2 ) and the fragment ions (SO + , S + and O + ) are observed. The SO + 2 transient can be well fitted to a biexponential decay comprising a fast and a slow component of 280 fs and 2.97 ps lifetimes, respectively. The SO + transient consists of two growth components of 270 fs and 2.50 ps. The results clearly show that the F state of SO 2 dissociates along an S-O bond. The transients of S + and O + , however, have different behavior, which consist of a fast growth and a long decay component. A possible mechanism of the fragment formation is discussed to understand the dissociation dynamics of the F state of SO 2 . (atomic and molecular physics)

  15. Theory of terahertz pumping of chemical environments in the condensed phase

    International Nuclear Information System (INIS)

    Mishra, Pankaj Kumar

    2015-12-01

    Newly emerged light-sources allow to generate fully synchronized, ultrashort and highly intense light pulses. With these light pulses, it is possible to initiate a process by a pump pulse and follow the dynamics via probe pulse in the femtosecond timescale. These pump-probe experiments play an important role for studying the chemical and biological processes in real time. Such techniques are also used to generate temperature-jump (T-jump) in ultrashort timescale to study the very fast kinetics of fundamental steps in chemical processes. Because of its biological and chemical relevance, T-jump experiments on liquid water have gained a lot of attention. Rather than acting as a passive environment, the dynamics of water during chemical and biological processes play a fundamental role in the solvation and stabilization of reaction intermediates. To target the O-H stretching mode of water with an infrared (IR) laser is a widely used mechanism to generate the T-jump in nanosecond to femtosecond timescales. With these techniques, T-jump has been limited only to few 10s of K so far. In this thesis, a new mechanism is investigated to generate T-jump up to few 100s of K in sub-ps timescale. The main portion of this thesis concentrates on the response of liquid water to sub-cycle THz pump pulses spectrally centered at 100 cm -1 (∝3 THz). The THz pump pulse with intensity of 5 x 10 12 W/cm 2 transfers a large amount of energy to inter- and intramolecular vibrations of water in sub-ps timescale. After the pump pulse, water reaches to a quasiequilibrium state, which is a gas-like hot liquid. The large energy gain in water causes significant structural modifications and vibrational shifting, which can be probed by timeresolved coherent x-ray scattering and time-resolved IR spectroscopy, respectively. Here, the interaction of THz pulse with water molecules is investigated from clusters to bulk water. We find it to be mainly described via the interaction of electric field with

  16. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    Science.gov (United States)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  17. Ultrafast pump-probe spectroscopy of Zinc Phthalocynine (ZnPc) and light harvesting complex II (LHC II)

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2009-07-01

    Full Text Available pump-probe spectroscopy of Zinc Phthalocynine (ZnPc) and light harvesting complex II (LHC II) SAIP 7-10 July 2009, University of Kwazulu Natal. S. Ombinda-Lemboumba1, 2 A. du Plessis1, L. Botha1, D.E. Roberts1, P. Molukanele1, 3, R.W. Sparrow3, E... and phtobiology (2008) Page 12 Conclusion SAIP 7-10 July 2009, University of Kwazulu natal Femto group © CSIR 2008 www.csir.co.za • Presented our method of correcting chirp induced by white light generation. • Pump...

  18. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks.

    Science.gov (United States)

    Ma, Junjie; Meng, Fansheng; Zhou, Yuexi; Wang, Yeyao; Shi, Ping

    2018-02-16

    Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible) spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO) procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  19. Octave-Spanning Mid-IR Supercontinuum Generation with Ultrafast Cascaded Nonlinearities

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Liu, Xing

    2014-01-01

    An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation....

  20. Photoinduced molecular chirality probed by ultrafast resonant X-ray spectroscopy

    Directory of Open Access Journals (Sweden)

    Jérémy R. Rouxel

    2017-07-01

    Full Text Available Recently developed circularly polarized X-ray light sources can probe the ultrafast chiral electronic and nuclear dynamics through spatially localized resonant core transitions. We present simulations of time-resolved circular dichroism signals given by the difference of left and right circularly polarized X-ray probe transmission following an excitation by a circularly polarized optical pump with the variable time delay. Application is made to formamide which is achiral in the ground state and assumes two chiral geometries upon optical excitation to the first valence excited state. Probes resonant with various K-edges (C, N, and O provide different local windows onto the parity breaking geometry change thus revealing the enantiomer asymmetry.

  1. Coliphage 186 replication is delayed when the host cell is UV irradiated before infection

    International Nuclear Information System (INIS)

    Hooper, I.; Woods, W.H.; Egan, B.

    1981-01-01

    In contrast to results with injections by lambda and P2, the latent period for infection by coliphage 186 is extended when the host cell is UV irradiated before infection. We find that 186 replication is significantly delayed in such a cell, even though the phage itself has not been irradiated. In contrast, replication of the closely related phage P2 under the same conditions is not affected

  2. Effects of moderate pump and Stokes chirp on chirped-probe pulse femtosecond coherent anti-Stokes Raman scattering thermometry

    KAUST Repository

    Gu, Mingming

    2018-01-08

    The effects of moderate levels of chirp in the pump and Stokes pulses on chirped-probe-pulse femtosecond coherent anti-Stokes Raman scattering (CPP fs CARS) were investigated. The frequency chirp in the pump and Stokes pulses was introduced by placing SF11 glass disks with thicknesses of 10 mm or 20 mm in the optical path for these beams. The magnitude of the chirp in the probe beam was much greater and was induced by placing a 30-cm rod of SF10 glass in the beam path. The temperature measurements were performed in hydrogen/air non-premixed flames stabilized on a Hencken burner at equivalence ratios of 0.3, 0.5, 0.7, and 1.0. We performed measurements with no disks in pump and Stokes beam paths, and then with disks of 10 mm and 20 mm placed in both beam paths. The spectrum of the nonresonant background four-wave mixing signal narrowed considerably with increasing pump and Stokes chirp, while the resonant CARS signal was relatively unaffected. Consequently, the interference of the nonresonant background with the resonant CARS signal in the frequency-spread dephasing region of the spectrum was minimized. The increased rate of decay of the resonant CARS signal with increasing temperature was thus readily apparent. We have started to analyze the CPP fs CARS thermometry data and initial results indicate improved accuracy and precision are obtained due to moderate chirp in the pump and Stokes laser pulses.

  3. Ultrafast optical pump terahertz-probe spectroscopy of strongly correlated electron materials

    International Nuclear Information System (INIS)

    Averitt, R.D.; Taylor, Antoinette J.; Thorsmolle, V.K.; Jia, Quanxi; Lobad, A.I.; Trugman, S.A.

    2001-01-01

    We have used optical-pump far-infrared probe spectroscopy to probe the low energy electron dynamics of high temperature superconductors and colossal magnetoresistance manganites. For the superconductor YBa2Cu3O7, picosecond conductivity measurements probe the interplay between Cooper-pairs and quasiparticles. In optimally doped films, the recovery time for long-range phase-coherent pairing increases from ∼1.5 ps at 4K to ∼3.5 ps near Tc, consistent with the closing of the superconducting gap. For underdoped films, the measured recovery time is temperature independent (3.5 ps) in accordance with the presence of a pseudogap. Ultrafast picosecond measurements of optically induced changes in the absolute conductivity of La0:7M0:3MnO3 thin films (M = Ca, Sr) from 10K to ∼0.9Tc reveal a two-component relaxation. A fast, ∼2 ps, conductivity decrease arises from optically induced modification of the effective phonon temperature. The slower component, related to spin-lattice relaxation, has a lifetime that increases upon approaching Tc from below in accordance with an increasing spin specific heat. Our results indicate that for T<< Tc, the conductivity is determined by incoherent phonons while spin fluctuations dominate near Tc.

  4. Picosecond Transient Photoconductivity in Functionalized Pentacene Molecular Crystals Probed by Terahertz Pulse Spectroscopy

    Science.gov (United States)

    Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.

    2002-11-01

    We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.

  5. Probing nucleobase photoprotection with soft x-rays

    Directory of Open Access Journals (Sweden)

    Osipov T.

    2013-03-01

    Full Text Available Nucleobases absorb strongly in the ultraviolet region, leading to molecular excitation into reactive states. The molecules avoid the photoreactions by funnelling the electronic energy into less reactive states on an ultrafast timescale via non-Born-Oppenheimer dynamics. Current theory on the nucleobase thymine discusses two conflicting pathways for the photoprotective dynamics. We present our first results of our free electron laser based UV-pump soft x-ray-probe study of the photoprotection mechanism of thymine. We use the high spatial sensitivity of the Auger electrons emitted after the soft x-ray pulse induced core ionization. Our transient spetra show two timescales on the order of 200 fs and 5 ps, in agreement with previous (all UV ultrafast experiments. The timescales appear at different Auger kinetic energies which will help us to decipher the molecular dynamics.

  6. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  7. Enhancement of third-order harmonic generation by interaction of two IR femtosecond filaments

    International Nuclear Information System (INIS)

    Liu, Z Y; Ding, P J; Shi, Y C; Lu, X; Liu, Q C; Sun, S H; Ding, B W; Hu, B T; Liu, X L

    2012-01-01

    Three orders of magnitude in the enhancement of the third-order harmonic (TH) generation induced by the interaction of two femtosecond filaments crossing with small angles in the air is achieved. The dependences of the TH generation on the time delay, the relative polarization, the input laser intensity ratios between the probe and pump beam are measured with the crossing angle of 3.5deg , and the results with quasi-vertical crossing angle are also shown for comparison

  8. Distributed Water Pollution Source Localization with Mobile UV-Visible Spectrometer Probes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junjie Ma

    2018-02-01

    Full Text Available Pollution accidents that occur in surface waters, especially in drinking water source areas, greatly threaten the urban water supply system. During water pollution source localization, there are complicated pollutant spreading conditions and pollutant concentrations vary in a wide range. This paper provides a scalable total solution, investigating a distributed localization method in wireless sensor networks equipped with mobile ultraviolet-visible (UV-visible spectrometer probes. A wireless sensor network is defined for water quality monitoring, where unmanned surface vehicles and buoys serve as mobile and stationary nodes, respectively. Both types of nodes carry UV-visible spectrometer probes to acquire in-situ multiple water quality parameter measurements, in which a self-adaptive optical path mechanism is designed to flexibly adjust the measurement range. A novel distributed algorithm, called Dual-PSO, is proposed to search for the water pollution source, where one particle swarm optimization (PSO procedure computes the water quality multi-parameter measurements on each node, utilizing UV-visible absorption spectra, and another one finds the global solution of the pollution source position, regarding mobile nodes as particles. Besides, this algorithm uses entropy to dynamically recognize the most sensitive parameter during searching. Experimental results demonstrate that online multi-parameter monitoring of a drinking water source area with a wide dynamic range is achieved by this wireless sensor network and water pollution sources are localized efficiently with low-cost mobile node paths.

  9. Mid-IR femtosecond frequency conversion by soliton-probe collision in phase-mismatched quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Liu, Xing; Zhou, Binbin; Guo, Hairun

    2015-01-01

    in a quadratic nonlinear crystal (beta-barium borate) in the normal dispersion regime due to cascaded (phase-mismatched) second-harmonic generation, and the mid-IR converted wave is formed in the anomalous dispersion regime between. lambda = 2.2-2.4 mu m as a resonant dispersive wave. This process relies...... on nondegenerate four-wave mixing mediated by an effective negative cross-phase modulation term caused by cascaded soliton-probe sum-frequency generation. (C) 2015 Optical Society of America...

  10. Kinetics of the reaction F+NO+M->FNO+M studied by pulse radiolysis combined with time-resolved IR and UV spectroscopy

    DEFF Research Database (Denmark)

    Pagsberg, Palle Bjørn; Sillesen, A.; Jodkowski, J.T.

    1996-01-01

    The title reaction was initiated by pulse radiolysis of SF6/NO gas mixtures, and the formation of FNO was studied by time-resolved IR and UV spectroscopy. At SF6 pressures of 10-320 mbar at 298 K, the formation of FNO was studied by infrared diode laser spectroscopy at 1857.324 cm(-1). Comparative...

  11. UV Fluorescence Photography of Works of Art : Replacing the Traditional UV Cut Filters with Interference Filters

    Directory of Open Access Journals (Sweden)

    Luís BRAVO PEREIRA

    2010-09-01

    Full Text Available For many years filters like the Kodak Wratten E series, or the equivalent Schneider B+W 415, were used as standard UV cut filters, necessary to obtain good quality on UV Fluorescence photography. The only problem with the use of these filters is that, when they receive the UV radiation that they should remove, they present themselves an internal fluorescence as side effect, that usually reduce contrast and quality on the final image. This article presents the results of our experiences on using some innovative filters, that appeared available on the market in recent years, projected to adsorb UV radiation even more efficiently than with the mentioned above pigment based standard filters: the interference filters for UV rejection (and, usually, for IR rejection too manufactured using interference layers, that present better results than the pigment based filters. The only problem with interference filters type is that they are sensitive to the rays direction and, because of that, they are not adequate to wide-angle lenses. The internal fluorescence for three filters: the B+W 415 UV cut (equivalent to the Kodak Wratten 2E, pigment based, the B+W 486 UV IR cut (an interference type filter, used frequently on digital cameras to remove IR or UV and the Baader UVIR rejection filter (two versions of this interference filter were used had been tested and compared. The final quality of the UV fluorescence images seems to be of a superior quality when compared to the images obtained with classic filters.

  12. Efficient all solid-state UV source for satellite-based lidar applications.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Darrell Jewell; Smith, Arlee Virgil

    2003-07-01

    A satellite-based UV-DIAL measurement system would allow continuous global monitoring of ozone concentration in the upper atmosphere. However such systems remain difficult to implement because aerosol-scattering return signals for satellite-based lidars are very weak. A suitable system must produce high-energy UV pulses at multiple wavelengths with very high efficiency. For example, a nanosecond system operating at 10 Hz must generate approximately 1 J per pulse at 308-320 nm. An efficient space-qualified wavelength-agile system based on a single UV source that can meet this requirement is probably not available using current laser technology. As an alternative, we're pursuing a multi-source approach employing all-solid-state modules that individually generate 300-320 nm light with pulse energies in the range of 50-200 mJ, with transform-limited bandwidths and good beam quality. Pulses from the individual sources can be incoherently summed to obtain the required single-pulse energy. These sources use sum-frequency mixing of the 532 nm second harmonic of an Nd:YAG pump laser with 731-803 nm light derived from a recently-developed, state-of-the-art, nanosecond optical parametric oscillator. Two source configurations are under development, one using extra-cavity sum-frequency mixing, and the other intra-cavity sum-frequency mixing. In either configuration, we hope to obtain sum-frequency mixing efficiency approaching 60% by carefully matching the spatial and temporal properties of the laser and OPO pulses. This ideal balance of green and near-IR photons requires an injection-seeded Nd:YAG pump-laser with very high beam quality, and an OPO exhibiting unusually high conversion efficiency and exceptional signal beam quality. The OPO employs a singly-resonant high-Fresnel-number image-rotating self-injection-seeded nonplanar-ring cavity that achieves pump depletion > 65% and produces signal beams with M{sup 2} {approx} 3 at pulse energies exceeding 50 mJ. Pump beam

  13. Incoherent Manipulation of the Photoactive Yellow Protein Photocycle with Dispersed Pump-Dump-Probe Spectroscopy

    OpenAIRE

    Larsen, Delmar S.; van Stokkum, Ivo H. M.; Vengris, Mikas; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk

    2004-01-01

    Photoactive yellow protein is the protein responsible for initiating the ``blue-light vision¿¿ of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This ``incoherent¿¿ manipulation of the photocycle allows for the d...

  14. UV, visible, and near-IR reflectivity data for magnetic soils/rocks from Brazil

    Science.gov (United States)

    Vempati, R. K.; Morris, R. V.; Lauer, H. V., Jr.; Coey, J. M. D.

    1991-01-01

    The objective is to obtain UV, visible, and near-IR reflectivity spectra for several magnetic Brazilian soils/rocks and compare them to corresponding data for Mars to see if these materials satisfy both magnetic and spectral constraints for Mars. Selected physical properties of the magnetic Brazilian soils/rocks are presented. In general, the spectral features resulting from ferric crystal-field transitions are much better defined in the spectra of the magnetic Brazilian soils/rocks than in Martian spectral data. Presumably, this results from a relatively higher proportion of crystalline ferric oxides for the former. The apparent masking of the spectral signature of maghemite by hematite or goethite for the Brazilian samples implies the magnetic and spectral constraints for Mars can be decoupled. That is, maghemite may be present in magnetically-significant but optically-insignificant amounts compared to crystalline hematite.

  15. Styrene oligomerization as a molecular probe reaction for zeolite acidity: a UV-Vis spectroscopy and DFT study

    NARCIS (Netherlands)

    Buurmans, I.L.C.; Pidko, E.A.; Groot, de J.M.; Stavitski, E.; Santen, van R.A.; Weckhuysen, B.M.

    2010-01-01

    A series of H-ZSM-5 crystallites with different framework Si/Al ratios was studied by analyzing the kinetics and reaction mechanism of the oligomerization of 4-fluorostyrene as molecular probe reaction for Brønsted acidity. The formation of carbocationic species was followed by UV-Vis spectroscopy.

  16. Expression of UV-irradiated adenovirus in normal and UV-sensitive Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1985-01-01

    The chinese hamster ovary (CHO) cell mutants UV-20, UV-24, and UV-41 are abnormally sensitive to UV and harbour various defects lin their ability to repair cellular DNA. This study has examined the expression of UV-irradiated AD2 in these cells. HCR of UV-irradiated Ad2, as measured by viral structural antigen (Vag) formation or progeny production, was found to be similar for the normal and the UV-sensitive CHO strains. UV-irradiation of Ad2 (1200 J/m/sup 2/) resulted in a delay of Vag expression of 18 hours in normal human fibroblasts, which is thought to reflect the time required for removal of UV-induced lesions from the DNA before viral DNA synthesis can proceed. However, a similar UV-irradiation of Ad2 did not result in a delay of Vag expression for infection of CHO cells, suggesting that UV-induced lesions in Ad2 DNA do not inhibit its replication in CHO cells. These results indicate a fundamental difference in the processing of UV-irradiated AD2-DNA in CHO as compared to human cells

  17. Production of high-power CW UV by resonant frequency quadrupling of a Nd:YLF laser

    International Nuclear Information System (INIS)

    Kuczewski, A.J.; Thorn, C.E.

    1999-01-01

    The authors have constructed a single ring to resonantly double an 18 watt Nd:YLF mode-locked laser and re-double the stored green to produce over 4 watts of power in the ultra-violet (UV). This laser is used to produce a beam of 470 MeV gamma-rays by Compton backscattering the laser beam from 2.8 GeV electrons stored in a synchrotron. Achieving high luminosity of the colliding beams requires very good mode quality and beam stability at the intersection point 22 meters from the laser. The ring consists of six mirrors, with two 25 cm radius of curvature mirrors enclosing each nonlinear crystal. The drive laser is a lamp-pumped Nd:YLF with a 50 ps bunch length at 76 MHz. A pointing stabilizer servo has been constructed as part of the infrared (IR) mode matching telescope. The IR to green conversion is accomplished in a 15 mm long non-critically phased matched LBO crystal located at a 40 micron waist, with an IR conversion efficiency of 70%. A stable, nearly diffraction limited UV beam of up to 4.2 watts is generated in a BBO crystal in the green storage ring. The output power is relatively independent of the efficiency of the LBO and BBO crystals. This fact makes it possible to reduce the amount of non-TEM 00 modes created by walk-off of the UV by using relatively thin BBO crystals. At present, however, the lower bound on the BBO thickness is limited by the loss of conversion efficiency at high power

  18. A new tridentate Schiff base Cu(II) complex: synthesis, experimental and theoretical studies on its crystal structure, FT-IR and UV-Visible spectra.

    Science.gov (United States)

    Saheb, Vahid; Sheikhshoaie, Iran; Setoodeh, Nasim; Rudbari, Hadi Amiri; Bruno, Giuseppe

    2013-06-01

    A new Cu(II) complex [Cu(L)(NCS)] has been synthesized, using 1-(N-salicylideneimino)-2-(N,N-methyl)-aminoethane as tridentate ONN donor Schiff base ligand (HL). The dark green crystals of the compound are used for single-crystal X-ray analysis and measuring Fourier Transform Infrared (FT-IR) and UV-Visible spectra. Electronic structure calculations at the B3LYP and MP2 levels of theory are performed to optimize the molecular geometry and to calculate the UV-Visible and FT-IR spectra of the compound. Vibrational assignments and analysis of the fundamental modes of the compound are performed. Time-dependent density functional theory (TD-DFT) method is used to calculate the electronic transitions of the complex. A scaling factor of 1.015 is obtained for vibrational frequencies computed at the B3LYP level using basis sets 6-311G(d,p). It is found that solvent has a profound effect on the electronic absorption spectrum. The UV-Visible spectrum of the complex recorded in DMSO and DMF solution can be correctly predicted by a model in which DMSO and DMF molecules are coordinated to the central Cu atom via their oxygen atoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. High-frequency conductivity of optically excited charge carriers in hydrogenated nanocrystalline silicon investigated by spectroscopic femtosecond pump–probe reflectivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    He, Wei [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Yurkevich, Igor V. [Aston University, Nonlinearity and Complexity Research Group, Birmingham B4 7ET (United Kingdom); Zakar, Ammar [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom); Kaplan, Andrey, E-mail: a.kaplan.1@bham.ac.uk [University of Birmingham, School of Physics and Astronomy, Birmingham B15 2TT (United Kingdom)

    2015-10-01

    We report an investigation into the high-frequency conductivity of optically excited charge carriers far from equilibrium with the lattice. The investigated samples consist of hydrogenated nanocrystalline silicon films grown on a thin film of silicon oxide on top of a silicon substrate. For the investigation, we used an optical femtosecond pump–probe setup to measure the reflectance change of a probe beam. The pump beam ranged between 580 and 820 nm, whereas the probe wavelength spanned 770 to 810 nm. The pump fluence was fixed at 0.6 mJ/cm{sup 2}. We show that at a fixed delay time of 300 fs, the conductivity of the excited electron–hole plasma is described well by a classical conductivity model of a hot charge carrier gas found at Maxwell–Boltzmann distribution, while Fermi–Dirac statics is not suitable. This is corroborated by values retrieved from pump–probe reflectance measurements of the conductivity and its dependence on the excitation wavelength and carrier temperature. The conductivity decreases monotonically as a function of the excitation wavelength, as expected for a nondegenerate charge carrier gas. - Highlights: • We study high‐frequency conductivity of excited hydrogenated nanocrystalline silicon. • Reflectance change was measured as a function of pump and probe wavelength. • Maxwell–Boltzmann transport theory was used to retrieve the conductivity. • The conductivity decreases monotonically as a function of the pump wavelength.

  20. Ultrafast S1 and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    International Nuclear Information System (INIS)

    Kosumi, Daisuke; Kusumoto, Toshiyuki; Fujii, Ritsuko; Sugisaki, Mitsuru; Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko; Frank, Harry A.; Hashimoto, Hideki

    2011-01-01

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S 1 or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S 2 state or two-photon excitation to the symmetry-forbidden S 1 state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S 1 .

  1. Localized excitation of magnetostatic surface spin waves in yttrium iron garnet by shorted coaxial probe detected via spin pumping and rectification effect

    International Nuclear Information System (INIS)

    Soh, Wee Tee; Ong, C. K.; Peng, Bin

    2015-01-01

    We demonstrate the localized excitation and dc electrical detection of magnetostatic surface spin waves (MSSWs) in yttrium iron garnet (YIG) by a shorted coaxial probe. Thin films of NiFe and Pt are patterned at different regions onto a common bulk YIG substrate. A shorted coaxial probe is used to excite spin precession locally near various patterned regions. The dc voltages across the corresponding regions are recorded. For excitation of the Pt regions, the dc voltage spectra are dominated by the spin pumping of MSSWs from YIG, where various modes can be clearly distinguished. For the NiFe region, it is also found that spin pumping from MSSWs generated in YIG dominated the spectra, indicating that the spin pumped currents are dissipated into charge currents via the inverse Spin Hall effect (ISHE) in NiFe. For all regions, dc signals from YIG MSSWs are observed to be much stronger than the ferromagnetic resonance (FMR) uniform mode, likely due to the nature of the microwave excitation. The results indicate the potential of this probe for microwave imaging via dc detection of spin dynamics in continuous and patterned films

  2. Introducing a standard method for experimental determination of the solvent response in laser pump, x-ray probe time-resolved wide-angle x-ray scattering experiments on systems in solution

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Brandt van Driel, Tim; Kehres, Jan

    2013-01-01

    In time-resolved laser pump, X-ray probe wide-angle X-ray scattering experiments on systems in solution the structural response of the system is accompanied by a solvent response. The solvent response is caused by reorganization of the bulk solvent following the laser pump event, and in order...... response-the solvent term-experimentally when applying laser pump, X-ray probe time-resolved wide-angle X-ray scattering. The solvent term describes difference scattering arising from the structural response of the solvent to changes in the hydrodynamic parameters: pressure, temperature and density. We...... is demonstrated to exhibit first order behaviour with respect to the amount of energy deposited in the solution. We introduce a standardized method for recording solvent responses in laser pump, X-ray probe time-resolved X-ray wide-angle scattering experiments by using dye mediated solvent heating. Furthermore...

  3. Dynamic modification of the fragmentation of COq+ excited states generated with high-order harmonics

    International Nuclear Information System (INIS)

    Cao, W.; De, S.; Singh, K. P.; Chen, S.; Laurent, G.; Ray, D.; Ben-Itzhak, I.; Cocke, C. L.; Schoeffler, M. S.; Belkacem, A.; Osipov, T.; Rescigno, T.; Alnaser, A. S.; Bocharova, I. A.; Zherebtsov, S.; Kling, M. F.; Litvinyuk, I. V.

    2010-01-01

    The dynamic process of fragmentation of CO q+ excited states is investigated using a pump-probe approach. EUV radiation (32-48 eV) generated by high-order harmonics was used to ionize and excite CO molecules and a time-delayed infrared (IR) pulse (800 nm) was used to influence the evolution of the dissociating multichannel wave packet. Two groups of states, separable experimentally by their kinetic-energy release (KER), are populated by the EUV and lead to C + -O + fragmentation: direct double ionization of the neutral molecule and fragmentation of the cation leading to C + -O*, followed by autoionization of O*. The IR pulse was found to modify the KER of the latter group in a delay-dependent way which is explained with a model calculation.

  4. Required Technologies for A 10-16 m UV-Visible-IR Telescope on the Moon

    Science.gov (United States)

    Johnson, Stewart W.; Wetzel, John P.

    1989-01-01

    A successor to the Hubble Space Telescope, incorporating a 10 to 16 meter mirror, and operating in the UV-Visible-IR is being considered for emplacement on the Moon in the 21st Century. To take advantage of the characteristics of the lunar environment, such a telescope requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. This telescope for the lunar surface needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for lunar observatory operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  5. Ultrafast Dynamics of the VO2 Insulator-to-Metal Transition Observed by Nondegenerate Pump-Probe Spectroscopy

    Directory of Open Access Journals (Sweden)

    Haglund R. F.

    2013-03-01

    Full Text Available Non-degenerate pump (1.5 eV-probe (0.4 eV transmission spectroscopy on vanadium dioxide films grown on glass and three different sapphire substrates shows systematic variations with substrate that correlate with VO2 grain size and laser fluence. Temperature dependent measurements showed changes in the electronic response that is proportional to the metallic fraction.

  6. TOMS/Earth Probe UV Reflectivity Daily L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Earth Probe UV Reflectivity Daily L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The shortname for this Level-3...

  7. Femtosecond resolution timing jitter correction on a TW scale Ti:sapphire laser system for FEL pump-probe experiments.

    Science.gov (United States)

    Csatari Divall, Marta; Mutter, Patrick; Divall, Edwin J; Hauri, Christoph P

    2015-11-16

    Intense ultrashort pulse lasers are used for fs resolution pump-probe experiments more and more at large scale facilities, such as free electron lasers (FEL). Measurement of the arrival time of the laser pulses and stabilization to the machine or other sub-systems on the target, is crucial for high time-resolution measurements. In this work we report on a single shot, spectrally resolved, non-collinear cross-correlator with sub-fs resolution. With a feedback applied we keep the output of the TW class Ti:sapphire amplifier chain in time with the seed oscillator to ~3 fs RMS level for several hours. This is well below the typical pulse duration used at FELs and supports fs resolution pump-probe experiments. Short term jitter and long term timing drift measurements are presented. Applicability to other wavelengths and integration into the timing infrastructure of the FEL are also covered to show the full potential of the device.

  8. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    CERN Document Server

    Renault, E; De Ninno, G; Garzella, D; Hirsch, M; Nahon, L; Nutarelli, D

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out,...

  9. UV-vis, IR and 1H NMR spectroscopic studies and characterization of ionic-pair crystal violet-oxytetracycline

    Science.gov (United States)

    Orellana, Sandra; Soto, César; Toral, M. Inés

    2010-01-01

    The present study shows the formation and characterization of the ionic-pair between the antibiotic oxytetracycline and the dye crystal violet in ammonia solution pH 9.0 ± 0.2 extracted into chloroform. The characterization was demonstrated using UV-vis spectrophotometry, 1H NMR, measurement of relaxation times T1 and IR spectroscopy, using a comparison between the signals of individual pure compounds with the signals with the mixture CV-OTC in different alkaline media. The formation of ionic-pair was also corroborated by new signals and chemical shifts. (2D) NMR spectroscopy experiments show that the interaction is electrostatic.

  10. Proposed uv-FEL user facility at BNL

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750 Angstrom. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs

  11. uv dye lasers

    International Nuclear Information System (INIS)

    Abakumov, G.A.; Fadeev, V.V.; Khokhlov, R.V.; Simonov, A.P.

    1975-01-01

    The most important property of visible dye lasers, that is, continuous wavelength tuning, stimulated the search for dyes capable to lase in uv. They were found in 1968. Now the need for tunable uv lasers for applications in spectroscopy, photochemistry, isotope separation, remote air and sea probing, etc. is clearly seen. A review of some recent advances in uv dye lasers is reviewed

  12. Conformation of L-Tyrosine Studied by Fluorescence-Detected UV-UV and IR-UV Double-Resonance Spectroscopy

    OpenAIRE

    Inokuchi, Yoshiya; Kobayashi, Yusuke; Ito, Takafumi; Ebata, Takayuki

    2007-01-01

    The laser-induced fluorescence spectrum of jet-cooled L-tyrosine exhibits more than 20 vibronic bands in the 35450-35750 cm-1 region. We attribute these bands to eight conformers by using results of UV-UV hole-burning spectroscopy. These isomers are classified into four groups; each group consists of two rotational isomers that have a similar side-chain conformation but different orientations of the phenolic OH. The splitting of band origins of rotational isomers is 31, 21, 5, and 0 cm-1 for ...

  13. An overview on the research of Sr2IrO4-based system probed by X-ray absorption spectroscopy

    Science.gov (United States)

    Cheng, Jie; Zhu, Chaomin; Ma, Jingyuan; Wang, Yu; Liu, Shengli

    2018-03-01

    Investigations of materials with 5d transition metal ions have opened up new paradigms in condensed-matter physics because of their large spin-orbit coupling (SOC) interactions. The typical compound is Sr2IrO4, which attracted much attention due to its similarities to the parent compound of high-Tc cuprate superconductor La2CuO4. Theoretical calculations predicted that the unconventional superconductivity can occur in carrier doped-Sr2IrO4 system. Until now, hundreds of experimental methods were devoted to investigate the carrier doping effect on Sr2IrO4. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) made great contributions to the local lattice and electronic structure, and also the intimate relationship between the local structure and physical properties induced by carrier doping. The aim of this review is a short introduction to the progress of research on Sr2IrO4-based system probed by the unique technique — XAS, including the strength of the SOC, valence changes upon doping and even local lattice structure with atomic level for this Sr2IrO4-based family.

  14. High power uv metal vapor ion lasers pumped by thermal energy charge exchange

    International Nuclear Information System (INIS)

    Kan, T.

    1975-01-01

    The requirement for efficient and scalable laser sources for laser isotope separation (LIS) has recently been brought into sharp focus. The lack of suitable coherent sources is particularly severe in the uv, a spectral region of interest for more efficient and advanced isotope separation schemes. This report explores the general class of metal vapor ion lasers pumped by thermal energy charge exchange (TECX) as possible scalable coherent sources for LIS with the following potential characteristics: (1) availability of discrete wavelengths spanning the wavelength region between 2000 A less than lambda less than 8000 A, (2) pulsed or cw operation in the multi-kilowatt average power levels, (3) overall device efficiencies approaching one percent, and (4) the engineering of practical laser devices using relatively benign electron beam technology. (U.S.)

  15. System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process

    International Nuclear Information System (INIS)

    Yasuda, Nobuhiro; Fukuyama, Yoshimitsu; Osawa, Hitoshi; Kimura, Shigeru; Ito, Kiminori; Tanaka, Yoshihito; Matsunaga, Toshiyuki; Kojima, Rie; Hisada, Kazuya; Tsuchino, Akio; Birukawa, Masahiro; Yamada, Noboru; Sekiguchi, Koji; Fujiie, Kazuhiko; Kawakubo, Osamu; Takata, Masaki

    2013-01-01

    We have developed a system of laser-pump and synchrotron radiation probe microdiffraction to investigate the phase-change process on a nanosecond time scale of Ge 2 Sb 2 Te 5 film embedded in multi-layer structures, which corresponds to real optical recording media. The measurements were achieved by combining (i) the pump-laser system with a pulse width of 300 ps, (ii) a highly brilliant focused microbeam with wide peak-energy width (ΔE/E ∼ 2%) made by focusing helical undulator radiation without monochromatization, and (iii) a precise sample rotation stage to make repetitive measurements. We successfully detected a very weak time-resolved diffraction signal by using this system from 100-nm-thick Ge 2 Sb 2 Te 5 phase-change layers. This enabled us to find the dependence of the crystal-amorphous phase change process of the Ge 2 Sb 2 Te 5 layers on laser power.

  16. Ultra-Broadband Two-Dimensional Electronic Spectroscopy and Pump-Probe Microscopy of Molecular Systems

    Science.gov (United States)

    Spokoyny, Boris M.

    Ultrafast spectroscopy offers an unprecedented view on the dynamic nature of chemical reactions. From charge transfer in semiconductors to folding and isomerization of proteins, these all important processes can now be monitored and in some instances even controlled on real, physical timescales. One of the biggest challenges of ultrafast science is the incredible energetic complexity of most systems. It is not uncommon to encounter macromolecules or materials with absorption spectra spanning significant portions of the visible spectrum. Monitoring a multitude of electronic and vibrational transitions, all dynamically interacting with each other on femtosecond timescales poses a truly daunting experimental task. The first part of this thesis deals with the development of a novel Two-Dimensional Electronic Spectroscopy (2DES) and its associated, advanced detection methodologies. Owing to its ultra-broadband implementation, this technique enables us to monitor femtosecond chemical dynamics that span the energetic landscape of the entire visible spectrum. In order to demonstrate the utility of our method, we apply it to two laser dye molecules, IR-144 and Cresyl Violet. Variation of photophysical properties on a microscopic scale in either man-made or naturally occurring systems can have profound implications on how we understand their macroscopic properties. Recently, inorganic hybrid perovskites have been tapped as the next generation solar energy harvesting materials. Their remarkable properties include low exciton binding energy, low exciton recombination rates and long carrier diffusion lengths. Nevertheless, considerable variability in device properties made with nearly identical preparation methods has puzzled the community. In the second part of this thesis we use non-linear pump probe microscopy to study the heterogeneous nature of femtosecond carrier dynamics in thin film perovskites. We show that the local morphology of the perovskite thin films has a

  17. Design progress of the solar UV-Vis-IR telescope (SUVIT) aboard SOLAR-C

    Science.gov (United States)

    Katsukawa, Y.; Ichimoto, K.; Suematsu, Y.; Hara, H.; Kano, R.; Shimizu, T.; Matsuzaki, K.

    2013-09-01

    We present a design progress of the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. SUVIT has an aperture diameter of ~1.4 m for achieving spectro-polarimetric observations with spatial and temporal resolution exceeding the Hinode Solar Optical Telescope (SOT). We have studied structural and thermal designs of the optical telescope as well as the optical interface between the telescope and the focal plane instruments. The focal plane instruments are installed into two packages, filtergraph and spectrograph packages. The spectropolarimeter is the instrument dedicated to accurate polarimetry in the three spectrum windows at 525 nm, 854 nm, and 1083 nm for observing magnetic fields at both the photospheric and chromospheric layers. We made optical design of the spectrograph accommodating the conventional slit spectrograph and the integral field unit (IFU) for two-dimensional coverage. We are running feasibility study of the IFU using fiber arrays consisting of rectangular cores.

  18. Ten-watt level picosecond parametric mid-IR source broadly tunable in wavelength

    Science.gov (United States)

    Vyvlečka, Michal; Novák, Ondřej; Roškot, Lukáscaron; Smrž, Martin; Mužík, Jiří; Endo, Akira; Mocek, Tomáš

    2018-02-01

    Mid-IR wavelength range (between 2 and 8 μm) offers perspective applications, such as minimally-invasive neurosurgery, gas sensing, or plastic and polymer processing. Maturity of high average power near-IR lasers is beneficial for powerful mid-IR generation by optical parametric conversion. We utilize in-house developed Yb:YAG thin-disk laser of 100 W average power at 77 kHz repetition rate, wavelength of 1030 nm, and about 2 ps pulse width for pumping of a ten-watt level picosecond mid-IR source. Seed beam is obtained by optical parametric generation in a double-pass 10 mm long PPLN crystal pumped by a part of the fundamental near-IR beam. Tunability of the signal wavelength between 1.46 μm and 1.95 μm was achieved with power of several tens of miliwatts. Main part of the fundamental beam pumps an optical parametric amplification stage, which includes a walk-off compensating pair of 10 mm long KTP crystals. We already demonstrated the OPA output signal and idler beam tunability between 1.70-1.95 μm and 2.18-2.62 μm, respectively. The signal and idler beams were amplified up to 8.5 W and 5 W, respectively, at 42 W pump without evidence of strong saturation. Thus, increase in signal and idler output power is expected for pump power increase.

  19. TOMS/Earth Probe UV Aerosol Index Monthly L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Earth Probe UV Aerosol Index Monthly L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The shortname for this...

  20. Characteristics of a nanosecond-barrier-discharge-pumped multiwave UV – VUV lamp on a mixture of argon, krypton and vapours of freon

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibov, A K; Minya, A I; Hrytsak, R V; Gomoki, Z T [Uzhgorod National University, Uzhgorod (Ukraine)

    2015-02-28

    We present the results of investigation of the characteristics of a nanosecond-barrier-discharge-pumped multiwave lamp based on a gas mixture of Ar – Kr – CCl{sub 4}, which emits in the spectral range of 170 – 260 nm. The main emission bands in the lamp spectrum are ArCl (B → X) near 175 nm, KrCl (B → X) near 222 nm and Cl{sub 2} (D' → A') near 258 nm. The lamp intensity with respect to pressure, working mixture composition and pump regime is optimised. (uv - vuv emitters)

  1. Ultrafast S{sub 1} and ICT state dynamics of a marine carotenoid probed by femtosecond one- and two-photon pump-probe spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kosumi, Daisuke, E-mail: kosumi@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kusumoto, Toshiyuki [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fujii, Ritsuko; Sugisaki, Mitsuru [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan); Iinuma, Yoshiro; Oka, Naohiro; Takaesu, Yuki; Taira, Tomonori; Iha, Masahiko [South Product Co. Ltd., 12-75 Suzaki, Uruma-shi, Okinawa 904-2234 (Japan); Frank, Harry A. [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Hashimoto, Hideki, E-mail: hassy@sci.osaka-cu.ac.j [CREST/JST and Department of Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka (Japan)

    2011-03-15

    Ultrafast relaxation kinetics of fucoxanthin in polar and non-polar solvents have been studied by femtosecond pump-probe spectroscopy. Transient absorption associated with S{sub 1} or intramolecular charge transfer (ICT) excited state has been observed following either one-photon excitation to the optically allowed S{sub 2} state or two-photon excitation to the symmetry-forbidden S{sub 1} state. The results suggest that the ICT state formed after excitation of fucoxanthin in a polar solvent is a distinct excited state from S{sub 1}.

  2. Geothermal probes and heat pump installation at the Gerzensee training centre; EWS-WP des Studienzentrums Gerzensee/BE

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, P.

    2004-07-01

    This preliminary report for the Swiss Federal Office of Energy (SFOE) presents the results of a refurbishment project at the Swiss National Bank's training centre in Gerzensee, Switzerland. Eight air-water heat pumps with a total heating capacity of 180 kW were replaced by two ground-coupled heat pumps, each with a heating capacity of 120 kW. The geothermal probes are additionally used for free-cooling during the summer season. An oil-fired boiler used for meeting peak-load and back-up purposes, was also replaced for reasons of higher energy efficiency. Both investments and running costs of the heating system are presented along with details on expenses for electrical installations and building adaptations. The improvements in energy-saving, when compared with the former air-water heat pump system, are impressive: Total energy consumption for space heating, hot water and for ventilation systems was lowered by around 54%. The oil consumption has been reduced from 34,800 to 6,600 litres/year, which corresponds to a reduction of 81%. Also, electrical power consumption by the heat pump installation was lowered by around 8%. Figures are given on the proportion of heating supplied by the heat-pump system that now covers 90.6% of total demand.

  3. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  4. Pump-probe spectroscopy of spin-injection dynamics in double quantum wells of diluted magnetic semiconductor

    International Nuclear Information System (INIS)

    Nishibayashi, K.; Aoshima, I.; Souma, I.; Murayama, A.; Oka, Y.

    2006-01-01

    Dynamics of spin injection has been investigated in a double quantum well (DQW) composed of a diluted magnetic semiconductor by the pump-probe transient absorption spectroscopy in magnetic field. The DQW consists of a non-magnetic well (NMW) of CdTe and a magnetic well (MW) of Cd 0.92 Mn 0.08 Te. The MW shows a transient absorption saturation in the exciton band for more than 200 ps after the optical pumping, while the exciton photoluminescence does not arise from the MW. In the NMW, the circular polarization degree of the transient absorption saturation shows an increase with increasing time. The results are interpreted by the individual tunneling of spin-polarized electrons and holes from the MW to the NMW with different tunneling times. Depolarization processes of the carrier spins in the MW and the NMW are also discussed

  5. Analysis of Fe species in zeolites by UV-VIS-NIR, IR spectra and voltammetry. Effect of preparation, Fe loading and zeolite type

    Czech Academy of Sciences Publication Activity Database

    Čapek, Libor; Kreibich, Viktor; Dědeček, Jiří; Grygar, Tomáš; Wichterlová, Blanka; Sobalík, Zdeněk; Martens, J. A.; Brosius, R.; Tokarová, V.

    2005-01-01

    Roč. 80, 1-3 (2005), s. 279-289 ISSN 1387-1811 R&D Projects: GA MŠk OC D15.20 Grant - others:European Union(XE) G5RD-CT-2001-00595 Institutional research plan: CEZ:AV0Z40400503 Keywords : Fe-zeolites * UV-VIS spectra * IR spectra * voltammetry * Fe complexes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.355, year: 2005

  6. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  7. System of laser pump and synchrotron radiation probe microdiffraction to investigate optical recording process

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Nobuhiro; Fukuyama, Yoshimitsu; Osawa, Hitoshi [Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kimura, Shigeru [Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Japan Science and Technology Agency, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Ito, Kiminori; Tanaka, Yoshihito [RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Matsunaga, Toshiyuki; Kojima, Rie; Hisada, Kazuya; Tsuchino, Akio; Birukawa, Masahiro [R and D Division, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237 (Japan); Yamada, Noboru [Department of Materials Science and Engineering, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Kyoto 606-8501 (Japan); Sekiguchi, Koji; Fujiie, Kazuhiko; Kawakubo, Osamu [Advanced Optical Storage Development Department, Advanced Device Technology Platform, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan); Takata, Masaki [Research and Utilization Division, Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Department of Advanced Materials Science, School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan)

    2013-06-15

    We have developed a system of laser-pump and synchrotron radiation probe microdiffraction to investigate the phase-change process on a nanosecond time scale of Ge{sub 2}Sb{sub 2}Te{sub 5} film embedded in multi-layer structures, which corresponds to real optical recording media. The measurements were achieved by combining (i) the pump-laser system with a pulse width of 300 ps, (ii) a highly brilliant focused microbeam with wide peak-energy width ({Delta}E/E {approx} 2%) made by focusing helical undulator radiation without monochromatization, and (iii) a precise sample rotation stage to make repetitive measurements. We successfully detected a very weak time-resolved diffraction signal by using this system from 100-nm-thick Ge{sub 2}Sb{sub 2}Te{sub 5} phase-change layers. This enabled us to find the dependence of the crystal-amorphous phase change process of the Ge{sub 2}Sb{sub 2}Te{sub 5} layers on laser power.

  8. Interferometry on small quantum systems at short wavelength

    Energy Technology Data Exchange (ETDEWEB)

    Usenko, Sergey

    2017-01-15

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C{sub 60} fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C{sub 60}.

  9. Interferometry on small quantum systems at short wavelength

    International Nuclear Information System (INIS)

    Usenko, Sergey

    2017-01-01

    The present work concentrates on prototypical studies of light-induced correlated many-body dynamics in complex systems. In its course a reflective split-and-delay unit (SDU) for phase-resolved one-color pump-probe experiments with gas phase samples using VUV-XUV laser pulses was built. The collinear propagation of pump and probe pulses is ensured by the special geometry of the SDU and allows to perform phase-resolved (coherent) autocorrelation measurements. The control of the pump-probe delay with attosecond precision is established by a specially developed diagnostic tool based on an in-vacuum white light interferometer that allows to monitor the relative displacement of the SDU reflectors with nanometer resolution. Phase-resolved (interferometric) pump-probe experiments with developed SDU require spatially-resolved imaging of the ionization volume. For this an electron-ion coincidence spectrometer was built. The spectrometer enables coincident detection of photoionization products using velocity map imaging (VMI) technique for electrons and VMI or spatial imaging for ions. In first experiments using the developed SDU and the spectrometer in the ion spatial-imaging mode linear field autocorrelation of free-electron laser pulses at the central wavelength of 38 nm was recorded. A further focus of the work were energy- and time-resolved resonant two-photon ionization experiments using short tunable UV laser pulses on C_6_0 fullerene. The experiments demonstrated that dipole-selective excitation on a timescale faster than the characteristic intramolecular energy dissipation limits the number of accessible excitation pathways and thus results in a narrow resonance. Time-dependent one-color pump-probe study showed that nonadiabatic (vibron) coupling is the dominant energy dissipation mechanism for high-lying electronic excited states in C_6_0.

  10. Flame Characterization Using a Tunable Solid-State Laser with Direct UV Pumping

    Science.gov (United States)

    Kamal, Mohammed M.; Dubinskii, Mark A.; Misra, Prabhakar

    1996-01-01

    Tunable solid-state lasers with direct UV pumping, based on d-f transitions of rare earth ions incorporated in wide band-gap dielectric crystals, are reliable sources of laser radiation that are suitable for excitation of combustion-related free radicals. We have employed such a laser for analytical flame characterization utilizing Laser-Induced Fluorescence (LIF) techniques. LIF spectra of alkane-air flames (used for studying combustion processes under normal and microgravity conditions) excited in the region of the A-X (0,0) OH-absorption band have been recorded and found to be both temperature-sensitive and positionally-sensitive. In addition, also clearly noticeable was the sensitivity of the spectra to the specific wavelength used for data registration. The LiCAF:Ce laser shows good prospects for being able to cover the spectral region between 280 and 340 nm and therefore be used excitation of combustion-intermediates such as the hydroxyl OH, methoxy CH30 and methylthio CH3S radicals.

  11. Exploring exciton relaxation and multiexciton generation in PbSe nanocrystals using hyperspectral near-IR probing.

    Science.gov (United States)

    Gdor, Itay; Sachs, Hanan; Roitblat, Avishy; Strasfeld, David B; Bawendi, Moungi G; Ruhman, Sanford

    2012-04-24

    Hyperspectral femtosecond transient absorption spectroscopy is employed to record exciton relaxation and recombination in colloidal lead selenide (PbSe) nanocrystals in unprecedented detail. Results obtained with different pump wavelengths and fluences are scrutinized with regard to three issues: (1) early subpicosecond spectral features due to "hot" excitons are analyzed in terms of suggested underlying mechanisms; (2) global kinetic analysis facilitates separation of the transient difference spectra into single, double, and triple exciton state contributions, from which individual band assignments can be tested; and (3) the transient spectra are screened for signatures of multiexciton generation (MEG) by comparing experiments with excitation pulses both below and well above the theoretical threshold for multiplication. For the latter, a recently devised ultrafast pump-probe spectroscopic approach is employed. Scaling sample concentrations and pump pulse intensities inversely with the extinction coefficient at each excitation wavelength overcomes ambiguities due to direct multiphoton excitation, uncertainties of absolute absorption cross sections, and low signal levels. As observed in a recent application of this method to InAs core/shell/shell nanodots, no sign of MEG was detected in this sample up to photon energy 3.7 times the band gap. Accordingly, numerous reports of efficient MEG in other samples of PbSe suggest that the efficiency of this process varies from sample to sample and depends on factors yet to be determined.

  12. News from heat-pump research - Large-scale heat pumps, components, heat pumps and solar heating; News aus der Waermepumpen-Forschung - Gross-Waermepumpen, Komponenten, Waermepumpe und Solar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-06-15

    These proceedings summarise the presentations made at the 16{sup th} annual meeting held by the Swiss Federal Office of Energy's Heat Pump Research Program in Burgdorf, Switzerland. The proceedings include contributions on large-scale heat pumps, components and the activities of the heat pump promotion society. A summary of targets and trends in energy research in general is presented and an overview of the heat pump market in 2009 and future perspectives is given. International work within the framework of the International Energy Agency's heat pump group is reviewed, including solar - heat pump combinations. Field-monitoring and the analysis of large-scale heat pumps are discussed and the importance of the use of correct concepts in such installations is stressed. Large-scale heat pumps with carbon dioxide as working fluid are looked at, as are output-regulated air/water heat pumps. Efficient system solutions with heat pumps used both to heat and to cool are discussed. Deep geothermal probes and the potential offered by geothermal probes using carbon dioxide as a working fluid are discussed. The proceedings are rounded off with a list of useful addresses.

  13. User friendliness, efficiency & spray quality of stirrup pumps versus hand compression pumps for indoor residual spraying.

    Science.gov (United States)

    Kumar, Vijay; Kesari, Shreekant; Chowdhury, Rajib; Kumar, Sanjiv; Sinha, Gunjan; Hussain, Saddam; Huda, M Mamun; Kroeger, Axel; Das, Pradeep

    2013-01-01

    Indoor residual spraying (IRS) is a proven tool to reduce visceral leishmaniasis vectors in endemic villages. In India IRS is being done with stirrup pumps, whereas Nepal, Bangladesh, and other countries use compression pumps. The present study was conducted with the objectives to compare the efficiency, cost and user friendliness of stirrup and compression pumps. The study was carried out in Gorigawan village of the Vaishali district in north Bihar and included a total population of 3259 inhabitants in 605 households. Spraying with 50 per cent DDT was done by two teams with 6 persons per team under the supervision of investigators over 5 days with each type of pump (10 days in total using 2 stirrup pumps and 3 compression pumps) by the same sprayers in an alternate way. The spraying technique was observed using an observation check list, the number of houses and room surfaces sprayed was recorded and an interview with sprayers on their satisfaction with the two types of pumps was conducted. On average, 65 houses were covered per day with the compression pump and 56 houses were covered with the stirrup pump. The surface area sprayed per squad per day was higher for the compression pump (4636 m²) than for the stirrup pump (4102 m²). Observation showed that it was easy to maintain the spray swath with the compression pump but very difficult with the stirrup pump. The wastage of insecticide suspension was negligible for the compression pump but high for the stirrup pump. The compression pump was found to be more user friendly due to its lower weight, easier to operate, lower operation cost, higher safety and better efficiency in terms of discharge rate and higher area coverage than the stirrup pump.

  14. X-ray Pump–Probe Investigation of Charge and Dissociation Dynamics in Methyl Iodine Molecule

    Directory of Open Access Journals (Sweden)

    Li Fang

    2017-05-01

    Full Text Available Molecular dynamics is of fundamental interest in natural science research. The capability of investigating molecular dynamics is one of the various motivations for ultrafast optics. We present our investigation of photoionization and nuclear dynamics in methyl iodine (CH3I molecule with an X-ray pump X-ray probe scheme. The pump–probe experiment was realized with a two-mirror X-ray split and delay apparatus. Time-of-flight mass spectra at various pump–probe delay times were recorded to obtain the time profile for the creation of high charge states via sequential ionization and for molecular dissociation. We observed high charge states of atomic iodine up to 29+, and visualized the evolution of creating these high atomic ion charge states, including their population suppression and enhancement as the arrival time of the second X-ray pulse was varied. We also show the evolution of the kinetics of the high charge states upon the timing of their creation during the ionization-dissociation coupled dynamics. We demonstrate the implementation of X-ray pump–probe methodology for investigating X-ray induced molecular dynamics with femtosecond temporal resolution. The results indicate the footprints of ionization that lead to high charge states, probing the long-range potential curves of the high charge states.

  15. Light Driven Energy Research at LCLS: Planned Pump-Probe X-ray Spectroscopy Studies on Photosynthetic Water Splitting

    Science.gov (United States)

    Bergmann, Uwe

    2010-02-01

    Arguably the most important chemical reaction on earth is the photosynthetic splitting of water to molecular oxygen by the Mn-containing oxygen-evolving complex (Mn-OEC) in the protein known as photosystem II (PSII). It is this reaction which has, over the course of some 3.8 billion years, gradually filled our atmosphere with O2 and consequently enabled and sustained the evolution of complex aerobic life. Coupled to the reduction of carbon dioxide, biological photosynthesis contributes foodstuffs for nutrition while recycling CO2 from the atmosphere and replacing it with O2. By utilizing sunlight to power these energy-requiring reactions, photosynthesis also serves as a model for addressing societal energy needs as we enter an era of diminishing fossil hydrocarbon resources. Understanding, at the molecular level, the dynamics and mechanism of how nature has solved this problem is of fundamental importance and could be critical to aid in the design of manufactured devices to accomplish the conversion of sunlight into useful electrochemical energy and transportable fuel in the foreseeable future. In order to understand the photosynthetic splitting of water by the Mn-OEC we need to be able to follow the reaction in real time at an atomic level. A powerful probe to study the electronic and molecular structure of the Mn-OEC is x-ray spectroscopy. Here, in particular x-ray emission spectroscopy (XES) has two crucial qualities for LCLS based time-dependent pump-probe studies of the Mn-OEC: a) it directly probes the Mn oxidation state and ligation, b) it can be performed with wavelength dispersive optics to avoid the necessity of scanning in pump probe experiments. Recent results and the planned time dependent experiments at LCLS will be discussed. )

  16. Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide

    Directory of Open Access Journals (Sweden)

    Mario Christian Falconi

    2017-06-01

    Full Text Available A review on the recent progress in modeling and fabrication of medium infrared (Mid-IR fiber lasers is reported. The main objective is to illustrate some recent examples of continuous wave optical sources at wavelengths longer than those commonly employed in telecom applications and allowing high beam quality. A small number of Mid-IR lasers, among the large variety of schemes, glasses, dopants and pumping schemes reported in literature, is selected on the basis of their slope efficiency and threshold pump power. In particular, tellurite, fluoride and chalcogenide fiber lasers are considered. More details are given with reference to the novel pumping schemes.

  17. UV lamp for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Cardoso, M.J.B.; Landers, R.; Sundaram, V.S.

    1983-01-01

    An UV lamp and a differential pumping system which enables to couple the lamp to an ultra-high vacuum chamber (10 -9 torr) without using windows, are described. The differential between the pressure inside the discharge chamber and the one in de UHV region, which is of 10 8 -10 9 , is achieved with two pumping states separated by pyrex capillaries having an internal diameter of 0.6 mm. In the first stage, a mechanical pump (10 -3 torr) is used; in the second stage, a diffusor pump with a cryogenic trap (N 2 liq - 10 -7 torr) is employed. The lamp produces, when used with high purity He, narrow lines almost clear at 21.2 eV and 40.8 eV, depending on the discharge chamber pressure, thus eliminating the need of a monochromator. As a high voltage source (3 KV), a commercial unit with a good current control was used, ensuring UV beam stability - an essential characteristic for this lamp if it is employed for photoelectron excitation of crystalline samples. (C.L.B.) [pt

  18. Electron-beam-pumped phosphors

    International Nuclear Information System (INIS)

    Goldhar, J.; Krupke, W.F.

    1985-01-01

    Electron-beam excitation of solid-state scintillators, or phosphors, can result in efficient generation of visible light confined to relatively narrow regions of the spectrum. The conversion efficiency can exceed 20%, and, with proper choice of phosphors, radiation can be obtained anywhere from the near infrared (IR) to the near ultraviolet (UV). These properties qualify the phosphors as a potentially useful pump source for new solid-state lasers. New phosphors are being developed for high-brightness television tubes that are capable of higher power dissipation. Here, an epitaxial film of fluorescing material is grown on a crystalline substrate with good thermal properties. For example, researchers at North American Philips Laboratories have developed a cerium-doped yttrium aluminum garnet (YAG) grown on a YAG substrate, which has operated at 1 A/cm 2 at 20 kV without observed thermal quenching. The input power is higher by almost two orders of magnitude than that which can be tolerated by a conventional television phosphor. The authors describe tests of these new phosphors

  19. In-Situ Probing Plasmonic Energy Transfer in Cu(In, Ga)Se2 Solar Cells by Ultrabroadband Femtosecond Pump-Probe Spectroscopy.

    Science.gov (United States)

    Chen, Shih-Chen; Wu, Kaung-Hsiung; Li, Jia-Xing; Yabushita, Atsushi; Tang, Shih-Han; Luo, Chih Wei; Juang, Jenh-Yih; Kuo, Hao-Chung; Chueh, Yu-Lun

    2015-12-18

    In this work, we demonstrated a viable experimental scheme for in-situ probing the effects of Au nanoparticles (NPs) incorporation on plasmonic energy transfer in Cu(In, Ga)Se2 (CIGS) solar cells by elaborately analyzing the lifetimes and zero moment for hot carrier relaxation with ultrabroadband femtosecond pump-probe spectroscopy. The signals of enhanced photobleach (PB) and waned photoinduced absorption (PIA) attributable to surface plasmon resonance (SPR) of Au NPs were in-situ probed in transient differential absorption spectra. The results suggested that substantial carriers can be excited from ground state to lower excitation energy levels, which can reach thermalization much faster with the existence of SPR. Thus, direct electron transfer (DET) could be implemented to enhance the photocurrent of CIGS solar cells. Furthermore, based on the extracted hot carrier lifetimes, it was confirmed that the improved electrical transport might have been resulted primarily from the reduction in the surface recombination of photoinduced carriers through enhanced local electromagnetic field (LEMF). Finally, theoretical calculation for resonant energy transfer (RET)-induced enhancement in the probability of exciting electron-hole pairs was conducted and the results agreed well with the enhanced PB peak of transient differential absorption in plasmonic CIGS film. These results indicate that plasmonic energy transfer is a viable approach to boost high-efficiency CIGS solar cells.

  20. Pump-probe studies of travelling coherent longitudinal acoustic phonon oscillations in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.; Qi, J.; Tolk, Norman [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, 37235 (United States); Miller, J. [Naval air Warfare Center Weapons Division, China Lake, CA 93555 (United States); Cho, Y.J.; Liu, X.; Furdyna, J.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Shahbazyan, T.V. [Department of Physics, Jackson State University, MS 39217 (United States)

    2008-07-01

    We report comprehensive studies of long-lived oscillations in femtosecond optical pump-probe measurements on GaAs based systems. The oscillations arise from a photo-generated coherent longitudinal acoustic phonon wave at the sample surface, which subsequently travels from the surface into the GaAs substrate, thus providing information on the optical properties of the material as a function of time/depth. Wavelength-dependent studies of the oscillations near the bandgap of GaAs indicate strong correlations to the optical properties of GaAs. We also use the coherent longitudinal acoustic phonon waves to probe a thin buried Ga{sub 0.1}In{sub 0.9}As layers non-invasively. The observed phonon oscillations experience a reduction in amplitude and a phase change at wavelengths near the bandgap of the GaAs, when it passes through the thin Ga{sub x}In{sub 1-x}As layer. The layer depth and thicknesses can be extracted from the oscillation responses. A model has been developed that satisfactorily characterizes the experimental results. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Induced modifications on algae photosynthetic activity monitored by pump-and-probe technique

    Energy Technology Data Exchange (ETDEWEB)

    Barbini, R; Colao, F; Fantoni, R; Palucci, A; Ribezzo, S [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Tarzillo, G; Carlozzi, P; Pelosi, E [CNR, Florence (Italy). Centro Studi Microorganismi Autotrofi

    1995-12-01

    The lidar fluorosensor system available at ENEA Frascati has been used for a series of laboratory measurements on brackish-water and marine phytoplankton grown in laboratory with the proper saline solution. The system, already used to measure the laser induced fluorescence spectra of different algae species and their detection limits, has been upgraded with a short pulse Nd:YAG laser and rearranged to test a new technique based on laser pump and probe excitation. Results of this new technique for remote monitoring of the in-vivo photosynthetic activity will be presented, as measured during a field campaign carried out in Florence during the Autumn 1993, where the effects of an actinic saturating light and different chemicals have also been checked.

  2. Suppression of postmitochondrial signaling and delayed response to UV-induced nuclear apoptosis in HeLa cells

    International Nuclear Information System (INIS)

    Sasai, Kaori; Yajima, Hirohiko; Suzuki, Fumio

    2002-01-01

    Activation of postmitochondrial pathways by UV irradiation was examined using mouse lymphoma 3SB and human leukemic Jurkat cells and two human carcinoma cell lines (HeLa and MCF-7). Exposure of 3SB and Jurkat cells resulted in large amounts of cytochrome c and apoptosis-inducing factor (AIF) being released into the cytosol, and a clear laddering pattern of DNA fragments was observed within 3 h of incubation after irradiation. Simultaneously, activation of caspase-9 and its downstream caspases was detected. HeLa and MCF-7 cells also showed extensive release of mitochondrial factors and caspase-9 activation at 4 to 6 h after exposure, but apoptotic nuclear changes appeared much later. Compared with 3SB and Jurkat cells, these carcinoma cell lines exhibited reduced activation of caspase-9-like proteolytic activity by UV radiation, and levels of caspase-3-like activity in HeLa cells were extremely low, similar to those in caspase-3-deficient MCF-7 cells. These results suggest that the delayed response to UV-induced nuclear apoptosis in HeLa cells is due to a reduced activation of the caspase cascade downstream of cytochrome c release and suppression of caspase-3 activity. (author)

  3. In vivo activation of human immunodeficiency virus type 1 long terminal repeat by UV type A (UV-A) light plus psoralen and UV-B light in the skin of transgenic mice

    OpenAIRE

    Morrey, John D; Bourn, S M; Bunch, T D; Jackson, M K; Sidwell, R W; Barrows, L R; Daynes, R A; Rosen, C A

    1991-01-01

    UV irradiation has been shown to activate the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in cell culture; however, only limited studies have been described in vivo. UV light has been categorized as UV-A (400 to 315 nm), -B (315 to 280 nm), or -C (less than 280 nm); the longer wavelengths are less harmful but more penetrative. Highly penetrative UV-A radiation constitutes the vast majority of UV sunlight reaching the earth's surface but is normally harmless. UV-B ir...

  4. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  5. Characterization of a new Tc (V) - glucosazine complex by UV - VIS and IR spectroscopy

    International Nuclear Information System (INIS)

    Ganzerli Valentini, M.T.; Stella, R.; Maggi, L.

    1989-01-01

    A new radiopharmaceutical is proposed for brain and heart functional and radiodiagnostic studies. A Tc complex containing the glucose molecule and chelating groups that do not alter the basic chemical features of the molecule has been prepared. The ligand is formed by the combination of one hydrazine molecule with two sugar molecules and is the first product of the D-glucose-hydrazine reaction that in aqueous basic medium may proceed up to hydrazone and in acid medium up to osazone. These transformations are observed at pH>5 through the UV absorption peaks at 274 and 224 nm, and at pH 1 . UV absorption spectra of the complex, dissolved in water as well as in acetonitrile, have been recorded: the characteristic single peak at 274 nm and at 276 nm respectively for the two solvents is unaffected by the presence of free ligand, due to the quasi null absorption in this spectral region. Molar extinction coefficient is found equal to 20850 L.mol 1 .cm 1 in solutions whose Tc concentration was in the range 2x10 5 -5x10 4 M and the ligand 10 2 - 10 1 M. The IR absorption spectrum has a C=N stretching band at 1620 cm 1 which means that the acyclic form of the azine is predominant; other large and strong bands refer to OH stretching at 3300 cm 1 , to C-O stretching at 1020 cm 1 and to C-N stretching (typical of the cyclic form) at 1080 cm 1 . (author)

  6. Transient absorption spectroscopy in biology using the Super-ACO storage ring FEL and the synchrotron radiation combination

    International Nuclear Information System (INIS)

    Renault, Eric; Nahon, Laurent; Garzella, David; Nutarelli, Daniele; De Ninno, Giovanni; Hirsch, Matthias; Couprie, Marie Emmanuelle

    2001-01-01

    The Super-ACO storage ring FEL, covering the UV range down to 300 nm with a high average power (300 mW at 350 nm) together with a high stability and long lifetime, is a unique tool for the performance of users applications. We present here the first pump-probe two color experiments on biological species using a storage ring FEL coupled to the synchrotron radiation. The intense UV pulse of the Super-ACO FEL is used to prepare a high initial concentration of chromophores in their first singlet electronic excited state. The nearby bending magnet synchrotron radiation provides, on the other hand a pulsed, white light continuum (UV-IR), naturally synchronized with the FEL pulses and used to probe the photochemical subsequent events and the associated transient species. We have demonstrated the feasibility with a dye molecule (POPOP) observing a two-color effect, signature of excited state absorption and a temporal signature with Acridine. Applications on various chromophores of biological interest are carried out, such as the time-resolved absorption study of the first excited state of Acridine

  7. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    Directory of Open Access Journals (Sweden)

    Liangdong Zhu

    2015-04-01

    Full Text Available Femtosecond stimulated Raman spectroscopy (FSRS is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (SFG-CFWM laser sidebands in a thin BBO crystal. The ground state Raman spectrum of a laser dye Quinolon 390 in methanol that strongly absorbs at ~355 nm is systematically studied as a standard sample to provide previously unavailable spectroscopic characterization in the vibrational domain. Both the Stokes and anti-Stokes Raman spectra can be collected by selecting different orders of SFG-CFWM sidebands as the probe pulse. The stimulated Raman gain with the 402 nm Raman pump is >21 times larger than that with the 550 nm Raman pump when measured at the 1317 cm−1 peak for the aromatic ring deformation and ring-H rocking mode of the dye molecule, demonstrating that pre-resonance enhancement is effectively achieved in the unique UV-FSRS setup. This added tunability in the versatile and compact optical setup enables FSRS to better capture transient conformational snapshots of photosensitive molecules that absorb in the UV range.

  8. Probing ultrafast dynamics of solid-density plasma generated by high-contrast intense laser pulses

    Science.gov (United States)

    Jana, Kamalesh; Blackman, David R.; Shaikh, Moniruzzaman; Lad, Amit D.; Sarkar, Deep; Dey, Indranuj; Robinson, Alex P. L.; Pasley, John; Ravindra Kumar, G.

    2018-01-01

    We present ultrafast dynamics of solid-density plasma created by high-contrast (picosecond contrast ˜10-9), high-intensity (˜4 × 1018 W/cm2) laser pulses using time-resolved pump-probe Doppler spectrometry. Experiments show a rapid rise in blue-shift at early time delay (2-4.3 ps) followed by a rapid fall (4.3-8.3 ps) and then a slow rise in blue-shift at later time delays (>8.3 ps). Simulations show that the early-time observations, specifically the absence of any red-shifting of the reflected probe, can only be reproduced if the front surface is unperturbed by the laser pre-pulse at the moment that the high intensity pulse arrives. A flexible diagnostic which is capable of diagnosing the presence of low-levels of pre-plasma formation would be useful for potential applications in laser-produced proton and ion production, such as cancer therapy and security imaging.

  9. Broadband pump-probe spectroscopy with sub-10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids

    International Nuclear Information System (INIS)

    Polli, D.; Antognazza, M.R.; Brida, D.; Lanzani, G.; Cerullo, G.; De Silvestri, S.

    2008-01-01

    We use pump-probe spectroscopy with broadband detection to study electronic energy relaxation and coherent vibrational dynamics in carotenoids. A fast optical multichannel analyzer combined with a non-collinear optical parametric amplifier allows simultaneous acquisition of the differential transmission dynamics on the 500-700 nm wavelength range with sub-10-fs temporal resolution. The broad spectral coverage enables on the one hand a detailed study of the ultrafast bright-to-dark state internal conversion process; on the other hand, the tracking of the motion of the vibrational wavepacket launched on the ground state multidimensional potential energy surface. We present results on all-trans β-carotene and on a long-chain polyene in solution. The developed experimental setup enables the straightforward acquisition and analysis of coherent vibrational dynamics, highlighting time-frequency domain features with extreme resolution

  10. Studies of high repetition rate laser-produced plasma soft-X-ray amplifiers; Etudes d'amplificateurs plasma laser a haute cadence dans le domaine X-UV et applications

    Energy Technology Data Exchange (ETDEWEB)

    Cassou, K

    2006-12-15

    The progress made as well on the Ti:Sa laser system, as in the control and the knowledge of laser produced X-UV sources allowed the construction of a X-UV laser station dedicated to the applications. My thesis work falls under the development of this station and more particularly on the characterization of a X-UV laser plasma amplifier. The experimental study relates to the coupling improvement of the pump infra-red laser with plasma within the framework of the transient collisional X-UV laser generation. These X-UV lasers are generated in a plasma formed by the interaction of a solid target and a laser pulse of approximately 500 ps duration, followed by a second infra-red laser pulse known as of pump (about 5 ps) impinging on the target in grazing incidence. For the first time, a complete parametric study was undertaken on the influence of the grazing angle on the pumping of the amplifying medium. One of the results was to reach very high peak brightness about 10{sup 28} ph/s/mm{sup 2}/mrad{sup 2}/(0.1%bandwidth), which compares well with the free-electron laser brightness. Moreover, we modified then used a new two-dimensional hydrodynamic code with adaptive mesh refinement in order to understand the influence of the space-time properties of the infra-red laser on the formation and the evolution of the amplifying plasma. Our modeling highlighted the interest to use a super Gaussian transverse profile for the line focus leading to an increase in a factor two of the gain region size and a reduction of the electron density gradient by three orders of magnitude. These improvements should strongly increase the energy contained in X-UV laser beam. We thus used X-UV laser to study the appearance of transient defects produced by a laser IR on a beam-splitter rear side. We also began research on the mechanisms of DNA damage induced by a very intense X-UV radiation. (author)

  11. Experimental studies of X-UV rays by a laser plasma: X-UV strioscopy by means of multilayer mirrors

    International Nuclear Information System (INIS)

    Lutrin, F.

    1996-01-01

    This thesis studies a new instrument -from its conception to the measures interpretation- that analyses electronic density gradient in the super critical transportation area of a laser plasma (0,35 μm). This device, so-called of X-UV Schlieren, is based on the refraction property of a probe beam by an index gradient. Its specificity is the use of the X-UV emission at 13 nm (92 eV) of another laser plasma as X-UV probe. The conception and characterization of this instrument are defined thanks to both the emissivity and reflectivity properties of laser plasmas and the reflectivity properties of multilayers. Within this report are presented strioscopy images, spatially and spectrally resolved of an aluminium plasma from a 3.10 12 W/cm 2 laser flux, probed by a 13 nm wavelength. The device has to be closely aligned so as to obtain good contrast and good spatial resolution. For the first time, the refraction of a X-UV probe beam by a laser plasma is displayed. The experiments show that this refraction is all the more obvious for a gold probe plasma of energy 105 J and an aluminium probed plasma of energy 1 J. According to our plasma hydrodynamic simulation, the detected refraction corresponds to an electronic density gradient of 6,5.10 25 electrons/cm 4 in the two first microns of the sur-critical area. To study the parameters dependence of this gradient in the sur-critical area, several solutions for improving the instrument are produced. (author)

  12. Modulation above Pump Beam Energy in Photoreflectance

    Directory of Open Access Journals (Sweden)

    D. Fuertes Marrón

    2017-01-01

    Full Text Available Photoreflectance is used for the characterisation of semiconductor samples, usually by sweeping the monochromatized probe beam within the energy range comprised between the highest value set up by the pump beam and the lowest absorption threshold of the sample. There is, however, no fundamental upper limit for the probe beam other than the limited spectral content of the source and the responsivity of the detector. As long as the modulation mechanism behind photoreflectance does affect the complete electronic structure of the material under study, sweeping the probe beam towards higher energies from that of the pump source is equally effective in order to probe high-energy critical points. This fact, up to now largely overseen, is shown experimentally in this work. E1 and E0 + Δ0 critical points of bulk GaAs are unambiguously resolved using pump light of lower energy. This type of upstream modulation may widen further applications of the technique.

  13. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump–probe experiments

    Energy Technology Data Exchange (ETDEWEB)

    Scoby, Cheyne M., E-mail: scoby@physics.ucla.edu [UCLA Department of Physics, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States); Li, R.K.; Musumeci, P. [UCLA Department of Physics, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2013-04-15

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ∼1ps precision.

  14. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump–probe experiments

    International Nuclear Information System (INIS)

    Scoby, Cheyne M.; Li, R.K.; Musumeci, P.

    2013-01-01

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ∼1ps precision

  15. Optical design for CETUS: a wide-field 1.5m aperture UV payload being studied for a NASA probe class mission study

    Science.gov (United States)

    Woodruff, Robert; Robert Woodruff, Goddard Space Flight Center, Kendrick Optical Consulting

    2018-01-01

    We are developing a NASA Headquarters selected Probe-class mission concept called the Cosmic Evolution Through UV Spectroscopy (CETUS) mission, which includes a 1.5-m aperture diameter large field-of-view (FOV) telescope optimized for UV imaging, multi-object spectroscopy, and point-source spectroscopy. The optical system includes a Three Mirror Anastigmatic (TMA) telescope that simultaneously feeds three separate scientific instruments: the near-UV (NUV) Multi-Object Spectrograph (MOS) with a next-generation Micro-Shutter Array (MSA); the two-channel camera covering the far-UV (FUV) and NUV spectrum; and the point-source spectrograph covering the FUV and NUV region with selectable R~ 40,000 echelle modes and R~ 2,000 first order modes. The optical system includes fine guidance sensors, wavefront sensing, and spectral and flat-field in-flight calibration sources. This paper will describe the current optical design of CETUS.

  16. A new concept for solar pumped lasers

    Science.gov (United States)

    Christiansen, W. H.

    1978-01-01

    A new approach is proposed in which an intermediate body heated by sunlight is used as the pumping source for IR systems, i.e., concentration solar radiation is absorbed and reradiated via an intermediate blackbody. This body is heated by focused sunlight to a high temperature and its heat losses are engineered to be small. The cooled laser tube (or tubes) is placed within the cavity and is pumped by it. The advantage is that the radiation spectrum is like a blackbody at the intermediate temperature and the laser medium selectively absorbs this light. Focusing requirements, heat losses, and absorption bandwidths of laser media are examined, along with energy balance and potential efficiency. The results indicate that for lasers pumped through an IR absorption spectrum, the use of an intermediate blackbody offers substantial and important advantages. The loss in radiative intensity for optical pumping by a lower-temperature body is partly compensated by the increased solid angle of exposure to the radiative environment.

  17. Effect of the nickel precursor on the impregnation and drying of γ-Al2O3 catalyst bodies: a UV-vis and IR micro-spectroscopic study

    NARCIS (Netherlands)

    Espinosa Alonso, L.; de Jong, K.P.; Weckhuysen, B.M.

    2008-01-01

    The elemental preparation steps of impregnation and drying of Ni/g-Al2O3 catalyst bodies have been studied by combining UV-vis and IR microspectroscopy. The influence of the number of chelating ligands in [Ni(en)x(H2O)6-2x]2+ precursor complexes (with en ) ethylenediamine and x ) 0-3) has been

  18. Real time observation of proteolysis with Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy: Watching a protease eat a protein

    Science.gov (United States)

    Güler, Günnur; Džafić, Enela; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2011-06-01

    Fourier transform infrared (FT-IR)- and UV-circular dichroism (UV-CD) spectroscopy have been used to study real-time proteolytic digestion of β-lactoglobulin (β-LG) and β-casein (β-CN) by trypsin at various substrate/enzyme ratios in D 2O-buffer at 37 °C. Both techniques confirm that protein substrate looses its secondary structure upon conversion to the peptide fragments. This perturbation alters the backbone of the protein chain resulting in conformational changes and degrading of the intact protein. Precisely, the most significant spectral changes which arise from digestion take place in the amide I and amide II regions. The FT-IR spectra for the degraded β-LG show a decrease around 1634 cm -1, suggesting a decrease of β-sheet structure in the course of hydrolysis. Similarly, the intensity around the 1654 cm -1 band decreases for β-CN digested by trypsin, indicating a reduction in the α-helical part. On the other hand, the intensity around ˜1594 cm -1 and ˜1406 cm -1 increases upon enzymatic breakdown of both substrates, suggesting an increase in the antisymmetric and symmetric stretching modes of free carboxylates, respectively, as released digestion products. Observation of further H/D exchange in the course of digestion manifests the structural opening of the buried groups and accessibility to the core of the substrate. On the basis of the UV-CD spectra recorded for β-LG and β-CN digested by trypsin, the unordered structure increases concomitant with a decrease in the remaining structure, thus, revealing breakdown of the intact protein into smaller fragments. This model study in a closed reaction system may serve as a basis for the much more complex digestion processes in an open reaction system such as the stomach.

  19. TOMS/Earth Probe UV-B Erythemal Local Noon Irradiance Monthly L3 Global 1x1.25 deg Lat/Lon Grid V008

    Data.gov (United States)

    National Aeronautics and Space Administration — This data product contains TOMS/Earth Probe UV-B Erythemal Local Noon Irradiance Monthly L3 Global 1x1.25 deg Lat/Lon Grid Version 8 data in ASCII format. (The...

  20. Optical afterburner for an x-ray free electron laser as a tool for pump-probe experiments

    Directory of Open Access Journals (Sweden)

    E. L. Saldin

    2010-03-01

    Full Text Available We propose a new scheme for two-color operation of an x-ray self-amplified spontaneous emission free electron laser (SASE FEL. The scheme is based on an intrinsic feature of such a device: chaotic modulations of electron beam energy and energy spread on the scale of FEL coherence length are converted into large density modulations on the same scale with the help of a dispersion section, installed behind the x-ray undulator. Powerful radiation is then generated with the help of a dedicated radiator (like an undulator that selects a narrow spectral line, or one can simply use, for instance, broadband edge radiation. A typical radiation wavelength can be as short as a FEL coherence length, and can be redshifted by increasing the dispersion section strength. In practice it means the wavelength ranges from vacuum ultraviolet to infrared. The long-wavelength radiation pulse is naturally synchronized with the x-ray pulse and can be either directly used in pump-probe experiments or cross correlated with a high-power pulse from a conventional laser system. In this way experimenters overcome jitter problems and can perform pump-probe experiments with femtosecond resolution. Additional possibilities like on-line monitoring of x-ray pulse duration (making “optical replica” of an x-ray pulse are also discussed in the paper. The proposed scheme is very simple, cheap, and robust, and therefore can be easily realized in facilities like FLASH, European XFEL, LCLS, and SCSS.

  1. Measurement of phytoplankton photosynthesis rate using a pump-and-probe fluorometer

    Directory of Open Access Journals (Sweden)

    Taras K. Antal

    2001-09-01

    Full Text Available In this work we have studied the possibility of determining the rate of phytoplankton photosynthesis in situ using a submersible pump-and-probe fluorometer in water areas differing in their trophic level, as well as in climatic and hydrophysical characteristics. A biophysical model was used to describe the relationship between photosynthesis, underwater irradiance, and the intensity of phytoplankton fluorescence excited by an artificial light source. Fluorescence intensity was used as a measure of light absorption by phytoplankton and for assessing the efficiency of photochemical energy conversion at photosynthetic reaction centers. Parameters of the model that could not be measured experimentally were determined by calibrating fluorescence and irradiance data against the primary production measured in the Baltic Sea with the radioactive carbon method. It was shown that the standard deviation of these parameters in situ did not exceed 20%, and the use of their mean values to estimate the phytoplankton photosynthetic rate showed a good correlation between the calculated and meas

  2. A conformation-selective IR-UV study of the dipeptides Ac-Phe-Ser-NH2 and Ac-Phe-Cys-NH2: probing the SH···O and OH···O hydrogen bond interactions.

    Science.gov (United States)

    Yan, Bin; Jaeqx, Sander; van der Zande, Wim J; Rijs, Anouk M

    2014-06-14

    The conformational preferences of peptides are mainly controlled by the stabilizing effect of intramolecular interactions. In peptides with polar side chains, not only the backbone but also the side chain interactions determine the resulting conformations. In this paper, the conformational preferences of the capped dipeptides Ac-Phe-Ser-NH2 (FS) and Ac-Phe-Cys-NH2 (FC) are resolved under laser-desorbed jet cooling conditions using IR-UV ion dip spectroscopy and density functional theory (DFT) quantum chemistry calculations. As serine (Ser) and cysteine (Cys) only differ in an OH (Ser) or SH (Cys) moiety; this subtle alteration allows us to study the effect of the difference in hydrogen bonding for an OH and SH group in detail, and its effect on the secondary structure. IR absorption spectra are recorded in the NH stretching region (3200-3600 cm(-1)). In combination with quantum chemical calculations the spectra provide a direct view of intramolecular interactions. Here, we show that both FS as FC share a singly γ-folded backbone conformation as the most stable conformer. The hydrogen bond strength of OH···O (FS) is stronger than that of SH···O (FC), resulting in a more compact gamma turn structure. A second conformer is found for FC, showing a β turn interaction.

  3. Characterization of silicon-oxide interfaces and organic monolayers by IR-UV ellipsometry and FTIR spectroscopy

    Science.gov (United States)

    Hess, P.; Patzner, P.; Osipov, A. V.; Hu, Z. G.; Lingenfelser, D.; Prunici, P.; Schmohl, A.

    2006-08-01

    VUV-laser-induced oxidation of Si(111)-(1×1):H, Si(100):H, and a-Si:H at 157 nm (F II laser) in pure O II and pure H IIO atmospheres was studied between 30°C and 250°C. The oxidation process was monitored in real time by spectroscopic ellipsometry (NIR-UV) and FTIR spectroscopy. The ellipsometric measurements could be simulated with a three-layer model, providing detailed information on the variation of the suboxide interface with the nature of the silicon substrate surface. Besides the silicon-dioxide and suboxide layer, a dense, disordered, roughly monolayer thick silicon layer was included, as found previously by molecular dynamics calculations. The deviations from the classical Deal-Grove mechanism and the self-limited growth of the ultrathin dioxide layers (TMS) groups and n-alkylthiol monolayers on gold-coated silicon. The C-H stretching vibrations of the methylene and methyl groups could be identified by FTIR spectroscopy and IR ellipsometry.

  4. Comparative researches concerning cleaning chosen construction materials surface layer using UV and IR laser radiation

    International Nuclear Information System (INIS)

    Napadlek, W.; Marczak, J.; Kubicki, J.; Szudrowicz, M.

    2002-01-01

    The paper presents comparative research studies of cleaning out of deposits and pollution disposals on different constructional materials like; steel, cast iron, aluminium, copper by using UV and IR laser radiation of wavelength λ =1.064 μm; λ = 0.532 μm; λ = 0.355 μm and λ = 0.266 μm and also impulse laser TEA CO 2 at radiation λ = 10.6 μm were used for the experiments. Achieved experimental results gave us basic information on parameters and conditions and application of each used radiation wavelength. Each kind of pollution and base material should be individually treated, selecting the length of wave and radiation energy density. Laser microtreatment allows for broad cleaning application of the surface of constructional materials as well as may be used in future during manufacturing processes as: preparation of surface for PVD technology, galvanotechnics, cleaning of the surface of machine parts etc. (author)

  5. A novel femtosecond-gated, high-resolution, frequency-shifted shearing interferometry technique for probing pre-plasma expansion in ultra-intense laser experiments

    Energy Technology Data Exchange (ETDEWEB)

    Feister, S., E-mail: feister.7@osu.edu; Orban, C. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Nees, J. A. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Center for Ultra-Fast Optical Science, University of Michigan, Ann Arbor, Michigan 48109 (United States); Morrison, J. T. [Fellow, National Research Council, Washington, D.C. 20001 (United States); Frische, K. D. [Innovative Scientific Solutions, Inc., Dayton, Ohio 45459 (United States); Chowdhury, E. A. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Intense Energy Solutions, LLC., Plain City, Ohio 43064 (United States); Roquemore, W. M. [Air Force Research Laboratory, Dayton, Ohio 45433 (United States)

    2014-11-15

    Ultra-intense laser-matter interaction experiments (>10{sup 18} W/cm{sup 2}) with dense targets are highly sensitive to the effect of laser “noise” (in the form of pre-pulses) preceding the main ultra-intense pulse. These system-dependent pre-pulses in the nanosecond and/or picosecond regimes are often intense enough to modify the target significantly by ionizing and forming a plasma layer in front of the target before the arrival of the main pulse. Time resolved interferometry offers a robust way to characterize the expanding plasma during this period. We have developed a novel pump-probe interferometry system for an ultra-intense laser experiment that uses two short-pulse amplifiers synchronized by one ultra-fast seed oscillator to achieve 40-fs time resolution over hundreds of nanoseconds, using a variable delay line and other techniques. The first of these amplifiers acts as the pump and delivers maximal energy to the interaction region. The second amplifier is frequency shifted and then frequency doubled to generate the femtosecond probe pulse. After passing through the laser-target interaction region, the probe pulse is split and recombined in a laterally sheared Michelson interferometer. Importantly, the frequency shift in the probe allows strong plasma self-emission at the second harmonic of the pump to be filtered out, allowing plasma expansion near the critical surface and elsewhere to be clearly visible in the interferograms. To aid in the reconstruction of phase dependent imagery from fringe shifts, three separate 120° phase-shifted (temporally sheared) interferograms are acquired for each probe delay. Three-phase reconstructions of the electron densities are then inferred by Abel inversion. This interferometric system delivers precise measurements of pre-plasma expansion that can identify the condition of the target at the moment that the ultra-intense pulse arrives. Such measurements are indispensable for correlating laser pre-pulse measurements

  6. Simultaneous infrared and UV-visible absorption spectra of matrix-isolated carbon vapor

    Science.gov (United States)

    Kurtz, Joe; Huffman, Donald R.

    1989-01-01

    Carbon molecules were suggested as possible carriers of the diffuse interstellar bands. In particular, it was proposed that the 443 nm diffuse interstellar band is due to the same molecule which gives rise to the 447 nm absorption feature in argon matrix-isolated carbon vapor. If so, then an associated C-C stretching mode should be seen in the IR. By doing spectroscopy in both the IR and UV-visible regions on the same sample, the present work provides evidence for correlating UV-visible absorption features with those found in the IR. Early data indicates no correlation between the strongest IR feature (1997/cm) and the 447 nm band. Correlation with weaker IR features is being investigated.

  7. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    Science.gov (United States)

    Kaul, Anupama B.; Coles, James B.

    2012-01-01

    electric field inherent in a plasma yields vertically aligned CNTs at small length scales (less than 10 m), which still exhibit broadband, and high-efficiency optical absorption characteristics from the ultraviolet (UV) to IR. A thin and yet highly absorbing coating is extremely valuable for detector applications for radiometry in order to enhance sensitivity. A plasma-based process also increases the potential of forming the optical absorbers at lower synthesis temperatures in the future, increasing the prospects of integrating the absorbers with flexible substrates for low-cost solar cell applications, for example.

  8. Effect of Unsaturated Flow on Delayed Response of Unconfined Aquifiers to Pumping

    Science.gov (United States)

    Tartakovsky, G.; Neuman, S. P.

    2005-12-01

    A new analytical solution is presented for the delayed response process characterizing flow to a partially penetrating well in an unconfined aquifer. The new solution generalizes that of Neuman [1972, 1974] by accounting for unsaturated flow above the water table. Axially symmetric three-dimensional flow in the unsaturated zone is described by a linearized version of Richards' equation in which hydraulic conductivity and water content vary exponentially with incremental capillary pressure head relative to its air entry value (defining the interface between the saturated and unsaturated zones). Unsaturated soil properties are characterized by an exponent κ having the dimension of inverse length and a dimensionless exponent κD = κb where b is initial saturated thickness. Our treatment of the unsaturated zone is similar to that of Kroszynski and Dagan [1975] who however have ignored internal (artesian) aquifer storage. It has been suggested by Boulton [1954, 1963, 1970] and Neuman [1972, 1974], and is confirmed by our solution, that internal storage is required to reproduce the early increase in drawdown characterizing delayed response to pumping in typical aquifers. According to our new solution such aquifers are characterized by relatively large κ_ D values, typically 10 or larger; in the limit as κD tends to infinity (the soil unsaturated water retention capacity becomes insignificant and/or aquifer thickness become large), unsaturated flow becomes unimportant and our solution reduces to that of Neuman. In typical cases corresponding to κD larger than or equal to 10, unsaturated flow is found to have little impact on early and late dimensionless time behaviors of drawdown measured wholly or in part at some distance below the water table; unsaturated flow causes drawdown to increase slightly at intermediate dimensionless time values that represent transition from an early artesian dominated to a late water-table dominated flow regime. The increase in drawdown

  9. Production of spectrally reconstructed uv-radiation by means of a nonlinear conversion of the generation frequency of a dye laser with lamp pumping

    Energy Technology Data Exchange (ETDEWEB)

    Anufrik, S S; Mostovnikov, V A; Rubinov, A N

    1976-03-01

    By doubling the generation frequency of an organic dye laser with lamp pumping, radiation is obtained in the spectral region of 285 to 305 nm. Depending on the mode of operation of a given laser the spectral width of the uv-radiation was 0.5 or approximately 0.003 nm. The maximum energy of second harmonic pulses was equal to approximately 0.01 J. (SJR)

  10. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation

    DEFF Research Database (Denmark)

    Chi, Mingjun; Jensen, Ole Bjarlin; Erbert, Gotz

    2011-01-01

    High-power narrow-spectrum diode laser systems based on tapered gain media in external cavity are demonstrated at 675 nm. Two 2-mm-long amplifiers are used, one with a 500-µm-long ridge-waveguide section (device A), the other with a 750-µm-long ridge-waveguide section (device B). The laser system...... of 1.0 W. The laser system B based on device B is tunable from 666 to 685 nm. As high as 1.05 W output power is obtained around 675.67 nm. The emission spectral bandwidth is less than 0.07 nm throughout the tuning range, and the beam quality factor M2 is 1.13 at an output power of 0.93 W. The laser...... system B is used as a pump source for the generation of 337.6 nm UV light by single-pass frequency doubling in a BIBO crystal. An output power of 109 µW UV light, corresponding to a conversion efficiency of 0.026%W-1 is attained....

  11. Intraminiband Relaxation In Doped GaAs/AlGaAs Superlattices Studied By Two-Color Infrared Pump-Probe Experiments

    International Nuclear Information System (INIS)

    Wagner, M.; Stehr, D.; Schneider, H.; Helm, M.; Andrews, A. M.; Roch, T.; Strasser, G.

    2010-01-01

    In this work we report on two-color pump-probe measurements to investigate the intraminiband dynamics of doped GaAs/AlGaAs superlattices with different miniband widths smaller or larger than the optical phonon energy. For a miniband with a width larger than the optical phonon energy we found a fast relaxation, independent of the excitation intensity. For narrow minibands this relaxation takes longer and shows a strong temperature and intensity dependence.

  12. Broadening the applications of the atom probe technique by ultraviolet femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Hono, K., E-mail: kazuhiro.hono@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Ohkubo, T. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Chen, Y.M.; Kodzuka, M. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Oh-ishi, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Sepehri-Amin, H. [Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-0047 (Japan); Li, F. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); CREST, Japan Science and Technology Agency (Japan); Kinno, T. [Corporate R and D Center, Toshiba Corporation, Saiwai-ku, Kawasaki 212-8582 (Japan); CREST, Japan Science and Technology Agency (Japan); Tomiya, S.; Kanitani, Y. [Advanced Materials Laboratory, Sony Corporation, Atsugi, Kanagawa 243-0021 (Japan)

    2011-05-15

    Laser assisted field evaporation using ultraviolet (UV) wavelength gives rise to better mass resolution and signal-to-noise ratio in atom probe mass spectra of metals, semiconductors and insulators compared to infrared and green lasers. Combined with the site specific specimen preparation techniques using the lift-out and annular Ga ion milling in a focused ion beam machine, a wide variety of materials including insulating oxides can be quantitatively analyzed by the three-dimensional atom probe using UV laser assisted field evaporation. After discussing laser irradiation conditions for optimized atom probe analyses, recent atom probe tomography results on oxides, semiconductor devices and grain boundaries of sintered magnets are presented. -- Research highlights: {yields} Application of ultraviolet (UV) femtosecond pulsed laser in a three dimensional atom probe (3DAP). {yields} Improved mass resolution and signal-to-noise ratio in atom probe mass spectra using UV laser. {yields} UV laser facilitates 3DAP analysis of insulating oxides. {yields} Quantitative analysis of wide variety of materials including insulating oxides using UV femotosecond laser.

  13. Induction of suppression of delayed type hypersensitivity to herpes simplex virus by epidermal cells exposed to UV-irradiated urocanic acid in vivo

    International Nuclear Information System (INIS)

    Ross, J.A.; Howie, S.E.; Norval, M.; Maingay, J.P.

    1987-01-01

    Urocanic acid (UCA), the putative photoreceptor for ultraviolet radiation (UV)-induced suppression, undergoes a UV-dependent trans to cis isomerisation. Epidermal cells from mice painted with UCA, containing a known proportion of the cis-isomer, generate suppression of the delayed type hypersensitivity response to herpes simplex virus type 1 (HSV-1) when transferred to naive syngeneic recipients at the same time and site as infection with HSV-1. One T suppressor cell subset, of phenotype (Thy1+, L3T4+, Ly2-), is induced by the cis-UCA modified epidermal cell transfer. Flow cytometric analysis of the epidermal cells from skin treated with UV or cis-UCA indicates an overall reduction from normal in the number of cells expressing MHC Class II antigens, but no alteration in the number expressing I-J antigens

  14. Sandwich-format 3D printed microfluidic mixers: a flexible platform for multi-probe analysis

    International Nuclear Information System (INIS)

    Kise, Drew P; Reddish, Michael J; Brian Dyer, R

    2015-01-01

    We report on a microfluidic mixer fabrication platform that increases the versatility and flexibility of mixers for biomolecular applications. A sandwich-format design allows the application of multiple spectroscopic probes to the same mixer. A polymer spacer is ‘sandwiched’ between two transparent windows, creating a closed microfluidic system. The channels of the mixer are defined by regions in the polymer spacer that lack material and therefore the polymer need not be transparent in the spectral region of interest. Suitable window materials such as CaF 2 make the device accessible to a wide range of optical probe wavelengths, from the deep UV to the mid-IR. In this study, we use a commercially available 3D printer to print the polymer spacers to apply three different channel designs into the passive, continuous-flow mixer, and integrated them with three different spectroscopic probes. All three spectroscopic probes are applicable to each mixer without further changes. The sandwich-format mixer coupled with cost-effective 3D printed fabrication techniques could increase the applicability and accessibility of microfluidic mixing to intricate kinetic schemes and monitoring chemical synthesis in cases where only one probe technique proves insufficient. (paper)

  15. FT-IR, FT-Raman, UV spectra and DFT calculations on monomeric and dimeric structure of 2-amino-5-bromobenzoic acid.

    Science.gov (United States)

    Karabacak, Mehmet; Cinar, Mehmet

    2012-02-01

    In this work, the molecular conformation, vibrational and electronic transition analysis of 2-amino-5-bromobenzoic acid (2A5BrBA) were presented for the ground state using experimental techniques (FT-IR, FT-Raman and UV) and density functional theory (DFT) employing B3LYP exchange correlation with the 6-311++G(d,p) basis set. FT-IR and FT-Raman spectra were recorded in the regions of 400-4000 cm(-1) and 50-4000 cm(-1), respectively. There are four conformers, C1, C2, C3 and C4 for this molecule. The geometrical parameters, energies and wavenumbers have been obtained for all four conformers. The computational results diagnose the most stable conformer of 2A5BrBA as the C1 form. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Raman activities calculated by DFT method have been converted to the corresponding Raman intensities using Raman scattering theory. The UV spectra of investigated compound were recorded in the region of 200-400 nm for ethanol and water solutions. The electronic properties were evaluated with help of time-dependent DFT (TD-DFT) theoretically and results were compared with experimental observations. The thermodynamic properties of the studied compound at different temperatures were calculated, revealing the correlations between standard heat capacity, standard entropy, standard enthalpy changes and temperatures. The observed and the calculated geometric parameters, vibrational wavenumbers and electronic transitions were compared with observed data and found to be in good agreement. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Energy transfer in isolated LHC II studied by femtosecond pump-probe technique

    CERN Document Server

    Yang Yi; Liu Yuan; Liu Wei Min; Zhu Rong Yi; Qian Shi Xiong; Xu Chun He

    2003-01-01

    Excitation energy transfer in the isolated light-harvesting chlorophyll (Chl)-a/b protein complex of photosystem II (LHC II) was studied by the one-colour pump-probe technique with femtosecond time resolution. After exciting Chl-b by 638nm beam, the dynamic behaviour shows that the ultrafast energy transfer from Chl-b at positions of B2, B3, and B5 to the corresponding Chl-a molecules in monomeric subunit of LHC II is in the time scale of 230fs. While with the excitation of Chl-a at 678nm, the energy transfer between excitons of Chl-a molecules has the lifetime of about 370 fs, and two other slow decay components are due to the energy transfer between different Chl-a molecules in a monomeric subunit of LHC II or in different subunits, or due to change of molecular conformation. (20 refs).

  17. Detection of hydrodynamic expansion in ultrashort pulse laser ellipsometric pump-probe experiments

    International Nuclear Information System (INIS)

    Morikami, Hidetoshi; Yoneda, Hitoki; Ueda, Ken-ichi; More, Richard M.

    2004-01-01

    In ultrashort-pulse laser interaction with solid target materials, the target rapidly heats, melts, evaporates, and begins to expand as a vapor or plasma. The onset of hydrodynamic expansion following surface evaporation is a switching point, where the dominant physics changes from temperature dependence of the solid dielectric function to refraction by the dense vapor cloud. We propose and demonstrate a method to analyze reflection data to identify this onset of target expansion. We use two of the Stokes parameters obtained from ellipsometric pump-probe measurements to determine a dielectric function with an assumption of no expansion. We use this dielectric function to predict the full set of reflectivity measurements. If there is a sharply defined target interface, this method reproduces the experimental data. When the plasma expansion is no longer negligible, the prediction deviates from the experimental measurements. This comparison shows when the plasma expansion is no longer negligible

  18. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  19. Reactivation of UV- and γ-irradiated herpes virus in UV- and X-irradiated CV-1 cells

    International Nuclear Information System (INIS)

    Takimoto, K.; Niwa, O.; Sugahara, T.

    1982-01-01

    Enhanced reactivation of UV- and γ-irradiated herpes virus was investigated by the plaque assay on CV-1 monkey kidney monolayer cells irradiated with UV light or X-rays. Both UV- and X-irradiated CV-1 cells showed enhancement of survival of UV-irradiated virus, while little or no enhancement was detected for γ-irradiated virus assayed on UV- or X-irradiated cells. The enhanced reactivation of UV-irradiated virus was greater when virus infection was delayed 24 or 48 h, than for infection immediately following the irradiation of cells. Thus the UV- or X-irradiated CV-1 cells are able to enhance the repair of UV damaged herpes virus DNA, but not of γ-ray damaged ones. (author)

  20. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 1816-1821 ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  1. Cooperativity of hydrogen-bonded networks in 7-azaindole(CH3OH)n (n=2,3) clusters evidenced by IR-UV ion-dip spectroscopy and natural bond orbital analysis.

    Science.gov (United States)

    Sakota, Kenji; Kageura, Yutaka; Sekiya, Hiroshi

    2008-08-07

    IR-UV ion-dip spectra of the 7-azaindole (7AI)(CH(3)OH)(n) (n=1-3) clusters have been measured in the hydrogen-bonded NH and OH stretching regions to investigate the stable structures of 7AI(CH(3)OH)(n) (n=1-3) in the S(0) state and the cooperativity of the H-bonding interactions in the H-bonded networks. The comparison of the IR-UV ion-dip spectra with IR spectra obtained by quantum chemistry calculations shows that 7AI(CH(3)OH)(n) (n=1-3) have cyclic H-bonded structures, where the NH group and the heteroaromatic N atom of 7AI act as the proton donor and proton acceptor, respectively. The H-bonded OH stretch fundamental of 7AI(CH(3)OH)(2) is remarkably redshifted from the corresponding fundamental of (CH(3)OH)(2) by 286 cm(-1), which is an experimental manifestation of the cooperativity in H-bonding interaction. Similarly, two localized OH fundamentals of 7AI(CH(3)OH)(3) also exhibit large redshifts. The cooperativity of 7AI(CH(3)OH)(n) (n=2,3) is successfully explained by the donor-acceptor electron delocalization interactions between the lone-pair orbital in the proton acceptor and the antibonding orbital in the proton donor in natural bond orbital (NBO) analyses.

  2. Laser-pump/X-ray-probe experiments with electrons ejected from a Cu(111) target: space-charge acceleration.

    Science.gov (United States)

    Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N

    2016-09-01

    A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.

  3. Path to a UV/Optical/IR Flagship: Review of ATLAST and Its Predecessors

    Science.gov (United States)

    Thronson, Harley; Bolcar, Matthew R.; Clampin, Mark; Crooke, Julie; Feinberg, Lee; Oegerle, William; Rioux, Norman; Stahl, H. Philip; Stapelfeldt, Karl

    2016-01-01

    Our recently completed study for the Advanced Technology Large-Aperture Space Telescope (ATLAST) was the culmination of three years of initially internally funded work that built upon earlier engineering designs, science objectives, and technology priorities. Beginning in the mid-1980s, multiple teams of astronomers, technologists, and engineers developed concepts for a large-aperture UV/optical/IR space observatory intended to follow the Hubble Space Telescope (HST). Here, we summarize since the first significant conferences on major post-HST ultraviolet, optical, and infrared (UVOIR) observatories the history of designs, scientific goals, key technology recommendations, and community workshops. Although the sophistication of science goals and the engineering designs both advanced over the past three decades, we note the remarkable constancy of major characteristics of large post-HST UVOIR concepts. As it has been a priority goal for NASA and science communities for a half-century, and has driven much of the technology priorities for major space observatories, we include the long history of concepts for searching for Earth-like worlds. We conclude with a capsule summary of our ATLAST reference designs developed by four partnering institutions over the past three years, which was initiated in 2013 to prepare for the 2020 National Academies' Decadal Survey.

  4. Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C

    Science.gov (United States)

    Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide

    2011-10-01

    It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.

  5. An inexpensive and simple method for thermally stable immobilization of DNA on an unmodified glass surface: UV linking of poly(T)10-poly(C)10-tagged DNA probes

    DEFF Research Database (Denmark)

    Guðnason, Haukur; Dufva, Hans Martin; Bang, Dang Duong

    2008-01-01

    be linked by UV light irradiation onto a plain, unmodified glass surface. Probes immobilized onto unmodified glass microscope slides performed similarly to probes bound to commercial amino-silane-coated slides and had comparable detection limits. The TC-tagged probes linked to unmodified glass did not show...... any significant decrease in hybridization performance after a 20 min incubation in water at 100 degrees C prior to rehybridization, indicating a covalent bond between the TC tag and unmodified glass. The probes were used in thermal minisequencing cycling reactions. Furthermore, the TC tag improved...

  6. A Delay Filter for an ir-UWB Front-End

    NARCIS (Netherlands)

    Bagga, S.; Haddad, S.A.P.; Serdijn, W.A.; Lang, J.R.; Busking, E.B.

    2005-01-01

    A continuous-time analog delay is designed as a requirement for the autocorrelation function in the quadrature downconversion autocorrelation receiver (QDAR). An eight-order Fade approximation of its transfer function is selected to implement this delay. Subsequently, the orthonormal form is

  7. Carrier dynamics in silicon nanowires studied using optical-pump terahertz-probe spectroscopy

    Science.gov (United States)

    Beaudoin, Alexandre; Salem, Bassem; Baron, Thierry; Gentile, Pascal; Morris, Denis

    2014-03-01

    The advance of non-contact measurements involving pulsed terahertz radiation presents great interests for characterizing electrical properties of a large ensemble of nanowires. In this work, N-doped and undoped silicon nanowires (SiNWs) grown by chemical vapour deposition (CVD) on quartz substrate were characterized using optical-pump terahertz probe (OPTP) transmission experiments. Our results show that defects and ionized impurities introduced by N-doping the CVD-grown SiNWs tend to reduce the photoexcited carrier lifetime and degrade their conductivity properties. Capture mechanisms by the surface trap states play a key role on the photocarrier dynamics in theses small diameters' (~100 nm) SiNWs and the doping level is found to alter this dynamics. We propose convincing capture and recombination scenarios that explain our OPTP measurements. Fits of our photoconductivity data curves, from 0.5 to 2 THz, using a Drude-plasmon conductivity model allow determining photocarrier mobility values of 190 and 70 cm2/V .s, for the undoped and N-doped NWs samples, respectively.

  8. Thermal behavior of J-aggregates in a Langmuir-Blodgett film of pure merocyanine dye investigated by UV-visible and IR absorption spectroscopy.

    Science.gov (United States)

    Hirano, Yoshiaki; Tateno, Shinsuke; Maio, Ari; Ozaki, Yukihiro

    2009-03-05

    We have characterized the structure of J-aggregate in a Langmuir-Blodgett film of pure merocyanine dye (MS18) fabricated under an aqueous subphase containing a cadmium ion (Cd2+) and have investigated its thermal behavior by UV-visible and IR absorption spectroscopy in the range from 25 to 250 degrees C with a continuous scan. The results of both UV-visible and IR absorption spectra indicate that temperature-dependent changes in the MS18 aggregation state in the pure MS18 system are closely and mildly linked with the MS18 intramolecular charge transfer and the behavior of the packing, orientation, conformation, and thermal mobility of MS18 hydrocarbon chain, respectively. The J-aggregate in the pure MS18 system dissociates from 25 to 150 degrees C, and the dissociation temperature at 150 degrees C is higher by 50 degrees C than that in the previous MS18- arachidic acid (C20) binary system. The lower dissociation temperature in the binary system originates from the fact that temperature-dependent structural disorder of cadmium arachidate (CdC20), being phase-separated from MS18, has an influence on the dissociation of J-aggregate. From 160 to 180 degrees C, thermally induced blue-shifted bands, caused by the oligomeric MS18 aggregation, appear at around 520 nm in the pure MS18 system by contraries, regardless of the lack of driving force by the melting phenomenon of CdC20. The temperature at which the 520 nm bands occur is in good agreement with the melting point (160 degrees C) of hydrocarbon chain in MS18 with Cd2+, whereas its chromophore part is clearly observed to melt near 205 degrees C by UV-visible spectra. Therefore, it is suggested that the driving force that induces the 520 nm band in the pure MS18 system arises from the partial melting of hydrocarbon chain in MS18 with Cd2+.

  9. An improved synthesis, spectroscopic (FT-IR, NMR) study and DFT computational analysis (IR, NMR, UV-Vis, MEP diagrams, NBO, NLO, FMO) of the 1,5-methanoazocino[4,3-b]indole core structure

    Science.gov (United States)

    Uludağ, Nesimi; Serdaroğlu, Goncagül

    2018-03-01

    This study examines the synthesis of azocino[4,3-b]indole structure, which constitutes the tetracyclic framework of uleine, dasycarpidoneand tubifolidineas well as ABDE substructure of the strychnosalkaloid family. It has been synthesized by Fischer indolization of 2 and through the cylization of 4 by 2,3-dichlor-5-6-dicyanobenzoquinone (DDQ). 1H and 1C NMR chemical shifts have been predicted with GIAO approach and the calculated chemical shifts show very good agreement with observed shifts. FT-IR spectroscopy is important for the analysis of functional groups of synthesized compounds and we also supported FT-IR vibrational analysis with computational IR analysis. The vibrational spectral analysis was performed at B3LYP level of the theory in both the gas and the water phases and it was compared with the observed IR values for the important functional groups. The DFT calculations have been conducted to determine the most stable structure of the 1,2,3,4,5,6,7-Hexahydro-1,5-methanoazocino [4,3-b] indole (5). The Frontier Molecular Orbital Analysis, quantum chemical parameters, physicochemical properties have been predicted by using the same theory of level in both gas phase and the water phase, at 631 + g** and 6311++g** basis sets. TD- DFT calculations have been performed to predict the UV- Vis spectral analysis for this synthesized molecule. The Natural Bond Orbital (NBO) analysis have been performed at B3LYP level of theory to elucidate the intra-molecular interactions such as electron delocalization and conjugative interactions. NLO calculations were conducted to obtain the electric dipole moment and polarizability of the title compound.

  10. UV-enhanced reactivation in mammalian cells: increase by caffeine

    International Nuclear Information System (INIS)

    Lytle, C.D.; Iacangelo, A.L.; Lin, C.H.; Goddard, J.G.

    1981-01-01

    It has been reported that caffeine decreases UV-enhanced reactivation of UV-irradiated Herpes simplex virus in CV-l monkey kidney cells. That occurred when there was no delay between cell irradiation and virus infection. In the present study, virus infection was delayed following cell irradiation to allow an 'induction' period separate from the 'expression' period which occurs during the virus infection. Thus, the effects of caffeine on 'induction' and 'expression' could be determined separately. Caffeine increased the expression of UV-enhanced reactivation, while causing a small decrease in the 'induction' of enhanced reactivation. (author)

  11. The application of FT-IR spectrum method in photocuring process for polyester acrylate

    International Nuclear Information System (INIS)

    Cao Jin; Lu Xianliang; Zhang Zhenli

    1995-01-01

    This paper describes that the UV curing process of polyester acrylate can be monitored by measuring the degree of double bonds conversion with FT-IR spectroscopy. The various factors effect the UV curing rate. The relation between the curing rate and the concentration of photoinitiator, crosslinking agent, UV light intensity was discussed. (author)

  12. Preparation and Characterization of cis- and trans-[Ir(tn)2Cl2]CF3SO3 and of [Ir(tn)3]Cl3 (tn=propane-1,3-diamine)

    DEFF Research Database (Denmark)

    Brorson, Michael; Galsbøl, Frode; Simonsen, Kim

    1998-01-01

    for the preparation of [Rh(tn)3]Cl3 in quantitative yield from Rh(thtp)3Cl3 is also given. The complexes were characterized by 1H and 13C NMR and by UV/VIS spectroscopy. The conformation of the six-membered chelate rings of [Ir(tn)3]3+ in the solid state was determined by single-crystal X-ray diffraction of [Ir(tn)3......Procedures are given for the preparation and isolation of cis- and trans-[Ir(tn)2Cl2]CF3SO3 and of [Ir(tn)3]Cl3, (tn=propane-1,3-diamine). The compounds were prepared by the use of Ir(thtp)3Cl3 (thtp=tetrahydrothiophene) as starting material, using either DMSO or neat tn as solvent. A procedure......] [Co(CN)6] x 5H2O. The three chelate rings all adopt the energetically favoured chair conformation; however, the overall idealized symmetry is C1. A comparative ligand field analysis, based on Gaussian resolution of the solution UV/VIS spectra for a number of homoleptic [M(N6)]3+ (M=CoIII, RhIII, Ir...

  13. Formulación que comprende micropartículas de silicio como pigmento absorbente de la radiación UV-visible y reflectante de la radiación IR

    OpenAIRE

    Rodríguez, Marie-Isabelle; Fenollosa Esteve, Roberto; Meseguer, Francisco; Pérez-Roldán, Alberto

    2011-01-01

    La presente invención se refiere a una formulación caracterizada porque comprende micropartículas de silicio con un tamaño comprendido entre 0,1 μm y 50 μm de diámetro, así como a su uso como pigmento absorbente de la radiación UV-visible y reflectante de la radiación IR.

  14. Probing the spin-orbit Mott state in Sr3Ir2O7 by electron doping

    Science.gov (United States)

    Hogan, Thomas C.

    Iridium-based members of the Ruddlesden-Popper family of oxide compounds are characterized by a unique combination of energetically comparable effects: crystal-field splitting, spin-orbit coupling, and electron-electron interactions are all present, and the combine to produce a Jeff = 1/2 ground state. In the bilayer member of this series, Sr3Ir2O7, this state manifests as electrically insulating, with unpaired Ir4+ spins aligned along the long axis of the unit cell to produce a G-type antiferromagnet with an ordered moment of 0.36 uB. In this work, this Mott state is destabilized by electron doping via La3+ substitution on the Sr-site to produce (Sr1-x Lax)3Ir2O7. The introduction of carriers initially causes nano-scale phase-separated regions to develop before driving a global insulator-to-metal transition at x=0.04. Coinciding with this transition is the disappearance of evidence of magnetic order in the system in either bulk magnetization or magnetic scattering experiments. The doping also enhances a structural order parameter observed in the parent compound at forbidden reciprocal lattice vectors. A more complete structural solution is proposed to account for this previously unresolved distortion, and also offers an explanation as to the anomalous net ferromagnetism seen prior in bulk measurements. Finally, spin dynamics are probed via a resonant x-ray technique to reveal evidence of spin-dimer-like behavior dominated by inter-plane interactions. This result supports a bond-operator treatment of the interaction Hamiltonian, and also explains the doping dependence of high temperature magnetic susceptibility.

  15. Mid-infrared optical parametric oscillator pumped by an amplified random fiber laser

    Science.gov (United States)

    Shang, Yaping; Shen, Meili; Wang, Peng; Li, Xiao; Xu, Xiaojun

    2017-01-01

    Recently, the concept of random fiber lasers has attracted a great deal of attention for its feature to generate incoherent light without a traditional laser resonator, which is free of mode competition and insure the stationary narrow-band continuous modeless spectrum. In this Letter, we reported the first, to the best of our knowledge, optical parametric oscillator (OPO) pumped by an amplified 1070 nm random fiber laser (RFL), in order to generate stationary mid-infrared (mid-IR) laser. The experiment realized a watt-level laser output in the mid-IR range and operated relatively stable. The use of the RFL seed source allowed us to take advantage of its respective stable time-domain characteristics. The beam profile, spectrum and time-domain properties of the signal light were measured to analyze the process of frequency down-conversion process under this new pumping condition. The results suggested that the near-infrared (near-IR) signal light `inherited' good beam performances from the pump light. Those would be benefit for further develop about optical parametric process based on different pumping circumstances.

  16. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2015-01-01

    Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and with...... by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR....... and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...... quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily...

  17. Optical spin generation/detection and spin transport lifetimes

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2011-01-01

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  18. Optical spin generation/detection and spin transport lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.au [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2011-02-25

    We generate electron spins in semiconductors by optical pumping. The detection of them is also performed by optical technique using time-resolved pump-probe photoluminescence polarization measurements in the presence of an external magnetic field perpendicular to the generated spin. The spin polarization in dependences of the pulse length, pump-probe delay and external magnetic field is studied. From the dependence of spin-polarization on the delay of the probe, the electronic spin transport lifetimes and the spin relaxation frequencies as a function of the strength of the magnetic field are estimated. The results are discussed based on hyperfine effects for interacting electrons.

  19. Femtosecond pump-probe studies of phonons and carriers in bismuth under high pressure

    International Nuclear Information System (INIS)

    Kasami, M.; Ogino, T.; Mishina, T.; Yamamoto, S.; Nakahara, J.

    2006-01-01

    We investigate the high-pressure phase of Bi under hydrostatic pressure using pump-probe spectroscopy at pressures up to 3.0 GPa, and we observe coherent phonons signal and relaxation signal of photo-excited carriers at Bi(II) and Bi(III) phases. The pressure dependence of the coherent phonons shows that the amplitude of coherent phonons is extremely small and the frequency of coherent phonons changes at high-pressure phases. As results from our experiment, we obtain its frequencies are 2.5 and 2.2 THz at Bi(II) and Bi(III), respectively. Furthermore, photo-excited carrier relaxation indicates drastic changes near 2.5 GPa. Bismuth transforms from semimetal to semiconductor near 2.5 GPa, and band-overlapping between at L-point and at T-point disappears. We consider that the drastic changes of the photo-excited carrier relaxation are strongly correlated with the band-overlapping disappearing

  20. IR-laser assisted additive freeform optics manufacturing.

    Science.gov (United States)

    Hong, Zhihan; Liang, Rongguang

    2017-08-02

    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  1. Synthesis and XRD, FT-IR vibrational, UV-vis, and nonlinear optical exploration of novel tetra substituted imidazole derivatives: A synergistic experimental-computational analysis

    Science.gov (United States)

    Ahmad, Muhammad Saeed; Khalid, Muhammad; Shaheen, Muhammad Ashraf; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Braga, Ataualpa Albert Carmo; Shad, Hazoor Ahmad

    2018-04-01

    Heterocyclic compounds have potential applications in many fields of life. We synthesized novel tetra substituted imidazoles by four-component condensation of benzil, substituted aldehydes, substituted anilines and ammonium acetate as a source of ammonia and acetic acid as the solvent. Their chemical structures were resolved through X-ray crystallographic and spectroscopic (Fourier transform IR and UV-vis) techniques. In addition to experimental analysis, density functional theory (DFT) calculations at the B3LYP/6-311 + G(d,p) level were performed on 4-bromo-2-(1-(4-methoxyphenyl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (1), 4-bromo-2-(1-(1-naphthalen-yl)-4,5-diphenyl-1H-imidazole-2-yl)phenol (2), and 2-(1-(2-chlorophenyl)-4,5-diphenyl-1-H-imidazole-2-yl)-6-methoxyphenol (3) to obtain the optimized geometry and spectroscopic (Fourier transform IR and UV-vis) and non-linear optical properties. Frontier molecular orbital analysis was performed at the Hartee-Fock/6-311+g(d,p) and DFT/B3LYP/6-311+G(d,p) levels of theory. Natural bond orbital (NBO) and UV-vis spectral analyses were performed at the M06-2X/6-31+G(d,p) and time-dependent DFT/B3LYP/6-311+G(d,p) levels, respectively. Overall, the DFT findings show good agreement with the experimental data. The hyper conjugative interaction network, which is responsible for the stability of compounds 1, 2 and 3 was explored by the NBO approach. The global reactivity parameters were explored with use of the energy of the frontier molecular orbitals. DFT calculations predict the first-order hyperpolarizabilities of compounds 1, 2 and 3 are 294.89 × 10-30, 219.45 × 10-30 and 146.77 × 10-30 esu, respectively. A two-state model was used to describe the non-linear optical properties of the compounds investigated.

  2. Spatial modification of laser beam under the influence of Λ-type strong pump

    International Nuclear Information System (INIS)

    Lee, Won Kyu; Noh, Young Chul; Jeon, Jin Ho; Lee, Jai Hyung; Chang, Joon Sung

    1999-01-01

    The laser beam propagating through the resonant medium undergo severe deformation because of nonlinear interaction such as self-focusing, self-defocusing, etc. When strong pump beam coexists with the probe beam, propagation characteristics can be changed. We use samarium (Sm) vapor as the nonlinear medium. Probe laser is tuned around 4f 6 6s 27 F 0 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (561.601 nm) and the pump laser is tuned around 4f 6 6s 27 F 1 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (572.019 nm). The probe and the pump beams are Λ-type configuration. The transmission of the probe beam is changed as the intensity and the detuning of the pump beam are varied. The degree of self-focusing is also modified. (author)

  3. Investigation of the hydrated 7-hydroxy-4-methylcoumarin dimer by combined IR/UV spectroscopy

    International Nuclear Information System (INIS)

    Stamm, A.; Schwing, K.; Gerhards, M.

    2014-01-01

    The first molecular beam investigations on a coumarin dimer and clusters of a coumarin dimer with water both in the neutral (S 0 ) and cationic (D 0 ) electronic ground state are performed. The structure and structural changes due to ionization of the isolated 7-hydroxy-4-methylcoumarin dimer (7H4MC) 2 as well as its mono- and dihydrate (7H4MC) 2 (H 2 O) 1-2 are analyzed by applying combined IR/UV spectroscopy compared with density functional theory calculations. In case of the neutral dimer of 7H4MC a doubly hydrogen-bonded structure is formed. This doubly hydrogen-bonded arrangement opens to a singly hydrogen-bonded structure in the ion presenting a rearrangement reaction within an isolated dimer. By attaching one or two water molecules to the neutral 7H4MC dimer water is inserted into the hydrogen bonds. In contrast to the non-hydrated species this general binding motif with water in a bridging function does not change via ionization but especially for the dihydrate the spatial arrangement of the two 7H4MC units changes strengthening the interaction between the aromatic chromophores. The presented analyses illustrate the strong dependence of binding motifs as a function of successive hydration and charge including a rearrangement reaction

  4. UV Laser Diagnostics of the 1-MA Z-pinch Plasmas

    International Nuclear Information System (INIS)

    Altemara, S. D.; Ivanov, V. V.; Astanovitskiy, A. L.; Haboub, A.

    2009-01-01

    The 532 nm laser diagnostic set at the Zebra generator shows the details of the ablation and stagnation phases in cylindrical, planar, and star-like wire arrays but it cannot show the structure of the stagnated z-pinch and the implosion in small diameter loads, 1-3 mm in diameter. The absorption increment and the refraction angle of the 532 nm laser, when passing through the plasma, are too great to obtain quality images. An ultraviolet probing beam at the wavelength of 266 nm was developed to study small-diameter loads and to investigate the structure of the 1-MA z-pinch. The UV radiation has a much smaller absorption increment and refraction angles in plasmas than the 532 nm light and allows for better imaging of the z-pinch plasmas. Estimates showed that UV probing would be able to probe the high-density z-pinch plasma in experiments on the Zebra generator, and the early results of UV probing on the Zebra generator have shown promise.

  5. Turn-on delay of QD and QW laser diodes: What is the difference?

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Kolykhalova, E D; Deryagin, A G; Maximov, M V; Nadtochiy, A M; Kuchinskii, V I; Mikhrin, S S; Livshits, D A; Viktorov, E A; Erneux, T

    2013-01-01

    Turn-on delay of laser diodes with quantum-sized active media is investigated both theoretically and experimentally. In this research we show the striking difference in turn-on delay of quantum dot and quantum well laser diodes: With quantum-well lasers turn on delay tends to zero in the limit of high pumping, while with quantum dot lasers turn-on delay has the non-vanishing component which is independent of pumping

  6. Revival structures of linear molecules in a field-free alignment condition as probed by high-order harmonic generation

    International Nuclear Information System (INIS)

    Lee, G. H.; Kim, H. T.; Park, J. Y.; Nam, C. H.; Kim, T. K.; Lee, J. H.; Ihee, H.

    2006-01-01

    Revival structures (rotational coherence) of three linear molecules (N 2 , O 2 , and CO 2 ) in a field free alignment condition have been investigated using high-order harmonic generation. The harmonic yields of these molecules were measured in a pump-probe manner by using a weak femtosecond (fs) laser pulse for field-free alignment of molecules and another intense fs laser pulse for harmonic generation. The harmonic intensities from 23rd to 29th order with respect to the time delay between the pump and the probe pulses showed revival structures in the condition of a field-free alignment of molecules. While the revival structure of a N 2 molecule had one-fourth the period of the full revival time and different degrees of modulation among different fractional revival times, the revival structures of O 2 and CO 2 molecules showed one-eighth the periods of the full revival time and similar degrees of modulation among all fractional revival times. The revival structures could be interpreted in terms of the nature of the highest occupied molecular orbital and the total nuclear spin.

  7. Solar pumped continuous wave carbon dioxide laser

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  8. Twisting Anderson pseudospins with light: Quench dynamics in THz-pumped BCS superconductors

    OpenAIRE

    Chou, Yang-Zhi; Liao, Yunxiang; Foster, Matthew S.

    2016-01-01

    We study the preparation (pump) and the detection (probe) of far-from-equilibrium BCS superconductor dynamics in THz pump-probe experiments. In a recent experiment [R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Phys. Rev. Lett. {\\bf 111}, 057002 (2013)], an intense monocycle THz pulse with center frequency $\\omega \\simeq \\Delta$ was injected into a superconductor with BCS gap $\\Delta$; the subsequent post-pump evolution was detected via the optical conduc...

  9. A two-parameter nondiffusive heat conduction model for data analysis in pump-probe experiments

    Science.gov (United States)

    Ma, Yanbao

    2014-12-01

    Nondiffusive heat transfer has attracted intensive research interests in last 50 years because of its importance in fundamental physics and engineering applications. It has unique features that cannot be described by the Fourier law. However, current studies of nondiffusive heat transfer still focus on studying the effective thermal conductivity within the framework of the Fourier law due to a lack of a well-accepted replacement. Here, we show that nondiffusive heat conduction can be characterized by two inherent material properties: a diffusive thermal conductivity and a ballistic transport length. We also present a two-parameter heat conduction model and demonstrate its validity in different pump-probe experiments. This model not only offers new insights of nondiffusive heat conduction but also opens up new avenues for the studies of nondiffusive heat transfer outside the framework of the Fourier law.

  10. A dearth of OH/IR stars in the Small Magellanic Cloud

    Science.gov (United States)

    Goldman, Steven R.; van Loon, Jacco Th.; Gómez, José F.; Green, James A.; Zijlstra, Albert A.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Groenewegen, Martin A. T.; Oliveira, Joana M.

    2018-01-01

    We present the results of targeted observations and a survey of 1612-, 1665- and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array (ATCA) radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3-4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with Large Magellanic Cloud (LMC) and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05 per cent, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity.

  11. Probing single magnon excitations in Sr₂IrO₄ using O K-edge resonant inelastic x-ray scattering.

    Science.gov (United States)

    Liu, X; Dean, M P M; Liu, J; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Yin, W G; Rayan Serrao, C; Ramesh, R; Ding, H; Hill, J P

    2015-05-27

    Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr2IrO4, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor.

  12. Effect of UV laser irradiation on tissue

    International Nuclear Information System (INIS)

    Nakayama, Takeyoshi; Kubo, Uichi

    1992-01-01

    Laser-tissue interactions have been investigated through Electron Probe Micro Analysis (EPMA), UV-visible optical absorption and Fourier Transform Infrared Spectroscopy (FTIR). Three excimer lasers, ArF, KrF and XeCl, were used to irradiate tissue; cow thighbone and gelatin thin film. Features of UV laser irradiation are described. (author)

  13. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  14. Two-Copy Wavelength Conversion of an 80 Gbit/s Serial Data Signal Using Cross-Phase Modulation in a Silicon Nanowire and Detailed Pump-Probe Characterisation

    DEFF Research Database (Denmark)

    Ji, Hua; Cleary, C. S.; Dailey, J. M.

    2012-01-01

    We experimentally demonstrate 80 Gbit/s wavelength conversion to two copies by simultaneously extracting the blue- and red-shifted sidebands from XPM in a silicon nanowire. Bit error rates of 10-9 with only ~2 dB power penalty is achieved for both sidebands. Detailed pump-probe characterisation r...

  15. Pump depletion effects in thermal degenerate four-wave mixing

    International Nuclear Information System (INIS)

    Guha, S.; Chen, W.

    1987-01-01

    Characteristics such as a large magnitude of nonlinearity, fast response, broadband operation, and easy availability make absorbing liquids attractive candidates for performing phase conjugation of optical beams by degenerate four-wave mixing. The coupled-wave equations describing the interaction of four optical fields in an absorbing medium have been solved previously for the case of no pump depletion and no self-action of any of the beams. When studying phase conjugation oscillation, however, the effect of depletion of the pump beams on the phase conjugate reflectivity must be considered. Moreover, in absorbing media the self-action effects are always present. The coupled-wave equations, including the self-action terms for all four waves involved, are derived here for the first time to the authors' knowledge. For the case of small absorption, these equations are solved analytically, and the effect of pump depletion on phase conjugate reflectivity R is determined. In the absence of the pump depletion, R is proportional to tan 2 (Ql), where Ql is a dimensionless gain parameter characterizing the nonlinear medium and the input pump power. When pump depletion and self-action are included, R does not go to infinity when Ql equals odd multiples of π2. Instead R takes on values dependent on the probe ratio q 1 , which is the ratio of the input probe irradiance to the input pump irradiance. The authors find that the maximum value for R is 1q 1 . They also find that for Ql close to odd multiples of π2, the reflectivity is significantly reduced from the value obtained by ignoring pump depletion, even for probe ratios as small as one-tenth of 1%. Experimental confirmation of this theory, using an argon-ion laser as the pump and carbon tetrachloride mixed with a dye as the absorbing medium, is in progress and is reported

  16. Enhancement of Na/K pump activity by chronic intermittent hypobaric hypoxia protected against reperfusion injury.

    Science.gov (United States)

    Guo, Hui-Cai; Guo, Fang; Zhang, Li-Nan; Zhang, Rong; Chen, Qing; Li, Jun-Xia; Yin, Jian; Wang, Yong-Li

    2011-06-01

    Chronic intermittent hypobaric hypoxia (CIHH) has been shown to attenuate intracellular Na(+) accumulation and Ca(2+) overload during ischemia and reperfusion (I/R), both of which are closely related to the outcome of myocardial damage. Na/K pump plays an essential role in maintaining the equilibrium of intracellular Na(+) and Ca(2+) during I/R. It has been shown that enhancement of Na/K pump activity by ischemic preconditioning may be involved in the cardiac protection. Therefore, we tested whether Na/K pump was involved in the cardioprotection by CIHH. We found that Na/K pump current in cardiac myocytes of guinea pigs exposed to CIHH increased 1.45-fold. The K(1) and f(1), which reflect the portion of α(1)-isoform of Na/K pump, dramatically decreased or increased, respectively, in CIHH myocytes. Western blot analysis revealed that CIHH increased the protein expression of the α(1)-isoform by 76%, whereas the protein expression of the α(2)-isoform was not changed significantly. Na/K pump current was significantly suppressed in simulated I/R, and CIHH preserved the Na/K pump current. CIHH significantly improved the recovery of cell length and contraction during reperfusion. Furthermore, inhibition of Na/K pump by ouabain attenuated the protective effect afforded by CIHH. Collectively, these data suggest that the increase of Na/K pump activity following CIHH is due to the upregulating α(1)-isoform of Na/K pump, which may be one of the mechanisms of CIHH against I/R-induced injury.

  17. Rapid fabrication of TiO2@carboxymethyl cellulose coatings capable of shielding UV, antifog and delaying support aging.

    Science.gov (United States)

    Li, Xiaozhou; Lv, Junping; Li, Dehuai; Wang, Lin

    2017-08-01

    Agricultural plastic films capable of shielding UV, filtering visible light and antifog are important to prolong their life and protect safeties of agriculturists and crops. In this work, high stable and small size TiO 2 @polymer nanoparticles (NPs) were prepared by an efficient one-pot microwave synthesis using titanic sulfate as Ti resource, carboxymethyl cellulose sodium (CMC) as complexing agent and stabilizer. The TiO 2 @CMC NPs obtained were then utilized to fabricate poly(ethylene imine) (PEI)/TiO 2 @CMC coatings on the surface of polypropylene films by a layer-by-layer assembly technique. The TiO 2 @CMC NPs show rapid deposition rate because small, spherical and anion-rich TiO 2 @CMC NPs possess large specific surface area and fast diffusion rate. More importantly, property experiments confirm that (PEI/TiO 2 @CMC)*15 coatings can not only effectively shield UV rays, filter visible light and prevent fogging but also delay the aging of their supports. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Rapid bioelectric reaction of elodea leaf cells to the UV radiation

    International Nuclear Information System (INIS)

    Aliev, D.A.; Mamedov, T.G.; Akhmedov, I.S.; Khalilov, R.I.

    1984-01-01

    It has been established that changes of membrane potential (MP) of elodea leaf cells in the UV radiation are manifested in a form of rapid response reaction, which is similar to an action potential. At present a lot of new data confirming the existence of electrogenic proton pump on plasmalemma plant cells is making their appearance. The plant cell membrane potential consists of two components: equilibrium( passive) potential and potential created by an electrogenic proton pump. A contribution of the second component to the elodea leaf cell MP is considerable and constitutes more than a half of the total MP. Constant values of membrane conductivity and intracell electric bonds in the process of depolarization development and after MP recovery testify to the fact, that UV radiation does not effect upon the MP passive component. High degree of depolarization and its strong dependence on medium pH and also the observed effect independence on potassium and sodium ions presence in the external medium testify to the fact that UV radiation ingenuously inactivates electrogenic proton pumps

  19. /UV Synergistic Aging of Polyester Polyurethane Film Modified by Composite UV Absorber

    Directory of Open Access Journals (Sweden)

    Yanzhi Wang

    2013-01-01

    Full Text Available The pure polyester polyurethane (TPU film and the modified TPU (M-TPU film containing 2.0 wt.% inorganic UV absorbers mixture (nano-ZnO/CeO2 with weight ratio of 3 : 2 and 0.5 wt.% organic UV absorbers mixture (UV-531/UV-327 with weight ratio of 1 : 1 were prepared by spin-coating technique. The accelerated aging tests of the films exposed to constant UV radiation of 400 ± 20 µW/cm2 (313 nm with an ozone atmosphere of 100 ± 2 ppm were carried out by using a self-designed aging equipment at ambient temperature and relative humidity of 20%. The aging resistance properties of the films were evaluated by UV-Vis spectra, Fourier transform infrared spectra (FT-IR, photooxidation index, and carbonyl index analysis. The results show that the composite UV absorber has better protection for TPU system, which reduces distinctly the degradation of TPU film. O3/UV aging of the films increases with incremental exposure time. PI and CI of TPU and M-TPU films increase with increasing exposure time, respectively. PI and CI of M-TPU films are much lower than that of TPU film after the same time of exposure, respectively. Distinct synergistic aging effect exists between ozone aging and UV aging when PI and CI are used as evaluation index, respectively. Of course, the formula of these additives needs further improvement for industrial application.

  20. CLASP: A UV Spectropolarimeter on a Sounding Rocket for Probing theChromosphere-Corona Transition Regio

    Science.gov (United States)

    Ishikawa, Ryohko; Kano, Ryouhei; Winebarger, Amy; Auchere, Frederic; Trujillo Bueno, Javier; Bando, Takamasa; Narukage, Noriyuki; Kobayashi, Ken; Katsukawa, Yukio; Kubo, Masahito; Ishikawa, Shin-nosuke; Giono, Gabriel; Tsuneta, Saku; Hara, Hirohisa; Suematsu, Yoshinori; Shimizu, Toshifumi; Sakao, Taro; Ichimoto, Kiyoshi; Cirtain, Jonathan; De Pontieu, Bart; Casini, Roberto; Manso Sainz, Rafael; Asensio Ramos, Andres; Stepan, Jiri; Belluzzi, Luca

    2015-08-01

    The wish to understand the energetic phenomena of the outer solar atmosphere makes it increasingly important to achieve quantitative information on the magnetic field in the chromosphere-corona transition region. To this end, we need to measure and model the linear polarization produced by scattering processes and the Hanle effect in strong UV resonance lines, such as the hydrogen Lyman-alpha line. A team consisting of Japan, USA, Spain, France, and Norway has been developing a sounding rocket experiment called the Chromospheric Lyman-alpha Spectro-Polarimeter (CLASP). The aim is to detect the scattering polarization produced by anisotropic radiation pumping in the hydrogen Lyman-alpha line (121.6 nm), and via the Hanle effect to try to constrain the magnetic field vector in the upper chromosphere and transition region. In this talk, we will present an overview of our CLASP mission, its scientific objectives, ground tests made, and the latest information on the launch planned for the Summer of 2015.

  1. A Direct Comparison of Azide and Nitrile Vibrational Probes

    Science.gov (United States)

    Gai, Xin Sonia; Coutifaris, Basil A.; Brewer, Scott H.; Fenlon, Edward E.

    2011-01-01

    The synthesis of 2′-azido-5-cyano-2′-deoxyuridine, N3CNdU (1), from trityl-protected 2′-amino-2′-deoxyuridine was accomplished in four steps with a 12.5% overall yield. The IR absorption positions and profiles of the azide and nitrile group of N3CNdU were investigated in 14 different solvents and water/DMSO solvent mixtures. The azide probe was superior to the nitrile probe in terms of its extinction coefficient, which is 2–4 times larger. However, the nitrile IR absorbance profile is generally less complicated by accidental Fermi resonance. The IR frequencies of both probes undergo a substantial red shift upon going from water to aprotic solvents such as THF or DMSO. DFT calculations supported the hypothesis that the molecular origin of the higher observed frequency in water is primarily due to hydrogen bonds between the probes and water molecules. PMID:21336362

  2. Early and delayed pinhole MIBI SPECT in detecting hyperfunctioning parathyroid glands: a comparison with peroperative γ probe.

    Science.gov (United States)

    Gültekin, Salih Sinan; Kir, Metin; Tuğ, Tuğbay; Demirer, Seher; Genç, Yasemin

    2011-10-01

    This study was conducted to evaluate the early and delayed pinhole MIBI single photon emission computed tomography (pSPECT) images in detecting hyperfunctioning parathyroid glands, to make a comparison with peroperative γ probe (GP) findings. Planar, early, and delayed pSPECT scans and skin in-vivo and ex-vivo GP counts were obtained in 22 patients with hyperparathyroidism. All data were analyzed statistically on the basis of localization of the lesions, using the histopathological findings as the gold standard. Histopathological examinations revealed 18 of 44 adenomas, 18 of 44 hyperplasic glands, two of 44 lymph nodules, five of 44 thyroid nodules, and one of 44 normal parathyroid glands. Sensitivity and specificity were found to be 36 and 100% for planar, 69 and 75% for early pSPECT, 86 and 88% for delayed pSPECT scans, and similarly, 78 and 75% on skin, 92 and 75% in-vivo and 83 and 100% ex-vivo GP counts, respectively. For distinction ability of GP counts between three groups of lesions, there was a statistically significant difference among the three groups for ex-vivo GP counts but not between groups of adenomas and hyperplasic lesions for in-vivo GP counts. Early and delayed pSPECT scans play a complementary role on the planar scans. Delayed pSPECT scans and in-vivo GP counts are equally valuable to localize both single and multiple hyperfunctioning parathyroid glands. Ex-vivo GP counts seem to be better for making a distinction among types of lesions.

  3. Pump limiter studies in Tore Supra

    International Nuclear Information System (INIS)

    Chatelier, M.; Bonnel, P.; Bruneau, J.L.; Gil, C.; Grisolia, C.; Loarer, T.; Martin, G.; Pegourie, B.; Rodriguez, L.

    1991-01-01

    The aim of the Tore Supra pump limiter program is to study particle exhaust with a pump limiter system in long-pulse discharges with continuous pellet fueling and strong auxiliary heating. The pump limiter system consists of six vertical modules, located at the bottom of the machine, and one horizontal module at the outer midplane. The instrumentation of the limiter included pressure gauges, a residual gas analyser Langmuir probes, a spectrometer and water calorimeters. Initial results in low-density discharges, with the outboard limiter only, showed a modest effect on the plasma density, while large exhaust fluxes were measured in the pump limiter, without any external fueling

  4. Analytical studies on pump-induced optical resonances in an M-type six-level system

    International Nuclear Information System (INIS)

    Ghosh, Saswata; Mandal, Swapan

    2010-01-01

    In the domain of semiclassical formulation and for the Doppler-free atom-field interaction, we construct the optical Bloch equations involving an M-type six-level system coupled to two pump fields and a probe field. The response of the system is probed for different pump-induced transitions in double and triple-resonance situations. In order to obtain the coherent lineshapes (absorptive and dispersive), we use the usual perturbation method for obtaining the approximate analytical solutions to these coupled optical Bloch equations for the density matrix elements. The interferences between the probability amplitudes for different energy levels (dipole allowed and dipole forbidden) are taken care of. For off-resonance pump positions, the linewidths of the three probe transitions are insensitive to the pump Rabi frequencies. On the other hand, the shifts of the three resonance peaks are extremely sensitive to the pump Rabi frequencies. However, for on-resonance pump conditions, the sensitivities of pump Rabi frequencies on the linewidths of the resonance peaks and on the shifts of the resonance peak positions are opposite to those of their off-resonance counterparts. In particular, we have shown the asymmetric and symmetric Rabi splittings under different physical conditions, for non-zero and near-zero probe detuning, respectively. The Rabi splitting under triple-resonance conditions, significantly, modifies the dispersive lineshape at the centre of the absorption line. The two- and three-photon absorptions are also reported for different off-resonant pump positions.

  5. XFEL resonant photo-pumping of dense plasmas and dynamic evolution of autoionizing core hole states

    Science.gov (United States)

    Rosmej, F. B.; Moinard, A.; Renner, O.; Galtier, E.; Lee, J. J.; Nagler, B.; Heimann, P. A.; Schlotter, W.; Turner, J. J.; Lee, R. W.; Makita, M.; Riley, D.; Seely, J.

    2016-03-01

    Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment”, approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

  6. Resonance Enhanced Multi-Photon Ionization and Uv-Uv Hole-Burning Spectroscopic Studies of Jet-Cooled Acetanilide Derivatives

    Science.gov (United States)

    Moon, Ceol Joo; Min, Ahreum; Ahn, Ahreum; Lee, Seung Jun; Choi, Myong Yong; Kim, Seong Keun

    2013-06-01

    Conformational investigations and photochemistry of jet-cooled methacetine (MA) and phenacetine (PA) using one color resonant two-photon ionization (REMPI), UV-UV hole-burning and IR-dip spectroscopy are presented. MA and PA are derivatives of acetanilide, substituted by methoxyl, ethoxyl group in the para position of acetanilide, respectively. Moreover, we have investigated conformational information of the acetanilide derivatives (AAP, MA and PA)-water. In this work, we will present and discuss the solvent effects of the hydroxyl group of acetanilide derivatives in the excited state.

  7. FELI linac for IR- and UV-FEL facilities

    International Nuclear Information System (INIS)

    Tomimasu, T.; Morii, Y.; Abe, S.

    1995-01-01

    FELI linac and IR-FEL facilities are now under construction and electron beams of 30-75MeV will be used for FIR- and IR-FEL experiments in this summer. It is composed of a 5-MeV electron injector and seven ETL type accelerating waveguides with a length of 2.93m (2π/3 mode, linearly tapered type). The injector consists of a 150-kV DC thermoionic triode gun operated by a 178.5-MHz and 500-ps pulser, a 714-MHz prebuncher (SHB), and a 2856-MHz standing wave type buncher (SWB). The linac is operated in three modes of 24μs, 12.5μs and 0.5μs. With a choice of three modes, the maximum beam loaded energy can be changed from 165 MeV to 288 MeV. The linac beam is sent to four vertical type undulators using S-type BT systems installed at 30-MeV, 75-MeV, 120-MeV, and 165-MeV sections at a 24-μs pulse beam load. The beam, once used for lasing at 30-MeV section or at 75-MeV section, can be bent back to the following accelerating waveguide and is reaccelerated and reused for lasing. Parameters of four undulators and intended FEL applications are shown. FEL spectral widths and wavelength limitations are also reviewed and discussed for 0.3μm FEL oscillations FELI is aiming at by the end of 1996. (author)

  8. Degenerate four-wave mixing with the phase diffusion field

    International Nuclear Information System (INIS)

    Anderson, M.H.; Chen, CE.; Elliott, D.S.; Cooper, J.; Smith, S.J.

    1993-01-01

    We report measurements of the effect of laser fluctuations on a strong-field degenerate four-wave mixing interaction, carried out in a nearly Doppler-free, two-level system using a single laser with statistically well-defined phase fluctuations. The counterpropagating pump beams and the probe beam, each split from this phase-noise-modulated source, were fully correlated. The nonlinear medium was an optically-pumped diffuse beam of atomic sodium. By time-delaying the probe with respect to the pump beams, the composite field becomes non-Markovian. Four-wave mixing results in the generation of a phase-conjugate beam anti-parallel to the probe beam. With the laser field spectrum nearly Lorentzian in shape, and with a field linewidth greater (and, for comparison, much narrower) than the natural linewidth of the sodium, we measured the intensity of the phase-conjugate beam as the pump and probe beams were tuned through the D2 resonance, as a function of intensity of die pump beam (up to intensities several times the saturation intensity), and for varying delay between the pump and probe fields. This experiment provides a cleaner measurement of this interaction than any previously available

  9. The rotation of NO3− as a probe of molecular ion - water interactions

    Directory of Open Access Journals (Sweden)

    Ogden T.

    2013-03-01

    Full Text Available The hydration dynamics of aqueous nitrate, NO3−(aq, is studied by 2D-IR spectroscopy, UV-IR- and UV-UV transient absorption spectroscopy. The experimental results are compared to Car-Parinello molecular dynamics (MD simulations. The 2D-IR measurements and MD simulations of the non-degenerate asymmetric stretch vibrations of nitrate reveal an intermodal energy exchange occurring on a 0.2 ps time scale related to hydrogen bond fluctuations. The transient absorption measurements find that the nitrate ions rotate in 2 ps. The MD simulations indicate that the ion rotation is associated with the formation of new hydrogen bonds. The 2 ps rotation time thus indicates that the hydration shell of aqueous nitrate is rather labile.

  10. Icy Saturnian satellites: Disk-integrated UV-IR characteristics and links to exogenic processes

    Science.gov (United States)

    Hendrix, Amanda R.; Filacchione, Gianrico; Paranicas, Chris; Schenk, Paul; Scipioni, Francesca

    2018-01-01

    Combined Cassini observations obtained at similar observing geometries in the ultraviolet through infrared spectral range, along with additional ultraviolet (UV) data from Hubble Space Telescope where available, are used to study system-wide trends in spectral albedos of the inner icy Saturnian satellites (Mimas, Enceladus, Tethys, Dione, Rhea). We derive UV and visible geometric albedos and UV absorption strengths of the leading and trailing hemispheres and compare with E ring grain flux and charged particle intensities (electrons and ions of varying energies) to those hemispheres. We find that the UV absorption strength on the leading and trailing hemispheres is anti-correlated with E ring grain flux. On the trailing hemispheres, the UV absorption strength is correlated with intensity of electrons in the tens of keV range. We suggest that these relationships could imply links with the organic component of the E ring. Radiolytic processing of organics causes the products to become spectrally redder, increasing the UV absorption strength. Such processing occurs while organic-rich grains are in the E ring, and increases with exposure time in the E ring, such that grains interacting with Rhea are redder (more processed) than those impacting moons closer to Enceladus. Further processing (and associated darkening/reddening) occurs on the trailing hemispheres of the satellites, via radiolysis by electrons in the tens of keV range. Silicates and salts also redden with weathering; however because organics are present in the E ring in significantly greater abundance than salts or silicates, we suggest here that weathering of organics dominates the coloring of the inner Saturnian moons.

  11. Progress in deep-UV photoresists

    Indian Academy of Sciences (India)

    Unknown

    This paper reviews the recent development and challenges of deep-UV photoresists and their ... small amount of acid, when exposed to light by photo- chemical ... anomalous insoluble skin and linewidth shift when the. PEB was delayed.

  12. The UV Survey Mission Concept, CETUS

    Science.gov (United States)

    Heap, Sara; and the CETUS Team

    2018-01-01

    In March 2017, NASA selected CETUS for study of a Probe-class mission concept. W. Danchi is the CETUS PI, and S. Heap is the Science PI. CETUS is primarily a UV survey telescope to complement survey telescopes of the 2020’s including E-ROSITA, Subaru Hyper Suprime Cam and Prime-Focus Spectrograph, WFIRST, and the Square Kilometer Array. CETUS comprises a 1.5-m wide-field telescope and three science instruments: a wide-field (1045” on a side) far-UV and near-UV camera; a similarly wide-field near-UV multi-object spectrograph utilizing a next-generation micro-shutter array; and a single-object spectrograph with options of spectral region (far-UV or near-UV) and spectral resolving power (2,000 or 40,000). The survey instruments will operate simultaneously thereby producing wide-field images in the near-UV and far-UV and a spectrogram containing near-UV spectra of up to 100 sources free of spectral overlap and astronomical background. ln concert with other survey telescopes, CETUS will focus on understanding galaxy evolution at cosmic noon (z~1-2).

  13. Mid IR-fiber spectroscopy in the 2-17μm range

    Science.gov (United States)

    Artyushenko, Viatcheslav G.; Bocharnikov, A.; Colquhoun, Gary; Leach, Clive A.; Lobachov, Vladimir; Pirogova, Lyudmila; Sakharova, Tatjana; Savitskij, Dmitrij; Ezhevskaya, Tatjana; Bublikov, Alexandr

    2007-10-01

    The latest development in IR-fibre optics enables us to expand the spectral range of process spectroscopy from 2μm out to 17μm (5000 to 600cm-1) i.e. into the most informative "finger-print" part of the spectrum. Mid-IR wavelength ranges from 2 to 6-10μm may be covered by Chalcogenide IR-glass CIR-fibres while Polycrystalline PIR-fibres made of Silver Halides solid solutions transmit 4-17 μm wavelength radiation. PIR-fibre immersion ATR probes and Transmission/Reflection probes had been manufactured and successfully tested with different FTIR spectrometers in the field of remote spectroscopy for forensic substances identification, chemical reaction control, and monitoring of exhaust or exhalation gases. Using these techniques no sample preparation is necessary for fibre probes to measure evanescent, reflection and transmission spectra, in situ and in real time. QCL spectrometer may be used as a portable device for multispectral gas analysis at 1ppb level of detectivity for various applications in environmental pollution monitoring.

  14. Pump laser-induced space-charge effects in HHG-driven time- and angle-resolved photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oloff, L.-P., E-mail: oloff@physik.uni-kiel.de; Hanff, K.; Stange, A.; Rohde, G.; Diekmann, F.; Bauer, M.; Rossnagel, K., E-mail: rossnagel@physik.uni-kiel.de [Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel (Germany)

    2016-06-14

    With the advent of ultrashort-pulsed extreme ultraviolet sources, such as free-electron lasers or high-harmonic-generation (HHG) sources, a new research field for photoelectron spectroscopy has opened up in terms of femtosecond time-resolved pump-probe experiments. The impact of the high peak brilliance of these novel sources on photoemission spectra, so-called vacuum space-charge effects caused by the Coulomb interaction among the photoemitted probe electrons, has been studied extensively. However, possible distortions of the energy and momentum distributions of the probe photoelectrons caused by the low photon energy pump pulse due to the nonlinear emission of electrons have not been studied in detail yet. Here, we systematically investigate these pump laser-induced space-charge effects in a HHG-based experiment for the test case of highly oriented pyrolytic graphite. Specifically, we determine how the key parameters of the pump pulse—the excitation density, wavelength, spot size, and emitted electron energy distribution—affect the measured time-dependent energy and momentum distributions of the probe photoelectrons. The results are well reproduced by a simple mean-field model, which could open a path for the correction of pump laser-induced space-charge effects and thus toward probing ultrafast electron dynamics in strongly excited materials.

  15. Forensic Drug Identification, Confirmation, and Quantification Using Fully Integrated Gas Chromatography with Fourier Transform Infrared and Mass Spectrometric Detection (GC-FT-IR-MS).

    Science.gov (United States)

    Lanzarotta, Adam; Lorenz, Lisa; Voelker, Sarah; Falconer, Travis M; Batson, JaCinta S

    2018-05-01

    This manuscript is a continuation of a recent study that described the use of fully integrated gas chromatography with direct deposition Fourier transform infrared detection and mass spectrometric detection (GC-FT-IR-MS) to identify and confirm the presence of sibutramine and AB-FUBINACA. The purpose of the current study was to employ the GC-FT-IR portion of the same instrument to quantify these compounds, thereby demonstrating the ability to identify, confirm, and quantify drug substances using a single GC-FT-IR-MS unit. The performance of the instrument was evaluated by comparing quantitative analytical figures of merit to those measured using an established, widely employed method for quantifying drug substances, high performance liquid chromatography with ultraviolet detection (HPLC-UV). The results demonstrated that GC-FT-IR was outperformed by HPLC-UV with regard to sensitivity, precision, and linear dynamic range (LDR). However, sibutramine and AB-FUBINACA concentrations measured using GC-FT-IR were not significantly different at the 95% confidence interval compared to those measured using HPLC-UV, which demonstrates promise for using GC-FT-IR as a semi-quantitative tool at the very least. The most significant advantage of GC-FT-IR compared to HPLC-UV is selectivity; a higher level of confidence regarding the identity of the analyte being quantified is achieved using GC-FT-IR. Additional advantages of using a single GC-FT-IR-MS instrument for identification, confirmation, and quantification are efficiency, increased sample throughput, decreased consumption of laboratory resources (solvents, chemicals, consumables, etc.), and thus cost.

  16. Emission characteristics of electrically- and optically-pumped single ZnO micro-spherical crystal

    Science.gov (United States)

    Nakamura, D.; Shimogaki, T.; Tetsuyama, N.; Fusazaki, K.; Mizokami, Y.; Higashihata, M.; Ikenoue, H.; Okada, T.

    2014-03-01

    Zinc oxide (ZnO) nano/microstructures have been attractive as the building blocks for the efficient opto-electronic devices in the ultraviolet (UV) region. We have succeeded in growing the ZnO micro/nanosphere by a simple laser ablation in the air, and therefore we have obtained UV lasing from the sphere under optical pumping. Recently, large size of several 10 micrometer ZnO microspheres were grown using Nd:YAG laser without Q-switching, and ZnO microsphere/p-GaN heterojunction were fabricated to obtain the electroluminescence (EL) from the microsphere by electrical pumping. Room-temperature EL in near-UV region with peak wavelength of 400 nm is observed under forward bias.

  17. Determination of hot carrier energy distributions from inversion of ultrafast pump-probe reflectivity measurements.

    Science.gov (United States)

    Heilpern, Tal; Manjare, Manoj; Govorov, Alexander O; Wiederrecht, Gary P; Gray, Stephen K; Harutyunyan, Hayk

    2018-05-10

    Developing a fundamental understanding of ultrafast non-thermal processes in metallic nanosystems will lead to applications in photodetection, photochemistry and photonic circuitry. Typically, non-thermal and thermal carrier populations in plasmonic systems are inferred either by making assumptions about the functional form of the initial energy distribution or using indirect sensors like localized plasmon frequency shifts. Here we directly determine non-thermal and thermal distributions and dynamics in thin films by applying a double inversion procedure to optical pump-probe data that relates the reflectivity changes around Fermi energy to the changes in the dielectric function and in the single-electron energy band occupancies. When applied to normal incidence measurements our method uncovers the ultrafast excitation of a non-Fermi-Dirac distribution and its subsequent thermalization dynamics. Furthermore, when applied to the Kretschmann configuration, we show that the excitation of propagating plasmons leads to a broader energy distribution of electrons due to the enhanced Landau damping.

  18. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy.

    Science.gov (United States)

    Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; van Der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk

    2004-09-01

    Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.

  19. Diode-pumped laser amplifiers: application to 0.946 {mu}m Nd:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Norman P [NASA Langley Research Center, Hampton, VA 23681 (United States); Axenson, Theresa J [Science and Technology Corporation, 10 Basil Sawyer Drive, Hampton, VA 23666 (United States); Jr, Donald J Reichle [NASA Langley Research Center, Hampton, VA 23681 (United States); Walsh, Brian M [NASA Langley Research Center, Hampton, VA 23681 (United States)

    2003-03-14

    A diode-pumped laser amplifier model is derived from first principles and applied to a Nd:YAG amplifier operating on the {sup 4}F{sub 3/2} to {sup 4}I{sub 9/2} transition at 0.946 {mu}m. The effects of amplified spontaneous emission are included in the model and the addition of this effect is shown to produce better agreement with the data. The amplifier model includes effects of the transverse and longitudinal variation of the pump beam, transverse and longitudinal variation of the probe beam, and multiple passes of the probe beam. Experimental results obtained with a quasi four-level Nd:YAG amplifier operating at 0.946 {mu}m are used to validate the model. The amplifier was evaluated as a function of the pump energy, the probe energy, the probe beam radius, the pulse repetition frequency and the temperature. For all of the experimental conditions, the experimental results and the model agree.

  20. CO{sub 2} geothermal heat probe - Phase 2; CO{sub 2}-Erdwaermesonde - Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Grueniger, A.; Wellig, B.

    2009-12-15

    In this project the fluid dynamics and thermodynamics inside a CO{sub 2} geothermal heat probe have been investigated. The functionality of such a probe, which works like a thermosyphon, was analyzed by means of a simulation model in MATLAB. The model couples the behaviour inside the heat probe with the heat conduction in the earth. A parameter study revealed that the self-circulation character of such a probe leads to flattening of the vertical earth temperature profile near the probe and, hence, leads to more uniform heat removal along the probe. The circulation of CO{sub 2} even goes on when the heat pump is off. This might be advantageous for the regeneration phase. The heat transfer resistance of the evaporating CO{sub 2} film flowing down the probe wall is very small compared to the conduction resistance of the earth. Therefore, no difference has been found between the performances of a conventional heat pipe and a configuration where the liquid phase injection is distributed on different height stages along the probe. It is estimated that the seasonal performance factor of heat pumps can be improved by 15-25% with a CO{sub 2} geothermal heat probe. The main advantage is that the heat transfer to the evaporator of the heat pump (condensation of CO{sub 2} / evaporation of refrigerant) is much more efficient than in a conventional brine probe without phase change. Furthermore, no circulation pump is needed. (authors)

  1. Response of oxidative stress defense systems in rice (Oryza sativa) leaves with supplemental UV-B radiation

    International Nuclear Information System (INIS)

    Dai, Q.; Yan, B.; Huang, S.; Liu, X.; Peng, S.; Miranda, M.L.L.; Chavez, A.Q.; Vergara, B.S.; Olszyk, D.M.

    1997-01-01

    The impact of elevated ultraviolet-B radiation (UV-B, 280–320 nm) on membrane systems and lipid peroxidation, and possible involvement of active oxygen radicals was investigated in leaves of two UV-B susceptible rice cultivars (Oryza sativa L. cvs IR74 and Dular). Rice seedlings were grown in a greenhouse for 10 days and then treated with biologically effective UV-B (UV-B BE ) radiation for 28 days. Oxidative stress effects were evaluated by measuring superoxide anion (O 2 ) generation rate, hydrogen peroxide (H 2 O 2 ) content, malondialdehyde (MDA) concentration and relative electrolyte conductivity (EC) for IR74 and Dular at 0 (control), 6 or 13 kJ m −2 day −1 UV-B BE . Significant increases in these parameters were found in rice plants grown at 13 vs 0 kJ m −2 day −1 UV-B BE after 28 days; indicating that disruption of membrane systems may be an eventual reason for UV-B-induced injury in rice plants. There was a positive correlation between O 2 − generation and increases in EC or MDA in leaves. Activities of enzymatic and nonenzymatic free radical scavengers were measured for IR74 after 7, 14, 21 and 28 days of exposure to 13 or 0 UV-B BE to evaluate dynamics of these responses over time. Activities of catalase and superoxide dismutase (but not ascorbate peroxidase) and concentrations of ascorbic acid and glutathione were enhanced by 13 vs 0 UV-B BE after 14 days of UV-B exposure. Further exposure to 28 days of UV-B was associated with a decline in enzyme activities and ascorbic acid, but not glutathione. It is suggested that UV-B-induced injury may be associated with disturbance of active oxygen metabolism through the destruction and alteration of both enzymatic and nonenzymatic defense systems in rice. (author)

  2. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and Fourier-transform sum-frequency vibrational spectroscopy

    International Nuclear Information System (INIS)

    McGuire, John Andrew

    2004-01-01

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of ∼ 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm -1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach

  3. Femtosecond nonlinear spectroscopy at surfaces: Second-harmonic probing of hole burning at the Si(111)7x7 surface and fourier-transform sum-frequency vibrational spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, John Andrew [Univ. of California, Berkeley, CA (United States)

    2004-11-24

    The high temporal resolution and broad bandwidth of a femtosecond laser system are exploited in a pair of nonlinear optical studies of surfaces. The dephasing dynamics of resonances associated with the adatom dangling bonds of the Si(111)7 x 7 surface are explored by transient second-harmonic hole burning, a process that can be described as a fourth-order nonlinear optical process. Spectral holes produced by a 100 fs pump pulse at about 800 nm are probed by the second harmonic signal of a 100 fs pulse tunable around 800 nm. The measured spectral holes yield homogeneous dephasing times of a few tens of femtoseconds. Fits with a Lorentzian spectral hole centered at zero probe detuning show a linear dependence of the hole width on pump fluence, which suggests that charge carrier-carrier scattering dominates the dephasing dynamics at the measured excitation densities. Extrapolation of the deduced homogeneous dephasing times to zero excitation density yields an intrinsic dephasing time of {approx} 70 fs. The presence of a secondary spectral hole indicates that scattering of the surface electrons with surface optical phonons at 570 cm-1 occurs within the first 200 fs after excitation. The broad bandwidth of femtosecond IR pulses is used to perform IR-visible sum frequency vibrational spectroscopy. By implementing a Fourier-transform technique, we demonstrate the ability to obtain sub-laser-bandwidth spectral resolution. FT-SFG yields a greater signal when implemented with a stretched visible pulse than with a femtosecond visible pulse. However, when compared with multichannel spectroscopy using a femtosecond IR pulse but a narrowband visible pulse, Fourier-transform SFG is found to have an inferior signal-to-noise ratio. A mathematical analysis of the signal-to-noise ratio illustrates the constraints on the Fourier-transform approach.

  4. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  5. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  6. Nanoimprinted organic semiconductor laser pumped by a light-emitting diode.

    Science.gov (United States)

    Tsiminis, Georgios; Wang, Yue; Kanibolotsky, Alexander L; Inigo, Anto R; Skabara, Peter J; Samuel, Ifor D W; Turnbull, Graham A

    2013-05-28

    An organic semiconductor laser, simply fabricated by UV-nanoimprint lithography (UV-NIL), that is pumped with a pulsed InGaN LED is demonstrated. Molecular weight optimization of the polymer gain medium on a nanoimprinted polymer distributed feedback resonator enables the lowest reported UV-NIL laser threshold density of 770 W cm(-2) , establishing the potential for scalable organic laser fabrication compatible with mass-produced LEDs. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  8. The effect of solarradiation and UV photons on the CR-39 nuclear track detector

    International Nuclear Information System (INIS)

    Saad, A.F.

    2003-01-01

    The effects induced in the CR-39 polymer detector by total solar radiation (TSR) and UV photons were investigated. Thr exposure of detector samples to solar photons was carried out according to certain conditions. The TSR exposure period started in the middle of july and lasted unitel 12 th of september. 2000: the hottest months in zagazig, egypt. Another set of detector samples was exposed to UV photons from a UV lamp for different intervals. After UV exposure, these detectors were analysed with an FT-IR sepectrometer of jasco type 5300 in transmission mode. The FT-IR spectra does not show any considerable modifications due to UV irradiation in that detector. The effects of UV light were compared with those of solar radiation containing ultraviolet photons , on the registration properties of this polymer detector. Preliminaryresults revealed a proportionate increase in bluk etch rate of CR-39 detector with the increase of exposure time to the solar radiation. The results indicated that the CR-39 polymer detector can be used as a solar radiation dosimeter

  9. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica; Usman, Anwar; Gereige, Issam; Duren, Jeroen Van; Lyssenko, Vadim; Leo, Karl; Mohammed, Omar F.

    2015-01-01

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  10. Ultrafast pump-probe reflectance spectroscopy: Why sodium makes Cu(In,Ga)Se2 solar cells better

    KAUST Repository

    Eid, Jessica

    2015-04-14

    Although Cu(In,Ga)Se2 (CIGS) solar cells have the highest efficiency of any thin-film solar cell, especially when sodium is incorporated, the fundamental device properties of ultrafast carrier transport and recombination in such cells remain not fully understood. Here, we explore the dynamics of charge carriers in CIGS absorber layers with varying concentrations of Na by femtosecond (fs) broadband pump-probe reflectance spectroscopy with 120 fs time resolution. By analyzing the time-resolved transient spectra in a different time domain, we show that a small amount of Na integrated by NaF deposition on top of sputtered Cu(In,Ga) prior to selenization forms CIGS, which induces slower recombination of the excited carriers. Here, we provide direct evidence for the elongation of carrier lifetimes by incorporating Na into CIGS.

  11. New IR-UV gas sensor to energy and transport sector

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    In situ simultaneous measurements of gas temperature and gas composition are of great interest in combustion research and give useful information about conditions, chemical reactions and gas mixing in many industrial processes. An optically based technique is beneficial because it is non......-intrusive, accurate, fast and can be performed in situ for various extremely hard conditions. In humid and hot gas flows UV technique is more sensitive than FTIR one for fast gas concentration measurements of NO and SO2 and gives a great opportunity for simultaneous measurements of O2 concentration. Analysis...... of the fine structure of the UV absorption bands of, for example, NO, SO2 or O2 allows also to determine a value of the gas temperature. Absorption cross sections of CO2, H2O and SO2 measured using Risø DTU’s hot gas cell facility at elevated temperatures up to 1500°C are reported. Design of a new developed 9...

  12. A Quantized Analog Delay for an ir-UWB Quadrature Downconversion Autocorrelation Receiver

    NARCIS (Netherlands)

    Bagga, S.; Zhang, L.; Serdijn, W.A.; Long, J.R.; Busking, E.B.

    2005-01-01

    A quantized analog delay is designed as a requirement for the autocorrelation function in the quadrature downconversion autocorrelation receiver (QDAR). The quantized analog delay is comprised of a quantizer, multiple binary delay lines and an adder circuit. Being the foremost element, the quantizer

  13. Dynamics of Exciton Relaxation in LH2 Antenna Probed by Multipulse Nonlinear Spectroscopy

    NARCIS (Netherlands)

    Novoderezhkin, V.I.; Cohen Stuart, T.A.; van Grondelle, R.

    2011-01-01

    We explain the relaxation dynamics in the LH2-B850 antenna as revealed by multipulse pump - dump - probe spectroscopy (Th. A. Cohen StuartM. VengrisV. I. NovoderezhkinR. J. CogdellC. N. HunterR. van Grondelle, submitted). The theory of pump - dump - probe response is evaluated using the doorway -

  14. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Design Of Pump Monitoring Of Primary Cooling System

    International Nuclear Information System (INIS)

    Indrakoesoema, Koes; Sujarwono

    2000-01-01

    Monitoring of 3 primary cooling pumps done visually by operator on the spot. The operator must be check oil in a sight glass, oil leakage during pump operation and water leakage. If reaktor power increase about more than 3 MW, the radiation exposure also increase in the primary cell and that's way the operator can not check the pumps. To continuing monitor all pump without delay, one system has been added I.e Closed Circuit Television (CCTV). This system using 3 video camera to monitor 3 pumps and connected to one receiver video monitor by coaxial cable located in Main Control Room. The sequence monitoring can be done by sequential switcher

  16. Charged Lifshitz black hole and probed Lorentz-violation fermions from holography

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Cheng-Jian, E-mail: rocengeng@hotmail.com [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China); Kuang, Xiao-Mei, E-mail: xmeikuang@gmail.com [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Shu, Fu-Wen, E-mail: shufuwen@ncu.edu.cn [Department of Physics, Nanchang University, Nanchang, 330031 (China); Center for Relativistic Astrophysics and High Energy Physics, Nanchang University, Nanchang 330031 (China)

    2017-06-10

    We analytically obtain a new charged Lifshitz solution by adding a non-relativistic Maxwell field in Hořava–Lifshitz gravity. The black hole exhibits an anisotropic scaling between space and time (Lifshitz scaling) in the UV limit, while in the IR limit, the Lorentz invariance is approximately recovered. We introduce the probed Lorentz-violation fermions into the background and holographically investigate the spectral properties of the dual fermionic operator. The Lorentz-violation of the fermions will enhance the peak and correspond larger fermi momentum, which compensates the non-relativistic bulk effect of the dynamical exponent (z). For a fixed z, when the Lorentz-violation of fermions increases to a critical value, the behavior of the low energy excitation goes from a non-Fermi liquid type to a Fermi liquid type, which implies a kind of phase transition.

  17. Optical beam transport to a remote location for low jitter pump-probe experiments with a free electron laser

    Directory of Open Access Journals (Sweden)

    P. Cinquegrana

    2014-04-01

    Full Text Available In this paper we propose a scheme that allows a strong reduction of the timing jitter between the pulses of a free electron laser (FEL and external laser pulses delivered simultaneously at the FEL experimental stations for pump-probe–type experiments. The technique, applicable to all seeding-based FEL schemes, relies on the free-space optical transport of a portion of the seed laser pulse from its optical table to the experimental stations. The results presented here demonstrate that a carefully designed laser beam transport, incorporating also a transverse beam position stabilization, allows one to keep the timing fluctuations, added by as much as 150 m of free space propagation and a number of beam folding mirrors, to less than 4 femtoseconds rms. By its nature our scheme removes the major common timing jitter sources, so the overall jitter in pump-probe measurements done in this way will be below 10 fs (with a margin to be lowered to below 5 fs, much better than the best results reported previously in the literature amounting to 33 fs rms.

  18. Clinical safety of magnetic resonance imaging in patients with implanted SynchroMed EL infusion pumps

    International Nuclear Information System (INIS)

    Diehn, Felix E.; Wood, Christopher P.; Watson, Robert E.; Hunt, Christopher H.; Mauck, William D.; Burke, Michelle M.

    2011-01-01

    Patients with implanted SynchroMed spinal infusion pumps (Medtronic, Inc., Minneapolis, MN) routinely undergo magnetic resonance imaging at our institution. In August 2008, Medtronic issued an urgent medical device correction report regarding several pumps. Because of the rare potential ''for a delay in the return of proper drug infusion'' and ''for a delay in the logging of motor stall events,'' ''a patient's pump must be interrogated after MRI exposure in order to confirm proper pump functionality.'' This is particularly important in patients receiving intrathecal baclofen, for whom a delay in return of proper pump infusion could lead to life-threatening baclofen withdrawal syndrome. The objective of this report is to present our experience and protocol of performing magnetic resonance imaging in patients with implanted SynchroMed EL pumps. We retrospectively reviewed records of 86 patients with implanted SynchroMed EL spinal infusion pumps who underwent 112 examinations on 1.5-T magnetic resonance imaging scanners from September 1, 1998 to July 7, 2004. No SynchroMed EL pumps were damaged by magnetic resonance imaging, and the programmable settings remained unchanged in all patients. Our data suggest that SynchroMed EL pump malfunction is indeed rare after routine clinical 1.5-T magnetic resonance imaging examinations. However, based on the Medtronic correction report, we perform pump interrogation before and after imaging. (orig.)

  19. Electron cyclotron resonance hydrogen/helium plasma characterization and simulation of pumping in tokamaks

    International Nuclear Information System (INIS)

    Outten, C.A.

    1992-01-01

    Electron Cyclotron Resonance (ECR) plasmas have been employed to simulate the plasma conditions at the edge of a tokamak in order to investigate hydrogen/helium uptake in thin metal films. The process of microwave power absorption, important to characterizing the ECR plasma source, was investigated by measuring the electron density and temperature with a Langmuir probe and optical spectroscopy as a function of the magnetic field gradient and incident microwave power. A novel diagnostic, carbon resistance probe, provided a direct measure of the ion energy and fluence while measurements from a Langmuir probe were used for comparison. The Langmuir probe gave a plasma potential minus floating potential of 30 ± 5 eV, in good agreement with the carbon resistance probe result of ion energy ≤ 40 eV. The measured ion energy was consistent with the ion energy predicted from a model based upon divergent magnetic field extraction. Also, based upon physical sputtering of the carbon, the hydrogen fluence rate was determined to be 1 x 10 16 /cm 2 -sec for 50 Watts of incident microwave power. ECR hydrogen/helium plasmas were used to study preferential pumping of helium in candidate materials for tokamak pump-limiters: nickel, vanadium, aluminum, and nickel/aluminum multi-layers. Nickel and vanadium exhibited similar pumping capacities whereas aluminum showed a reduced capacity due to increased sputtering. A helium retention model based upon ion implantation ranges and sputtering rates agreed with the experimental data. A new multilayer/bilayer pumping concept showed improved pumping above that for single element films

  20. Crystal growth and characterization of Ir-Te compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhals, Philipp; Weber, Frank; Zocco, Diego; Adelmann, Peter; Merz, Michael; Wolf, Thomas; Kuntz, Sebastian; Grube, Kai [Karlsruhe Institute of Technology, Institute for Solid State Physics, Karlsruhe (Germany)

    2016-07-01

    IrTe{sub 2} is distinguished by a structural phase transition whose origin is not understood up to the present day. We grew crystals using the self-flux method starting from the reagents iridium and tellurium and got specimen with varying amounts of IrTe{sub 2} and Ir{sub 3}Te{sub 8}, analyzed by x-ray powder diffraction. We studied the transition near T = 280 K in magnetization measurements down to T = 1.8 K probing also for superconductivity, which was reported for intercalated samples. Results indicate that the structural transition happens over an extended range in temperature and superconductivity is absent in our samples. Ir{sub 3}Te{sub 8} is not studied to such an extent as IrTe{sub 2}. In previous publications a structural phase transition is reported. We characterized the transition by performing magnetization measurements and X-ray diffraction.

  1. White organic light-emitting diodes utilized by near UV-deep blue emitter and exciplex emission.

    Science.gov (United States)

    Park, Young Wook; Kim, Young Min; Choi, Jin Hwan; Park, Tae Hyun; Choi, Hyun Ju; Yu, Hong Jung; Cho, Min Ju; Choi, Dong Hoon; Kim, Sung Hyun; Ju, Byeong Kwon

    2011-02-01

    Numerous investigations have been made into the development of wide color gamut displays for deep-blue OLEDs, including the RGB sub pixels, and white OLEDs (WOLEDs). One of the well known deep-blue emissive dopants, tris(phenyl-methyl-benzimidazolyl)iridium(III) [Ir(pmb)3], successfully introduced its fascinating color coordinate of Commission Internationale de l'Eclairage (CIE) 1931 (0.17, 0.06), however there have been no reports utilizing its accomplishments as WOLEDs. In this report, using only one phosphorescent dopant, the near UV-deep blue emissive Ir(pmb)3, the WOLEDs having the CIE 1931 coordinate of (0.33, 0.38) at 100 cd/m2 with a color rendering index of 85 are demonstrated. The white emission of the fabricated OLEDs are oriented from the near UV-deep blue emission of Ir(pmb)3 and the successfully controlled exciplex emission, between the Ir(pmb)3-host, and the Ir(pmb)3-interfaced material.

  2. UV-SPR biosensor for biomolecular interaction studies

    Science.gov (United States)

    Geiss, F. A.; Fossati, S.; Khan, I.; Gisbert Quilis, N.; Knoll, W.; Dostalek, J.

    2017-05-01

    UV surface plasmon resonance (SPR) for direct in situ detection of protein binding events is reported. A crossed relief aluminum grating was employed for diffraction coupling to surface plasmons as an alternative to more commonly used attenuated total reflection method. Wavelength interrogation of SPR was carried out by using transmission measurements in order to probe odorant-binding protein 14 (OBP14) of the honey bee (Apis mellifera). The native oxide layer on the top of an aluminum grating sensor chip allows for covalent coupling of protein molecules by using regular silane-based linkers. The probing of bound OBP14 protein at UV with confined field of surface plasmons holds potential for further studies of interaction with recently developed artificial fluorescent odorants.

  3. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: Vigabatrin

    Science.gov (United States)

    Edwin, Bismi; Joe, I. Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the Csbnd C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system.

  4. Probing single magnon excitations in Sr2IrO4 using O K-edge resonant inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Liu, X; Ding, H; Dean, M P M; Yin, W G; Hill, J P; Liu, J; Ramesh, R; Chiuzbăian, S G; Jaouen, N; Nicolaou, A; Serrao, C Rayan

    2015-01-01

    Resonant inelastic x-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin–orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr 2 IrO 4 , where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolution in the hard x-ray region is usually poor. (fast track communication)

  5. Compact erbium lasers in the IR photorefractive keratectomy (PRK)

    Science.gov (United States)

    Liu, Baining; Eichler, Hans J.; Sperlich, O.; Holschbach, A.; Kayser, M.

    1996-09-01

    Erbium lasers deliver laser radiation near 3 micrometers and are a promising alternative to excimer laser photorefractive keratectomy (UV-PRK). In addition to easier handling due to all solid state technology, especially when operated in the fundamental mode, IR-PRK eliminates the potential of mutagenic side effects associated with UV-PRK. However, a successful IR-PRK for the clinic treatment in the near future demands both technological development of erbium lasers in different operation modes and clinical investigation of interaction between 3 micrometers radiation and human corneas. The excellent cooperation between university, company and hospital makes this possible. Uncoated thin plates made from infrared materials were found to be effective etalon reflectors with high damage threshold as high as 1 GW/cm2 for erbium lasers. Four kinds of such reflectors were successfully tested in Q-switched Er:YAG-laser at 2.94 micrometers and Er:Cr:YSGG-laser at 2.80 micrometers. Very stable operation of our erbium lasers with high output energy both in free-running and Q-switched modes is realized. First infrared photorefractive keratectomy (IR-PRK) for myopic correction in human corneas by a free-running erbium laser based on our new construction concepts was achieved.

  6. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    Science.gov (United States)

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  7. The IR obstruction to UV completion for Dante’s Inferno model with higher-dimensional gauge theory origin

    Energy Technology Data Exchange (ETDEWEB)

    Furuuchi, Kazuyuki [Manipal Centre for Natural Sciences, Manipal University,Manipal, Karnataka 576104 (India); Koyama, Yoji [National Center for Theoretical Sciences, National Tsing-Hua University,Hsinchu 30013, Taiwan R.O.C. (China)

    2016-06-21

    We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.

  8. The IR obstruction to UV completion for Dante’s Inferno model with higher-dimensional gauge theory origin

    International Nuclear Information System (INIS)

    Furuuchi, Kazuyuki; Koyama, Yoji

    2016-01-01

    We continue our investigation of large field inflation models obtained from higher-dimensional gauge theories, initiated in our previous study http://dx.doi.org/10.1088/1475-7516/2015/02/031. We focus on Dante’s Inferno model which was the most preferred model in our previous analysis. We point out the relevance of the IR obstruction to UV completion, which constrains the form of the potential of the massive vector field, under the current observational upper bound on the tensor to scalar ratio. We also show that in simple examples of the potential arising from DBI action of a D5-brane and that of an NS5-brane that the inflation takes place in the field range which is within the convergence radius of the Taylor expansion. This is in contrast to the well known examples of axion monodromy inflation where inflaton takes place outside the convergence radius of the Taylor expansion. This difference arises from the very essence of Dante’s Inferno model that the effective inflaton potential is stretched in the inflaton field direction compared with the potential for the original field.

  9. Tunable third-harmonic probe for non-degenerate ultrafast pump ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... In this article, we report a method to achieve a precisely tunable highly stable probe beam generation for performing pump–probe experiment around a given wavelength by tilting a sum frequency generation (SFG) crystal angle. The width of the generated third-harmonic beam is of the order of 2 nm ...

  10. Intercomparison of the comparative reactivity method (CRM) and pump-probe technique for measuring total OH reactivity in an urban environment

    Science.gov (United States)

    Hansen, R. F.; Blocquet, M.; Schoemaecker, C.; Léonardis, T.; Locoge, N.; Fittschen, C.; Hanoune, B.; Stevens, P. S.; Sinha, V.; Dusanter, S.

    2015-10-01

    The investigation of hydroxyl radical (OH) chemistry during intensive field campaigns has led to the development of several techniques dedicated to ambient measurements of total OH reactivity, which is the inverse of the OH lifetime. Three techniques are currently used during field campaigns, including the total OH loss rate method, the pump-probe method, and the comparative reactivity method. However, no formal intercomparison of these techniques has been published so far, and there is a need to ensure that measurements of total OH reactivity are consistent among the different techniques. An intercomparison of two OH reactivity instruments, one based on the comparative reactivity method (CRM) and the other based on the pump-probe method, was performed in October 2012 in a NOx-rich environment, which is known to be challenging for the CRM technique. This study presents an extensive description of the two instruments, the CRM instrument from Mines Douai (MD-CRM) and the pump-probe instrument from the University of Lille (UL-FAGE), and highlights instrumental issues associated with the two techniques. It was found that the CRM instrument used in this study underestimates ambient OH reactivity by approximately 20 % due to the photolysis of volatile organic compounds (VOCs) inside the sampling reactor; this value is dependent on the position of the lamp within the reactor. However, this issue can easily be fixed, and the photolysis of VOCs was successfully reduced to a negligible level after this intercomparison campaign. The UL-FAGE instrument may also underestimate ambient OH reactivity due to the difficulty to accurately measure the instrumental zero. It was found that the measurements are likely biased by approximately 2 s-1, due to impurities in humid zero air. Two weeks of ambient sampling indicate that the measurements performed by the two OH reactivity instruments are in agreement, within the measurement uncertainties for each instrument, for NOx mixing ratios

  11. Multiple-octave spanning high-energy mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    DEFF Research Database (Denmark)

    Zhou, Binbin; Bache, Morten

    2016-01-01

    Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband...

  12. New UV-curable acrylated polyester prepolymers from palm oil based products

    International Nuclear Information System (INIS)

    Mohd Azam Ali; Ooi, T.L.; Salmiah Ahmad; Umaru, S.I.; Mohd Ishak, Z.A.

    1999-01-01

    Acrylated polyester prepolymers (PEPP-1 and PEPP-2) were synthesized from palm oil and its products. UV-curing and characteristic properties of UV-cured films of synthesized polyester resins were studied. The characteristic properties studied include pendulum hardness, gel content, FT-IR analysis, tensile strength and elongation at break. The materials have good potential for the production of radiation curable coating applications

  13. End-pumped Nd:YVO4 laser with reduced thermal lensing via the use of a ring-shaped pump beam.

    Science.gov (United States)

    Lin, Di; Andrew Clarkson, W

    2017-08-01

    A simple approach for alleviating thermal lensing in end-pumped solid-state lasers using a pump beam with a ring-shaped intensity distribution to decrease the radial temperature gradient is described. This scheme has been implemented in a diode-end-pumped Nd:YVO 4 laser yielding 14 W of TEM 00 output at 1.064 μm with a corresponding slope efficiency of 53% and a beam propagation factor (M 2 ) of 1.08 limited by available pump power. By comparison, the same laser design with a conventional quasi-top-hat pump beam profile of approximately equal radial extent yielded only 9 W of output before the power rolled over due to thermal lensing. Further investigation with the aid of a probe beam revealed that the thermal lens power was ∼30% smaller for the ring-shaped pump beam compared to the quasi-top-hat beam. The implications for further power scaling in end-pumped laser configurations are considered.

  14. Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: a laser-desorption isomer-specific UV and IR study.

    Science.gov (United States)

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2018-03-07

    To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.

  15. Clinical safety of magnetic resonance imaging in patients with implanted SynchroMed EL infusion pumps

    Energy Technology Data Exchange (ETDEWEB)

    Diehn, Felix E.; Wood, Christopher P.; Watson, Robert E.; Hunt, Christopher H. [Mayo Clinic, Department of Radiology, Rochester, MN (United States); Mauck, William D. [Mayo Clinic, Department of Anesthesiology, Rochester, MN (United States); Burke, Michelle M. [Mayo Clinic, Department of Psychiatry and Psychology, Rochester, MN (United States)

    2011-02-15

    Patients with implanted SynchroMed spinal infusion pumps (Medtronic, Inc., Minneapolis, MN) routinely undergo magnetic resonance imaging at our institution. In August 2008, Medtronic issued an urgent medical device correction report regarding several pumps. Because of the rare potential ''for a delay in the return of proper drug infusion'' and ''for a delay in the logging of motor stall events,'' ''a patient's pump must be interrogated after MRI exposure in order to confirm proper pump functionality.'' This is particularly important in patients receiving intrathecal baclofen, for whom a delay in return of proper pump infusion could lead to life-threatening baclofen withdrawal syndrome. The objective of this report is to present our experience and protocol of performing magnetic resonance imaging in patients with implanted SynchroMed EL pumps. We retrospectively reviewed records of 86 patients with implanted SynchroMed EL spinal infusion pumps who underwent 112 examinations on 1.5-T magnetic resonance imaging scanners from September 1, 1998 to July 7, 2004. No SynchroMed EL pumps were damaged by magnetic resonance imaging, and the programmable settings remained unchanged in all patients. Our data suggest that SynchroMed EL pump malfunction is indeed rare after routine clinical 1.5-T magnetic resonance imaging examinations. However, based on the Medtronic correction report, we perform pump interrogation before and after imaging. (orig.)

  16. Strong-Field Physics with Mid-IR Fields

    Directory of Open Access Journals (Sweden)

    Benjamin Wolter

    2015-06-01

    Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.

  17. Self-synchronization of the modulation of energy-levels population with electrons in GaAs induced by picosecond pulses of probe radiation and intrinsic stimulated emission

    Energy Technology Data Exchange (ETDEWEB)

    Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.; Krivonosov, A. N. [Russian Academy of Sciences, Kotel’nikov Institute of Radioengineering and Electronics (Russian Federation)

    2016-10-15

    Picosecond optical pumping leads to the initiation of intrinsic picosecond stimulated emission in GaAs. As was established previously, due to the interaction of pulses of probe radiation with those of intrinsic emission, the dependence of the absorption α of the probe pulse on its delay τ with respect to the pump pulse is modulated with oscillations. It is found that the oscillatory dependences α(τ) have a similar shape only in the case of certain combinations of energies of the interacting pulses. As a result, it is assumed that the above interaction is, in fact, a synchronization of modulations (formed by pulses) of charge-carrier populations at energy levels; this synchronization occurs in the direction of the reconstruction of detailed equilibrium. The real-time picosecond self-modulation of the absorption α is measured for the first time. The characteristics of this self-modulation as well as absorption α and intrinsic emission self-modulation characteristics measured previously by correlation methods are now accounted for by the concept of synchronization.

  18. Molecular isomerization induced by ultrashort infrared pulses. II. Pump-dump isomerization using pairs of time-delayed half-cycle pulses.

    Science.gov (United States)

    Uiberacker, Christoph; Jakubetz, Werner

    2004-06-22

    We investigate population transfer across the barrier in a double-well potential, induced by a pair of time-delayed single-lobe half-cycle pulses. We apply this setup both to a one-dimensional (1D) quartic model potential and to a three-dimensional potential representing HCN-->HNC isomerization. Overall the results for the two systems are similar, although in the 3D system some additional features appear not seen in the 1D case. The generic mechanism of population transfer is the preparation by the pump pulse of a wave packet involving delocalized states above the barrier, followed by the essentially 1D motion of the delocalized part of wave packet across the barrier, and the eventual de-excitation by the dump pulse to localized states in the other well. The correct timing is given by the well-to-well passage time of the wave packet and its recurrence properties, and by the signs of the field lobes which determine the direction and acceleration or deceleration of the wave packet motion. In the 3D system an additional pump-pump-dump mechanism linked to wave packet motion in the reagent well can mediate isomerization. Since the transfer time and the pulse durations are of the same order of magnitude, there is also a marked dependence of the dynamics and the transfer yield on the pulse duration. Our analysis also sheds light on the pronounced carrier envelope phase dependence previously observed for isomerization and molecular dissociation with one-cycle and sub-one-cycle pulses. (c) 2004 American Institute of Physics.

  19. Ultraviolet /UV/ sensitive phosphors for silicon imaging detectors

    Science.gov (United States)

    Viehmann, W.; Cowens, M. W.; Butner, C. L.

    1981-01-01

    The fluorescence properties of UV sensitive organic phosphors and the radiometric properties of phosphor coated silicon detectors in the VUV, UV, and visible wavelengths are described. With evaporated films of coronene and liumogen, effective quantum efficiencies of up to 20% have been achieved on silicon photodiodes in the vacuum UV. With thin films of methylmethacrylate (acrylic), which are doped with organic laser dyes and deposited from solution, detector quantum efficiencies of the order of 15% for wavelengths of 120-165 nm and of 40% for wavelengths above 190 nm have been obtained. The phosphor coatings also act as antireflection coatings and thereby enhance the response of coated devices throughout the visible and near IR.

  20. Sunscreens for delay of ultraviolet induction of skin tumors

    International Nuclear Information System (INIS)

    Wulf, H.C.; Poulsen, T.; Brodthagen, H.; Hou-Jensen, K.

    1982-01-01

    Sunscreens with different sun protection factors (SPFs) have been tested for their capability of delaying or preventing actinic damage and skin cancer development in groups of hairless, pigmented mice exposed to artificial ultraviolet (UV) light of increasing intensity. The dose delivered was less than or equal to 1 minimal erythema dose (MED) in the group of untreated mice, so that the mice to which sunscreens were applied never obtained a sunburn after UV exposure. The quality of UV light was similar to bright midday sun at a latitude of 56 degrees (city of Copenhagen). Tumorigenesis was demonstrated to be delayed corresponding to the SPF claimed by the manufacturer, but almost all of the UV-irradiated mice developed skin tumors. Histologic examination revealed actinic degeneration and tumors of squamous cell type with marked variation in differentiation. Metastases to lymph nodes and lungs were found in only 10%. Toxic reactions, such as eczematous-like skin reactions, dark coloring, and amyloidosis, were observed predominantly in the group treated with the sunscreen of highest SPF value. Long-term investigations seem to be necessary to unveil these problems--in particular, the specific SPF value, in sunscreens, that should be recommended to the public for prevention or delay of actinic damage and/or cancer development

  1. UV and vacuum-UV biological spectroscopy using synchrotron radiation

    International Nuclear Information System (INIS)

    Ito, Amando Siuiti

    1996-01-01

    Full text. Synchrotron radiation has been used as light source in the UV and VUV region for the study of many biological systems. In the time domain, measurements are made that allow the observation of dynamics and kinetics of biomolecules like proteins and peptides, using the fluorescent properties of either intrinsic or extrinsic probes. Optical activity of groups inside biomolecules allows the use of circular dichroism techniques to generate structural information and to follow processes like protein folding. Confocal scanning of synchrotron light generates microscopy resolution below 100 nm, allowing the creation of high quality three dimensional images of biological samples, and the collection of fluorescence originated from microvolumes inside the samples. We propose a station at LNLS for these three techniques: time-resolved fluorescence, circular dischroism and confocal microscopy, using UV and VUV light. (author)

  2. Solitonic supercontinuum of femtosecond mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths

    Directory of Open Access Journals (Sweden)

    S. Kedenburg

    2016-11-01

    Full Text Available We present a detailed experimental parameter study on mid-IR supercontinuum generation in W-type index tellurite fibers, which reveals how the core diameter, pump wavelength, fiber length, and pump power dramatically influence the spectral broadening. As pump source, we use femtosecond mid-IR pulses from a post-amplified optical parametric oscillator tunable between 1.7 μm and 4.1 μm at 43 MHz repetition rate. We are able to generate red-shifted dispersive waves up to a wavelength of 5.1 μm by pumping a tellurite fiber in the anomalous dispersion regime between its two zero dispersion wavelengths. Distinctive soliton dynamics can be identified as the main broadening mechanism resulting in a maximum spectral width of over 2000 nm with output powers of up to 160 mW. We experimentally demonstrated that efficient spectral broadening with considerably improved power proportion in the important first atmospheric transmission window between 3 and 5 μm can be achieved in robust W-type tellurite fibers pumped at long wavelengths by ultra-fast lasers.

  3. Mode pumping experiments on biomolecules

    International Nuclear Information System (INIS)

    Austin, R.H.; Erramilli, S.; Xie, A.; Schramm, A.

    1995-01-01

    We will explore several aspects of protein dynamics and energy transfer that can be explored by using the intense, picosecond, tunable mid-IR output of the FEL. In order of appearance they are: (1) Saturation recovery and inter-level coupling of the low temperature amide-I band in acetanilide. This is a continuation of earlier experiments to test soliton models in crystalline hydrogen bonded solids. In this experiment we utilize the sub-picosecond time resolution and low repetition rate of the Stanford SCLA FEL to do both T 1 and T 2 relaxation measurements at 1650 cm -1 . (2) Probing the influence of collective dynamics in sensory rhodopsin. In this experiment we use the FIR output of the Stanford FIREFLY FEL to determine the lifetime of collective modes in the photo-active protein sensory rhodopsin, and begin experiments on the influence of collective modes on retinal reaction dynamics. (3) Probing the transition states of enzymes. This experiment, in the initial stages, attempts to use the intense IR output of the FEL to probe and influence the reaction path of a transition state analog for the protein nucleoside hydrolase. The transition state of the inosine substrate is believed to have critical modes softened by the protein so that bond-breaking paths show absorption at approximately 800 cm -1 . A form of action spectrum using FEL excitation will be used to probe this state

  4. Radiative symmetry breaking from interacting UV fixed points

    DEFF Research Database (Denmark)

    Abel, Steven; Sannino, Francesco

    2017-01-01

    It is shown that the addition of positive mass-squared terms to asymptotically safe gauge-Yukawa theories with perturbative UV fixed points leads to calculable radiative symmetry breaking in the IR. This phenomenon, and the multiplicative running of the operators that lies behind it, is akin...

  5. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    Science.gov (United States)

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  6. Optical pump-and-probe test system for thermal characterization of thin metal and phase-change films

    International Nuclear Information System (INIS)

    Watabe, Kazuo; Polynkin, Pavel; Mansuripur, Masud

    2005-01-01

    A single-shot optical pump-and-probe test system is reported. The system is designed for thermal characterization of thin-film samples that can change their phase state under the influence of a short and intense laser pulse on a subnanosecond time scale. In combination with numerical analysis, the system can be used to estimate thermal constants of thin films, such as specific heat and thermal conductivity. In-plane and out-of plane thermal conductivity can be estimated independently. The system is intended for use in research on optical data storage and material processing with pulsed laser light. The system design issues are discussed. As application examples, we report on using the system to study thermal dynamics in two different thin-film samples: a gold film on a glass substrate (a single-phase system) and the quadrilayer phase-change stack typical in optical data-storage applications

  7. Optically pumped terahertz sources

    Institute of Scientific and Technical Information of China (English)

    ZHONG Kai; SHI Wei; XU DeGang; LIU PengXiang; WANG YuYe; MEI JiaLin; YAN Chao; FU ShiJie; YAO JianQuan

    2017-01-01

    High-power terahertz (THz) generation in the frequency range of0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago,enabling new technological breakthroughs in spectroscopy,communication,imaging,etc.By using optical (laser) pumping methods with near-or mid-infrared (IR) lasers,flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology.This paper overviews various optically pumped THz sources,including femtosecond laser based ultrafast broadband THz generation,monochromatic widely tunable THz generation,single-mode on-chip THz source from photomixing,and the traditional powerful THz gas lasers.Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well.It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.

  8. Multiple Scattering Principal Component-based Radiative Transfer Model (PCRTM) from Far IR to UV-Vis

    Science.gov (United States)

    Liu, X.; Wu, W.; Yang, Q.

    2017-12-01

    Modern satellite hyperspectral satellite remote sensors such as AIRS, CrIS, IASI, CLARREO all require accurate and fast radiative transfer models that can deal with multiple scattering of clouds and aerosols to explore the information contents. However, performing full radiative transfer calculations using multiple stream methods such as discrete ordinate (DISORT), doubling and adding (AD), successive order of scattering order of scattering (SOS) are very time consuming. We have developed a principal component-based radiative transfer model (PCRTM) to reduce the computational burden by orders of magnitudes while maintain high accuracy. By exploring spectral correlations, the PCRTM reduce the number of radiative transfer calculations in frequency domain. It further uses a hybrid stream method to decrease the number of calls to the computational expensive multiple scattering calculations with high stream numbers. Other fast parameterizations have been used in the infrared spectral region reduce the computational time to milliseconds for an AIRS forward simulation (2378 spectral channels). The PCRTM has been development to cover spectral range from far IR to UV-Vis. The PCRTM model have been be used for satellite data inversions, proxy data generation, inter-satellite calibrations, spectral fingerprinting, and climate OSSE. We will show examples of applying the PCRTM to single field of view cloudy retrievals of atmospheric temperature, moisture, traces gases, clouds, and surface parameters. We will also show how the PCRTM are used for the NASA CLARREO project.

  9. Probing the limits of delay intolerance: preliminary young adult data from the Delay Frustration Task (DeFT).

    Science.gov (United States)

    Bitsakou, Paraskevi; Antrop, Inge; Wiersema, Jan Roelf; Sonuga-Barke, Edmund J S

    2006-02-15

    Delay intolerance/aversion is one amongst a number of candidate neuropsychological endophenotypes for ADHD. Pilot data suggest that, because of potential ceiling effects, simple choice measures of delay tolerance used for children are probably not appropriate for adolescents and adults. The Delay Frustration Task (DeFT) is a new measure of delay intolerance, designed to be used in a similar form with adolescents and adults as well as children. In it delay frustration is indexed as the number and duration of responses made on a response key during a series of unpredictable and unsignalled delay periods, which interrupt the completion of a simple computer-based tests. The aim of this study was to provide preliminary data on the applicability of the task in a sample of young adults. The DeFT was administered to 49 male and female undergraduate students selected from a normal population-base. Their mean age was 23.14 (S.D.=1.54). Three measures of delay frustration were recorded across time intervals during the response window; the number of responses, their duration and their combined product (total time button was pressed) was calculated for each second interval bin during the post-response delay period. The AARS and HADS were used as screening questionnaires for ADHD and anxiety behaviour, respectively. The results indicated that young adults with high-ADHD symptoms scores pressed the button more than those with low ADHD scores during the post-response delay condition. While both groups increased responding across time within intervals this was significantly more marked in the high-ADHD symptom group. These effects became more pronounced when anxiety was controlled. Young adults with high-ADHD symptoms appear to be more sensitive to the imposition of unscheduled and unsignalled delay during a simple maths test. DeFT may provide a useful index of delay tolerance in young adults with ADHD. Future research needs to examine DeFT performance in different age groups and

  10. RNA synthesis during germination of UV-irradiated Dictyostelium discoideum spores

    International Nuclear Information System (INIS)

    Okaichi, Kumio

    1987-01-01

    UV irradiation to the spores of Dictyostelium discoideum NC4 resulted in a more prolonged delay of amoeba-emergence from swollen spores with increasing UV fluence. During the germination, an inhibition of total RNA synthesis and a shift of stage of maximum RNA synthesis to the later period were observed. The maximum poly(A) + RNA synthetic activity was found on an early stage of amoeba-emergence prior about 1 h to the beginning of rRNA synthesis in unirradiated spore germination; but, in UV-irradiated spore germination, the stage of maximum poly(A) + RNA synthesis shifted to the later stage of germination with increasing UV fluence. A decreased synthesis of poly(A) + RNA and a severe inhibition of rRNA synthesis were observed on UV-irradiated and germinated spores, but no significant inhibition of 4 - 5 S RNA synthesis was detected. Actinomycin D suppressed almost completely the rRNA synthesis of emerged amoebae but the drug apparently did not affect the emergence of amoebae at any stage of germination. It was postulated that the delay of amoeba-emergence in UV-irradiated spore must be mainly due to the shift of the stage of maximum synthesis of poly(A) + RNA to the later stage of germination. (author)

  11. Pump induced normal mode splittings in phase conjugation in a Kerr ...

    Indian Academy of Sciences (India)

    Abstract. Phase conjugation in a Kerr nonlinear waveguide is studied with counter-propagating normally incident pumps and a probe beam at an arbitrary angle of incidence. Detailed numerical results for the specular and phase conjugated reflectivities are obtained with full account of pump depletion. For sufficient ...

  12. Slowdown of group velocity of light in dual-frequency laser-pumped cascade structure of Er3+-doped optical fiber at room temperature

    Science.gov (United States)

    Qiu, Wei; Yang, Yujing; Gao, Yuan; Liu, Jianjun; Lv, Pin; Jiang, Qiuli

    2018-04-01

    Slow light is demonstrated in the cascade structure of an erbium-doped fiber with two forward propagation pumps. The results of the numerical simulation of the time delay and the optimum modulation frequency complement each other. The time delay and the optimum modulation frequency depend on the pump ratio G (G  =  {{P}1480}:{{P}980} ). The discussion results of this paper show that a larger time delay of slow light propagation can be obtained in the cascade structure of Er3+-doped optical fibers with dual-frequency laser pumping. Compared to previous research methods, the dual-frequency laser-pumped cascade structure of an Er3+-doped optical fiber is more controllable. Based on our discussion the pump ratio G should be selected in order to obtain a more appropriate time delay and the slowdown of group velocity.

  13. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    International Nuclear Information System (INIS)

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization

  14. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    Energy Technology Data Exchange (ETDEWEB)

    Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  15. Picosecond time-resolved laser pump/X-ray probe experiments using a gated single-photon-counting area detector

    DEFF Research Database (Denmark)

    Ejdrup, T.; Lemke, H.T.; Haldrup, Martin Kristoffer

    2009-01-01

    The recent developments in X-ray detectors have opened new possibilities in the area of time-resolved pump/probe X-ray experiments; this article presents the novel use of a PILATUS detector to achieve X-ray pulse duration limited time-resolution at the Advanced Photon Source (APS), USA...... limited time-resolution of 60 ps using the gated PILATUS detector. This is the first demonstration of X-ray pulse duration limited data recorded using an area detector without the use of a mechanical chopper array at the beamline........ The capability of the gated PILATUS detector to selectively detect the signal from a given X-ray pulse in 24 bunch mode at the APS storage ring is demonstrated. A test experiment performed on polycrystalline organic thin films of [alpha]-perylene illustrates the possibility of reaching an X-ray pulse duration...

  16. Few-cycle nonlinear mid-IR pulse generated with cascaded quadratic nonlinearities

    DEFF Research Database (Denmark)

    Bache, Morten; Liu, Xing; Zhou, Binbin

    Generating few-cycle energetic and broadband mid-IR pulses is an urgent current challenge in nonlinear optics. Cascaded second-harmonic generation (SHG) gives access to an ultrafast and octave-spanning self-defocusing nonlinearity: when ΔkL >> 2π the pump experiences a Kerr-like nonlinear index...

  17. Differential regulation of caspase-9 by ionizing radiation- and UV-induced apoptotic pathways in thymic cells

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Mayumi; Koga, Satomi [Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023 (Japan); Tatsuka, Masaaki, E-mail: tatsuka@pu-hiroshima.ac.jp [Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima 727-0023 (Japan)

    2010-06-01

    In mouse thymic lymphoma 3SB cells bearing wild type p53, ionizing radiation (IR) and UV light are potent triggers of caspase-3-dependent apoptosis. Although cytochrome c was released from mitochondria as expected, caspase-9 activation was not observed in UV-exposed cells. Laser scanning confocal microscopy analysis showed that caspase-9 is localized in an unusual punctuated pattern in UV-induced apoptotic cells. In agreement with differences in the status of caspase-9 activation between IR and UV, subcellular protein fractionation experiments showed that pro-apoptotic apoptosis protease-activating factor 1 (Apaf-1), normally a part of the apoptosome assembled in response to the release of cytochrome c from mitochondria, and B-cell lymphoma extra long (Bcl-xL), an inhibitor of the change in mitochondrial membrane permeability, were redistributed by the IR-exposure but not by the UV-exposure. Instead of the sequestration of the capase-9/apoptosome activation in UV-induced apoptotic cells, the extrinsic apoptotic signaling generated by caspase-8 activation and consequent activation of B-cell lymphoma extra long (Bid) to release cytochrome c from mitochondria was observed. Thus, the post-mitochondrial apoptotic pathway downstream of cytochrome c release cannot operate the apoptosome function in UV-induced apoptosis in thymic 3SB cells. The intracellular redistribution and sequestration of apoptosis-related proteins upon mitochondrion-based apoptotic signaling was identified as a novel cellular mechanism to respond to DNA damage in an agent type-specific manner. This finding suggests that the kind of the critical ultimate apoptosis-inducing DNA lesion complex form resulting from the agent-specific DNA damage responses is important to determine which of apoptosis signals would be activated.

  18. FT-Raman, FT-IR and UV-visible spectral investigations and ab initio computations of anti-epileptic drug: vigabatrin.

    Science.gov (United States)

    Edwin, Bismi; Joe, I Hubert

    2013-10-01

    Vibrational analysis of anti-epileptic drug vigabatrin, a structural GABA analog was carried out using NIR FT-Raman and FTIR spectroscopic techniques. The equilibrium geometry, various bonding features and harmonic vibrational wavenumbers were studied using density functional theory method. The detailed interpretation of the vibrational spectra has been carried out with the aid of VEDA.4 program. Vibrational spectra, natural bond orbital analysis and optimized molecular structure show clear evidence for the effect of electron charge transfer on the activity of the molecule. Predicted electronic absorption spectrum from TD-DFT calculation has been compared with the UV-vis spectrum. The Mulliken population analysis on atomic charges and the HOMO-LUMO energy were also calculated. Good consistency is found between the calculated results and experimental data for the electronic absorption as well as IR and Raman spectra. The blue-shifting of the C-C stretching wavenumber reveals that the vinyl group is actively involved in the conjugation path. The NBO analysis confirms the occurrence of intramolecular hyperconjugative interactions resulting in ICT causing stabilization of the system. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. [Study on spectral gain characterization of FWM processes with multi-frequency pumps in photonic crystal fiber].

    Science.gov (United States)

    Hui, Zhan-Qiang

    2011-10-01

    Spectral gain induced by four-wave-mixing with multi-frequency pump was investigated by exploiting the data signal and continue lights co-propagation in dispersion flattened high nonlinear photonic crystal fiber (PCF). The effects of wavelength drift of pump lights, polarization state of orthogonal or parallel of pump lights, polarization mismatch of signal light versus orthogonal pump lights, total power of signal and probe light on the spectrum gain were analyzed. The results show that good FWM gain effects with multi-frequency pump can be obtained in 36.4 nm wavelength range when power ratio of pump to probe light is appropriate and with identical polarization. Furthermore, the gain of FWM with multi-frequency pump is very sensitive to polarization fluctuation and the different idle waves obtain different gain with the variation in signal polarization state. Moreover, the impact of pump numbers was investigated. The obtained results would be helpful for further research on ultrahigh-speed all optical signal processing devices exploiting the FWM with multi-frequency pump in PCF for future photonics network.

  20. Femtosecond noncollinear SFG dynamics in autocorrelator setup at low level of photons

    Science.gov (United States)

    Tenishev, Vladimir P.; Persson, A.; Larsson, J.

    2004-06-01

    We report here the characteristics of noncollinear sum frequency generation in nonlinear KDP crystals by ultrashort (80 fsec) IR pulses irradiated by the intense Ti:Sapphire laser and their behavior in single shot auto-crosscorrelator (ACC) configuration. In particular we study the case where one of the beams is very weak. Our aim is to develop a procedure to provide delay time signal between light pulses for time resolved pump probe experiments based on the extraction of the phase-matched SHG spatial distribution by means of pulse shape analysis technique. We intend to apply these results to synchronize a weak short-pulse source and an intense Ti:Sapphire laser and to measure the pulse time jitter between them.

  1. UV/IR Filaments for High Resolution Novel Spectroscopic Interrogation of Plumes on Nuclear Materials

    Science.gov (United States)

    2016-06-01

    Raman spectroscopy of plumes created by a laser filament. The molecules to be detected are excited by the short pulse IR pulse, while the co-propagating... spectroscopy of gas samples has been demonstrated in IR filaments [32], using the fs pulse of the filament (800 nm) to vibrationally excite the components...Petit. Isotope ratio determination of uranium by optical emission spectroscopy on a laser -produced plasma; basic investigation and analytical results

  2. Demonstration of slow light propagation in an optical fiber under dual pump light with co-propagation and counter-propagation

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-04-01

    In this paper, a general theory of coherent population oscillation effect in an Er3+ -doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation at room temperature is presented. Using the numerical simulation, in case of dual frequency light waves (1480 nm and 980 nm) with co-propagation and counter-propagation, we analyze the effect of the pump optical power ratio (M) on the group speed of light. The group velocity of light can be varied with the change of M. We research the time delay and fractional delay in an Er3+-doped fiber under the dual-frequency pumping laser with counter-propagation and co-propagation. Compared to the methods of the single pumping, the larger time delay can be got by using the technique of dual-frequency laser pumped fiber with co-propagation and counter-propagation.

  3. Mapping Rotational Wavepacket Dynamics with Chirped Probe Pulses

    Science.gov (United States)

    Romanov, Dmitri; Odhner, Johanan; Levis, Robert

    2014-05-01

    We develop an analytical model description of the strong-field pump-probe polarization spectroscopy of rotational transients in molecular gases in a situation when the probe pulse is considerably chirped: the frequency modulation over the pulse duration is comparable with the carrier frequency. In this scenario, a femtosecond pump laser pulse prepares a rotational wavepacket in a gas-phase sample at room temperature. The rotational revivals of the wavepacket are then mapped onto a chirped broadband probe pulse derived from a laser filament. The slow-varying envelope approximation being inapplicable, an alternative approach is proposed which is capable of incorporating the substantial chirp and the related temporal dispersion of refractive indices. Analytical expressions are obtained for the probe signal modulation over the interaction region and for the resulting heterodyned transient birefringence spectra. Dependencies of the outputs on the probe pulse parameters reveal the trade-offs and the ways to optimize the temporal-spectral imaging. The results are in good agreement with the experiments on snapshot imaging of rotational revival patterns in nitrogen gas. We gratefully acknowledge financial support through AFOSR MURI Grant No. FA9550-10-1-0561.

  4. Ultraviolet enhanced reactivation of a human virus: effect of delayed infection

    International Nuclear Information System (INIS)

    Bockstahler, L.E.; Lytle, C.D.; Stafford, J.E.; Haynes, K.F.

    1976-01-01

    The ability of UV-irradiated herpes simplex virus to form plaques was examined in monolayers of CV-1 monkey kidney cells preexposed to UV radiation at different intervals before virus assay. From analysis of UV reactivation (Weigle reactivation) curves it was found that as the interval between cell UV irradiation (0-20 J/m 2 ) and initiation of the virus assay was increased over a period of five days, (1) the capacity of the cells to support unirradiated virus plaque formation, which was decreased immediately following UV exposure of the monolayers, increased and returned to approximately normal levels within five days, and (2) at five days an exponential increase was observed in the relative plaque formation of irradiated virus as a function of UV dose to the monolayers. For high UV fluence (20 J/m 2 ) to the cells, the relative plaque formation by the UV-irradiated virus at five days was about 10-fold higher than that obtained from assay on unirradiated cells. This enhancement in plaque formation is interpreted as a delayed expression of Weigle reactivation. The amount of enhancement resulting from this delayed reactivation was several fold greater than that produced by the Weigle reactivation which occurred when irradiated herpes virus was assayed immediately following cell irradiation

  5. Ir-Driven Dynamics of the 3-AMINOPHENOL-AMMONIA Complex

    Science.gov (United States)

    Heid, Cornelia G.; Merrill, W. G.; Case, Amanda; Crim, Fleming

    2014-06-01

    We report on gas-phase experiments investigating the predissociation and possible IR-driven isomerization of the 3-aminophenol-ammonia complex (3-AP-NH3). A molecular beam of 3-AP-NH3 is vibrationally excited with pulsed IR light, initiating an intramolecular vibrational redistribution and subsequent dissociation. The 3-AP fragment is then probed state-selectively via multiphoton ionization (REMPI) and time-of-flight mass spectrometry. Of particular interest is an IR-driven feature which we associate tentatively with a trans-cis isomerization process. We see clear correlation between the excitation of specific vibrational modes (namely the NH3 symmetric and OH stretches) and the presence of this feature, as evidenced by IR-action and IR-depletion spectra. The feature persists atop a broader signal which we assign to the predissociation of the complex and whose cutoff in REMPI-action experiments provides an upper bound on the dissociation energy for 3-AP-NH3.

  6. A UV to mid-IR study of AGN selection

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Sun Mi; Kochanek, Christopher S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Assef, Roberto [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago (Chile); Brown, Michael J. I. [School of Physics, Monash University, Clayton, Vic 3800 (Australia); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Mail Stop 169-221, Pasadena, CA 91109 (United States); Jannuzi, Buell T. [Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Gonzalez, Anthony H. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Hickox, Ryan C. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Moustakas, John [Department of Physics and Astronomy, Siena College, 515 Loudon Road, Loudonville, NY 12211 (United States)

    2014-07-20

    We classify the spectral energy distributions (SEDs) of 431,038 sources in the 9 deg{sup 2} Boötes field of the NOAO Deep Wide-Field Survey (NDWFS). There are up to 17 bands of data available per source, including ultraviolet (GALEX), optical (NDWFS), near-IR (NEWFIRM), and mid-infrared (IRAC and MIPS) data, as well as spectroscopic redshifts for ∼20,000 objects, primarily from the AGN and Galaxy Evolution Survey. We fit galaxy, active galactic nucleus (AGN), stellar, and brown dwarf templates to the observed SEDs, which yield spectral classes for the Galactic sources and photometric redshifts and galaxy/AGN luminosities for the extragalactic sources. The photometric redshift precision of the galaxy and AGN samples are σ/(1 + z) = 0.040 and σ/(1 + z) = 0.169, respectively, with the worst 5% outliers excluded. On the basis of the χ{sub ν}{sup 2} of the SED fit for each SED model, we are able to distinguish between Galactic and extragalactic sources for sources brighter than I = 23.5 mag. We compare the SED fits for a galaxy-only model and a galaxy-AGN model. Using known X-ray and spectroscopic AGN samples, we confirm that SED fitting can be successfully used as a method to identify large populations of AGNs, including spatially resolved AGNs with significant contributions from the host galaxy and objects with the emission line ratios of 'composite' spectra. We also use our results to compare with the X-ray, mid-IR, optical color, and emission line ratio selection techniques. For an F-ratio threshold of F > 10, we find 16,266 AGN candidates brighter than I = 23.5 mag and a surface density of ∼1900 AGN deg{sup –2}.

  7. [Oligonucleotide derivatives in the nucleic acid hybridization analysis. I. Covalent immobilization of oligonucleotide probes onto the nylon].

    Science.gov (United States)

    Dmitrienko, E V; Pyshnaia, I A; Pyshnyĭ, D V

    2010-01-01

    The features of UV-induced immobilization of oligonucleotides on a nylon membranes and the effectiveness of enzymatic labeling of immobilized probes at heterophase detection of nucleic acids are studied. Short terminal oligothymidilate (up to 10 nt) sequences are suggested to attach to the probe via a flexible ethylene glycol based linker. The presence of such fragment enhances the intensity of immobilization and reduces UV-dependent degradation of the targeted (sequence-specific) part of the probe by reducing the dose needed for the immobilization of DNA. The optimum dose of UV-irradiation is determined to be ~0.4 J/cm(2) at the wavelength 254 nm. This dose provides high level of hybridization signal for immobilized probes with various nucleotide composition of the sequence specific moiety. The amide groups of the polyamide are shown to play the key role in the photoinduced immobilization of nucleic acids, whereas the primary amino groups in the structure of PA is not the center responsible for the covalent binding of DNA by UV-irradiation, as previously believed. Various additives in the soaking solution during the membrane of UV-dependent immobilization of probes are shown to influence its effectiveness. The use of alternative to UV-irradiation system of radical generation are shown to provide the immobilization of oligonucleotides onto the nylon membrane.

  8. The near-UV absorber OSSO and its isomers.

    Science.gov (United States)

    Wu, Zhuang; Wan, Huabin; Xu, Jian; Lu, Bo; Lu, Yan; Eckhardt, André K; Schreiner, Peter R; Xie, Changjian; Guo, Hua; Zeng, Xiaoqing

    2018-05-01

    Disulfur dioxide, OSSO, has been proposed as the enigmatic "near-UV absorber" in the yellowish atmosphere of Venus. However, the fundamentally important spectroscopic properties and photochemistry of OSSO are scarcely documented. By either condensing gaseous SO or 266 laser photolysis of an S2O2 complex in Ar or N2 at 15 K, syn-OSSO, anti-OSSO, and cyclic OS([double bond, length as m-dash]O)S were identified by IR and UV/Vis spectroscopy for the first time. The observed absorptions (λmax) for OSSO at 517 and 390 nm coincide with the near-UV absorption (320-400 nm) found in the Venus clouds by photometric measurements with the Pioneer Venus orbiter. Subsequent UV light irradiation (365 nm) depletes syn-OSSO and anti-OSSO and yields a fourth isomer, syn-OSOS, with concomitant dissociation into SO2 and elemental sulfur.

  9. Excited-state intramolecular hydrogen transfer (ESIHT) of 1,8-Dihydroxy-9,10-anthraquinone (DHAQ) characterized by ultrafast electronic and vibrational spectroscopy and computational modeling

    KAUST Repository

    Mohammed, Omar F.

    2014-05-01

    We combine ultrafast electronic and vibrational spectroscopy and computational modeling to investigate the photoinduced excited-state intramolecular hydrogen-transfer dynamics in 1,8-dihydroxy-9,10-anthraquinone (DHAQ) in tetrachloroethene, acetonitrile, dimethyl sulfoxide, and methanol. We analyze the electronic excited states of DHAQ with various possible hydrogen-bonding schemes and provide a general description of the electronic excited-state dynamics based on a systematic analysis of femtosecond UV/vis and UV/IR pump-probe spectroscopic data. Upon photoabsorption at 400 nm, the S 2 electronic excited state is initially populated, followed by a rapid equilibration within 150 fs through population transfer to the S 1 state where DHAQ exhibits ESIHT dynamics. In this equilibration process, the excited-state population is distributed between the 9,10-quinone (S2) and 1,10-quinone (S1) states while undergoing vibrational energy redistribution, vibrational cooling, and solvation dynamics on the 0.1-50 ps time scale. Transient UV/vis pump-probe data in methanol also suggest additional relaxation dynamics on the subnanosecond time scale, which we tentatively ascribe to hydrogen bond dynamics of DHAQ with the protic solvent, affecting the equilibrium population dynamics within the S2 and S1 electronic excited states. Ultimately, the two excited singlet states decay with a solvent-dependent time constant ranging from 139 to 210 ps. The concomitant electronic ground-state recovery is, however, only partial because a large fraction of the population relaxes to the first triplet state. From the similarity of the time scales involved, we conjecture that the solvent plays a crucial role in breaking the intramolecular hydrogen bond of DHAQ during the S2/S1 relaxation to either the ground or triplet state. © 2014 American Chemical Society.

  10. Probing spin-vibronic dynamics using femtosecond X-ray spectroscopy

    DEFF Research Database (Denmark)

    Penfold, T. J.; Pápai, Mátyás Imre; Rozgonyi, T.

    2016-01-01

    Ultrafast pump-probe spectroscopy within the X-ray regime is now possible owing to the development of X-ray Free Electrons Lasers (X-FELs) and is opening new opportunities for the direct probing of femtosecond evolution of the nuclei, the electronic and spin degrees of freedom. In this contributi...

  11. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.

    Science.gov (United States)

    Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D

    2014-12-15

    The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890  cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3)  Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.

  12. Possible superconductivity in Sr₂IrO₄ probed by quasiparticle interference.

    Science.gov (United States)

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Wang, Qiang-Hua

    2015-03-18

    Based on the possible superconducting (SC) pairing symmetries recently proposed, the quasiparticle interference (QPI) patterns in electron- and hole-doped Sr₂IrO₄ are theoretically investigated. In the electron-doped case, the QPI spectra can be explained based on a model similar to the octet model of the cuprates while in the hole-doped case, both the Fermi surface topology and the sign of the SC order parameter resemble those of the iron pnictides and there exists a QPI vector resulting from the interpocket scattering between the electron and hole pockets. In both cases, the evolution of the QPI vectors with energy and their behaviors in the nonmagnetic and magnetic impurity scattering cases can well be explained based on the evolution of the constant-energy contours and the sign structure of the SC order parameter. The QPI spectra presented in this paper can be compared with future scanning tunneling microscopy experiments to test whether there are SC phases in electron- and hole-doped Sr₂IrO₄ and what the pairing symmetry is.

  13. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process

    International Nuclear Information System (INIS)

    Yuan Fang; Hu Chun; Hu Xuexiang; Wei Dongbin; Chen Yong; Qu Jiuhui

    2011-01-01

    The photodegradation of three antibiotics, oxytetracycline (OTC), doxycycline (DTC), and ciprofloxacin (CIP) in UV and UV/H 2 O 2 process was investigated with a low-pressure UV lamp system. Experiments were performed in buffered ultrapure water (UW), local surface water (SW), and treated water from local municipal drinking water treatment plant (DW) and wastewater treatment plant (WW). The efficiency of UV/H 2 O 2 process was affected by water quality. For all of the three selected antibiotics, the fastest degradation was observed in DW, and the slowest degradation occurred in WW. This phenomenon can be explained by R OH,UV , defined as the experimentally determined ·OH radical exposure per UV fluence. The R OH,UV values represent the background ·OH radical scavenging in water matrix, obtained by the degradation of para-chlorobenzoic acid (pCBA), a probe compound. In natural water, the indirect degradation of CIP did not significantly increase with the addition of H 2 O 2 due to its effective degradation by UV direct photolysis. Moreover, the formation of several photoproducts and oxidation products of antibiotics in UV/H 2 O 2 process was identified using GC-MS. Toxicity assessed by Vibrio fischer (V. fischer), was increased in UV photolysis, for the photoproducts still preserving the characteristic structure of the parent compounds. While in UV/H 2 O 2 process, toxicity increased first, and then decreased; nontoxic products were formed by the oxidation of ·OH radical. In this process, detoxification was much easier than mineralization for the tested antibiotics, and the optimal time for the degradation of pollutants in UV/H 2 O 2 process would be determined by parent compound degradation and toxicity changes.

  14. Dynamics of exciton relaxation in LH2 antenna probed by multipulse nonlinear spectroscopy.

    Science.gov (United States)

    Novoderezhkin, Vladimir I; Cohen Stuart, Thomas A; van Grondelle, Rienk

    2011-04-28

    We explain the relaxation dynamics in the LH2-B850 antenna as revealed by multipulse pump-dump-probe spectroscopy (Th. A. Cohen Stuart, M. Vengris, V. I. Novoderezhkin, R. J. Cogdell, C. N. Hunter, R. van Grondelle, submitted). The theory of pump-dump-probe response is evaluated using the doorway-window approach in combination with the modified Redfield theory. We demonstrate that a simultaneous fit of linear spectra, pump-probe, and pump-dump-probe kinetics can be obtained at a quantitative level using the disordered exciton model, which is essentially the same as used to model the spectral fluctuations in single LH2 complexes (Novoderezhkin, V.; Rutkauskas, D.; van Grondelle, R. Biophys. J. 2006, 90, 2890). The present studies suggest that the observed relaxation rates are strongly dependent on the realization of the disorder. A big spread of the rates (exceeding 3 orders of magnitude) is correlated with the disorder-induced changes in delocalization length and overlap of the exciton wave functions. We conclude that the bulk kinetics reflect a superposition of many pathways corresponding to different physical limits of energy transfer, varying from sub-20 fs relaxation between delocalized and highly spatially overlapping exciton states to >20 ps jumps between states localized at the opposite sides of the ring.

  15. Ultrafast spin injection from Cd1-x Mn x Te magnetic barriers into a CdTe quantum well studied by pump-probe spectroscopy

    International Nuclear Information System (INIS)

    Aoshima, I.; Nishibayashi, K.; Souma, I.; Murayama, A.; Oka, Y.

    2006-01-01

    Spin injection from diluted magnetic semiconductor (DMS) barriers of Cd 1- x Mn x Te into a quantum well (QW) of CdTe is studied, by means of pump-probe absorption spectroscopy in magnetic fields. Fast decay characteristics of circularly polarized differential absorbances of spin-polarized excitons in the DMS barrier show the exciton injection time of 6 ps from the barriers into the QW. In accordance with the fast relaxation of the spin-polarized excitons from the barrier, we observe the rise of circular polarization degree for the differential absorption of the CdTe QW in magnetic fields, evidently indicating the spin injection. In addition, the circular polarization degree up to 0.3 is developed in the well immediately after pumping, originating from the fast relaxation of a heavy hole (hh) spin less than 0.2 ps, due to the giant Zeeman effect caused by the penetration of the hh wave function into the DMS barriers

  16. Pump--probe measurements of state-to-state rotational energy transfer rates in N2 (v=1)

    International Nuclear Information System (INIS)

    Sitz, G.O.; Farrow, R.L.

    1990-01-01

    We report direct measurements of the state-to-state rotational energy transfer rates for N 2 (υ=1) at 298 K. Stimulated Raman pumping of Q-branch (υ=1 left-arrow 0) transitions is used to prepare a selected rotational state of N 2 in the υ=1 state. After allowing an appropriate time interval for collisions to occur, 2+2 resonance-enhanced multiphoton ionization is used (through the a 1 Π g left-arrow X 1 Σ + g transition) to detect the relative population of the pumped level and other levels to which rotational energy transfer has occurred. We have performed a series of measurements in which a single even rotational level (J i =0--14) is excited and the time-dependent level populations are recorded at three or more delay times. This data set is then globally fit to determine the best set of state-to-state rate constants. The fitting procedure does not place any constraints (such as an exponential gap law) on the J or energy dependence of the rates. We compare our measurements and best-fit rates with results predicted from phenomenological rate models and from a semiclassical scattering calculation of Koszykowski et al. [J. Phys. Chem. 91, 41 (1987)]. Excellent agreement is obtained with two of the models and with the scattering calculation. We also test the validity of the energy-corrected sudden (ECS) scaling theory for N 2 by using our experimental transfer rates as basis rates (J=L→0), finding that the ECS scaling expressions accurately predict the remaining rates

  17. Design of UV-absorbing PVDF membrane via surface-initiated AGET ATRP

    Science.gov (United States)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Zhou, Yan; Lin, Changhong; Yang, Yuming

    2018-03-01

    Herein, PVDF membranes with excellent UV-absorbing property were first synthesized through grafting the polymerizable low-molecular-weight organic UV-absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) onto α-bromoester-functionalized PVDF membranes via the surface-initiated activator generated by electron transfer atom transfer radical polymerization (SI-AGET ATRP). The surface initiators were immobilized by the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxylated PVDF membranes. PVDF-g-PBPMA membranes with different grafting densities were obtained by tuning the polymerization time and the modified membranes were characterized by 1H-NMR, FT-IR, XPS, SEM, UV-vis Spectrophotometer, TGA and DSC. The experimental results indicated that PBPMA chains were successfully introduced onto PVDF membranes. Most importantly, the PVDF-g-PBPMA membranes exhibited outstanding UV-shielding property. UV-vis transmittance spectra showed that most UV light below 360 nm could be absorbed by PVDF-g-PBPMA membranes and the whole UV light region (200-400 nm) can be blocked with the reaction time increased.

  18. Investigation of the S1/ICT equilibrium in fucoxanthin by ultrafast pump-dump-probe and femtosecond stimulated Raman scattering spectroscopy.

    Science.gov (United States)

    Redeckas, Kipras; Voiciuk, Vladislava; Vengris, Mikas

    2016-05-01

    Time-resolved multi-pulse spectroscopic methods-pump-dump-probe (PDP) and femtosecond stimulated Raman spectroscopy-were used to investigate the excited state photodynamics of the carbonyl group containing carotenoid fucoxanthin (FX). PDP experiments show that S1 and ICT states in FX are strongly coupled and that the interstate equilibrium is rapidly (<5 ps) reestablished after one of the interacting states is deliberately depopulated. Femtosecond stimulated Raman scattering experiments indicate that S1 and ICT are vibrationally distinct species. Identification of the FSRS modes on the S1 and ICT potential energy surfaces allows us to predict a possible coupling channel for the state interaction.

  19. Theory of laser-assisted autoionization by attosecond light pulses

    International Nuclear Information System (INIS)

    Zhao, Z.X.; Lin, C.D.

    2005-01-01

    We present a quantum theory of the decay of an autoionizing state created in the attosecond xuv (extreme ultraviolet) pump and laser probe measurements within the strong field approximation employing resonance parameters from Fano's theory. From the electron spectra versus the pump-probe time delay, we show how the lifetimes of the resonances can be extracted directly from the time domain measurements

  20. Combined VIS-IR spectrometer with vertical probe beam

    Science.gov (United States)

    Protopopov, V.

    2017-12-01

    A prototype of a combined visible-infrared spectrometer with a vertical probe beam is designed and tested. The combined spectral range is 0.4-20 μ with spatial resolution 1 mm. Basic features include the ability to measure both visibly transparent and opaque substances, as well as buried structures, such as in semiconductor industry; horizontal orientation of a sample, including semiconductor wafers; and reflection mode of operation, delivering twice the sensitivity compared to the transmission mode.

  1. Shaping of picosecond pulses for pumping optical parametric amplification

    International Nuclear Information System (INIS)

    Fueloep, J.A.; Krausz, F.; Major, Zs.; Horvath, B.

    2006-01-01

    Complete test of publication follows. The use of temporally shaped pump pulses for optical parametric amplification (OPA) is expected to facilitate an increase of efficiency and suppression of possible spectral distortions in this process, since the gain sensitively depends on the pump intensity. Our simulations confirmed such beneficial effect of temporally shaped pump pulses on the OPA process. With the aim to realize an optimized OPA stage pumped by shaped pulses, a novel method for passively shaping narrow band picosecond pulses has been developed. The method is based on the pulse-stacking principle, where replicas of the incoming pulse are created in a specially designed four-beam interferometer. The replicas are recombined with appropriate delays. The interferometer design allows for a unique flexibility in varying the pulse shape, since all relevant degrees of freedom, such as relative intensities and delays between the pulse replicas are independently adjustable. According to our calculations a pulse with a flat-top time profile would provide optimal conditions in the OPA process. Usually the pump pulse needs to be amplified in a conventional laser amplifier prior to the OPA. Our cross-correlation measurements showed that we are able to obtain shaped amplified pulses by shaping the amplifier input. Furthermore, by precompensating the distortions introduced by the amplifier we demonstrated our capability to produce amplified pulses with a flat-top time profile.

  2. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    Energy Technology Data Exchange (ETDEWEB)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J. [European Synchrotron Radiation Facility (ESRF), 38 - Grenoble (France); Purans, J.; Sammelselg, V. [Tartu Univ. (Estonia); Chevrier, J.; Huant, S. [Universite Joseph-Fourier, Grenoble I, LEPES, 38 (France); Hamilton, B. [School of Electrical Engineering and Electronics, Manchester (United Kingdom); Saito, A. [Osaka Univ., RIKEN/SPring8 (Japan); Dhez, O. [OGG, INFM/CNR, 38 - Grenoble (France); Brocklesby, W.S. [Southampton Univ., Optoelectronics Research Centre (United Kingdom); Alvarez-Prado, L.M. [Ovieado, Dept. de Fisica (Spain); Kuzmin, A. [Institute of Solid State Physics - Riga (Latvia); Pailharey, D. [CRMC-N - CNRS, 13 - Marseille (France); Tonneau, D. [CRMCN - Faculte des sciences de Luminy, 13 - Marseille (France); Chretien, P. [Laboratoire de Genie Electrique de Paris, 75 - Paris (France); Cricenti, A. [ISM-CNR, Rome (Italy); DeWilde, Y. [ESPCI, 75 - Paris (France)

    2005-07-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document.

  3. Workshop on the coupling of synchrotron radiation IR and X-rays with tip based scanning probe microscopies X-TIP

    International Nuclear Information System (INIS)

    Comin, F.; Martinez-Criado, G.; Mundboth, K.; Susini, J.; Purans, J.; Sammelselg, V.; Chevrier, J.; Huant, S.; Hamilton, B.; Saito, A.; Dhez, O.; Brocklesby, W.S.; Alvarez-Prado, L.M.; Kuzmin, A.; Pailharey, D.; Tonneau, D.; Chretien, P.; Cricenti, A.; DeWilde, Y.

    2005-01-01

    The coupling of scanning probe microscopy (SPM) with synchrotron radiation is attracting increasing attention from nano-science community. By combining these 2 tools one can visualize, for example, the sample nano-structure prior to any X-ray characterization. Coupled with focusing devices or independently, SPM can provide spatial resolution below the optical limits. Furthermore, the possibility of employing SPM to manipulate nano-objects under X-ray beams is another exciting perspective. This document gathers the transparencies of 6 of the presentations made at the workshop: 1) the combination of atomic force microscopy and X-ray beam - experimental set-up and objectives; 2) the combination of scanning probe microscope and X-rays for detection of electrons; 3) towards soft X-ray scanning microscopy using tapered capillaries and laser-based high harmonic sources; 4) near-field magneto-optical microscopy; 5) near-field scanning optical microscopy - a brief overview -; and 6) from aperture-less near-field optical microscopy to infra-red near-field night vision. 4 posters entitled: 1) development of laboratory setup for X-ray/AFM experiments, 2) towards X-ray diffraction on single islands, 3) nano-XEOL using near-field detection, and 4) local collection with a STM tip of photoelectrons emitted by a surface irradiated by visible of UV laser beam, are included in the document

  4. UV laser interaction with a fluorescent dye solution studied using pulsed digital holography.

    Science.gov (United States)

    Amer, Eynas; Gren, Per; Sjödahl, Mikael

    2013-10-21

    A frequency tripled Q-switched Nd-YAG laser (wavelength 355 nm, pulse duration 12 ns) has been used to pump Coumarin 153 dye solved in ethanol. Simultaneously, a frequency doubled pulse (532 nm) from the same laser is used to probe the solvent perpendicularly resulting in a gain through stimulated laser induced fluorescence (LIF) emission. The resulting gain of the probe beam is recorded using digital holography by blending it with a reference beam on the detector. Two digital holograms without and with the pump beam were recorded. Intensity maps were calculated from the recorded digital holograms and used to calculate the gain of the probe beam due to the stimulated LIF. In addition numerical data of the local temperature rise was calculated from the corresponding phase maps using Radon inversion. It was concluded that about 15% of the pump beam energy is transferred to the dye solution as heat while the rest is consumed in the radiative process. The results show that pulsed digital holography is a promising technique for quantitative study of fluorescent species.

  5. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Science.gov (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  6. IR, UV-Vis, magnetic and thermal characterization of chelates of some catecholamines and 4-aminoantipyrine with Fe(III) and Cu(II)

    Science.gov (United States)

    Mohamed, Gehad G.; Zayed, M. A.; El-Dien, F. A. Nour; El-Nahas, Reham G.

    2004-07-01

    The dopamine derivatives participate in the regulation of wide variety of physiological functions in the human body and in medication life. Increase and/or decrease in the concentration of dopamine in human body reflect an indication for diseases such as Schizophrenia and/or Parkinson diseases. α-Methyldopa (α-MD) in tablets is used in medication of hypertension. The Fe(III) and Cu(II) chelates with coupled products of adrenaline hydrogen tartarate (AHT), levodopa (LD), α-MD and carbidopa (CD) with 4-aminoantipyrine (4-AAP) are prepared and characterized. Different physico-chemical methods like IR, magnetic and UV-Vis spectra are used to investigate the structure of these chelates. Fe(III) form 1:2 (M:catecholamines) chelates while Cu(II) form 1:1 chelates. Catecholamines behave as a bidentate mono- or dibasic ligands in binding to the metal ions. IR spectra show that the catecholamines are coordinated to the metal ions in a bidentate manner with O,O donor sites of the phenolic - OH. Magnetic moment measurements reveal the presence of Fe(III) chelates in octahedral geometry while the Cu(II) chelates are square planar. The thermal decomposition of Fe(III) and Cu(II) complexes is studied using thermogravimetric (TGA) and differential thermal analysis (DTA) techniques. The water molecules are removed in the first step followed immediately by decomposition of the ligand molecules. The activation thermodynamic parameters, such as, energy of activation, enthalpy, entropy and free energy change of the complexes are evaluated and the relative thermal stability of the complexes are discussed.

  7. Mirrorless Lasing in Optically Pumped Rubidium Vapor

    Science.gov (United States)

    2013-03-01

    2 or 6P1/2-6S1/2, I is the pump intensity, and Isat is found using equation 4.3. sat = hν32(32 + 30) 32 , (4.3) where ν32 is the...is the small signal gain coefficient, Isat is the saturation intensity, and z is the gain path length. With this assumption the IR pulse energy at

  8. FT-IR, FT-Raman, UV-visible, and NMR spectroscopy and vibrational properties of the labdane-type diterpene 13-epi-sclareol.

    Science.gov (United States)

    Chain, Fernando E; Leyton, Patricio; Paipa, Carolina; Fortuna, Mario; Brandán, Silvia A

    2015-03-05

    In this work, FT-IR, FT-Raman, UV-Visible and NMR spectroscopies and density functional theory (DFT) calculations were employed to study the structural and vibrational properties of the labdane-type diterpene 13-epi-sclareol using the hybrid B3LYP method together with the 6-31G(∗) basis set. Three stable structures with minimum energy found on the potential energy curves (PES) were optimized, and the corresponding molecular electrostatic potentials, atomic charges, bond orders, stabilization energies and topological properties were computed at the same approximation level. The complete assignment of the bands observed in the vibrational spectrum of 13-epi-sclareol was performed taking into account the internal symmetry coordinates for the three structures using the scaled quantum mechanical force field (SQMFF) methodology at the same level of theory. In addition, the force constants were calculated and compared with those reported in the literature for similar compounds. The predicted vibrational spectrum and the calculated (1)H NMR and (13)C NMR chemical shifts are in good agreement with the corresponding experimental results. The theoretical UV-Vis spectra for the most stable structure of 13-epi-sclareol demonstrate a better correlation with the corresponding experimental spectrum. The study of the three conformers by means of the theory of atoms in molecules (AIM) revealed different H bond interactions and a strong dependence of the interactions on the distance between the involved atoms. Furthermore, the natural bond orbital (NBO) calculations showed the characteristics of the electronic delocalization for the two six-membered rings with chair conformations. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Regioselective aromatic substitution reactions of cyclometalated Ir(III) complexes: synthesis and photochemical properties of substituted Ir(III) complexes that exhibit blue, green, and red color luminescence emission.

    Science.gov (United States)

    Aoki, Shin; Matsuo, Yasuki; Ogura, Shiori; Ohwada, Hiroki; Hisamatsu, Yosuke; Moromizato, Shinsuke; Shiro, Motoo; Kitamura, Masanori

    2011-02-07

    In this manuscript, the regioselective halogenation, nitration, formylation, and acylation of Ir(tpy)(3) and Ir(ppy)(3) (tpy = 2-(4'-tolyl)pyridine and ppy = 2-phenylpyridine) and the subsequent conversions are described. During attempted bromination of the three methyl groups in fac-Ir(tpy)(3) using N-bromosuccinimide (NBS) and benzoyl peroxide (BPO), three protons at the 5'-position (p-position with respect to the C-Ir bond) of phenyl rings in tpy units were substituted by Br, as confirmed by (1)H NMR spectra, mass spectra, and X-ray crystal structure analysis. It is suggested that such substitution reactions of Ir complexes proceed via an ionic mechanism rather than a radical mechanism. UV-vis and luminescence spectra of the substituted Ir(III) complexes are reported. The introduction of electron-withdrawing groups such as CN and CHO groups at the 5'-position of tpy induces a blue shift of luminescence emission to about 480 nm, and the introduction of electron-donating groups such as an amino group results in a red shift to about 600 nm. A reversible change of emission for the 5'-amino derivative of Ir(tpy)(3), Ir(atpy)(3), between red and green occurs upon protonation and deprotonation.

  10. A method for evaluating horizontal well pumping tests.

    Science.gov (United States)

    Langseth, David E; Smyth, Andrew H; May, James

    2004-01-01

    Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.

  11. The spectroscopic (FT-IR, FT-Raman, UV and NMR) first order hyperpolarizability and HOMO-LUMO analysis of dansyl chloride

    Science.gov (United States)

    Karabacak, M.; Cinar, M.; Kurt, M.; Poiyamozhi, A.; Sundaraganesan, N.

    2014-01-01

    The solid phase FT-IR and FT-Raman spectra of dansyl chloride (DC) have been recorded in the regions 400-4000 and 50-4000 cm-1, respectively. The spectra have been interpreted in terms of fundamentals modes, combination and overtone bands. The structure of the molecule has been optimized and the structural characteristics have been determined by density functional theory (B3LYP) method with 6-311++G(d,p) as basis set. The vibrational frequencies were calculated for most stable conformer and were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. The infrared and Raman spectra have also been predicted from the calculated intensities. 1H and 13C NMR spectra were recorded and 1H and 13C nuclear magnetic resonance chemical shifts of the molecule were calculated using the gauge independent atomic orbital (GIAO) method. UV-Visible spectrum of the compound was recorded in the region 200-600 nm and the electronic properties HOMO and LUMO energies were measured by time-dependent TD-DFT approach. Nonlinear optical and thermodynamic properties were interpreted. All the calculated results were compared with the available experimental data of the title molecule.

  12. Research on the speed of light transmission in a dual-frequency laser pumped single fiber with two directions

    Science.gov (United States)

    Qiu, Wei; Liu, Jianjun; Wang, Yuda; Yang, Yujing; Gao, Yuan; Lv, Pin; Jiang, Qiuli

    2018-01-01

    In this article a general theory of the coherent population oscillation effect in an erbium-doped fiber at room temperature is presented. We use dual pumping light waves with a simplified two-level system. Thus the time delay equations can be calculated from rate equations and the transmission equation. Using numerical simulation, in the case of dual-frequency pump light waves (1480 nm and 980 nm) with two directions, we analyze the influence of the pump power ratio on the group speed of light propagation. In addition, we compare slow light propagation with a single-pumping light and slow light propagation with a dual-pumping light at room temperature. The discussion shows that a larger time delay of slow light propagation can be obtained with a dual-frequency pumping laser. Compared to previous research methods, a dual-frequency laser pumped fiber with two directions is more controllable. Moreover, we conclude that the group velocity of light can be varied by changing the pump ratio.

  13. Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Markos, Christos; Bang, Ole

    2017-01-01

    We investigate numerically soliton-plasma interaction in a noble-gas-filled silica hollow-core anti-resonant fiber pumped in the mid-IR at 3.0 mu m. We observe multiple soliton self-compression stages due to distinct stages where either the self-focusing or the self-defocusing nonlinearity...

  14. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes.

    Science.gov (United States)

    Lu, Fang-Min; Hilgemann, Donald W

    2017-07-03

    Decades ago, it was proposed that Na transport in cardiac myocytes is modulated by large changes in cytoplasmic Na concentration within restricted subsarcolemmal spaces. Here, we probe this hypothesis for Na/K pumps by generating constitutive transsarcolemmal Na flux with the Na channel opener veratridine in whole-cell patch-clamp recordings. Using 25 mM Na in the patch pipette, pump currents decay strongly during continuous activation by extracellular K (τ, ∼2 s). In contradiction to depletion hypotheses, the decay becomes stronger when pump currents are decreased by hyperpolarization. Na channel currents are nearly unchanged by pump activity in these conditions, and conversely, continuous Na currents up to 0.5 nA in magnitude have negligible effects on pump currents. These outcomes are even more pronounced using 50 mM Li as a cytoplasmic Na congener. Thus, the Na/K pump current decay reflects mostly an inactivation mechanism that immobilizes Na/K pump charge movements, not cytoplasmic Na depletion. When channel currents are increased beyond 1 nA, models with unrestricted subsarcolemmal diffusion accurately predict current decay (τ ∼15 s) and reversal potential shifts observed for Na, Li, and K currents through Na channels opened by veratridine, as well as for Na, K, Cs, Li, and Cl currents recorded in nystatin-permeabilized myocytes. Ion concentrations in the pipette tip (i.e., access conductance) track without appreciable delay the current changes caused by sarcolemmal ion flux. Importantly, cytoplasmic mixing volumes, calculated from current decay kinetics, increase and decrease as expected with osmolarity changes (τ >30 s). Na/K pump current run-down over 20 min reflects a failure of pumps to recover from inactivation. Simulations reveal that pump inactivation coupled with Na-activated recovery enhances the rapidity and effectivity of Na homeostasis in cardiac myocytes. In conclusion, an autoregulatory mechanism enhances cardiac Na/K pump activity when

  15. Temperature in the throat

    Directory of Open Access Journals (Sweden)

    Dariush Kaviani

    2016-09-01

    Full Text Available We study the temperature of extended objects in string theory. Rotating probe D-branes admit horizons and temperatures a la Unruh effect. We find that the induced metrics on slow rotating probe D1-branes in holographic string solutions including warped Calabi–Yau throats have distinct thermal horizons with characteristic Hawking temperatures even if there is no black hole in the bulk Calabi–Yau. Taking the UV/IR limits of the solution, we show that the world volume black hole nucleation depends on the deformation and the warping of the throat. We find that world volume horizons and temperatures of expected features form not in the regular confining IR region but in the singular nonconfining UV solution. In the conformal limit of the UV, we find horizons and temperatures similar to those on rotating probes in the AdS throat found in the literature. In this case, we also find that activating a background gauge field form the U(1 R-symmetry modifies the induced metric with its temperature describing two different classes of black hole solutions.

  16. Theory of pump–probe ultrafast photoemission and X-ray absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori

    2016-01-15

    Highlights: • Pump–probe ultrafast XAFS and XPS spectra are theoretically studied. • Keldysh Green's function theory is applied. • Important many-body effects are explicitly included. - Abstract: Keldysh Green's function approach is extensively used in order to derive practical formulas to analyze pump–probe ultrafast photoemission and X-ray absorption spectra. Here the pump pulse is strong enough whereas the probe X-ray pulse can be treated by use of a perturbation theory. We expand full Green's function in terms of renormalized Green's function without the interaction between electrons and probe pulse. The present theoretical formulas allow us to handle the intrinsic and extrinsic losses, and furthermore resonant effects in X-ray Absorption Fine Structures (XAFS). To understand the radiation field screening in XPS spectra, we have to use more sophisticated theoretical approach. In the ultrafast XPS and XAFS analyses the intrinsic and extrinsic loss effects can interfere as well. In the XAFS studies careful analyses are necessary to handle extrinsic losses in terms of damped photoelectron propagation. The nonequilibrium dynamics after the pump pulse irradiation is well described by use of the time-dependent Dyson orbitals. Well above the edge threshold, ultrafast photoelectron diffraction and extended X-ray absorption fine structure (EXAFS) provide us with transient structural change after the laser pump excitations. In addition to these slow processes, the rapid oscillation in time plays an important role related to pump electronic excitations. Near threshold detailed information could be obtained for the combined electronic and structural dynamics. In particular high-energy photoemission and EXAFS are not so influenced by the details of excited states by pump pulse. Random-Phase Approximation (RPA)-boson approach is introduced to derive some practical formulas for time-dependent intrinsic amplitudes.

  17. Effect of laser power and specimen temperature on atom probe analyses of magnesium alloys

    International Nuclear Information System (INIS)

    Oh-ishi, K.; Mendis, C.L.; Ohkubo, T.; Hono, K.

    2011-01-01

    The influence of laser power, wave length, and specimen temperature on laser assisted atom probe analyses for Mg alloys was investigated. Higher laser power and lower specimen temperature led to improved mass and spatial resolutions. Background noise and mass resolutions were degraded with lower laser power and higher specimen temperature. By adjusting the conditions for laser assisted atom probe analyses, atom probe results with atomic layer resolutions were obtained from all the Mg alloys so far investigated. Laser assisted atom probe investigations revealed detailed chemical information on Guinier-Preston zones in Mg alloys. -- Research highlights: → We study performance of UV laser assisted atom probe analysis for Mg alloys. → There is an optimized range of laser power and specimen temperature. → Optimized UV laser enables atom probe data of Mg alloys with high special resolution.

  18. A study on UV irradiated HDPE

    International Nuclear Information System (INIS)

    Sang Haibo; Liu Zimin; Wu Shishan; Shen Jian

    2006-01-01

    The structure and properties of HDPE irradiated by ultraviolet (UV) in ozone atmosphere were studied by FT-IR, XPS, gel, and water contact angle test. The oxygen-containing groups such as C=O, C-O and C(=O)O were introduced onto high density polyethylene (HDPE) chains through ultraviolet irradiation in ozone atmosphere, their content increased with the UV irradiation time. Under the same UV irradiation conditions, amount of the oxygen-containing groups introduced in ozone atmosphere was more than that in air atmosphere, indicating that the speed of oxygen-containing groups introduced through UV irradiation in ozone atmosphere was faster than that in air. Therefore, HDPE could be quickly functionalized through UV irradiation in ozone atmosphere. There was no gel formed in the HDPE irradiated in ozone atmosphere. After UV irradiation, the water contact angle of HDPE decreased, and its hydrophilicity was improved, suggesting that the compatibility between the irradiated HDPE and polar polymer or inorganic fillers may be better. Compared with HDPE, the temperature of initial weight loss for irradiated HDPE decreased. The structure and properties of irradiated HDPE/CaCO 3 blend were also investigated. The results showed that the compatibility and interfacial action of the irradiated HDPE/CaCO 3 blend were improved compared to that of HDPE/CaCO 3 blend. The mechanical properties of irradiated HDPE/CaCO 3 blend increased with increasing irradiation time. (authors)

  19. Effects of pollution in River Krishni on hand pump water quality

    Directory of Open Access Journals (Sweden)

    K. Dhakyanaika

    2010-01-01

    Full Text Available River Krishni is highly polluted. The investigation was “to study the effect of pollution in River Krishni on the quality ofgroundwater abstracted through shallow and deep hand pumps placed in the close vicinity of River Krishni”. One suchaffected Village Chanedna Maal was selected for the study. Water samples were analyzed in terms of physical, chemicaland bacteriological water quality parameters. Range of values of conductivity (1040–2770 μS/cm, TOC (27.79–1365.1mg/L, UV absorbance at 254 nm (0.281–10.34 cm-1, color (1510–5200 CU, and COD (15.82–1062 mg/L indicatedpresence of significant amount of pollution / organics in the river water, total coliform (16x102–46x106 MPN/100mLand fecal coliform (16x102–24x106 MPN/100mL. In case of deeper India Mark-II hand pumps conductivity was foundto range from 443–755 μS/cm, TOC (0.226–9.284 mg/L, UV absorbance (0.0–0.118 cm-1, colour (0.0–119 CU, COD(9.0–113 mg/L and MPN (0.0–93x101/100m L. While in case of shallower hand pumps conductivity (441–1609 μS/cm, TOC (0.015–68.82 mg/L, UV absorbance (0.0–1.094 cm-1, colour (4.0–560 CU, COD (9.72–163 mg/L and MPN(0.0–15x102/100mL. Hand pumps abstracting water from shallow and deep unconfined aquifers have been found to deliverpolluted water in terms of color, organics and coliform bacteria. As the hand pumps are the only source of water supply inVillage Chandena Maal, pollution of the groundwater has adversely affected the day to day life of its 3000 residents.

  20. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  1. GHz-bandwidth upconversion detector using a unidirectional ring cavity to reduce multilongitudinal mode pump effects

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    We demonstrate efficient upconversion of modulated infrared (IR) signals over a wide bandwidth (up to frequencies in excess of 1 GHz) via cavity-enhanced sum-frequency generation (SFG) in a periodically poled LiNbO3. Intensity modulated IR signal is produced by combining beams from two 1547 nm...... narrow-linewidth lasers in a fiber coupler while tuning their wavelength difference down to 10 pm or less. The SFG crystal is placed inside an Nd:YVO4 ring cavity that provides 1064 nm circulating pump powers of up to 150 W in unidirectional operation. Measured Fabry-Perot spectrum at 1064 nm confirms...... the enhanced spectral stability from multiple to single longitudinal mode pumping condition. We describe analytically and demonstrate experimentally the deleterious effects of using a multimode pump to the high-bandwidth RF spectrum of the 630 nm SFG output. Offering enhanced sensitivity without the need...

  2. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation.

    Science.gov (United States)

    Moore, Henna M; Bai, Baoyan; Boisvert, François-Michel; Latonen, Leena; Rantanen, Ville; Simpson, Jeremy C; Pepperkok, Rainer; Lamond, Angus I; Laiho, Marikki

    2011-10-01

    The nucleolus is a nuclear organelle that coordinates rRNA transcription and ribosome subunit biogenesis. Recent proteomic analyses have shown that the nucleolus contains proteins involved in cell cycle control, DNA processing and DNA damage response and repair, in addition to the many proteins connected with ribosome subunit production. Here we study the dynamics of nucleolar protein responses in cells exposed to stress and DNA damage caused by ionizing and ultraviolet (UV) radiation in diploid human fibroblasts. We show using a combination of imaging and quantitative proteomics methods that nucleolar substructure and the nucleolar proteome undergo selective reorganization in response to UV damage. The proteomic responses to UV include alterations of functional protein complexes such as the SSU processome and exosome, and paraspeckle proteins, involving both decreases and increases in steady state protein ratios, respectively. Several nonhomologous end-joining proteins (NHEJ), such as Ku70/80, display similar fast responses to UV. In contrast, nucleolar proteomic responses to IR are both temporally and spatially distinct from those caused by UV, and more limited in terms of magnitude. With the exception of the NHEJ and paraspeckle proteins, where IR induces rapid and transient changes within 15 min of the damage, IR does not alter the ratios of most other functional nucleolar protein complexes. The rapid transient decrease of NHEJ proteins in the nucleolus indicates that it may reflect a response to DNA damage. Our results underline that the nucleolus is a specific stress response organelle that responds to different damage and stress agents in a unique, damage-specific manner.

  3. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  4. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  5. Structural evaluation of thermocouple probes for 241-AZ-101 waste tank

    International Nuclear Information System (INIS)

    Kanjilal, S.K.

    1994-01-01

    This document reports on the structural analysis of the thermocouple probe to be installed in 241-AZ-101 waste tank. The thermocouple probe is analyzed for normal pump mixing operation and potential earthquake induced loads required by the Hanford Site Design Criteria SDC-4.1

  6. Structural evaluation of thermocouple probes for 241-AZ-101 waste tank

    Energy Technology Data Exchange (ETDEWEB)

    Kanjilal, S.K.

    1994-12-06

    This document reports on the structural analysis of the thermocouple probe to be installed in 241-AZ-101 waste tank. The thermocouple probe is analyzed for normal pump mixing operation and potential earthquake induced loads required by the Hanford Site Design Criteria SDC-4.1.

  7. Neutron-neutron probe for uranium exploration

    International Nuclear Information System (INIS)

    Smith, R.C.

    1979-01-01

    A neutron activation probe for assaying the amount of fissionable isotopes in an ore body is described which comprises a casing which is movable through a borehole in the ore body, a neutron source and a number of delayed neutron detectors arranged colinearly in the casing below the neutron source for detecting delayed neutrons

  8. An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions

    International Nuclear Information System (INIS)

    Kowalski, Jerzy

    2014-01-01

    Presented paper shows the results of the laboratory study on the relation between the chosen malfunctions of a fuel pump and the exhaust gas composition of the marine engine. The object of research is a laboratory four-stroke diesel engine, operated at a constant speed. During the research over 50 parameters were measured with technical condition of the engine recognized as “working properly” and with simulated fuel pump malfunctions. Considered malfunctions are: fuel injection timing delay and two sets of fuel leakages in the fuel pump of one engine cylinder. The results of laboratory research confirm that fuel injection timing delay and fuel leakage in the fuel pump cause relatively small changes in thermodynamic parameters of the engine. Changes of absolute values are so small they may be omitted by marine engines operators. The measuring of the exhaust gas composition shows markedly affection with simulated malfunctions of the fuel pump. Engine operation with delayed fuel injection timing in one cylinder indicates CO 2 emission increase and NOx emission decreases. CO emission increases only at high the engine loads. Fuel leakage in the fuel pump causes changes in CO emission, the increase of CO 2 emission and the decrease of NOx emission. - Highlights: •Chosen malfunctions of the fuel injection pump of marine engine are simulated. •Changes of thermodynamic parameters of marine engine are analyzed. •Changes of CO, CO 2 and NOx emission characteristics of marine engine are analyzed. •Injection pump malfunctions take significant changes in emission characteristics

  9. Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser.

    Science.gov (United States)

    Kwon, Osung; Ra, Young-Sik; Kim, Yoon-Ho

    2009-07-20

    Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.

  10. Ischemic preconditioning provides both acute and delayed protection against renal ischemia and reperfusion injury in mice.

    Science.gov (United States)

    Joo, Jin Deok; Kim, Mihwa; D'Agati, Vivette D; Lee, H Thomas

    2006-11-01

    Acute as well as delayed ischemic preconditioning (IPC) provides protection against cardiac and neuronal ischemia reperfusion (IR) injury. This study determined whether delayed preconditioning occurs in the kidney and further elucidated the mechanisms of renal IPC in mice. Mice were subjected to IPC (four cycles of 5 min of ischemia and reperfusion) and then to 30 min of renal ischemia either 15 min (acute IPC) or 24 h (delayed IPC) later. Both acute and delayed renal IPC provided powerful protection against renal IR injury. Inhibition of Akt but not extracellular signal-regulated kinase phosphorylation prevented the protection that was afforded by acute IPC. Neither extracellular signal-regulated kinase nor Akt inhibition prevented protection that was afforded by delayed renal IPC. Pretreatment with an antioxidant, N-(2-mercaptopropionyl)-glycine, to scavenge free radicals prevented the protection that was provided by acute but not delayed renal IPC. Inhibition of protein kinase C or pertussis toxin-sensitive G-proteins attenuated protection from both acute and delayed renal IPC. Delayed renal IPC increased inducible nitric oxide synthase (iNOS) as well as heat-shock protein 27 synthesis, and the renal protective effects of delayed preconditioning were attenuated by a selective inhibitor of iNOS (l-N(6)[1-iminoethyl]lysine). Moreover, delayed IPC was not observed in iNOS knockout mice. Both acute and delayed IPC were independent of A(1) adenosine receptors (AR) as a selective A(1)AR antagonist failed to block preconditioning and acute and delayed preconditioning occurred in mice that lacked A(1)AR. Therefore, this study demonstrated that acute or delayed IPC provides renal protection against IR injury in mice but involves distinct signaling pathways.

  11. Photodegradation and toxicity changes of antibiotics in UV and UV/H{sub 2}O{sub 2} process

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yuan [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Hu Chun, E-mail: huchun@rcees.ac.cn [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China); Xuexiang, Hu; Dongbin, Wei; Yong, Chen; Jiuhui, Qu [State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 (China)

    2011-01-30

    The photodegradation of three antibiotics, oxytetracycline (OTC), doxycycline (DTC), and ciprofloxacin (CIP) in UV and UV/H{sub 2}O{sub 2} process was investigated with a low-pressure UV lamp system. Experiments were performed in buffered ultrapure water (UW), local surface water (SW), and treated water from local municipal drinking water treatment plant (DW) and wastewater treatment plant (WW). The efficiency of UV/H{sub 2}O{sub 2} process was affected by water quality. For all of the three selected antibiotics, the fastest degradation was observed in DW, and the slowest degradation occurred in WW. This phenomenon can be explained by R{sub OH,UV}, defined as the experimentally determined {center_dot}OH radical exposure per UV fluence. The R{sub OH,UV} values represent the background {center_dot}OH radical scavenging in water matrix, obtained by the degradation of para-chlorobenzoic acid (pCBA), a probe compound. In natural water, the indirect degradation of CIP did not significantly increase with the addition of H{sub 2}O{sub 2} due to its effective degradation by UV direct photolysis. Moreover, the formation of several photoproducts and oxidation products of antibiotics in UV/H{sub 2}O{sub 2} process was identified using GC-MS. Toxicity assessed by Vibrio fischer (V. fischer), was increased in UV photolysis, for the photoproducts still preserving the characteristic structure of the parent compounds. While in UV/H{sub 2}O{sub 2} process, toxicity increased first, and then decreased; nontoxic products were formed by the oxidation of {center_dot}OH radical. In this process, detoxification was much easier than mineralization for the tested antibiotics, and the optimal time for the degradation of pollutants in UV/H{sub 2}O{sub 2} process would be determined by parent compound degradation and toxicity changes.

  12. Synchronously pumped optical parametric oscillation in periodically poled lithium niobate with 1-W average output power

    NARCIS (Netherlands)

    Graf, T.; McConnell, G.; Ferguson, A.I.; Bente, E.A.J.M.; Burns, D.; Dawson, M.D.

    1999-01-01

    We report on a rugged all-solid-state laser source of near-IR radiation in the range of 1461–1601 nm based on a high-power Nd:YVO4 laser that is mode locked by a semiconductor saturable Bragg reflector as the pump source of a synchronously pumped optical parametric oscillator with a periodically

  13. Pump pulse duration dependence of coherent phonon amplitudes in antimony

    Energy Technology Data Exchange (ETDEWEB)

    Misochko, O. V., E-mail: misochko@issp.ac.ru [Russian Academy of Sciences, Institute of Solid State Physics (Russian Federation)

    2016-08-15

    Coherent optical phonons of A{sub 1k} and E{sub k} symmetry in antimony have been studied using the femtosecond pump–probe technique. By varying the pump-pulse duration and keeping the probe duration constant, it was shown that the amplitude of coherent phonons of both symmetries exponentially decreases with increasing pulse width. It was found that the amplitude decay rate for the fully symmetric phonons with larger frequency is greater than that of the doubly degenerate phonons, whereas the frequency and lifetime for coherent phonons of both symmetries do not depend on the pump-pulse duration. Based on this data, the possibility of separation between dynamic and kinematic contributions to the generation mechanism of coherent phonons is discussed.

  14. Entanglement of heavy quark impurities and generalized gravitational entropy

    Science.gov (United States)

    Kumar, S. Prem; Silvani, Dorian

    2018-01-01

    We calculate the contribution from non-conformal heavy quark sources to the entanglement entropy (EE) of a spherical region in N=4 SUSY Yang-Mills theory. We apply the generalized gravitational entropy method to non-conformal probe D-brane embeddings in AdS5×S5, dual to pointlike impurities exhibiting flows between quarks in large-rank tensor representations and the fundamental representation. For the D5-brane embedding which describes the screening of fundamental quarks in the UV to the antisymmetric tensor representation in the IR, the EE excess decreases non-monotonically towards its IR asymptotic value, tracking the qualitative behaviour of the one-point function of static fields sourced by the impurity. We also examine two classes of D3-brane embeddings, one which connects a symmetric representation source in the UV to fundamental quarks in the IR, and a second category which yields the symmetric representation source on the Coulomb branch. The EE excess for the former increases from the UV to the IR, whilst decreasing and becoming negative for the latter. In all cases, the probe free energy on hyperbolic space with β = 2 π increases monotonically towards the IR, supporting its interpretation as a relative entropy. We identify universal corrections, depending logarithmically on the VEV, for the symmetric representation on the Coulomb branch.

  15. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping

    International Nuclear Information System (INIS)

    Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen; Chang Yung-Yung

    2011-01-01

    A system is designed to observe the phenomena of electromagnetically induced transparency and optical pumping in cesium D 1 and D 2 lines at room temperature. When a pump laser is frequency-locked on the top of a hyperfine transition and the frequency of the probe laser scans over another hyperfine transition, a spectrum of V-type electromagnetically induced transparency or an optical pumping can be observed depending on whether the two lasers share a common ground state. Therefore, these results can be used to identify the unknown hyperfine transitions of the D 1 line transitions. For educational purposes, this system is helpful for understanding the electromagnetically induced transparency and the optical pumping

  16. Collecting the Puzzle Pieces: Completing HST's UV+NIR Survey of the TRAPPIST-1 System ahead of JWST

    Science.gov (United States)

    de Wit, Julien

    2017-08-01

    Using the Spitzer Space Telescope, our team has discovered 7 Earth-sized planets around the nearby Ultra-cool dwarf star TRAPPIST-1. These planets are the first to be simultaneously Earth-sized, temperate, and amenable for in-depth atmospheric studies with space-based observatories (notably, JWST). TRAPPIST-1's system thus provides us with the first opportunity to probe the atmospheres of Earth-sized exoplanets and search for signs of habitability beyond our solar system, which will require spectral information from the UV to the IR to complete their atmospheric puzzles.We request 114 HST orbits to complete the UV+NIR survey of the 7 planets in preparation for their in-depth followup with JWST. The suggested low-density of the planets combined with their complex orbital resonance chain indicate that they migrated inward to their current positions and may harbor large water rich reservoir or leftover primordial H2 atmospheres. We have already ruled out the presence of clear H2 atmospheres for the 5 innermost planets using WFC3 and are requesting 16 WFC3 orbits to complete the TRAPPIST-1 NIR reconnaissance survey. Our primary request consists in 98 STIS orbits to complete the survey for extended H-exospheres around each of the planets. H-exospheres are the most accessible observables for volatile reservoirs, which have not been ruled out by our WFC3 observations. Exosphere detection is only amenable using HST unique capabilities in the UV and are pivotal to guide JWST's in-depth followup. The combined information from HST's UV and NIR observations will allow us put the first critical pieces of the atmospheric puzzle in place for these temperate earth-sized worlds.

  17. Crosslink the Novel Group of Polymeric Binders BioCo by the UV-radiation

    Directory of Open Access Journals (Sweden)

    Grabowska B.

    2016-06-01

    Full Text Available The spectroscopic FT-IR and FT-Raman methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid/sodium salt of carboxymethyl starch (PAA/CMS-Na applied as a binder for moulding sands (as a novel group binders BioCo. The cross-linking was performed by physical agent, applying the UV-radiation. The results of structural studies (IR, Raman confirm the overlapping of the process of cross-linking polymer composition PAA/CMS-Na in UV radiation. Taking into account the ingredients and structure of the polymeric composition can also refer to a curing process in a binder - mineral matrix mixture. In the system of binder-mineral matrix under the influence of ultraviolet radiation is also observed effect of binding. However, the bonding process does not occur in the entire volume of the investigated system, but only on the surface, which gives some possibilities for application in the use of UV curing surface of cores, and also to cure sand moulds in 3D printing technology.

  18. Peripheral tissue metabolism during off-pump versus on-pump coronary artery bypass graft surgery: the microdialysis study.

    Science.gov (United States)

    Pojar, Marek; Mand'ák, Jirí; Cibícek, Norbert; Lonský, Vladimír; Dominik, Jan; Palicka, Vladimír; Kubícek, Jaroslav

    2008-05-01

    The aim of this study was to monitor and compare metabolic changes in the skeletal muscle during coronary artery bypass grafting surgery with and without cardiopulmonary bypass (CPB) by means of interstitial microdialysis. Glucose, lactate, pyruvate and glycerol were assessed as markers of basic metabolism and tissue perfusion. Twenty patients undergoing surgical myocardial revascularization were enrolled in this pilot study. Ten patients were operated on without CPB (group A, off-pump) and 10 patients using normothermic CPB (group B, on-pump). Interstitial microdialysis was performed by a CMA 60 (CMA/Microdialysis AB, Sweden) probe, inserted into the patient's left deltoid muscle. Microdialysis measurements were performed at 30 min intervals. Glucose, lactate, pyruvate and glycerol were measured in samples using a CMA 600 Analyser (CMA/Microdialysis AB, Sweden). Results in both groups were statistically processed and the groups were compared. Both groups were similar with regards to preoperative characteristics. Dynamic changes of interstitial concentrations of the measured analytes were found in off-pump (group A) and on-pump (group B) patients during the operation. There were no significant differences in dialysate concentrations of glucose and lactate between the groups. Significant differences were detected in pyruvate concentrations, lactate-pyruvate ratio and glycerol concentrations between off-pump versus on-pump patients. Pyruvate concentrations were higher in the off-pump group (plactate-pyruvate ratios indicating the aerobic/anaerobic metabolism status were lower in the off-pump group (pglucose, glycerol, pyruvate and lactate were found in both groups of patients (off-pump and on-pump). The presented preliminary results suggest that extracorporeal circulation during cardiac operations could compromise skeletal muscle energy metabolism.

  19. Laser desorption single-conformation UV and IR spectroscopy of the sulfonamide drug sulfanilamide, the sulfanilamide-water complex, and the sulfanilamide dimer.

    Science.gov (United States)

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2017-06-07

    We have studied the conformational preferences of the sulfonamide drug sulfanilamide, its dimer, and its monohydrated complex through laser desorption single-conformation UV and IR spectroscopy in a molecular beam. Based on potential energy curves for the inversion of the anilinic and the sulfonamide NH 2 groups calculated at DFT level, we suggest that the zero-point level wave function of the sulfanilamide monomer is appreciably delocalized over all four conformer wells. The sulfanilamide dimer, and the monohydrated complex each exhibit a single isomer in the molecular beam. The isomeric structures of the sulfanilamide dimer and the monohydrated sulfanilamide complex were assigned based on their conformer-specific IR spectra in the NH and OH stretch region. Quantum Theory of Atoms in Molecules (QTAIM) analysis of the calculated electron density in the water complex suggests that the water molecule is bound side-on in a hydrogen bonding pocket, donating one O-HO[double bond, length as m-dash]S hydrogen bond and accepting two hydrogen bonds, a NHO and a CHO hydrogen bond. QTAIM analysis of the dimer electron density suggests that the C i symmetry dimer structure exhibits two dominating N-HO[double bond, length as m-dash]S hydrogen bonds, and three weaker types of interactions: two CHO bonds, two CHN bonds, and a chalcogen OO interaction. Most interestingly, the molecular beam dimer structure closely resembles the R dimer unit - the dimer unit with the greatest interaction energy - of the α, γ, and δ crystal polymorphs. Interacting Quantum Atoms analysis provides evidence that the total intermolecular interaction in the dimer is dominated by the short-range exchange-correlation contribution.

  20. The HDUV Survey: Six Lyman Continuum Emitter Candidates at z ˜ 2 Revealed by HST UV Imaging

    Science.gov (United States)

    Naidu, R. P.; Oesch, P. A.; Reddy, N.; Holden, B.; Steidel, C. C.; Montes, M.; Atek, H.; Bouwens, R. J.; Carollo, C. M.; Cibinel, A.; Illingworth, G. D.; Labbé, I.; Magee, D.; Morselli, L.; Nelson, E. J.; van Dokkum, P. G.; Wilkins, S.

    2017-09-01

    We present six galaxies at z˜ 2 that show evidence of Lyman continuum (LyC) emission based on the newly acquired UV imaging of the Hubble Deep UV legacy survey (HDUV) conducted with the WFC3/UVIS camera on the Hubble Space Telescope (HST). At the redshift of these sources, the HDUV F275W images partially probe the ionizing continuum. By exploiting the HST multiwavelength data available in the HDUV/GOODS fields, models of the UV spectral energy distributions, and detailed Monte Carlo simulations of the intergalactic medium absorption, we estimate the absolute ionizing photon escape fractions of these galaxies to be very high—typically > 60 % (> 13 % for all sources at 90% likelihood). Our findings are in broad agreement with previous studies that found only a small fraction of galaxies with high escape fraction. These six galaxies compose the largest sample yet of LyC leaking candidates at z˜ 2 whose inferred LyC flux has been observed at HST resolution. While three of our six candidates show evidence of hosting an active galactic nucleus, two of these are heavily obscured and their LyC emission appears to originate from star-forming regions rather than the central nucleus. Extensive multiwavelength data in the GOODS fields, especially the near-IR grism spectra from the 3D-HST survey, enable us to study the candidates in detail and tentatively test some recently proposed indirect methods to probe LyC leakage. High-resolution spectroscopic follow-up of our candidates will help constrain such indirect methods, which are our only hope of studying f esc at z˜ 5-9 in the JWST era. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  1. Far UV observations of PKS2155-304

    International Nuclear Information System (INIS)

    Maraschi, L.; Tanzi, E.G.; Treves, A.; Tarenghi, M.

    1980-01-01

    Several spectra of the BL Lac object PKS2155 - 304 are reported in the 1,150 - 3,200 A band taken with the IUE when the object was in a bright phase. The UV flux connects smoothly with the optical and IR observations of the source in its brightest state and its extrapolation matches the soft X-ray flux, implying a change in spectral slope around 10 15 Hz. (UK)

  2. Thermal behavior of H-aggregate in a mixed Langmuir-Blodgett film of merocyanine dye, arachidic acid, and n-octadecane ternary system investigated by UV-visible and IR absorption spectroscopy.

    Science.gov (United States)

    Hirano, Yoshiaki; Tateno, Shinsuke; Yamashita, Yoshihide; Ozaki, Yukihiro

    2008-11-13

    We have investigated the thermal behavior of H-aggregate in a mixed Langmuir-Blodgett (LB) film of the merocyanine dye (MS18)-arachidic acid (C20)- n-octadecane (AL18) ternary system by means of UV-visible and IR absorption spectroscopy in the range from 25 to 250 degrees C with a continuous scan. The results of both UV-visible and IR spectra indicate that the temperature-dependent variation in MS 18 aggregation state is linked not only with the degree of intramolecular charge transfer and the behavior of packing, orientation, conformation, and thermal mobility of the MS18 hydrocarbon chain but also with the presence and absence of AL18. The H-aggregate dissociates from 25 up to 50 degrees C, which is caused by the AL18 evaporation from the mixed LB film and the increment of thermal mobility of the MS18 hydrocarbon chain. From 110 to 160 degrees C, blue-shifted bands, attributed to the oligomeric MS18 aggregation, appear near 515 nm in the MS18-C 20-AL18 ternary system as well. The temperature at which the 515 nm band occurs is identical for both present ternary system and previously investigated MS18-deuterated arachidic acid (C20- d) binary system, and it is in good agreement with the melting point (110 degrees C) of cadmium arachidate (CdC20). Therefore, it is indicated that the driving force which induces the 515 nm band comes from the melting phenomenon of CdC20 molecules which are phase-separated from MS 18 molecules in as-deposited LB films.

  3. Controlling the light propagation in one-dimensional photonic crystal via incoherent pump and interdot tunneling

    Science.gov (United States)

    Abbasabadi, Majid; Sahrai, Mostafa

    2018-01-01

    We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.

  4. Exciton lifetime and spin dynamics in type-I In1−xAlxAs/Ga0.67Al0.33As quantum dots: Photoluminescence and pump-probe experiments

    International Nuclear Information System (INIS)

    Ben Daly, A.; Bernardot, F.; Barisien, T.; Galopin, E.; Lemaître, A.; Maaref, M.A.; Testelin, C.

    2015-01-01

    The exciton lifetime and spin relaxation have been studied in self-assembled In 1−x Al x As/Ga 0.67 Al 0.33 As quantum dots (QDs). Time-resolved photoluminescence and resonant pump-probe measurements were performed, at variable temperature and for different QD aluminium compositions. At low temperature, a long exciton-spin relaxation time has been measured, in agreement with the QD zero-dimensional confinement and the quenching of the relaxation mechanisms. The existence of a quasi-2D regime, in sample with a high QD density, has been observed. The importance of thermally-activated processes toward excited states is also evidenced, for QDs with different compositions and sizes. - Highlights: • The exciton lifetime and spin relaxation have been studied in In 1−x Al x As/Ga 0.67 Al 0.33 As quantum dot (QD). • Time-resolved photoluminescence (TRPL) and pump-probe measurements were performed, at variable temperature and for different QD aluminium compositions. • From the PL decay time, several thermal activation processes, related to 0D or 2D regime, or dependending on collective mechanisms. • The importance of thermal activated processes toward excited states is also evidenced, for QD with different compositions and sizes

  5. TIME-RESOLVED INFRARED SPECTROSCOPY IN THE U121R BEAMLINE AT THE NSLS

    International Nuclear Information System (INIS)

    CARR, G.L.; LAVEIGNE, J.D.; LOBO, R.P.S.M.; REITZE, D.H.; TANNER, D.B.

    1999-01-01

    A facility for performing time-resolved infrared spectroscopy has been developed at the NSLS, primarily at beamline U12IR. The pulsed IR light from the synchrotron is used to perform pump-probe spectroscopy. The authors present here a description of the facility and results for the relaxation of photoexcitations in both a semiconductor and superconductor

  6. Low dose UV and gamma radiation on storage rot and physicochemical changes in peaches

    International Nuclear Information System (INIS)

    Lu, J.Y.; Lukombo, S.M.; Stevens, C.; Khan, V.A.; Wilson, C.L.; Pusey, P.L.; Chaultz, E.

    1993-01-01

    Peach fruit were irradiated with 7.5 x 10(4) ergs/mm(2) of UV (254nm) or 0.1 kGy gamma rays or a combination of both, then stored at 16C for 21 days. The results showed that both UV and gamma rays reduced storage rot and delayed ripening. UV treated peaches had lower sugar concentration, total phenols, anthocyanins and lower weight loss than the gamma treated peaches. The combination of UV and gamma showed no advantage over the use of UV or gamma alone

  7. 2-Aminopurine hairpin probes for the detection of ultraviolet-induced DNA damage

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2012-01-01

    Highlights: ► Molecular beacon with 2AP bases detects DNA damage in a simple mix-and-read assay. ► Molecular beacons with 2AP bases detect damage at a 17.2 nM limit of detection. ► The 2AP molecular beacon is linear over a 0–3.5 μM concentration range for damage. - Abstract: Nucleic acid exposure to radiation and chemical insults leads to damage and disease. Thus, detection and understanding DNA damage is important for elucidating molecular mechanisms of disease. However, current methods of DNA damage detection are either time-consuming, destroy the sample, or are too specific to be used for generic detection of damage. In this paper, we develop a fluorescence sensor of 2-aminopurine (2AP), a fluorescent analogue of adenine, incorporated in the loop of a hairpin probe for the quantification of ultraviolet (UV) C-induced nucleic acid damage. Our results show that the selectivity of the 2AP hairpin probe to UV-induced nucleic acid damage is comparable to molecular beacon (MB) probes of DNA damage. The calibration curve for the 2AP hairpin probe shows good linearity (R 2 = 0.98) with a limit of detection of 17.2 nM. This probe is a simple, fast and economic fluorescence sensor for the quantification of UV-induced damage in DNA.

  8. Probing into the Secret of the Chinese Air Force.

    Science.gov (United States)

    1983-11-30

    Ri35 968 PROBING INTO THE SECRET OF THE CHINESE AIR FOREE(IJ 1/2 FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON RFB OH 9 38 NOV 83 FTD-ID(,RS)T 1088 3...FOREIGN TECHNOLOGY DIVISION. PROBING INTO THE SECRET OF THE CHINESE AIRFORCE CL1 Approved for public re.lease; distribution unlimited C=)X ~ EET...MICROFICHE NR: FTD-83-C-001469 PROBING INTO THE SECRET OF THE CHINESE AIRFORCE -" -English pages: 111 Source: Enclosure to IR 6 842 0088 83-Booklet

  9. Dual-channel operation in a synchronously pumped optical parametric oscillator for the generation of broadband mid-infrared coherent light sources.

    Science.gov (United States)

    Liu, Pei; Wang, Sicong; He, Puyuan; Zhang, Zhaowei

    2018-05-01

    We report, to the best of our knowledge, a novel approach for generating broadband mid-infrared (mid-IR) light by implementing a dual-channel scheme in a synchronously pumped optical parametric oscillator (SPOPO). Two-channel operation was achieved by inserting a prism pair and two reflection mirrors inside an optical parametric oscillator (OPO) cavity. Pumped by a Yb-fiber laser, the OPO generated an idler wave at ∼3150  nm with a -10  dB bandwidth of ∼13.2  THz, which was twice as much as that of the pump source. This scheme represents a promising technical route to transform conventional SPOPOs into a device capable of generating mid-IR light with very broad instantaneous bandwidth.

  10. A clock and data recovery method based on phase detector implemented by delay chain in FPGA

    International Nuclear Information System (INIS)

    Xie Mingpu; Wu Jie; Zhang Jie

    2009-01-01

    A clock and data recovery method based on charge pump PLL was developed to archive medium data rate serial digital communication with simple line transceivers. The phase detector was realized by FPGA. A delay chain was constructed by delay elements with the same fixed delay. Every output of the delay elements was latched by the VCO output clock when the input signal went through the delay chain. The latched result was used to detect the data transition, which reflected the phase difference between the input signal and the VCO output clock. The VCO control voltage was adjust by charge pump to reduce the phase difference and archive phase lock. The loop filter was a passive filter,parameters of which were calculated from parameters of the delay chain and VCO. The experimental result shows that the clock of a 64Mbps transmission was recovered with a jitter less than 200 ps. (authors)

  11. Quantum chemical modeling of new derivatives of (E,E)-azomethines: Synthesis, spectroscopic (FT-IR, UV/Vis, polarization) and thermophysical investigations

    Science.gov (United States)

    Shahab, Siyamak; Sheikhi, Masoome; Filippovich, Liudmila; Anatol'evich, Dikusar Evgenij; Yahyaei, Hooriye

    2017-06-01

    In the present work, the molecular structures of three new azomethine dyes: N-benzylidene-4-((E)-phenyldiazenyl)aniline (PAZB-1), 2-methoxy-4-(((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-2) and 2-methoxy-5-((E)-((4-((E)- phenyldiazenyl)phenyl)imino)methyl)phenol (PAZB-8) have been predicted and investigated using Density Functional Theory (DFT) in dimethylformamide (DMF). The geometries of the azomethine dyes were optimized by PBE0/6-31 + G* level of theory. The electronic spectra of these azomethine dyes in a DMF solution was carried out by TDPBE0/6-31 + G* method. After quantum-chemical calculations three new azomethine dyes for optoelectronic applications were synthesized. FT-IR spectra of the title compounds are recorded and discussed. The computed absorption spectral data of the azomethine dyes are in good agreement with the experimental data, thus allowing an assignment of the UV/Vis spectra. On the basis of polyvinyl alcohol (PVA) and the new synthesized azomethine dyes polarizing films for Visible region of spectrum were developed. The main optical parameters of polarizing PVA-films (Transmittance, Polarization Efficiency and Dichroic Ratio) have been measured and discussed. Anisotropy of thermal conductivity of the PVA-films has been studied.

  12. Wavepacket dynamics of a Rydberg atom monitored by a pair of time-delayed laser pulses

    Science.gov (United States)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Liu, HongPing

    2018-02-01

    We have investigated the Rydberg state population of an argon atom by an intense laser pulse and its wavepacket dynamics monitored by another successive laser pulse in the tunneling regime. A wavepacket comprising a superposition of close high-lying Rydberg states is irradiated by a multicycle laser pulse, where the sub-wave components in the wavepacket have fixed relative phases. A time-delayed second laser pulse is employed to apply on the excited Rydberg atom. If the time is properly chosen, one of the sub-wave components will be guided towards the ionization area while the rest remains intact. By means of this pump-probe technique, we could control and monitor the Rydberg wavepacket dynamics and reveal some interesting phenomenon such as the survival rate of individual Rydberg states related to the classical orbital period of electron.

  13. Direct immobilization of DNA probes on non-modified plastics by UV irradiation and integration in microfluidic devices for rapid bioassay

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Dufva, Martin

    2012-01-01

    that simple UV irradiation can be used to directly immobilize poly(T)poly(C)-tagged DNA oligonucleotide probes on many different types of plastics without any surface modification. On average, five- and fourfold improvement in immobilization and hybridization efficiency have been achieved compared to surface......DNA microarrays have become one of the most powerful tools in the field of genomics and medical diagnosis. Recently, there has been increased interest in combining microfluidics with microarrays since this approach offers advantages in terms of portability, reduced analysis time, low consumption...... of reagents, and increased system integration. Polymers are widely used for microfluidic systems, but fabrication of microarrays on such materials often requires complicated chemical surface modifications, which hinders the integration of microarrays into microfluidic systems. In this paper, we demonstrate...

  14. Effects and mechanism of UV-B radiation on rice growth

    International Nuclear Information System (INIS)

    Gao Xiaoxiao; Gao Zhaohua; Zu Yanqun

    2009-01-01

    The enhancement of UV-B radiation influences the growth of rice and physiology in different levels and this performances as changes in morphology destroyed photosynthetic system unstable anti-oxidation system changes of endogenous hormone content exacerbated rice diseases decreased biomass and developmental stage delay. Through the establishment of the response index we can evaluate the varietal differences in responses of the rice to UV-B radiation. Reasons for such varietal differences were differences in rice gene physiology and morphology developmental stage and environmental factors. The main mechanism in responses of the rice to UV-B radiation was induction of flavonoid compounds and accumulation of anthocyanins. Based on the analysis of the influence of enhanced UV-B radiation to rice and the varietal differences in responses to UV-B radiation and mechanism of rice the direction of the further research about the relationship between the rice and UV-B was put forward

  15. Temperature dependant thermal and mechanical properties of a metal-phase change layer interface using the time resolved pump probe technique

    International Nuclear Information System (INIS)

    Schick, V; Battaglia, J-L; Kusiak, A; Rossignol, C; Wiemer, C

    2011-01-01

    Time Resolved Pump Probe (TRPP) technique has been implemented to study the thermal and mechanical properties of Ge 2 Sb 2 Te 5 (GST) film deposited on a silicon substrate. According to the knowledge of the thermal properties of the GST layer, the temperature dependant Thermal Boundary Resistance (TBR) at the metal-GST interface is evaluated. Measuring the acoustic oscillation and more particularly its damping leads to characterize the adhesion at the metal - GST interface. This quantity can be efficiently related to the temperature dependent TBR in the 25 deg. C - 400 deg. C range. The TBR increases with temperature and follows the changes of the crystalline structure of materials. A linear relation between the acoustic reflection coefficient and the logarithm of the thermal boundary resistance is found.

  16. A depleted ozone layer absorbs less UV-B, cooling the ozone layer, increasing the amount of UV-B observed to reach Earth, heating air by dissociating tropospheric and ground-level ozone, and heating oceans very efficiently by penetrating tens of meters into the mixed layer. UV-B is 48 times more energetic ("hotter") than IR absorbed by greenhouse gases

    Science.gov (United States)

    Ward, P. L.

    2017-12-01

    This new insight into the physics of radiation shows why changes in stratospheric ozone are observed to cause changes in global temperature. By 1970, manufactured CFC gases and ozone depletion began increasing. By 1993, increases in CFCs stopped as mandated by the Montreal Protocol. By 1995, increases in ozone depletion stopped. By 1998, increases in temperature stopped until 2014. Ozone is also depleted by halogen gases emitted from major basaltic lava flows, the largest of which, since 1783, occurred at Bardarbunga in Iceland in 2014, causing 2015 and 2016 to be the hottest years on record. Throughout Earth history, the largest basaltic lava flows were contemporaneous with periods of greatest warming and greatest levels of mass extinctions. Planck's empirical law shows that temperature of matter results from oscillation of all the bonds holding matter together. The higher the temperature, the higher the frequencies and amplitudes of oscillation. Thus, radiation from a nearby hotter body will make the absorbing body hotter than radiation from a cooler body. According to the Planck-Einstein relation, thermal energy (E) in matter and in radiation equals frequency of oscillation (ν) times the Planck constant (h), E=hν—the energy of a frictionless atomic oscillator. Since frequency is observed to be a very broad continuum extending from radio signals through visible light to gamma rays, thermal energy (E=hν) must also be a very broad continuum. Thermal flux cannot be represented properly by a single number of watts per square meter, as commonly assumed throughout the physical sciences, because all frequencies coexist and the number of watts increases with frequency. Thus, UV-B solar radiation is 48 times more energetic than IR terrestrial radiation absorbed by greenhouse gases and can make the absorbing body 48 times hotter. UV-B causes sunburn; no amount of IR can cause sunburn. Furthermore, in a basic experiment, I show that air containing more than 23 times

  17. Quantum computational studies, spectroscopic (FT-IR, FT-Raman and UV-Vis) profiling, natural hybrid orbital and molecular docking analysis on 2,4 Dibromoaniline

    Science.gov (United States)

    Abraham, Christina Susan; Prasana, Johanan Christian; Muthu, S.; Rizwana B, Fathima; Raja, M.

    2018-05-01

    The research exploration will comprise of investigating the molecular structure, vibrational assignments, bonding and anti-bonding nature, nonlinear optical, electronic and thermodynamic nature of the molecule. The research is conducted at two levels: First level employs the spectroscopic techniques - FT-IR, FT-Raman and UV-Vis characterizing techniques; at second level the data attained experimentally is analyzed through theoretical methods using and Density Function Theories which involves the basic principle of solving the Schrodinger equation for many body systems. A comparison is drawn between the two levels and discussed. The probability of the title molecule being bio-active theoretically proved by the electrophilicity index leads to further property analyzes of the molecule. The target molecule is found to fit well with Centromere associated protein inhibitor using molecular docking techniques. Higher basis set 6-311++G(d,p) is used to attain results more concurrent to the experimental data. The results of the organic amine 2, 4 Dibromoaniline is analyzed and discussed.

  18. Ultrashort-pulse-train pump and dump excitation of a diatomic molecule

    Science.gov (United States)

    de Araujo, Luís E. E.

    2010-09-01

    An excitation scheme is proposed for transferring population between ground-vibrational levels of a molecule. The transfer is accomplished by pumping and dumping population with a pair of coherent ultrashort-pulse trains via a stationary state. By mismatching the teeth of the frequency combs associated with the pulse trains to the vibrational levels, high selectivity in the excitation, along with high transfer efficiency, is predicted. The pump-dump scheme does not suffer from spontaneous emission losses, it is insensitive to the pump-dump-train delay, and it requires only basic pulse shaping.

  19. Leakage flow simulation in a specific pump model

    International Nuclear Information System (INIS)

    Dupont, P; Bayeul-Lainé, A C; Dazin, A; Bois, G; Roussette, O; Si, Q

    2014-01-01

    This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 8.06 code (RANS frozen and unsteady calculations). Comparisons between numerical and experimental results are presented and discussed for three flow rates. The performances of the diffuser obtained by numerical simulation results are compared to the performances obtained by three-hole probe indications. The comparisons show few influence of fluid leakage on global performances but a real improvement concerning the efficiency of the impeller, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up

  20. Effects of UV-B radiation on the isoflavone accumulation and physiological-biochemical changes of soybean during germination: Physiological-biochemical change of germinated soybean induced by UV-B.

    Science.gov (United States)

    Ma, Meng; Wang, Pei; Yang, Runqiang; Gu, Zhenxin

    2018-06-01

    In this study, the effects of UV-B radiation on the isoflavones accumulation, physiological and nutritional quality, water status, and characteristics of proteins in germinated soybeans were investigated. The results showed that isoflavones content in soybeans increased with appropriate intensity and time of UV-B radiation and decreased with excessive treatment. Fresh weight, length, free amino acids, reducing sugar contents and bulk water (T 23 ) in germinated soybeans decreased with increasing radiation time, indicating that UV-B inhibited the growth and nutrients metabolism of soybean during germination. Cell damage was detected in germinated soybeans with excessive UV-B radiation, as shown by the black spots in cotyledons and the increased intercellular water determined by LF-NMR. Germination resulted in an increase in random coil structures, while UV-B radiation induced no obvious changes in FT-IR spectrum and protein conformation of soybeans. Both UV-B radiation and germination caused the increase in soluble proteins, especially in 1.0-75.0 kDa fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.