WorldWideScience

Sample records for ir system technology

  1. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  2. IR technology for enhanced force protection by AIM

    Science.gov (United States)

    Breiter, R.; Ihle, T.; Rode, W.; Wendler, J.; Rühlich, I.; Haiml, M.; Ziegler, J.

    2008-04-01

    In all recent missions our forces are faced with various types of asymmetric threads like snipers, IEDs, RPGs or MANPADS. 2 nd and 3 rd Gen IR technology is a backbone of modern force protection by providing situational awareness and accurate target engagement at day/night. 3 rd Gen sensors are developed for thread warning capabilities by use of spectral or spatial information. The progress on a dual-color IR module is discussed in a separate paper [1]. A 1024x256 SWIR array with flexure bearing compressor and pulse tube cold finger provides > 50,000h lifetime for space or airborne hyperspectral imaging in pushbroom geometry with 256 spectral channels for improved change detection and remote sensing of IEDs or chemical agents. Similar concepts are pursued in the LWIR with either spectroscopic imaging or a system of LWIR FPA combined with a cooled tunable Laser to do spectroscopy with stimulated absorption of specific wavelengths. AIM introduced the RangIR sight to match the requirements of sniper teams, AGLs and weapon stations, extending the outstanding optronic performance of the fielded HuntIR with position data of a target by a laser range finder (LRF), a 3 axis digital magnetic compass (DMC) and a ballistic computer for accurate engagement of remote targets. A version with flexure bearing cooler with >30,000h life time is being developed for continuous operation in e.g. gunfire detection systems. This paper gives an overview of AIM's technologies for enhanced force protection.

  3. (Ir)reconcilable differences? The debate concerning nursing and technology.

    Science.gov (United States)

    Sandelowski, M

    1997-01-01

    To review and critique the debate concerning nursing and technology. Technology has been considered both at one and at odds with nursing. Mitcham's (1994) concepts of technological optimism and romanticism. Nursing literature since 1960. Historical analysis. Technological optimists in nursing have viewed technology as an extension of and as readily assimilable into humanistic nursing practice, and nursing as socially advantaged by technology. Technological romantics have viewed technology as irreconcilable with nursing culture, as an expression of masculine culture, and as recirculating existing gender and social inequalities. Both optimists and romantics essentialize technology and nursing, treating the two as singular and fixed entities. The (ir)reconcilability of nursing and technology may be a function of how devices are used by people in different contexts, or of the (ir)reconcilability of views of technology in nursing.

  4. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  5. Influence of IR sensor technology on the military and civil defense

    Science.gov (United States)

    Becker, Latika

    2006-02-01

    Advances in basic infrared science and developments in pertinent technology applications have led to mature designs being incorporated in civil as well as military area defense systems. Military systems include both tactical and strategic, and civil area defense includes homeland security. Technical challenges arise in applying infrared sensor technology to detect and track targets for space and missile defense. Infrared sensors are valuable due to their passive capability, lower mass and power consumption, and their usefulness in all phases of missile defense engagements. Nanotechnology holds significant promise in the near future by offering unique material and physical properties to infrared components. This technology is rapidly developing. This presentation will review the current IR sensor technology, its applications, and future developments that will have an influence in military and civil defense applications.

  6. Experimental verification of active IR stealth technology by controlling the surface temperature using a thermoelectric element

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Geon; Han, Kuk Il; Choi, Jun Hyuk; Kim, Tae Kuk [Dept. of Mechanical Engineering, Chung Ang University, Seoul (Korea, Republic of)

    2016-10-15

    In this paper, we propose a technique for IR low-observability that uses an active IR signal tuning through the real time control of the object surface temperature according to the varying background environment. This is achieved by applying the proper object surface temperature obtained to result in the minimum radiance difference between the object and the background. Experimental verification by using the thermoelectric temperature control element shows that the IR radiance contrast between the object and the background can be reduced up to 99% during the night and up to 95% during the day time as compared to the un-tuned original radiance contrast values. The stealth technology demonstrated in this paper may be applied for many military systems needed for the IR stealth performance when a suitable temperature control unit is developed.

  7. Experimental verification of active IR stealth technology by controlling the surface temperature using a thermoelectric element

    International Nuclear Information System (INIS)

    Kim, Dong Geon; Han, Kuk Il; Choi, Jun Hyuk; Kim, Tae Kuk

    2016-01-01

    In this paper, we propose a technique for IR low-observability that uses an active IR signal tuning through the real time control of the object surface temperature according to the varying background environment. This is achieved by applying the proper object surface temperature obtained to result in the minimum radiance difference between the object and the background. Experimental verification by using the thermoelectric temperature control element shows that the IR radiance contrast between the object and the background can be reduced up to 99% during the night and up to 95% during the day time as compared to the un-tuned original radiance contrast values. The stealth technology demonstrated in this paper may be applied for many military systems needed for the IR stealth performance when a suitable temperature control unit is developed

  8. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  9. Third-generation intelligent IR focal plane arrays

    Science.gov (United States)

    Caulfield, H. John; Jack, Michael D.; Pettijohn, Kevin L.; Schlesselmann, John D.; Norworth, Joe

    1998-03-01

    SBRC is at the forefront of industry in developing IR focal plane arrays including multi-spectral technology and '3rd generation' functions that mimic the human eye. 3rd generation devices conduct advanced processing on or near the FPA that serve to reduce bandwidth while performing needed functions such as automatic target recognition, uniformity correction and dynamic range enhancement. These devices represent a solution for processing the exorbitantly high bandwidth coming off large area FPAs without sacrificing systems sensitivity. SBRC's two-color approach leverages the company's HgCdTe technology to provide simultaneous multiband coverage, from short through long wave IR, with near theoretical performance. IR systems that are sensitive to different spectral bands achieve enhanced capabilities for target identification and advanced discrimination. This paper will provide a summary of the issues, the technology and the benefits of SBRC's third generation smart and two-color FPAs.

  10. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  11. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  12. Development of Cytoplasmic Male Sterile IR24 and IR64 Using CW-CMS/Rf17 System.

    Science.gov (United States)

    Toriyama, Kinya; Kazama, Tomohiko

    2016-12-01

    A wild-abortive-type (WA) cytoplasmic male sterility (CMS) has been almost exclusively used for breeding three-line hybrid rice. Many indica cultivars are known to carry restorer genes for WA-CMS lines and cannot be used as maintainer lines. Especially elite indica cultivars IR24 and IR64 are known to be restorer lines for WA-CMS lines, and are used as male parents for hybrid seed production. If we develop CMS IR24 and CMS IR64, the combination of F1 pairs in hybrid rice breeding programs will be greatly broadened. For production of CMS lines and restorer lines of IR24 and IR64, we employed Chinese wild rice (CW)-type CMS/Restorer of fertility 17 (Rf17) system, in which fertility is restored by a single nuclear gene, Rf17. Successive backcrossing and marker-assisted selection of Rf17 succeeded to produce completely male sterile CMS lines and fully restored restorer lines of IR24 and IR64. CW-cytoplasm did not affect agronomic characteristics. Since IR64 is one of the most popular mega-varieties and used for breeding of many modern varieties, the CW-CMS line of IR64 will be useful for hybrid rice breeding.

  13. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    International Nuclear Information System (INIS)

    Reffner, J.A.; Martoglio, P.A.; Williams, G.P.

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization

  14. FT-IR microscopical analysis with synchrotron radiation: The microscope optics and system performance

    Energy Technology Data Exchange (ETDEWEB)

    Reffner, J.A.; Martoglio, P.A. [Spectra-Tech, Inc., Shelton, CT (United States); Williams, G.P. [Brookhaven National Lab., Upton, NY (United States)

    1995-01-01

    When a Fourier transform infrared (FT-IR) microspectrometer was first interfaced with the National Synchrotron Light Source (NSLS) in September 1993, there was an instant realization that the performance at the diffraction limit had increased 40-100 times. The synchrotron source transformed the IR microspectrometer into a true IR microprobe, providing high-quality IR spectra for probe diameters at the diffraction limit. The combination of IR microspectroscopy and synchrotron radiation provides a powerful new tool for molecular spectroscopy. The ability to perform IR microspectroscopy with synchrotron radiation is still under development at Brookhaven National Laboratory, but several initial studies have been completed that demonstrate the broad-ranging applications of this technology and its potential for materials characterization.

  15. IRS Guidelines: Joint IAEA/NEA International Reporting System for Operating Experience

    International Nuclear Information System (INIS)

    2010-01-01

    The International Reporting System for Operating Experience (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the OECD Nuclear Energy Agency (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants which are operated worldwide. This objective can be achieved by providing timely and detailed information on lessons learned from operating and construction experience at the international level. This information could be related to issues and events that are related to safety. The purpose of these guidelines is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the effectiveness of the system expected by all Member States operating nuclear power plants. As this system is owned by the Member States, the IRS Guidelines have been developed and approved by the IRS National Co-ordinators with the assistance of both Secretariats (IAEA/NEA).

  16. Required Technologies for A 10-16 m UV-Visible-IR Telescope on the Moon

    Science.gov (United States)

    Johnson, Stewart W.; Wetzel, John P.

    1989-01-01

    A successor to the Hubble Space Telescope, incorporating a 10 to 16 meter mirror, and operating in the UV-Visible-IR is being considered for emplacement on the Moon in the 21st Century. To take advantage of the characteristics of the lunar environment, such a telescope requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. This telescope for the lunar surface needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for lunar observatory operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  17. The phase system Fe-Ir-S at 1100, 1000 and 800 degree C

    DEFF Research Database (Denmark)

    Makovicky, Emil; Karup-Møller, Sven

    1999-01-01

    Phase relations in the dry condensed Fe-Ir-S system were determined at 1100, 1000 and 800 degrees C. Orientational runs were performed at 500 degrees C. Between 1100 and 800 degrees C, the system comprises five sulphides and an uninterrupted field of gamma(Fe, Ir). Fe1-xS dissolves 5.8 at.% Ir...... at 1100 degrees C, 3.4 at.% Ir at 1000 degrees C and 1.0 at.% Ir at 800 degrees C. The solubility of Fe in Ir2S3, IrS2 and IrSsimilar to 3 increases with decreasing temperature, reaching 2.5 at.% in the latter two sulphides at 800 degrees C. Thiospinel 'FeIr2S4' is nonstoichiometric, from Fe22.3Ir19.8S58...

  18. High-resolution focal plane array IR detection modules and digital signal processing technologies at AIM

    Science.gov (United States)

    Cabanski, Wolfgang A.; Breiter, Rainer; Koch, R.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann; Eberhardt, Kurt; Oelmaier, Reinhard; Schneider, Harald; Walther, Martin

    2000-07-01

    Full video format focal plane array (FPA) modules with up to 640 X 512 pixels have been developed for high resolution imaging applications in either mercury cadmium telluride (MCT) mid wave (MWIR) infrared (IR) or platinum silicide (PtSi) and quantum well infrared photodetector (QWIP) technology as low cost alternatives to MCT for high performance IR imaging in the MWIR or long wave spectral band (LWIR). For the QWIP's, a new photovoltaic technology was introduced for improved NETD performance and higher dynamic range. MCT units provide fast frame rates > 100 Hz together with state of the art thermal resolution NETD hardware platforms and software for image visualization and nonuniformity correction including scene based self learning algorithms had to be developed to accomplish for the high data rates of up to 18 M pixels/s with 14-bit deep data, allowing to take into account nonlinear effects to access the full NETD by accurate reduction of residual fixed pattern noise. The main features of these modules are summarized together with measured performance data for long range detection systems with moderately fast to slow F-numbers like F/2.0 - F/3.5. An outlook shows most recent activities at AIM, heading for multicolor and faster frame rate detector modules based on MCT devices.

  19. Design of mini-multi-gas monitoring system based on IR absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Q.L.; Zhang, W.D.; Xue, C.Y.; Xiong, J.J.; Ma, Y.C.; Wen, F. [Northern University of China, Taiyuan (China)

    2008-07-15

    In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually all incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use file mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.

  20. Manual for IRS Coding. Joint IAEA/NEA International Reporting System for Operating Experience

    International Nuclear Information System (INIS)

    2011-01-01

    The International Reporting System for Operating Experience (IRS) is jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). In early 2010, the IAEA and OECD/NEA jointly issued the IRS Guidelines, which described the reporting system and process and gave users the necessary elements to enable them to produce IRS reports to a high standard of quality while retaining the effectiveness of the system expected by all Member States operating nuclear power plants. The purpose of the present Manual for IRS Coding is to provide supplementary guidance specifically on the coding element of IRS reports to ensure uniform coding of events that are reported through IRS. This Coding Manual does not supersede the IRS Guidelines, but rather, supports users and preparers in achieving a consistent and high level of quality in their IRS reports. Consistency and high quality in the IRS reports allow stakeholders to search and retrieve specific event information with ease. In addition, well-structured reports also enhance the efficient management of the IRS database. This Coding Manual will give specific guidance on the application of each section of the IRS codes, with examples where necessary, of when and how these codes are to be applied. As this reporting system is owned by the Member States, this manual has been developed and approved by the IRS National Coordinators with the assistance of the IAEA and NEA secretariats

  1. Passive infrared motion sensing technology

    International Nuclear Information System (INIS)

    Doctor, A.P.

    1994-01-01

    In the last 10 years passive IR based (8--12 microns) motion sensing has matured to become the dominant method of volumetric space protection and surveillance. These systems currently cost less than $25 to produce and yet use traditionally expensive IR optics, filters, sensors and electronic circuitry. This IR application is quite interesting in that the volumes of systems produced and the costs and performance level required prove that there is potential for large scale commercial applications of IR technology. This paper will develop the basis and principles of operation of a staring motion sensor system using a technical approach. A model for the motion of the target is developed and compared to the background. The IR power difference between the target and the background as well as the optical requirements are determined from basic principles and used to determine the performance of the system. Low cost reflective and refractive IR optics and bandpass IR filters are discussed. The pyroelectric IR detector commonly used is fully discussed and characterized. Various schemes for ''false alarms'' have been developed and are also explained. This technology is also used in passive IR based motion sensors for other applications such as lighting control. These applications are also discussed. In addition the paper will discuss new developments in IR surveillance technology such as the use of linear motion sensing arrays. This presentation can be considered a ''primer'' on the art of Passive IR Motion Sensing as applied to Surveillance Technology

  2. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  3. Mid-IR laser system for advanced neurosurgery

    Science.gov (United States)

    Klosner, M.; Wu, C.; Heller, D. F.

    2014-03-01

    We present work on a laser system operating in the near- and mid-IR spectral regions, having output characteristics designed to be optimal for cutting various tissue types. We provide a brief overview of laser-tissue interactions and the importance of controlling certain properties of the light beam. We describe the principle of operation of the laser system, which is generally based on a wavelength-tunable alexandrite laser oscillator/amplifier, and multiple Raman conversion stages. This configuration provides robust access to the mid-IR spectral region at wavelengths, pulse energies, pulse durations, and repetition rates that are attractive for neurosurgical applications. We summarize results for ultra-precise selective cutting of nerve sheaths and retinas with little collateral damage; this has applications in procedures such as optic-nerve-sheath fenestration and possible spinal repair. We also report results for cutting cornea, and dermal tissues.

  4. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael

    2005-01-01

    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...

  5. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  6. Far-IR transparency and dynamic infrared signature control with novel conducting polymer systems

    Science.gov (United States)

    Chandrasekhar, Prasanna; Dooley, T. J.

    1995-09-01

    Materials which possess transparency, coupled with active controllability of this transparency in the infrared (IR), are today an increasingly important requirement, for varied applications. These applications include windows for IR sensors, IR-region flat panel displays used in camouflage as well as in communication and sight through night-vision goggles, coatings with dynamically controllable IR-emissivity, and thermal conservation coatings. Among stringent requirements for these applications are large dynamic ranges (color contrast), 'multi-color' or broad-band characteristics, extended cyclability, long memory retention, matrix addressability, small area fabricability, low power consumption, and environmental stability. Among materials possessing the requirements for variation of IR signature, conducting polymers (CPs) appear to be the only materials with dynamic, actively controllable signature and acceptable dynamic range. Conventional CPs such as poly(alkyl thiophene), poly(pyrrole) or poly(aniline) show very limited dynamic range, especially in the far-IR, while also showing poor transparency. We have developed a number of novel CP systems ('system' implying the CP, the selected dopant, the synthesis method, and the electrolyte) with very wide dynamic range (up to 90% in both important IR regions, 3 - 5 (mu) and 8 - 12 (mu) ), high cyclability (to 105 cycles with less than 10% optical degradation), nearly indefinite optical memory retention, matrix addressability of multi-pixel displays, very wide operating temperature and excellent environmental stability, low charge capacity, and processability into areas from less than 1 mm2 to more than 100 cm2. The criteria used to design and arrive at these CP systems, together with representative IR signature data, are presented in this paper.

  7. Design of visible and IR infrared dual-band common-path telescope system

    Science.gov (United States)

    Guo, YuLin; Yu, Xun; Tao, Yu; Jiang, Xu

    2018-01-01

    The use of visible and IR infrared dual-band combination can effectively improve the performance of photoelectric detection system,TV and IR system were designed with the common path by the common reflection optical system.A TV/IR infrared common-caliber and common-path system is designed,which can realize the Remote and all-day information.For the 640×512 cooled focal plane array,an infrared middle wave system was presented with a focal length of 600mm F number of 4 field of view(FOV) of 0.38°×0.43°, the system uses optical passive thermal design, has o compact structure and can meet 100% cold shield efficiency,meanwhile it meets the design requirements of lightweight and athermalization. For the 1920×1080 pixels CCD,a visible (TV) system ,which had 500mm focal length, 4F number,was completed.The final optical design along with their modulation transfer function is presented,showing excellent imaging performance in dual-band at the temperature range between -40° and 60°.

  8. A high resolution IR/visible imaging system for the W7-X limiter

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, G. A., E-mail: wurden@lanl.gov; Dunn, J. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stephey, L. A. [University of Wisconsin, Madison, Wisconsin 53706 (United States); Biedermann, C.; Jakubowski, M. W.; Gamradt, M. [Max Planck Institut für Plasma Physik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2016-11-15

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m{sup 2}), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  9. A high resolution IR/visible imaging system for the W7-X limiter

    International Nuclear Information System (INIS)

    Wurden, G. A.; Dunn, J. P.; Stephey, L. A.; Biedermann, C.; Jakubowski, M. W.; Gamradt, M.

    2016-01-01

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m"2), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  10. A Study of Search Intermediary Working Notes: Implications for IR System Design.

    Science.gov (United States)

    Spink, Amanda; Goodrum, Abby

    1996-01-01

    Reports findings from an exploratory study investigating working notes created during encoding and external storage (EES) processes by human search intermediaries (librarians at the University of North Texas) using a Boolean information retrieval (IR) system. Implications for the design of IR interfaces and further research is discussed.…

  11. Impact of sensor-scene interaction on the design of an IR security surveillance system

    International Nuclear Information System (INIS)

    Claassen, J.P.; Phipps, G.S.

    1982-01-01

    Recent encouraging developments in infrared staring arrays with CCD readouts and in real time image processors working on and off the focal plane have suggested that technologies suitable for infrared security surveillance may be available in a two-to-five year time frame. In anticipation of these emerging technologies, an investigation has been undertaken to establish the design potential of a passive IR perimeter security system incorporating both detection and verification capabilities. To establish the design potential, it is necessary to characterize the interactions between the scene ad the sensor. To this end, theoretical and experimental findings were employed to document (1) the emission properties of scenes to include an intruder, (2) the propagation and emission characteristics of the intervening atmosphere, and (3) the reception properties of the imaging sensor. The impact of these findings are summarized in the light of the application constraints. Optimal wavelengths, intruder and background emission characteristics, weather limitations, and basic sensor design considerations are treated. Although many system design features have been identified to this date, continued efforts are required to complete a detailed system design to include the identifying processing requirements. A program to accomplish these objectives is presented

  12. Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles

    Science.gov (United States)

    Wang, Long-tao; Jiang, Ning; Lv, Ming-shan

    2015-10-01

    With the emergence of the anti-ship missle with the capability of infrared imaging guidance, the traditional single jamming measures, because of the jamming mechanism and technical flaws or unsuitable use, greatly reduced the survival probability of the war-ship in the future naval battle. Intergrated jamming of IR weakening + smoke-screen Can not only make jamming to the search and tracking of IR imaging guidance system , but also has feasibility in conjunction, besides , which also make the best jamming effect. The research conclusion has important realistic meaning for raising the antimissile ability of surface ships. With the development of guidance technology, infrared guidance system has expanded by ir point-source homing guidance to infrared imaging guidance, Infrared imaging guidance has made breakthrough progress, Infrared imaging guidance system can use two-dimensional infrared image information of the target, achieve the precise tracking. Which has Higher guidance precision, better concealment, stronger anti-interference ability and could Target the key parts. The traditional single infrared smoke screen jamming or infrared decoy flare interference cannot be imposed effective interference. So, Research how to effectively fight against infrared imaging guided weapons threat measures and means, improving the surface ship antimissile ability is an urgent need to solve.

  13. General review of multispectral cooled IR development at CEA-Leti, France

    Science.gov (United States)

    Boulard, F.; Marmonier, F.; Grangier, C.; Adelmini, L.; Gravrand, O.; Ballet, P.; Baudry, X.; Baylet, J.; Badano, G.; Espiau de Lamaestre, R.; Bisotto, S.

    2017-02-01

    Multicolor detection capabilities, which bring information on the thermal and chemical composition of the scene, are desirable for advanced infrared (IR) imaging systems. This communication reviews intra and multiband solutions developed at CEA-Leti, from dual-band molecular beam epitaxy grown Mercury Cadmium Telluride (MCT) photodiodes to plasmon-enhanced multicolor IR detectors and backside pixelated filters. Spectral responses, quantum efficiency and detector noise performances, pros and cons regarding global system are discussed in regards to technology maturity, pixel pitch reduction, and affordability. From MWIR-LWIR large band to intra MWIR or LWIR bands peaked detection, results underline the full possibility developed at CEA-Leti.

  14. Image quality testing of assembled IR camera modules

    Science.gov (United States)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  15. Thin film encapsulated 1D thermoelectric detector in an IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    A thermopile-based detector array for use in a miniaturized Infrared (IR) spectrometer has been designed and fabricated using CMOS compatible MEMS technology. The emphasis is on the optimal of the detector array at the system level, while considering the thermal design, the dimensional constraints

  16. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  17. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  18. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....

  19. Lane Departure System Design using with IR Camera for Night-time Road Conditions

    Directory of Open Access Journals (Sweden)

    Osman Onur Akırmak

    2015-02-01

    Full Text Available Today, one of the largest areas of research and development in the automobile industry is road safety. Many deaths and injuries occur every year on public roads from accidents caused by sleepy drivers, that technology could have been used to prevent. Lane detection at night-time is an important issue in driving assistance systems. This paper deals with vision-based lane detection and tracking at night-time. This project consists of a research and development of an algorithm for automotive systems to detect the departure of vehicle from out of lane. Once the situation is detected, a warning is issued to the driver with sound and visual message through “Head Up Display” (HUD system. The lane departure is detected through the images obtained from a single IR camera, which identifies the departure at a satisfactory accuracy via improved quality of video stream. Our experimental results and accuracy evaluation show that our algorithm has good precision and our detecting method is suitable for night-time road conditions.

  20. IR sensor for monitoring of burner flame; IR sensor foer oevervakning av braennarflamma

    Energy Technology Data Exchange (ETDEWEB)

    Svanberg, Marcus; Funkquist, Jonas; Clausen, Soennik; Wetterstroem, Jonas

    2007-12-15

    To obtain a smooth operation of the coal-fired power plants many power plant managers have installed online mass flow measurement of coal to all burners. This signal is used to monitor the coal mass flow to the individual burner and match it with appropriate amount of air and also to monitor the distribution of coal between the burners. The online mass flow measurement system is very expensive (approximately 150 kEUR for ten burners) and is not beneficial for smaller plants. The accuracy of the measurement and the sample frequency are also questionable. The idea in this project has been to evaluate a cheaper system that can present the same information and may also provide better accuracy and faster sample frequency. The infrared sensor is a cheap narrow banded light emission sensor that can be placed in a water cooed probe. The sensor was directed at the burner flame and the emitted light was monitored. Through calibration the mass flow of coal can be presented. Two measurement campaigns were performed. Both campaigns were carried out in Nordjyllandsverket in Denmark even though the second campaign was planned to be in Uppsala. Due to severe problems in the Uppsala plant the campaign was moved to Nordjyllandsverket. The pre-requisites for the test plant were that online measurement of coal flow was installed. In Nordjyllandsverket 4 out of 16 burners have the mass flow measurement installed. Risoe Laboratories has vast experiences in the IR technology and they provided the IR sensing equipment. One IR sensor was placed in the flame guard position just behind the flame directed towards the ignition zone. A second sensor was placed at the boiler wall directed towards the flame. The boiler wall position did not give any results and the location was not used during the second campaign. The flame-guard-positioned-sensor- signal was thoroughly evaluated and the results show that there is a clear correlation between the coal mass flow and the IR sensor signal. Tests were

  1. Effect of spin structure transition in IrMn on the CoPd/IrMn perpendicular exchange biased system

    Energy Technology Data Exchange (ETDEWEB)

    Janjua, Muhammad Bilal; Guentherodt, Gernot [II. Physikalisches Institut A, RWTH Aachen University, Aachen (Germany)

    2011-07-01

    The exchange bias (EB) phenomenon is studied in MBE grown Pd(10 nm)/CoPd(x=8,16,30 nm)/IrMn(15 nm)/Pd(4 nm) samples, which exhibit a perpendicular anisotropy of Co22Pd78. These samples are field cooled along the out-of-plane direction and hysteresis loops are measured along both the out-of-plane and in-plane directions. It is observed that there is a transition temperature where the out-of-plane EB becomes greater than the in-plane EB. This behavior of EB is an evidence of the change in the spin structure of the given system, which is also revealed by the magnetization versus temperature measurements of the exchange biased and of the sole IrMn samples. It is found that with increasing temperature there is a spin structure transition in Ir25Mn75 (15nm) related to the 2Q to 3Q transition in the bulk, which is responsible for the increase in out-of-plane EB. A vertical shift in the hysteresis loop is also observed in these exchange biased samples at low temperatures (T<50 K).

  2. New technologies of silicon position-sensitive detectors for future tracker systems

    CERN Document Server

    Bassignana, Daniela; Lozano, M

    In view of the new generation of high luminosity colliders, HL-LHC and ILC, a farther investigation of silicon radiation detectors design and technology is demanded, in order to satisfy the stringent requirements of the experiments at such sophisticated machines. In this thesis, innovative technologies of silicon radiation detectors for future tracking systems are proposed. Three dierent devices have been studied and designed with the help of dierent tools for computer simulations. They have been manufactured in the IMB-CNM clean room facilities in Barcelona and characterized with proper experimental set-ups in order to test the detectors capabilities and the quality and suitability of the technologies used for their fabrication. The rst technology deals with the upgrade of dedicated sensors for laser alignment systems in future tracker detectors. The design and technology of common single-sided silicon microstrip detectors have been slightly modied in order to improve IR light transmittance of the devices. T...

  3. Photo-redox activated drug delivery systems operating under two photon excitation in the near-IR.

    Science.gov (United States)

    Guardado-Alvarez, Tania M; Devi, Lekshmi Sudha; Vabre, Jean-Marie; Pecorelli, Travis A; Schwartz, Benjamin J; Durand, Jean-Olivier; Mongin, Olivier; Blanchard-Desce, Mireille; Zink, Jeffrey I

    2014-05-07

    We report the design and synthesis of a nano-container consisting of mesoporous silica nanoparticles with the pore openings covered by "snap-top" caps that are opened by near-IR light. A photo transducer molecule that is a reducing agent in an excited electronic state is covalently attached to the system. Near IR two-photon excitation causes inter-molecular electron transfer that reduces a disulfide bond holding the cap in place, thus allowing the cargo molecules to escape. We describe the operation of the "snap-top" release mechanism by both one- and two-photon activation. This system presents a proof of concept of a near-IR photoredox-induced nanoparticle delivery system that may lead to a new type of photodynamic drug release therapy.

  4. Optical system design, analysis, and production for advanced technology systems; Proceedings of the Meeting, Innsbruck, Austria, Apr. 15-17, 1986

    Science.gov (United States)

    Fischer, Robert E. (Editor); Rogers, Philip J. (Editor)

    1986-01-01

    The present conference considers topics in the fields of optical systems design software, the design and analysis of optical systems, illustrative cases of advanced optical system design, the integration of optical designs into greater systems, and optical fabrication and testing techniques. Attention is given to an extended range diffraction-based merit function for lens design optimization, an assessment of technologies for stray light control and evaluation, the automated characterization of IR systems' spatial resolution, a spectrum of design techniques based on aberration theory, a three-field IR telescope, a large aperture zoom lens for 16-mm motion picture cameras, and the use of concave holographic gratings as monochomators. Also discussed are the use of aspherics in optical systems, glass choice procedures for periscope design, the fabrication and testing of unconventional optics, low mass mirrors for large optics, and the diamond grinding of optical surfaces on aspheric lens molds.

  5. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  6. Energy-beam processing studies on Ta/U and Ir/Ta systems

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Peercy, P.S.; Jacobson, D.C.; Draper, C.W.; Huegel, F.J.; Echer, C.J.; Makowiecki, D.M.; Balser, J.D.

    1983-01-01

    Films of Ta metal on uranium and of Ir metal on tantalum have been irradiated and melted by pulses from Q-switched Ruby and frequency-doubled Nd:YAG lasers to investigate the nature of the resulting mixtures in light of the very different binary-phase diagrams of the two systems. In addition, a two-phase Ir-Ta alloy has been surface-processed with CW CO 2 -laser radiation and with an electron beam in order to study microstructure refinement and test the advantage of using alloys as opposed to film-on-substrate combinations for the development of claddings

  7. An IR Sensor Based Smart System to Approximate Core Body Temperature.

    Science.gov (United States)

    Ray, Partha Pratim

    2017-08-01

    Herein demonstrated experiment studies two methods, namely convection and body resistance, to approximate human core body temperature. The proposed system is highly energy efficient that consumes only 165 mW power and runs on 5 VDC source. The implemented solution employs an IR thermographic sensor of industry grade along with AT Mega 328 breakout board. Ordinarily, the IR sensor is placed 1.5-30 cm away from human forehead (i.e., non-invasive) and measured the raw data in terms of skin and ambient temperature which is then converted using appropriate approximation formula to find out core body temperature. The raw data is plotted, visualized, and stored instantaneously in a local machine by means of two tools such as Makerplot, and JAVA-JAR. The test is performed when human object is in complete rest and after 10 min of walk. Achieved results are compared with the CoreTemp CM-210 sensor (by Terumo, Japan) which is calculated to be 0.7 °F different from the average value of BCT, obtained by the proposed IR sensor system. Upon a slight modification, the presented model can be connected with a remotely placed Internet of Things cloud service, which may be useful to inform and predict the user's core body temperature through a probabilistic view. It is also comprehended that such system can be useful as wearable device to be worn on at the hat attachable way.

  8. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  9. Multi-wavelength mid-IR light source for gas sensing

    Science.gov (United States)

    Karioja, Pentti; Alajoki, Teemu; Cherchi, Matteo; Ollila, Jyrki; Harjanne, Mikko; Heinilehto, Noora; Suomalainen, Soile; Viheriälä, Jukka; Zia, Nouman; Guina, Mircea; Buczyński, Ryszard; Kasztelanic, Rafał; Kujawa, Ireneusz; Salo, Tomi; Virtanen, Sami; Kluczyński, Paweł; Sagberg, Hâkon; Ratajczyk, Marcin; Kalinowski, Przemyslaw

    2017-02-01

    Cost effective multi-wavelength light sources are key enablers for wide-scale penetration of gas sensors at Mid-IR wavelength range. Utilizing novel Mid-IR Si-based photonic integrated circuits (PICs) filter and wide-band Mid-IR Super Luminescent Light Emitting Diodes (SLEDs), we show the concept of a light source that covers 2.5…3.5 μm wavelength range with a resolution of price can be lowered in high volumes by utilizing tailored molded IR lens technology and automated packaging and assembling technologies. The status of the development of the key components of the light source are reported. The PIC is based on the use of micron-scale SOI technology, SLED is based on AlGaInAsSb materials and the lenses are tailored heavy metal oxide glasses fabricated by the use of hot-embossing. The packaging concept utilizing automated assembly tools is depicted. In safety and security applications, the Mid-IR wavelength range covered by the novel light source allows for detecting several harmful gas components with a single sensor. At the moment, affordable sources are not available. The market impact is expected to be disruptive, since the devices currently in the market are either complicated, expensive and heavy instruments, or the applied measurement principles are inadequate in terms of stability and selectivity.

  10. CP monitoring by IR free potential probe through a remote control system

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, L. [Politecnico di Milano, Milan (Italy); Bazzoni, B. [Cescor srl, Milan (Italy); Benedetto, S. [Italgas SpA, Turin (Italy)

    2004-07-01

    This paper presents the results of field tests on measurement of true potential of pipelines by means of a IR drop free potential probe and a remote control system. The probe used is composed of a steel coupon, simulating a coating defect, and a reference electrode of Mixed Metal Oxide (MMO) titanium activated type, both embedded in an alkaline mortar. Laboratory and field tests confirmed the probe to be reliable and enable to eliminate the IR drop contribution in all conditions and especially in presence of stray current. A remote control system was tested for a reliable and continuous monitoring of CP parameters with the aim to operate CP systems in compliance with regulations and to reduce maintenance costs. The remote control system consists of Acquisition Units for continuous field data gathering, a Data Centre pilot all functions such as query, download and processing data, and an Internet web site for remote connections. Field data obtained in various situations are presented and discussed. (authors)

  11. Experimental bandstructure of the 5 d transition metal oxide IrO2

    Science.gov (United States)

    Kawasaki, Jason; Nie, Yuefeng; Uchida, Masaki; Schlom, Darrell; Shen, Kyle

    2015-03-01

    In the 5 d iridium oxides the close energy scales of spin-orbit coupling and electron-electron correlations lead to emergent quantum phenomena. Much research has focused on the ternary iridium oxides, e.g. the Ruddlesden-Poppers An + 1BnO3 n + 1 , which exhibit behavior from metal to antiferromagnetic insulator ground states, share common features with the cuprates, and may host a number of topological phases. The binary rutile IrO2 is another important 5 d oxide, which has technological importance for spintronics due to its large spin Hall effect and also applications in catalysis. IrO2 is expected to share similar physics as its perovskite-based cousins; however, due to bond-length distortions of the IrO6 octahedra in the rutile structure, the extent of similarities remains an open question. Here we use angle-resolved photoemission spectroscopy to perform momentum-resolved measurements of the electronic structure of IrO2 . IrO2 thin films were grown by molecular beam epitaxy on TiO2 (110) substrates using an Ir e-beam source and distilled ozone. Films were subsequently transferred through ultrahigh vacuum to a connected ARPES system. Combined with first-principles calculations we explore the interplay of spin-orbit coupling and correlations in IrO2 .

  12. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  13. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  14. Location detection and tracking of moving targets by a 2D IR-UWB radar system.

    Science.gov (United States)

    Nguyen, Van-Han; Pyun, Jae-Young

    2015-03-19

    In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  15. Enhanced exchange anisotropy in IrMn/CoFeB systems and its correlation with uncompensated interfacial spins

    DEFF Research Database (Denmark)

    Du, Yuqing; Pan, Genhua; Moate, Roy

    2010-01-01

    Bottom pinned exchange bias systems of IrMn/CoFe and IrMn/CoFeB on CoFe seed layers were studied. Enhanced exchange anisotropy has been observed for IrMn/CoFeB samples annealed at 350 °C. The ferromagnetic and antiferromagnetic layers of both samples are polycrystalline and textured {110} for the...

  16. Physico-chemical and electrochemical characterization of Ti/RhO{sub x}-IrO{sub 2} electrodes using sol-gel technology

    Energy Technology Data Exchange (ETDEWEB)

    Klink, M.J.; Makgae, M.E. [Institute of Molecular Sciences, School of Chemistry, Faculty of Science, University of the Witwatersrand, Private Bag 3, Jorrissen Street, Johannesburg 2050 (South Africa); Crouch, A.M., E-mail: Andrew.Crouch@wits.ac.za [Institute of Molecular Sciences, School of Chemistry, Faculty of Science, University of the Witwatersrand, Private Bag 3, Jorrissen Street, Johannesburg 2050 (South Africa)

    2010-11-01

    Sol-gel technology has been successfully used for the incorporation of RhO{sub x}-IrO{sub 2} on a Ti substrate. RhO{sub x}-IrO{sub 2} was prepared from chloride precursors of Rh and Ir, for surface studies. These metal oxides were then immobilised on solid Ti substrates via dip withdrawal coating methods to form thin films. The Ti/RhO{sub x}-IrO{sub 2} thin films were extensively characterized in terms of surface characterization and chemical composition and used in the oxidation of phenol. Thermo-gravimetric analysis (TGA) determined the calcination temperature at 700 deg. C where no further structural changes occurred due to mass loss. The rhodium oxide showed two-phase formations, RhO{sub 2} and Rh{sub 2}O{sub 3}, which were attributed to high calcinated temperatures compare to one phase IrO{sub 2} which was stable at lower temperatures. The scanning electron microscopy (SEM) showed that the morphology of the film was found to be rough with a grain-like appearance in the 150-nm range. The phase composition of these metal oxides was determined by X-ray diffraction (XRD) technique and found to have crystalline structures. The results obtained from Rutherford backscattering spectrometry (RBS) revealed information regarding the chemical composition of the metal oxides and confirmed the diffusion of Rh and Ir into the Ti substrate. Electrochemical characterization of the Ti/RhO{sub x}-IrO{sub 2} electrode, via cyclic voltammetry (CV), showed distinctive redox peaks: anodic and cathodic peaks associated with the oxidation and reduction of the ferricyanide-ferrocyanide couple was seen at 250 and 100 mV respectively; the peak observed at 1000 mV was associated with oxygen evolution and a broad reductive wave at -600 mV can be ascribed to the Ti/RuO{sub x}-IrO{sub 2} reduction, which proved that the Ti/RhO{sub x}-IrO{sub 2} electrode were electroactive and exhibit fast electrochemistry.

  17. Temperature measurements with two different IR sensors in a continuous-flow microwave heated system

    Directory of Open Access Journals (Sweden)

    Jonas Rydfjord

    2013-10-01

    Full Text Available In a continuous-flow system equipped with a nonresonant microwave applicator we have investigated how to best assess the actual temperature of microwave heated organic solvents with different characteristics. This is non-trivial as the electromagnetic field will influence most traditional methods of temperature measurement. Thus, we used a microwave transparent fiber optic probe, capable of measuring the temperature inside the reactor, and investigated two different IR sensors as non-contact alternatives to the internal probe. IR sensor 1 measures the temperature on the outside of the reactor whilst IR sensor 2 is designed to measure the temperature of the fluid through the borosilicate glass that constitutes the reactor wall. We have also, in addition to the characterization of the before mentioned IR sensors, developed statistical models to correlate the IR sensor reading to a correct value of the inner temperature (as determined by the internal fiber optic probe, thereby providing a non-contact, indirect, temperature assessment of the heated solvent. The accuracy achieved with these models lie well within the range desired for most synthetic chemistry applications.

  18. IR thermocycler for centrifugal microfluidic platform with direct on-disk wireless temperature measurement system

    Science.gov (United States)

    Burger, J.; Gross, A.; Mark, D.; Roth, G.; von Stetten, F.; Zengerle, R.

    2011-06-01

    The direct on-disk wireless temperature measurement system [1,2] presented at μTAS 2010 was further improved in its robustness. We apply it to an IR thermocycler as part of a centrifugal microfluidic analyzer for polymerase chain reactions (PCR). This IR thermocycler allows the very efficient direct heating of aqueous liquids in microfluidic cavities by an IR radiation source. The efficiency factor of this IR heating system depends on several parameters. First there is the efficiency of the IR radiator considering the transformation of electrical energy into radiation energy. This radiation energy needs to be focused by a reflector to the center of the cavity. Both, the reflectors shape and the quality of the reflecting layer affect the efficiency. On the way to the center of the cavity the radiation energy will be diminished by absorption in the surrounding air/humidity and especially in the cavity lid of the microfluidic disk. The transmission spectrum of the lid material and its thickness is of significant impact. We chose a COC polymer film with a thickness of 150 μm. At a peak frequency of the IR radiator of ~2 μm approximately 85 % of the incoming radiation energy passes the lid and is absorbed within the first 1.5 mm depth of liquid in the cavity. As we perform the thermocycling for a PCR, after heating to the denaturation temperature of ~ 92 °C we need to cool down rapidly to the primer annealing temperature of ~ 55 °C. Cooling is realized by 3 ventilators venting air of room temperature into the disk chamber. Due to the air flow itself and an additional rotation of the centrifugal microfluidic disk the PCR reagents in the cavities are cooled by forced air convection. Simulation studies based upon analogous electrical models enable to optimize the disk geometry and the optical path. Both the IR heater and the ventilators are controlled by the digital PID controller HAPRO 0135 [3]. The sampling frequency is set to 2 Hz. It could be further increased up

  19. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  20. IAEA/NEA incident reporting system (IRS). Reporting guidelines. Feedback from safety related operating experience for nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants. These guidelines have been jointly developed and approved by the NEA/IAEA

  1. Recent events in NPPs and incident reporting system (IRS) activity. Working material

    International Nuclear Information System (INIS)

    1996-01-01

    The IAEA convened the 1996 Joint Meeting to Exchange Information on Recent Events in Nuclear Power Plants and the Technical Committee-Annual Meeting of the Incident Reporting System (IRS) national co-ordinators, organized jointly with the Nuclear Energy Agency (NEA) of the OECD in Paris, France from 22-26 April 1996. These consecutive meetings took place at the OECD Headquarters, 2 rue Andre Pascal. The main objective of the first meeting (22-24 April 1996) was to exchange and discuss information on recent events which occurred in NPPs. The second meeting (25-26 April 1996) was devoted to the IAEA and NEA activity in the framework of the IRS. The main issues of the programme at the meetings were as follows: in-depth discussion on NPP recent events, presented by the participants; panel discussion on operational safety experience issues identified by the participants; IAEA and NEA activities on IRS subjects in 1995-1996 and plans for the future; issues from the inter-agency's IRS Advisory Committee. Annexes I and II provide more information on the programme at the meetings. A list of participants is given in Annex III (50 participants from 22 countries and 3 international organization). Annexes IV and V provide information on national presentations on recent events. Figs, tabs

  2. Optical system for UV-laser technological equipment

    Science.gov (United States)

    Fedosov, Yuri V.; Romanova, Galina E.; Afanasev, Maxim Ya.

    2017-09-01

    Recently there has been an intensive development of intelligent industrial equipment that is highly automated and can be rapidly adjusted for certain details. This equipment can be robotics systems, automatic wrappers and markers, CNC machines and 3D printers. The work equipment considered is the system for selective curing of photopolymers using a UV-laser and UV-radiation in such equipment that leads to additional technical difficulties. In many cases for transporting the radiation from the laser to the point processed, a multi-mirror system is used: however, such systems are usually difficult to adjust. Additionally, such multi-mirror systems are usually used as a part of the equipment for laser cutting of metals using high-power IR-lasers. For the UV-lasers, using many mirrors leads to crucial radiation losses because of many reflections. Therefore, during the development of the optical system for technological equipment using UV-laser we need to solve two main problems: to transfer the radiation for the working point with minimum losses and to include the system for controlling/handling the radiation spot position. We introduce a system for working with UV-lasers with 450mW of power and a wavelength of 0.45 μm based on a fiber system. In our modelling and design, we achieve spot sizes of about 300 μm, and the designed optical and mechanical systems (prototypes) were manufactured and assembled. In this paper, we present the layout of the technological unit, the results of the theoretical modelling of some parts of the system and some experimental results.

  3. Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System

    Directory of Open Access Journals (Sweden)

    Van-Han Nguyen

    2015-03-01

    Full Text Available In indoor environments, the Global Positioning System (GPS and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking.

  4. VCSEL-based gigabit IR-UWB link for converged communication and sensing applications in optical metro-access networks

    DEFF Research Database (Denmark)

    Pham, Tien Thang; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2012-01-01

    We report on experimental demonstration of an impulse radio ultrawideband (IR-UWB) based converged communication and sensing system. A 1550-nm VCSEL-generated IR-UWB signal is used for 2-Gbps wireless data distribution over 800-m and 50-km single mode fiber links which present short-range in-buil...... application, paving the way forward for the development and deployment of converged UWB VCSEL-based technologies in access and in-building networks of the future.......We report on experimental demonstration of an impulse radio ultrawideband (IR-UWB) based converged communication and sensing system. A 1550-nm VCSEL-generated IR-UWB signal is used for 2-Gbps wireless data distribution over 800-m and 50-km single mode fiber links which present short-range in......-building and long-reach access network applications. The IR-UWB signal is also used to simultaneously measure the rotational speed of a blade spinning between 18 and 30 Hz. To the best of our knowledge, this is the very first demonstration of a simultaneous gigabit UWB telecommunication and wireless UWB sensing...

  5. Fibre-Optic IR-Spectroscopy for Biomedical Diagnostics

    OpenAIRE

    Bindig, Uwe; Gersonde, Ingo; Meinke, Martina; Becker, Yukiyo; Müller, Gerhard

    2003-01-01

    The use of microscopy is a valuable means of gaining vital information for medical diagnostics. Due to a number of recent technological developments advances have been made in IR microscopy and in particular, rapid detection methods. Microscopic examination methods usually involve sampling followed by a method of sample purification or preparation. The advantages of the IR analytical method are that it is based on a direct, non‒destructive measurement of sample material and that the resulting...

  6. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    Science.gov (United States)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  7. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan

    2000-01-01

    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  8. Disruptive technology for vector control: the Innovative Vector Control Consortium and the US Military join forces to explore transformative insecticide application technology for mosquito control programmes.

    Science.gov (United States)

    Knapp, Jennifer; Macdonald, Michael; Malone, David; Hamon, Nicholas; Richardson, Jason H

    2015-09-26

    Malaria vector control technology has remained largely static for decades and there is a pressing need for innovative control tools and methodology to radically improve the quality and efficiency of current vector control practices. This report summarizes a workshop jointly organized by the Innovative Vector Control Consortium (IVCC) and the Armed Forces Pest Management Board (AFPMB) focused on public health pesticide application technology. Three main topics were discussed: the limitations with current tools and techniques used for indoor residual spraying (IRS), technology innovation to improve efficacy of IRS programmes, and truly disruptive application technology beyond IRS. The group identified several opportunities to improve application technology to include: insuring all IRS programmes are using constant flow valves and erosion resistant tips; introducing compression sprayer improvements that help minimize pesticide waste and human error; and moving beyond IRS by embracing the potential for new larval source management techniques and next generation technology such as unmanned "smart" spray systems. The meeting served to lay the foundation for broader collaboration between the IVCC and AFPMB and partners in industry, the World Health Organization, the Bill and Melinda Gates Foundation and others.

  9. Catalytic mechanisms of direct pyrrole synthesis via dehydrogenative coupling mediated by PNP-Ir or PNN-Ru pincer complexes: Crucial role of proton-transfer shuttles in the PNP-Ir system

    KAUST Repository

    Qu, Shuanglin

    2014-04-02

    Kempe et al. and Milstein et al. have recently advanced the dehydrogenative coupling methodology to synthesize pyrroles from secondary alcohols (e.g., 3) and β-amino alcohols (e.g., 4), using PNP-Ir (1) and PNN-Ru (2) pincer complexes, respectively. We herein present a DFT study to characterize the catalytic mechanism of these reactions. After precatalyst activation to give active 1A/2A, the transformation proceeds via four stages: 1A/2A-catalyzed alcohol (3) dehydrogenation to give ketone (11), base-facilitated C-N coupling of 11 and 4 to form an imine-alcohol intermediate (18), base-promoted cyclization of 18, and catalyst regeneration via H2 release from 1R/2R. For alcohol dehydrogenations, the bifunctional double hydrogen-transfer pathway is more favorable than that via β-hydride elimination. Generally, proton-transfer (H-transfer) shuttles facilitate various H-transfer processes in both systems. Notwithstanding, H-transfer shuttles play a much more crucial role in the PNP-Ir system than in the PNN-Ru system. Without H-transfer shuttles, the key barriers up to 45.9 kcal/mol in PNP-Ir system are too high to be accessible, while the corresponding barriers (<32.0 kcal/mol) in PNN-Ru system are not unreachable. Another significant difference between the two systems is that the addition of alcohol to 1A giving an alkoxo complex is endergonic by 8.1 kcal/mol, whereas the addition to 2A is exergonic by 8.9 kcal/mol. The thermodynamic difference could be the main reason for PNP-Ir system requiring lower catalyst loading than the PNN-Ru system. We discuss how the differences are resulted in terms of electronic and geometric structures of the catalysts and how to use the features in catalyst development. © 2014 American Chemical Society.

  10. Radiation-resistance assessment of IR fibres for ITER thermography diagnostic system

    International Nuclear Information System (INIS)

    Brichard, B.; Ierschot, S. van; Ooms, H.; Berghmans, F.; Reichle, R.; Pocheau, C.; Decreton, M.

    2006-01-01

    The actively cooled target plates in the divertor of ITER will be subjected to high thermal fluxes (∼ 10 MW/m 2 ). These target plates are compound structures of an armour material at the surface - either carbon fibre reinforced carbon (CFC) or tungsten - and a water cooled CuCrZr structure inside or below. The thermal limit of the interface between the two materials must not exceed 550 o C. Therefore, the temperature must be carefully monitored to prevent structural damages of the divertor plates. Non contact measurements of the temperature offer the advantage to avoid weakening of the cooling plate structure which is already quite complex to manufacture. Infrared thermography of the target surface is therefore considered as a possible solution. Recently a diagnostic concept for spectrally resolved ITER divertor thermography using optical fibres has been proposed by CEA-Cadarache. However, the divertor region will have to face high-radiation flux and the radiation-resistance of InfraRed (IR)-fibres must be evaluated. In collaboration with CEA-Cadarache, an irradiation program has been started at SCK-CEN (Mol, Belgium) with the aim to measure the radiation-induced absorption of different IR fibre candidates operating in the 1-5 μm range. We selected various commercially available IR technologies: ZrF 4 , Hollow-Waveguide, Sapphire and Chalcogenide. For wavelengths below 2 μm we also tested low-OH silica fibres. We carried out a gamma irradiation at a maximum dose-rate of 0.42 Gy/s up to a total dose of about 5000 Gy. We showed that the optical transmission of ZrF 4 fibres strongly decreased under gamma radiation, primarily for wavelengths below 2 μm. In this type of fibre typical optical losses can reach 50 % at 5000 Gy around 3 μm. Nevertheless, the optical transmission can be significantly recovered by performing a thermal annealing treatment at a temperature of 100 o C. We also irradiated a Silver-coated hollow waveguide fibre at the same dose-rate but up

  11. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  12. Performance Management Systems: IRS's Systems for Frontline Employees and Managers Align with Strategic Goals but Improvements Can Be Made

    National Research Council Canada - National Science Library

    2002-01-01

    .... For agencies like the Internal Revenue Service (IRS) that are undergoing a cultural change, performance management systems help reinforce behaviors and actions that support the agency's obsession...

  13. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...

  14. Interface adjustment and exchange coupling in the IrMn/NiFe system

    Energy Technology Data Exchange (ETDEWEB)

    Spizzo, F.; Tamisari, M.; Chinni, F.; Bonfiglioli, E.; Del Bianco, L., E-mail: lucia.delbianco@unife.it

    2017-01-01

    The exchange bias effect was investigated, in the 5–300 K temperature range, in samples of IrMn [100 Å]/NiFe [50 Å] (set A) and in samples with inverted layer-stacking sequence (set B), produced at room temperature by DC magnetron sputtering in a static magnetic field of 400 Oe. The samples of each set differ for the nominal thickness (t{sub Cu}) of a Cu spacer, grown at the interface between the antiferromagnetic and ferromagnetic layers, which was varied between 0 and 2 Å. It has been found out that the Cu insertion reduces the values of the exchange field and of the coercivity and can also affect their thermal evolution, depending on the stack configuration. Indeed, the latter also determines a peculiar variation of the exchange bias properties with time, shown and discussed with reference to the samples without Cu of the two sets. The results have been explained considering that, in this system, the exchange coupling mechanism is ruled by the glassy magnetic behavior of the IrMn spins located at the interface with the NiFe layer. Varying the stack configuration and t{sub Cu} results in a modulation of the structural and magnetic features of the interface, which ultimately affects the spins dynamics of the glassy IrMn interfacial component. - Highlights: • Exchange bias effect in IrMn/NiFe samples with interfacial Cu spacer. • A variation of exchange bias with time is observed in as-deposited samples. • Magnetic modification of the interface by varying the stack sequence and Cu thickness. • Interface adjustment affects the dynamics of interfacial IrMn spins. • The exchange bias properties can be tuned by interface adjustment.

  15. Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter

    Science.gov (United States)

    Kurt, H. Hilal

    2018-05-01

    Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.

  16. Teaching IR to Medical Students: A Call to Action.

    Science.gov (United States)

    Lee, Aoife M; Lee, Michael J

    2018-02-01

    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  17. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    Science.gov (United States)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  18. Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller

    International Nuclear Information System (INIS)

    Sun, Z.G.

    2008-01-01

    An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat

  19. IR-camera methods for automotive brake system studies

    Science.gov (United States)

    Dinwiddie, Ralph B.; Lee, Kwangjin

    1998-03-01

    Automotive brake systems are energy conversion devices that convert kinetic energy into heat energy. Several mechanisms, mostly related to noise and vibration problems, can occur during brake operation and are often related to non-uniform temperature distribution on the brake disk. These problems are of significant cost to the industry and are a quality concern to automotive companies and brake system vendors. One such problem is thermo-elastic instabilities in brake system. During the occurrence of these instabilities several localized hot spots will form around the circumferential direction of the brake disk. The temperature distribution and the time dependence of these hot spots, a critical factor in analyzing this problem and in developing a fundamental understanding of this phenomenon, were recorded. Other modes of non-uniform temperature distributions which include hot banding and extreme localized heating were also observed. All of these modes of non-uniform temperature distributions were observed on automotive brake systems using a high speed IR camera operating in snap-shot mode. The camera was synchronized with the rotation of the brake disk so that the time evolution of hot regions could be studied. This paper discusses the experimental approach in detail.

  20. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  1. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  2. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    Science.gov (United States)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  3. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging.

    Science.gov (United States)

    Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C

    2018-03-01

    Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

  4. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  5. Multiplexing of spatial modes in the mid-IR region

    Science.gov (United States)

    Gailele, Lucas; Maweza, Loyiso; Dudley, Angela; Ndagano, Bienvenu; Rosales-Guzman, Carmelo; Forbes, Andrew

    2017-02-01

    Traditional optical communication systems optimize multiplexing in polarization and wavelength both trans- mitted in fiber and free-space to attain high bandwidth data communication. Yet despite these technologies, we are expected to reach a bandwidth ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers infinite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial degrees of freedom. OAM modes are multiplexed and de-multiplexed by the use of spatial light modulators (SLM). Implementation of complex amplitude modulation is employed on laser beams phase and amplitude to generate Laguerre-Gaussian (LG) modes. Modal decomposition is employed to detect these modes due to their orthogonality as they propagate in space. We demonstrate data transfer by sending images as a proof-of concept in a lab-based scheme. We demonstrate the creation and detection of OAM modes in the mid-IR region as a precursor to a mid-IR free-space communication link.

  6. Monitoring combat wound healing by IR hyperspectral imaging

    Science.gov (United States)

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.

    2016-03-01

    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  7. IR wireless cluster synapses of HYDRA very large neural networks

    Science.gov (United States)

    Jannson, Tomasz; Forrester, Thomas

    2008-04-01

    RF/IR wireless (virtual) synapses are critical components of HYDRA (Hyper-Distributed Robotic Autonomy) neural networks, already discussed in two earlier papers. The HYDRA network has the potential to be very large, up to 10 11-neurons and 10 18-synapses, based on already established technologies (cellular RF telephony and IR-wireless LANs). It is organized into almost fully connected IR-wireless clusters. The HYDRA neurons and synapses are very flexible, simple, and low-cost. They can be modified into a broad variety of biologically-inspired brain-like computing capabilities. In this third paper, we focus on neural hardware in general, and on IR-wireless synapses in particular. Such synapses, based on LED/LD-connections, dominate the HYDRA neural cluster.

  8. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  9. An overview on the research of Sr2IrO4-based system probed by X-ray absorption spectroscopy

    Science.gov (United States)

    Cheng, Jie; Zhu, Chaomin; Ma, Jingyuan; Wang, Yu; Liu, Shengli

    2018-03-01

    Investigations of materials with 5d transition metal ions have opened up new paradigms in condensed-matter physics because of their large spin-orbit coupling (SOC) interactions. The typical compound is Sr2IrO4, which attracted much attention due to its similarities to the parent compound of high-Tc cuprate superconductor La2CuO4. Theoretical calculations predicted that the unconventional superconductivity can occur in carrier doped-Sr2IrO4 system. Until now, hundreds of experimental methods were devoted to investigate the carrier doping effect on Sr2IrO4. Synchrotron radiation-based X-ray absorption spectroscopy (XAS) made great contributions to the local lattice and electronic structure, and also the intimate relationship between the local structure and physical properties induced by carrier doping. The aim of this review is a short introduction to the progress of research on Sr2IrO4-based system probed by the unique technique — XAS, including the strength of the SOC, valence changes upon doping and even local lattice structure with atomic level for this Sr2IrO4-based family.

  10. Activity uniformity of Ir-192 seeds

    International Nuclear Information System (INIS)

    Ling, C.C.; Gromadzki, Z.C.

    1981-01-01

    A simple device that uses materials and apparatus commonly available in a radiotherapy department has been designed, fabricated and used in routine quality control relative to the activity uniformity of clinical Ir-192 seeds in ribbons. Detailed evaluation indicated that this system is easy to use and can yield relative activity measurements of individual Ir-192 seeds accurate to within 2%. With this device, activity uniformity of commercial Ir-192 seeds from two manufacturers has been assessed. For the seven shipments of Ir-192 seeds studied, the root mean square variations of individual seed strength from the average of each shipment ranged from 3.4 to 7.1%. Variation in seed activity by more than +- 10% from the average is not uncommon

  11. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  12. A State-of-the-Art Survey of Indoor Positioning and Navigation Systems and Technologies

    Directory of Open Access Journals (Sweden)

    Wilson Sakpere

    2017-12-01

    Full Text Available The research and use of positioning and navigation technologies outdoors has seen a steady and exponential growth. Based on this success, there have been attempts to implement these technologies indoors, leading to numerous studies. Most of the algorithms, techniques and technologies used have been implemented outdoors. However, how they fare indoors is different altogether. Thus, several technologies have been proposed and implemented to improve positioning and navigation indoors. Among them are Infrared (IR, Ultrasound, Audible Sound, Magnetic, Optical and Vision, Radio Frequency (RF, Visible Light, Pedestrian Dead Reckoning (PDR/Inertial Navigation System (INS and Hybrid. The RF technologies include Bluetooth, Ultra-wideband (UWB, Wireless Sensor Network (WSN, Wireless Local Area Network (WLAN, Radio-Frequency Identification (RFID and Near Field Communication (NFC. In addition, positioning techniques applied in indoor positioning systems include the signal properties and positioning algorithms. The prevalent signal properties are Angle of Arrival (AOA, Time of Arrival (TOA, Time Difference of Arrival (TDOA and Received Signal Strength Indication (RSSI, while the positioning algorithms are Triangulation, Trilateration, Proximity and Scene Analysis/ Fingerprinting. This paper presents a state-of-the-art survey of indoor positioning and navigation systems and technologies, and their use in various scenarios. It analyses distinct positioning technology metrics such as accuracy, complexity, cost, privacy, scalability and usability. This paper has profound implications for future studies of positioning and navigation.

  13. Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system.

    Science.gov (United States)

    Awaji, Naoki; Miyajima, Toyoo; Doi, Shuuichi; Nomura, Kenji

    2010-12-01

    It has recently been found that the exchange bias of a MnIr/CoFe system can be increased significantly by adding a thermal treatment to the bilayer. To reveal the origin of the higher exchange bias, we performed polarized neutron reflectivity measurements at the JRR-3 neutron source. The magnetization vector near the MnIr/CoFe interface for thermally treated samples differed from that for samples without the treatment. We propose a model in which the pinned spin area at the interface is extended due to the increased roughness and atomic interdiffusion that result from the thermal treatment.

  14. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    Science.gov (United States)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  15. Ir-Ni oxide as a promising material for nerve and brain stimulating electrodes

    Directory of Open Access Journals (Sweden)

    Joan Stilling

    2014-09-01

    Full Text Available Tremendous potential for successful medical device development lies in both electrical stimulation therapies and neuronal prosthetic devices, which can be utilized in an extensive number of neurological disorders. These technologies rely on the successful electrical stimulation of biological tissue (i.e. neurons through the use of electrodes. However, this technology faces the principal problem of poor stimulus selectivity due to the currently available electrode’s large size relative to its targeted population of neurons. Irreversible damage to both the stimulated tissue and electrode are limiting factors in miniaturization of this technology, as charge density increases with decreasing electrode size. In an attempt to find an equilibrium between these two opposing constraints (electrode size and charge density, the objective of this work was to develop a novel iridium-nickel oxide (Ir0.2-Ni0.8-oxide coating that could intrinsically offer high charge storage capacity. Thermal decomposition was used to fabricate titanium oxide, iridium oxide, nickel oxide, and bimetallic iridium-nickel oxide coatings on titanium electrode substrates. The Ir0.2-Ni0.8-oxide coating yielded the highest intrinsic (material property and extrinsic (material property + surface area charge storage capacity (CSC among the investigated materials, exceeding the performance of the current state-of-the-art neural stimulating electrode, Ir-oxide. This indicates that the Ir0.2-Ni0.8-oxide material is a promising alternative to currently used Ir-oxide, Pt, Au and carbon-based stimulating electrodes.

  16. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  17. Modulation transfer function cascade model for a sampled IR imaging system.

    Science.gov (United States)

    de Luca, L; Cardone, G

    1991-05-01

    The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.

  18. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems

    Science.gov (United States)

    Williams, John W.; Potter, Gary E.

    2002-11-01

    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  19. Advanced sampling techniques for hand-held FT-IR instrumentation

    Science.gov (United States)

    Arnó, Josep; Frunzi, Michael; Weber, Chris; Levy, Dustin

    2013-05-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. The challenging ConOps in emergency response and military field applications require a significant redesign of the stationary FT-IR bench-top instruments typically used in laboratories. Specifically, field portable units require high levels of resistance against mechanical shock and chemical attack, ease of use in restrictive gear, extreme reliability, quick and easy interpretation of results, and reduced size. In the last 20 years, FT-IR instruments have been re-engineered to fit in small suitcases for field portable use and recently further miniaturized for handheld operation. This article introduces the HazMatID™ Elite, a FT-IR instrument designed to balance the portability advantages of a handheld device with the performance challenges associated with miniaturization. In this paper, special focus will be given to the HazMatID Elite's sampling interfaces optimized to collect and interrogate different types of samples: accumulated material using the on-board ATR press, dispersed powders using the ClearSampler™ tool, and the touch-to-sample sensor for direct liquid sampling. The application of the novel sample swipe accessory (ClearSampler) to collect material from surfaces will be discussed in some detail. The accessory was tested and evaluated for the detection of explosive residues before and after detonation. Experimental results derived from these investigations will be described in an effort to outline the advantages of this technology over existing sampling methods.

  20. Flushing-free film test of "1"9"2Ir accuracy of position and step distance for afterloading systems

    International Nuclear Information System (INIS)

    Lu Feng; Chen Rui; Shang Yunying; Chen Yue; Min Nan; Chen Yingmin; Deng Daping

    2014-01-01

    Objective: To study the method of measuring the position accuracy and the step distance accuracy of afterloading system with "1"9"2Ir source by using flushing-free film. Methods: The position accuracy and the step distance accuracy of a China-made afterloading system with "1"9"2Ir source was measured by using GAFCHROMIC"® EBT"3 flushing-free film. The film was scanned to proper image format, required by dose analysis software, by EPSON PREFACTION V700 PHOTO scanner. Then images are analyzed by using film dose analysis software in SNC Patient 5.2. Results: With focus on the center of active section of source, the position accuracy of this afterloading system with "1"9"2Ir source was -0.75 mm. Using film analysis could make the step point to tell apart if the step distance was 5 mm away by the method of film analysis, but couldnot make it to tell apart if the step distance was 2.5 mm away. The 2.5 mm step distance accuracy could be judged if the distance between the 1"s"t point and the 3"r"d point was 5 mm, then the 2.5 mm step distance could be deemed to no deviation. The 5 mm step distance of this afterloading system had no deviation in continuous 9 step points measured by flushing-free film. The indirect measuring results of the 2.5 mm step distance had no deviation as well. The position accuracy of this afterloading system measured with the flushing-free film accorded with the national standards. Conclusions: The method of measuring the position accuracy and the step distance accuracy of the afterloading system with "1"9"2Ir source by using flushing-free film is technically feasible. (authors)

  1. Tarptautinio turizmo raida ir vystymo prognozės Lietuvoje ir Lenkijoje

    OpenAIRE

    Veličkaitė, Dalia

    2009-01-01

    Išanalizuota ir įvertinta Lietuvos ir Lenkijos atvykstamojo turizmo raida 2000- 2007m., užsienio turistų srautai, apgyvendinimo paslaugų paklausa, turistų tikslai ir kelionių transporto pasirinkimas, turistų išlaidos ir šalių turizmo pajamos, iškeltos atvykstamojo turizmo problemos bei pateikti jų sprendimo siūlymai.paskutinėje darbo dalyje buvo atliktos 2008- 2015metų Lietuvos ir Lenkijos turizmo raidos prognozės. In the final master work Lithuanian and Poland arriving tourism development...

  2. Energy Efficient Clothes Dryer with IR Heating and Electrostatic Precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Stanton [GE Global Research, Niskayuna, NY (United States)

    2017-12-12

    The project goal was to develop a revolutionary energy saving technology for residential clothes drying. The team developed an IR (infrared) heating system and NESP (Nebulizer and Electro-Static Precipitator) for integration into a ventless clothes dryer. The proposed technology addresses two of the major inefficiencies in current electric vented dryers by providing effective energy transfer for the removal of the water and recapture of the vapor latent heat. The IR heaters operating in the mid wave (2.5-10um) are very efficient as they target the 3-micron peak absorption of the water molecule. This allows direct energy absorption, unlike conventional element heaters where heat is transferred by convection. The low power NESP removes water vapor from the exhausted stream and recaptures the latent heat in the ESP (Electro-Static Precipitator) exchanger section. This allows the warm dry air to be recirculated back into the drum for additional efficiency savings. The remaining majority of the dryer hardware stays the same. Summing the efficiency gain from the two subcomponents we anticipated the EF (Efficiency Factor) to exceed the goal of 4.04. EF is obtained by dividing the weight (lbs) of water removed by the energy (kWhr) used, where the test load size is 8.45 lbs of bone dry clothing wetted to 57.5% or 4.8lbs of water, and dried to a remaining moisture content of 2.5-5%. Additional benefits include not having to recondition (heat or cool) the large amounts of make-up air to replace the air exhausted by a vented dryer. It was anticipated that the NESP/heat exchanger would be the most challenging and highest risk element in the program. Therefore, the team focused their efforts during Phase 1 of the program on the design, construction, testing, and optimization of the NESP/heat exchanger. At the end Phase 1, the team compared the performance of the NESP/heat exchanger with the system level requirements and made a Go/No-Go decision on proceeding with the second

  3. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    Science.gov (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  4. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  5. Intracavity upconversion for IR absorption lidar: Comparison of linear and ring cavity designs

    DEFF Research Database (Denmark)

    Meng, Lichun; Høgstedt, Lasse; Tidemand-Lichtenberg, Peter

    2017-01-01

    Upconversion detection is a promising technology for measurement of IR signals in the 1.5 μm–2 μm region used for lidar remote sensing [1-2]. In comparison to conventional InGaAs detector, the upconversion detector can achieve IR detection with better signal-to-noise ratio (SNR), not only due...

  6. New impressive capabilities of SE-workbench for EO/IR real-time rendering of animated scenarios including flares

    Science.gov (United States)

    Le Goff, Alain; Cathala, Thierry; Latger, Jean

    2015-10-01

    To provide technical assessments of EO/IR flares and self-protection systems for aircraft, DGA Information superiority resorts to synthetic image generation to model the operational battlefield of an aircraft, as viewed by EO/IR threats. For this purpose, it completed the SE-Workbench suite from OKTAL-SE with functionalities to predict a realistic aircraft IR signature and is yet integrating the real-time EO/IR rendering engine of SE-Workbench called SE-FAST-IR. This engine is a set of physics-based software and libraries that allows preparing and visualizing a 3D scene for the EO/IR domain. It takes advantage of recent advances in GPU computing techniques. The recent past evolutions that have been performed concern mainly the realistic and physical rendering of reflections, the rendering of both radiative and thermal shadows, the use of procedural techniques for the managing and the rendering of very large terrains, the implementation of Image- Based Rendering for dynamic interpolation of plume static signatures and lastly for aircraft the dynamic interpolation of thermal states. The next step is the representation of the spectral, directional, spatial and temporal signature of flares by Lacroix Defense using OKTAL-SE technology. This representation is prepared from experimental data acquired during windblast tests and high speed track tests. It is based on particle system mechanisms to model the different components of a flare. The validation of a flare model will comprise a simulation of real trials and a comparison of simulation outputs to experimental results concerning the flare signature and above all the behavior of the stimulated threat.

  7. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  8. Role of IRS-2 in insulin and cytokine signalling.

    Science.gov (United States)

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  9. IR study of Pb–Sr titanate borosilicate glasses

    Indian Academy of Sciences (India)

    Administrator

    IR study of Pb–Sr titanate borosilicate glasses. C R GAUTAM*, DEVENDRA KUMAR. † and OM PARKASH. †. Department of Physics, University of Lucknow, Lucknow 226 007, India. †. Department of Ceramic Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India. MS received 3 January ...

  10. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    Science.gov (United States)

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  11. Strong-Field Physics with Mid-IR Fields

    Directory of Open Access Journals (Sweden)

    Benjamin Wolter

    2015-06-01

    Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.

  12. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  13. Simultaneous formation and detection of the reaction product of solid-state aspartame sweetener by FT-IR/DSC microscopic system.

    Science.gov (United States)

    Lin, S Y; Cheng, Y D

    2000-10-01

    The solid-state stability of aspartame hemihydrate (APM) sweetener during thermal treatment is important information for the food industry. The present study uses the novel technique of Fourier transform infrared microspectroscopy equipped with differential scanning calorimetry (FT-IR/DSC microscopic system) to accelerate and determine simultaneously the thermal-dependent impurity formation of solid-state APM. The results indicate a dramatic change in IR spectra from 50, 110 or 153 degrees C, which was respectively attributed to the onset temperature of water evaporation, dehydration and cyclization processes. It is suggested that the processes of dehydration and intramolecular cyclization occurred in the solid-state APM during the heating process. As an impurity, 3-carboxymethyl-6-benzyl-2,5-diketopiperazine (DKP) degraded from solid state APM via intramolecular cyclization and liberation of methanol. This was evidenced by this novel FT-IR/DSC microscopic system in a one-step procedure.

  14. Compact erbium lasers in the IR photorefractive keratectomy (PRK)

    Science.gov (United States)

    Liu, Baining; Eichler, Hans J.; Sperlich, O.; Holschbach, A.; Kayser, M.

    1996-09-01

    Erbium lasers deliver laser radiation near 3 micrometers and are a promising alternative to excimer laser photorefractive keratectomy (UV-PRK). In addition to easier handling due to all solid state technology, especially when operated in the fundamental mode, IR-PRK eliminates the potential of mutagenic side effects associated with UV-PRK. However, a successful IR-PRK for the clinic treatment in the near future demands both technological development of erbium lasers in different operation modes and clinical investigation of interaction between 3 micrometers radiation and human corneas. The excellent cooperation between university, company and hospital makes this possible. Uncoated thin plates made from infrared materials were found to be effective etalon reflectors with high damage threshold as high as 1 GW/cm2 for erbium lasers. Four kinds of such reflectors were successfully tested in Q-switched Er:YAG-laser at 2.94 micrometers and Er:Cr:YSGG-laser at 2.80 micrometers. Very stable operation of our erbium lasers with high output energy both in free-running and Q-switched modes is realized. First infrared photorefractive keratectomy (IR-PRK) for myopic correction in human corneas by a free-running erbium laser based on our new construction concepts was achieved.

  15. Utilization of IR laser pumped anti-Stokes emission of Er-Yb doped systems for identification of securities

    International Nuclear Information System (INIS)

    Kuzmin, A.N.; Ryabtsev, G.I.; Ketko, G.A.; Gorelenko, A.Yu.; Demidovich, A.A.; Strek, W.; Maruszewicz, K.; Deren, P.

    1996-01-01

    In this paper we present a utilization of anti-Stokes luminescence of Er-Yb systems for identification of securities. A simple method of detection of an up-conversion phenomenon in such system by means of IR laser operating in the region 960-1010 nm is proposed. (author)

  16. Electrical Control of Structural and Physical Properties via Strong Spin-Orbit Interactions in Sr2IrO4

    Science.gov (United States)

    Cao, G.; Terzic, J.; Zhao, H. D.; Zheng, H.; De Long, L. E.; Riseborough, Peter S.

    2018-01-01

    Electrical control of structural and physical properties is a long-sought, but elusive goal of contemporary science and technology. We demonstrate that a combination of strong spin-orbit interactions (SOI) and a canted antiferromagnetic Mott state is sufficient to attain that goal. The antiferromagnetic insulator Sr2IrO4 provides a model system in which strong SOI lock canted Ir magnetic moments to IrO6 octahedra, causing them to rigidly rotate together. A novel coupling between an applied electrical current and the canting angle reduces the Néel temperature and drives a large, nonlinear lattice expansion that closely tracks the magnetization, increases the electron mobility, and precipitates a unique resistive switching effect. Our observations open new avenues for understanding fundamental physics driven by strong SOI in condensed matter, and provide a new paradigm for functional materials and devices.

  17. Rapid identification of Chinese Sauce liquor from different fermentation positions with FT-IR spectroscopy

    Science.gov (United States)

    Li, Changwen; Wei, Jiping; Zhou, Qun; Sun, Suqin

    2008-07-01

    FT-IR and two-dimensional correlation spectroscopy (2D-IR) technology were applied to discriminate Chinese Sauce liquor from different fermentation positions (top, middle and bottom of fermentation cellar) for the first time. The liquors at top, middle and bottom of fermentation cellar, possessed the characteristic peaks at 1731 cm -1, 1733 cm -1 and 1602 cm -1, respectively. In the 2D correlation infrared spectra, the differences were amplified. A strong auto-peak at 1725 cm -1 showed in the 2D spectra of the Top Liquor, which indicated that the liquor might contain some ester compounds. Different from Top Liquor, three auto-peaks at 1695, 1590 and 1480 cm -1 were identified in 2D spectra of Middle Liquor, which were the characteristic absorption of acid, lactate. In 2D spectra of Bottom Liquor, two auto-peaks at 1570 and 1485 cm -1 indicated that lactate was the major component. As a result, FT-IR and 2D-IR correlation spectra technology provided a rapid and effective method for the quality analysis of the Sauce liquor.

  18. Avionics systems integration technology

    Science.gov (United States)

    Stech, George; Williams, James R.

    1988-01-01

    A very dramatic and continuing explosion in digital electronics technology has been taking place in the last decade. The prudent and timely application of this technology will provide Army aviation the capability to prevail against a numerically superior enemy threat. The Army and NASA have exploited this technology explosion in the development and application of avionics systems integration technology for new and future aviation systems. A few selected Army avionics integration technology base efforts are discussed. Also discussed is the Avionics Integration Research Laboratory (AIRLAB) that NASA has established at Langley for research into the integration and validation of avionics systems, and evaluation of advanced technology in a total systems context.

  19. Iridium Interfacial Stack - IrIS

    Science.gov (United States)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  20. SU-G-JeP3-10: Update On a Real-Time Treatment Guidance System Using An IR Navigation System for Pleural PDT

    International Nuclear Information System (INIS)

    Kim, M; Penjweini, R; Zhu, T

    2016-01-01

    Purpose: Photodynamic therapy (PDT) is used in conjunction with surgical debulking of tumorous tissue during treatment for pleural mesothelioma. One of the key components of effective PDT is uniform light distribution. Currently, light is monitored with 8 isotropic light detectors that are placed at specific locations inside the pleural cavity. A tracking system with real-time feedback software can be utilized to improve the uniformity of light in addition to the existing detectors. Methods: An infrared (IR) tracking camera is used to monitor the movement of the light source. The same system determines the pleural geometry of the treatment area. Software upgrades allow visualization of the pleural cavity as a two-dimensional volume. The treatment delivery wand was upgraded for ease of light delivery while incorporating the IR system. Isotropic detector locations are also displayed. Data from the tracking system is used to calculate the light fluence rate delivered. This data is also compared with in vivo data collected via the isotropic detectors. Furthermore, treatment volume information will be used to form light dose volume histograms of the pleural cavity. Results: In a phantom study, the light distribution was improved by using real-time guidance compared to the distribution when using detectors without guidance. With the tracking system, 2D data can be collected regarding light fluence rather than just the 8 discrete locations inside the pleural cavity. Light fluence distribution on the entire cavity can be calculated at every time in the treatment. Conclusion: The IR camera has been used successfully during pleural PDT patient treatment to track the motion of the light source and provide real-time display of 2D light fluence. It is possible to use the feedback system to deliver a more uniform dose of light throughout the pleural cavity.

  1. SU-G-JeP3-10: Update On a Real-Time Treatment Guidance System Using An IR Navigation System for Pleural PDT

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M; Penjweini, R; Zhu, T [University Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Photodynamic therapy (PDT) is used in conjunction with surgical debulking of tumorous tissue during treatment for pleural mesothelioma. One of the key components of effective PDT is uniform light distribution. Currently, light is monitored with 8 isotropic light detectors that are placed at specific locations inside the pleural cavity. A tracking system with real-time feedback software can be utilized to improve the uniformity of light in addition to the existing detectors. Methods: An infrared (IR) tracking camera is used to monitor the movement of the light source. The same system determines the pleural geometry of the treatment area. Software upgrades allow visualization of the pleural cavity as a two-dimensional volume. The treatment delivery wand was upgraded for ease of light delivery while incorporating the IR system. Isotropic detector locations are also displayed. Data from the tracking system is used to calculate the light fluence rate delivered. This data is also compared with in vivo data collected via the isotropic detectors. Furthermore, treatment volume information will be used to form light dose volume histograms of the pleural cavity. Results: In a phantom study, the light distribution was improved by using real-time guidance compared to the distribution when using detectors without guidance. With the tracking system, 2D data can be collected regarding light fluence rather than just the 8 discrete locations inside the pleural cavity. Light fluence distribution on the entire cavity can be calculated at every time in the treatment. Conclusion: The IR camera has been used successfully during pleural PDT patient treatment to track the motion of the light source and provide real-time display of 2D light fluence. It is possible to use the feedback system to deliver a more uniform dose of light throughout the pleural cavity.

  2. Operational experience - Lessons learned from IRS-reports in Germany

    International Nuclear Information System (INIS)

    Wetzel, N.; Maqua, M.

    2005-01-01

    The international Incident Reporting System (IRS), jointly operated by IAEA and OECD-NEA, is a main source of safety significant findings and lessons learned of nuclear operating experience. GRS (Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH) is a scientific-technical expert and research organisation. On Behalf of the Federal Minister of Environment, Nature Conservation and Reactor Safety (BMU), GRS provides the IRS officer. The evaluation of IRS-Reports and the dissemination of the main findings including the assessment of the relevance for German NPPs is task of GRS. The value of IRS is among experts undoubted. But nevertheless, the reporting to IRS decreases since some years. This presentation is aimed to show the support of IRS in strengthening the safety of German NPPs. The evaluation of IRS-Reports at GRS is three-fold. It comprises initial screening, quarterly and yearly reporting and the development of specific German Information Notices on safety significant events with direct applicability to German NPPs. Some examples of lessons learned from recent international events are discussed below. These examples shall demonstrate that the use of the IRS enhances significantly the knowledge on operational events. (author)

  3. Perspective of Australian uncooled IR sensor technology

    Science.gov (United States)

    Liddiard, Kevin C.

    2000-12-01

    This paper presents an overview of the development in Australia of resistance bolometer technology and associated uncooled infrared sensors. A summary is given of research achievements, with the aim of placing in historic perspective Australian work in comparison with overseas research and development. Extensive research in this field was carried out at the Defence Science and Technology Organisation (DSTO), Salisbury, South Australia, in collaboration with the Australian microelectronic and electro-optic industries, with supporting research in Australian universities. The DSTO research has a history covering five decades, commencing with simple thin film bolometers employed in radiometric sensors, followed by protracted R&D culminating in development of micromachined focal plane detector arrays for non-imaging sensors and lightweight thermal imagers. DSTO currently maintains a microbolometer processing capability for the purposes of research collaboration and support for commercial initiatives based on patented technology. Expertise in microbolometer design, performance and processing technology has transferred to Electro-optic Sensor Design (EOSD) through a licensing agreement. Contemporary development will be described.

  4. Report of research and investigation committee for infrared radiation heating technology. Sekigai hosha kanetsu gijutsu kenkyu chosa iinkai hokoku

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, M. (Fukuyama Univ., Hiroshima (Japan). Faculty of Engineering)

    1994-07-01

    The committee was established in July 1990 for research and investigation of infrared (IR) heating technology and finished its activity in March 1993. This report describes the committee members and the results of research and investigation. (1) Application of IR radiation (sensing): the research and investigation results were reported on the following items; the recognition of letters and patterns on cultural properties by IR radiation, the passive sensor (detecting the IR radiated from the object without emitting from the sensor), the IR image system, and the diagnosis of outer wail of buildings. (2) The following were researched on the IR radiation source and IR emitting material; multi-functional heating element having far infrared radiation function and deodorant function, the emissivity of far IR radiation, and the evaluation of the functions by the difference in emissivity. (3) The IR heating technology was described on the following: drying the persimmon using far IR radiation, the present situation of research on IR heating done by foreign power supply companies, and the feature and the application of far IR heater. In addition to these, the following were also reported; (4) measurement of IR radiation and (5) effect of living body and organism.

  5. Comparison of the cost between 60Co and 192Ir, as the sources for high-dose-rate remote control afterloading systems (HDR-RALS)

    International Nuclear Information System (INIS)

    Ogata, Hitoshi

    1994-01-01

    High-Dose-Rate remote control afterloading systems (HDR-RALS) installing 60 Co sources have been prevailing currently in Japan. The survey conducted by Japan Isotope Association (JIA) reports that 180 machines are at working condition. Although the wide prevalence of the HDR-RALS, the stable supply of 60 Co is becoming difficult because of the short availability of raw materials. The supply of 60 Co is planned to be terminated in March 1996. In place of 60 Co, 192 Ir is going to be produced in 1996. The size of 192 Ir, which is much smaller than that of 60 Co, may facilitate broader clinical usability. On the other hand, for the reason that the half life of 192 Ir (73.8 days) is much shorter than that of 60 Co (5.27 years), several exchanges of the sources in a year are necessary. This report analyses the difference of the cost between 60 Co and 192 Ir as the sources for HDR-RALS. As the cost of the 60 Co sources is dependent on the distance from Tokyo. Radiation activity, etc., the cost-calculation was done on the basis the 60 Co sources were installed for the HDR-RALS systems in Yamanashi Central Hospital. The total cost of 60 Co is 3,377,000 yen on the data from JIA. According to the half life of 5.27 years, the available duration can be thought as 7 years and the monthly cost be calculated as about 40,000 yen. In case of 192 Ir, the prices for Buchler' system and Nucletron's system are 800,000 yen and 990,000 yen respectively. Concerning the shortness of the half life, an exchange in every 3 months is ideal. Therefore the monthly cost of 192 Ir would be 260,000-330,000 yen. Consequently the cost-ratio for 192 Ir and 60 Co would become 6.7-8.3. The cost of intracavitary irradiation is controlled by the government as 10,000 yen per treatment in Japan. If this setting remains the same for HDR-RALS installing 192 Ir, almost all the facilities of radiation therapy would suffer from the cost-income inbalance in the near future. (author)

  6. IL 6: 2D-IR spectroscopy: chemistry and biophysics in real time

    International Nuclear Information System (INIS)

    Bredenbeck, Jens

    2010-01-01

    Pulsed multidimensional experiments, daily business in the field of NMR spectroscopy, have been demonstrated only relatively recently in IR spectroscopy. Similar as nuclear spins in multidimensional NMR, molecular vibrations are employed in multidimensional IR experiments as probes of molecular structure and dynamics, albeit with femtosecond time resolution. Different types of multidimensional IR experiments have been implemented, resembling basic NMR experiments such as NOESY, COSY and EXSY. In contrast to one-dimensional linear spectroscopy, such multidimensional experiments reveal couplings and correlations of vibrations, which are closely linked to molecular structure and its change in time. The use of mixed IR/VIS pulse sequences further extends the potential of multidimensional IR spectroscopy, enabling studies of ultrafast non-equilibrium processes as well as surface specific, highly sensitive experiments. A UV/VIS pulse preceding the IR pulse sequence can be used to prepare the system under study in a non-equilibrium state. 2D-IR snapshots of the evolving non-equilibrium system are then taken, for example during a photochemical reaction or during the photo-cycle of a light sensitive protein. Preparing the system in a non-equilibrium state by UV/Vis excitation during the IR pulse sequence allows for correlating states of reactant and product of the light triggered process via their 2D-IR cross peaks - a technique that has been used to map the connectivity between different binding sites of a ligand as it migrates through a protein. Introduction of a non-resonant VIS pulse at the end of the IR part of the experiment allows to selectively up-convert the infrared signal of interfacial molecules to the visible spectral range by sum frequency generation. In this way, femtosecond interfacial 2D-IR spectroscopy can be implemented, achieving sub-monolayer sensitivity. (author)

  7. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses

    Directory of Open Access Journals (Sweden)

    Kim Nammoon

    2011-01-01

    Full Text Available Abstract In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  8. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  9. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daria L. [Department of Chemistry, Yale University, 225; Beltrán-Suito, Rodrigo [Department of Chemistry, Yale University, 225; Thomsen, Julianne M. [Department of Chemistry, Yale University, 225; Hashmi, Sara M. [Department of Chemical and Environmental; Materna, Kelly L. [Department of Chemistry, Yale University, 225; Sheehan, Stafford W. [Catalytic Innovations LLC, 70 Crandall; Mercado, Brandon Q. [Department of Chemistry, Yale University, 225; Brudvig, Gary W. [Department of Chemistry, Yale University, 225; Crabtree, Robert H. [Department of Chemistry, Yale University, 225

    2016-02-05

    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  10. Anisotropy in Bone Demineralization Revealed by Polarized Far-IR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Roman Schuetz

    2015-04-01

    Full Text Available Bone material is composed of an organic matrix of collagen fibers and apatite nanoparticles. Previously, vibrational spectroscopy techniques such as infrared (IR and Raman spectroscopy have proved to be particularly useful for characterizing the two constituent organic and inorganic phases of bone. In this work, we tested the potential use of high intensity synchrotron-based far-IR radiation (50–500 cm−1 to gain new insights into structure and chemical composition of bovine fibrolamellar bone. The results from our study can be summarized in the following four points: (I compared to far-IR spectra obtained from synthetic hydroxyapatite powder, those from fibrolamellar bone showed similar peak positions, but very different peak widths; (II during stepwise demineralization of the bone samples, there was no significant change neither to far-IR peak width nor position, demonstrating that mineral dissolution occurred in a uniform manner; (III application of external loading on fully demineralized bone had no significant effect on the obtained spectra, while dehydration of samples resulted in clear differences. (IV using linear dichroism, we showed that the anisotropic structure of fibrolamellar bone is also reflected in anisotropic far-IR absorbance properties of both the organic and inorganic phases. Far-IR spectroscopy thus provides a novel way to functionally characterize bone structure and chemistry, and with further technological improvements, has the potential to become a useful clinical diagnostic tool to better assess quality of collagen-based tissues.

  11. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C

    Science.gov (United States)

    Helmy, Hassan M.; Bragagni, Alessandro

    2017-11-01

    The platinum-group element (PGE) contents in magmatic ores and rocks are normally in the low μg/g (even in the ng/g) level, yet they form discrete platinum-group mineral (PGM) phases. IPGE (Os, Ir, Ru) + Rh form alloys, sulfides, and sulfarsenides while Pt and Pd form arsenides, tellurides, bismuthoids and antimonides. We experimentally investigate the behavior of Os, Ru, Ir and Rh in As-bearing sulfide system between 1300 and 1020 °C and show that the prominent mineralogical difference between IPGE (+Rh) and Pt and Pd reflects different chemical preference in the sulfide melt. At temperatures above 1200 °C, Os shows a tendency to form alloys. Ruthenium forms a sulfide (laurite RuS2) while Ir and Rh form sulfarsenides (irarsite IrAsS and hollingworthite RhAsS, respectively). The chemical preference of PGE is selective: IPGE + Rh form metal-metal, metal-S and metal-AsS complexes while Pt and Pd form semimetal complexes. Selective complexing followed by mechanical separation of IPGE (and Rh)-ligand from Pt- and Pd-ligand associations lead to PGE fractionation.

  12. Carrier-free 194Ir from an 194Os/194Ir generator - a new candidate for radioimmunotherapy

    International Nuclear Information System (INIS)

    Mirzadeh, S.; Rice, D.E.; Knapp, F.F. Jr.

    1992-01-01

    Iridium-194 (t 1/2 = 19.15 h) decays by beta-particle emission (E max = 2.236 MeV) and is a potential candidate for radioimmunotherapy. An important characteristic is availability of 194 Ir from decay of reactor-produced 194 Os (t 1/2 = 6y). We report the fabrication of the first 194 Os/ 194 Ir generator system using activated carbon. In addition, a novel gas thermochromatographic method was developed for the one step conversion of metallic Os to OsO 4 and subsequent separation and purification of OsO 4 . In this manner, the reactor irradiated enriched 192 Os target was converted to 194 OsO 4 , which was then converted to the K 2 OsCl 6 for generator loading. The yield and the elution profile of carrier-free 194 Ir, and 194 Os breakthrough were determined for a prototype generator which was evaluated over a 10-month period. (author)

  13. Looking at Art in the IR and UV

    Science.gov (United States)

    Falco, Charles

    2013-03-01

    Starting with the very earliest cave paintings art has been created to be viewed by the unaided eye and, until very recently, it wasn't even possible to see it at wavelengths outside the visible spectrum. However, it is now possible to view paintings, sculptures, manuscripts, and other cultural artifacts at wavelengths from the x-ray, through the ultraviolet (UV), to well into the infrared (IR). Further, thanks to recent advances in technology, this is becoming possible with hand-held instruments that can be used in locations that were previously inaccessible to anything but laboratory-scale image capture equipment. But, what can be learned from such ``non-visible'' images? In this talk I will briefly describe the characteristics of high resolution UV and IR imaging systems I developed for this purpose by modifying high resolution digital cameras. The sensitivity of the IR camera makes it possible to obtain images of art ``in situ'' with standard museum lighting, resolving features finer than 0.35 mm on a 1.0x0.67 m painting. I also have used both it and the UV camera in remote locations with battery-powered illumination sources. I will illustrate their capabilities with images of various examples of Western, Asian, and Islamic art in museums on three continents, describing how these images have revealed important new information about the working practices of artists as famous as Jan van Eyck. I also will describe what will be possible for this type of work with new capabilities that could be developed within the next few years. This work is based on a collaboration with David Hockney, and benefitted from image analys research supported by ARO grant W911NF-06-1-0359-P00001.

  14. Thermodynamic modeling and experimental investigation of the phase stability at the Ni-rich region of the Ni-Al-Cr-Ir system

    International Nuclear Information System (INIS)

    Zhang, C.; Zhang, F.; Chen, S.-L.; Cao, W.-S.; Chang, Y.A.

    2011-01-01

    The effect of adding 3 at.% Cr on the phase stability of the Ni-Al-Ir system was studied experimentally at 1250 deg. C. A thermodynamic description of the Ni-Al-Cr-Ir quaternary system in the Ni-rich region was then developed based on the microstructures, the crystal structures and the phase compositions determined by experiment for eight alloys in both as-cast and 1250 deg. C annealed states. The calculated isothermal section at 1250 deg. C using the obtained description was consistent with the phase-equilibrium data obtained in this study. The calculated two-dimensional section of liquidus projection was also in accordance with the primary phases of solidification observed from alloys in the as-cast state. The effects of Cr additions to the Ni-Al-Ir alloys on the as-cast and annealed microstructures were elucidated through Scheil simulation and phase-equilibrium calculation using Pandat.

  15. Phase relations in the metal-rich portions of the phase system Pt-Ir-Fe-S at 1000 degrees C and 1100 degrees C

    DEFF Research Database (Denmark)

    Makovicky, E.; Karup-Møller, Sven

    2000-01-01

    Phase relations in the S-poor portions of the dry condensed Pt-Ir-Fe-S system were determined at 1000 degrees and 1100 degreesC with a particular emphasis on delineation of the solid solubility fields of the Pt-Ir-Fe alloys. At both temperatures, a broad field of gamma (Ir,Fe,Pt) alloy coexists...... with gamma-(Pt,Fe), Pt3Fe and PtFe which dissolve respectively at least 5.1, 29.3 and 24.0 at.% Ir at 1100 degreesC (2.2, 23.6 and less than or equal to 17.2 at.% Ir at 1000 degreesC). Gaps between the nearly Ir-free Pt-Fe alloys gamma (Pt,Fe), Pt3Fe s.s., PtFe s.s. and gamma (Fe,Pt) were estimated as 20......-23 at.%, 40-42 at.% and 54.2-similar to 57 at.% Fe at 1100 degreesC (18-23, 39.5-42.5 and 59-62 at.% Fe at 1000 degreesC). The first gap agrees with data from natural phases by Cabri et ni. (1996). The Fe-rich sulphide melt dissolves only traces of Pt and Ir; Fe1-xS dissolves up to 5.8 at.% Ir at 1100...

  16. Towards an Intelligent Possibilistic Web Information Retrieval Using Multiagent System

    Science.gov (United States)

    Elayeb, Bilel; Evrard, Fabrice; Zaghdoud, Montaceur; Ahmed, Mohamed Ben

    2009-01-01

    Purpose: The purpose of this paper is to make a scientific contribution to web information retrieval (IR). Design/methodology/approach: A multiagent system for web IR is proposed based on new technologies: Hierarchical Small-Worlds (HSW) and Possibilistic Networks (PN). This system is based on a possibilistic qualitative approach which extends the…

  17. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  18. TIJAH: Embracing IR Methods in XML Databases

    NARCIS (Netherlands)

    List, Johan; Mihajlovic, V.; Ramirez, Georgina; de Vries, A.P.; Hiemstra, Djoerd; Blok, H.E.

    2005-01-01

    This paper discusses our participation in INEX (the Initiative for the Evaluation of XML Retrieval) using the TIJAH XML-IR system. TIJAH's system design follows a `standard' layered database architecture, carefully separating the conceptual, logical and physical levels. At the conceptual level, we

  19. Emerging electro-optical technologies for defense applications

    Science.gov (United States)

    Venkateswarlu, Ronda; Ser, W.; Er, Meng H.; Chan, Philip

    1999-11-01

    Technological breakthroughs in the field of imaging and non- imaging sensor sand the related signal processors helped the military users to achieve 'force multiplication'. Present day 'smart-weapon systems' are being converted to 'brilliant-weapon systems' to bridge the gap until the most potent new 'fourth generation systems' come on line based on nanotechnology. The recent military tactics have evolved to take advantage of ever improving technologies to improve the quality and performance over time. The drive behind these technologies is to get a first-pass-mission-success against the target with negligible collateral damage, protecting property and the lives of non-combatants. These technologies revolve around getting target information, detection, designation, guidance, aim-point selection, and mission accomplishment. The effectiveness of these technologies is amply demonstrated during recent wars. This paper brings out the emerging trends in visible/IR/radar smart-sensors and the related signal processing technologies that lead to brilliant guided weapon systems. The purpose of this paper is to give an overview to the readers about futuristic systems. This paper also addresses various system configurations including sensor-fusion.

  20. Reduction of shunt current in buffer-free IrMn based spin-valve structures

    Science.gov (United States)

    Kocaman, B.; Akdoğan, N.

    2018-06-01

    The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.

  1. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  2. Defense Strategy of Aircraft Confronted with IR Guided Missile

    Directory of Open Access Journals (Sweden)

    Hesong Huang

    2017-01-01

    Full Text Available Surface-type infrared (IR decoy can simulate the IR characteristics of the target aircraft, which is one of the most effective equipment to confront IR guided missile. In the air combat, the IR guided missile poses a serious threat to the aircraft when it comes from the front of target aircraft. In this paper, firstly, the model of aircraft and surface-type IR decoy is established. To ensure their authenticity, the aircraft maneuver and radiation models based on real data of flight and exhaust system radiation in the state of different heights and different speeds are established. Secondly, the most effective avoidance maneuver is simulated when the missile comes from the front of the target aircraft. Lastly, combining maneuver with decoys, the best defense strategy is analysed when the missile comes from the front of aircraft. The result of simulation, which is authentic, is propitious to avoid the missile and improve the survivability of aircraft.

  3. Crystal structure of the Al2CuIr phase

    International Nuclear Information System (INIS)

    Meshi, L.; Ezersky, V.; Kapush, D.; Grushko, B.

    2010-01-01

    A new ternary Al 2 CuIr phase was revealed in the Al-Cu-Ir system. It is formed below 1063 o C from the β-phase (CsCl-type structure) extending at elevated temperatures from AlIr. The crystal structure of the Al 2 CuIr phase was determined using a combination of precession electron diffraction and X-ray powder diffraction techniques. The phase has an orthorhombic C-centered unit cell with lattice parameters a = 8.1196(7) A, b = 5.0646(2) A and c = 5.18513(3) A; its crystal symmetry can be described by the Cmme (no. 67) space group (Pearson symbol oC16). The unit cell of the new phase contains 8 Al, 4 Cu and 4 Ir atoms and exhibits a new structure type. The reliability factors characterizing the Rietveld refinement procedure are: R p = 4.45%, R wp = 6.45%, R B = 3.69% and R f = 2.41%.

  4. Development of optics and microwave multiplexers for far-IR and millimeter detector arrays

    Data.gov (United States)

    National Aeronautics and Space Administration — The future of experimental cosmology and astrophysics is intimately tied to the progress of remote sensing technology of millimeter and far-IR instruments. I will...

  5. Phase-Sensitive Control Of Molecular Dissociation Through Attosecond Pump/Strong-Field Mid-IR Probe Spectroscopy

    Science.gov (United States)

    2016-04-15

    splitter (consisting of a thin, uncoated, silicon plate at brewsters angle) and the beams were focused onto the OPA crystal. For this work two...experiments in the future. These technologies include • Two-color driven (EUV/mid-IR) ion spectroscopy: we designed an interferometer combining EUV...isolated single-femtosecond EUV pulse generation: combining the use of low ionization threshold gas, an annual near-IR drive beam , polarization

  6. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  7. Accurate Analytical Multiple-Access Performance of Time-Hopping Biorthogonal PPM IR-UWB Systems

    Directory of Open Access Journals (Sweden)

    SVEDEK, T.

    2011-05-01

    Full Text Available In this paper, the characteristic function (CF method is used to derive the symbol error rate (SER expression for time-hopping impulse radio ultra-wideband (TH-IR-UWB systems with a biorthogonal pulse position modulation (BPPM scheme in the presence of a multi-user interference (MUI. The derived expression is validated with the Monte-Carlo simulation and compared with orthogonal PPM. Moreover, the analytical results are compared with the Gaussian approximation (GA of MUI which is shown to be inaccurate for a medium and large signal-to-noise ratio (SNR. It is also shown that the BPPM scheme outperforms the PPM scheme for all SNR. At the end, the influence of different system parameters on the BPPM performance is analyzed.

  8. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  9. The role of the emergency medical dispatch centre (EMDC) and prehospital emergency care safety: results from an incident report (IR) system.

    Science.gov (United States)

    Mortaro, Alberto; Pascu, Diana; Zerman, Tamara; Vallaperta, Enrico; Schönsberg, Alberto; Tardivo, Stefano; Pancheri, Serena; Romano, Gabriele; Moretti, Francesca

    2015-07-01

    The role of the emergency medical dispatch centre (EMDC) is essential to ensure coordinated and safe prehospital care. The aim of this study was to implement an incident report (IR) system in prehospital emergency care management with a view to detecting errors occurring in this setting and guiding the implementation of safety improvement initiatives. An ad hoc IR form for the prehospital setting was developed and implemented within the EMDC of Verona. The form included six phases (from the emergency call to hospital admission) with the relevant list of potential error modes (30 items). This descriptive observational study considered the results from 268 consecutive days between February and November 2010. During the study period, 161 error modes were detected. The majority of these errors occurred in the resource allocation and timing phase (34.2%) and in the dispatch phase (31.0%). Most of the errors were due to human factors (77.6%), and almost half of them were classified as either moderate (27.9%) or severe (19.9%). These results guided the implementation of specific corrective actions, such as the adoption of a more efficient Medical Priority Dispatch System and the development of educational initiatives targeted at both EMDC staff and the population. Despite the intrinsic limits of IR methodology, results suggest how the implementation of an IR system dedicated to the emergency prehospital setting can act as a major driver for the development of a "learning organization" and improve both efficacy and safety of first aid care.

  10. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  11. Window and dome technologies and materials; Proceedings of the Meeting, Orlando, FL, Mar. 27-29, 1989

    Science.gov (United States)

    Klocek, Paul

    1989-09-01

    Papers on window and dome technologies and methodologies are presented, covering the processing and application of window and dome materials such as polycrystalline MgAl2O4 spinel, yttria and lanthana-doped yttria, transparent aluminum oxynitride, sapphire materials, fluoride glass, zinc sulfide, and germanium materials. Other topics include high modulus layers as protective coatings for window materials, ultrahard coatings for IR materials, IR applications of GeC thin filems, CVD diamond for IR applications, amorphic diamond films grown with a laser-ion source, dome cooling, microwave shielding effectiveness of electrically conductive coated optical windows, and the window evaluation program for an airborne FLIR system. In addition, papers are presented on modeling optical properties of window materials, lattice symmetries and thermal expansion, rain damage protection for IR materials, optical window materials for hypersonic flow, the IR emission due to aerodynamic heating of missile domes, a ZnS window for the IR instrumentation system, hypersonic aerooptical effects, optical and semiconductor properties of lead telluride coatings, boron phosphide for coating IR transparencies, and the measurement of high out-of-band filter rejection characteristics.

  12. A new high-speed IR camera system

    Science.gov (United States)

    Travis, Jeffrey W.; Shu, Peter K.; Jhabvala, Murzy D.; Kasten, Michael S.; Moseley, Samuel H.; Casey, Sean C.; Mcgovern, Lawrence K.; Luers, Philip J.; Dabney, Philip W.; Kaipa, Ravi C.

    1994-01-01

    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging.

  13. FT-IR and thermoluminescence investigation of P2O5-BaO-K2O glass system

    Science.gov (United States)

    Ivascu, C.; Timar-Gabor, A.; Cozar, O.

    2013-11-01

    The 0.5P2O5ṡxBaOṡ(0.5-x)K2O glass system (0≤x≤0.5mol%) is investigated by FT-IR and thermoluminescence as a possible dosimetic material. FT-IR spectra show structural network modifications with the composition variations of the studied glasses. The predominant absorption bands are characterized by two broad peaks near 500 cm-1, two weak peaks around 740 cm-1 and three peaks in the 900-1270 cm-1 region. The shift in the position of the band assigned to asymmetric stretching of PO2- group, υas(PO2-) modes from ˜1100 cm-1 to 1085 cm-1 and the decrease in its relative intensity with the increasing of K2O content shows a network modifier role of this oxide.. Luminescence investigations show that by adding modifier oxides in the phosphate glass a dose dependent TL signals result upon irradiation. Thus P2O5-BaO-K2O glass system is a possible candidate material for dosimetry in the dose 0 - 50 Gy range.

  14. Magnetic and transport behaviour in Pr3X(X=In,Sn,Ga,Ge,Ni,Co,Ru,Ir) systems

    International Nuclear Information System (INIS)

    Garde, C.S.; Ray, J.

    1998-01-01

    Magnetic and transport studies on Pr 3 X (X=In, Sn, Ga, Ge, Ni, Co, Ru, Ir) systems gave evidence for complex magnetic behaviour. All the systems, except X=Sn, exhibit ferromagnetic ordering. The X=Sn system exhibits antiferromagnetic ordering. For X=Ga and Sn, metamagnetic behaviour has been observed. Crystal field effects are found to play an important role in influencing magnetic behaviour. The strength of the crystal field term has also been estimated. (orig.)

  15. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  16. Projecting technology change to improve space technology planning and systems management

    Science.gov (United States)

    Walk, Steven Robert

    2011-04-01

    Projecting technology performance evolution has been improving over the years. Reliable quantitative forecasting methods have been developed that project the growth, diffusion, and performance of technology in time, including projecting technology substitutions, saturation levels, and performance improvements. These forecasts can be applied at the early stages of space technology planning to better predict available future technology performance, assure the successful selection of technology, and improve technology systems management strategy. Often what is published as a technology forecast is simply scenario planning, usually made by extrapolating current trends into the future, with perhaps some subjective insight added. Typically, the accuracy of such predictions falls rapidly with distance in time. Quantitative technology forecasting (QTF), on the other hand, includes the study of historic data to identify one of or a combination of several recognized universal technology diffusion or substitution patterns. In the same manner that quantitative models of physical phenomena provide excellent predictions of system behavior, so do QTF models provide reliable technological performance trajectories. In practice, a quantitative technology forecast is completed to ascertain with confidence when the projected performance of a technology or system of technologies will occur. Such projections provide reliable time-referenced information when considering cost and performance trade-offs in maintaining, replacing, or migrating a technology, component, or system. This paper introduces various quantitative technology forecasting techniques and illustrates their practical application in space technology and technology systems management.

  17. STATYBINIŲ MEDŽIAGŲ KONKURENCINGUMAS IR TENDENCIJOS

    OpenAIRE

    Kontrimas, Robertas

    2010-01-01

    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  18. NASA Technology Transfer System

    Science.gov (United States)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  19. LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Calanog, J. A.; Cooray, A.; Ma, B.; Casey, C. M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Wardlow, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Amber, S. [Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Baes, M. [1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); Bock, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Bourne, N.; Dye, S. [School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); Bussmann, R. S. [Department of Astronomy, Space Science Building, Cornell University, Ithaca, NY 14853-6801 (United States); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Eales, S. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); and others

    2014-12-20

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 μm bright candidate lensing systems identified by the Herschel Multi-tiered Extragalactic Survey and Herschel Astrophysical Terahertz Large Area Survey. Out of 87 candidates with near-IR imaging, 15 (∼17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and previous lensing models for submillimeter galaxies (SMGs). For four new sources that also have high-resolution submillimeter maps, we test for differential lensing between the stellar and dust components and find that the 880 μm magnification factor (μ{sub 880}) is ∼1.5 times higher than the near-IR magnification factor (μ{sub NIR}), on average. We also find that the stellar emission is ∼2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.

  20. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    Govinda Rajan, K.N.; Sharma, S.D.; Palaniselvam, T.; Vandana, S.; Bhatt, B.C.; Vinatha, S.; Patki, V.S.; Pendse, A.M.; Kannan, V.

    2004-01-01

    A HDR 1000 PLUS well type ionization chamber, procured from Standard Imaging, USA, and maintained by medical Physics and Safety Section (MPSS), Bhabha Atomic Research Centre (BARC), India, as a reference well chamber 1 (RWCH1), was traceably calibrated against the primary standard established by Radiological Standards Laboratory (RSL), BARC for 192 Ir HDR source, in terms of air kerma strength (AKS). An indigenously developed well-type ionization chamber, reference well chamber 2 (RWCH2) and electrometer system, fabricated by CD High Tech (CDHT) Instruments Private Ltd., Bangalore, India, was in turn calibrated against RWCH1. The CDHT system (i.e. RWCH2 and CDHT electrometer system) was taken to several hospitals, in different regions of the country, to check the calibration status of 192 Ir HDR sources. The result of this calibration audit work is reported here. (author)

  1. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  2. Joint Small Arms Technology Development Strategy for Joint Service Small Arms Science and Technology Investments

    Science.gov (United States)

    2016-01-26

    reduction efforts that need to be led by the Joint Services include One Way Luminescence, where the improvement in hit goes up for the follow on shots...new technology would enable spectral segment defeat, ranging from ultraviolet ( UV ), visible, Infrared (IR), radar, and radio and any combinations...program of work as directed via the Land Armaments Management Plan ( LAMP ) and advise the NAAG on systems and equipment aspects of dismounted operations

  3. PEP-II IR-2 Alignment

    International Nuclear Information System (INIS)

    Seryi, A

    2004-01-01

    This paper describes the first results and preliminary analysis obtained with several alignment monitoring systems recently installed in the PEP-II interaction region. The hydrostatic level system, stretched wire system, and laser tracker have been installed in addition to the existing tiltmeters and LVDT sensors. These systems detected motion of the left raft, which correlated primarily with the low energy ring (LER) current. The motion is of the order of 120 micrometers. The cause was identified as synchrotron radiation heating the beampipe, causing its expansion which then results in its deformation and offset of the IR quadrupoles. We also discuss further plans on measurements, analysis and means to counteract this motion

  4. New Solid-Phase IR Spectra of Solar-System Molecules: Methanol, Ethanol, and Methanethiol

    Science.gov (United States)

    Hudson, Reggie L.; Gerakines, Perry A.; Ferrante, Robert F.

    2017-10-01

    The presence and abundances of organic molecules in extraterrestrial environments, such as on TNOs, can be determined with infrared (IR) spectroscopy, but significant challenges exist. Reference IR spectra for organics under relevant conditions are vital for such work, yet for many compounds such data either are lacking or fragmentary. In this presentation we describe new laboratory results for methanol (CH3OH), the simplest alcohol, which has been reported to exist in planetary and interstellar ices. Our new results include near- and mid-IR spectra, band strengths, and optical constants at various ice temperatures. Moreover, the influence of H2O-ice is examined. In addition to CH3OH, we also have new results for the related cometary molecules CH3SH and CH3CH2OH. Although IR spectra of such molecules have been reported by many groups over the past 60 years, our work appears to be the first to cover densities, refractive indices, band strengths and optical constants of both the amorphous and crystalline phases. Our results are compared to earlier work, the influence of literature assumptions is explored, and possible revisions to the literature are described. Support from the following is acknowledged: (a) NASA-SSERVI's DREAM2 program, (b) the NASA Astrobiology Institute's Goddard Center for Astrobiology, and (c) a NASA-APRA award.

  5. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    International Nuclear Information System (INIS)

    Shaikh, M.; Shaygi, B.; Asadi, H.; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M.

    2016-01-01

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  6. The Introduction of an Undergraduate Interventional Radiology (IR) Curriculum: Impact on Medical Student Knowledge and Interest in IR

    Energy Technology Data Exchange (ETDEWEB)

    Shaikh, M. [Bradford Royal Infirmary, Department of Radiology, Bradford Teaching Hospital Foundation Trust (United Kingdom); Shaygi, B. [Royal Devon and Exeter Hospital, Interventional Radiology Department (United Kingdom); Asadi, H., E-mail: asadi.hamed@gmail.com; Thanaratnam, P.; Pennycooke, K.; Mirza, M.; Lee, M., E-mail: mlee@rcsi.ie [Beaumont Hospital, Interventional Radiology Service, Department of Radiology (Ireland)

    2016-04-15

    IntroductionInterventional radiology (IR) plays a vital role in modern medicine, with increasing demand for services, but with a shortage of experienced interventionalists. The aim of this study was to determine the impact of a recently introduced IR curriculum on perception, knowledge, and interest of medical students regarding various aspects of IR.MethodsIn 2014, an anonymous web-based questionnaire was sent to 309 4th year medical students in a single institution within an EU country, both before and after delivery of a 10-h IR teaching curriculum.ResultsSeventy-six percent (236/309) of the respondents participated in the pre-IR module survey, while 50 % (157/309) responded to the post-IR module survey. While 62 % (147/236) of the respondents reported poor or no knowledge of IR compared to other medical disciplines in the pre-IR module survey, this decreased to 17 % (27/157) in the post-IR module survey. The correct responses regarding knowledge of selected IR procedures improved from 70 to 94 % for venous access, 78 to 99 % for uterine fibroid embolization, 75 to 97 % for GI bleeding embolization, 60 to 92 % for trauma embolization, 71 to 92 % for tumor ablation, and 81 to 94 % for angioplasty and stenting in peripheral arterial disease. With regard to knowledge of IR clinical roles, responses improved from 42 to 59 % for outpatient clinic review of patients and having inpatient beds, 63–76 % for direct patient consultation, and 43–60 % for having regular ward rounds. The number of students who would consider a career in IR increased from 60 to 73 %.ConclusionDelivering an undergraduate IR curriculum increased the knowledge and understanding of various aspects of IR and also the general enthusiasm for pursuing this specialty as a future career choice.

  7. Ion beam synthesis of IrSi3 by implantation of 2 MeV Ir ions

    International Nuclear Information System (INIS)

    Sjoreen, T.P.; Chisholm, M.F.; Hinneberg, H.J.

    1992-11-01

    Formation of a buried IrSi 3 layer in (111) oriented Si by ion implantation and annealing has been studied at an implantation energy of 2 MeV for substrate temperatures of 450--550C. Rutherford backscattering (RBS), ion channeling and cross-sectional transmission electron microscopy showed that a buried epitaxial IrSi 3 layer is produced at 550C by implanting ≥ 3.4 x 10 17 Ir/cm 2 and subsequently annealing for 1 h at 1000C plus 5 h at 1100C. At a dose of 3.4 x 10 17 Ir/cm 2 , the thickness of the layer varied between 120 and 190 nm and many large IrSi 3 precipitates were present above and below the film. Increasing the dose to 4.4 x 10 17 Ir/cm 2 improved the layer uniformity at the expense of increased lattice damage in the overlying Si. RBS analysis of layer formation as a function of substrate temperature revealed the competition between the mechanisms for optimizing surface crystallinity vs. IrSi 3 layer formation. Little apparent substrate temperature dependence was evident in the as-implanted state but after annealing the crystallinity of the top Si layer was observed to deteriorate with increasing substrate temperature while the precipitate coarsening and coalescence improved

  8. Smulkaus ir vidutinio verslo konkurencingumas Lietuvoje

    OpenAIRE

    Vijeikis, Juozas; Makštutis, Antanas

    2009-01-01

    Straipsnio mokslinė problema, naujumas ir aktualumas. Konkurencingumas kaip įmonių efektyvios veiklos reiškinys yra aktualus šalies verslo gyvenime vykdant darnios ekonominės plėtros politiką. Ši politika kaip problema smulkaus ir vidutinio verslo (SVV) plėtrai ir konkurencingumui didinti nėra sistemiškai ištirta ir aprašyta Lietuvos sąlygomis mokslinėje ir praktinėje literatūroje. Vienas svarbiausių veiksnių, siekiant spartaus ekonominio augimo, yra darnios verslininkystės plėtra Lietuvoje n...

  9. Structural, phase stability, electronic, elastic properties and hardness of IrN{sub 2} and zinc blende IrN: First-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaobo [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhou, Xiaolong, E-mail: kmzxlong@163.com [Key Laboratory of Advanced Materials of Yunnan Province & Key Laboratory of Advanced Materials of Non-Ferrous and Precious Rare Metals Ministry of Education, Kunming University of Science and Technology, Kunming 650093 (China); Zhang, Kunhua [State Key Laboratory of Rare Precious Metals Comprehensive Utilization of New Technologies, Kunming Institute of Precious Metals, Kunming 650106 (China)

    2016-12-15

    First-principle calculations were performed to investigate the structural, phase stability, electronic, elastic properties and hardness of monoclinic structure IrN{sub 2} (m-IrN{sub 2}), orthorhombic structure IrN{sub 2} (o-IrN{sub 2}) and zinc blende structure IrN (ZB IrN). The results show us that only m-IrN{sub 2} is both thermodynamic and dynamic stability. The calculated band structure and density of states (DOS) curves indicate that o-IrN{sub 2} and ZB Ir-N compounds we calculated have metallic behavior while m-IrN{sub 2} has a small band gap of ~0.3 eV, and exist a common hybridization between Ir-5d and N-2p states, which forming covalent bonding between Ir and N atoms. The difference charge density reveals the electron transfer from Ir atom to N atom for three Ir-N compounds, which forming strong directional covalent bonds. Notable, a strong N-N bond appeared in m-IrN{sub 2} and o-IrN{sub 2}. The ratio of bulk to shear modulus (B/G) indicate that three Ir-N compounds we calculated are ductile, and ZB IrN possesses a better ductility than two types IrN{sub 2}. m-IrN{sub 2} has highest Debye temperature (736 K), illustrating it possesses strongest covalent bonding. The hardness of three Ir-N compounds were also calculated, and the results reveal that m-IrN{sub 2} (18.23 GPa) and o-IrN{sub 2} (18.02 GPa) are ultraincompressible while ZB IrN has a negative value, which may be attributed to phase transition at ca. 1.98 GPa.

  10. Calibration of {sup 192}Ir high dose rate brachytherapy sources

    Energy Technology Data Exchange (ETDEWEB)

    Marechal, M H [Instituto de Radioprotecao e Dozimetria, Rio de Jainero (Brazil); Almeida, C.E. de [Laboratorio de Ciencias Radiologicas, UERL, Rio de Janeiro (Brazil); Sibata, C H [Roswell Park Cancer Inst., Buffalo, NY (United States)

    1996-08-01

    A method for calibration of high dose rate sources used in afterloading brachytherapy systems is described. The calibration for {sup 192}Ir is determined by interpolating {sup 60}Co gamma-rays and 250 kV x-rays calibration factors. All measurements were done using the same build up caps as described by Goetsch et al and recommended by AAPM. The attenuation correction factors were determined to be 0.9903, 0.9928 and 0.9993 for {sup 192}Ir, {sup 60}Co and 250 kV x-ray, respectively. A wall + cap thickness of 0.421 g.cm{sup -2} is recommended for all measurements to ensure electronic equilibrium for {sup 60}Co and {sup 192}Ir gamma-ray beams. A mathematical formalism is described for determination of (N{sub x}){sub Ir}. (author). 5 refs, 1 fig.

  11. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Films

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Seger, Brian; Pedersen, Thomas

    2014-01-01

    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38...... density of 1 mA/cm2 at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm2 (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p+-n-Si structures not only provide...

  12. Demonstration tests of infrared peeling system with electrical emitters for tomatoes

    Science.gov (United States)

    Infrared (IR) dry-peeling is an emerging technology that could avoid the drawbacks of steam and lye peeling of tomatoes. The objectives of this research was to evaluate the performance of an IR peeling system at two tomato processing plants located in California and to compare product quality, peela...

  13. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    Science.gov (United States)

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  14. Least-mean-square spatial filter for IR sensors.

    Science.gov (United States)

    Takken, E H; Friedman, D; Milton, A F; Nitzberg, R

    1979-12-15

    A new least-mean-square filter is defined for signal-detection problems. The technique is proposed for scanning IR surveillance systems operating in poorly characterized but primarily low-frequency clutter interference. Near-optimal detection of point-source targets is predicted both for continuous-time and sampled-data systems.

  15. Information technology equipment cooling system

    Science.gov (United States)

    Schultz, Mark D.

    2014-06-10

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

  16. The recent and prospective developments of cooled IR FPAs for double application at Electron NRI

    Science.gov (United States)

    Arutunov, V. A.; Vasilyev, I. S.; Ivanov, V. G.; Prokofyev, A. E.

    2003-09-01

    The recent and prospective developments of monolithic silicon IR-Schottky-barrier staring focal plane arrays (IR SB FPAs), photodetector assembly, and digital thermal imaging cameras (TICs) at Electron National Research Institute (Electron NRI) are considered. Basic parameters for IR SB FPAs with 256x256 and 512x512 pixels, and TICs based on these arrays are presented. The problems emerged while proceeding from the developments of IR SB FPAs for the wavelength range from 3 μm to 5 μm to the developments of those ones for xLWIR range are indicated (an abrupt increase in the level of background architecture). Possibility for further improvement in basic parameters of IR SB FPAs are discussed (a decrease in threshold signal power down to 0.5-1.0"1013 W/element with an increase in quantum efficiency, a decrease in output noise and proceeding to Schottky barriers of degenerated semiconductor/silicon heterojunction, and implementation of these array parameters in photodetector assembly with improved thermal background shielding taking into consideration an optical structure of TIC for concrete application). It is concluded that relative simplicity of the technology and expected low cost of monolithic silicon IR SB FPAs with basic parameters compared with hybrid IR FPAs for the wavelength ranges from 3 μm to 5 μm and from 8 μm to 12 μm maintain large monolithic IR SB FPAs as a basis for developments of double application digital TICs in the Russian Federation.

  17. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS).

    Science.gov (United States)

    Geloneze, Bruno; Vasques, Ana Carolina Junqueira; Stabe, Christiane França Camargo; Pareja, José Carlos; Rosado, Lina Enriqueta Frandsen Paez de Lima; Queiroz, Elaine Cristina de; Tambascia, Marcos Antonio

    2009-03-01

    To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. In the healthy group, HOMA-IR indexes were associated with central obesity, triglycerides and total cholesterol (p 2.7 and HOMA2-IR > 1.8; and, for MS were: HOMA1-IR > 2.3 (sensitivity: 76.8%; specificity: 66.7%) and HOMA2-IR > 1.4 (sensitivity: 79.2%; specificity: 61.2%). The cut-off values identified for HOMA1-IR and HOMA2-IR indexes have a clinical and epidemiological application for identifying IR and MS in Westernized admixtured multi-ethnic populations.

  18. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  19. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  20. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  1. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  2. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    Science.gov (United States)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-10-01

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  3. On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    International Nuclear Information System (INIS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-01-01

    The formation mechanism of Pd–Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH 3 ) 4 ][IrCl 6 ] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd–Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10–200 nm) and dendrite Ir-rich (10–50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd–Ir nanoparticles, were found to occur.Graphical Abstract

  4. Analysis of effect of cable degradation on SPND IR calculation

    International Nuclear Information System (INIS)

    Tamboli, P.K.; Sharma, A.; Prasad, A.D.; Singh, Nita; Antony, J.; Kelkar, M.G.; Kaurav, Reetesh; Pramanik, M.

    2013-01-01

    Neutron flux is the most vital parameter in the nuclear reactor safety against Neutronic over power. The modern days Indian PHWRs with large core size are loosely coupled reactors and hence In-core Self Power Neutron Detectors (SPNDs) are most suitable for monitoring local neutron power for generating Regional Overpower Trip. However the SPNDs and its Mineral Insulation Cable are prone to IR loss due to use of ceramic insulation which are highly hygroscopic. The present paper covers the online analysis of IR f degraded cable as per the surveillance requirement of monitoring the IR to assess the healthiness of SPNDs which are part of SSC/SSE for Reactor Protection Systems. The paper also proposes an alternative method for monitoring IR for startup//low power range when SPND signals are yet to pick up and Reactor Control and Protection are based on out of core Ionization Chambers. (author)

  5. Nanomechanical IR Spectroscopy for the fast analysis of picogram samples of engineered nanomaterials

    DEFF Research Database (Denmark)

    Andersen, Alina Joukainen; Ek, Pramod Kumar; Andresen, Thomas Lars

    2014-01-01

    The proliferation of engineered nanomaterials (ENMs), e.g. in nanomedicine, demands for novel sensitive techniques allowing for the analysis of minute samples. We present nanoelectromechanical system-based IR spectroscopy (NEMS-IR) of picograms of polymeric micelles. The micelles are nebulized...

  6. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  7. The Impact of Financial Support System on Technology Innovation: A Case of Technology Guarantee System in Korea

    Directory of Open Access Journals (Sweden)

    Woo-Seok Jang

    2008-04-01

    Full Text Available We analyzed the impact of financial support system on technological innovation of small and medium manufacturing firms in Korea, with a special interest in technology guarantee system. This was done using a sample of 1,014 Korean manufacturing firms of which 43% were venture companies. Our study provides two important conclusions. First, the result of empirical analysis indicates that financial support systems have a significant influence on both product innovation and process innovation of SMEs in Korea. Second, a more important conclusion of this research is that technology guarantee system impacts on product innovation; however not on process innovation. This result implies that technology guarantee system attaches more importance to technological innovations related with product development than to those related with process enhancement.

  8. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Metastable honeycomb SrTiO_3/SrIrO_3 heterostructures

    International Nuclear Information System (INIS)

    Anderson, T. J.; Ryu, S.; Podkaminer, J. P.; Ma, Y.; Eom, C. B.; Zhou, H.; Xie, L.; Irwin, J.; Rzchowski, M. S.; Pan, X. Q.

    2016-01-01

    Recent theory predictions of exotic band topologies in (111) honeycomb perovskite SrIrO_3 layers sandwiched between SrTiO_3 have garnered much attention in the condensed matter physics and materials communities. However, perovskite SrIrO_3 film growth in the (111) direction remains unreported, as efforts to synthesize pure SrIrO_3 on (111) perovskite substrates have yielded films with monoclinic symmetry rather than the perovskite structure required by theory predictions. In this study, we report the synthesis of ultra-thin metastable perovskite SrIrO_3 films capped with SrTiO_3 grown on (111) SrTiO_3 substrates by pulsed laser deposition. The atomic structure of the ultra-thin films was examined with scanning transmission electron microscopy (STEM), which suggests a perovskite layering distinct from the bulk SrIrO_3 monoclinic phase. In-plane 3-fold symmetry for the entire heterostructure was confirmed using synchrotron surface X-ray diffraction to measure symmetry equivalent crystal truncation rods. Our findings demonstrate the ability to stabilize (111) honeycomb perovskite SrIrO_3, which provides an experimental avenue to probe the phenomena predicted for this material system.

  10. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Sebright, J. [Caterpillar Corp.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for

  11. Experience of using MOSFET detectors for dose verification measurements in an end-to-end 192Ir brachytherapy quality assurance system.

    Science.gov (United States)

    Persson, Maria; Nilsson, Josef; Carlsson Tedgren, Åsa

    Establishment of an end-to-end system for the brachytherapy (BT) dosimetric chain could be valuable in clinical quality assurance. Here, the development of such a system using MOSFET (metal oxide semiconductor field effect transistor) detectors and experience gained during 2 years of use are reported with focus on the performance of the MOSFET detectors. A bolus phantom was constructed with two implants, mimicking prostate and head & neck treatments, using steel needles and plastic catheters to guide the 192 Ir source and house the MOSFET detectors. The phantom was taken through the BT treatment chain from image acquisition to dose evaluation. During the 2-year evaluation-period, delivered doses were verified a total of 56 times using MOSFET detectors which had been calibrated in an external 60 Co beam. An initial experimental investigation on beam quality differences between 192 Ir and 60 Co is reported. The standard deviation in repeated MOSFET measurements was below 3% in the six measurement points with dose levels above 2 Gy. MOSFET measurements overestimated treatment planning system doses by 2-7%. Distance-dependent experimental beam quality correction factors derived in a phantom of similar size as that used for end-to-end tests applied on a time-resolved measurement improved the agreement. MOSFET detectors provide values stable over time and function well for use as detectors for end-to-end quality assurance purposes in 192 Ir BT. Beam quality correction factors should address not only distance from source but also phantom dimensions. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  12. Density functional study of the L10-αIrV transition in IrV and RhV

    International Nuclear Information System (INIS)

    Mehl, Michael J.; Hart, Gus L.W.; Curtarolo, Stefano

    2011-01-01

    Research highlights: → The computational determination of the ground state of a material can be a difficult task, particularly if the ground state is uncommon and so not found in usual databases. In this paper we consider the alpha-IrV structure, a low temperature structure found only in two compounds, IrV and RhV. In both cases this structure can be considered as a distorted tetragonal structure, and the tetragonal 'L1 0 ' structure is the high temperature structure for both compounds. We show, however, that the logical path for the transition from the L1 0 to the alpha-IrV structure is energetically forbidden, and find a series of unstable and metastable structures which have a lower energy than the L1 0 phase, but are higher in energy than the alpha-IrV phase. We also consider the possibility of the alpha-IrV structure appearing in neighboring compounds. We find that both IrTi and RhTi are candidates. - Abstract: Both IrV and RhV crystallize in the αIrV structure, with a transition to the higher symmetry L1 0 structure at high temperature, or with the addition of excess Ir or Rh. Here we present evidence that this transition is driven by the lowering of the electronic density of states at the Fermi level of the αIrV structure. The transition has long been thought to be second order, with a simple doubling of the L1 0 unit cell due to an unstable phonon at the R point (0 1/2 1/2). We use first-principles calculations to show that all phonons at the R point are, in fact, stable, but do find a region of reciprocal space where the L1 0 structure has unstable (imaginary frequency) phonons. We use the frozen phonon method to examine two of these modes, relaxing the structures associated with the unstable phonon modes to obtain new structures which are lower in energy than L1 0 but still above αIrV. We examine the phonon spectra of these structures as well, looking for instabilities, and find further instabilities, and more relaxed structures, all of which have

  13. PENDIDIKAN AKHLAK MUSLIMAT MELALUISYA’IR : ANALISIS GENDER ATAS AJARAN SYI’IR MUSLIMAT KARYA NYAI WANIFAH KUDUS

    Directory of Open Access Journals (Sweden)

    Nur Said

    2016-03-01

    Full Text Available Penelitian ini difokuskan pada tiga hal: (1 Apakah karakteristik lingkup isi Syi’ir Muslimat?, (2 Bagai-manakah kondisi sosial budaya pada saat naskah ditulis oleh penulis?, (3 Apa nilai-nilai pendidikan moral bagi perempuan Muslim di isi Syi’ir Muslimat dalam perspektif gender?. Penelitian ini menggunakan pendekatan filologi dengan meningkatkan penggunaan analisis gender. Hasil dari penelitian ini adalah: Pertama, Syi’ir Muslimat ditulis oleh Nyai Wanifah, seorang wanita yang hidup pada zaman kolonial Belanda dipesantren tradisi di Kudus, Jawa Tengah. Kedua, beberapa nilai pendidikan moral di Syi’ir Muslimatantara lain: (1 Pentingnya pendidikan moral, (2 Bahaya perempuan bodoh; (3 Pentingnya belajar bagi perempuan di usia dini, (4 Etika menghias diri; (5 Bahaya materialisme, (6 Etika hubungan keluarga; (7 Dari rumah untuk mencapai surga; (8 Berhati-hatilah dengan tipu iblis; (9 Hindari perzinahan; (10 yang penting dari penutupan aurot; (11 yang ditujukan kepada orang tua. Ketiga, meskipun ada beberapa senyawa yang bias gender dalam Syi’ir Muslimat misalnya: (a Ada penjelasan yang menunjukkan bahwa perempuan lebih rendah dibandingkan laki-laki dalam derajat, (2 Pernyataan bahwa wanita bicara dibandingkan laki-laki, (3 wanita hanya cocok di wilayah domestik; Namun secara umum nasihat di syi’ir masih sangat relafen dalam konteks sekarang, terutama untuk memberikan solusi alternatif dalam merespon krisis moral bangsa terutama pada wanita generasi muda. Kata kunci: Syi’ir Muslimat, Pendidikan Karakter, Analisis Gender. This study focused on three things: (1 What is the characteristics of the scope of contents of Syi’ir Muslimat?, (2 What is the socio-cultural conditions at the time the manuscript was written by the author?, (3 What are the moral education values for Muslim women in the content of Syi’ir Muslimat in the perspective of gender?. This research uses a philological approach with enhanced use of gender analysis. The

  14. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    Science.gov (United States)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  15. System driven technology selection for future European launch systems

    Science.gov (United States)

    Baiocco, P.; Ramusat, G.; Sirbi, A.; Bouilly, Th.; Lavelle, F.; Cardone, T.; Fischer, H.; Appel, S.

    2015-02-01

    In the framework of the next generation launcher activity at ESA, a top-down approach and a bottom-up approach have been performed for the identification of promising technologies and alternative conception of future European launch vehicles. The top-down approach consists in looking for system-driven design solutions and the bottom-up approach features design solutions leading to substantial advantages for the system. The main investigations have been focused on the future launch vehicle technologies. Preliminary specifications have been used in order to permit sub-system design to find the major benefit for the overall launch system. The development cost, non-recurring and recurring cost, industrialization and operational aspects have been considered as competitiveness factors for the identification and down-selection of the most interesting technologies. The recurring cost per unit payload mass has been evaluated. The TRL/IRL has been assessed and a preliminary development plan has been traced for the most promising technologies. The potentially applicable launch systems are Ariane and VEGA evolution. The main FLPP technologies aim at reducing overall structural mass, increasing structural margins for robustness, metallic and composite containment of cryogenic hydrogen and oxygen propellants, propellant management subsystems, elements significantly reducing fabrication and operational costs, avionics, pyrotechnics, etc. to derive performing upper and booster stages. Application of the system driven approach allows creating performing technology demonstrators in terms of need, demonstration objective, size and cost. This paper outlines the process of technology down selection using a system driven approach, the accomplishments already achieved in the various technology fields up to now, as well as the potential associated benefit in terms of competitiveness factors.

  16. The use of TiO2 nanoparticles to reduce refrigerator ir-reversibility

    International Nuclear Information System (INIS)

    Padmanabhan, Venkataramana Murthy V.; Palanisamy, Senthilkumar

    2012-01-01

    Highlights: ► COP of hydrocarbons mixture VCRSs increases less when compared to R134a. ► Compressor ir-reversibility of VCRSs decreases by 33% (R134a), 14% (R436A and R436B). ► Total ir-reversibility of selected VCRSs decreases. ► Exergy efficiency of R134a is exceptionally low at lower reference temperature. ► Exergy efficiency of selected VCRSs increases. - Abstract: The ir-reversibility at the process of a vapour-compression refrigeration system (VCRS) with nanoparticles in the working fluid was investigated experimentally. Mineral oil (MO) with 0.1 g L −1 TiO 2 nanoparticles mixture were used as the lubricant instead of Polyol-ester (POE) oil in the R134a, R436A (R290/R600a-56/44-wt.%) and R436B (R290/R600a-52/48-wt.%)VCRSs. The VCRS ir-reversibility at the process with the nanoparticles was investigated using second law of thermodynamics. The results indicate that R134a, R436A and R436B and MO with TiO 2 nanoparticles work normally and safely in the VCRS. The VCRSs total ir-reversibility (529, 588 and 570 W) at different process was better than the R134a, R436A and R436B and POE oil system (777, 697 and 683 W). The same tests with Al 2 O 3 nanoparticles showed that the different nanoparticles properties have little effect on the VCRS ir-reversibility. Thus, TiO 2 nanoparticles can be used in VCRS with reciprocating compressor to considerably reduce ir-reversibility at the process.

  17. NASA's Launch Propulsion Systems Technology Roadmap

    Science.gov (United States)

    McConnaughey, Paul K.; Femminineo, Mark G.; Koelfgen, Syri J.; Lepsch, Roger A; Ryan, Richard M.; Taylor, Steven A.

    2012-01-01

    Safe, reliable, and affordable access to low-Earth (LEO) orbit is necessary for all of the United States (US) space endeavors. In 2010, NASA s Office of the Chief Technologist commissioned 14 teams to develop technology roadmaps that could be used to guide the Agency s and US technology investment decisions for the next few decades. The Launch Propulsion Systems Technology Area (LPSTA) team was tasked to address the propulsion technology challenges for access to LEO. The developed LPSTA roadmap addresses technologies that enhance existing solid or liquid propulsion technologies and their related ancillary systems or significantly advance the technology readiness level (TRL) of less mature systems like airbreathing, unconventional, and other launch technologies. In developing this roadmap, the LPSTA team consulted previous NASA, military, and industry studies as well as subject matter experts to develop their assessment of this field, which has fundamental technological and strategic impacts for US space capabilities.

  18. A reversible electrolyzer-fuel cell system based on PEM technology

    International Nuclear Information System (INIS)

    Grigoriev, S.A.; Millet, P.; Fateev, V.N.

    2009-01-01

    'Full text': A reversible electrolyzer-fuel cell is an electrochemical system which can be alternatively operated in water electrolysis or H 2 /O 2 (air) fuel cell modes. Whereas proton-exchange membrane (PEM) water electrolysis and PEM fuel cell technologies are individually well-established, it is still a very challenging task to develop efficient reversible systems which can maintain interesting electrochemical performances during a significant number of cycles. Results reported in this communication are related to R and D on bi-functional catalysts, electrocatalytic layers, gas diffusion layers/current collectors and reversible PEM stack design. Electrodes which do not change their redox status when the operation mode of the cell is switched from electrolysis to fuel cell are more specifically considered. In particular, it is shown that, when the anode is composed of Pt-Ir layers (ca. 0.5/0.5 wt. ratio), best electrochemical performances are obtained (for both for water and hydrogen oxidation reactions) when an Ir layer is placed face-to-face with the membrane. Cathodic electrocatalytic layers made of Pt/C were prepared and optimized by adding PTFE to obtain the required hydrophobic-hydrophilic properties for effective oxygen and protons electro-reduction. Gas diffusion electrodes made of porous carbon materials and bi-porous titanium sheets with appropriate water management properties have also been developed. A two-cell stack with 250 cm 2 active area electrodes has been assembled using the optimized components and successfully tested. Results are rather close to those obtained for individual water electrolysis and H 2 /O 2 fuel cells with the same noble metal loadings and similar operating conditions. For instance, at a current density of 0.2 A/cm 2 , typical cell voltages of ca. 1.55 and 0.70 V were respectively obtained during water electrolysis and H 2 /O 2 fuel cell operation, using Nafion-1135 as solid polymer electrolyte and noble metal loadings 2

  19. Design of Agricultural Cleaner Production Technology System

    OpenAIRE

    Hu, Jun-mei; Wang, Xin-jie

    2009-01-01

    Based on the introduction of agricultural cleaner production, technology system design of planting cleaner production is discussed from five aspects of water-saving irrigation technology, fertilization technology, diseases and insects control technology, straw comprehensive utilization technology and plastic film pollution control technology. Cleaner production technology system of livestock and poultry raise is constructed from the aspects of source control technology, reduction technique in...

  20. pH Mapping on Tooth Surfaces for Quantitative Caries Diagnosis Using Micro Ir/IrOx pH Sensor.

    Science.gov (United States)

    Ratanaporncharoen, Chindanai; Tabata, Miyuki; Kitasako, Yuichi; Ikeda, Masaomi; Goda, Tatsuro; Matsumoto, Akira; Tagami, Junji; Miyahara, Yuji

    2018-04-03

    A quantitative diagnostic method for dental caries would improve oral health, which directly affects the quality of life. Here we describe the preparation and application of Ir/IrOx pH sensors, which are used to measure the surface pH of dental caries. The pH level is used as an indicator to distinguish between active and arrested caries. After a dentist visually inspected and defined 18 extracted dentinal caries at various positions as active or arrested caries, the surface pH values of sound and caries areas were directly measured with an Ir/IrOx pH sensor with a diameter of 300 μm as a dental explorer. The average pH values of the sound root, the arrested caries, and active caries were 6.85, 6.07, and 5.30, respectively. The pH obtained with an Ir/IrOx sensor was highly correlated with the inspection results by the dentist, indicating that the types of caries were successfully categorized. This caries testing technique using a micro Ir/IrOx pH sensor provides an accurate quantitative caries evaluation and has potential in clinical diagnosis.

  1. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre-formed Ir metal particles. These solids possess promising properties, in terms of selectivity, as catalysts for propane dehydrogenation to propene. Detailed CO-adsorption DRIFTS, XANES and EXAFS characterization studies have been performed on these systems in order to compare the structural and electronic evolution of systems in relation to the nature of the Ir-Sn bonds present in the precursor compounds and to propose a structural model of the Ir-Sn species present at the silica surface of the final catalyst. © 2013 The Royal Society of Chemistry.

  2. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  3. Towards Contactless Silent Speech Recognition Based on Detection of Active and Visible Articulators Using IR-UWB Radar.

    Science.gov (United States)

    Shin, Young Hoon; Seo, Jiwon

    2016-10-29

    People with hearing or speaking disabilities are deprived of the benefits of conventional speech recognition technology because it is based on acoustic signals. Recent research has focused on silent speech recognition systems that are based on the motions of a speaker's vocal tract and articulators. Because most silent speech recognition systems use contact sensors that are very inconvenient to users or optical systems that are susceptible to environmental interference, a contactless and robust solution is hence required. Toward this objective, this paper presents a series of signal processing algorithms for a contactless silent speech recognition system using an impulse radio ultra-wide band (IR-UWB) radar. The IR-UWB radar is used to remotely and wirelessly detect motions of the lips and jaw. In order to extract the necessary features of lip and jaw motions from the received radar signals, we propose a feature extraction algorithm. The proposed algorithm noticeably improved speech recognition performance compared to the existing algorithm during our word recognition test with five speakers. We also propose a speech activity detection algorithm to automatically select speech segments from continuous input signals. Thus, speech recognition processing is performed only when speech segments are detected. Our testbed consists of commercial off-the-shelf radar products, and the proposed algorithms are readily applicable without designing specialized radar hardware for silent speech processing.

  4. Sonic IR crack detection of aircraft turbine engine blades with multi-frequency ultrasound excitations

    International Nuclear Information System (INIS)

    Zhang, Ding; Han, Xiaoyan; Newaz, Golam

    2014-01-01

    Effectively and accurately detecting cracks or defects in critical engine components, such as turbine engine blades, is very important for aircraft safety. Sonic Infrared (IR) Imaging is such a technology with great potential for these applications. This technology combines ultrasound excitation and IR imaging to identify cracks and flaws in targets. In general, failure of engine components, such as blades, begins with tiny cracks. Since the attenuation of the ultrasound wave propagation in turbine engine blades is small, the efficiency of crack detection in turbine engine blades can be quite high. The authors at Wayne State University have been developing the technology as a reliable tool for the future field use in aircraft engines and engine parts. One part of the development is to use finite element modeling to assist our understanding of effects of different parameters on crack heating while experimentally hard to achieve. The development has been focused with single frequency ultrasound excitation and some results have been presented in a previous conference. We are currently working on multi-frequency excitation models. The study will provide results and insights of the efficiency of different frequency excitation sources to foster the development of the technology for crack detection in aircraft engine components

  5. ESR investigation of NR and IR rubber vulcanized with different cross-link agents

    Directory of Open Access Journals (Sweden)

    P. Posadas

    2016-01-01

    Full Text Available This study evaluates the formation of radical species in natural rubber (NR and poly-isoprene rubber (IR during the vulcanization process and the uniaxial deformation of the formed networks by means of Electron Spin Resonance (ESR. Vulcanization of NR and IR always shows a radical pathway, where the different vulcanization systems dictate the concentration of radical species in the course of this complex process. The greatest concentration of radicals were detected during the vulcanization with sulfur/accelerator based on efficient systems (EV, followed by conventional (CV and sulfur donor systems, whereas azide and organic peroxide agents showed smaller concentration of radicals. Independently of the vulcanization system, certain amount of radicals was detected on the vulcanized samples after the end of the vulcanization process. Comparison between different matrices demonstrates that NR always shows higher concentration of radicals than IR in the vulcanization process as well as during uniaxial deformation, fact that could be associated to the presence of nonrubber components in NR.

  6. Characteristics of Ir/Au transition edge sensor

    International Nuclear Information System (INIS)

    Kunieda, Yuichi; Ohno, Masashi; Nakazawa, Masaharu; Takahashi, Hiroyuki; Fukuda, Daiji; Ohkubo, Masataka

    2004-01-01

    A new type of microcalorimeter has been developed using a transition edge sensor (TES) and an electro-thermal feedback (ETF) method to achieve higher energy resolution and higher count rate. We are developing a superconducting Ir-based transition edge sensor (TES) microcalorimeters. To improve thermal conductivity and achieve higher energy resolution with an Ir-TES, we fabricated an Ir/Au bilayer TES by depositing gold on Ir and investigated the influence of intermediate between superconducting and normal states at the transition edge for signal responses by microscopic observation in the Ir/Au-TES. (T. Tanaka)

  7. High-Energy, Multi-Octave-Spanning Mid-IR Sources via Adiabatic Difference Frequency Generation

    Science.gov (United States)

    2016-10-17

    MASSACHUSETTS AVE CAMBRIDGE , MA 02139-4301 US 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) AF Office...ADFG) stage, illustrated in Fig. 2. This system represents a very simple extension of a near-IR OPCPA system to octave-spanning mid-IR, requiring...retrieved, as shown in Fig. 10. For illustration , 3 pulse shapes were selected. First, a simple linear chirp was applied to show that the pulse can be

  8. Review of infrared scene projector technology-1993

    Science.gov (United States)

    Driggers, Ronald G.; Barnard, Kenneth J.; Burroughs, E. E.; Deep, Raymond G.; Williams, Owen M.

    1994-07-01

    The importance of testing IR imagers and missile seekers with realistic IR scenes warrants a review of the current technologies used in dynamic infrared scene projection. These technologies include resistive arrays, deformable mirror arrays, mirror membrane devices, liquid crystal light valves, laser writers, laser diode arrays, and CRTs. Other methods include frustrated total internal reflection, thermoelectric devices, galvanic cells, Bly cells, and vanadium dioxide. A description of each technology is presented along with a discussion of their relative benefits and disadvantages. The current state of each methodology is also summarized. Finally, the methods are compared and contrasted in terms of their performance parameters.

  9. Jaunesnių ir vyresnių klasių mokinių konfliktų ir jų sprendimų ypatumai

    OpenAIRE

    Stočkutė, Jovita

    2012-01-01

    Tyrimo objektas – jaunesnių ir vyresnių klasių mokinių konfliktai ir jų sprendimų ypatumai. Tyrimo tikslas – išanalizuoti jaunesnių ir vyresnių klasių mokinių konfliktus ir jų sprendimų ypatumus. Hipotezės – keliame prielaidas, kad - vyresnių klasių mokiniai konfliktuoti pamokose linkę labiau, nei jaunesnių klasių mokiniai. - vyresnių klasių mokiniai naudoja įvairesnes konflikto sprendimo strategijas nei jaunesnių klasių mokiniai. Tyrimo uždaviniai: 1. Atskleisti jaune...

  10. IrOx-carbon nanotube hybrids: a nanostructured material for electrodes with increased charge capacity in neural systems.

    Science.gov (United States)

    Carretero, Nina M; Lichtenstein, Mathieu P; Pérez, Estela; Cabana, Laura; Suñol, Cristina; Casañ-Pastor, Nieves

    2014-10-01

    Nanostructured iridium oxide-carbon nanotube hybrids (IrOx-CNT) deposited as thin films by dynamic electrochemical methods are suggested as novel materials for neural electrodes. Single-walled carbon nanotubes (SWCNT) serve as scaffolds for growing the oxide, yielding a tridimensional structure with improved physical, chemical and electrical properties, in addition to high biocompatibility. In biological environments, SWCNT encapsulation by IrOx makes more resistant electrodes and prevents the nanotube release to the media, preventing cellular toxicity. Chemical, electrochemical, structural and surface characterization of the hybrids has been accomplished. The high performance of the material in electrochemical measurements and the significant increase in cathodal charge storage capacity obtained for the hybrid in comparison with bare IrOx represent a significant advance in electric field application in biosystems, while its cyclability is also an order of magnitude greater than pure IrOx. Moreover, experiments using in vitro neuronal cultures suggest high biocompatibility for IrOx-CNT coatings and full functionality of neurons, validating this material for use in neural electrodes. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. New Technologies, Old Habits: Automation without Innovation

    Directory of Open Access Journals (Sweden)

    José Osvaldo De Sordi

    2012-01-01

    Full Text Available This research investigated the underuse of technological tools by innovative organizations which are acknowledged for their use of and familiarity with new technologies. The research conducted an analysis of 58 institutional repositories (IRs out of 43 educational and research institutions which are internationally renowned for excellence. The core aspect of the analysis was the use of IRs for publishing and dealing with evidence in order to legitimize and add value to scientific research. The following items were analyzed: (a the logical structuring of scientific communication published in the IRs; (b the metadata which describe scientific communication based on the terms of the DCMI protocol used; (c the availability of software functions which facilitate the queries and publication of evidences. Results show that the introduction of IRs did not add value to the quality of research in terms of associating and publishing evidence that could back them up. A strong tendency to replicate the traditional library model of physical collections was observed. It was concluded that merely possessing good technological tools is not sufficient for fostering innovation and strategic gains in organizations, even if their implementation takes place in highly promising and favorable environments.

  12. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  13. Virtual maintenance technology for reactor system based on PPR technology

    International Nuclear Information System (INIS)

    Wu Yaxiang; Ma Baiyong

    2009-01-01

    Based on the Product, Process and Resources (PPR) technology, the establishing technology of virtual maintenance environment for the reactor system and the process structure tree for virtual maintenance is studied, and the flow for the maintainability design and simulation for reactor system is put forward. Based on the subsection simulation of maintenance process and layered design of maintenance actions, the leveled structure of the reactor system virtual maintenance task is studied. The relation for the data of product, process and resource is described by Plan Evaluation and Review Technology (PERT) diagram to define the maintenance operation. (authors)

  14. OH/IR stars in the Galaxy

    International Nuclear Information System (INIS)

    Baud, B.

    1978-01-01

    Radio astronomical observations leading to the discovery of 71 OH/IR sources are described in this thesis. These OH/IR sources are characterized by their double peaked OH emission profile at a wavelength of 18 cm and by their strong IR infrared emission. An analysis of the distribution and radial velocities of a number of previously known and new OH/IR sources was performed. The parameter ΔV (the velocity separation between two emission peaks of the 18 cm line profile) was found to be a good criterion for a population classification with respect to stellar age

  15. First-principles study on cubic pyrochlore iridates Y2Ir2O7 and Pr2Ir2O7

    International Nuclear Information System (INIS)

    Ishii, Fumiyuki; Mizuta, Yo Pierre; Kato, Takehiro; Ozaki, Taisuke; Weng Hongming; Onoda, Shigeki

    2015-01-01

    Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 . The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion U > U c in the LSDA+U scheme, with U c ∼ 1.1 eV and 1.3 eV for Y 2 Ir 2 O 7 and Pr 2 Ir 2 O 7 , respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing U. For U = 1.3 eV, Y 2 Ir 2 O 7 is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment ∼0.5μ B /Ir, while Pr 2 Ir 2 O 7 is barely a paramagnetic semimetal with electron and hole concentrations of 0.016/Ir, in overall agreements with experiments. With decreasing oxygen position parameter x describing the trigonal compression of IrO 6 octahedra, Pr 2 Ir 2 O 7 is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of Γ 8 + , showing a quadratic band touching, to a Z 2 topological insulator. (author)

  16. Offsite emergency radiological monitoring system and technology

    International Nuclear Information System (INIS)

    Mao Yongze

    1994-01-01

    The study and advance of the offsite radiological monitoring system and technology which is an important branch in the field of nuclear monitoring technology are described. The author suggests that the predicting and measuring system should be involved in the monitoring system. The measuring system can further be divided into four sub-systems, namely plume exposure pathway, emergency worker, ingestion exposure pathway and post accident recovery measuring sub-systems. The main facilities for the monitoring system are concluded as one station, one helicopter, one laboratory and two vehicles. The instrumentation for complement of the facilities and their good performance characteristics, up-to-date technology are also introduced in brief. The offsite emergency radiation monitoring system and technology are compared in detail with those recommended by FEMA U.S.A.. Finally the paper discusses some trends in development of emergency radiation monitoring system and technology in the developed countries

  17. Pamokslo ir eseistikos sąveika Juliaus Sasnausko ir Giedrės Kazlauskaitės eseistikoje

    OpenAIRE

    Skirmantienė, Daiva

    2010-01-01

    Jaunosios kartos rašytojų kunigo pamokslininko Juliaus Sasnausko ir pasaulietės Giedrės Kazlauskaitės kūrybos semantinį ir įdėjinį lauką padeda suprasti teologinės literatūros ir literatūrinės teologijos sąveika. Teologinių prasmių paieška jų tekstuose atliepia šiuolaikinio žmogaus pastangas per literatūrą, skelbiančią gyvenamojo laikotarpio aktualijas, rasti kelią į tam tikras krikščioniškąsias tiesas ir bandyti reflektuoti savo tikėjimą bei analizuoti išganymo istoriją. Autorių kūryo...

  18. Wearable smart systems: from technologies to integrated systems.

    Science.gov (United States)

    Lymberis, A

    2011-01-01

    Wearable technology and integrated systems, so called Smart Wearable Systems (SWS) have demonstrated during the last 10-15 years significant advances in terms of, miniaturisation, seamless integration, data processing & communication, functionalisation and comfort. This is mainly due to the huge progress in sciences and technologies e.g. biomedical and micro & nano technologies, but also to a strong demand for new applications such as continuous personal health monitoring, healthy lifestyle support, human performance monitoring and support of professionals at risk. Development of wearable systems based of smart textile have, in addition, benefited from the eagerness of textile industry to develop new value-added apparel products like functionalized garments and smart clothing. Research and development in these areas has been strongly promoted worldwide. In Europe the major R&D activities were supported through the Information & Communication Technologies (ICT) priority of the R&D EU programs. The paper presents and discusses the main achievements towards integrated systems as well as future challenges to be met in order to reach a market with reliable and high value-added products.

  19. MTF measurement of IR optics in different temperature ranges

    Science.gov (United States)

    Bai, Alexander; Duncker, Hannes; Dumitrescu, Eugen

    2017-10-01

    Infrared (IR) optical systems are at the core of many military, civilian and manufacturing applications and perform mission critical functions. To reliably fulfill the demanding requirements imposed on today's high performance IR optics, highly accurate, reproducible and fast lens testing is of crucial importance. Testing the optical performance within different temperature ranges becomes key in many military applications. Due to highly complex IR-Applications in the fields of aerospace, military and automotive industries, MTF Measurement under realistic environmental conditions become more and more relevant. A Modulation Transfer Function (MTF) test bench with an integrated thermal chamber allows measuring several sample sizes in a temperature range from -40 °C to +120°C. To reach reliable measurement results under these difficult conditions, a specially developed temperature stable design including an insulating vacuum are used. The main function of this instrument is the measurement of the MTF both on- and off-axis at up to +/-70° field angle, as well as measurement of effective focal length, flange focal length and distortion. The vertical configuration of the system guarantees a small overall footprint. By integrating a high-resolution IR camera with focal plane array (FPA) in the detection unit, time consuming measurement procedures such as scanning slit with liquid nitrogen cooled detectors can be avoided. The specified absolute accuracy of +/- 3% MTF is validated using internationally traceable reference optics. Together with a complete and intuitive software solution, this makes the instrument a turn-key device for today's state-of- the-art optical testing.

  20. Infrared technology XVI; Proceedings of the Meeting, San Diego, CA, July 11-13, 1990

    International Nuclear Information System (INIS)

    Spiro, I.J.

    1990-01-01

    Various papers in infrared technology are presented. Individual topics addressed include: Field Observations and Measurement Experiment, GaAs/AlGAs multiquantum-well IR detectors, 256 x 256 PtSi hybrid array for astronomy applications, compact 128 InSb focal plane assembly for thermal imaging, statistical analysis of thermal images generated by line scanning, performance comparison of platinum silicide cameras, atmospheric applications of IR heterodyne laser detection, French activity in IR astronomy from stratospheric balloons, advances in IR technology at Paris Observatory, far-IR photoconductors, applications of IR bidimensional devices in astronomy, far-IR transmission spectra of YBa2Cu3O(7-d) thin films. Also considered are: far-IR multiple-path cell without internal mirrors, optical properties of solid-state laser-type materials in the near-IR, SOFRADIR IR focal plane array production, recent developments on Isocam long-wavelength channel detector, 128 x 128 3-5 micron focal plane arrays at 77-K and 200-K operation, digital test target for display evaluation, IR radiation from rocket plumes, 128 x 128 InGaAs detector array for 1.0-1.7 micron

  1. β-Isocyanoalanine as an IR probe: comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes.

    Science.gov (United States)

    Maj, Michał; Ahn, Changwoo; Kossowska, Dorota; Park, Kwanghee; Kwak, Kyungwon; Han, Hogyu; Cho, Minhaeng

    2015-05-07

    An infrared (IR) probe based on isonitrile (NC)-derivatized alanine 1 was synthesized and the vibrational properties of its NC stretching mode were investigated using FTIR and femtosecond IR pump-probe spectroscopy. It is found that the NC stretching mode is very sensitive to the hydrogen-bonding ability of solvent molecules. Moreover, its transition dipole strength is larger than that of nitrile (CN) in nitrile-derivatized IR probe 2. The vibrational lifetime of the NC stretching mode is found to be 5.5 ± 0.2 ps in both D2O and DMF solvents, which is several times longer than that of the azido (N3) stretching mode in azido-derivatized IR probe 3. Altogether these properties suggest that the NC group can be a very promising sensing moiety of IR probes for studying the solvation structure and dynamics of biomolecules.

  2. Practical Packaging Technology for Microfluidic Systems

    International Nuclear Information System (INIS)

    Lee, Hwan Yong; Han, Song I; Han, Ki Ho

    2010-01-01

    This paper presents the technology for the design, fabrication, and characterization of a microfluidic system interface (MSI): the purpose of this technology is to enable the integration of complex microfluidic systems. The MSI technology can be applied in a simple manner for realizing complex arrangements of microfluidic interconnects, integrated microvalves for fluid control, and optical windows for on-chip optical processes. A microfluidic system for the preparation of genetic samples was used as the test vehicle to prove the effectiveness of the MSI technology for packaging complex microfluidic systems with multiple functionalities. The miniaturized genetic sample preparation system comprised several functional compartments, including compartments for cell purification, cell separation, cell lysis, solid-phase DNA extraction, polymerase chain reaction, and capillary electrophoresis. Additionally, the functional operation of the solid-phase extraction and PCR thermocycling compartments was demonstrated by using the MSI

  3. Application of Adaptive Neuro-Fuzzy Inference System for Prediction of Neutron Yield of IR-IECF Facility in High Voltages

    Science.gov (United States)

    Adineh-Vand, A.; Torabi, M.; Roshani, G. H.; Taghipour, M.; Feghhi, S. A. H.; Rezaei, M.; Sadati, S. M.

    2013-09-01

    This paper presents a soft computing based artificial intelligent technique, adaptive neuro-fuzzy inference system (ANFIS) to predict the neutron production rate (NPR) of IR-IECF device in wide discharge current and voltage ranges. A hybrid learning algorithm consists of back-propagation and least-squares estimation is used for training the ANFIS model. The performance of the proposed ANFIS model is tested using the experimental data using four performance measures: correlation coefficient, mean absolute error, mean relative error percentage (MRE%) and root mean square error. The obtained results show that the proposed ANFIS model has achieved good agreement with the experimental results. In comparison to the experimental data the proposed ANFIS model has MRE% training and testing data respectively. Therefore, this model can be used as an efficient tool to predict the NPR in the IR-IECF device.

  4. Įvairialyčiai lantano ir mangano oksido ir multiferoinio bismuto ferito heterodariniai

    Directory of Open Access Journals (Sweden)

    Bonifacas VENGALIS

    2011-11-01

    Full Text Available Pastaruoju metu naujų elektronikos prietaisų gamyboje buvo pasiekta didelė pažanga auginant, tyrinėjant ir pritaikant plonasluoksnes struktūras, sudarytas iš įvairių daugiakomponenčių funkcinių oksidų. Šiai oksidų grupei priklauso superlaidieji kupratai, mangano oksidai (manganitai, pasižymintys magnetovaržos reiškiniu, taip pat kiti feromagnetiniai, feroelektriniai, multiferoiniai oksidai. Manganitams (jų bendra formulė Ln1-xAxMnO3, kur Ln = La, Nd,..., o A - dvivalentis katijonas, toks kaip Ba, Sr ar Ca skiriama daug dėmesio dėl jų įdomių elektrinių savybių bei tinkamumo įvairiems spintronikos prietaisams kurti. Multiferoikai  (feroelektriniai feromagnetai pasižymi magnetoelektriniu efektu, duodančiu unikalią galimybę elektrinėms ir magnetinėms medžiagos savybėms valdyti panaudoti elektrinius ir magnetinius laukus. Bismuto feritas BiFeO3 (BFO, turintis romboedriškai deformuotą perovskito struktūrą, šiuo metu yra vienas labiausiai tyrinėjamų šios klasės junginių. Organiniai puslaidininkiai (OP taip pat atveria daug naujų galimybių elektronikai. Jų pranašumas yra didelė organinių junginių įvairovė ir palyginti paprasta ir pigi plonų sluoksnių gamybos technologija. Be to, OP pasižymi neįprastai didelėmis sukinių relaksacijos laiko vertėmis, todėl ateityje jie gali būti naudojami naujiems spintronikos prietaisams gaminti. Šiame straipsnyje apžvelgiami pastarųjų metų darbo autorių ir jų kolegų atlikti anksčiau minėtų medžiagų tyrimai. Daugiausia dėmesio skiriama magnetovaržinėmis savybėmis pasižyminčių lantano ir mangano oksidų (manganitų bei multiferoinio  BiFeO3 (BFO junginio plonųjų sluoksnių ir heterodarinių auginimui, tarpfazinių ribų tarp minėtų oksidų, laidžiojo SrTiO3 ir organinio puslaidininkio (Alq3 sudarymui, taip pat elektrinėms heterodarinių savybėms. Plonieji La2/3A1/3MnO3 (A = Ca, Sr, Ba, Ce sluoksniai, kurių storis d

  5. System approach to modeling of industrial technologies

    Science.gov (United States)

    Toropov, V. S.; Toropov, E. S.

    2018-03-01

    The authors presented a system of methods for modeling and improving industrial technologies. The system consists of information and software. The information part is structured information about industrial technologies. The structure has its template. The template has several essential categories used to improve the technological process and eliminate weaknesses in the process chain. The base category is the physical effect that takes place when the technical process proceeds. The programming part of the system can apply various methods of creative search to the content stored in the information part of the system. These methods pay particular attention to energy transformations in the technological process. The system application will allow us to systematize the approach to improving technologies and obtaining new technical solutions.

  6. Advanced technologies, systems, and applications

    CERN Document Server

    Avdaković, Samir

    2017-01-01

    This volume spans a wide range of technical disciplines and technologies, including complex systems, biomedical engineering, electrical engineering, energy, telecommunications, mechanical engineering, civil engineering, and computer science. The papers included in this volume were presented at the International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies (IAT), held in Neum, Bosnia and Herzegovina on June 26 and 27, 2016. This highly interdisciplinary volume is devoted to various aspects and types of systems. Systems thinking is crucial for successfully building and understanding man-made, natural, and social systems. .

  7. Technological Criteria Technology-Environmental under a Systemic Approach: Chemistry Technology Transfer

    Directory of Open Access Journals (Sweden)

    Durán-García Martín Enrique

    2014-07-01

    Full Text Available Currently the transfer of chemical technology is a process that contributes to the technology policy of a country, an industry or an organization in general chemistry. This process requires the application of clear criteria for the proper development of the complex interrelations in the transfer of chemical technology. A group of criteria that are present, are those related to environmental technology which intrinsically define the technology and its impact to the environment. Therefore, the transfer of chemical technology requires technological-environmental criteria defining, in conjunction with other criteria, an adequate process for the selection, acquisition and incorporation of technology in a holistic perspective, so it provides feasible solutions the chemical industry in pursuit of their goals. Then the criterion becomes a benchmark for assessing an appropriate technology transfer process. We performed a theoretical analysis of the technological and environmental criteria, proposing thirty-six (36 technological-environmental criteria interrelated under a systemic approach in the process of transfer of chemical technology, focused on a methodological cycle first run, based primarily on the research-action method. Future research is expected to make a refinement of the criteria from the formulation and validation of metrics so that necessary adjustments are made to optimize the process of transfer of chemical technology.

  8. Experimental evaluation of high speed impulse radio UWB interference on WiMAX narrowband systems

    DEFF Research Database (Denmark)

    Yu, Xianbin; Yin, Xiaoli; Tafur Monroy, Idelfonso

    2010-01-01

    Interference of high speed impulse radio ultrawideband (IR-UWB) on 5.735GHz single carrier 64/256-QAM WiMAX narrowband signals is experimentally investigated. The experimental results indicate that the coexistence of 625Mbps and 2Gbps IR-UWB signals causes penalties of 3dB and 0.5dB respectively...... to the WiMAX channel. At higher bit rates, IR-UWB technology is therefore expected to reduce its interference on WiMAX signals. This work serves as further motivation for the exploration of IR-UWB systems with higher speed and higher capacity....

  9. Effects of curing conditions on the structure of sodium carboxymethyl starch/mineral matrix system: FT-IR investigation.

    Science.gov (United States)

    Kaczmarska, Karolina; Grabowska, Beata; Bobrowski, Artur; Cukrowicz, Sylwia

    2018-04-24

    Strength properties of the microwave cured molding sands containing binders in a form of the aqueous solution of sodium carboxymethyl starch (CMS-Na) are higher than the same molding composition cured by conventional heating. Finding the reason of this effect was the main purpose in this study. Structural changes caused by both physical curing methods of molding sands systems containing mineral matrix (silica sand) and polymer water-soluble binder (CMS-Na) were compared. It was shown, by means of the FT-IR spectroscopic studies, that the activation of the polar groups in the polymer macromolecules structure as well as silanol groups on the mineral matrix surfaces was occurred in the microwave radiation. Binding process in microwave-cured samples was an effect of formation the hydrogen bonds network between hydroxyl and/or carbonyl groups present in polymer and silanol groups present in mineral matrix. FT-IR studies of structural changes in conventional and microwave cured samples confirm that participation of hydrogen bonds is greater after microwave curing than conventional heating. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Development of radioisotope preparation and application technology

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. [and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of {omega}-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes.

  11. Development of radioisotope preparation and application technology

    International Nuclear Information System (INIS)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of ω-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes

  12. General report IRS-literature 1965-1976

    International Nuclear Information System (INIS)

    Schulz, W.

    1976-12-01

    The Institut fuer Reaktorsicherheit der TUeV e.V. (IRS) is of central importance in matters of licensing. It was jointly founded in 1965 by the eleven TUeVs of the Federal Republic of Germany and West-Berlin, by the Germanischer Lloyd and the then Federal Ministry for Scientific Research. After 12 sucsessful years the IRS will terminate its activities on December 31st, 1976, and together with the Laboratorium fuer Reaktorregelung und Anlagensicherung (LRA) at the TU Munich, Garching, it will be from January 1st, 1977 onwards part of the Gesellschaft fuer Reaktorsicherheit (GRS) mbH, a newly founded corporation. The activities of IRS and LRA will be continued by the GRS starting from January 1st, 1977. All IRS' report series and information services listed in this report are thus running out. The new corporation will build up its publications on the basis of the experience gained by IRS and LRA. (orig.) [de

  13. Modeling learning technology systems as business systems

    NARCIS (Netherlands)

    Avgeriou, Paris; Retalis, Symeon; Papaspyrou, Nikolaos

    2003-01-01

    The design of Learning Technology Systems, and the Software Systems that support them, is largely conducted on an intuitive, ad hoc basis, thus resulting in inefficient systems that defectively support the learning process. There is now justifiable, increasing effort in formalizing the engineering

  14. Enhanced technologies for unattended ground sensor systems

    Science.gov (United States)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  15. IR-based spot weld NDT in automotive applications

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  16. FIRE PROTECTION SYSTEMS AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Aristov Denis Ivanovich

    2016-03-01

    Full Text Available The All-Russian Congress “Fire Stop Moscow” was de-voted to the analysis of the four segments of the industry of fire protection systems and technologies: the design of fire protec-tion systems, the latest developments and technologies of active and passive fire protection of buildings, the state and the devel-opment of the legal framework, the practice of fire protection of buildings and structures. The forum brought together the repre-sentatives of the industry of fire protection systems, scientists, leading experts, specialists in fire protection and representatives of construction companies from different regions of Russia. In parallel with the Congress Industrial Exhibition of fire protection systems, materials and technology was held, where manufacturers presented their products. The urgency of the “Fire Stop Moscow” Congress in 2015 organized by the Congress Bureau ODF Events lies primarily in the fact that it considered the full range of issues related to the fire protection of building and construction projects; studied the state of the regulatory framework for fire safety and efficiency of public services, research centers, private companies and busi-nesses in the area of fire safety. The main practical significance of the event which was widely covered in the media space, was the opportunity to share the views and information between management, science, and practice of business on implementing fire protection systems in the conditions of modern economic relations and market realities. : congress, fire protection, systems, technologies, fire protection systems, exhibition

  17. EFFECTS OF FATLIQURING PROCESS ON LEATHERS COLOURED WITH IR REFLECTIVE DYES AND PIGMENTS

    Directory of Open Access Journals (Sweden)

    MUTLU Mehmet Mete

    2017-05-01

    Full Text Available Black coloured materials and consumer goods are known to be heating up more, because they absorb sun radiation more than light colours. This heating is a problem for the users for black automotive or motorcycle leathers and also for dark shoes and boots which are exposed to sun heat. Human vision system can distinguish visible colours between the wavelengths of 390-700 nm. So reflecting the sun radiation in the infrared area of radiation spectrum higher than 700nm, is a solution for heating problem without affecting the visible colour. For this reason IR reflective dyes and pigments are designed. A leading Leather Chemical Company has developed an IR reflecting dyeing system for leather keeping the dark coloured leathers cooler under sun radiation. Additionally in theory, fat and water content of leather affects its heating properties. In this study, effect of natural, synthetic and waterproof fatliquoring systems on heating properties of leathers coloured with IR reflective dyes and pigments are investigated.

  18. An expert system technology for work authorization information systems

    International Nuclear Information System (INIS)

    Munchausen, J.H.; Glazer, K.A.

    1988-01-01

    This paper describes the effort by Southern California Edison Company (SCE) and the Electric Power Research Institute (EPRI) to develop an expert systems work station designed to support the San Onofre Nuclear Generating Station (SONGS). The expert systems work station utilizes IntelliCorp KEE (Knowledge Engineering Environment) and EPRI-IntelliCorp PLEXSYS (PLant EXpert SYStem) technology, and SCE Piping and Instrumentation Diagrams (P and ID's) and host-based computer applications to assist plant operations and maintenance personnel in the development of safety tagout boundaries. Of significance in this venture is the merging of conventional computer applications technology with expert systems technology. The EPRI PLEXSYS work station will act as a front-end for the SONGS Tagout Administration and Generation System (TAGS), a conventional CICS/COBOL mainframe computer application

  19. New Ablation-Resistant Material Candidate for Hypersonic Applications: Synthesis, Composition, and Oxidation Resistance of HfIr3-Based Solid Solution.

    Science.gov (United States)

    Lozanov, Victor V; Baklanova, Natalya I; Bulina, Natalia V; Titov, Anatoly T

    2018-04-18

    The peculiarities of the solid-state interaction in the HfC-Ir system have been studied within the 1000-1600 °C temperature range using a set of modern analytical techniques. It was stated that the interaction of HfC with iridium becomes noticeable at temperatures as low as 1000-1100 °C and results in the formation of HfIr 3 -based substitutional solid solution. The homogeneity range of the HfIr 3± x phase was evaluated and refined as HfIr 2.43 -HfIr 3.36 . The durability of the HfIr 3 -based system under extreme environmental conditions was studied. It was shown that the HfIr 3 -based material displays excellent ablation resistance under extreme environmental conditions. The benefits of the new designed material result from its relative oxygen impermeability and special microstructure similar to superalloys. The results obtained in this work allow us to consider HfIr 3 as a very promising candidate for extreme applications.

  20. High-pressure synthesis and structural, physical properties of CaIr1-xPtxO3 and CaIr1-xRhxO3

    Science.gov (United States)

    Hirai, S.; Bromiley, G. D.; Klemme, S.; Irifune, T.; Ohfuji, H.; Attfield, P.; Nishiyama, N.

    2010-12-01

    Since the discovery of the perovskite to post-perovskite transition in MgSiO3 in a laser-heated DAC, wide attention has been focussed on the post-perovskite phase of MgSiO3. This is because the post-perovskite phase is likely to play a key role in Earth’s lowermost mantle, and because the perovskite to post-perovskite transition can explain many features of the D” seismic discontinuity. While it is meaningful to conduct further studies of MgSiO3, the post-perovskite phase of MgSiO3 cannot be quenched to ambient pressure/temperature conditions. Thus, further studies must be conducted using analogue compounds of MgSiO3 post-perovskite, which are quenchable to ambient pressure/temperature conditions. The post-perovskite phase of MgSiO3 crystallizes in a layered structure with CaIrO3-structure. Therefore, it is useful to investigate compounds with CaIrO3-structure. There are only four quenchable oxides with CaIrO3-structure reported to date: CaIrO3, CaPtO3, CaRhO3 and CaRuO3. CaIrO3 can be synthesized at ambient pressure, whilst the other three oxides can only be obtained at high pressure/temperature conditions using a multi-anvil apparatus. Further studies on these materials have revealed structural phase transitions at high P-T and a metal-insulator transition by hole doping. In the case of CaIrO3, The post-perovskite phase of CaIrO3 synthesized at 2GPa, 1373K transforms into a perovskite phase at 2GPa, 1673K. In other words, the perovskite phase can be synthesized at temperatures higher than those needed for synthesizing the post-perovskite phase. This is also the case for CaRhO3 (6GPa, 1873K) and CaRuO3 (23GPa, 1343K), while CaPtO3 remained post-perovskite at higher temperatures. We have succeeded in synthesizing solid solutions between CaIrO3, CaPtO3 and CaRhO3. We have found the systematic change in structural and physical properties of post-perovskite oxides, with composition and P-T, which broadens the future opportunity for studying post-perovskite systems

  1. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  2. The Advanced Technology Operations System: ATOS

    Science.gov (United States)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  3. Nanoparticle Nucleation Is Termolecular in Metal and Involves Hydrogen: Evidence for a Kinetically Effective Nucleus of Three {Ir3H2x·P2W15Nb3O62}6- in Ir(0)n Nanoparticle Formation From [(1,5-COD)IrI·P2W15Nb3O62]8- Plus Dihydrogen.

    Science.gov (United States)

    Özkar, Saim; Finke, Richard G

    2017-04-19

    The nucleation process yielding Ir(0) ∼300 nanoparticles from (Bu 4 N) 5 Na 3 [(1,5-COD)Ir·P 2 W 15 Nb 3 O 62 ] (abbreviated hereafter as (COD)Ir·POM 8- , where POM 9- = the polyoxometalate, P 2 W 15 Nb 3 O 62 9- ) under H 2 is investigated to learn the true molecularity, and hence the associated kinetically effective nucleus (KEN), for nanoparticle formation for the first time. Recent work with this prototype transition-metal nanoparticle formation system ( J. Am. Chem. Soc. 2014 , 136 , 17601 - 17615 ) revealed that nucleation in this system is an apparent second-order in the precatalyst, A = (COD)Ir·POM 8- , not the higher order implied by classic nucleation theory and its nA ⇌ A n , "critical nucleus", A n concept. Herein, the three most reasonable more intimate mechanisms of nucleation are tested: bimolecular nucleation, termolecular nucleation, and a mechanism termed "alternative termolecular nucleation" in which 2(COD)Ir + and 1(COD)Ir·POM 8- yield the transition state of the rate-determining step of nucleation. The results obtained definitively rule out a simple bimolecular nucleation mechanism and provide evidence for the alternative termolecular mechanism with a KEN of 3, Ir 3 . All higher molecularity nucleation mechanisms were also ruled out. Further insights into the KEN and its more detailed composition involving hydrogen, {Ir 3 H 2x POM} 6- , are also obtained from the established role of H 2 in the Ir(0) ∼300 formation balanced reaction stoichiometry, from the p(H 2 ) dependence of the kinetics, and from a D 2 /H 2 kinetic isotope effect of 1.2(±0.3). Eight insights and conclusions are presented. A section covering caveats in the current work, and thus needed future studies, is also included.

  4. IR-RF dating of sand-sized K-feldspar extracts: A test of accuracy

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Jain, Mayank; Murray, A.S.

    2012-01-01

    In this paper we use a recently developed radioluminescence (RL) attachment to the Risø TL/OSL reader to test the InfraRed-RadioFluorescence (IR-RF) dating method applied to K-feldspar rich extracts from our known-age archive samples. We present experiments to characterise the instrument performa......In this paper we use a recently developed radioluminescence (RL) attachment to the Risø TL/OSL reader to test the InfraRed-RadioFluorescence (IR-RF) dating method applied to K-feldspar rich extracts from our known-age archive samples. We present experiments to characterise the instrument...... performance and to test the reproducibility of IR-RF measurements. These experiments illustrate the high sensitivity and dose rate of our RL system, the negligible influence of the turntable movement on IR-RF signals and the effectiveness of the built in 395 nm LED at bleaching IR-RF signals. We measure IR......-RF ages on a set of samples with independent age control using a robust analytical method, which is able to detect any possible sensitivity change. Our IR-RF ages do not agree well with the independent age control; the ages of the younger samples (20–45 ka) are significantly over-estimated while the ages...

  5. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Asanova, Tatyana I., E-mail: nti@niic.nsc.ru; Asanov, Igor P. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation); Kim, Min-Gyu [Pohang University of Science and Technology, Beamline Research Division (Korea, Republic of); Gerasimov, Evgeny Yu. [Boreskov Institute of Catalysis SB RAS (Russian Federation); Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation)

    2013-10-15

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 Degree-Sign C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.Graphical Abstract.

  6. APPL1 potentiates insulin sensitivity by facilitating the binding of IRS1/2 to the insulin receptor.

    Science.gov (United States)

    Ryu, Jiyoon; Galan, Amanda K; Xin, Xiaoban; Dong, Feng; Abdul-Ghani, Muhammad A; Zhou, Lijun; Wang, Changhua; Li, Cuiling; Holmes, Bekke M; Sloane, Lauren B; Austad, Steven N; Guo, Shaodong; Musi, Nicolas; DeFronzo, Ralph A; Deng, Chuxia; White, Morris F; Liu, Feng; Dong, Lily Q

    2014-05-22

    Binding of insulin receptor substrate proteins 1 and 2 (IRS1/2) to the insulin receptor (IR) is essential for the regulation of insulin sensitivity and energy homeostasis. However, the mechanism of IRS1/2 recruitment to the IR remains elusive. Here, we identify adaptor protein APPL1 as a critical molecule that promotes IRS1/2-IR interaction. APPL1 forms a complex with IRS1/2 under basal conditions, and this complex is then recruited to the IR in response to insulin or adiponectin stimulation. The interaction between APPL1 and IR depends on insulin- or adiponectin-stimulated APPL1 phosphorylation, which is greatly reduced in insulin target tissues in obese mice. appl1 deletion in mice consistently leads to systemic insulin resistance and a significant reduction in insulin-stimulated IRS1/2, but not IR, tyrosine phosphorylation, indicating that APPL1 sensitizes insulin signaling by acting at a site downstream of the IR. Our study uncovers a mechanism regulating insulin signaling and crosstalk between the insulin and adiponectin pathways. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Teaching Information Systems Technologies: a New Approach based on Virtualization and Hosting Technologies

    Directory of Open Access Journals (Sweden)

    Carmelo R. García

    2012-11-01

    Full Text Available This paper describes how to provide suitable computing systems for information systems technologies learning using virtualization and hosting technologies. The main functionalities and components of an university learning lab based on these technologies are presented. All the software components used in its development are open source. Also, the use of this lab, providing the computing systems required for the learning activities of different matters related to the information systems technologies, is illustrated. The model of computing lab proposed is a more sustainable and scalable alternative than the traditional academic computing lab.

  8. High field Moessbauer study of dilute Ir-(Fe) alloys

    International Nuclear Information System (INIS)

    Takabatake, Toshiro; Mazaki, Hiromasa; Shinjo, Teruya.

    1981-01-01

    The magnetic behavior of very dilute Fe impurities in Ir has been studied by means of Moessbauer measurement in external fields up to 80 kOe at 4.2 K. The saturation hyperfine field increases in proportion to the external field up to the maximum magnetic field available. This means that for a localized spin fluctuation system IrFe, the effective magnetic moment associated with Fe impurities is induced in proportion to the external field. No anomalous spectrum was observed with a very dilute sample (--10 ppm 57 Co), indicating that the interaction between impurities is responsible for the anomalous spectrum previously observed with a less homogeneous sample. (author)

  9. 76 FR 57804 - Proposed Collection; Comment Request for the IRS Individual Taxpayer Burden Survey

    Science.gov (United States)

    2011-09-16

    ... received on or before November 15, 2011 to be assured of consideration. ADDRESSES: Direct all written... submit more than 140 million tax returns to the Internal Revenue Service (IRS). The IRS uses the... administer a tax system whose rules span thousands of pages. Managing such a complex and broad-based tax...

  10. 2015 World Conference on Information Systems and Technologies

    CERN Document Server

    Correia, Ana; Costanzo, Sandor; Reis, Luis

    2015-01-01

    This book contains a selection of articles from The 2015 World Conference on Information Systems and Technologies (WorldCIST'15), held between the 1st and 3rd of April in Funchal, Madeira, Portugal, a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences and challenges of modern Information Systems and Technologies research, technological development and applications. The main topics covered are: Information and Knowledge Management; Organizational Models and Information Systems; Intelligent and Decision Support Systems; Big Data Analytics and Applications; Software Systems, Architectures, Applications and Tools; Multimedia Systems and Applications; Computer Networks, Mobility and Pervasive Systems; Human-Computer Interaction; Health Informatics; Information Technologies in Education; Information Technologies in Radiocommunications.

  11. 2014 World Conference on Information Systems and Technologies

    CERN Document Server

    Correia, Ana; Tan, Felix; Stroetmann, Karl

    2014-01-01

    This book contains a selection of articles from The 2014 World Conference on Information Systems and Technologies (WorldCIST'14), held between the 15th and 18th of April in Funchal, Madeira, Portugal, a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences and challenges of modern Information Systems and Technologies research, technological development and applications. The main topics covered are: Information and Knowledge Management; Organizational Models and Information Systems; Intelligent and Decision Support Systems; Software Systems, Architectures, Applications and Tools; Computer Networks, Mobility and Pervasive Systems; Radar Technologies; Human-Computer Interaction; Health Informatics; and Information Technologies in Education.

  12. Recommender Systems in Technology Enhanced Learning

    NARCIS (Netherlands)

    Manouselis, Nikos; Drachsler, Hendrik; Verbert, Katrien; Santos, Olga

    2010-01-01

    Manouselis, N., Drachsler, H., Verbert, K., & Santos, C. S. (Eds.) (2010). Recommender System in Technology Enhanced Learning. Elsevier Procedia Computer Science: Volume 1, Issue 2. Proceedings of the 1st Workshop on Recommender Systems for Technology Enhanced Learning (RecSysTEL). September, 29-30,

  13. 2016 World Conference on Information Systems and Technologies

    CERN Document Server

    Correia, Ana; Adeli, Hojjat; Reis, Luis; Teixeira, Marcelo

    2016-01-01

    This book contains a selection of articles from The 2016 World Conference on Information Systems and Technologies (WorldCIST'16), held between the 22nd and 24th of March at Recife, Pernambuco, Brazil. WorldCIST is a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences and challenges of modern Information Systems and Technologies research, together with their technological development and applications. The main topics covered are: Information and Knowledge Management; Organizational Models and Information Systems; Software and Systems Modeling; Software Systems, Architectures, Applications and Tools; Multimedia Systems and Applications; Computer Networks, Mobility and Pervasive Systems; Intelligent and Decision Support Systems; Big Data Analytics and Applications; Human-Computer Interaction; Health Informatics; Information Technologies in Education; Information Technologies in Radiocommunications.

  14. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  15. Braškių 'Senga Sengana' prisitaikymas prie diferencijuoto ir kompleksinio UV-B spinduliuotės ir ozono poveikio

    OpenAIRE

    Brazaitytė, Aušra; Sakalauskaitė, Jurga; Duchovskis, Pavelas; Šikšnianienė, Jūratė Bronė; Samuolienė, Giedrė; Ulinskaitė, Raimonda; Baranauskis, Kęstutis; Urbonavičiūtė, Akvilė; Šabajevienė, Gintarė; Gelvonauskis, Bronislovas; Uselis, Nobertas; Vagusevičienė, Ilona

    2007-01-01

    2005 m. Lietuvos sodininkystės ir daržininkystės instituto fitotrono komplekse nustatytas diferencijuotas ir kompleksinis UV-B spinduliuotės bei ozono poveikis braškių augimui ir fotosintezės pigmentų pokyčiams bei jų prisitaikymo prie šių stresorių galimybės. Poveikis stresą sukeliančiais veiksniais buvo skirstomas į du laikotarpius: adaptacijos ir pagrindinį. Ozono koncentracija adaptacijos laikotarpiu buvo 80 µg m-3, o pagrindinio poveikio – 240 µg m-3. Tokia koncentracija buvo palaikoma 7...

  16. Technology based Education System

    DEFF Research Database (Denmark)

    Kant Hiran, Kamal; Doshi, Ruchi; Henten, Anders

    2016-01-01

    Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded in the acad......Abstract - Education plays a very important role for the development of the country. Education has multiple dimensions from schooling to higher education and research. In all these domains, there is invariably a need for technology based teaching and learning tools are highly demanded...... in the academic institutions. Thus, there is a need of comprehensive technology support system to cater the demands of all educational actors. Cloud Computing is one such comprehensive and user-friendly technology support environment that is the need of an hour. Cloud computing is the emerging technology that has...

  17. Development of a TLD mailed system for remote dosimetry audit for 192Ir HDR and PDR sources

    International Nuclear Information System (INIS)

    Roue, Amelie; Venselaar, Jack L.M.; Ferreira, Ivaldo H.; Bridier, Andre; Dam, Jan van

    2007-01-01

    Background and purpose: In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. Materials and methods: A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from 192 Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an 192 Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1 s). Results: To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. Conclusion: A method of absorbed dose to water determination in the vicinity of an 192 Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The

  18. Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.

    Science.gov (United States)

    Roué, Amélie; Venselaar, Jack L M; Ferreira, Ivaldo H; Bridier, André; Van Dam, Jan

    2007-04-01

    In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from (192)Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an (192)Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1s). To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. A method of absorbed dose to water determination in the vicinity of an (192)Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The accuracy of the procedure was determined. This method allows a

  19. Application of Component Technology to E-commerce System

    Institute of Scientific and Technical Information of China (English)

    ZHU Jianfeng

    2004-01-01

    At present E-commerce system tends to become more complex, and traditional system designing methods can not fufil the need of E-commerce system, thus requiring an effective methodas solution. With this concern, this paper introduces some concepts of component technology, then brings forward the new connotation and basic features of component technology through the analysis of its technological character. This paper finally discusses the application of component technology to E-commerce system.

  20. Vartotojų lojalumas : formavimas ir valdymas

    OpenAIRE

    Zikienė, Kristina

    2010-01-01

    Vienas iš esminių daugelio organizacijų tikslų, garantuojančių tolesnį sėkmingą konkuravimą nuolat besikeičiančiame verslo pasaulyje, yra vartotojų lojalumo įgijimas ir išlaikymas. Įvairios lojalumo formavimo ir valdymo problemos plačiai ir detaliai analizuojamos šioje mokomojoje knygoje. Knyga pradedama vartotojų lojalumo analize marketingo mokslo raidos kontekste. Tolesnis dėmesys skiriamas vartotojų lojalumo vadybinio aspekto analizei, atskleidžiant vartotojų lojalumo koncepcijos teorines ...

  1. Broilerienos paklausa ir pasiūla Lietuvoje

    OpenAIRE

    Paškauskienė, Kristina

    2008-01-01

    Labai svarbu ir savalaikiškai ištirti vartotojų poreikį broilerienai, aktualu nustatyti vartotojų požiūrį į Lietuvoje užauginamą produkciją bei importuotą. ir kokia yra priklausomybė vyrų bei moterų tarpe, ir nuo gaunamo atlyginimo. Vartotojų tyrimai rodo, kad auga paklausa lengvai virškinamiems, greitai paruošiamiems, aukštos maistinės kokybės gyvulininkystės produktams. Darbo tikslas - Išsiaiškinti broilerienos paklausą ir pasiūlą Lietuvoje, įvertinti broilerienos suvartojimo tendencija...

  2. Advances in energy-transfer technology

    International Nuclear Information System (INIS)

    Terpstra, L.

    1992-01-01

    This paper discusses the technology of drying and curing inks, coatings and adhesives which is changing rapidly as converters and manufacturers strive to comply with regulations governing airborne emissions as well as discharge of liquid and solid wastes. Compliance with these regulations will become more difficult in the coming decade as the Clean Air Act's increasingly stringent limitations on emissions of volatile organic compounds are implemented to support the intentions of the Montreal protocol. Many of the customary solvents are being eliminated, and the volume of production for many others will be severely reduced. For some companies, the switch to the new materials means updating or replacing antiquated hot-air drying systems with high-velocity impingement ovens with higher temperature capabilities. Probably the least-expansive alternative to replacing the entire oven is to retrofit the installation with infrared (IR) energy in the form of separate predryers or postheaters or, in some cases, to install auxiliary IR heaters between the hot-air nozzles within the oven

  3. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Science.gov (United States)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  4. Applying Sustainable Systems Development Approach to Educational Technology Systems

    Science.gov (United States)

    Huang, Albert

    2012-01-01

    Information technology (IT) is an essential part of modern education. The roles and contributions of technology to education have been thoroughly documented in academic and professional literature. Despite the benefits, the use of educational technology systems (ETS) also creates a significant impact on the environment, primarily due to energy…

  5. Development of Silicon-substrate Based Fabry-Perot Etalons for far-IR Astrophysics

    Science.gov (United States)

    Stacey, Gordon

    We propose to design, construct and test silicon-substrate-based (SSB) mirrors necessary for high performance Fabry-Perot interferometers (FPIs) to be used in the 25-40 um mid-IR band. These mirrors will be fabricated from silicon wafers that are anti-reflection coated (ARC) by micromachining an artificial dielectric meta-material on one side, and depositing optimized gold-metalized patterns on the other. Two mirrors with the metalized surfaces facing one-another form the Fabry-Perot cavity, also known as the FPI etalon. The exterior surfaces of the silicon mirrors are anti-reflection coated for both good transmission in the science band, and to prevent unwanted parasitic FPI cavities from forming between the four surfaces (one anti-reflection coated, one metalized for each mirror) of the FPI etalon. The mirrors will be tested within a Miniature Cryogenic Scanning Fabry-Perot (MCSF) that we have designed through support of a previous NASA grant (NNX09AB95G). This design is based on our long experience in constructing and using scanning FPI in the mid-IR to submm range, and fits within test-beds we have on hand that are suitable for both warm and cold tests. The key technologies are the ARC and tuned mirrors that are enabled by silicon nano-machining techniques. The creation of these SSB mirrors promises greatly improved performance over previous versions of mid-IR to submm-band FPIs that are based on mirrors made from free-standing metal mesh stretched over support rings. Performance is improved both structurally and in terms of sensitivity, and is measured as the product of the cavity finesse times transmission. Our electromagnetic modeling suggests that SSB mirrors will improve this product by a factor of 2 over the best free standing mesh etalons available. This translates into a factor of sqrt(2) improvement in sensitivity per etalon, or a full factor of 2 when used in a tandem (dual etalon) FPI spectrometer. The SSB improvements are due to both the stiff (~ 0

  6. Land drainage system detection using IR and visual imagery taken from autonomous mapping airship and evaluation of physical and spatial parameters of suggested method

    Science.gov (United States)

    Koska, Bronislav; Křemen, Tomáš; Štroner, Martin; Pospíšil, Jiří; Jirka, Vladimír.

    2014-10-01

    An experimental approach to the land drainage system detection and its physical and spatial parameters evaluation by the form of pilot project is presented in this paper. The novelty of the approach is partly based on using of unique unmanned aerial vehicle - airship with some specific properties. The most important parameters are carrying capacity (15 kg) and long flight time (3 hours). A special instrumentation was installed for physical characteristic testing in the locality too. The most important is 30 meter high mast with 3 meter length bracket at the top with sensors recording absolute and comparative temperature, humidity and wind speed and direction in several heights of the mast. There were also installed several measuring units recording local condition in the area. Recorded data were compared with IR images taken from airship platform. The locality is situated around village Domanín in the Czech Republic and has size about 1.8 x 1.5 km. There was build a land drainage system during the 70-ties of the last century which is made from burnt ceramic blocks placed about 70 cm below surface. The project documentation of the land drainage system exists but real state surveying haveńt been never realized. The aim of the project was land surveying of land drainage system based on infrared, visual and its combination high resolution orthophotos (10 cm for VIS and 30 cm for IR) and spatial and physical parameters evaluation of the presented procedure. The orthophoto in VIS and IR spectrum and its combination seems to be suitable for the task.

  7. Spreading of technological developments in socio-economic systems

    International Nuclear Information System (INIS)

    Kun, F.; Pal, K.F.

    2005-01-01

    Complete text of publication follows. Recently, it has been recognized that various aspects of the time evolution of modern socio-economic systems show strong analogies to complex systems extensively studied by physical sciences. During the last decade the application of methods and models of statistical physics provided a novel insight into social and economical problems and led to the emergence of new branches of physical research. In the framework of the present project we proposed a simple cellular automata model of the spreading of new technological developments in socio-economic systems. In our model the socio-economic system is defined in a general sense: the elements/members of the system are called agents, which may be firms or simply individuals. Depending on the meaning of agents, the system under consideration can be a macro-economic system where firms compete with each other, or it can be a society where individuals purchase products of di rent technological level. Technological development occurs such that agents adopt more advanced technologies of their social environment in order to minimize their costs. Technological development due to innovation can be captured in the model as a random external driving. As a first step, we analyzed the basic setup of the model where agents have random technological levels uniformly distributed between 0 and 1 and interact solely with their near- est neighbors in a square lattice without considering external driving. Computer simulations revealed that even under these simplifying assumptions a rather complex behavior of the system emerges: when the most advanced technologies do not provide enough improvement (enough cost reduction) in the system, the agents tend to form clusters of di rent technological levels where even low level technologies may survive for a long time. At intermediate values of the advantage provided by the new technologies, the global technological level of the society improves, however, it

  8. NaIrO3-A pentavalent post-perovskite

    International Nuclear Information System (INIS)

    Bremholm, M.; Dutton, S.E.; Stephens, P.W.; Cava, R.J.

    2011-01-01

    Sodium iridium (V) oxide, NaIrO 3, was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO 3 , the much-studied structural analog of the high-pressure post-perovskite phase of MgSiO 3 . Among the oxide post-perovskites, NaIrO 3 is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO 6 octahedra separated by layers of NaO 8 bicapped trigonal prisms. NaIrO 3 shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides. -- Graphical abstract: Sodium iridium(V) oxide, NaIrO 3 , synthesized by a high pressure solid state method and recovered to ambient conditions is found to crystallize as the post-perovskite structure and is the first example of a pentavalent ABO 3 post-perovskite. Research highlights: → NaIrO 3 post-perovskite stabilized by pressure. → First example of a pentavalent oxide post-perovskite. → Non-metallic and non-magnetic behavior of NaIrO 3 .

  9. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar

    2016-01-01

    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myth...

  10. Endurance test on IR rig for RI production

    International Nuclear Information System (INIS)

    Chung, Heung June; Youn, Y. J.; Han, H. S.; Hong, S. B.; Cho, Y. G.; Ryu, J. S.

    2000-12-01

    This report presents the pressure drop, vibration and endurance test results for IR rig for RI production which were desigened and fabricated by KAERI. From the pressure drop test results, it is noted that the flow rate through the IR rig corresponding to the pressure drop of 200 kPa is measured to be about 3.12 kg/sec. Vibration frequency for the IR rig ranges from 13 to 17 Hz. RMS(Root Mean Square) displacement for the IR rig is less than 30 μm, and the maximum displacement is less than 110μm. These experimental results show that the design criteria of IR rig meet the HANARO limit conditions. Endurance test results show that the appreciable fretting wear for the IR rig does not occur, however tiny trace of wear between contact points is observed

  11. Study on IR Properties of Reduced Graphene Oxide

    Science.gov (United States)

    Ma, Deyue; Li, Xiaoxia; Guo, Yuxiang; Zeng, Yurun

    2018-01-01

    Firstly, the reduced graphene oxide was prepared by modified hummer method and characterized. Then, the complex refractive index of reduced graphene oxide in IR band was tested and its IR absorption and radiation properties were researched by correlated calculation. The results show that reduced graphene oxide prepared by hummer method are multilayered graphene with defects and functional groups on its surface. Its absorption in near and far IR bands is strong, but it’s weaker in middle IR band. At the IR atmosphere Window, its normal spectral emissivity decreases with wavelength increasing, and its total normal spectral emissivity in 3 ∼ 5μm and 8 ∼ 14μm are 0.75 and 0.625, respectively. Therefore, reduced graphene oxide can be used as IR absorption and coating materials and have a great potential in microwave and infrared compatible materials.

  12. Use of HOMA-IR in hepatitis C.

    Science.gov (United States)

    Eslam, M; Kawaguchi, T; Del Campo, J A; Sata, M; Khattab, M Abo-Elneen; Romero-Gomez, M

    2011-10-01

    Chronic infection with hepatitis C virus (HCV) can induce insulin resistance (IR) in a genotype-dependent manner and contributes to steatosis, progression of fibrosis and resistance to interferon plus ribavirin therapy. Our understanding of HCV-induced IR has improved considerably over the years, but certain aspects concerning its evaluation still remain elusive to clinical researchers. One of the most important issues is elucidating the ideal method for assessment of IR in the setting of hepatitis C. The hyperinsulinaemic euglycaemic clamp is the gold standard method for determining insulin sensitivity, but is impractical as it is labour intensive and time-consuming. To date, all human studies except for four where IR was evaluated in the HCV setting, an estimation of IR has been used rather than direct measurements of insulin-mediated glucose uptake. The most commonly used estimation in the HCV population is the homeostasis model assessment of insulin resistance (HOMA-IR) which is calculated from a single measurement of fasting insulin and glucose. In this article, we review the use and reporting of HOMA in the literature and provide guidance on its appropriate as well as inappropriate use in the hepatitis setting. © 2011 Blackwell Publishing Ltd.

  13. Hermann agreement updates IRS guidelines for incentives.

    Science.gov (United States)

    Broccolo, B M; Peregrine, M W

    1995-01-01

    The October 1994 agreement between the Internal Revenue Service (IRS) and Hermann Hospital of Houston, Texas, elucidates current IRS policy on physician recruitment incentives. The IRS distinguishes between the recruiting and the retention of physicians and perimts incentives beyond reasonable compensation in the former but not the latter circumstance. This new agreement, while not legally precedential, nevertheless provides guidance for healthcare organizations seeking safe harbor protection.

  14. Visible Parts, Invisible Whole: Swedish Technology Student Teachers' Conceptions about Technological Systems

    Science.gov (United States)

    Hallström, Jonas; Klasander, Claes

    2017-01-01

    Technological systems are included as a component of national technology curricula and standards for primary and secondary education as well as corresponding teacher education around the world. Little is known, however, of how pupils, students, and teachers conceive of technological systems. In this article we report on a study investigating…

  15. Detection of metanil yellow contamination in turmeric using FT-Raman and FT-IR spectroscopy

    Science.gov (United States)

    Dhakal, Sagar; Chao, Kuanglin; Qin, Jianwei; Kim, Moon; Schmidt, Walter; Chan, Dian

    2016-05-01

    Turmeric is well known for its medicinal value and is often used in Asian cuisine. Economically motivated contamination of turmeric by chemicals such as metanil yellow has been repeatedly reported. Although traditional technologies can detect such contaminants in food, high operational costs and operational complexities have limited their use to the laboratory. This study used Fourier Transform Raman Spectroscopy (FT-Raman) and Fourier Transform - Infrared Spectroscopy (FT-IR) to identify metanil yellow contamination in turmeric powder. Mixtures of metanil yellow in turmeric were prepared at concentrations of 30%, 25%, 20%, 15%, 10%, 5%, 1% and 0.01% (w/w). The FT-Raman and FT-IR spectral signal of pure turmeric powder, pure metanil yellow powder and the 8 sample mixtures were obtained and analyzed independently to identify metanil yellow contamination in turmeric. The results show that FT-Raman spectroscopy and FT-IR spectroscopy can detect metanil yellow mixed with turmeric at concentrations as low as 1% and 5%, respectively, and may be useful for non-destructive detection of adulterated turmeric powder.

  16. Design Technology for Heterogeneous Embedded Systems

    CERN Document Server

    O'Connor, Ian; Piguet, Christian

    2012-01-01

    Designing technology to address the problem of heterogeneous embedded systems, while remaining compatible with standard “More Moore” flows, i.e. capable of handling simultaneously both silicon complexity and system complexity, represents one of the most important challenges facing the semiconductor industry today. While the micro-electronics industry has built its own specific design methods to focus mainly on the management of complexity through the establishment of abstraction levels, the emergence of device heterogeneity requires new approaches enabling the satisfactory design of physically heterogeneous embedded systems for the widespread deployment of such systems. This book, compiled largely from a set of contributions from participants of past editions of the Winter School on Heterogeneous Embedded Systems Design Technology (FETCH), proposes a broad and holistic overview of design techniques used to tackle the various facets of heterogeneity in terms of technology and opportunities at the physical ...

  17. Design and Development of transducer for IR radiation measurement

    International Nuclear Information System (INIS)

    Pattarachindanuwong, Surat; Poopat, Bovornchoke; Meethong, Wachira

    2003-06-01

    Recently, IR radiation has many important roles such as for plastics industry, food industry and medical instrumentation. The consequence of exposed irradiation objects from IR can be greatly affected by the quantity of IR radiation. Therefore the objectively this research is to design and develop a transducer for IR radiation measurement. By using a quartz halogen lamp as a IR heat source of IR radiation and a thermopile sensor as a transducer. The thermal conductivity of transducer and air flow, were also considered for design and development of transducer. The study shows that the designed transducer can be used and applied in high temperature process, for example, the quality control of welding, the non-contact temperature measurement of drying oven and the testing of IR source in medical therapy device

  18. SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin.

    Science.gov (United States)

    Duan, Chaojun; Li, Minghua; Rui, Liangyou

    2004-10-15

    Leptin regulates energy homeostasis primarily by binding and activating its long form receptor (LRb). Deficiency of either leptin or LRb causes morbid obesity. Leptin stimulates LRb-associated JAK2, thus initiating multiple pathways including the Stat3 and phosphatidylinositol (PI) 3-kinase pathways that mediate leptin biological actions. Here we report that SH2-B, a JAK2-interacting protein, promotes activation of the PI 3-kinase pathway by recruiting insulin receptor substrate 1 (IRS1) and IRS2 in response to leptin. SH2-B directly bound, via its PH and SH2 domain, to both IRS1 and IRS2 both in vitro and in intact cells and mediated formation of a JAK2/SH2-B/IRS1 or IRS2 tertiary complex. Consequently, SH2-B dramatically enhanced leptin-stimulated tyrosine phosphorylation of IRS1 and IRS2 in HEK293 cells stably expressing LRb, thus promoting association of IRS1 and IRS2 with the p85 regulatory subunit of PI 3-kinase and phosphorylation and activation of Akt. SH2-B mutants with lower affinity for IRS1 and IRS2 exhibited reduced ability to promote association of JAK2 with IRS1, tyrosine phosphorylation of IRS1, and association of IRS1 with p85 in response to leptin. Moreover, deletion of the SH2-B gene impaired leptin-stimulated tyrosine phosphorylation of endogenous IRS1 in mouse embryonic fibroblasts (MEF), which was reversed by reintroduction of SH2-B. Similarly, SH2-B promoted growth hormone-stimulated tyrosine phosphorylation of IRS1 in both HEK293 and MEF cells. Our data suggest that SH2-B is a novel mediator of the PI 3-kinase pathway in response to leptin or other hormones and cytokines that activate JAK2.

  19. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome - Brazilian Metabolic Syndrome Study (BRAMS)

    OpenAIRE

    Geloneze, B; Vasques, ACJ; Stabe, CFC; Pareja, JC; Rosado, LEFPD; de Queiroz, EC; Tambascia, MA

    2009-01-01

    Objective: To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Methods: Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 9011 percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. Results: In the he...

  20. Comparative study of potentially J{sub eff} = 0 ground state iridium(V) in SrLaNiIrO{sub 6}, SrLaMgIrO{sub 6}, and SrLaZnIrO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, Klaus K.; Agrestini, Stefano; Tjeng, Liu Hao [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Tanaka, Arata [Department of Quantum Matter, AdSM, Hiroshima University, Higashi-Hiroshima (Japan); Jansen, Martin [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany); Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2017-12-13

    A series of polycrystalline double perovskites SrLaBIrO{sub 6} (B = Ni, Mg, Zn) containing Ir{sup 5+} (5d{sup 4}) was synthesized by solid state reactions, and structural, magnetic and electronic properties were investigated. The isotypic fully ordered double perovskites crystallize in space group P2{sub 1}/n and show semiconducting behavior with estimated bandgaps of approximately 0.2 eV for SrLaNiIrO{sub 6} and SrLaZnIrO{sub 6}, and 0.4 eV for SrLaMgIrO{sub 6}. SrLaNiIrO{sub 6} is an antiferromagnet with a Neel temperature of 74 K (μ{sub eff} = 3.3 μ{sub B}, θ{sub W} = -90 K), whereas SrLaMgIrO{sub 6} and SrLaZnIrO{sub 6} are weakly paramagnetic. All title compounds exhibit a temperature-independent contribution to the measured magnetic susceptibility, which supports the notion for a van-Vleck-type response originating from the Ir{sup 5+} (5d{sup 4}, J{sub eff} = 0) ions. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Mid-Infrared Spectral Properties of IR QSOs

    International Nuclear Information System (INIS)

    Xia, X. Y.; Cao, C.; Mao, S.; Deng, Z. G.

    2008-01-01

    We analyse mid-infrared (MIR) spectroscopic properties for 19 ultra-luminous infrared quasars (IR QSOs) in the local universe based on the spectra from the Infrared Spectrograph on board the Spitzer Space Telescope. The MIR properties of IR QSOs are compared with those of optically-selected Palomar-Green QSOs (PG QSOs) and ultra-luminous infrared galaxies (ULIRGs). The average MIR spectral features from ∼5 to 30 μm, including the spectral slopes, 6.2 μm PAH emission strengths and [NeII] 12.81 μm luminosities of IR QSOs, differ from those of PG QSOs. In contrast, IR QSOs and ULIRGs have comparable PAH and [NeII] luminosities. These results are consistent with IR QSOs being at a transitional stage from ULIRGs to classical QSOs. We also find the correlation between the EW (PAH 6.2 μm) and outflow velocities suggests that star formation activities are suppressed by feedback from AGNs and/or supernovae.

  2. IGF-IR targeted therapy: Past, present and future

    NARCIS (Netherlands)

    J.A.M.J.L. Janssen (Joseph); A.J. Varewijck (Aimee)

    2014-01-01

    textabstractThe IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons

  3. OGTT results in obese adolescents with normal HOMA-IR values.

    Science.gov (United States)

    Sahin, Nursel Muratoglu; Kinik, Sibel Tulgar; Tekindal, Mustafa Agah

    2013-01-01

    To investigate insulin resistance (IR) with OGTT in obese adolescents who have normal fasting insulin and homeostasis model assessment for insulin resistance (HOMA-IR). A total of 97 obese adolescents who had values of HOMA-IR IR using an insulin peak of ≥150 μU/mL (1041.8 pmol/L) and/or ≥75 μU/mL (520.9 pmol/L) 120 min after glucose charge and the sum of insulin levels >2083.5 pmol/L (300 μU/mL) in OGTT. IR risk factors were defined as family history of diabetes mellitus, acanthosis nigricans (AN), and hepatic steatosis. IR was detected in 61 (62.9%) patients. The IR group had significantly more frequent AN (p=0.0001). As the number of risk factors increased, the frequency of IR also increased (p=0.01). We advise to perform OGTT in obese adolescents with normal HOMA-IR, if they have risk factors for IR.

  4. Simultaneous monitoring of ice accretion and thermography of an airfoil: an IR imaging methodology

    International Nuclear Information System (INIS)

    Mohseni, M; Frioult, M; Amirfazli, A

    2012-01-01

    A novel image analysis methodology based on infrared (IR) imaging was developed for simultaneous monitoring of ice accretion and thermography of airfoils. In this study, an IR camera was calibrated and used to measure the surface temperature of the energized airfoils, and monitor the ice accretion and growth pattern on the airfoils’ surfaces. The methodology comprises the automatic processing of a series of IR video frames with the purpose of detecting ice pattern evolution during the icing test period. A specially developed MATLAB code was used to detect the iced areas in the IR images, and simultaneously monitor surface temperature evolution of the airfoil during an icing test. Knowing the correlation between the icing pattern and surface temperature changes during an icing test is essential for energy efficient design of thermal icing mitigation systems. Processed IR images were also used to determine the ice accumulation rate on the airfoil's surface in a given icing test. The proposed methodology has been demonstrated to work successfully, since the optical images taken at the end of icing tests from the airfoils’ surfaces compared well with the processed IR images detecting the ice grown outward from the airfoils’ leading edge area. (paper)

  5. Coronal magnetic fields inferred from IR wavelength and comparison with EUV observations

    Directory of Open Access Journals (Sweden)

    Y. Liu

    2009-07-01

    Full Text Available Spectropolarimetry using IR wavelength of 1075 nm has been proved to be a powerful tool for directly mapping solar coronal magnetic fields including transverse component directions and line-of-sight component intensities. Solar tomography, or stereoscopy based on EUV observations, can supply 3-D information for some magnetic field lines in bright EUV loops. In a previous paper \\citep{liu08} the locations of the IR emission sources in the 3-D coordinate system were inferred from the comparison between the polarization data and the potential-field-source-surface (PFSS model, for one of five west limb regions in the corona (Lin et al., 2004. The paper shows that the region with the loop system in the active region over the photospheric area with strong magnetic field intensity is the region with a dominant contribution to the observed Stokes signals. So, the inversion of the measured Stokes parameters could be done assuming that most of the signals come from a relatively thin layer over the area with a large photospheric magnetic field strength. Here, the five limb coronal regions are studied together in order to study the spatial correlation between the bright EUV loop features and the inferred IR emission sources. It is found that, for the coronal regions above the stronger photospheric magnetic fields, the locations of the IR emission sources are closer to or more consistent with the bright EUV loop locations than those above weaker photospheric fields. This result suggests that the structures of the coronal magnetic fields observed at IR and EUV wavelengths may be different when weak magnetic fields present there.

  6. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  7. 2017 World Conference on Information Systems and Technologies

    CERN Document Server

    Correia, Ana; Adeli, Hojjat; Reis, Luís; Costanzo, Sandra

    2017-01-01

    This book presents a selection of papers from the 2017 World Conference on Information Systems and Technologies (WorldCIST'17), held between the 11st and 13th of April 2017 at Porto Santo Island, Madeira, Portugal. WorldCIST is a global forum for researchers and practitioners to present and discuss recent results and innovations, current trends, professional experiences and challenges involved in modern Information Systems and Technologies research, together with technological developments and applications. The main topics covered are: Information and Knowledge Management; Organizational Models and Information Systems; Software and Systems Modeling; Software Systems, Architectures, Applications and Tools; Multimedia Systems and Applications; Computer Networks, Mobility and Pervasive Systems; Intelligent and Decision Support Systems; Big Data Analytics and Applications; Human–Computer Interaction; Ethics, Computers & Security; Health Informatics; Information Technologies in Education; and Information Tec...

  8. Growth and phase transformations of Ir on Ge(111)

    Science.gov (United States)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  9. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  10. Industrial radiography with Ir-192 using computed radiographic technique

    International Nuclear Information System (INIS)

    Ngernvijit, Narippawaj; Punnachaiya, Suvit; Chankow, Nares; Sukbumperng, Ampai; Thong-Aram, Decho

    2003-01-01

    The aim of this research is to study the utilization of a low activity Ir-192 gamma source for industrial radiographic testing using the Computed Radiography (CR) system. Due to a photo-salbutamol Imaging Plate (I P) using in CR is much more radiation sensitive than a type II film with lead foil intensifying screen, the exposure time with CR can be significantly reduced. For short-lived gamma-ray source like Ir-192 source, the exposure time must be proportionally increased until it is not practical particularly for thick specimens. Generally, when the source decays to an activity of about 5 Ci or less, it will be returned to the manufacturer as a radioactive waste. In this research, the optimum conditions for radiography of a 20 mm thick welded steel sample with 2.4 Ci Ir-192 was investigated using the CR system with high resolution image plate, i.e. type Bas-SR of the Fuji Film Co. Ltd. The I P was sandwiched by a pair of 0.25 mm thick Pb intensifying sere en. Low energy scattered radiations was filtered by placing another Pb sheet with a thickness of 3 mm under the cassette. It was found that the CR image could give a contrast sensitivity of 2.5 % using only 3-minute exposure time which was comparable to the image taken by the type II film with Pb intensifying screen using the exposure time of 45 minutes

  11. Dynamical Systems for Creative Technology

    NARCIS (Netherlands)

    van Amerongen, J.

    2010-01-01

    Dynamical Systems for Creative Technology gives a concise description of the physical properties of electrical, mechanical and hydraulic systems. Emphasis is placed on modelling the dynamical properties of these systems. By using a system’s approach it is shown that a limited number of mathematical

  12. Motorcycle detection and counting using stereo camera, IR camera, and microphone array

    Science.gov (United States)

    Ling, Bo; Gibson, David R. P.; Middleton, Dan

    2013-03-01

    Detection, classification, and characterization are the key to enhancing motorcycle safety, motorcycle operations and motorcycle travel estimation. Average motorcycle fatalities per Vehicle Mile Traveled (VMT) are currently estimated at 30 times those of auto fatalities. Although it has been an active research area for many years, motorcycle detection still remains a challenging task. Working with FHWA, we have developed a hybrid motorcycle detection and counting system using a suite of sensors including stereo camera, thermal IR camera and unidirectional microphone array. The IR thermal camera can capture the unique thermal signatures associated with the motorcycle's exhaust pipes that often show bright elongated blobs in IR images. The stereo camera in the system is used to detect the motorcyclist who can be easily windowed out in the stereo disparity map. If the motorcyclist is detected through his or her 3D body recognition, motorcycle is detected. Microphones are used to detect motorcycles that often produce low frequency acoustic signals. All three microphones in the microphone array are placed in strategic locations on the sensor platform to minimize the interferences of background noises from sources such as rain and wind. Field test results show that this hybrid motorcycle detection and counting system has an excellent performance.

  13. IR Cards: Inquiry-Based Introduction to Infrared Spectroscopy

    Science.gov (United States)

    Bennett, Jacqueline; Forster, Tabetha

    2010-01-01

    As infrared spectroscopy (IR) is frequently used in undergraduate organic chemistry courses, an inductive introduction to IR spectroscopy that uses index cards printed with spectra, structures, and chemical names is described. Groups of students are given an alphabetized deck of these "IR cards" to sort into functional groups. The students then…

  14. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  15. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    Science.gov (United States)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  16. Validity and reproducibility of HOMA-IR, 1/HOMA-IR, QUICKI and McAuley's indices in patients with hypertension and type II diabetes.

    Science.gov (United States)

    Sarafidis, P A; Lasaridis, A N; Nilsson, P M; Pikilidou, M I; Stafilas, P C; Kanaki, A; Kazakos, K; Yovos, J; Bakris, G L

    2007-09-01

    The aim of this study was to evaluate the validity and reliability of homeostasis model assessment-insulin resistance (HOMA-IR) index, its reciprocal (1/HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and McAuley's index in hypertensive diabetic patients. In 78 patients with hypertension and type II diabetes glucose, insulin and triglyceride levels were determined after a 12-h fast to calculate these indices, and insulin sensitivity (IS) was measured with the hyperinsulinemic euglycemic clamp technique. Two weeks later, subjects had again their glucose, insulin and triglycerides measured. Simple and multiple linear regression analysis were applied to assess the validity of these indices compared to clamp IS and coefficients of variation between the two visits were estimated to assess their reproducibility. HOMA-IR index was strongly and inversely correlated with the basic IS clamp index, the M-value (r=-0.572, PHOMA-IR and QUICKI indices were positively correlated with the M-value (r=0.342, PHOMA-IR was the best fit of clamp-derived IS. Coefficients of variation between the two visits were 23.5% for HOMA-IR, 19.2% for 1/HOMA-IR, 7.8% for QUICKI and 15.1% for McAuley's index. In conclusion, HOMA-IR, 1/HOMA-IR and QUICKI are valid estimates of clamp-derived IS in patients with hypertension and type II diabetes, whereas the validity of McAuley's index needs further evaluation. QUICKI displayed better reproducibility than the other indices.

  17. A Systems Approach to Technology Education.

    Science.gov (United States)

    Hacker, Michael; Barden, Robert

    1983-01-01

    Provides a brief history of industrial arts curriculum development, a rationale for a technology-based study of industrial arts, and the use of a systems view in understanding and interpreting technology. (SK)

  18. IR-RF dating of sand-sized K-feldspar extracts: A test of accuracy

    International Nuclear Information System (INIS)

    Buylaert, J.-P.; Jain, M.; Murray, A.S.; Thomsen, K.J.; Lapp, T.

    2012-01-01

    In this paper we use a recently developed radioluminescence (RL) attachment to the Risø TL/OSL reader to test the InfraRed-RadioFluorescence (IR-RF) dating method applied to K-feldspar rich extracts from our known-age archive samples. We present experiments to characterise the instrument performance and to test the reproducibility of IR-RF measurements. These experiments illustrate the high sensitivity and dose rate of our RL system, the negligible influence of the turntable movement on IR-RF signals and the effectiveness of the built in 395 nm LED at bleaching IR-RF signals. We measure IR-RF ages on a set of samples with independent age control using a robust analytical method, which is able to detect any possible sensitivity change. Our IR-RF ages do not agree well with the independent age control; the ages of the younger samples (20–45 ka) are significantly over-estimated while the ages of the older samples (∼130 ka) are significantly under-estimated. Experiments are undertaken to investigate this disagreement and our results indicate that they can most likely be explained by 1) the difficulty of defining the correct bleaching level prior to regeneration measurements, 2) signal instability, 3) sensitivity changes between the additive dose and regenerative dose measurements, or a combination of these three factors.

  19. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    Science.gov (United States)

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-02-17

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  20. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  1. Visible, Very Near IR and Short Wave IR Hyperspectral Drone Imaging System for Agriculture and Natural Water Applications

    Science.gov (United States)

    Saari, H.; Akujärvi, A.; Holmlund, C.; Ojanen, H.; Kaivosoja, J.; Nissinen, A.; Niemeläinen, O.

    2017-10-01

    The accurate determination of the quality parameters of crops requires a spectral range from 400 nm to 2500 nm (Kawamura et al., 2010, Thenkabail et al., 2002). Presently the hyperspectral imaging systems that cover this wavelength range consist of several separate hyperspectral imagers and the system weight is from 5 to 15 kg. In addition the cost of the Short Wave Infrared (SWIR) cameras is high (  50 k€). VTT has previously developed compact hyperspectral imagers for drones and Cubesats for Visible and Very near Infrared (VNIR) spectral ranges (Saari et al., 2013, Mannila et al., 2013, Näsilä et al., 2016). Recently VTT has started to develop a hyperspectral imaging system that will enable imaging simultaneously in the Visible, VNIR, and SWIR spectral bands. The system can be operated from a drone, on a camera stand, or attached to a tractor. The targeted main applications of the DroneKnowledge hyperspectral system are grass, peas, and cereals. In this paper the characteristics of the built system are shortly described. The system was used for spectral measurements of wheat, several grass species and pea plants fixed to the camera mount in the test fields in Southern Finland and in the green house. The wheat, grass and pea field measurements were also carried out using the system mounted on the tractor. The work is part of the Finnish nationally funded DroneKnowledge - Towards knowledge based export of small UAS remote sensing technology project.

  2. Korea-China Optical Technology Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheol Jung; Cha, H. K.; Rhee, Y. J. (and others)

    2007-04-15

    The main objectives of this project are to develop cooperative channel by personnel exchanges between industrial, educational and research partners of Korea and China on the fields of optical technologies which are the basis of optical industry and being spot-lighted as new industry of 21th century, and to raise the class of Korean optical technology up to world class by utilization of Chinese large facilities through the cooperative research between the optical technology institutions of both sides. To attain the goals mentioned above, we carried out the cooperative researches between the Korean and Chinese optical technology institutions in the following 7 fields; ? research cooperation between KAERI-SITP for the quantum structured far-IR sensor technology - research cooperation for the generation of femtosecond nuclear fusion induced neutrons - research cooperation between KAERI-AIOFM for laser environment analysis and remote sensing technology - research cooperation between KAERI-SIOM for advanced diode-pumped laser technology - cooperative research related on linear and nonlinear magneto-optical properties of advanced magnetic quantum structures - design of pico-second PW high power laser system and its simulation and - cooperative research related on the femto-second laser-plasma interaction physics.

  3. Korea-China Optical Technology Research Centre

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Cha, H. K.; Rhee, Y. J.

    2007-04-01

    The main objectives of this project are to develop cooperative channel by personnel exchanges between industrial, educational and research partners of Korea and China on the fields of optical technologies which are the basis of optical industry and being spot-lighted as new industry of 21th century, and to raise the class of Korean optical technology up to world class by utilization of Chinese large facilities through the cooperative research between the optical technology institutions of both sides. To attain the goals mentioned above, we carried out the cooperative researches between the Korean and Chinese optical technology institutions in the following 7 fields; ? research cooperation between KAERI-SITP for the quantum structured far-IR sensor technology - research cooperation for the generation of femtosecond nuclear fusion induced neutrons - research cooperation between KAERI-AIOFM for laser environment analysis and remote sensing technology - research cooperation between KAERI-SIOM for advanced diode-pumped laser technology - cooperative research related on linear and nonlinear magneto-optical properties of advanced magnetic quantum structures - design of pico-second PW high power laser system and its simulation and - cooperative research related on the femto-second laser-plasma interaction physics

  4. IR spectroscopy at the ITO-organic interface

    Energy Technology Data Exchange (ETDEWEB)

    Alt, Milan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Shazada, Ahmad [Max-Planck Institut fuer Polymerforschung, Mainz (Germany); Tamanai, Akemi; Trollmann, Jens; Glaser, Tobias; Beck, Sebastian; Tengeler, Sven; Pucci, Annemarie [Kirchhoff-Institut fuer Physik, Heidelberg (Germany)

    2012-07-01

    Thin films of P3HT have been prepared by spin coating and electrooxidative polymerization on platinum- and ITO-coated substrates. Additionally, P3HT-films on silicon substrates have been prepared by spin coating only. The measured IR spectra of the spin coated films allowed for an elaboration of a detailed optical model for P3HT, which has been used to simulate IR reflection-absorption spectra on ITO and Pt substrates. Comparison of simulated spectra with measurements revealed no substrate influence on the IR spectra for the spincoated films. In case of spincoated P3HT-films on ITO-substrate, the obtained IR spectra correspond to simulation data very well up to 6000 wavenumbers. In the electropolymerized P3HT films we have identified residuals of the electrolyte ionic liquid, acting as dopand for P3HT. While IR spectra of the electropolymerized P3HT films on Pt substrate could be explained reasonably well as a superposition of chemically doped P3HT and the ionic electrolyte, the IR spectra of electropolymerized P3HT films on ITO substrates showed strongly deposition-time dependent deviations. These were most likely related to varying properties of the ITO surface between reference and sample measurement due to an interaction of ITO and the electrolyte at the film-substrate interface.

  5. System Architecture Modeling for Technology Portfolio Management using ATLAS

    Science.gov (United States)

    Thompson, Robert W.; O'Neil, Daniel A.

    2006-01-01

    Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.

  6. Integrated system technologies for water and sewage works. Information system technologies for rainwater drainage. Jogesuido sogo system gijutsu. Kou joho system

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, T; Nakada, M; Kondo, S [Toshiba Corp., Tokyo (Japan)

    1994-05-01

    The present report introduces the technological trend of rainwater drainage information system mainly with radar rain gauges. The information network must be strengthened as measures against the urban flood from the rainwater drainage. A radar rain gauge-based combination is needed of synthetic and organic processing technologies covering the traveling prediction of rainfall, data communication and rainwater drainage/flooding prediction. The correction method and data communication/display technology are explained for the measurement with radar rain gauges. In both correlation function method and rainfall area pursuit method, the traveling of rainfall is predicted by utilizing the radar information for the sewerage system. For the drainage analysis, it is necessary to quantitatively estimate the rainwater drained into both main and branch sewerage lines. It is made by preparing a rainwater drainage model. The quantitative estimation of rainwater drained into the branch sewerage lines calls for a revised Road Research Laboratory guidance by the Ministry of Construction. Supplemented with knowledge by veteran operators, the displayed image of pump operation support system is simulated for its verification. 2 refs., 3 figs.

  7. Optical and IR light curves of VV Puppis

    International Nuclear Information System (INIS)

    Szkody, P.; Bailey, J.A.; Hough, J.H.

    1983-01-01

    We present optical (0.36 to 0.6 μm) light curves with time resolutions of seconds and infrared (IR) (1.25 to 2.2 μm) light curves with time resolutions of minutes for VV Puppis during a high state. The optical light curves show a single hump with largest amplitude in the V filter, while the IR light curves show a double hump sinusoidal variation. Flickering is evident in both the optical and IR light curves, with the largest amplitude in optical B light. Through subtraction of the low state fluxes from our high state values, we obtain a flux distribution of the accretion column which peaks at 0.55 μm and becomes #betta# 2 in the IR, consistent with current cyclotron models. Comparison of the observed IR variations throughout the orbit with the expected variations due to an M4 star heated by an accretion column at an inclination of 66 0 suggests that the IR light is a combination of the secondary star plus contributions from two emitting poles. (author)

  8. Design Recovery Technology for Real-Time Systems.

    Science.gov (United States)

    1995-10-01

    RL-TR-95-208 Final Technical Report October 1995 DESIGN RECOVERY TECHNOLOGY FOR REAL TIME SYSTEMS The MITRE Corporation Lester J. Holtzblatt...92 - Jan 95 4. TTTLE AND SUBTITLE DESIGN RECOVERY TECHNOLOGY FOR REAL - TIME SYSTEMS 6. AUTHOR(S) Lester J. Holtzblatt, Richard Piazza, and Susan...behavior of real - time systems in general, our initial efforts have centered on recovering this information from one system in particular, the Modular

  9. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  10. IR spectra and structure of glasses in the BaO-WO3-P2O5 system

    International Nuclear Information System (INIS)

    Miroshnichenko, O.Ya.; Mombelli, V.V.

    1979-01-01

    Studied are IR absorption spectra and determined are the main structural characteristics of tungstophosphate glasses of the BaO-WO 3 -P 2 O 5 system in all the area of glass formation. It is shown that the main structural components of their anion network are phosphate chains consisting of PO 4 tetrahedrons and tungstate chains consisting of WO 4 tetrahedrons and of WO 6 octahedrons. These chains are connected by P-O-W bridges into three-dimentional tungstophosphate network, where the ratio of phosphate and tungstate structural units and their polymerization degree change without limits depending on the glass composition. Analysis of concentration frequency dependence and spectral band intensity permit to clarify the effect of each component on the glass structure in all the area of glass formation of the triple system

  11. Enabling MEMS technologies for communications systems

    Science.gov (United States)

    Lubecke, Victor M.; Barber, Bradley P.; Arney, Susanne

    2001-11-01

    Modern communications demands have been steadily growing not only in size, but sophistication. Phone calls over copper wires have evolved into high definition video conferencing over optical fibers, and wireless internet browsing. The technology used to meet these demands is under constant pressure to provide increased capacity, speed, and efficiency, all with reduced size and cost. Various MEMS technologies have shown great promise for meeting these challenges by extending the performance of conventional circuitry and introducing radical new systems approaches. A variety of strategic MEMS structures including various cost-effective free-space optics and high-Q RF components are described, along with related practical implementation issues. These components are rapidly becoming essential for enabling the development of progressive new communications systems technologies including all-optical networks, and low cost multi-system wireless terminals and basestations.

  12. A systematic review of patient tracking systems for use in the pediatric emergency department.

    Science.gov (United States)

    Dobson, Ian; Doan, Quynh; Hung, Geoffrey

    2013-01-01

    Patient safety is of great importance in the pediatric emergency department (PED). The combination of acutely and critically ill patients and high patient volumes creates a need for systems to support physicians in making accurate and timely diagnoses. Electronic patient tracking systems can potentially improve PED safety by reducing overcrowding and enhancing security. To enhance our understanding of current electronic tracking technologies, how they are implemented in a clinical setting, and resulting effect on patient care outcomes including patient safety. Nine databases were searched. Two independent reviewers identified articles that contained reference to patient tracking technologies in pediatrics or emergency medicine. Quantitative studies were assessed independently for methodological strength by two reviewers using an external assessment tool. Of 2292 initial articles, 22 were deemed relevant. Seventeen were qualitative, and the remaining five quantitative articles were assessed as being methodologically weak. Existing patient tracking systems in the ED included: infant monitoring/abduction prevention; barcode identification; radiofrequency identification (RFID)- or infrared (IR)-based patient tracking. Twenty articles supported the use of tracking technology to enhance patient safety or improve efficiency. One article failed to support the use of IR patient sensors due to study design flaws. Support exists for the use of barcode-, IR-, and RFID-based patient tracking systems to improve ED patient safety and efficiency. A lack of methodologically strong studies indicates a need for further evidence-based support for the implementation of patient tracking technology in a clinical or research setting. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Synthesis of oxindole from acetanilide via Ir(iii)-catalyzed C-H carbenoid functionalization.

    Science.gov (United States)

    Patel, Pitambar; Borah, Gongutri

    2016-12-22

    Herein we disclose the first report on the synthesis of oxindole derivatives from acetanilide via Ir(iii)-catalyzed intermolecular C-H functionalization with diazotized Meldrum's acid. A broad range of substituted anilides were found to react smoothly under the Ir(iii)-catalytic system to afford the corresponding N-protected oxindoles. The N-protecting groups, such as Ac, Bz or Piv, can be easily removed to furnish the oxindole. Various synthetic applications of the synthesized oxindole were also demonstrated.

  14. A Systems Definition of Educational Technology in Society

    Science.gov (United States)

    Luppicini, Rocci

    2005-01-01

    Conceptual development in the field of Educational Technology provides crucial theoretical grounding for ongoing research and practice. This essay draws from theoretical developments both within and external to the field of Educational Technology to articulate a systems definition of Educational Technology in Society. A systems definition of…

  15. Coral Reef Surveillance: Infrared-Sensitive Video Surveillance Technology as a New Tool for Diurnal and Nocturnal Long-Term Field Observations.

    Science.gov (United States)

    Dirnwoeber, Markus; Machan, Rudolf; Herler, Juergen

    2012-10-31

    Direct field observations of fine-scaled biological processes and interactions of the benthic community of corals and associated reef organisms (e.g., feeding, reproduction, mutualistic or agonistic behavior, behavioral responses to changing abiotic factors) usually involve a disturbing intervention. Modern digital camcorders (without inflexible land-or ship-based cable connection) such as the GoPro camera enable undisturbed and unmanned, stationary close-up observations. Such observations, however, are also very time-limited (~3 h) and full 24 h-recordings throughout day and night, including nocturnal observations without artificial daylight illumination, are not possible. Herein we introduce the application of modern standard video surveillance technology with the main objective of providing a tool for monitoring coral reef or other sessile and mobile organisms for periods of 24 h and longer. This system includes nocturnal close-up observations with miniature infrared (IR)-sensitive cameras and separate high-power IR-LEDs. Integrating this easy-to-set up and portable remote-sensing equipment into coral reef research is expected to significantly advance our understanding of fine-scaled biotic processes on coral reefs. Rare events and long-lasting processes can easily be recorded, in situ -experiments can be monitored live on land, and nocturnal IR-observations reveal undisturbed behavior. The options and equipment choices in IR-sensitive surveillance technology are numerous and subject to a steadily increasing technical supply and quality at decreasing prices. Accompanied by short video examples, this report introduces a radio-transmission system for simultaneous recordings and real-time monitoring of multiple cameras with synchronized timestamps, and a surface-independent underwater-recording system.

  16. Advanced Microelectronics Technologies for Future Small Satellite Systems

    Science.gov (United States)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  17. IR imaging of blood circulation of patients with vascular disease

    Science.gov (United States)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  18. Thermal IR exitance model of a plant canopy

    Science.gov (United States)

    Kimes, D. S.; Smith, J. A.; Link, L. E.

    1981-01-01

    A thermal IR exitance model of a plant canopy based on a mathematical abstraction of three horizontal layers of vegetation was developed. Canopy geometry within each layer is quantitatively described by the foliage and branch orientation distributions and number density. Given this geometric information for each layer and the driving meteorological variables, a system of energy budget equations was determined and solved for average layer temperatures. These estimated layer temperatures, together with the angular distributions of radiating elements, were used to calculate the emitted thermal IR radiation as a function of view angle above the canopy. The model was applied to a lodgepole pine (Pinus contorta) canopy over a diurnal cycle. Simulated vs measured radiometric average temperatures of the midcanopy layer corresponded with 2 C. Simulation results suggested that canopy geometry can significantly influence the effective radiant temperature recorded at varying sensor view angles.

  19. ADVANCED TECHNOLOGIES OF ELECTRONIC EDUCATIONAL SYSTEMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Shishkina

    2011-11-01

    Full Text Available Actual problems and contradictions of electronic educational systems development are described: availability of education, quality of educational services; individualization of education; exposures and advantages in using of computer technology; standardization of technologies and resources. Tendencies of their solution in the view of development of new advanced technologies of e-education are specified. The essence and advantages of using the cloud computing technologies as a new platform of distributed learning are specified. Advanced directions of cloud-based data usage in executive system of education are declared: access management, content management, asset management, communications management.

  20. Obstacle-avoiding robot with IR and PIR motion sensors

    Science.gov (United States)

    Ismail, R.; Omar, Z.; Suaibun, S.

    2016-10-01

    Obstacle avoiding robot was designed, constructed and programmed which may be potentially used for educational and research purposes. The developed robot will move in a particular direction once the infrared (IR) and the PIR passive infrared (PIR) sensors sense a signal while avoiding the obstacles in its path. The robot can also perform desired tasks in unstructured environments without continuous human guidance. The hardware was integrated in one application board as embedded system design. The software was developed using C++ and compiled by Arduino IDE 1.6.5. The main objective of this project is to provide simple guidelines to the polytechnic students and beginners who are interested in this type of research. It is hoped that this robot could benefit students who wish to carry out research on IR and PIR sensors.

  1. The first photometric analysis of the near contact binary IR Cas

    International Nuclear Information System (INIS)

    Li, Kai; Hu, S.-M.; Guo, D.-F.; Jiang, Y.-G.; Gao, D.-Y.; Chen, X.

    2014-01-01

    The first photometric analysis of IR Cas was carried out based on the new observed BVRI light curves. The symmetric light curves and nearly flat secondary minimum indicate that very precise photometric results can be determined. We found that IR Cas is a near contact binary with the primary component filling its Roche lobe. An analysis of the O – C diagram based on all available times of minimum light reveals evidence for a periodic change with a semi-amplitude of 0.0153 days and a period of 39.7 yr superimposed on a secular decrease at a rate of dp/dt = –1.28(± 0.09) × 10 –7 days yr –1 . The most reasonable explanation for the periodic change is the light time-travel effect due to a third body. The period decrease may be caused by mass transfer from the primary component to the secondary. With the decreasing period, IR Cas would eventually evolve into a contact system.

  2. Climate Prediction Center IR 4km Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  3. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2012-05-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing.

  4. IR Spectroscopy of Ethylene Glycol Solutions of Dimethylsulfoxide

    Science.gov (United States)

    Kononova, E. G.; Rodnikova, M. N.; Solonina, I. A.; Sirotkin, D. A.

    2018-07-01

    Features of ethylene glycol (EG) solutions of dimethylsulfoxide (DMSO) with low and moderate concentrations (from 2 to 50 mol % of DMSO) are studied by IR spectroscopy on a Bruker Tensor 37 FT-IR spectrometer in the wavenumber range of 400 to 4000 cm-1. The main monitored bands are the S=O stretching vibration band of DMSO (1057 cm-1) and the C-O (1086 and 1041 cm-1) and O-H (3350 cm-1) stretching vibration bands of EG. The obtained data show complex DMSO · 2EG to be present in all solutions with the studied concentrations due to formation of H-bonds between the S=O group of DMSO and the OH group of EG. In the concentration range of 6 to 25 mol % DMSO, the OH stretching vibration of EG is found to be broadened (by up to 70 cm-1), suggesting the strengthening of hydrogen bonds in the spatial network of the system due to the solvophobic effect of DMSO molecules and the formation of DMSO · 2EG. Starting from 25 mol % DMSO, narrowing of the OH stretching vibration is noted, and the bands of free DMSO appear along with the DMSO · 2EG complex, suggesting microseparation in the investigated system. At 50 mol % DMSO, the amounts of free and bound species in the system became comparable.

  5. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Directory of Open Access Journals (Sweden)

    Simone Borri

    2016-02-01

    Full Text Available The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  6. The relationship between visfatin and HOMA-IR in hypertensive patients, and the effect of antihypertensive drugs on visfatin and HOMA-IR in hypertensive patients with insulin resistance.

    Science.gov (United States)

    Lan, Jianjun; Chen, Xiaoni; Chen, Xiaoping; Wang, Si; Zhang, Xin; Wu, Kai; He, Sen; Peng, Yong; Jiang, Lingyun; Li, Longxin; Wan, Liyan

    2011-10-01

    To investigate the correlation between serum visfatin and insulin resistance (IR) in non-diabetic essential hypertensive (EH) patients with and without IR, and to evaluate the effect of antihypertensive treatment on serum visfatin and IR in these patients. A total of 81 non-diabetic EH patients, including 54 with IR and 27 without IR, were enrolled. After two weeks wash-out, patients with IR were randomly assigned to telmisartan (group T) or amlodipine (group A) for 6 months. Blood samples were taken before and after treatment for measurement of routine biochemical parameters, visfatin and insulin resistance (measured by HOMA-IR). Visfatin was independently correlated with HOMA-IR (r=0.845, P=0.000). After 6 months of treatment, both drugs lowered HOMA-IR, more significantly so in group T than group A (P=0.010). Serum visfatin levels increased in group T but decreased in group A. Serum visfatin levels were higher in non-diabetic EH patients with IR compared with those without IR. Visfatin is independently correlated with HOMA-IR. Telmisartan lowers HOMA-IR to a greater extent than amlodipine. Interestingly, serum visfatin increased with telmisartan yet decreased with amlodipine treatment. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. A novel IrNi@PdIr/C core-shell electrocatalyst with enhanced activity and durability for the hydrogen oxidation reaction in alkaline anion exchange membrane fuel cells.

    Science.gov (United States)

    Qin, Bowen; Yu, Hongmei; Jia, Jia; Jun, Chi; Gao, Xueqiang; Yao, Dewei; Sun, Xinye; Song, Wei; Yi, Baolian; Shao, Zhigang

    2018-03-08

    Herein, a novel non-platinum core-shell catalyst, namely, IrNi@PdIr/C was prepared via a galvanic replacement reaction; it exhibits enhanced hydrogen oxidation activity and excellent stability under alkaline conditions. Electrochemical experiments demonstrated that the mass and specific activities at 50 mV of IrNi@PdIr/C are 2.1 and 2.2 times that of commercial Pt/C in 0.1 M KOH at 298 K, respectively. Moreover, accelerated degradation tests have shown that the electrochemically active surface area (ECSA) of IrNi@PdIr/C reduces by only 5.1%, which is almost 4 times less than that of commercial Pt/C and the mass activity at 50 mV of IrNi@PdIr/C after 2000 potential cycles is still 1.8 times higher than that of aged Pt/C. XRD and XPS analysis suggest that the enhanced HOR activity is attributed to the weakening of the hydrogen binding to the PdIr overlayers induced by the IrNi core. The better stability to potential cycling can be associated with the PdIr shell, which inhibits oxide formation. These results suggest that IrNi@PdIr/C is a promising non-platinum anode catalyst for alkaline anion exchange membrane fuel cells.

  8. 2015 International Conference on Information Technology and Intelligent Transportation Systems

    CERN Document Server

    Jain, Lakhmi; Zhao, Xiangmo

    2017-01-01

    This volume includes the proceedings of the 2015 International Conference on Information Technology and Intelligent Transportation Systems (ITITS 2015) which was held in Xi’an on December 12-13, 2015. The conference provided a platform for all professionals and researchers from industry and academia to present and discuss recent advances in the field of Information Technology and Intelligent Transportation Systems. The presented information technologies are connected to intelligent transportation systems including wireless communication, computational technologies, floating car data/floating cellular data, sensing technologies, and video vehicle detection. The articles focusing on intelligent transport systems vary in the technologies applied, from basic management systems to more application systems including topics such as emergency vehicle notification systems, automatic road enforcement, collision avoidance systems and some cooperative systems. The conference hosted 12 invited speakers and over 200 part...

  9. Quantitative analysis of semivolatile organic compounds in selected fractions of air sample extracts by GC/MI-IR spectrometry

    International Nuclear Information System (INIS)

    Childers, J.W.; Wilson, N.K.; Barbour, R.K.

    1990-01-01

    The authors are currently investigating the capabilities of gas chromatography/matrix isolation infrared (GC/MI-IR) spectrometry for the determination of semivolatile organic compounds (SVOCs) in environmental air sample extracts. Their efforts are focused on the determination of SVOCs such as alkylbenzene positional isomers, which are difficult to separate chromatographically and to distinguish by conventional electron-impact ionization GC/mass spectrometry. They have performed a series of systematic experiments to identify sources of error in quantitative GC/MI-IR analyses. These experiments were designed to distinguish between errors due to instrument design or performance and errors that arise from some characteristic inherent to the GC/MI-IR technique, such as matrix effects. They have investigated repeatability as a function of several aspects of GC/MI IR spectrometry, including sample injection, spectral acquisition, cryogenic disk movement, and matrix deposition. The precision, linearity, dynamic range, and detection limits of a commercial GC/MI-IR system for target SVOCs were determined and compared to those obtained with the system's flame ionization detector. The use of deuterated internal standards in the quantitative GC/MI-IR analysis of selected fractions of ambient air sample extracts will be demonstrated. They will also discuss the current limitations of the technique in quantitative analyses and suggest improvements for future consideration

  10. Crystal growth and characterization of Ir-Te compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhals, Philipp; Weber, Frank; Zocco, Diego; Adelmann, Peter; Merz, Michael; Wolf, Thomas; Kuntz, Sebastian; Grube, Kai [Karlsruhe Institute of Technology, Institute for Solid State Physics, Karlsruhe (Germany)

    2016-07-01

    IrTe{sub 2} is distinguished by a structural phase transition whose origin is not understood up to the present day. We grew crystals using the self-flux method starting from the reagents iridium and tellurium and got specimen with varying amounts of IrTe{sub 2} and Ir{sub 3}Te{sub 8}, analyzed by x-ray powder diffraction. We studied the transition near T = 280 K in magnetization measurements down to T = 1.8 K probing also for superconductivity, which was reported for intercalated samples. Results indicate that the structural transition happens over an extended range in temperature and superconductivity is absent in our samples. Ir{sub 3}Te{sub 8} is not studied to such an extent as IrTe{sub 2}. In previous publications a structural phase transition is reported. We characterized the transition by performing magnetization measurements and X-ray diffraction.

  11. A comparison of commercial and custom-made electronic tracking systems to measure patient flow through an ambulatory clinic.

    Science.gov (United States)

    Vakili, Sharif; Pandit, Ravi; Singman, Eric L; Appelbaum, Jeffrey; Boland, Michael V

    2015-10-29

    Understanding how patients move through outpatient clinics is important for optimizing clinic processes. This study compares the costs, benefits, and challenges of two clinically important methods for measuring patient flow: (1) a commercial system using infrared (IR) technology that passively tracks patient movements and (2) a custom-built, low cost, networked radio frequency identification (RFID) system that requires active swiping by patients at proximity card readers. Readers for both the IR and RFID systems were installed in the General Eye Service of the Wilmer Eye Institute. Participants were given both IR and RFID tags to measure the time they spent in various clinic stations. Simultaneously, investigators recorded the times at which patients moved between rooms. These measurements were considered the standard against which the other methods were compared. One hundred twelve patients generated a total of 252 events over the course of 6 days. The proportion of events successfully recorded by the RFID system (83.7%) was significantly greater than that obtained with the IR system (75.4%, p RFID system). There was no statistical difference between the IR, RFID, and manual time measurements (p > 0.05 for all comparisons). Both RFID and IR methods are effective at providing patient flow information. The custom-made RFID system was as accurate as IR and was installed at about 10% the cost. Given its significantly lower costs, the RFID option may be an appealing option for smaller clinics with more limited budgets.

  12. Mord studies in IR region by new dispersion relation

    International Nuclear Information System (INIS)

    Murthy, V.R.; Kumar, R. Jeevan

    1994-01-01

    This is the continuation of the series reporting MORD studies to typical problem in Chemistry and Polymer Science. In our earlier papers the MORDsup1.2 studied only in visible region. In this present investigation we extended the application of the New Dispersion Relation in IR region to determine the MORD and tested to some simple systems

  13. Structural, mechanical, and electronic properties of TaB2, TaB, IrB2, and IrB: First-principle calculations

    International Nuclear Information System (INIS)

    Zhao Wenjie; Wang Yuanxu

    2009-01-01

    First-principle calculations were performed to investigate the structural, elastic, and electronic properties of TaB 2 , TaB, IrB 2 , and IrB. The calculated equilibrium structural parameters, shear modulus, and Young's modulus of TaB 2 are well consistent with the available experimental data, and TaB 2 with P6/mmm space group has stronger directional bonding between ions than WB 2 , OsB 2 , IrN 2 , and PtN 2 . For TaB 2 , the hexagonal P6/mmm structure is more stable than the orthorhombic Pmmn one, while for IrB 2 the orthorhombic Pmmn structure is the most stable one. The high shear modulus of P6/mmm phase TaB 2 is mainly due to the strong covalent π-bonding of B-hexagon in the (0001) plane. Such a B-hexagon network can strongly resist against an applied [112-bar0] (0001) shear deformation. Correlation between the hardness and the elastic constants of TaB 2 was discussed. The band structure shows that P6/mmm phase TaB 2 and Pmmn phase IrB 2 are both metallic. The calculations show that both TaB and IrB are elastically stable with the hexagonal P6 3 /mmc structure. - Elastic constant c 44 of TaB 2 is calculated to be 235 GPa. This value is exceptionally high, exceeding those of WB 2 , OsB 2 , WB 4 , OsN 2 , IrN 2 , and PtN 2 .

  14. The Advanced Linked Extended Reconnaissance & Targeting Technology Demonstration project

    Science.gov (United States)

    Edwards, Mark

    2008-04-01

    The Advanced Linked Extended Reconnaissance & Targeting (ALERT) Technology Demonstration (TD) project is addressing many operational needs of the future Canadian Army's Surveillance and Reconnaissance forces. Using the surveillance system of the Coyote reconnaissance vehicle as an experimental platform, the ALERT TD project aims to significantly enhance situational awareness by fusing multi-sensor and tactical data, developing automated processes, and integrating beyond line-of-sight sensing. The project is exploiting important advances made in computer processing capability, displays technology, digital communications, and sensor technology since the design of the original surveillance system. As the major research area within the project, concepts are discussed for displaying and fusing multi-sensor and tactical data within an Enhanced Operator Control Station (EOCS). The sensor data can originate from the Coyote's own visible-band and IR cameras, laser rangefinder, and ground-surveillance radar, as well as from beyond line-of-sight systems such as mini-UAVs and unattended ground sensors. Video-rate image processing has been developed to assist the operator to detect poorly visible targets. As a second major area of research, automatic target cueing capabilities have been added to the system. These include scene change detection, automatic target detection and aided target recognition algorithms processing both IR and visible-band images to draw the operator's attention to possible targets. The merits of incorporating scene change detection algorithms are also discussed. In the area of multi-sensor data fusion, up to Joint Defence Labs level 2 has been demonstrated. The human factors engineering aspects of the user interface in this complex environment are presented, drawing upon multiple user group sessions with military surveillance system operators. The paper concludes with Lessons Learned from the project. The ALERT system has been used in a number of C4ISR

  15. Current technological trends in development of NPP systems

    International Nuclear Information System (INIS)

    Florescu, Gheorghe; Panaitescu, Valeriu

    2010-01-01

    The recent nuclear research issues look for new technologies and continuous progress in finding different and efficient solutions for sustained and upraising energy demand. The trend of increasing energy consumption and occurring of new and large consumers, especially from Asian countries, imposes finding of new means for clean, large scale and sustained energy production. NPPs availability was continuously monitored and improved; at the same time the safety of the nuclear energy production was under surveillance. The present development of the new technologies, the discoveries of new materials and development of efficient technological processes offer the opportunities for their appropriate implementation and use in the NPP system configurations and functioning/operation. The new technologies and scientific discoveries, and also the international cooperation, offer the opportunities to mitigate the actual barriers in order to cumulate and use advanced energy production, to find new energy sources and to build improved, reliable and safe power plants. The monitoring systems, intelligent sensors and SSCs, nanotechnologies and new/intelligent materials constitute the main ways for improvement of the NPP systems configuration and processes. The paper presents: - The state of the art in the level of the currently applied technologies for nuclear power systems development; - The actual technological limits that need to be over passed for improving the NPP systems ; - The main systems that need improvement and reconfiguration for development of currently operating NPPs as well as raising the operation efficiency, availability and total safety; - The actual energy production issues; - The key arguments in sustaining the R and D new NPP systems development; - Future trends in NPP development; - The limitations in industrial processes knowledge and use. Appropriate R and D in the field of NPP systems have specific characteristics that were considered in paper completion

  16. Swedish Technology Teachers' Views on Assessing Student Understandings of Technological Systems

    Science.gov (United States)

    Schooner, Patrick; Klasander, Claes; Hallström, Jonas

    2018-01-01

    Technology education is a new school subject in comparison with other subjects within the Swedish compulsory school system. Research in technology education shows that technology teachers lack experience of and support for assessment in comparison with the long-term experiences that other teachers use in their subjects. This becomes especially…

  17. Effect of pressure on transport properties of CeIrIn5

    International Nuclear Information System (INIS)

    Takaesu, Y; Aso, N; Tamaki, Y; Hedo, M; Nakama, T; Uchima, K; Ishikawa, Y; Deguchi, K; Sato, N K

    2011-01-01

    Electrical resistivity ρ and thermoelectric power S of a heavy-fermion superconductor CeIrIn 5 have been measured at temperatures from 2.0 K to 300 K under hydrostatic pressures up to 2.2 GPa. The thermoelectric power S exhibits a large positive value up to 90 μV/K, which is characteristic of heavy-fermion systems. S also shows a sharp maximum in its temperature dependence and its maximum temperature T s,max increases with pressure, while its maximum value is constant independent of pressure. These experimental results strongly indicate that the Kondo temperature of CeIrIn 5 increases by applying the pressure.

  18. Diagnostic technology and an expert system for photovoltaic systems using the learning method

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Yasuhiro; Kishi, Hitoshi; Hagihara, Ryuzou; Tanaka, Toshiya; Kozuma, Shinichi; Ishida, Takeo; Waki, Masahiro; Tanaka, Makoto; Kiyama, Seiichi [SANYO Electric Co. Ltd., New Materials Research Center, Moriguchi City, Osaka (Japan)

    2003-02-01

    Diagnostic technology for photovoltaic (PV) systems was developed, using the learning method to take each site's conditions into account. This technology employs diagnostic criteria databases to analyze data acquired from the PV systems. These criteria are updated monthly for each site using analyzed data. To check the shadows on the PV modules and pyranometer, the sophisticated verification method was also applied to this technology. After the diagnosis, a basket method provides maintenance advice for the PV systems. Based on the results of precise diagnoses, this expert system offers quick and proper maintenance advice within a few minutes. This technology is highly useful, because it greatly simplifies the servicing and maintenance of PV systems. (Author)

  19. Transfer of infrared thermography predictive maintenance technologies to Soviet-designed nuclear power plants: experience at Chernobyl

    Science.gov (United States)

    Pugh, Ray; Huff, Roy

    1999-03-01

    The importance of infrared (IR) technology and analysis in today's world of predictive maintenance and reliability- centered maintenance cannot be understated. The use of infrared is especially important in facilities that are required to maintain a high degree of equipment reliability because of plant or public safety concerns. As with all maintenance tools, particularly those used in predictive maintenance approaches, training plays a key role in their effectiveness and the benefit gained from their use. This paper details an effort to transfer IR technology to Soviet- designed nuclear power plants in Russia, Ukraine, and Lithuania. Delivery of this technology and post-delivery training activities have been completed recently at the Chornobyl nuclear power plant in Ukraine. Many interesting challenges were encountered during this effort. Hardware procurement and delivery of IR technology to a sensitive country were complicated by United States regulations. Freight and shipping infrastructure and host-country customs policies complicated hardware transport. Training activities were complicated by special hardware, software and training material translation needs, limited communication opportunities, and site logistical concerns. These challenges and others encountered while supplying the Chornobyl plant with state-of-the-art IR technology are described in this paper.

  20. NASA Astrophysics Funds Strategic Technology Development

    Science.gov (United States)

    Seery, Bernard D.; Ganel, Opher; Pham, Bruce

    2016-01-01

    The COR and PCOS Program Offices (POs) reside at the NASA Goddard Space Flight Center (GSFC), serving as the NASA Astrophysics Division's implementation arm for matters relating to the two programs. One aspect of the PO's activities is managing the COR and PCOS Strategic Astrophysics Technology (SAT) program, helping mature technologies to enable and enhance future astrophysics missions. For example, the SAT program is expected to fund key technology developments needed to close gaps identified by Science and Technology Definition Teams (STDTs) planned to study several large mission concept studies in preparation for the 2020 Decadal Survey.The POs are guided by the National Research Council's "New Worlds, New Horizons in Astronomy and Astrophysics" Decadal Survey report, NASA's Astrophysics Implementation Plan, and the visionary Astrophysics Roadmap, "Enduring Quests, Daring Visions." Strategic goals include dark energy, gravitational waves, and X-ray observatories. Future missions pursuing these goals include, e.g., US participation in ESA's Euclid, Athena, and L3 missions; Inflation probe; and a large UV/Optical/IR (LUVOIR) telescope.To date, 65 COR and 71 PCOS SAT proposals have been received, of which 15 COR and 22 PCOS projects were funded. Notable successes include maturation of a new far-IR detector, later adopted by the SOFIA HAWC instrument; maturation of the H4RG near-IR detector, adopted by WFIRST; development of an antenna-coupled transition-edge superconducting bolometer, a technology deployed by BICEP2/BICEP3/Keck to measure polarization in the CMB signal; advanced UV reflective coatings implemented on the optics of GOLD and ICON, two heliophysics Explorers; and finally, the REXIS instrument on OSIRIS-REx is incorporating CCDs with directly deposited optical blocking filters developed by another SAT-funded project.We discuss our technology development process, with community input and strategic prioritization informing calls for SAT proposals and

  1. Control technology for nuclear power system of next generation

    International Nuclear Information System (INIS)

    1995-01-01

    This report is the summary of the results obtained by the investigation activities for two years carried out by the expert committee on investigation of control technology for nuclear power system of next generation. The course of investigation is outlined, and as the results, as advanced control technologies, adaptive control. H sub (infinite) control, fuzzy control and the application of autonomous distributed system and genetic algorithm to control; as operation support technology, the operation and monitoring system for nuclear power plants and safety support system; as interface technology which is the basic technology of them, virtual reality, multimedia and so on; further, various problems due to human factors, computer technology, artificial intelligence and others were taken up, and the grasp of the present status and the future subjects was carried out, including the information in international conferences. The items of the investigation are roughly divided into measurement and control technologies, interface technology and operation support, human factors, computer technology and artificial intelligence, and the trend in foreign countries, and the results of investigation for respective items are reported. (K.I.)

  2. Future Automotive Systems Technology Simulator (FASTSim)

    Energy Technology Data Exchange (ETDEWEB)

    2018-04-11

    An advanced vehicle powertrain systems analysis tool, the Future Automotive Systems Technology Simulator (FASTSim) provides a simple way to compare powertrains and estimate the impact of technology improvements on light-, medium- and heavy-duty vehicle efficiency, performance, cost, and battery life. Created by the National Renewable Energy Laboratory, FASTSim accommodates a range of vehicle types - including conventional vehicles, electric-drive vehicles, and fuel cell vehicles - and is available for free download in Microsoft Excel and Python formats.

  3. Teaching Embedded System Concepts for Technological Literacy

    Science.gov (United States)

    Winzker, M.; Schwandt, A.

    2011-01-01

    A basic understanding of technology is recognized as important knowledge even for students not connected with engineering and computer science. This paper shows that embedded system concepts can be taught in a technological literacy course. An embedded system teaching block that has been used in an electronics module for non-engineers is…

  4. Infrared (IR) photon-sensitive spectromicroscopy in a cryogenic environment

    Science.gov (United States)

    Pereverzev, Sergey

    2016-06-14

    A system designed to suppress thermal radiation background and to allow IR single-photon sensitive spectromicroscopy of small samples by using both absorption, reflection, and emission/luminescence measurements. The system in one embodiment includes: a light source; a plurality of cold mirrors configured to direct light along a beam path; a cold or warm sample holder in the beam path; windows of sample holder (or whole sample holder) are transparent in a spectral region of interest, so they do not emit thermal radiation in the same spectral region of interest; a cold monochromator or other cold spectral device configured to direct a selected fraction of light onto a cold detector; a system of cold apertures and shields positioned along the beam path to prevent unwanted thermal radiation from arriving at the cold monochromator and/or the detector; a plurality of optical, IR and microwave filters positioned along the beam path and configured to adjust a spectral composition of light incident upon the sample under investigation and/or on the detector; a refrigerator configured to maintain the detector at a temperature below 1.0K; and an enclosure configured to: thermally insulate the light source, the plurality of mirrors, the sample holder, the cold monochromator and the refrigerator.

  5. The effect of test dose and first IR stimulation temperature on post-IR IRSL measurements of rock slices

    DEFF Research Database (Denmark)

    Liu, Jinfeng; Murray, Andrew; Sohbati, Reza

    2016-01-01

    lies close to the laboratory saturation levels only for higher first IR stimulation temperatures e.g. 200°C or 250°C. Our data confirm earlier suggestions based on sand-grain measurements that, for older sam-ples, accurate measurements close to saturation require that a higher first IR temperature...

  6. Design, development and implementation of the IR signaling techniques for monitoring ambient and body temperature

    International Nuclear Information System (INIS)

    Baqai, A.

    2014-01-01

    Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks). This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red) communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes), TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags. (author)

  7. Design, development and implementation of the IR signaling techniques for monitoring ambient and body temperature

    Energy Technology Data Exchange (ETDEWEB)

    Baqai, A. [Mehran Univ. of Engineering and Technology, Jamshoro (Pakistan). Dept. of Information and Communication Technology

    2014-07-15

    Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks). This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red) communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes), TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags. (author)

  8. Optoelectronics technologies for Virtual Reality systems

    Science.gov (United States)

    Piszczek, Marek; Maciejewski, Marcin; Pomianek, Mateusz; Szustakowski, Mieczysław

    2017-08-01

    Solutions in the field of virtual reality are very strongly associated with optoelectronic technologies. This applies to both process design and operation of VR applications. Technologies such as 360 cameras and 3D scanners significantly improve the design work. What is more, HMD displays with high field of view or optoelectronic Motion Capture systems and 3D cameras guarantee an extraordinary experience in immersive VR applications. This article reviews selected technologies from the perspective of their use in a broadly defined process of creating and implementing solutions for virtual reality. There is also the ability to create, modify and adapt new approaches that show team own work (SteamVR tracker). Most of the introduced examples are effectively used by authors to create different VR applications. The use of optoelectronic technology in virtual reality is presented in terms of design and operation of the system as well as referring to specific applications. Designers and users of VR systems should take a close look on new optoelectronics solutions, as they can significantly contribute to increased work efficiency and offer completely new opportunities for virtual world reception.

  9. Mid-IR Observations of Mira Circumstellar Environment

    OpenAIRE

    Marengo, Massimo; Karovska, Margarita; Fazio, Giovanni G.; Hora, Joseph L.; Hoffmann, William F.; Dayal, Aditya; Deutsch, Lynne K.

    2001-01-01

    This paper presents results from high-angular resolution mid-IR imaging of the Mira AB circumbinary environment using the MIRAC3 camera at the NASA Infrared Telescope Facility (IRTF). We resolved the dusty circumstellar envelope at 9.8, 11.7 and 18 micron around Mira A (o Ceti), and measured the size of the extended emission. Strong deviations from spherical symmetry are detected in the images of Mira AB system, including possible dust clumps in the direction of the companion (Mira B). These ...

  10. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  11. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix

    International Nuclear Information System (INIS)

    Kuerbanjiang, Balati; Herr, Ulrich; Wiedwald, Ulf; Haering, Felix; Ziemann, Paul; Biskupek, Johannes; Kaiser, Ute

    2013-01-01

    The magnetic properties of Ni nanoparticles (Ni-NPs) embedded in an antiferromagnetic IrMn matrix were investigated. The Ni-NPs of 8.4 nm mean diameter were synthesized by inert gas aggregation. In a second processing step, the Ni-NPs were in situ embedded in IrMn films or SiO x films under ultrahigh vacuum (UHV) conditions. Findings showed that Ni-NPs embedded in IrMn have an exchange bias field H EB = 821 Oe at 10 K, and 50 Oe at 300 K. The extracted value of the exchange energy density is 0.06 mJ m −2 at 10 K, which is in good accordance with the results from multilayered thin film systems. The Ni-NPs embedded in SiO x did not show exchange bias. As expected for this particle size, they are superparamagnetic at T = 300 K. A direct comparison of the Ni-NPs embedded in IrMn or SiO x reveals an increase of the blocking temperature from 210 K to around 400 K. The coercivity of the Ni-NPs exchange coupled to the IrMn matrix at 10 K is 8 times larger than the value for Ni-NPs embedded in SiO x . We studied time-dependent remanent magnetization at different temperatures. The relaxation behavior is described by a magnetic viscosity model which reflects a rather flat distribution of energy barriers. Furthermore, we investigated the effects of different field cooling processes on the magnetic properties of the embedded Ni-NPs. Exchange bias values fit to model calculations which correlate the contribution of the antiferromagnetic IrMn matrix to its grain size. (paper)

  12. Technology for Space Station Evolution. Volume 3: EVA/Manned Systems/Fluid Management System

    Science.gov (United States)

    1990-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on technology for space station evolution 16-19 Jan. 1990 in Dallas, Texas. The purpose of this workshop was to collect and clarify Space Station Freedom technology requirements for evolution and to describe technologies that can potentially fill those requirements. These proceedings are organized into an Executive Summary and Overview and five volumes containing the Technology Discipline Presentations. Volume 3 consists of the technology discipline sections for Extravehicular Activity/Manned Systems and the Fluid Management System. For each technology discipline, there is a Level 3 subsystem description, along with the papers.

  13. Review of Current Nuclear Vacuum System Technologies

    International Nuclear Information System (INIS)

    Carroll, M.; McCracken, J.; Shope, T.

    2003-01-01

    Nearly all industrial operations generate unwanted dust, particulate matter, and/or liquid wastes. Waste dust and particulates can be readily tracked to other work locations, and airborne particulates can be spread through ventilation systems to all locations within a building, and even vented outside the building - a serious concern for processes involving hazardous, radioactive, or nuclear materials. Several varieties of vacuum systems have been proposed and/or are commercially available for clean up of both solid and liquid hazardous and nuclear materials. A review of current technologies highlights both the advantages and disadvantages of the various systems, and demonstrates the need for a system designed to address issues specific to hazardous and nuclear material cleanup. A review of previous and current hazardous/nuclear material cleanup technologies is presented. From simple conventional vacuums modified for use in industrial operations, to systems specifically engineered for such purposes, the advantages and disadvantages are examined in light of the following criteria: minimal worker exposure; minimal secondary waste generation;reduced equipment maintenance and consumable parts; simplicity of design, yet fully compatible with all waste types; and ease of use. The work effort reviews past, existing and proposed technologies in light of such considerations. Accomplishments of selected systems are presented, including identified areas where technological improvements could be suggested

  14. MGIMO Educational Standards: Goal and Contents of Professional Language Training of IR Economics Students

    Directory of Open Access Journals (Sweden)

    Alla A. Kizima

    2015-01-01

    Full Text Available The article gives a methodological analysis of MGIMO-University own education standards and programmes. The relevance of the article is explained by the necessity to define the goals and contents of professional language training of IR economics students at MGIMO-University after a transfer to own education standards. The researcher used competence-based and cultural studies approaches with reference to the didactic principles of accessibility, systematic, consistency, necessity and sufficiency. The author used a set of methods including the method of theoretical analysis, the method of synthesis and systematization, summative method. The article addresses the difference in the training of IR economists and economists in other spheres of economics, underlines the importance of professional language training of IR economics students, analyses the specifics of professional language training of IR economists from the standpoint of competence-based approach by comparing the competences presented in the Federal State Education Standards of Higher Education and MGIMO own education standards. The author gives a definition of goal and contents of professional language training of IR economics students as well as didactic principles of contents choice that define the effectiveness of training. In conclusion the author points out that the contents of professional language training of IR economics students based on MGIMO own education standards are approached as the system of professional knowledge, skills and competence leading to successful intercultural communication.

  15. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    Science.gov (United States)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of

  16. IR fixed points in SU(3 gauge theories

    Directory of Open Access Journals (Sweden)

    K.-I. Ishikawa

    2015-09-01

    Full Text Available We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the SU(3 gauge theories with Nf fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cutoff, which we cannot remove in the conformal field theories in sharp contrast to the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for Nf=16,12,8 and Nf=7 and indeed identify the location of the IR fixed points in all cases.

  17. Battery Energy Storage Technology for power systems-An overview

    DEFF Research Database (Denmark)

    Chandrashekhara, Divya K; Østergaard, Jacob

    2009-01-01

    the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation. Further, a discussion on the role of battery storage systems of electric hybrid vehicles in power system storage technologies had been made. Finally, the paper...... suggests a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications....

  18. Correlation Between Information Technology And Management Information Systems Quality

    Directory of Open Access Journals (Sweden)

    Annisa Fitri Anggraeni

    2015-08-01

    Full Text Available The aim of this research is to find out the correlation between Information Technology and Management Information System Quality. This research applies literature review from various theories and previously conducted research where controversies between Information Technology and Management Information Systems. The result of this research shows that Information Technology is a part of Management Information System and supports the performance of Management Information Systems.

  19. Dust Effects on Nucleation Kinetics and Nanoparticle Product Size Distributions: Illustrative Case Study of a Prototype Ir(0)n Transition-Metal Nanoparticle Formation System.

    Science.gov (United States)

    Özkar, Saim; Finke, Richard G

    2017-07-05

    The question is addressed if dust is kinetically important in the nucleation and growth of Ir(0) n nanoparticles formed from [Bu 4 N] 5 Na 3 (1,5-COD)Ir I ·P 2 W 15 Nb 3 O 62 (hereafter [(COD)Ir·POM] 8- ), reduced by H 2 in propylene carbonate solvent. Following a concise review of the (often-neglected) literature addressing dust in nucleation phenomena dating back to the late 1800s, the nucleation and growth kinetics of the [(COD)Ir·POM] 8- precatalyst system are examined for the effects of 0.2 μm microfiltration of the solvent and precatalyst solution, of rinsing the glassware with that microfiltered solvent, of silanizing the glass reaction vessel, for the addition of nucleation apparent rate "constant" k 1obs(bimol) is shown to be slowed by a factor of ∼5 to ∼7.6, depending on the precise experiment and its conditions, just by the filtration of the precatalyst solution using a 0.20 μm filter and rinsing the glassware surface with 0.20 μm filtered propylene carbonate solvent; (ii) that simply employing a 0.20 μm filtration step narrows the size distribution of the resulting Ir(0) n nanoparticles by a factor of 2.4 from ±19 to ±8%, a remarkable result; (iii) that the narrower size distribution can be accounted for by the slowed nucleation rate constant, k 1obs(bimol) , and by the unchanged autocatalytic growth rate constant, k 2obs(bimol) , that is, by the increased ratio of k 2obs(bimol) /k 1obs(bimol) that further separates nucleation from growth in time for filtered vs unfiltered solutions; and (iv) that five lines of evidence indicate that the filterable component of the solution, which has nucleation rate-enhancing and size-dispersion broadening effects, is dust.

  20. Power system technologies for the manned Mars mission

    International Nuclear Information System (INIS)

    Bents, D.; Patterson, M.J.; Berkopec, F.; Myers, I.; Presler, A.

    1986-01-01

    The high impulse of electric propulsion makes it an attractive option for manned interplanetary missions such as a manned mission to Mars. This option is, however, dependent on the availability of high energy sources for propulsive power in addition to that required for the manned interplanetary transit vehicle. Two power system technologies are presented: nuclear and solar. The ion thruster technology for the interplanetary transit vehicle is described for a typical mission. The power management and distribution system components required for such a mission must be further developed beyond today's technology status. High voltage-high current technology advancements must be achieved. These advancements are described. In addition, large amounts of waste heat must be rejected to the space environment by the thermal management system. Advanced concepts such as the liquid droplet radiator are discussed as possible candidates for the manned Mars mission. These thermal management technologies have great potential for significant weight reductions over the more conventional systems

  1. Active coatings technologies for tailorable military coating systems

    Science.gov (United States)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  2. Field bus technology in accelerator control systems

    International Nuclear Information System (INIS)

    Tang Shuming

    1999-01-01

    Since eighties to now, the computer technology, network communication and ULSI technology have been developing rapidly. The level of control for industries and scientific experiments has been upgraded accordingly, so as to meet the increasing requirements for automation. The control systems become more complicated; the devices in control systems become more and more intelligent. However the cost of DCS (Distributed Control System) is quite expensive and the period of system integration is very long. More than ten measurement results for two methods defined in the world, in order to get inter operability of intelligent devices and reduce the costs. The author presents the development trend of fieldbuses briefly and describes the main performances of CAN, LONWORKS, WOLDFIP and PROFIBUS which are mainly used in the world today. The author proposes that the field bus technology will be introduced into the accelerator control systems in the country

  3. Identification of Common Cause Initiating Events Using the NEA IRS Database. Rev 0

    International Nuclear Information System (INIS)

    Kulig, Maciej; Tomic, Bojan; Nyman, R alph

    2007-02-01

    The study presented in this report is a continuation of work conducted for SKI in 1998 on the identification of Common Cause Initiators (CCIs) based on operational events documented in the NEA Incident Reporting System (IRS). Based on the new operational experience accumulated in IRS in the period 1995-2006, the project focused on the identification of new CCI events. An attempt was also made to compare the observations made in the earlier study with the results of the current work. The earlier study and the current project cover the events reported in the IRS database with the incident date in the period from 01.01.1980 to 15.11.2006. The review of the NEA IRS database conducted within this project generated a sample of events that provides insights regarding the Common Cause Initiators (CCIs). This list includes certain number of 'real' CCIs but also potential CCIs and other events that provide insights on potential dependency mechanisms. Relevant characteristics of the events were analysed in the context of CCIs. This evaluation was intended to investigate the importance of the CCI issue and also to provide technical insights that could help in the modelling the CCIs in PSAs. The analysis of operational events provided useful engineering insights regarding the potential dependencies that may originate CCIs. Some indications were also obtained on the plant SSCs/areas that are susceptible to common cause failures. Direct interrelations between the accident mitigation systems through common support systems, which can originate a CCI, represent a dominant dependency mechanism involved in the CCI events. The most important contributors of this type are electrical power supply systems and I-and-C systems. Area-related events (fire, flood, water spray), external hazards (lightning, high wind or cold weather) and transients (water hammer, electrical transients both internal and external) have also been found to be important sources of dependency that may originate CCIs

  4. Identification of Common Cause Initiating Events Using the NEA IRS Database. Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Kulig, Maciej; Tomic, Bojan (Enconet Consulting, Vienna (Austria)); Nyman, Ralph (Swedish Nuclear Power Inspectorate, Stockholm (Sweden))

    2007-02-15

    The study presented in this report is a continuation of work conducted for SKI in 1998 on the identification of Common Cause Initiators (CCIs) based on operational events documented in the NEA Incident Reporting System (IRS). Based on the new operational experience accumulated in IRS in the period 1995-2006, the project focused on the identification of new CCI events. An attempt was also made to compare the observations made in the earlier study with the results of the current work. The earlier study and the current project cover the events reported in the IRS database with the incident date in the period from 01.01.1980 to 15.11.2006. The review of the NEA IRS database conducted within this project generated a sample of events that provides insights regarding the Common Cause Initiators (CCIs). This list includes certain number of 'real' CCIs but also potential CCIs and other events that provide insights on potential dependency mechanisms. Relevant characteristics of the events were analysed in the context of CCIs. This evaluation was intended to investigate the importance of the CCI issue and also to provide technical insights that could help in the modelling the CCIs in PSAs. The analysis of operational events provided useful engineering insights regarding the potential dependencies that may originate CCIs. Some indications were also obtained on the plant SSCs/areas that are susceptible to common cause failures. Direct interrelations between the accident mitigation systems through common support systems, which can originate a CCI, represent a dominant dependency mechanism involved in the CCI events. The most important contributors of this type are electrical power supply systems and I-and-C systems. Area-related events (fire, flood, water spray), external hazards (lightning, high wind or cold weather) and transients (water hammer, electrical transients both internal and external) have also been found to be important sources of dependency that may

  5. An Investigation of the Dose Distribution from LDR Ir-192 Wires in the Triangular Implants of the Paris System using Polymer Gel Dosimetry

    Directory of Open Access Journals (Sweden)

    Azizollah Rahimi

    2010-12-01

    Full Text Available Introduction: Polymer gels are modern dosimeters providing three dimensional dose distributions. These dosimeters can be used in brachytherapy in which the tumor dimension is relatively small and the dose gradient is high. In this study, the ability of the MAGICA polymer gel was investigated for assessing the absolute dose values as well as the dose distribution of low dose rate (LDR Ir-192 wires in interstitial brachytherapy based in triangular implants of the Paris system. Material and Methods: A suitable phantom was made from Perspex. Glass tubes were used as the external tubes for holding the Ir-192 wires in the phantom. The MAGICA polymer gel was made and placed in the phantom. The phantom and the calibration tubes were irradiated using LDR Ir-192 wires and a Co-60 teletherapy unit respectively. They were subsequently imaged using an MRI scanner. The R2 (=1/T2 maps were extracted from several sequential T2-weighted MRI images. The dose values resulting from the polymer gel measurements at the reference points were compared with those from the common calculation method at the same points. In addition, the isodose curves resulting from gel dosimetry were compared with those from a brachytherapy treatment planning system (Flexiplan. Results: The average of the dose values measured with the gel at the reference points was 62.75% higher than those calculated at the same points. Investigating the isodose curves revealed that the maximum distance to agreement (DTAmax between the isodoses resulting from the gel and those obtained from the treatment planning system was less than 3 mm at different dose levels. Discussion and Conclusion: Although the MAGICA gel indicates a higher absolute dose value than those calculated commonly, it can give the relative dose values accurately. Therefore, it can be recommended to be used for the assessment of dose distributions for the treatment of tissues as well as quality control of the treatment planning systems.

  6. Improvenments in environmental trace analysis by GC-IR and LC-IR.

    NARCIS (Netherlands)

    Visser, T.; Vredenbregt, M.J.; Jong, A.P.J.M.; Somsen, G.W.; Hankemeier, T.; Velthorst, N.H.; Gooijer, C.; Brinkman, U.A.T.

    1997-01-01

    Research has been carried out to enlarge the potential of infrared (IR) spectrometry as a detector in gas and liquid chromatography (GC and LC). The study has been directed to applications in environmental analysis. Examples of recently obtained results are presented. The analyte detectability of

  7. New Technologies for Insect-Resistant and Herbicide-Tolerant Plants.

    Science.gov (United States)

    Lombardo, Luca; Coppola, Gerardo; Zelasco, Samanta

    2016-01-01

    The advent of modern molecular biology and recombinant DNA technology has resulted in a dramatic increase in the number of insect-resistant (IR) and herbicide-tolerant (HT) plant varieties, with great economic benefits for farmers. Nevertheless, the high selection pressure generated by control strategies for weed and insect populations has led to the evolution of herbicide and pesticide resistance. In the short term, the development of new techniques or the improvement of existing ones will provide further instruments to counter the appearance of resistant weeds and insects and to reduce the use of agrochemicals. In this review, we examine some of the most promising new technologies for developing IR and HT plants, such as genome editing and antisense technologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Water Treatment Technology - Distribution Systems.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

  9. Ligand binding affinity at the insulin receptor isoform A (IR-A and subsequent IR-A tyrosine phosphorylation kinetics are important determinants of mitogenic biological outcomes.

    Directory of Open Access Journals (Sweden)

    Harinda eRajapaksha

    2015-07-01

    Full Text Available The insulin receptor (IR is a tyrosine kinase receptor that can mediate both metabolic and mitogenic biological actions. The IR isoform-A (IR-A arises from alternative splicing of exon 11 and has different ligand binding and signalling properties compared to the IR isoform-B. The IR-A not only binds insulin but also insulin-like growth factor-II (IGF-II with high affinity. IGF-II acting through the IR-A promotes cancer cell proliferation, survival and migration by activating some unique signalling molecules compared to those activated by insulin. This observation led us to investigate whether the different IR-A signalling outcomes in response to IGF-II and insulin could be attributed to phosphorylation of a different subset of IR-A tyrosine residues or to the phosphorylation kinetics. We correlated IR-A phosphorylation to activation of molecules involved in mitogenic and metabolic signalling (MAPK and Akt and receptor internalisation rates (related to mitogenic signalling. We also extended this study to incorporate two ligands that are known to promote predominantly mitogenic ([His4, Tyr15, Thr49, Ile51] IGF-I, qIGF-I or metabolic (S597 peptide biological actions, to see if common mechanisms can be used to define mitogenic or metabolic signalling through the IR-A. The 3-fold lower mitogenic action of IGF-II compared to insulin was associated with a decreased potency in activation of Y960, Y1146, Y1150, Y1151, Y1316 and Y1322, in MAPK phosphorylation and in IR-A internalization. With the poorly mitogenic S597 peptide it was a decreased rate of tyrosine phosphorylation rather than potency that was associated with a low mitogenic potential. We conclude that both decreased affinity of IR-A binding and the kinetics of IR-A phosphorylation can independently lead to a lower mitogenic activity. None of the studied parameters could account for the lower metabolic activity of qIGF-I.

  10. Measurement of the Ir-191,193(n,2n)Ir-190,192 Reaction Cross Section Between 9.0 and 16.5 MeV

    Science.gov (United States)

    Wildenhain, Elizabeth; Finch, Sean; Tornow, Werner; Krishichayan, F.

    2017-09-01

    Iridium is one of the elements prioritized by Nonproliferation and Homeland Security agencies. In addition, Ir-192 is being used in various medical treatments. Improved data and corresponding evaluations of neutron-induced reactions on the iridium isotopes are required to meet the demands of several applications of societal interest. This study measured the cross section of the Ir-191,193(n, 2n)Ir-190,192 reactions at energies from 9.0 to 16.5 MeV using the activation technique. Natural Ir samples [Ir-191 37.3%, Ir-193 62.7%] were sandwiched between Au-197 monitor foils and irradiated with monoenergetic neutron beams at the tandem facility of the Triangle Universities Nuclear Laboratory (TUNL). Gamma rays from the irradiated samples were counted in TUNL's low background facility using high-efficient HPGe detectors. Measured cross-section data are compared to previous data and to predictions from nuclear data libraries (e.g. ENDF). Research at TUNL funded by the NSF.

  11. Ilgalaikių bedarbių karjeros projektavimo socialiniai ir psichologiniai veiksniai

    OpenAIRE

    Noreikienė, Ligita

    2009-01-01

    Darbas yra viena iš pagrindinių žmogaus vertybių. Jis suteikia kiekvienam saviraiškos galimybę, didina saugumo jausmą ir padeda kurti materialinę gerovę. Bedarbystė – rimta socialinė ir psichologinė darbo neturinčio žmogaus problema. Nepakankamos investicijos į pramonės, paslaugų, transporto ir statybos sektorius sukuria perteklinę darbo jėgą ir didina nedarbą. Padidėjus bendram nedarbui, visada išauga ilgalaikė bedarbystė. Ilgalaikio nedarbo metu prarandama turėta kvalifikacija ir gebėjimai...

  12. Innovations in IR projector arrays

    Science.gov (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.

    2000-07-01

    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  13. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenlong [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China); Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Liu, Yen-Yu [Department of chemical and materials engineering, Tunghai University, Taichung 407, Taiwan (China); Do, Jing-Shan, E-mail: jsdo@ncut.edu.tw [Department of chemical and materials engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan (China); Li, Jing, E-mail: lijing@cdu.edu.cn [College of pharmacy and biological engineering, Chengdu University, Chengdu, 610106 (China)

    2016-12-30

    Highlights: • Water vapors seem to hugely improve the electrochemical activity of the Pt and Pt-Ir porous ceramic electrodes. • The gas sensors based on the Pt and Pt-Ir alloy electrodes possess good sensing performances. • The reaction path of the ammonia on platinum has been discussed. - Abstract: Room temperature NH{sub 3} gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH{sub 3} gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm{sup −1} cm{sup −2} .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  14. Energy technology sources, systems and frontier conversion

    CERN Document Server

    Ohta, Tokio

    1994-01-01

    This book provides a concise and technical overview of energy technology: the sources of energy, energy systems and frontier conversion. As well as serving as a basic reference book for professional scientists and students of energy, it is intended for scientists and policy makers in other disciplines (including practising engineers, biologists, physicists, economists and managers in energy related industries) who need an up-to-date and authoritative guide to the field of energy technology.Energy systems and their elemental technologies are introduced and evaluated from the view point

  15. Near-IR imaging of cracks in teeth

    Science.gov (United States)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  16. TechTracS: NASA's commercial technology management system

    Science.gov (United States)

    Barquinero, Kevin; Cannon, Douglas

    1996-03-01

    The Commercial Technology Mission is a primary NASA mission, comparable in importance to those in aeronautics and space. This paper will discuss TechTracS, NASA Commercial Technology Management System that has been put into place in FY 1995 to implement this mission. This system is designed to identify and capture the NASA technologies which have commercial potential into an off-the-shelf database application, and then track the technologies' progress in realizing the commercial potential through collaborations with industry. The management system consists of four stages. The first is to develop an inventory database of the agency's entire technology portfolio and assess it for relevance to the commercial marketplace. Those technologies that are identified as having commercial potential will then be actively marketed to appropriate industries—this is the second stage. The third stage is when a NASA-industry partnership is entered into for the purposes of commercializing the technology. The final stage is to track the technology's success or failure in the marketplace. The collection of this information in TechTracS enables metrics evaluation and can accelerate the establishment on direct contacts between and NASA technologist and an industry technologist. This connection is the beginning of the technology commercialization process.

  17. Data in support of FSH induction of IRS-2 in human granulosa cells: Mapping the transcription factor binding sites in human IRS-2 promoter

    Directory of Open Access Journals (Sweden)

    Surleen Kaur

    2016-03-01

    Full Text Available Insulin receptor substrate-2 (IRS-2 plays critical role in the regulation of various metabolic processes by insulin and IGF-1. The defects in its expression and/or function are linked to diseases like polycystic ovary syndrome (PCOS, insulin resistance and cancer. To predict the transcription factors (TFs responsible for the regulation of human IRS-2 gene expression, the transcription factor binding sites (TFBS and the corresponding TFs were investigated by analysis of IRS-2 promoter sequence using MatInspector Genomatix software (Cartharius et al., 2005 [1]. The ibid data is part of author׳s publication (Anjali et al., 2015 [2] that explains Follicle stimulating hormone (FSH mediated IRS-2 promoter activation in human granulosa cells and its importance in the pathophysiology of PCOS. Further analysis was carried out for binary interactions of TF regulatory genes in IRS-2 network using Cytoscape software tool and R-code. In this manuscript, we describe the methodology used for the identification of TFBSs in human IRS-2 promoter region and provide details on experimental procedures, analysis method, validation of data and also the raw files. The purpose of this article is to provide the data on all TFBSs in the promoter region of human IRS-2 gene as it has the potential for prediction of the regulation of IRS-2 gene in normal or diseased cells from patients with metabolic disorders and cancer. Keywords: IRS-2, TFBS, FSH, SP1, ChIP

  18. Accelerating technological change. Towards a more sustainable transport system

    NARCIS (Netherlands)

    van der Vooren, A.

    2014-01-01

    This thesis provides insights into the mechanisms of technological change by capturing the complexity that characterises the current technological transition of the transport system into existing evolutionary models of technological change. The transition towards a more sustainable transport system

  19. An N+3 Technology Level Reference Propulsion System

    Science.gov (United States)

    Jones, Scott M.; Haller, William J.; Tong, Michael To-Hing

    2017-01-01

    An N+3 technology level engine, suitable as a propulsion system for an advanced single-aisle transport, was developed as a reference cycle for use in technology assessment and decision-making efforts. This reference engine serves three main purposes: it provides thermodynamic quantities at each major engine station, it provides overall propulsion system performance data for vehicle designers to use in their analyses, and it can be used for comparison against other proposed N+3 technology-level propulsion systems on an equal basis. This reference cycle is meant to represent the expected capability of gas turbine engines in the N+3 timeframe given reasonable extrapolations of technology improvements and the ability to take full advantage of those improvements.

  20. 3rd International Conference on Intelligent Technologies and Engineering Systems

    CERN Document Server

    2016-01-01

    This book includes the original, peer reviewed research from the 3rd International Conference on Intelligent Technologies and Engineering Systems (ICITES2014), held in December, 2014 at Cheng Shiu University in Kaohsiung, Taiwan. Topics covered include: Automation and robotics, fiber optics and laser technologies, network and communication systems, micro and nano technologies, and solar and power systems. This book also Explores emerging technologies and their application in a broad range of engineering disciplines Examines fiber optics and laser technologies Covers biomedical, electrical, industrial, and mechanical systems Discusses multimedia systems and applications, computer vision and image & video signal processing.

  1. Making Technology Ready: Integrated Systems Health Management

    Science.gov (United States)

    Malin, Jane T.; Oliver, Patrick J.

    2007-01-01

    This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.

  2. Coral Reef Surveillance: Infrared-Sensitive Video Surveillance Technology as a New Tool for Diurnal and Nocturnal Long-Term Field Observations

    Directory of Open Access Journals (Sweden)

    Juergen Herler

    2012-10-01

    Full Text Available Direct field observations of fine-scaled biological processes and interactions of the benthic community of corals and associated reef organisms (e.g., feeding, reproduction, mutualistic or agonistic behavior, behavioral responses to changing abiotic factors usually involve a disturbing intervention. Modern digital camcorders (without inflexible land-or ship-based cable connection such as the GoPro camera enable undisturbed and unmanned, stationary close-up observations. Such observations, however, are also very time-limited (~3 h and full 24 h-recordings throughout day and night, including nocturnal observations without artificial daylight illumination, are not possible. Herein we introduce the application of modern standard video surveillance technology with the main objective of providing a tool for monitoring coral reef or other sessile and mobile organisms for periods of 24 h and longer. This system includes nocturnal close-up observations with miniature infrared (IR-sensitive cameras and separate high-power IR-LEDs. Integrating this easy-to-set up and portable remote-sensing equipment into coral reef research is expected to significantly advance our understanding of fine-scaled biotic processes on coral reefs. Rare events and long-lasting processes can easily be recorded, in situ-experiments can be monitored live on land, and nocturnal IR-observations reveal undisturbed behavior. The options and equipment choices in IR-sensitive surveillance technology are numerous and subject to a steadily increasing technical supply and quality at decreasing prices. Accompanied by short video examples, this report introduces a radio-transmission system for simultaneous recordings and real-time monitoring of multiple cameras with synchronized timestamps, and a surface-independent underwater-recording system.

  3. Nuclear Systems (NS): Technology Demonstration Unit (TDU)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nuclear Systems Project demonstrates nuclear power technology readiness to support the goals of NASA's Space Technology Mission Directorate. To this end, the...

  4. The Dairy Technology System in Venezuela. Summary of Research 79.

    Science.gov (United States)

    Nieto, Ruben D.; Henderson, Janet L.

    A study examined the agricultural technology system in Venezuela with emphasis on the dairy industry. An analytical framework was used to identify the strengths and weaknesses of the following components of Venezuela's agricultural technology system: policy, technology development, technology transfer, and technology use. Selected government…

  5. Editorial. Kultūros reiškiniai šiuolaikinių informacijos ir komunikacijos technologijų sąlygomis: nuo meno ir televizijos iki politikos

    Directory of Open Access Journals (Sweden)

    Jovilė Barevičiūtė

    2015-10-01

    Full Text Available Šiame žurnalo numeryje aptariami kai kurie daugiaaspekčiai šiuolaikinės kultūros reiškiniai, apimant tokius jų, kaip menas, televizija, politika ir kt. Medijos ir komunikacija nūdien intensyviai skverbiasi kone į visas darbo ir laisvalaikio veiklos, viešojo ir privataus sektorių sritis, reprezentuodamos dinamišką ir netolygią gyvenamojo pasaulio tikrovę. Medijuotoji komunikacija vis labiau tampa dominuojančia socializacijos forma, ji išstumia gyvąją komunikaciją: kuo toliau, tuo labiau šis reiškinys nusako ne tik jaunimo, bet ir brandaus amžiaus žmonių šiandienį bendravimo būdą. Tad akivaizdu, kad XXI a. žmogus vis labiau pasineria į įvairių medijų tinklus, apraizgančius jo gyvenimą ir tampančius pagrindine socialios ir visavertės eg zistencijos sąlyga. Tokios socialinės institucijos, kaip menas, televizija, politika, religija, šeima ir daugelis kitų, nūdien jau nebėra tokios savarankiškos, kaip, tarkime, prieš dešimt, dvidešimt ar daugiau metų. Jų suverenitetą daugiausia transformuoja būtent medijos, šioms institucijoms diktuojančios savas sąlygas ir primetančios savas taisykles. Kitaip tariant, medijos tampa tokios galingos, kad ima steigti savuosius dėsnius, kuriems vis labiau paklūsta tradicinė gyvosios socializacijos aplinka. Taip kyla daugybė diskutuotinų ir ginčytinų klausimų, paliečiančių socialinių institucijų apibrėžties, autonomijos ir suvereniteto aspektus. Šiuos aspektus iš įvairių perspektyvų gvildena ir šio numerio autoriai. Eugenija Krukauskienė ir Viktorija Žilinskaitė-Vytienė savo straipsnyje aptaria kultūros vartojimo klausimus tirdamos, kaip šiuolaikinio lietuviškojo kino meno pavyzdžius suvokia ir vertina tam tikrų amžiaus kategorijų jaunimas. Algis Mickūnas gilinasi į filosofinius šiuolaikinių diskursų klausimus, pasirinkdamas kūniškumo, lytėjimo ir taktilikos aspektus, glaudžiai susijusius su medijuotosios komunikacijos tema

  6. NO Reactions Over Ir-Based Catalysts in the Presence of O2

    Directory of Open Access Journals (Sweden)

    Mingxin Guo

    2011-01-01

    Full Text Available The behaviour of a series of Ir-based catalysts supported on SiO2, ZSM-5 and γ-Al2O3 with various Ir loadings prepared by impregnation method was conducted by temperature programmed reaction (TPR technique. The result implies that NO is oxidized to NO2 while simultaneously being reduced to N2 or N2O in the NO reactions over iridium catalysts. The surface active phase over iridium catalysts that promote the NO reactions is IrO2. The catalytic activity increases with the increase of the Ir loading and support materials have a little effect on the catalytic activity. When the loading is less than 0.1%, the catalytic activity was found to be dependent on the nature of support materials and in order: Ir/ZSM-5>Ir/γ-Al2O3>Ir/SiO2. When the loading is higher than 0.1%, the catalytic activity for NO oxidation is in order: Ir/ZSM-5>Ir/SiO2>Ir/γ -Al2O3, which is correlated with Ir dispersion on the surface of support materials and the catalytic activity for NO reduction is in sequence: Ir/γ -Al2O3>Ir/SiO2>Ir/ZSM-5, which is attributed to the adsorbed-dissociation of NO2. Compared to Pt/γ-Al2O3, Ir/γ-Al2O3 catalyst is more benefit for the NO reduction.

  7. [HOMA-IR in patients with chronic hepatitis C].

    Science.gov (United States)

    Botshorishvili, T; Vashakidze, E

    2012-02-01

    The aim of investigation was to study the frequency of IR in type of viral hepatitis C, correlation with the degree of hepatic lesion and liver cirrhosis. 130 patients were investigated: 20 with acute hepatitis C; 38 with chronic hepatitis C; 72 with cirrhosis: among them 10 with Stage A, 14 with Stage B and 48 with Stage C. Also we used 30 healthy people as the controls. The study demonstrates significant changes of insulin, glucose, HOMA-IR type of viral hepatitis C, correlation with the degree of hepatic lesion and liver cirrhosis. In patients with liver cirrhosis levels of HOMA-IR is higher than in patients with chronic hepatitis C. In patients with acute hepatitis C levels of HOMA-IR was normal as in the control group. The results showed that various types of chronic viral hepatitis C and stages of cirrhosis set to increase HOMA-IR versus the controls., which were the most prominent in cases of severe hepatic lesion, which indicates that insulin resistance is a frequent companion of CHC.

  8. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 colocalizes with insulin receptor substrate 4 (IRS4 in the hypothalamic neurons and mediates IRS4 degradation

    Directory of Open Access Journals (Sweden)

    Xia Zefeng

    2011-09-01

    Full Text Available Abstract Background The arcuate nucleus of the hypothalamus regulates food intake. Ankyrin repeat and SOCS box containing protein 4 (Asb-4 is expressed in neuropeptide Y and proopiomelanocortin (POMC neurons in the arcuate nucleus, target neurons in the regulation of food intake and metabolism by insulin and leptin. However, the target protein(s of Asb-4 in these neurons remains unknown. Insulin receptor substrate 4 (IRS4 is an adaptor molecule involved in the signal transduction by both insulin and leptin. In the present study we examined the colocalization and interaction of Asb-4 with IRS4 and the involvement of Asb-4 in insulin signaling. Results In situ hybridization showed that the expression pattern of Asb-4 was consistent with that of IRS4 in the rat brain. Double in situ hybridization showed that IRS4 colocalized with Asb-4, and both Asb-4 and IRS4 mRNA were expressed in proopiomelanocortin (POMC and neuropeptide Y (NPY neurons within the arcuate nucleus of the hypothalamus. In HEK293 cells co-transfected with Myc-tagged Asb-4 and Flag-tagged IRS4, Asb-4 co-immunoprecipitated with IRS4; In these cells endogenous IRS4 also co-immunoprecipitated with transfected Myc-Asb-4; Furthermore, Asb-4 co-immunoprecipitated with IRS4 in rat hypothalamic extracts. In HEK293 cells over expression of Asb-4 decreased IRS4 protein levels and deletion of the SOCS box abolished this effect. Asb-4 increased the ubiquitination of IRS4; Deletion of SOCS box abolished this effect. Expression of Asb-4 decreased both basal and insulin-stimulated phosphorylation of AKT at Thr308. Conclusions These data demonstrated that Asb-4 co-localizes and interacts with IRS4 in hypothalamic neurons. The interaction of Asb-4 with IRS4 in cell lines mediates the degradation of IRS4 and decreases insulin signaling.

  9. Applying Trusted Network Technology To Process Control Systems

    Science.gov (United States)

    Okhravi, Hamed; Nicol, David

    Interconnections between process control networks and enterprise networks expose instrumentation and control systems and the critical infrastructure components they operate to a variety of cyber attacks. Several architectural standards and security best practices have been proposed for industrial control systems. However, they are based on older architectures and do not leverage the latest hardware and software technologies. This paper describes new technologies that can be applied to the design of next generation security architectures for industrial control systems. The technologies are discussed along with their security benefits and design trade-offs.

  10. Development of the Integrated Information Technology System

    National Research Council Canada - National Science Library

    2005-01-01

    The Integrated Medical Information Technology System (IMITS) Program is focused on implementation of advanced technology solutions that eliminate inefficiencies, increase utilization and improve quality of care for active duty forces...

  11. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    the performance of today's state of the art IR detectors for the visible/near-IR region shows a striking contrast, as the latter can have dark currents in the range of 0.001 electrons per second. Demonstrated performance of waveguide upconversion techniques still show considerable dark noise, even when working...

  12. Sustainable recycling technologies for Solar PV off-grid system

    Science.gov (United States)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  13. UTILITY ADVANCED TURBINE SYSTEMS(ATS) TECHNOLOGY READINESS TESTING

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth A. Yackly

    2001-06-01

    The following paper provides an overview of GE's H System{trademark} technology, and specifically, the design, development, and test activities associated with the DOE Advanced Turbine Systems (ATS) program. There was intensive effort expended in bringing this revolutionary advanced technology program to commercial reality. In addition to describing the magnitude of performance improvement possible through use of H System{trademark} technology, this paper discusses the technological milestones during the development of the first 9H (50Hz) and 7H (60 Hz) gas turbines. To illustrate the methodical product development strategy used by GE, this paper discusses several technologies that were essential to the introduction of the H System{trademark}. Also included are analyses of the series of comprehensive tests of materials, components and subsystems that necessarily preceded full scale field testing of the H System{trademark}. This paper validates one of the basic premises with which GE started the H System{trademark} development program: exhaustive and elaborate testing programs minimized risk at every step of this process, and increase the probability of success when the H System{trademark} is introduced into commercial service. In 1995, GE, the world leader in gas turbine technology for over half a century, in conjunction with the DOE National Energy Technology Laboratory's ATS program, introduced its new generation of gas turbines. This H System{trademark} technology is the first gas turbine ever to achieve the milestone of 60% fuel efficiency. Because fuel represents the largest individual expense of running a power plant, an efficiency increase of even a single percentage point can substantially reduce operating costs over the life of a typical gas-fired, combined-cycle plant in the 400 to 500 megawatt range. The H System{trademark} is not simply a state-of-the-art gas turbine. It is an advanced, integrated, combined-cycle system in which every

  14. Integration of element technology and system supporting thermonuclear fusion

    International Nuclear Information System (INIS)

    2003-01-01

    A special committee for integrated system technology survey on thermonuclear fusion (TNF) was begun on June, 1999, under an aim to generally summarize whole of shapes on technology to realize TNF reactor to summarize present state of every technologies and their positioning in whole of their TNF technology. On a base of survey of these recent informations, this report is comprehensively summarized for an integrated system technology on TNF. It has outlines on magnetic field enclosing method, outlines on inertia enclosing method, element technology supporting TNF, new power generation techniques, and ripple effects on TNF technology. (G.K.)

  15. Advanced Grid Control Technologies Workshop Series | Energy Systems

    Science.gov (United States)

    : Smart Grid and Beyond John McDonald, Director, Technical Strategy and Policy Development, General Control Technologies Workshop Series In July 2015, NREL's energy systems integration team hosted workshops the Energy Systems Integration Facility (ESIF) and included a technology showcase featuring projects

  16. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  17. Oferta ir akceptas vartojimo sutartyse

    OpenAIRE

    Ežerskytė, Ramunė

    2011-01-01

    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  18. ON-POWER DETECTION OF PIPE WALL-THINNED DEFECTS USING IR THERMOGRAPHY IN NPPS

    Directory of Open Access Journals (Sweden)

    JU HYUN KIM

    2014-04-01

    Full Text Available Wall-thinned defects caused by accelerated corrosion due to fluid flow in the inner pipe appear in many structures of the secondary systems in nuclear power plants (NPPs and are a major factor in degrading the integrity of pipes. Wall-thinned defects need to be managed not only when the NPP is under maintenance but also when the NPP is in normal operation. To this end, a test technique was developed in this study to detect such wall-thinned defects based on the temperature difference on the surface of a hot pipe using infrared (IR thermography and a cooling device. Finite element analysis (FEA was conducted to examine the tendency and experimental conditions for the cooling experiment. Based on the FEA results, the equipment was configured before the cooling experiment was conducted. The IR camera was then used to detect defects in the inner pipe of the pipe specimen that had artificially induced defects. The IR thermography developed in this study is expected to help resolve the issues related to the limitations of non-destructive inspection techniques that are currently conducted for NPP secondary systems and is expected to be very useful on the NPPs site.

  19. Bioinspired Infrared Sensing Materials and Systems.

    Science.gov (United States)

    Shen, Qingchen; Luo, Zhen; Ma, Shuai; Tao, Peng; Song, Chengyi; Wu, Jianbo; Shang, Wen; Deng, Tao

    2018-05-11

    Bioinspired engineering offers a promising alternative approach in accelerating the development of many man-made systems. Next-generation infrared (IR) sensing systems can also benefit from such nature-inspired approach. The inherent compact and uncooled operation of biological IR sensing systems provides ample inspiration for the engineering of portable and high-performance artificial IR sensing systems. This review overviews the current understanding of the biological IR sensing systems, most of which are thermal-based IR sensors that rely on either bolometer-like or photomechanic sensing mechanism. The existing efforts inspired by the biological IR sensing systems and possible future bioinspired approaches in the development of new IR sensing systems are also discussed in the review. Besides these biological IR sensing systems, other biological systems that do not have IR sensing capabilities but can help advance the development of engineered IR sensing systems are also discussed, and the related engineering efforts are overviewed as well. Further efforts in understanding the biological IR sensing systems, the learning from the integration of multifunction in biological systems, and the reduction of barriers to maximize the multidiscipline collaborations are needed to move this research field forward. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Understanding energy technology developments from an innovation system perspective

    Energy Technology Data Exchange (ETDEWEB)

    Borup, M.; Nygaard Madsen, A. [Risoe National Lab., DTU, Systems Analysis Dept., Roskilde (Denmark); Gregersen, Birgitte [Aalborg Univ., Department of Business Studies (Denmark)

    2007-05-15

    With the increased market-orientation and privatisation of the energy area, the perspective of innovation is becoming more and more relevant for understanding the dynamics of change and technology development in the area. A better understanding of the systemic and complex processes of innovation is needed. This paper presents an innovation systems analysis of new and emerging energy technologies in Denmark. The study focuses on five technology areas: bio fuels, hydrogen technology, wind energy, solar cells and energy-efficient end-use technologies. The main result of the analysis is that the technology areas are quite diverse in a number of innovation-relevant issues like actor set-up, institutional structure, maturity, and connections between market and non-market aspects. The paper constitutes background for discussing the framework conditions for transition to sustainable energy technologies and strengths and weaknesses of the innovation systems. (au)

  1. Calibration of carbon analyzer LECO type IR-212

    International Nuclear Information System (INIS)

    Lilis Windaryati; Pranjono; Galuh Sri Banawa

    2013-01-01

    Calibration of Carbon Analyzer LECO type IR-212 has been done. The aim of this research is to study the performance of the carbon analyzer LECO type IR-212 for its accuracy assurance. The experiment includes a series of performance adjustment using standard material traceable nationally/internationally. The standard material used for the calibration is standard carbon manufactured by LECO, which refers to National Institute of Standards and Technology (NIST) Standard Reference Materials (SRM) of traceable certificate. The method used is based on Application Bulletin Leco Corporation. The composition used for the experiment varies from 0,0097% to 0,8110% that is 0,0097 ± 0,0014%; 0,0348 ± 0,0013%; 0,1770 ± 0,003% and 0,8110 ± 0,007%. The analysis results for those varied composition are 0,0097 ± 0,000175%; 0,03474 ± 0,000152%; 0,1762 ± 0,00228% and 0,80982 ± 0,000958% for their mean value and standard deviation respectively. In the standard analysis, the results are close to the true value is the measurement of a standard sample with a content of 0.811% with a correction factor of 1.0015. The smallest standard deviation in measurements of 0,0348% sample gives the lowest standard deviation, i.e. 0,000152. The analysis results are considered sufficiently stable with linear calibration curve of y = 0.9984 x with correlation coefficient R 2 = 1. (author)

  2. Merginų ir jų motinų tarpusavio santykių, nepasitenkinimo kūnu ir motinų naudojamo auklėjimo stiliaus sąsajos

    OpenAIRE

    Tkačiova, Jekaterina

    2009-01-01

    Pastaraisiais metais vis daugiau susirūpinimą kelia prastėjanti merginų sveikta (Forbes ir kt., 2004), o nepasitenkinimas kūnu siejamas su neigiama fizine ir psichine sveikata bei rizikingu elgesiu (dietos naudojimas, badavimas ir kt.), kuris susijęs su valgymo sutrikimų vystimusi, žema saviverte, depresija, savęs žalojimu ir net savižudybėmis. Darbo tikslas - ištirti merginų ir jų motinų tarpusavio santykių sąsajas su nepasitenkinimu kūnu bei motinų naudojamu auklėjimo stiliumi. Tiriamųjų...

  3. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.

    2007-01-01

    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  4. Autonomous System Technologies for Resilient Airspace Operations

    Science.gov (United States)

    Houston, Vincent E.; Le Vie, Lisa R.

    2017-01-01

    Increasing autonomous systems within the aircraft cockpit begins with an effort to understand what autonomy is and developing the technology that encompasses it. Autonomy allows an agent, human or machine, to act independently within a circumscribed set of goals; delegating responsibility to the agent(s) to achieve overall system objective(s). Increasingly Autonomous Systems (IAS) are the highly sophisticated progression of current automated systems toward full autonomy. Working in concert with humans, these types of technologies are expected to improve the safety, reliability, costs, and operational efficiency of aviation. IAS implementation is imminent, which makes the development and the proper performance of such technologies, with respect to cockpit operation efficiency, the management of air traffic and data communication information, vital. A prototype IAS agent that attempts to optimize the identification and distribution of "relevant" air traffic data to be utilized by human crews during complex airspace operations has been developed.

  5. Radioisotope Power Systems Technology Development

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the RPS's technology portfolio is to advance performance of radioisotope power systems through new and novel innovations being developed and transitioned...

  6. NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box

    Science.gov (United States)

    ONeil, D. A.; Craig, D. A.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The objective of this Technical Interchange Meeting was to increase the quantity and quality of technical, cost, and programmatic data used to model the impact of investing in different technologies. The focus of this meeting was the Technology Tool Box (TTB), a database of performance, operations, and programmatic parameters provided by technologists and used by systems engineers. The TTB is the data repository used by a system of models known as the Advanced Technology Lifecycle Analysis System (ATLAS). This report describes the result of the November meeting, and also provides background information on ATLAS and the TTB.

  7. Technology for national asset storage systems

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard

    1993-01-01

    An industry-led collaborative project, called the National Storage Laboratory, was organized to investigate technology for storage systems that will be the future repositories for our national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and the provider of applications. The expected result is an evaluation of a high performance storage architecture assembled from commercially available hardware and software, with some software enhancements to meet the project's goals. It is anticipated that the integrated testbed system will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte class files at gigabit-per-second data rates. The National Storage Laboratory was officially launched on 27 May 1992.

  8. Optical Response of Cu1-xZnxIr2S4 Due to Metal--Insulator Transition

    International Nuclear Information System (INIS)

    Chen, L.; Matsunami, M.; Nanba, T.; Cao, G.; Suzuki, H.; Isobe, M.; Matsumoto, T.

    2003-01-01

    The mother material CuIr 2 S 4 of the thiospinel system Cu 1-x Zn x Ir 2 S 4 undergoes a temperature-induced metal--insulator (Mi) transition. We report the temperature dependence of the optical reflection spectra of Cu 1-x Zn x Ir 2 S 4 (x ≤ 0.5) at the temperatures of 8-300 K in the energy regions of 0.005--30 eV in order to study the change in the electronic structure due to the Zn substitution for Cu. Zn substitution induced mainly the splitting of the hybridization band between the Ir-5d(t 2g ) and S-3 p states crossing the E F . Obtained optical conductivity (σ ) spectrum is discussed in relation to the change in the electronic structure close to the E F . (author)

  9. RADIO MONITORING OF THE PERIODICALLY VARIABLE IR SOURCE LRLL 54361: NO DIRECT CORRELATION BETWEEN THE RADIO AND IR EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Forbrich, Jan, E-mail: jan.forbrich@univie.ac.at [University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, A-1180 Vienna (Austria); Rodríguez, Luis F.; Palau, Aina; Zapata, Luis A. [Instituto de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2015-11-20

    LRLL 54361 is an infrared source located in the star-forming region IC 348 SW. Remarkably, its infrared luminosity increases by a factor of 10 over roughly one week every 25.34 days. To understand the origin of these remarkable periodic variations, we obtained sensitive 3.3 cm JVLA radio continuum observations of LRLL 54361 and its surroundings in six different epochs: three of them during the IR-on state and three during the IR-off state. The radio source associated with LRLL 54361 remained steady and did not show a correlation with the IR variations. We suggest that the IR is tracing the results of fast (with a timescale of days) pulsed accretion from an unseen binary companion, while the radio traces an ionized outflow with an extent of ∼100 AU that smooths out the variability over a period of the order of a year. The average flux density measured in these 2014 observations, 27 ± 5 μJy, is about a factor of two less than that measured about 1.5 years before, 53 ± 11 μJy, suggesting that variability in the radio is present, but over larger timescales than in the IR. We discuss other sources in the field, in particular two infrared/X-ray stars that show rapidly varying gyrosynchrotron emission.

  10. Selective C--C coupling of ir-ethene and ir-carbenoid radicals

    NARCIS (Netherlands)

    Dzik, W.I.; Reek, J.N.H.; de Bruin, B.

    2008-01-01

    The reactivity of the paramagnetic iridium(II) complex [IrII(ethene)(Me3tpa)]2+ (1) (Me3tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective CC bond

  11. Computing handbook information systems and information technology

    CERN Document Server

    Topi, Heikki

    2014-01-01

    Disciplinary Foundations and Global ImpactEvolving Discipline of Information Systems Heikki TopiDiscipline of Information Technology Barry M. Lunt and Han ReichgeltInformation Systems as a Practical Discipline Juhani IivariInformation Technology Han Reichgelt, Joseph J. Ekstrom, Art Gowan, and Barry M. LuntSociotechnical Approaches to the Study of Information Systems Steve Sawyer and Mohammad Hossein JarrahiIT and Global Development Erkki SutinenUsing ICT for Development, Societal Transformation, and Beyond Sherif KamelTechnical Foundations of Data and Database ManagementData Models Avi Silber

  12. Sustainable recycling technologies for Solar PV off-grid system

    Directory of Open Access Journals (Sweden)

    Uppal Bhavesh

    2017-01-01

    Full Text Available Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  13. Crystallization and diffraction analysis of the serpin IRS-2 from the hard tick Ixodes ricinus

    International Nuclear Information System (INIS)

    Kovářová, Zuzana; Chmelař, Jindřich; Šanda, Miloslav; Brynda, Jiří; Mareš, Michael; Řezáčová, Pavlína

    2010-01-01

    Cleavage of the serpin IRS-2 from the hard tick I. ricinus by contaminating proteolytic activity mimicked the specific processing of the serpin by its target protease and resulted in a more stable form of the serpin which produced crystals that diffracted to 1.8 Å resolution. IRS-2 from the hard tick Ixodes ricinus belongs to the serpin family of protease inhibitors. It is produced in the salivary glands of the tick and its anti-inflammatory activity suggests that it plays a role in parasite–host interaction. Recombinant IRS-2 prepared by heterologous expression in a bacterial system was crystallized using the hanging-drop vapour-diffusion method. The crystals belonged to the primitive tetragonal space group P4 3 and diffracted to 1.8 Å resolution. Mass-spectrometric and electrophoretic analyses revealed that IRS-2 was cleaved by contaminating proteases during crystallization. This processing of IRS-2 mimicked the specific cleavage of the serpin by its target protease and resulted in a more stable form (the so-called relaxed conformation), which produced well diffracting crystals. Activity profiling with specific substrates and inhibitors demonstrated traces of serine and cysteine proteases in the protein stock solution

  14. Airborne pipeline leak detection: UV or IR?

    Science.gov (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  15. DOE technology information management system database study report

    Energy Technology Data Exchange (ETDEWEB)

    Widing, M.A.; Blodgett, D.W.; Braun, M.D.; Jusko, M.J.; Keisler, J.M.; Love, R.J.; Robinson, G.L. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.

    1994-11-01

    To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performed detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.

  16. Quality indicators in a computerized technology information system

    International Nuclear Information System (INIS)

    Mancuso, C.A.; Hyde, R.A.

    1992-01-01

    An environmental technology information system was developed by EG ampersand G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL) for the Department of Energy (DOE). The purpose of the system is to reduce costs and time associated with evaluating potential remedial alternatives for a waste site. The information system is organized to aid in the CERCLA process by describing the implementability, effectiveness, and cost of many remedial technologies. Technology categories included in the information system include: Institutional Controls, Retrieval, Separation, Characterization, Physical/Chemical Treatment, Biological Treatment, Thermal Treatment, Storage, Transportation, Disposal, Migration Control (containment), Support Systems, Waste Minimization, and Remote Operations. Two hundred and sixty processes are summarized in these technology areas. Information on these processes was collected from EPA publications, books, journal articles, conference proceedings, vendors, DOE publications, and technical experts. The purpose of this paper is to familiarize readers with issues associated with the development of information systems. A major issue is the system and software quality, which can be controlled by configuration management. Another major issue is the documentation of data quality indicators in references used to collect data for the system, which can not be controlled but must be planned for in the review process

  17. Competition between spin-orbit coupling, magnetism, and dimerization in the honeycomb iridates: α -Li2IrO3 under pressure

    Science.gov (United States)

    Hermann, V.; Altmeyer, M.; Ebad-Allah, J.; Freund, F.; Jesche, A.; Tsirlin, A. A.; Hanfland, M.; Gegenwart, P.; Mazin, I. I.; Khomskii, D. I.; Valentí, R.; Kuntscher, C. A.

    2018-02-01

    Single-crystal x-ray diffraction studies with synchrotron radiation on the honeycomb iridate α -Li2IrO3 reveal a pressure-induced structural phase transition with symmetry lowering from monoclinic to triclinic at a critical pressure of Pc=3.8 GPa. According to the evolution of the lattice parameters with pressure, the transition mainly affects the a b plane and thereby the Ir hexagon network, leading to the formation of Ir-Ir dimers. These observations are independently predicted and corroborated by our ab initio density functional theory calculations where we find that the appearance of Ir-Ir dimers at finite pressure is a consequence of a subtle interplay between magnetism, correlation, spin-orbit coupling, and covalent bonding. Our results further suggest that at Pc the system undergoes a magnetic collapse. Finally we provide a general picture of competing interactions for the honeycomb lattices A2M O3 with A =Li , Na and M =Ir , Ru.

  18. The Geoinformation Technology and Cadastral Systems

    Directory of Open Access Journals (Sweden)

    Shchepak Vera V.

    2017-05-01

    Full Text Available The article is aimed at studying the distinctive attributes of inventories and to determine the features of use of GIS technologies in the formation of the cadastral information database. The article considers various views on the importance of applying GIS technologies for the maintenance of a wide variety of inventories (land, forestry, water, town-planning, natural areas of resorts, territories and facilities of the Natural Endowment Fund, regional inventories of natural resources, etc.. The developed structural and logical model of the system of formation of the cadastral information database has provided an opportunity to allocated components such as GIS technologies, information database, and inventories. Based on the interdependence and interaction of these components, the main relationships between them have been determined. Prospects for further research are to examine the modalities of functioning of the system of formation of the cadastral information database, as well as to study the main characteristics of the relationships between the components, thus optimizing the process of information provision of the database of cadastral systems.

  19. Compensatory insulin receptor (IR) activation on inhibition of insulin-like growth factor-1 receptor (IGF-1R): rationale for cotargeting IGF-1R and IR in cancer.

    Science.gov (United States)

    Buck, Elizabeth; Gokhale, Prafulla C; Koujak, Susan; Brown, Eric; Eyzaguirre, Alexandra; Tao, Nianjun; Rosenfeld-Franklin, Maryland; Lerner, Lorena; Chiu, M Isabel; Wild, Robert; Epstein, David; Pachter, Jonathan A; Miglarese, Mark R

    2010-10-01

    Insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) and critical activator of the phosphatidylinositol 3-kinase-AKT pathway. IGF-1R is required for oncogenic transformation and tumorigenesis. These observations have spurred anticancer drug discovery and development efforts for both biological and small-molecule IGF-1R inhibitors. The ability for one RTK to compensate for another to maintain tumor cell viability is emerging as a common resistance mechanism to antitumor agents targeting individual RTKs. As IGF-1R is structurally and functionally related to the insulin receptor (IR), we asked whether IR is tumorigenic and whether IR-AKT signaling contributes to resistance to IGF-1R inhibition. Both IGF-1R and IR(A) are tumorigenic in a mouse mammary tumor model. In human tumor cells coexpressing IGF-1R and IR, bidirectional cross talk was observed following either knockdown of IR expression or treatment with a selective anti-IGF-1R antibody, MAB391. MAB391 treatment resulted in a compensatory increase in phospho-IR, which was associated with resistance to inhibition of IRS1 and AKT. In contrast, treatment with OSI-906, a small-molecule dual inhibitor of IGF-1R/IR, resulted in enhanced reduction in phospho-IRS1/phospho-AKT relative to MAB391. Insulin or IGF-2 activated the IR-AKT pathway and decreased sensitivity to MAB391 but not to OSI-906. In tumor cells with an autocrine IGF-2 loop, both OSI-906 and an anti-IGF-2 antibody reduced phospho-IR/phospho-AKT, whereas MAB391 was ineffective. Finally, OSI-906 showed superior efficacy compared with MAB391 in human tumor xenograft models in which both IGF-1R and IR were phosphorylated. Collectively, these data indicate that cotargeting IGF-1R and IR may provide superior antitumor efficacy compared with targeting IGF-1R alone.

  20. Advanced Surface Technology

    DEFF Research Database (Denmark)

    Møller, Per; Nielsen, Lars Pleht

    of the components. It covers everything from biocompatible surfaces of IR absorbent or reflective surfaces to surfaces with specific properties within low friction, hardness, corrosion, colors, etc. The book includes more than 400 pages detailing virtually all analysis methods for examining at surfaces.......This new significant book on advanced modern surface technology in all its variations, is aimed at both teaching at engineering schools and practical application in industry. The work covers all the significant aspects of modern surface technology and also describes how new advanced techniques make...

  1. Automation and robotics technology for intelligent mining systems

    Science.gov (United States)

    Welsh, Jeffrey H.

    1989-01-01

    The U.S. Bureau of Mines is approaching the problems of accidents and efficiency in the mining industry through the application of automation and robotics to mining systems. This technology can increase safety by removing workers from hazardous areas of the mines or from performing hazardous tasks. The short-term goal of the Automation and Robotics program is to develop technology that can be implemented in the form of an autonomous mining machine using current continuous mining machine equipment. In the longer term, the goal is to conduct research that will lead to new intelligent mining systems that capitalize on the capabilities of robotics. The Bureau of Mines Automation and Robotics program has been structured to produce the technology required for the short- and long-term goals. The short-term goal of application of automation and robotics to an existing mining machine, resulting in autonomous operation, is expected to be accomplished within five years. Key technology elements required for an autonomous continuous mining machine are well underway and include machine navigation systems, coal-rock interface detectors, machine condition monitoring, and intelligent computer systems. The Bureau of Mines program is described, including status of key technology elements for an autonomous continuous mining machine, the program schedule, and future work. Although the program is directed toward underground mining, much of the technology being developed may have applications for space systems or mining on the Moon or other planets.

  2. Test and evaluation of IR detectors and arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992

    Science.gov (United States)

    Hoke, Forney M.

    The present conference discusses a radiometric calibration system for IR cameras, a methodology for testing IR focal-plane arrays in simulated nuclear radiation environments, process optimization for Si:As In-bumped focal-plane arrays, precise MTF measurements for focal-plane arrays, and IR focal-plane array crosstalk measurement. Also discussed are an imaging metric for IR focal-plane arrays, optical stimuli for high-volume automated testing of 2D HgCdTe focal-plane arrays, the evaluation of a solid-state photomultiplier focal-plane array for SDI, spectral effects on bulk photoconductors operated at cryogenic temperatures, and a novel technique for measuring the ionizing radiation effects in MOS transistors.

  3. Octave-Spanning Mid-IR Supercontinuum Generation with Ultrafast Cascaded Nonlinearities

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Liu, Xing

    2014-01-01

    An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation....

  4. The Technology of Measurement Feedback Systems.

    Science.gov (United States)

    Bickman, Leonard; Kelley, Susan Douglas; Athay, Michele

    2012-12-01

    Usual care in the community is far from optimal. Sufficient evidence exists that dropout rates are significant, treatment is effective for only a small proportion of clients, and that the translation of evidence-based treatments to the real world is problematic. Technology has been shown to be helpful in health care in improving the effectiveness of treatment. A relatively new technology being used in mental health is measurement feedback systems (MFSs). MFSs are particularly applicable to couple and family psychology (CFP) because of its ability to provide information on the multiple perspectives involved in treatment. The Contextualized Feedback Systems tm (CFS®), developed at Vanderbilt University is used as an example of what can be accomplished with an MFS. The advantages and limitations of this technology are described as well as the anticipated reimbursement requirements that mental health services will need.

  5. Quality assurance of HDR 192Ir sources using a Fricke dosimeter.

    Science.gov (United States)

    Austerlitz, C; Mota, H; Almeida, C E; Allison, R; Sibata, C

    2007-04-01

    A prototype of a Fricke dosimetry system consisting of a 15 x 15 x 15 cm3 water phantom made of Plexiglas and a 11.3-ml Pyrex balloon fitted with a 0.2 cm thick Pyrex sleeve in its center was created to assess source strength and treatment planning algorithms for use in high dose rate (HDR) 192Ir afterloading units. In routine operation, the radioactive source is positioned at the end of a sleeve, which coincides with the center of the spherical balloon that is filled with Fricke solution, so that the solution is nearly isotropically irradiated. The Fricke system was calibrated in terms of source strength against a reference well-type ionization chamber, and in terms of radial dose by means of an existing algorithm from the HDR's treatment planning system. Because the system is based on the Fricke dosimeter itself, for a given type and model of 192Ir source, the system needs initial calibration but no recalibration. The results from measurements made over a 10 month period, including source decay and source substitutions, have shown the feasibility of using such a system for quality control (QC) of HDR afterloading equipment, including both the source activity and treatment planning parameters. The benefit of a large scale production and the use of this device for clinical HDR QC audits via mail are also discussed.

  6. Ge-rich graded-index Si1-xGex devices for MID-IR integrated photonics

    Science.gov (United States)

    Ramirez, J. M.; Vakarin, V.; Liu, Q.; Frigerio, J.; Ballabio, A.; Le Roux, X.; Benedikovic, D.; Alonso-Ramos, C.; Isella, G.; Vivien, L.; Marris-Morini, D.

    2018-02-01

    Mid-infrared (mid-IR) silicon photonics is becoming a prominent research with remarkable potential in several applications such as in early medical diagnosis, safe communications, imaging, food safety and many more. In the quest for the best material platform to develop new photonic systems, Si and Ge depart with a notable advantage over other materials due to the high processing maturity accomplished during the last part of the 20th century through the deployment of the CMOS technology. From an optical viewpoint, combining Si with Ge to obtain SiGe alloys with controlled stoichiometry is also of interest for the photonic community since permits to increase the effective refractive index and the nonlinear parameter, providing a fascinating playground to exploit nonlinear effects. Furthermore, using Ge-rich SiGe gives access to a range of deep mid-IR wavelengths otherwise inaccessible (λ 2-20 μm). In this paper, we explore for the first time the limits of this approach by measuring the spectral loss characteristic over a broadband wavelength range spanning from λ = 5.5 μm to 8.5 μm. Three different SiGe waveguide platforms are compared, each one showing higher compactness than the preceding through the engineering of the vertical Ge profile, giving rise to different confinement characteristics to the propagating modes. A flat propagation loss characteristic of 2-3 dB/cm over the entire wavelength span is demonstrated in Ge-rich graded-index SiGe waveguides of only 6 μm thick. Also, the role of the overlap fraction of the confined optical mode with the Si-rich area at the bottom side of the epitaxial SiGe waveguide is put in perspective, revealing a lossy characteristic compared to the other designs were the optical mode is located in the Ge-rich area at the top of the waveguide uniquely. These Ge-rich graded-index SiGe waveguides may pave the way towards a new generation of photonic integrated circuits operating at deep mid-IR wavelengths.

  7. Recommender Systems in Technology Enhanced Learning

    NARCIS (Netherlands)

    Manouselis, Nikos; Drachsler, Hendrik; Vuorikari, Riina; Hummel, Hans; Koper, Rob

    2010-01-01

    Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H. G. K., & Koper, R. (2011). Recommender Systems in Technology Enhanced Learning. In P. B. Kantor, F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender Systems Handbook (pp. 387-415). Berlin: Springer.

  8. Policies for the Energy Technology Innovation System (ETIS)

    NARCIS (Netherlands)

    Grubler, A.; Aguayo, F.; Gallagher, K.; Hekkert, M.P.; Jiang, K.; Mytelka, L.; Neij, L.; Nemet, G.; Wilson, C.

    2012-01-01

    Innovation and technological change are integral to the energy system transformations described in the Global Energy Assessment (GEA) pathways. Energy technology innovations range from incremental improvements to radical breakthroughs and from technologies and infrastructure to social institutions

  9. Computer dosimetry of 192Ir wire

    International Nuclear Information System (INIS)

    Kline, R.W.; Gillin, M.T.; Grimm, D.F.; Niroomand-Rad, A.

    1985-01-01

    The dosimetry of 192 Ir linear sources with a commercial treatment planning computer system has been evaluated. Reference dose rate data were selected from the literature and normalized in a manner consistent with our clinical and dosimetric terminology. The results of the computer calculations are compared to the reference data and good agreement is shown at distances within about 7 cm from a linear source. The methodology of translating source calibration in terms of exposure rate for use in the treatment planning computer is developed. This may be useful as a practical guideline for users of similar computer calculation programs for iridium as well as other sources

  10. Occurrences in control room equipment, procedures and personnel performances: IRS control room events

    International Nuclear Information System (INIS)

    Tolstykh, V.

    1994-01-01

    The IAEA/NEA Incident Reporting System (IRS) was established in the early 1980, its objective being to gain from operating experience achieved in countries with nuclear power programmes by means of exchanging information on events relevant to safety. Among the 2171 events in the database, 175 events (i.e. 8%) were identified as ''control room events''. It was decided to group these into three sets for further study: 65 events with common mode/cause failures (CCFs), 22 events with cognitive errors and 30 events with unforeseen interaction between NPP systems. It is expected that the pitfalls experienced in the IRS and the questions derived from this study will help to gain a better understanding of the needs and interests of specialists in advanced information methods and artificial intelligence in NPP control rooms. (author)

  11. Technology Transmission Across National Innovation Systems

    DEFF Research Database (Denmark)

    Haakonsson, Stine Jessen; Slepniov, Dmitrij

    This paper advances our understanding of how technology upgrading in the Chinese wind turbine industry is linked to internationalisation of Danish component suppliers. In order to grasp the interlinkages and implications hereof, the paper combines perspectives of global value chains (GVC), national.......e. linking up with global suppliers in the wind turbine global value chain, and the new role of component suppliers as technology transmitters across national innovation systems into emerging markets. Conceptually, the paper contributes to understanding how technological catching up in value chains links...

  12. Technology Transmission Across National Innovation Systems

    DEFF Research Database (Denmark)

    Haakonsson, Stine Jessen; Slepniov, Dmitrij

    2018-01-01

    This paper advances our understanding of how technology upgrading in the Chinese wind turbine industry is linked to internationalisation of Danish component suppliers. In order to grasp the interlinkages and implications hereof, the paper combines perspectives of global value chains (GVC), national.......e. linking up with global suppliers in the wind turbine global value chain, and the new role of component suppliers as technology transmitters across national innovation systems into emerging markets. Conceptually, the paper contributes to understanding how technological catching up in value chains links...

  13. Advanced technologies for intelligent transportation systems

    CERN Document Server

    Picone, Marco; Amoretti, Michele; Zanichelli, Francesco; Ferrari, Gianluigi

    2015-01-01

    This book focuses on emerging technologies in the field of Intelligent Transportation Systems (ITSs) namely efficient information dissemination between vehicles, infrastructures, pedestrians and public transportation systems. It covers the state-of-the-art of Vehicular Ad-hoc Networks (VANETs), with centralized and decentralized (Peer-to-Peer) communication architectures, considering several application scenarios. With a detailed treatment of emerging communication paradigms, including cross networking  and distributed algorithms. Unlike most of the existing books, this book presents a multi-layer overview of information dissemination systems, from lower layers (MAC) to high layers (applications). All those aspects are investigated considering the use of mobile devices, such as smartphones/tablets and embedded systems, i.e. technologies that during last years completely changed the current market, the user expectations, and communication networks. The presented networking paradigms are supported and validate...

  14. Leveraging CubeSat Technology to Address Nighttime Imagery Requirements over the Arctic

    Science.gov (United States)

    Pereira, J. J.; Mamula, D.; Caulfield, M.; Gallagher, F. W., III; Spencer, D.; Petrescu, E. M.; Ostroy, J.; Pack, D. W.; LaRosa, A.

    2017-12-01

    The National Oceanic and Atmospheric Administration (NOAA) has begun planning for the future operational environmental satellite system by conducting the NOAA Satellite Observing System Architecture (NSOSA) study. In support of the NSOSA study, NOAA is exploring how CubeSat technology funded by NASA can be used to demonstrate the ability to measure three-dimensional profiles of global temperature and water vapor. These measurements are critical for the National Weather Service's (NWS) weather prediction mission. NOAA is conducting design studies on Earth Observing Nanosatellites (EON) for microwave (EON-MW) and infrared (EON-IR) soundings, with MIT Lincoln Laboratory and NASA JPL, respectively. The next step is to explore the technology required for a CubeSat mission to address NWS nighttime imagery requirements over the Arctic. The concept is called EON-Day/Night Band (DNB). The DNB is a 0.5-0.9 micron channel currently on the operational Visible Infrared Imaging Radiometer Suite (VIIRS) instrument, which is part of the Suomi-National Polar-orbiting Partnership and Joint Polar Satellite System satellites. NWS has found DNB very useful during the long periods of darkness that occur during the Alaskan cold season. The DNB enables nighttime imagery products of fog, clouds, and sea ice. EON-DNB will leverage experiments carried out by The Aerospace Corporation's CUbesat MULtispectral Observation System (CUMULOS) sensor and other related work. CUMULOS is a DoD-funded demonstration of COTS camera technology integrated as a secondary mission on the JPL Integrated Solar Array and Reflectarray Antenna mission. CUMULOS is demonstrating a staring visible Si CMOS camera. The EON-DNB project will leverage proven, advanced compact visible lens and focal plane camera technologies to meet NWS user needs for nighttime visible imagery. Expanding this technology to an operational demonstration carries several areas of risk that need to be addressed prior to an operational mission

  15. Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering

    International Nuclear Information System (INIS)

    Lee, Soo Hyun; Jung, Jung Hwan; Chae, Youn Mee; Kang, Ji Yoon; Suh, Jun-Kyo Francis

    2010-01-01

    This paper presents the fabrication and characterization of implantable and flexible nerve cuff electrodes for neural interfaces using the conventional BioMEMS technique. In order to fabricate a flexible nerve electrode, polyimide (PI) was chosen as the substrate material. Then, nerve electrodes were thermally re-formed in a cuff shape so as to increase the area in which the charges were transferred to the nerve. Platinum (Pt), iridium (Ir) and iridium oxide (IrO x ) films, which were to serve as conducting materials for the nerve electrodes, were deposited at different working pressures by RF magnetron sputtering. The electrochemical properties of the deposited films were characterized by electrochemical impedance spectroscopy (EIS). The charge delivery capacities of the films were recorded and calculated by cyclic voltammetry (CV). The deposited films of Pt, Ir and IrO x have strong differences in electrochemical properties, which depend on the working pressure of sputter. Each film deposited at 30 mTorr of working pressure shows the highest value of charge delivery capacity (CDC). For the IrO x films, the electrochemical properties were strongly affected by the working pressure as well as the Ar:O 2 gas ratio. The IrO x film deposited with an Ar:O 2 gas ratio of 8:1 showed the highest CDC of 59.5 mC cm −2 , which was about five times higher than that of films deposited with a 1:1 gas ratio.

  16. SAPhIR: a fission-fragment detector

    International Nuclear Information System (INIS)

    Theisen, Ch.; Gautherin, C.; Houry, M.; Korten, W.; Le Coz, Y.; Lucas, R.; Barreau, G.; Doan, T. P.; Belier, G.; Meot, V.; Ethvignot, Th.; Cahan, B.; Le Coguie, A.; Coppolani, X.; Delaitre, B.; Le Bourlout, P.; Legou, Ph.; Maillard, O.; Durand, G.; Bouillac, A.

    1998-01-01

    SAPhIR is the acronym for S a clay A q uitaine P ho tovoltaic cells for I s omer R e search. It consists of solar cells, used for fission-fragment detection. It is a collaboration between 3 laboratories: CEA Saclay, CENBG Bordeaux and CEA Bruyeres le Chatel. The coupling of a highly efficient fission-fragment detector like SAPhIR with EUROBALL will provide new insights in the study of very deformed nuclear matter and in the spectroscopy of neutron-rich nuclei

  17. UK innovation systems for new and renewable energy technologies: drivers, barriers and systems failures

    International Nuclear Information System (INIS)

    Foxon, T.J.; Gross, R.; Chase, A.; Howes, J.; Arnall, A.; Anderson, D.

    2005-01-01

    A better understanding of the systemic processes by which innovation occurs is useful, both conceptually and to inform policy-making in support of innovation in more sustainable technologies. This paper analyses current innovation systems in the UK for a range of new and renewable energy technologies, and generates policy recommendations for improving the effectiveness of these innovation systems. Although incentives are in place in the UK to encourage innovation in these technologies, system failures - or 'gaps' - are identified in moving technologies along the innovation chain, preventing their successful commercialisation. Sustained investment will be needed for these technologies to achieve their potential. It is argued that a stable and consistent policy framework is required to help create the conditions for this. In particular, such a framework should be aimed at improving risk/reward ratios for demonstration and pre-commercial stage technologies. This would enhance positive expectations, stimulate learning effects leading to cost reductions, and increase the likelihood of successful commercialisation

  18. Can Patients Comprehend the Educational Materials that Hospitals Provide about Common IR Procedures?

    Science.gov (United States)

    Sadigh, Gelareh; Hawkins, C Matthew; O'Keefe, John J; Khan, Ramsha; Duszak, Richard

    2015-08-01

    To assess the readability of online education materials offered by hospitals describing commonly performed interventional radiology (IR) procedures. Online patient education materials from 402 hospitals selected from the Medicare Hospital Compare database were assessed. The presence of an IR service was determined by representation in the Society of Interventional Radiology physician finder directory. Patient online education materials about (i) uterine artery embolization for fibroid tumors, (ii) liver cancer embolization, (iii) varicose vein treatment, (iv) central venous access, (v) inferior vena cava (IVC) filter placement, (vi) nephrostomy tube insertion, (vii) gastrostomy tube placement, and (viii) vertebral augmentation were targeted and assessed by using six validated readability scoring systems. Of 402 hospitals sampled, 156 (39%) were presumed to offer IR services. Of these, 119 (76%) offered online patient education material for one or more of the eight service lines. The average readability scores corresponding to grade varied between the ninth- and 12th-grade levels. All were higher than the recommended seventh-grade level (P Reading Ease scores ranged from 42 to 69, corresponding with fairly difficult to difficult readability for all service lines except IVC filter and gastrostomy tube placement, which corresponded with standard readability. A majority of hospitals offering IR services provide at least some online patient education material. Most, however, are written significantly above the reading comprehension level of most Americans. More attention to health literacy by hospitals and IR physicians is warranted. Copyright © 2015 SIR. Published by Elsevier Inc. All rights reserved.

  19. Intelligent Systems Technologies for Ops

    Science.gov (United States)

    Smith, Ernest E.; Korsmeyer, David J.

    2012-01-01

    As NASA supports International Space Station assembly complete operations through 2020 (or later) and prepares for future human exploration programs, there is additional emphasis in the manned spaceflight program to find more efficient and effective ways of providing the ground-based mission support. Since 2006 this search for improvement has led to a significant cross-fertilization between the NASA advanced software development community and the manned spaceflight operations community. A variety of mission operations systems and tools have been developed over the past decades as NASA has operated the Mars robotic missions, the Space Shuttle, and the International Space Station. NASA Ames Research Center has been developing and applying its advanced intelligent systems research to mission operations tools for both unmanned Mars missions operations since 2001 and to manned operations with NASA Johnson Space Center since 2006. In particular, the fundamental advanced software development work under the Exploration Technology Program, and the experience and capabilities developed for mission operations systems for the Mars surface missions, (Spirit/Opportunity, Phoenix Lander, and MSL) have enhanced the development and application of advanced mission operation systems for the International Space Station and future spacecraft. This paper provides an update on the status of the development and deployment of a variety of intelligent systems technologies adopted for manned mission operations, and some discussion of the planned work for Autonomous Mission Operations in future human exploration. We discuss several specific projects between the Ames Research Center and the Johnson Space Centers Mission Operations Directorate, and how these technologies and projects are enhancing the mission operations support for the International Space Station, and supporting the current Autonomous Mission Operations Project for the mission operation support of the future human exploration

  20. Technical aspects of portal technology application for e-health systems.

    Science.gov (United States)

    Kosińska, Joanna; Słowikowski, Paweł

    2004-01-01

    E-health is an emerging field on the intersection of medical information technologies, public health and business, referring to health services and information delivered or enhanced through the Internet and related technologies. Portal technology, allowing services to be accessible over the Internet is a perfect tool for providing e-health services. The use of portal technologies has had deep influence on the architecture of the whole e-health system, both regarding new subsystems and older ones which we want to integrate with the portal. Portals provide new possibilities for creating novel types of e-health applications as well. In this paper we provide a brief overview of e-health systems and portal technologies, and present many technical aspects of portal technology application for e-health systems such as the architecture of portal-based e-health systems, graphical user interfaces, access to various e-health systems' resources, personalization, security and privacy.

  1. Ir-Driven Dynamics of the 3-AMINOPHENOL-AMMONIA Complex

    Science.gov (United States)

    Heid, Cornelia G.; Merrill, W. G.; Case, Amanda; Crim, Fleming

    2014-06-01

    We report on gas-phase experiments investigating the predissociation and possible IR-driven isomerization of the 3-aminophenol-ammonia complex (3-AP-NH3). A molecular beam of 3-AP-NH3 is vibrationally excited with pulsed IR light, initiating an intramolecular vibrational redistribution and subsequent dissociation. The 3-AP fragment is then probed state-selectively via multiphoton ionization (REMPI) and time-of-flight mass spectrometry. Of particular interest is an IR-driven feature which we associate tentatively with a trans-cis isomerization process. We see clear correlation between the excitation of specific vibrational modes (namely the NH3 symmetric and OH stretches) and the presence of this feature, as evidenced by IR-action and IR-depletion spectra. The feature persists atop a broader signal which we assign to the predissociation of the complex and whose cutoff in REMPI-action experiments provides an upper bound on the dissociation energy for 3-AP-NH3.

  2. New Type Far IR and THz Schottky Barrier Detectors for Scientific and Civil Application

    Directory of Open Access Journals (Sweden)

    V. G. Ivanov

    2011-01-01

    Full Text Available The results of an experimental investigation into a new type of VLWIR detector based on hot electron gas emission and architecture of the detector are presented and discussed. The detectors (further referred to as HEGED take advantage of the thermionic emission current change effect in a semiconductor diode with a Schottky barrier (SB as a result of the direct transfer of the absorbed radiation energy to the system of electronic gas in the quasimetallic layer of the barrier. The possibility of detecting radiation having the energy of quantums less than the height of the Schottky diode potential barrier and of obtaining a substantial improvement of a cutoff wavelength to VLWIR of the PtSi/Si detector has been demonstrated. The complementary contribution of two physical mechanisms of emanation detection—“quantum” and hot electrons gas emission—has allowed the creation of a superwideband IR detector using standard silicon technology.

  3. Multiple scattering wavelength dependent backscattering of kaolin dust in the IR: Measurements and theory

    Science.gov (United States)

    Ben-David, Avishai

    1992-01-01

    Knowing the optical properties of aerosol dust is important for designing electro-optical systems and for modeling the effect on propagation of light in the atmosphere. As CO2 lidar technology becomes more advanced and is used for multiwavelength measurements, information on the wavelength dependent backscattering of aerosol dust particles is required. The volume backscattering coefficient of aerosols in the IR is relatively small. Thus, only a few field measurements of backscattering, usually at only a few wavelengths, are reported in the literature. We present spectral field measurements of backscattering of kaolin dust in the 9-11 micron wavelength range. As the quantity of dust increases, multiple scattering contributes more to the measured backscattered signal. The measurements show the effect of the dust quantity of the spectral backscatter measurements. A simple analytical two stream radiative transfer model is applied to confirm the measurements and to give insight to the multiple scattering spectra of backscattering.

  4. Fabricating Ir/C Nanofiber Networks as Free-Standing Air Cathodes for Rechargeable Li-CO2 Batteries.

    Science.gov (United States)

    Wang, Chengyi; Zhang, Qinming; Zhang, Xin; Wang, Xin-Gai; Xie, Zhaojun; Zhou, Zhen

    2018-06-07

    Li-CO 2 batteries are promising energy storage systems by utilizing CO 2 at the same time, though there are still some critical barriers before its practical applications such as high charging overpotential and poor cycling stability. In this work, iridium/carbon nanofibers (Ir/CNFs) are prepared via electrospinning and subsequent heat treatment, and are used as cathode catalysts for rechargeable Li-CO 2 batteries. Benefitting from the unique porous network structure and the high activity of ultrasmall Ir nanoparticles, Ir/CNFs exhibit excellent CO 2 reduction and evolution activities. The Li-CO 2 batteries present extremely large discharge capacity, high coulombic efficiency, and long cycling life. Moreover, free-standing Ir/CNF films are used directly as air cathodes to assemble Li-CO 2 batteries, which show high energy density and ultralong operation time, demonstrating great potential for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Copper-based alloys, crystallographic and crystallochemical parameters of alloys in binary systems Cu-Me (Me=Co, Rh, Ir, Cu, Ag, Au, Ni, Pd, Pt)

    Energy Technology Data Exchange (ETDEWEB)

    Porobova, Svetlana, E-mail: porobova.sveta@yandex.ru; Loskutov, Oleg, E-mail: lom58@mail.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Markova, Tat’jana, E-mail: patriot-rf@mail.ru [Siberian State Industrial University. 42 Kirov St., Novokuznetsk, 654007 (Russian Federation); Klopotov, Vladimir, E-mail: vdklopotov@mail.ru [Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation); Klopotov, Anatoliy, E-mail: klopotovaa@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); National Research Tomsk State University, 36, Lenin Ave., Tomsk, 634050 (Russian Federation); Vlasov, Viktor, E-mail: vik@tsuab.ru [Tomsk State University of Architecture and Building, Russia, Tomsk, 2 Solyanaya sq, Tomsk, 634003 (Russian Federation); Research Tomsk Polytechnic University, 30 Lenin Ave., Tomsk, 634050 (Russian Federation)

    2016-01-15

    The article presents the results of the analysis of phase equilibrium of ordered phases in binary systems based on copper Cu- Me (where Me - Co, Rh, Ir, Ag, Au, Ni, Pd, Pt) to find correlations of crystallochemical and crystallographic factors. It is established that the packing index in disordered solid solutions in binary systems based on copper is close to the value of 0.74 against the background of an insignificant deviation of atomic volumes from the Zen’s law.

  6. Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation

    Science.gov (United States)

    Chen, Long; Li, Zhiguo; Ahmad, Nihal; Liu, Xiaoqi

    2016-01-01

    Insulin receptor substrate (IRS) proteins play important roles by acting as a platform in transducing signals from transmembrane receptors upon growth factor stimulation. Although tyrosine phosphorylation on IRS proteins plays critical roles in signal transduction, phosphorylation of IRS proteins on serine/threonine residues are believed to play various regulatory roles on IRS protein function. However, studies on serine/threonine phosphorylation of IRS proteins are very limited, especially for insulin receptor substrate 2 (IRS2), one member of the IRS protein family. In this study, we identify Polo-like kinase 1 (Plk1) as the responsible kinase for phosphorylation of IRS2 on two serine residues, Ser 556 and Ser 1098. Phosphorylation of IRS2 on these two serine residues by Plk1 prevents the activation of the PI3K pathway upon growth factor stimulation by inhibiting the binding between IRS2 and the PI3K pathway components and increasing IRS2 protein degradation. Of significance, we show that IRS2 phosphorylation is cell cycle regulated and that Plk1 phosphorylation of IRS2 prevents premature mitotic exit via AKT inactivation. PMID:25830382

  7. Influence of two different IR radiators on the antioxidative potential of the human skin

    International Nuclear Information System (INIS)

    Darvin, M E; Patzelt, A; Meinke, M; Sterry, W; Lademann, J

    2009-01-01

    Resonance Raman spectroscopy was used for the fast in vivo detection of the concentration of carotenoid antioxidant substances such as beta-carotene and lycopene in human skin and for the measurement of their degradation dynamics, subsequent to infrared (IR) irradiation emitted by two different IR radiators applied at the same power density. One of the radiators was equipped with a water filter in front of the radiation source (WIRA) and the other was a usual broadband system without a water filter (standard IR radiator – SIR). It was found that the SIR exerted a higher influence on the degradation of carotenoids in the skin than the WIRA. Furthermore, all twelve volunteers who participated in the study felt that the irradiation with the SIR was disagreeably warmer on the skin surface compared to the WIRA, in spite of the same power density values for both radiators on the skin surface. The average degradation magnitude of the carotenoids in the skin of all volunteers after an IR irradiation was determined at 23% for WIRA and 33% for the SIR. A correlation (R 2 ∼ 0.6) was found between the individual level of carotenoids in the skin of the volunteers and the magnitude of degradation of the carotenoids for both IR radiators. Taking the previous investigations into consideration, which clearly showed production of free radicals in the skin subsequent to IR irradiation, it can be concluded that during the application of WIRA irradiation on the skin, fewer radicals are produced in comparison to the SIR

  8. Process for Selecting System Level Assessments for Human System Technologies

    Science.gov (United States)

    Watts, James; Park, John

    2006-01-01

    The integration of many life support systems necessary to construct a stable habitat is difficult. The correct identification of the appropriate technologies and corresponding interfaces is an exhaustive process. Once technologies are selected secondary issues such as mechanical and electrical interfaces must be addressed. The required analytical and testing work must be approached in a piecewise fashion to achieve timely results. A repeatable process has been developed to identify and prioritize system level assessments and testing needs. This Assessment Selection Process has been defined to assess cross cutting integration issues on topics at the system or component levels. Assessments are used to identify risks, encourage future actions to mitigate risks, or spur further studies.

  9. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  10. Quantum technologies with hybrid systems.

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  11. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  12. Research on synchronization technology of frequency hopping communication system

    Science.gov (United States)

    Zhao, Xiangwu; Quan, Houde; Cui, Peizhang

    2018-05-01

    Frequency Hopping (FH) communication is a technology of spread spectrum communication. It has strong anti-interference, anti-interception and security capabilities, and has been widely applied in the field of communications. Synchronization technology is one of the most crucial technologies in frequency hopping communication. The speed of synchronization establishment and the reliability of synchronous system directly affect the performance of frequency hopping communication system. Therefore, the research of synchronization technology in frequency hopping communication has important value.

  13. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    Science.gov (United States)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  14. HOM [higher order mode] losses at the IR [interaction region] of the B-factory

    International Nuclear Information System (INIS)

    Heifets, S.

    1990-08-01

    Masking at the interaction region (IR) will presumably reduce the synchrotron radiation background in the detector. One possible layout of the IR for B-factory shows a rather complicated system of masks. A bunch passing each mask will generate RF waves. These waves (called usually higher order modes, HOM-s) will be absorbed in the beam pipe wall producing additional heating and, interacting with the beam, kicking particles in the radial and azimuthal directions. This may change the bunch motion and its emittance. These effects are estimated in the present note

  15. Systems thinking for assistive technology: a commentary on the GREAT summit.

    Science.gov (United States)

    MacLachlan, Malcolm; Scherer, Marcia

    2018-05-17

    The area of assistive technology has a long history of technological ingenuity and innovation. In order to ensure that the benefits of assistive technology are equitably distributed across the population and life course, it is necessary to adopt a systemic approach to the area. We describe examples of systems thinking and non-systems thinking across 10 Ps. These Ps are People (or users, as the primary beneficiaries of assistive technology), Policy, Products, Personnel, Provision (as key strategic drivers at systems level); and Procurement, Place, Pace, Promotion and Partnership (as key situational factors for systems). Together these Ps should constitute a framework for an "open" system that can evolve and adapt, that empowers users, inter-connects key components and locates these in the reality of differing contexts. The adoption of a stronger systems thinking perspective within the assistive technology field should allow for more equitable, more resilient and more sustainable assistive technology across high, middle- and low-income contexts and countries. Implications for Rehabilitation The progress of assistive technology provison has been hampered by disconnected initiatives and activities and this needs to be corrected. Systems thinking is a way of thinking about the connections between things and how these are influenced by contextual and other factors. By encouraging the providers and users of assitive technology to think more systemically we can provide a more cohesive and resilient systems. The user experience is the central component of systems thinking in assistive technologies.

  16. Tools and technologies for expert systems: A human factors perspective

    Science.gov (United States)

    Rajaram, Navaratna S.

    1987-01-01

    It is widely recognized that technologies based on artificial intelligence (AI), especially expert systems, can make significant contributions to the productivity and effectiveness of operations of information and knowledge intensive organizations such as NASA. At the same time, these being relatively new technologies, there is the problem of transfering technology to key personnel of such organizations. The problems of examining the potential of expert systems and of technology transfer is addressed in the context of human factors applications. One of the topics of interest was the investigation of the potential use of expert system building tools, particularly NEXPERT as a technology transfer medium. Two basic conclusions were reached in this regard. First, NEXPERT is an excellent tool for rapid prototyping of experimental expert systems, but not ideal as a delivery vehicle. Therefore, it is not a substitute for general purpose system implementation languages such a LISP or C. This assertion probably holds for nearly all such tools on the market today. Second, an effective technology transfer mechanism is to formulate and implement expert systems for problems which members of the organization in question can relate to. For this purpose, the LIghting EnGineering Expert (LIEGE) was implemented using NEXPERT as the tool for technology transfer and to illustrate the value of expert systems to the activities of the Man-System Division.

  17. 49 CFR 232.503 - Process to introduce new brake system technology.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Process to introduce new brake system technology... Technology § 232.503 Process to introduce new brake system technology. (a) Pursuant to the procedures... brake system technology, prior to implementing the plan. (b) Each railroad shall complete a pre-revenue...

  18. Kas netilpo tarp politikos ir diplomatijos?

    OpenAIRE

    Streikus, Arūnas

    2008-01-01

    The review analyzes A. Kasparavičius’s monograph “Tarp Politikos ir Diplomatijos: Šventasis Sostas ir Lietuvos Respublika” (Vilnius, 2008). The historiographic value of the study is undisputed. A. Kasperavičius had an opportunity to use a broad spectrum of sources, among which two sets of archive documents stand out: the funds of the archives of Ministry of Foreign Affairs of Lithuania and the Lithuanian Embassy under the Holy See in Rome. A. Kasparavičius managed to avoid the arid scientific...

  19. Multi-pollutants sensors based on near-IR telecom lasers and mid-IR difference frequency generation: development and applications

    International Nuclear Information System (INIS)

    Cousin, J.

    2006-12-01

    At present the detection of VOC and other anthropic trace pollutants is an important challenge in the measurement of air quality. Infrared spectroscopy, allowing spectral regions rich in molecular absorption to be probed, is a suitable technique for in-situ monitoring of the air pollution. Thus the aim of this work was to develop instruments capable of detecting multiple pollutants for in-situ monitoring by IR spectroscopy. A first project benefited from the availability of the telecommunications lasers emitting in near-IR. This instrument was based on an external cavity diode laser (1500 - 1640 nm) in conjunction with a multipass cell (100 m). The detection sensitivity was optimised by employing a balanced detection and a sweep integration procedure. The instrument developed is deployable for in-situ measurements with a sensitivity of -8 cm -1 Hz -1/2 and allowed the quantification of chemical species such as CO 2 , CO, C 2 H 2 , CH 4 and the determination of the isotopic ratio 13 CO 2 / 12 CO 2 in combustion environment The second project consisted in mixing two near-IR fiber lasers in a non-linear crystal (PPLN) in order to produce a laser radiation by difference frequency generation in the middle-IR (3.15 - 3.43 μm), where the absorption bands of the molecules are the most intense. The first studies with this source were carried out on detection of ethylene (C 2 H 4 ) and benzene (C 6 H 6 ). Developments, characterizations and applications of these instruments in the near and middle IR are detailed and the advantages of the 2 spectral ranges is highlighted. (author)

  20. USE OF UBIQUITOUS TECHNOLOGIES IN MILITARY LOGISTIC SYSTEM IN IRAN

    Directory of Open Access Journals (Sweden)

    P. Jafari

    2013-09-01

    Full Text Available This study is about integration and evaluation of RFID and ubiquitous technologies in military logistic system management. Firstly, supply chain management and the necessity of a revolution in logistic systems especially in military area, are explained. Secondly RFID and ubiquitous technologies and the advantages of their use in supply chain management are introduced. Lastly a system based on these technologies for controlling and increasing the speed and accuracy in military logistic system in Iran with its unique properties, is presented. The system is based on full control of military logistics (supplies from the time of deployment to replenishment using sensor network, ubiquitous and RFID technologies.

  1. Use of Ubiquitous Technologies in Military Logistic System in Iran

    Science.gov (United States)

    Jafari, P.; Sadeghi-Niaraki, A.

    2013-09-01

    This study is about integration and evaluation of RFID and ubiquitous technologies in military logistic system management. Firstly, supply chain management and the necessity of a revolution in logistic systems especially in military area, are explained. Secondly RFID and ubiquitous technologies and the advantages of their use in supply chain management are introduced. Lastly a system based on these technologies for controlling and increasing the speed and accuracy in military logistic system in Iran with its unique properties, is presented. The system is based on full control of military logistics (supplies) from the time of deployment to replenishment using sensor network, ubiquitous and RFID technologies.

  2. Homa1-ir And Homa2-ir Indexes In Identifying Insulin Resistance And Metabolic Syndrome - Brazilian Metabolic Syndrome Study (brams) [Índices Homa1-ir E Homa2-ir Para Identificação De Resistência à Insulina E Síndrome Metabólica - Estudo Brasileiro De Síndrome Metabólica (brams)

    OpenAIRE

    Geloneze B.; Vasques A.C.J.; Stabe C.F.C.; Pareja J.C.; de Lima Rosado L.E.F.P.; de Queiroz E.C.; Tambascia M.A.

    2009-01-01

    Objective: To investigate cut-off values for HOMA1-IR and HOMA2-IR to identify insulin resistance (IR) and metabolic syndrome (MS), and to assess the association of the indexes with components of the MS. Methods: Nondiabetic subjects from the Brazilian Metabolic Syndrome Study were studied (n = 1,203, 18 to 78 years). The cut-off values for IR were determined from the 90th percentile in the healthy group (n = 297) and, for MS, a ROC curve was generated for the total sample. Results: In the he...

  3. Solubility and IR studies of gamma-irradiated arabinoxylan

    International Nuclear Information System (INIS)

    Ebringerova, A.; Kacurakova, M.; Hromadkova, Z.; Pruzinec, J.

    1989-01-01

    The structural and solubility changes of a water-insoluble arabinoxylan with a low degree of branching was studied after γ-irradiation by IR spectroscopy and chemical analysis of the polysaccharide and its polymeric fractions. New functional groups like hydroperoxidic, carbonylic and endiolic ones were found after irradiation. The IR spectra shows that the structural changes involved by radiolytic treatment are reflected in the shape of the IR spectra of both polymeric fractions. The ratio of absorbance of the peaks at 1725 and 2920 cm -1 increased with radiation dose. (author) 17 refs.; 2 figs.; 2 tabs

  4. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  5. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    Science.gov (United States)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  6. Hyperfine structure of six low-lying fine structure levels of 191Ir and 193Ir and the 191Δs193 hyperfine anomaly

    International Nuclear Information System (INIS)

    Buettgenbach, S.; Dicke, R.; Gebauer, H.; Kuhnen, R.; Traeber, F.

    1978-01-01

    The hyperfine interaction constants A and B of six low-lying metastable fine structure states of the two iridium isotopes 191 Ir and 193 Ir and the electronic g-factors of these levels have been measured using the atomic-beam magnetic-resonance method. From the values of the magnetic-dipole interaction constants A, corrected for off-diagonal perturbations, we extracted the hyperfine anomaly of a pure 6s-electron state: 191 Δs 193 = 0.64(7)%. Using nonrelativistic approximations for the effective radial parameters the nuclear electric-quadrupole moments were obtained: Q( 191 Ir) = 0.81(21)b, Q( 193 Ir) = 0.73(19)b (corrected for Sternheimer shielding effects). (orig.) [de

  7. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  8. The implementation of virtualization technology in EAST data system

    International Nuclear Information System (INIS)

    Wang, Feng; Sun, Xiaoyang; Li, Shi; Wang, Yong; Xiao, Bingjia; Chang, Sidi

    2014-01-01

    Highlights: • The server virtualization based on XenServer has been used in EAST data center for common servers and software development platform. • The application virtualization based on XenApp has been demonstrated in EAST to provide an easy and unified data browser method. • The desktop virtualization based on XenDesktop has been adopted for desktop virtualization in the new EAST central control room. - Abstract: The virtualization technology is very popular in many fields at present which has many advantages such as reducing costs, unified management, mobile applications, cross platform, etc. We have also implemented the virtualization technology in EAST control and data system. There are primarily four kinds of technology providers in virtualization technology including VMware, Citrix, Microsoft Hyper-V as well as open source solutions. We have chosen the Citrix solution to implement our virtualization system which mainly includes three aspects. Firstly, we adopt the XenServer technology to realize virtual server for EAST data management and service system. Secondly, we use XenApp technology to realize cross platform system for unify data access. Thirdly, in order to simplify the management of the client computers, we adopt the XenDesktop technology to realize virtual desktops for new central control room. The details of the implementation are described in this paper

  9. Lateral overgrowth of diamond film on stripes patterned Ir/HPHT-diamond substrate

    Science.gov (United States)

    Wang, Yan-Feng; Chang, Xiaohui; Liu, Zhangcheng; Liu, Zongchen; Fu, Jiao; Zhao, Dan; Shao, Guoqing; Wang, Juan; Zhang, Shaopeng; Liang, Yan; Zhu, Tianfei; Wang, Wei; Wang, Hong-Xing

    2018-05-01

    Epitaxial lateral overgrowth (ELO) of diamond films on patterned Ir/(0 0 1)HPHT-diamond substrates have been carried out by microwave plasma CVD system. Ir/(0 0 1)HPHT-diamond substrates are fabricated by photolithographic and magnetron sputtering technique. The morphology of the as grown ELO diamond film is characterized by optical microscopy and scanning electronic microscopy. The quality and stress of the ELO diamond film are investigated by surface etching pit density and micro-Raman spectroscopy. Two ultraviolet photodetectors are fabricated on ELO diamond area and non-ELO diamond area prepared on same substrate, and that one on ELO diamond area indicates better photoelectric properties. All results indicate quality of ELO diamond film is improved.

  10. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  11. Renewable energy systems advanced conversion technologies and applications

    CERN Document Server

    Luo, Fang Lin

    2012-01-01

    Energy conversion techniques are key in power electronics and even more so in renewable energy source systems, which require a large number of converters. Renewable Energy Systems: Advanced Conversion Technologies and Applications describes advanced conversion technologies and provides design examples of converters and inverters for renewable energy systems-including wind turbine and solar panel energy systems. Learn Cutting-Edge Techniques for Converters and Inverters Setting the scene, the book begins with a review of the basics of astronomy and Earth physics. It then systematically introduc

  12. Design, Development and Implementation of the IR Signalling Techniques for Monitoring Ambient and Body Temperature in WBANs

    Directory of Open Access Journals (Sweden)

    Attiya Baqai

    2014-07-01

    Full Text Available Healthcare systems such as hospitals, homecare, telemedicine, and physical rehabilitation are expected to be revolutionized by WBAN (Wireless Body Area Networks. This research work aims to investigate, design, optimize, and demonstrate the applications of IR (Infra-Red communication systems in WBAN. It is aimed to establish a prototype WBAN system capable of measuring Ambient and Body Temperature using LM35 as temperature sensor and transmitting and receiving the data using optical signals. The corresponding technical challenges that have to be faced are also discussed in this paper. Investigations are carried out to efficiently design the hardware using low-cost and low power optical transceivers. The experimental results reveal the successful transmission and reception of Ambient and Body Temperatures over short ranges i.e. up to 3-4 meters. A simple IR transceiver with an LED (Light Emitting Diodes, TV remote control IC and Arduino microcontroller is designed to perform the transmission with sufficient accuracy and ease. Experiments are also performed to avoid interference from other sources like AC and TV remote control signals by implementing IR tags

  13. Technology fundamentals: photovoltaic systems

    International Nuclear Information System (INIS)

    Quaschning, V.

    2006-01-01

    The generation of electric power from photovoltaic systems is described in detail. The mechanism of operation of solar cells is described in terms of photons, electrons, charge carriers and charge separation. The various cells, modules, technical terms and related technology are discussed. The chemical elements used in solar cells are mentioned and the manufacturing processes described. The technical advantages of the newer thin-film modules over the traditional silicon cells are given but at present manufacturing cost is limiting their production. Both stand-alone and grid-connected PV systems are described. The potential market for PV systems is discussed. It is suggested that PV could eventually meet the total global electric power demand. (author)

  14. Architecture for multi-technology real-time location systems.

    Science.gov (United States)

    Rodas, Javier; Barral, Valentín; Escudero, Carlos J

    2013-02-07

    The rising popularity of location-based services has prompted considerable research in the field of indoor location systems. Since there is no single technology to support these systems, it is necessary to consider the fusion of the information coming from heterogeneous sensors. This paper presents a software architecture designed for a hybrid location system where we can merge information from multiple sensor technologies. The architecture was designed to be used by different kinds of actors independently and with mutual transparency: hardware administrators, algorithm developers and user applications. The paper presents the architecture design, work-flow, case study examples and some results to show how different technologies can be exploited to obtain a good estimation of a target position.

  15. Systemization of Design and Analysis Technology for Advanced Reactor

    International Nuclear Information System (INIS)

    Kim, Keung Koo; Lee, J.; Zee, S. K.

    2009-01-01

    The present study is performed to establish the base for the license application of the original technology by systemization and enhancement of the technology that is indispensable for the design and analysis of the advanced reactors including integral reactors. Technical reports and topical reports are prepared for this purpose on some important design/analysis methodology; design and analysis computer programs, structural integrity evaluation of main components and structures, digital I and C systems and man-machine interface design. PPS design concept is complemented reflecting typical safety analysis results. And test plans and requirements are developed for the verification of the advanced reactor technology. Moreover, studies are performed to draw up plans to apply to current or advanced power reactors the original technologies or base technologies such as patents, computer programs, test results, design concepts of the systems and components of the advanced reactors. Finally, pending issues are studied of the advanced reactors to improve the economics and technology realization

  16. Energy Systems and Technologies for the coming Century

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    for the extended utilisation of sustainable energy - Distributed energy production technologies such as fuel cells, hydrogen, bioenergy, wind, hydro, wave, solar and geothermal - Centralised energy production technologies such as clean coal technologies, CCS and nuclear - Renewable energy for the transport sector......Risø International Energy Conference 2011 took place 10 – 12 May 2011. The conference focused on: - Future global energy development options, scenarios and policy issues - Intelligent energy systems of the future, including the interaction between supply and end-use - New and emerging technologies...... and its integration in the energy system The proceedings are prepared from papers presented at the conference and received with corrections, if any, until the final deadline on 20-04-2011....

  17. IGF-IR internalizes with Caveolin-1 and PTRF/Cavin in HaCat cells.

    Directory of Open Access Journals (Sweden)

    Barbara Salani

    Full Text Available BACKGROUND: Insulin-like growth factor-I receptor (IGF-IR is a tyrosine kinase receptor (RTK associated with caveolae, invaginations of the plasma membrane that regulate vesicular transport, endocytosis and intracellular signaling. IGF-IR internalization represents a key mechanism of down-modulation of receptors number on plasma membrane. IGF-IR interacts directly with Caveolin-1 (Cav-1, the most relevant protein of caveolae. Recently it has been demonstrated that the Polymerase I and Transcript Release Factor I (PTRF/Cavin is required for caveolae biogenesis and function. The role of Cav-1 and PTRF/Cavin in IGF-IR internalization is still to be clarified. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the interaction of IGF-IR with Cav-1 and PTRF/Cavin in the presence of IGF1in human Hacat cells. We show that IGF-IR internalization triggers Cav-1 and PTRF/Cavin translocation from plasma membrane to cytosol and increases IGF-IR interaction with these proteins. In fact, Cav-1 and PTRF/Cavin co-immunoprecipitate with IGF-IR during receptor internalization. We found a different time course of co-immunoprecipitation between IGF-IR and Cav-1 compared to IGF-IR and PTRF/Cavin. Cav-1 and PTRF/Cavin silencing by siRNA differently affect surface IGF-IR levels following IGF1 treatment: Cav-1 and PTRF/Cavin silencing significantly affect IGF-IR rate of internalization, while PTRF/Cavin silencing also decreases IGF-IR plasma membrane recovery. Since Cav-1 phosphorylation could have a role in IGF-IR internalization, the mutant Cav-1Y14F lacking Tyr14 was transfected. Cav-1Y14F transfected cells showed a reduced internalization of IGF-IR compared with cells expressing wild type Cav-1. Receptor internalization was not impaired by Clathrin silencing. These findings support a critical role of caveolae in IGF-IR intracellular traveling. CONCLUSIONS/SIGNIFICANCE: These data indicate that Caveolae play a role in IGF-IR internalization. Based on these findings

  18. IR-spectroscopic study and electrical properties of glasses in the Ba(PO3)2-Ba(Hal)2 systems

    International Nuclear Information System (INIS)

    Sokolov, I.A.; Tarlakov, Yu.P.; Murin, I.V.; Pronkin, A.A.

    2000-01-01

    Temperature-concentration dependence of electric conductivity of glasses in the systems Ba(PO 3 ) 2 -Ba(Hal) 2 , where Hal = Cl, Br, I, is studied by the method of conductometry, the numbers of iodide-ions transfer are determined and their concentration dependence is found. Data of IR spectroscopy permitted ascertained participation of halide ions in formation of anionic constituent of the glass structure at the expense of bridge bonds formation, as well as formation of structural-chemical units of [(Hal) - Ba 2+ O - POO 2/2 ] type, their dissociation giving rise to formation of halide ions their dissociation giving rise to formation of halide ions taking part in electric current transfer [ru

  19. Oxadiazole-carbazole polymer (POC)-Ir(ppy)3 tunable emitting composites

    Science.gov (United States)

    Bruno, Annalisa; Borriello, Carmela; Di Luccio, Tiziana; Sessa, Lucia; Concilio, Simona; Haque, Saif A.; Minarini, Carla

    2017-04-01

    POC polymer is an oxadiazole-carbazole copolymer we have previously synthetized and established as light emitting material in Organic Light Emitting Devices (OLEDs), although POC quantum yield emission efficiency and color purity still need to be enhanced. On the other hand, tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3) complexes, namely Ir(ppy)3 are among the brightest luminophores employed in green light emitting devices. Our aim, in this work, is to take advantage of Ir(ppy)3 bright emission by combining the Ir complex with blue emitting POC to obtain tunable light emitting composites over a wide range of the visible spectrum. Here we have investigated the optical proprieties POC based nanocomposites with different concentrations of Ir(ppy)3, ranging from 1 to 10 wt%. Both spectral and time resolved fluorescence measurements show an efficient energy transfer from the polymer to the dopants, resulting in white-emitting composites. The most intense and stable emission has been found when POC was doped with about 5 wt% concentration of Ir(ppy)3.

  20. Current status of technology development on remote monitoring system

    International Nuclear Information System (INIS)

    Yoon, Wan Ki; Lee, Y. K.; Lee, Y. D.; Na, W. W.

    1997-03-01

    IAEA is planning to perform the remote monitoring system in nuclear facility in order to reinforce the economical and efficient inspection. National lab. in U.S. is developing the corresponding core technology and field trial will be done to test the remote monitoring system by considering the case that it replace the current safeguards system. U.S. setup the International Remote Monitoring Project to develop the technology. IAEA makes up remote monitoring team and setup the detail facility to apply remote monitoring system. Therefore, early participation in remote monitoring technology development will make contribution in international remote monitoring system and increase the transparency and confidence in domestic nuclear activities. (author). 12 refs., 20 figs

  1. Surveillance technologies II; Proceedings of the Meeting, Orlando, FL, Apr. 21-23, 1992

    Science.gov (United States)

    Gowrinathan, Sankaran; Shanley, James F.

    1992-08-01

    Topics addressed include sensor systems and algorithm development; detectors, focal planes, and components; law enforcement technologies; airborne/tactical surveillance sensors; stable optics for geostationary remote sensors; and spaceborne surveillance. Particular attention is given to near-ultraviolet/near-infrared image mixing, ocean topography experiment star tracker performance data, a programmable timing generator for focal plane array testing and operation, a PC-based focal plane evaluation system, augmentation of image resolution for law enforcement, an integrated geophysical approach to the detection of buried objects and clandestine tunnels, the signal attenuation dependence on a segmented window structure, thermal design and performance of the visible ultraviolet experiment sensor, dimensionally stable graphite-fiber-reinforced composite mirror technology, modeling the effects of IR subpixel nonuniformities on sensor performance, and a global vision electrooptical system. (For individual items see A93-29981 to A93-29996)

  2. USE OF UBIQUITOUS TECHNOLOGIES IN MILITARY LOGISTIC SYSTEM IN IRAN

    OpenAIRE

    P. Jafari; A. Sadeghi-Niaraki

    2013-01-01

    This study is about integration and evaluation of RFID and ubiquitous technologies in military logistic system management. Firstly, supply chain management and the necessity of a revolution in logistic systems especially in military area, are explained. Secondly RFID and ubiquitous technologies and the advantages of their use in supply chain management are introduced. Lastly a system based on these technologies for controlling and increasing the speed and accuracy in military logistic system ...

  3. GREY STATISTICS METHOD OF TECHNOLOGY SELECTION FOR ADVANCED PUBLIC TRANSPORTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Chien Hung WEI

    2003-01-01

    Full Text Available Taiwan is involved in intelligent transportation systems planning, and is now selecting its prior focus areas for investment and development. The high social and economic impact associated with which intelligent transportation systems technology are chosen explains the efforts of various electronics and transportation corporations for developing intelligent transportation systems technology to expand their business opportunities. However, there has been no detailed research conducted with regard to selecting technology for advanced public transportation systems in Taiwan. Thus, the present paper demonstrates a grey statistics method integrated with a scenario method for solving the problem of selecting advanced public transportation systems technology for Taiwan. A comprehensive questionnaire survey was conducted to demonstrate the effectiveness of the grey statistics method. The proposed approach indicated that contactless smart card technology is the appropriate technology for Taiwan to develop in the near future. The significance of our research results implies that the grey statistics method is an effective method for selecting advanced public transportation systems technologies. We feel our information will be beneficial to the private sector for developing an appropriate intelligent transportation systems technology strategy.

  4. Decision Analysis System for Selection of Appropriate Decontamination Technologies

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Boudreaux, J.F.; Chinta, S.; Zanakis, S.H.

    1998-01-01

    The principal objective for designing Decision Analysis System for Decontamination (DASD) is to support DOE-EM's endeavor to employ the most efficient and effective technologies for treating radiologically contaminated surfaces while minimizing personnel and environmental risks. DASD will provide a tool for environmental decision makers to improve the quality, consistency, and efficacy of their technology selection decisions. The system will facilitate methodical comparisons between innovative and baseline decontamination technologies and aid in identifying the most suitable technologies for performing surface decontamination at DOE environmental restoration sites

  5. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  6. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  7. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  8. Validation of Surgical Intensive Care-Infection Registry: a medical informatics system for intensive care unit research, quality of care improvement, and daily patient care.

    Science.gov (United States)

    Golob, Joseph F; Fadlalla, Adam M A; Kan, Justin A; Patel, Nilam P; Yowler, Charles J; Claridge, Jeffrey A

    2008-08-01

    We developed a prototype electronic clinical information system called the Surgical Intensive Care-Infection Registry (SIC-IR) to prospectively study infectious complications and monitor quality of care improvement programs in the surgical and trauma intensive care unit. The objective of this study was to validate SIC-IR as a successful health information technology with an accurate clinical data repository. Using the DeLone and McLean Model of Information Systems Success as a framework, we evaluated SIC-IR in a 3-month prospective crossover study of physician use in one of our two surgical and trauma intensive care units (SIC-IR unit versus non SIC-IR unit). Three simultaneous research methodologies were used: a user survey study, a pair of time-motion studies, and an accuracy study of SIC-IR's clinical data repository. The SIC-IR user survey results were positive for system reliability, graphic user interface, efficiency, and overall benefit to patient care. There was a significant decrease in prerounding time of nearly 4 minutes per patient on the SIC-IR unit compared with the non SIC-IR unit. The SIC-IR documentation and data archiving was accurate 74% to 100% of the time depending on the data entry method used. This accuracy was significantly improved compared with normal hand-written documentation on the non SIC-IR unit. SIC-IR proved to be a useful application both at individual user and organizational levels and will serve as an accurate tool to conduct prospective research and monitor quality of care improvement programs.

  9. Supplemental Security Income (SSI) / Internal Revenue Service (IRS) 1099

    Data.gov (United States)

    Social Security Administration — A finder file from SSA's Title XVI database is provided to the IRS. The IRS discloses 1099 information to SSA for use in verifying eligibility, amount, and benefits...

  10. Development of System Engineering Technology for Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kim, Ho Dong; Kim, Sung Ki; Song, Kee Chan

    2010-04-01

    This report is aims to establish design requirements for constructing mock-up system of pyroprocess by 2011 to realize long-term goal of nuclear energy promotion comprehensive plan, which is construction of engineering scale pyroprocess integrated process demonstration facility. The development of efficient process for spent fuel and establishment of system engineering technology to demonstrate the process are required to develop nuclear energy continuously. The detailed contents of research for these are as follows; - Design of Mock-up facility for demonstrate pyroprocess, Construction, Approval, Trial run, Performance test - Development of nuclear material accountancy technology for unit processes of pyroprocess and design of safeguards system - Remote operation of demonstrating pyroprocess / Development of maintenance technology and equipment - Establishment of transportation system and evaluation of pre-safety for interim storage system - Deriving and implementation of a method to improve nuclear transparency for commercialization proliferation resistance nuclear fuel cycle Spent fuel which is the most important pending problem of nuclear power development would be reduced and recycled by developing the system engineering technology of pyroprocess facility by 2010. This technology would contribute to obtain JD for the use of spent fuel between the ROK-US and to amend the ROK-US Atomic Energy Agreement scheduled in 2014

  11. FT-IR and X-ray spectroscopic investigations of Na-diclofenac-cyclodextrins interactions

    Science.gov (United States)

    Bratu, I.; Astilean, S.; Ionesc, Corina; Indrea, E.; Huvenne, J. P.; Legrand, P.

    1998-01-01

    The association of DCF-Na (the salt of the 2-[(2,6-dichlorophenyl)amino]-phenyl-acetic acid) with β-CD (cyclodextrin) in some therapeutic formulas can contribute to the optimisation of the physico-chemical and pharmaceutical properties of the parent drug. The understanding of the interaction between DCF with β-CD represents the objective of this study. FT-IR spectroscopy is one of the methods which clarify the nature of these interactions in complexes of such type. Therefore the changes in FT-IR spectra of binary dispersed systems DCF/ β-CD in physical mixture and coprecipitate from methanol (molar ratios: 1/1, 1/2, 2/3, 3/4, 7/4) were analysed. The analysis of the broadening of the X-ray powder diffraction line has been applied to investigate the average effective crystallite size, the mean square of the microstrain caused by distortions within β-CD crystallite and the fault probability in the binary dispersed DCF/ β-CD coprecipitate system.

  12. Utilizing Internet Technologies in Observatory Control Systems

    Science.gov (United States)

    Cording, Dean

    2002-12-01

    The 'Internet boom' of the past few years has spurred the development of a number of technologies to provide services such as secure communications, reliable messaging, information publishing and application distribution for commercial applications. Over the same period, a new generation of computer languages have also developed to provide object oriented design and development, improved reliability, and cross platform compatibility. Whilst the business models of the 'dot.com' era proved to be largely unviable, the technologies that they were based upon have survived and have matured to the point were they can now be utilized to build secure, robust and complete observatory control control systems. This paper will describe how Electro Optic Systems has utilized these technologies in the development of its third generation Robotic Observatory Control System (ROCS). ROCS provides an extremely flexible configuration capability within a control system structure to provide truly autonomous robotic observatory operation including observation scheduling. ROCS was built using Internet technologies such as Java, Java Messaging Service (JMS), Lightweight Directory Access Protocol (LDAP), Secure Sockets Layer (SSL), eXtendible Markup Language (XML), Hypertext Transport Protocol (HTTP) and Java WebStart. ROCS was designed to be capable of controlling all aspects of an observatory and be able to be reconfigured to handle changing equipment configurations or user requirements without the need for an expert computer programmer. ROCS consists of many small components, each designed to perform a specific task, with the configuration of the system specified using a simple meta language. The use of small components facilitates testing and makes it possible to prove that the system is correct.

  13. Photothermal IR spectroscopy with perforated membrane micromechanical resonators

    DEFF Research Database (Denmark)

    Kurek, Maksymilian

    -IR method. In order to overcome them, string resonators were replaced by membranes. A reliable sampling technique was maintained by adding perforation to membranes and thereby essentially getting membrane porous filters. Membranes gave also access to fully integrated magnetic transduction that allowed...... for significant shrinkage and simplification of the system. An analytical model of a locally heated membrane was developed and confirmed through FEM simulations. Then, low stress silicon nitride perforated membranes were fabricated and characterized using two different experimental setups that employed optical...

  14. Studies of IR-screening smoke clouds

    Energy Technology Data Exchange (ETDEWEB)

    Cudzilo, S. [Military Univ. of Technology, Warsaw (Poland)

    2001-02-01

    This paper contains some results of research on the IR-screening capability of smoke clouds generated during the combustion process of varied pyrotechnic formulations. The smoke compositions were made from some oxygen or oxygen-free mixtures containing metal and chloroorganic compounds or mixtures based on red phosphorus. The camouflage effectiveness of clouds generated by these formulations was investigated under laboratory conditions with an infrared camera. The technique employed enables determination of radiant temperature distributions in a smoke cloud treated as an energy equivalent of a grey body emission. The results of the analysis of thermographs from the camera were the basis on which the mixtures producing screens of the highest countermeasure for thermal imaging systems have been chosen. (orig.)

  15. Design and performance of a novel innovative roofing system for tropical landed houses

    International Nuclear Information System (INIS)

    Al-Obaidi, Karam M.; Ismail, Mazran; Abdul Rahman, Abdul Malek

    2014-01-01

    Highlights: • Constructing a new design of sustainable roofing systems. • An innovative roofing system (IRS) for tropical landed houses is proposed. • Separate solar heat from useful natural light by physical form. • The IRS can maintain an illuminance level of approximately 86–100% below 2000 lux. • The IRS can reduce the attic air temperature by 5.4 °C and the indoor air temperature by 2.1 °C. - Abstract: An innovative roofing system (IRS) is designed to deliver an abundant and uniform amount of cool natural light from the roof with reduced heat gain effect for tropical residential buildings (3 m height) in Malaysia. Studies revealed that several passive and active solar techniques can be integrated to form a roofing system to separate solar heat from useful natural light at the attic zone before heat reaches the occupied space. The IRS design is specified and proposed by using glazing technology (polycarbonate), pigment technique (reflective and radiative), as well as ventilation process (hybrid turbine ventilator) applied at the attic zone to represent a new model of sustainable roofing design. The aim of this research is to demonstrate the effectiveness of the design concept without the need for any chemical, complex, or expensive solar design techniques. The methodology was conducted on a series of field studies in a standard room model at Universiti Sains Malaysia. Three different roofing systems are investigated to identify the IRS performance in both dark and daylight conditions to determine the effect of natural light on the indoor environment. The outcomes of the design show that the IRS was able to reduce the indoor air temperature compared with conventional roofing system by approximately 2.1 °C under daylight condition. Results showed that the difference in the IRS (daylight–dark) condition was 0.31 °C compared to that in the conventional roofing system at 0.8 °C. Furthermore, the level of mean radiant temperature compared with

  16. Mid-IR hyperspectral imaging for label-free histopathology and cytology

    Science.gov (United States)

    Hermes, M.; Brandstrup Morrish, R.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G. R.; Masselink, W. T.; Tidemand-Lichtenberg, P.; Pedersen, C.; Palombo, F.; Stone, N.

    2018-02-01

    Mid-infrared (MIR) imaging has emerged as a valuable tool to investigate biological samples, such as tissue histological sections and cell cultures, by providing non-destructive chemical specificity without recourse to labels. While feasibility studies have shown the capabilities of MIR imaging approaches to address key biological and clinical questions, these techniques are still far from being deployable by non-expert users. In this review, we discuss the current state of the art of MIR technologies and give an overview on technical innovations and developments with the potential to make MIR imaging systems more readily available to a larger community. The most promising developments over the last few years are discussed here. They include improvements in MIR light sources with the availability of quantum cascade lasers and supercontinuum IR sources as well as the recently developed upconversion scheme to improve the detection of MIR radiation. These technical advances can substantially speed up data acquisition of multispectral or hyperspectral datasets thus providing the end user with vast amounts of data when imaging whole tissue areas of many mm2. Therefore, effective data analysis is of tremendous importance, and progress in method development is discussed with respect to the specific biomedical context.

  17. The convertible client/server technology in large container inspection system

    International Nuclear Information System (INIS)

    Chen Zhiqiang; Zhang Li; Gao Wenhuan; Kang Kejun

    2001-01-01

    The author presents a new convertible client/server technology in distributed networking environment of a large container inspection system. The characteristic and advantage of this technology is introduced. The authors illustrate the policy of the technology to develop the networking program, and provide one example about how to program the software in large container inspection system using the new technology

  18. PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT

    Science.gov (United States)

    Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo

    PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.

  19. A two-state computational investigation of methane C--H and ethane C--C oxidative addition to [CpM(PH3)]n+ (M = Co, Rh, Ir; n = 0, 1).

    Science.gov (United States)

    Petit, Alban; Richard, Philippe; Cacelli, Ivo; Poli, Rinaldo

    2006-01-11

    Reductive elimination of methane from methyl hydride half-sandwich phosphane complexes of the Group 9 metals has been investigated by DFT calculations on the model system [CpM(PH(3))(CH(3))(H)] (M = Co, Rh, Ir). For each metal, the unsaturated product has a triplet ground state; thus, spin crossover occurs during the reaction. All relevant stationary points on the two potential energy surfaces (PES) and the minimum energy crossing point (MECP) were optimized. Spin crossover occurs very near the sigma-CH(4) complex local minimum for the Co system, whereas the heavier Rh and Ir systems remain in the singlet state until the CH(4) molecule is almost completely expelled from the metal coordination sphere. No local sigma-CH(4) minimum was found for the Ir system. The energetic profiles agree with the nonexistence of the Co(III) methyl hydride complex and with the greater thermal stability of the Ir complex relative to the Rh complex. Reductive elimination of methane from the related oxidized complexes [CpM(PH(3))(CH(3))(H)](+) (M = Rh, Ir) proceeds entirely on the spin doublet PES, because the 15-electron [CpM(PH(3))](+) products have a doublet ground state. This process is thermodynamically favored by about 25 kcal mol(-1) relative to the corresponding neutral system. It is essentially barrierless for the Rh system and has a relatively small barrier (ca. 7.5 kcal mol(-1)) for the Ir system. In both cases, the reaction involves a sigma-CH(4) intermediate. Reductive elimination of ethane from [CpM(PH(3))(CH(3))(2)](+) (M = Rh, Ir) shows a similar thermodynamic profile, but is kinetically quite different from methane elimination from [CpM(PH(3))(CH(3))(H)](+): the reductive elimination barrier is much greater and does not involve a sigma-complex intermediate. The large difference in the calculated activation barriers (ca. 12.0 and ca. 30.5 kcal mol(-1) for the Rh and Ir systems, respectively) agrees with the experimental observation, for related systems, of oxidatively

  20. A network identity authentication system based on Fingerprint identification technology

    Science.gov (United States)

    Xia, Hong-Bin; Xu, Wen-Bo; Liu, Yuan

    2005-10-01

    Fingerprint verification is one of the most reliable personal identification methods. However, most of the automatic fingerprint identification system (AFIS) is not run via Internet/Intranet environment to meet today's increasing Electric commerce requirements. This paper describes the design and implementation of the archetype system of identity authentication based on fingerprint biometrics technology, and the system can run via Internet environment. And in our system the COM and ASP technology are used to integrate Fingerprint technology with Web database technology, The Fingerprint image preprocessing algorithms are programmed into COM, which deployed on the internet information server. The system's design and structure are proposed, and the key points are discussed. The prototype system of identity authentication based on Fingerprint have been successfully tested and evaluated on our university's distant education applications in an internet environment.