WorldWideScience

Sample records for ir laser current

  1. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.

    Science.gov (United States)

    Manfred, Katherine M; Kirkbride, James M R; Ciaffoni, Luca; Peverall, Robert; Ritchie, Grant A D

    2014-12-15

    The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890  cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3)  Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.

  2. Modification of Hydroxyapatite Crystal Using IR Laser

    CERN Document Server

    Satoh, Saburoh; Goto, M; Guan, W; Hayashi, N; Ihara, S; Yamabe, C; Yamaguchi, Y

    2004-01-01

    The first application of laser technology to dentistry was for the removal of caries. However, reports of laser application on improvement of dental surface were emerged, much attention has been focused on the laser’s potential to enhance enamel’s hardness and resistance to acid. Most of the previous reports concentrated on the photo issue interaction. Few research has pursued the photochemical phenomenon occurred during laser irradiation on biological tissues. In order to find a creative method to remineralize the dissociating enamel and exposed coronal of dentine, the authors developed a novel procedure during laser irradiation. Slice of sound molar and artificial HAp pellet were irradiated separately, with CO2 laser under different laser parameters. Tow series of samples covered with saturation calcium ion solution were irradiated separately. To investigate the crystal morphology, XRD pattern were surveyed. The comparison of each cases show that the chemical coating affected the ablation process evidentl...

  3. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  4. Compact erbium lasers in the IR photorefractive keratectomy (PRK)

    Science.gov (United States)

    Liu, Baining; Eichler, Hans J.; Sperlich, O.; Holschbach, A.; Kayser, M.

    1996-09-01

    Erbium lasers deliver laser radiation near 3 micrometers and are a promising alternative to excimer laser photorefractive keratectomy (UV-PRK). In addition to easier handling due to all solid state technology, especially when operated in the fundamental mode, IR-PRK eliminates the potential of mutagenic side effects associated with UV-PRK. However, a successful IR-PRK for the clinic treatment in the near future demands both technological development of erbium lasers in different operation modes and clinical investigation of interaction between 3 micrometers radiation and human corneas. The excellent cooperation between university, company and hospital makes this possible. Uncoated thin plates made from infrared materials were found to be effective etalon reflectors with high damage threshold as high as 1 GW/cm2 for erbium lasers. Four kinds of such reflectors were successfully tested in Q-switched Er:YAG-laser at 2.94 micrometers and Er:Cr:YSGG-laser at 2.80 micrometers. Very stable operation of our erbium lasers with high output energy both in free-running and Q-switched modes is realized. First infrared photorefractive keratectomy (IR-PRK) for myopic correction in human corneas by a free-running erbium laser based on our new construction concepts was achieved.

  5. Laser wakefield acceleration with high-power, few-cycle mid-IR lasers

    OpenAIRE

    Papp, Daniel; Wood, Jonathan C.; Gruson, Vincent; Bionta, Mina; Gruse, Jan-Niclas; Cormier, Eric; Najmudin, Zulfikar; Légaré, François; Kamperidis, Christos

    2018-01-01

    The study of laser wakefield electron acceleration (LWFA) using mid-IR laser drivers is a promising path for future laser driven electronaccelerators, when compared to traditional near-IR laser drivers uperating at 0.8-1 {\\mu}m central wavelength ({\\lambda}laser), as the necessary vector potential a_0 for electron injection can be achieved with smaller laser powers due to the linear dependence on {\\lambda}laser. In this work, we perform 2D PIC simulations on LWFA using few-cycle high power (5...

  6. UV, visible and IR laser interaction with gelatine

    International Nuclear Information System (INIS)

    Oujja, M; Rebollar, E; Abrusci, C; Amo, A Del; Catalina, F; Castillejo, M

    2007-01-01

    In this work we investigate the effects on gelatine films of nanosecond pulsed laser irradiation at different laser wavelengths from the UV to the IR at 248, 266, 355, 532 and 1064 nm. We compared gelatines differing in gel strength values (Bloom 75 and 225) and in crosslinking degree. Formation of bubbles at the wavelengths in the UV (248 and 266 nm), melting and resolidification at 355 nm, and formation of craters by ablation in the VIS and IR (532 and 1064 nm) are the observed morphological changes. On the other hand, changes of the fluorescence behaviour of the films upon UV irradiation reveal chemical modifications of photolabile chromophores

  7. Mid-IR laser system for advanced neurosurgery

    Science.gov (United States)

    Klosner, M.; Wu, C.; Heller, D. F.

    2014-03-01

    We present work on a laser system operating in the near- and mid-IR spectral regions, having output characteristics designed to be optimal for cutting various tissue types. We provide a brief overview of laser-tissue interactions and the importance of controlling certain properties of the light beam. We describe the principle of operation of the laser system, which is generally based on a wavelength-tunable alexandrite laser oscillator/amplifier, and multiple Raman conversion stages. This configuration provides robust access to the mid-IR spectral region at wavelengths, pulse energies, pulse durations, and repetition rates that are attractive for neurosurgical applications. We summarize results for ultra-precise selective cutting of nerve sheaths and retinas with little collateral damage; this has applications in procedures such as optic-nerve-sheath fenestration and possible spinal repair. We also report results for cutting cornea, and dermal tissues.

  8. IR-laser assisted additive freeform optics manufacturing.

    Science.gov (United States)

    Hong, Zhihan; Liang, Rongguang

    2017-08-02

    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  9. IR laser enrichment of light elements isotopes - challenges and prospects

    International Nuclear Information System (INIS)

    Parthasarathy, V.

    2002-01-01

    Full text: Infra-red multiple photon dissociation (IR MPD) of poly-atomic molecules has made considerable progress since its discovery in the early seventies. Since the process was found to be isotopically selective; the possibility of laser isotope separation (LIS) created a lot of initial excitement. While the early investigations were concerned with the fundamental dynamics and potential applications of the phenomenon, serious efforts for the isotope enrichment process have been made only during the last decade. These efforts focussed on aspects to improve both the enrichment factor and throughput in various systems. Many research groups have achieved a good measure of success for scaling up the process for various light elements like carbon, oxygen, silicon and sulphur whose isotopes are quite important in medicine and technology. Significant results have been reported especially for the separation of carbon isotopes wherein macroscopic operating scales have been already realised. This talk will give-a summary of our work carried out at BARC and highlight the current efforts for scaling up the process for carbon isotopes enrichment. This would include the design aspects of a large photochemical reactor with multi-pass, refocusing optics for efficient photon utilization. It will also cover the development of a cryogenic distillation set up and a preparative gas chromatograph for a large scale separation and collection of the isotopically enriched photoproduct in the post irradiation stage. Based on the experience gained and infra structure developed, plans are afoot to separate oxygen and sulphur isotopes using a similar approach

  10. Laser Spark Formamide Decomposition Studied by FT-IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ferus, Martin; Kubelík, Petr; Civiš, Svatopluk

    2011-01-01

    Roč. 115, č. 44 (2011), s. 12132-12141 ISSN 1089-5639 R&D Projects: GA AV ČR IAA400400705; GA AV ČR IAAX00100903; GA ČR GAP208/10/2302 Institutional research plan: CEZ:AV0Z40400503 Keywords : FT-IR spectroscopy * high-power laser * induced dielectric-breakdown Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.946, year: 2011

  11. Laser welding parameters for manufacturing iridium-192 (Ir-192) source

    International Nuclear Information System (INIS)

    Anung Pujiyanto; Moch Subechi; Hotman Lubis; Diandono KY

    2013-01-01

    Number of cervical cancer patients in Indonesia is growing every year. One of cervical cancer treatment was fairly effective use brachytherapy treatment with radioisotope sources of iridium-192. Manufacturing of iridium sources for brachytherapy can be done by incorporating the iridium-192 into stainless steel microcapsules then welding using laser welder which the quality of the welding of iridium source (Ir-192) was determined by the welding parameters such as full power, energy frequency, average power and speed. Based on the result of leakage test using pressure -20 inch Hg and tensile test 2.5 bar showed the welding parameters III and IV did not have leakage and damaged. So that parameters III and IV are recommended to be applied to Ir-192 HDR's source. (author)

  12. Neo-Poulantzian Perspectives in IR and the Current Crisis

    OpenAIRE

    Ougaard, Morten

    2013-01-01

    This paper is about Poulantzas, historical materialism, international relations, and the current crisis. My purpose is to discuss how some Poulantzian theoretical contributions can be applied to the study of subject matters that are the focus of academic fields such as International Relations (IR), International Political Economy (IPE), International Politics, World Politics and others. I deliberately abstain from singling out any of these disciplines or fields or labels and fr...

  13. New Mid-IR Lasers Based on Rare-Earth-Doped Sulfide and Chloride Materials

    International Nuclear Information System (INIS)

    Nostrand, M

    2000-01-01

    Applications in remote-sensing and military countermeasures have driven a need for compact, solid-state mid-IR lasers. Due to multi-phonon quenching, non-traditional hosts are needed to extend current solid-state, room-temperature lasing capabilities beyond ∼ 4 (micro)m. Traditional oxide and fluoride hosts have effective phonon energies in the neighborhood of 1000 cm -1 and 500 cm -1 , respectively. These phonons can effectively quench radiation above 2 and 4 (micro)m, respectively. Materials with lower effective phonon energies such as sulfides and chlorides are the logical candidates for mid-IR (4-10 (micro)m) operation. In this report, laser action is demonstrated in two such hosts, CaGa 2 S 4 and KPb 2 Cl 5 . The CaGa 2 S 4 :Dy 3+ laser operating at 4.3 (micro)m represents the first sulfide laser operating beyond 2 (micro)m. The KPb 2 Cl 5 :Dy 3+ laser operating at 2.4 (micro)m represents the first operation of a chloride-host laser in ambient conditions. Laser action is also reported for CaGa 2 S 4 :Dy 3+ at 2.4 (micro)m, CaGa 2 S 4 :Dy 3+ at 1.4 (micro)m, and KPb 2 Cl 5 :Nd 3+ at 1.06 (micro)m. Both host materials have been fully characterized, including lifetimes, absorption and emission cross sections, radiative branching ratios, and radiative quantum efficiencies. Radiative branching ratios and radiative quantum efficiencies have been determined both by the Judd-Ofelt method (which is based on absorption measurements), and by a novel method described herein which is based on emission measurements. Modeling has been performed to predict laser performance, and a new method to determine emission cross section from slope efficiency and threshold data is developed. With the introduction and laser demonstration of rare-earth-doped CaGa 2 S 4 and KPb 2 Cl 5 , direct generation of mid-IR laser radiation in a solid-state host has been demonstrated. In KPb 2 Cl 5 , predictions indicate that laser operation to 9 (micro)m may be possible, a wavelength previously

  14. Neo-Poulantzian Perspectives in IR and the Current Crisis

    DEFF Research Database (Denmark)

    Ougaard, Morten

    This paper is about Poulantzas, historical materialism, international relations, and the current crisis. My purpose is to discuss how some Poulantzian theoretical contributions can be applied to the study of subject matters that are the focus of academic fields such as International Relations (IR......), International Political Economy (IPE), International Politics, World Politics and others. I deliberately abstain from singling out any of these disciplines or fields or labels and from trying to define them precisely, because one of my arguments is that historical materialism (HM) is a research program2...

  15. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    International Nuclear Information System (INIS)

    Zhou, Gengji

    2017-11-01

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  16. Power scaling of ultrafast mid-IR source enabled by high-power fiber laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gengji

    2017-11-15

    Ultrafast laser sources with high repetition-rate (>10 MHz) and tunable in the mid-infrared (IR) wavelength range of 7-18 μm hold promise for many important spectroscopy applications. Currently, these ultrafast mid- to longwavelength-IR sources can most easily be achieved via difference-frequency generation (DFG) between a pump beam and a signal beam. However, current ultrafast mid- to longwavelength-IR sources feature a low average power, which limits their applications. In this thesis, we propose and demonstrate a novel approach to power scaling of DFG-based ultrafast mid-IR laser sources. The essence of this novel approach is the generation of a high-energy signal beam. Both the pump beam and the signal beam are derived from a home-built Yb-fiber laser system that emits 165-fs pulses centered at 1035 nm with 30-MHz repetition rate and 14.5-W average power (corresponding to 483-nJ pulse energy). We employ fiber-optic self-phase modulation (SPM) to broaden the laser spectrum and generate isolated spectral lobes. Filtering the rightmost spectral lobe leads to femtosecond pulses with >10 nJ pulse energy. Tunable between 1.1-1.2 μm, this SPM-enabled ultrafast source exhibits ∝100 times higher pulse energy than can be obtained from Raman soliton sources in this wavelength range. We use this SPM-enabled source as the signal beam and part of the Yb-fiber laser output as the pump beam. By performing DFG in GaSe crystals, we demonstrate that power scaling of a DFG-based mid-IR source can be efficiently achieved by increasing the signal energy. The resulting mid-IR source is tunable from 7.4 μm to 16.8 μm. Up to 5.04-mW mid-IR pulses centered at 11 μm are achieved. The corresponding pulse energy is 167 pJ, representing nearly one order of magnitude improvement compared with other reported DFG-based mid-IR sources at this wavelength. Despite of low pulse energy, Raman soliton sources have become a popular choice as the signal source. We carry out a detailed study on

  17. Application of a flow generated by IR laser and AC electric field in micropumping and micromixing

    International Nuclear Information System (INIS)

    Nakano, M; Mizuno, A

    2008-01-01

    In this paper, it is described that measurement of fluid flow generated by simultaneous operation of an infrared (IR) laser and AC electric field in a microfabricated channel. When an IR laser (1026 nm) was focused under an intense AC electric field, a circulating flow was generated around the laser focus. The IR laser and the electric field generate two flow patterns of the electrohydrodynamicss. When the laser focus is placed at the center of the gap between electrodes, the flow pattern is parallel to the AC electric field toward electrodes from the centre. On the other hand, when the laser focus is placed close to one of the electrodes, one directional flow is generated. First flow pattern can be used as a micromixer and the second one as a micropump. Flow velocity profiles of the two flow patterns were measured as a function of the laser power, intensity of the AC electric field and AC frequency.

  18. Rydberg excitation of neutral nitric oxide molecules in strong UV and near-IR laser fields

    International Nuclear Information System (INIS)

    Lv Hang; Zhang Jun-Feng; Zuo Wan-Long; Xu Hai-Feng; Jin Ming-Xing; Ding Da-Jun

    2015-01-01

    Rydberg state excitations of neutral nitric oxide molecules are studied in strong ultraviolet (UV) and near-infra-red (IR) laser fields using a linear time-of-flight (TOF) mass spectrometer with the pulsed electronic field ionization method. The yield of Rydberg molecules is measured as a function of laser intensity and ellipticity, and the results in UV laser fields are compared with those in near-IR laser fields. The present study provides the first experimental evidence of neutral Rydberg molecules surviving in a strong laser field. The results indicate that a rescattering-after-tunneling process is the main contribution to the formation of Rydberg molecules in strong near-IR laser fields, while multi-photon excitation may play an important role in the strong UV laser fields. (paper)

  19. Competing reaction channels in IR-laser-induced unimolecular reactions

    International Nuclear Information System (INIS)

    Berman, M.R.

    1981-01-01

    The competing reaction channels in the unimolecular decomposition of two molecules, formaldehyde and tetralin were studied. A TEA CO 2 laser was used as the excitation source in all experiments. The dissociation of D 2 CO was studied by infrared multiphoton dissociation (MPD) and the small-molecule nature of formaldehyde with regard to MPD was explored. The effect of collisions in MPD were probed by the pressure dependence of the MPD yield and ir fluorescence from multiphoton excited D 2 CO. MPD yield shows a near cubic dependence in pure D 2 CO which is reduced to a 1.7 power dependence when 15 torr of NO is added. The peak amplitude of 5 μm ir fluorescence from D 2 CO is proportional to the square of the D 2 CO pressure in pure D 2 CO or in the presence of 50 torr of Ar. Results are explained in terms of bottlenecks to excitation at the v = 1 level which are overcome by a combination of vibrational energy transfer and rotational relaxation. The radical/molecule branching ratio in D 2 CO MPD was 0.10 +- 0.02 at a fluence of 125 J/cm 2 at 946.0 cm -1 . The barrier height to molecular dissociation was calculated to be 3.6 +- 2.0 kcal/mole below the radical threshold or 85.0 +- 3.0 kcal/mole above the ground state of D 2 CO. In H 2 CO, this corresponds to 2.5 +- 2.0 kcal/mole below the radical threshold or 83.8 +- 3.0 kcal/mole above the ground state. Comparison with uv data indicate that RRKM theory is an acceptable description of formaldehyde dissociation in the 5 to 10 torr pressure range. The unimolecular decomposition of tetralin was studied by MPD and SiF 4 - sensitized pyrolysis. Both techniques induce decomposition without the interference of catalytic surfaces. Ethylene loss is identified as the lowest energy reaction channel. Dehydrogenation is found to result from step-wise H atom loss. Isomerization via disproportionation is also identified as a primary reaction channel

  20. Laser guide stars for daytime thermal IR observations

    Science.gov (United States)

    Beckers, Jacques M.

    2008-04-01

    In connection with the planning for Extremely Large Telescopes, I revisit a 2001 paper in which Cacciani and I describe the use of Sodium Laser Guide Stars (LGSs) for diffraction limited daytime astronomical observations. The enabling technology for seeing LGSs in broad daylight is the availability of very narrow band magneto-optical filters. Considering the dominance of the atmospheric scattering of sunlight at wavelengths below 3.5 μm, daytime use is only indicated for mid- and thermal IR observations. The launch of the 6.5 meter aperture James Web Space Telescope (JWST) appears to be assured and planned for 2013, preceding the most optimistic projections for the completion date of the first ELT. The projected thermal background of the JWST is very much less than that of ground-based telescopes so that any competing ground-based observations are limited to those parameters not covered by the JWST: angular resolution (requiring apertures > 6.5 meter) and spectral resolution (R>3000). I compare the benefits of daytime observations with Na-LGS equipped telescopes and interferometers at moderate latitudes and in the Antarctic (specifically Dome C). In both cases daytime observations extend the amount of observing time available for TIR observations. Antarctic observations have the advantage of having very good seeing during the daytime, significantly better than nighttime seeing. In contrast the seeing at moderate latitude sites significantly deteriorates during daytime resulting in lower quality observations than during nighttime. In addition Antarctic sites are less hostile to maintenance and operations during daytime (summer) observations as compared to nighttime (winter) observations.

  1. Photofragmentation of colloidal solutions of gold nanoparticles under femtosecond laser pulses in IR and visible ranges

    International Nuclear Information System (INIS)

    Danilov, P A; Zayarnyi, D A; Ionin, A A; Kudryashov, S I; Makarov, S V; Rudenko, A A; Saraeva, I N; Yurovskikh, V I; Lednev, V N; Pershin, S M

    2015-01-01

    The specific features of photofragmentation of sols of gold nanoparticles under focused femtosecond laser pulses in IR (1030 nm) and visible (515 nm) ranges is experimentally investigated. A high photofragmentation efficiency of nanoparticles in the waist of a pulsed laser beam in the visible range (at moderate radiation scattering) is demonstrated; this efficiency is related to the excitation of plasmon resonance in nanoparticles on the blue shoulder of its spectrum, in contrast to the regime of very weak photofragmentation in an IR-laser field of comparable intensity. Possible mechanisms of femtosecond laser photofragmentation of gold nanoparticles are discussed. (extreme light fields and their applications)

  2. Generation of various carbon nanostructures in water using IR/UV laser ablation

    International Nuclear Information System (INIS)

    Mortazavi, Seyedeh Zahra; Parvin, Parviz; Reyhani, Ali; Mirershadi, Soghra; Sadighi-Bonabi, Rasoul

    2013-01-01

    A wide variety of carbon nanostructures were generated by a Q-switched Nd : YAG laser (1064 nm) while mostly nanodiamonds were created by an ArF excimer laser (193 nm) in deionized water. They were characterized by transmission electron microscopy, Raman spectroscopy and x-ray photoelectron spectroscopy. It was found that the IR laser affected the morphology and structure of the nanostructures due to the higher inverse bremsstrahlung absorption rate within the plasma plume with respect to the UV laser. Moreover, laser-induced breakdown spectroscopy was carried out so that the plasma created by the IR laser was more energetic than that generated by the UV laser. (paper)

  3. Near‐IR laser cleaning of Cu‐ based artefacts: a comprehensive study of the methodology standardization

    DEFF Research Database (Denmark)

    Hrnjic, Mahir

    2015-01-01

    . In this study, laser cleaning was performed with near-IR lasers on artificially aged copper specimens and on two copper coins coming from Bubastis (Egypt) in order to remove the patinas in a totally non invasive way. Different irradiance and different number of passes were utilised and compared. Treated surface...

  4. Current role of resurfacing lasers.

    Science.gov (United States)

    Hantash, B M; Gladstone, H B

    2009-06-01

    Resurfacing lasers have been the treatment of choice for diminishing rhytids and tightening skin. The carbon dioxide and erbium lasers have been the gold and silver standards. Despite their effectiveness, these resurfacing lasers have a very high risk profile including scarring, hyperpigmentation and hypopigmentation. Because of these side effects, various practitioners have tried alternative settings for these lasers as well as alternative wavelengths, particularly in the infrared spectrum. These devices have had less downtime, but their effectiveness has been limited to fine wrinkles. As with selective photothemolysis, a major advance in the field has been fractionated resurfacing which incorporates grids of microthermal zones that spares islands of skin. This concept permits less tissue damage and quicker tissue regeneration. Initially, fractionated resurfacing was limited to the nonablative mid-infrared spectrum. These resurfacing lasers is appropriate for those patients with acne scars, uneven skin tone, mild to moderate photodamage, and is somewhat effective for melasma. Importantly, because there is less overall tissue damage and stimulation of melanocytes, these lasers can be used in darker skin types. Downtime is 2-4 days of erythema and scaling. Yet, these nonablative fractionated devices required 5-6 treatments to achieve a moderate effect. Logically, the fractionated resurfacing has now been applied to the CO2 and the Erbium:Yag lasers. These devices can treat deeper wrinkles and tighten skin. Downtime appears to be 5-7 days. The long term effectiveness and the question of whether these fractionated devices will approach the efficacy of the standard resurfacing lasers is still in question. Ultimately either integrated devices which may use fractionated resurfacing, radiofrequency and a sensitizer, or combining different lasers in a single treatment may prove to be the most effective in reducing rhtyides, smoothing the skin topography and tightening the

  5. Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide

    Directory of Open Access Journals (Sweden)

    Mario Christian Falconi

    2017-06-01

    Full Text Available A review on the recent progress in modeling and fabrication of medium infrared (Mid-IR fiber lasers is reported. The main objective is to illustrate some recent examples of continuous wave optical sources at wavelengths longer than those commonly employed in telecom applications and allowing high beam quality. A small number of Mid-IR lasers, among the large variety of schemes, glasses, dopants and pumping schemes reported in literature, is selected on the basis of their slope efficiency and threshold pump power. In particular, tellurite, fluoride and chalcogenide fiber lasers are considered. More details are given with reference to the novel pumping schemes.

  6. A Multi-Wavelength IR Laser for Space Applications

    Science.gov (United States)

    Li, Steven X.; Yu, Anthony W.; Sun, Xiaoli; Fahey, Molly E.; Numata, Kenji; Krainak, Michael A.

    2017-01-01

    We present a laser technology development with space flight heritage to generate laser wavelengths in the near- to mid-infrared (NIR to MIR) for space lidar applications. Integrating an optical parametric crystal to the LOLA (Lunar Orbiter Laser Altimeter) laser transmitter design affords selective laser wavelengths from NIR to MIR that are not easily obtainable from traditional diode pumped solid-state lasers. By replacing the output coupler of the LOLA laser with a properly designed parametric crystal, we successfully demonstrated a monolithic intra-cavity optical parametric oscillator (iOPO) laser based on all high technology readiness level (TRL) subsystems and components. Several desired wavelengths have been generated including 2.1 microns, 2.7 microns and 3.4 microns. This laser can also be used in trace-gas remote sensing, as many molecules possess their unique vibrational transitions in NIR to MIR wavelength region, as well as in time-of-flight mass spectrometer where desorption of samples using MIR laser wavelengths have been successfully demonstrated.

  7. UV and IR laser ablation for inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Smith, M.R.; Koppenaal, D.W.; Farmer, O.T.

    1993-06-01

    Laser ablation particle plume compositions are characterized using inductively coupled plasma mass spectrometry (ICP/MS). This study evaluates the mass response characteristics peculiar to ICP/MS detection as a function of laser fluence and frequency. Evaluation of the ICP/MS mass response allows deductions to be made concerning how representative the laser ablation produced particle plume composition is relative to the targeted sample. Using a black glass standard, elemental fractionation was observed, primarily for alkalis and other volatile elements. The extent of elemental fractionation between the target sample and the sampled plume varied significantly as a function of laser fluences and IR and UV laser frequency

  8. Piezo activated mode tracking system for widely tunable mode-hop-free external cavity mid-IR semiconductor lasers

    Science.gov (United States)

    Wysocki, Gerard (Inventor); Tittel, Frank K. (Inventor); Curl, Robert F. (Inventor)

    2010-01-01

    A widely tunable, mode-hop-free semiconductor laser operating in the mid-IR comprises a QCL laser chip having an effective QCL cavity length, a diffraction grating defining a grating angle and an external cavity length with respect to said chip, and means for controlling the QCL cavity length, the external cavity length, and the grating angle. The laser of claim 1 wherein said chip may be tuned over a range of frequencies even in the absence of an anti-reflective coating. The diffraction grating is controllably pivotable and translatable relative to said chip and the effective QCL cavity length can be adjusted by varying the injection current to the chip. The laser can be used for high resolution spectroscopic applications and multi species trace-gas detection. Mode-hopping is avoided by controlling the effective QCL cavity length, the external cavity length, and the grating angle so as to replicate a virtual pivot point.

  9. Reduction of shunt current in buffer-free IrMn based spin-valve structures

    Science.gov (United States)

    Kocaman, B.; Akdoğan, N.

    2018-06-01

    The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.

  10. High Power Mid-IR Semiconductor Lasers for LADAR

    National Research Council Canada - National Science Library

    Lester, Luke

    2003-01-01

    The growing need for antimonide-based, room temperature, 2-5 micrometers, semiconductor lasers for trace gas spectroscopy, ultra-low loss communication, infrared countermeasures, and ladar motivated this work...

  11. Properties of transition metal-doped zinc chalcogenide crystals for tunable IR laser radiation

    International Nuclear Information System (INIS)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    1995-01-01

    The spectroscopic properties of Cr 2+ , Co 2+ , and Ni 2+ -doped single crystals of ZnS, ZnSe, and ZnTe have been investigated to understand their potential application as mid-IR tunable solid-state laser media. The spectroscopy indicated divalent Cr was the most favorable candidate for efficient room temperature lasing, and accordingly, a laser-pumped laser demonstration of Cr:ZnS and Cr:ZnSe has been performed. The lasers' output were peaked at ∼ 2.35 μm and the highest measured slope efficiencies were ∼ 20% in both cases

  12. Pulsed laser facilities operating from UV to IR at the Gas Laser Lab of the Lebedev Institute

    Science.gov (United States)

    Ionin, Andrei; Kholin, Igor; Vasil'Ev, Boris; Zvorykin, Vladimir

    2003-05-01

    Pulsed laser facilities developed at the Gas Lasers Lab of the Lebedev Physics Institute and their applications for different laser-matter interactions are discussed. The lasers operating from UV to mid-IR spectral region are as follows: e-beam pumped KrF laser (λ= 0.248 μm) with output energy 100 J; e-beam sustained discharge CO2(10.6 μm) and fundamental band CO (5-6 μm) lasers with output energy up to ~1 kJ; overtone CO laser (2.5-4.2 μm) with output energy ~ 50 J and N2O laser (10.9 μm) with output energy of 100 J; optically pumped NH3 laser (11-14 μm). Special attention is paid to an e-beam sustained discharge Ar-Xe laser (1.73 μm ~ 100 J) as a potential candidate for a laser-propulsion facility. The high energy laser facilities are used for interaction of laser radiation with polymer materials, metals, graphite, rocks, etc.

  13. High current, high bandwidth laser diode current driver

    Science.gov (United States)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  14. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    Science.gov (United States)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  15. Morphology of IR and UV Laser-induced Structural Changes on Silicon Surfaces

    International Nuclear Information System (INIS)

    Jimenez-Jarquin, J.; Haro-Poniatowski, E.; Fernandez-Guasti, M.; Hernandez-Pozos, J.L.

    2005-01-01

    Using scanning electronic microscopy, we analyze the structural changes induced in silicon (100) wafers by focused IR (1064 nm) and UV (355 nm) nanosecond laser pulses. The experiments were performed in the laser ablation regime. When a silicon surface is irradiated by laser pulses in an O2 atmosphere conical microstructures are obtained. The changes in silicon surface morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however the final result consist of an array of microcones when the experiment is carried out in oxygen. We employ a random scanning technique to irradiate silicon surfaces over large areas. In this form we have obtained large patterned areas

  16. Laser separation of nitrogen isotopes by the IR+UV dissociation of ammonia molecules

    International Nuclear Information System (INIS)

    Apatin, V M; Klimin, S A; Laptev, V B; Lokhman, V N; Ogurok, D D; Pigul'skii, S V; Ryabov, E A

    2008-01-01

    The separation of nitrogen isotopes is studied upon successive single-photon IR excitation and UV dissociation of ammonia molecules. The excitation selectivity was provided by tuning a CO 2 laser to resonance with 14 NH 3 molecules [the 9R(30) laser line] or with 15 NH 3 molecules [the 9R(10) laser line]. Isotopic mixtures containing 4.8% and 0.37% (natural content) of the 15 NH isotope were investigated. The dependences of the selectivity and the dissociation yield for each isotopic component on the buffer gas pressure (N 2 , O 2 , Ar) and the ammonia pressure were obtained. In the limit of low NH 3 pressures (0.5-2 Torr), the dissociation selectivity α(15/14) for 15 N was 17. The selectivity mechanism of the IR+UV dissociation is discussed and the outlook is considered for the development of the nitrogen isotope separation process based on this approach. (laser isotope separation)

  17. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides.

    Science.gov (United States)

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W

    2012-05-01

    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Fiber optic lasers with emission to the region 2-3 μm of IR medium

    International Nuclear Information System (INIS)

    Anzuelo Sanchez, G.; Osuna Galan, I.; Camas Anzueto, J.; Martinez Rios, A.; Selvas Aguilar, R.

    2009-01-01

    We present recent advances in laser emission in the 2-2-5 μm mid-IR, using a chalcogenide fiber with low loss and a high Raman gain in the region 2-10 μm. We present a review of fiber lasers operating in 2-3 μm of the mid IR. (Author)

  19. Non-Linear Optical Studies of IR Materials with Infrared Femtosecond Laser

    Science.gov (United States)

    2016-12-15

    chemical/bio weapon signatures in real time. • IR sources and detectors have a wide ranging applications in public sector from night vision cameras on cars...Jeffrey D. Bude, Andy J. Bayramian, Christopher D. Marshall, Thomas M. Spinka, Constantin L. Haefner, Test station development for laser-induced

  20. PENGUKURAN SIFAT POLARISASI BERBAGAI MINYAK NABATI MENGGUNAKAN LAMPU IR DAN LASER HE-NE

    Directory of Open Access Journals (Sweden)

    U Kaltsum

    2017-03-01

    Full Text Available Penelitian ini bertujuan untuk menguji sifat polarisasi berbagai minyak nabati (minyak sawit, minyak kedelai, minyak zaitun, VCO, minyak curah, dan jelantah dengan variasi keadaan baru dan kadaluwarsa, menggunakan lampu IR dan laser He-Ne. Pengujian dilakukan dengan menempatkan minyak nabati diantara polarisator dan analisator. Hasil penelitian pada kedua sumber cahaya menunjukkan pola yang hampir sama. Minyak zaitun dan VCO memiliki perubahan sudut polarisasi alami kecil, sedangkan minyak sawit, kedelai, jelantah, dan curah memiliki perubahan sudut polarisasi alami besar. Besarnya perubahan sudut polarisasi minyak kadaluwarsa lebih besar dibanding minyak baru. Perubahan sudut polarisasi sebanding dengan jumlah radikal bebas (ALB, peroksida dan molekul asimetri (asam lemak jenuh, molekul rantai panjang. Meskipun pola yang dihasilkan oleh kedua sumber cahaya sama, namun lampu IR memberikan nilai perubahan sudut polarisasi yang lebih tinggi dari laser He-Ne. Hal ini dimungkinkan karena daya lampu IR lebih besar dari He-Ne, sehingga energi yang dihasilkan lampu IR lebih tinggi dan perubahan sudut polarisasinya lebih besar. This research based on previous research that using IR lamp (250 watt and He-Ne laser (1 mW on a mixture of palm oil and animal oil. Both of light source were used again to measure polarization properties of various vegetable oils (palm oil, soybean oil, olive oil, VCO, rainfall oil and used cooking oil with a variety of new and expired. The tools used were a set polarization, IR lamp, He-Ne laser, and power supply. The experiment was done by placing vegetable oil between the polarizer and analyzers. The result showed both of light sources had similar pattern; polarization changes of olive oil and the VCO were small, while polarization changes of palm oil, soybean oil, used cooking oil, and rainfall were high. Polarization change of expired oil was higher than new oil. The value of polarization change was proportional to free

  1. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching

    Science.gov (United States)

    Meng, Xiangwei; Chen, Feng; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-10-01

    We demonstrate a simple route to fabricate closed-packed infrared (IR) silicon microlens arrays (MLAs) based on femtosecond laser irradiation assisted by wet etching method. The fabricated MLAs show high fill factor, smooth surface and good uniformity. They can be used as optical devices for IR applications. The exposure and etching parameters are optimized to obtain reproducible microlens with hexagonal and rectangular arrangements. The surface roughness of the concave MLAs is only 56 nm. This presented method is a maskless process and can flexibly change the size, shape and the fill factor of the MLAs by controlling the experimental parameters. The concave MLAs on silicon can work in IR region and can be used for IR sensors and imaging applications.

  2. IR laser sensors for the detection food adulteration

    International Nuclear Information System (INIS)

    Giubileo, Gianfranco

    2015-01-01

    The paper reports the results of the project SAL@CQO aimed at the development of instrumentation Innovative optical, laser based sensors, for the improvement of the level of safety of products food and for the detection of food fraud. Through the developed prototypes, the project aims provide on the one hand a means of rapid screening, automated, and to facilitate the use of simplified Work of the Audit Institutions responsible for monitoring and repression of food frauds. On the other hand It intends to provide a method of production chains practical monitoring for the maintenance of a of the final product quality standards. [it

  3. Low cost, patterning of human hNT brain cells on parylene-C with UV & IR laser machining.

    Science.gov (United States)

    Raos, Brad J; Unsworth, C P; Costa, J L; Rohde, C A; Doyle, C S; Delivopoulos, E; Murray, A F; Dickinson, M E; Simpson, M C; Graham, E S; Bunting, A S

    2013-01-01

    This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.

  4. Cartilage ablation studies using mid-IR free electron laser

    Science.gov (United States)

    Youn, Jong-In; Peavy, George M.; Venugopalan, Vasan

    2005-04-01

    The ablation rate of articular cartilage and fibrocartilage (meniscus), were quantified to examine wavelength and tissue-composition dependence of ablation efficiency for selected mid-infrared wavelengths. The wavelengths tested were 2.9 um (water dominant absorption), 6.1 (protein and water absorption) and 6.45 um (protein dominant absorption) generated by the Free Electron Laser (FEL) at Vanderbilt University. The measurement of tissue mass removal using a microbalance during laser ablation was conducted to determine the ablation rates of cartilage. The technique can be accurate over methods such as profilometer and histology sectioning where tissue surface and the crater morphology may be affected by tissue processing. The ablation efficiency was found to be dependent upon the wavelength. Both articular cartilage and meniscus (fibrocartilage) ablations at 6.1 um were more efficient than those at the other wavelengths evaluated. We observed the lowest ablation efficiency of both types of cartilage with the 6.45 um wavelength, possibly due to the reduction in water absorption at this wavelength in comparison to the other wavelengths that were evaluated.

  5. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging.

    Science.gov (United States)

    Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C

    2018-03-01

    Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

  6. High power industrial picosecond laser from IR to UV

    Science.gov (United States)

    Saby, Julien; Sangla, Damien; Pierrot, Simonette; Deslandes, Pierre; Salin, François

    2013-02-01

    Many industrial applications such as glass cutting, ceramic micro-machining or photovoltaic processes require high average and high peak power Picosecond pulses. The main limitation for the expansion of the picosecond market is the cost of high power picosecond laser sources, which is due to the complexity of the architecture used for picosecond pulse amplification, and the difficulty to keep an excellent beam quality at high average power. Amplification with fibers is a good technology to achieve high power in picosecond regime but, because of its tight confinement over long distances, light undergoes dramatic non linearities while propagating in fibers. One way to avoid strong non linearities is to increase fiber's mode area. Nineteen missing holes fibers offering core diameter larger than 80μm have been used over the past few years [1-3] but it has been shown that mode instabilities occur at approximately 100W average output power in these fibers [4]. Recently a new fiber design has been introduced, in which HOMs are delocalized from the core to the clad, preventing from HOMs amplification [5]. In these so-called Large Pitch Fibers, threshold for mode instabilities is increased to 294W offering robust single-mode operation below this power level [6]. We have demonstrated a high power-high efficiency industrial picosecond source using single-mode Large Pitch rod-type fibers doped with Ytterbium. Large Pitch Rod type fibers can offer a unique combination of single-mode output with a very large mode area from 40 μm up to 100μm and very high gain. This enables to directly amplify a low power-low energy Mode Locked Fiber laser with a simple amplification architecture, achieving very high power together with singlemode output independent of power level or repetition rate.

  7. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery.

    Science.gov (United States)

    Amini-Nik, Saeid; Kraemer, Darren; Cowan, Michael L; Gunaratne, Keith; Nadesan, Puviindran; Alman, Benjamin A; Miller, R J Dwayne

    2010-09-28

    Lasers have in principle the capability to cut at the level of a single cell, the fundamental limit to minimally invasive procedures and restructuring biological tissues. To date, this limit has not been achieved due to collateral damage on the macroscale that arises from thermal and shock wave induced collateral damage of surrounding tissue. Here, we report on a novel concept using a specifically designed Picosecond IR Laser (PIRL) that selectively energizes water molecules in the tissue to drive ablation or cutting process faster than thermal exchange of energy and shock wave propagation, without plasma formation or ionizing radiation effects. The targeted laser process imparts the least amount of energy in the remaining tissue without any of the deleterious photochemical or photothermal effects that accompanies other laser wavelengths and pulse parameters. Full thickness incisional and excisional wounds were generated in CD1 mice using the Picosecond IR Laser, a conventional surgical laser (DELight Er:YAG) or mechanical surgical tools. Transmission and scanning electron microscopy showed that the PIRL laser produced minimal tissue ablation with less damage of surrounding tissues than wounds formed using the other modalities. The width of scars formed by wounds made by the PIRL laser were half that of the scars produced using either a conventional surgical laser or a scalpel. Aniline blue staining showed higher levels of collagen in the early stage of the wounds produced using the PIRL laser, suggesting that these wounds mature faster. There were more viable cells extracted from skin using the PIRL laser, suggesting less cellular damage. β-catenin and TGF-β signalling, which are activated during the proliferative phase of wound healing, and whose level of activation correlates with the size of wounds was lower in wounds generated by the PIRL system. Wounds created with the PIRL systsem also showed a lower rate of cell proliferation. Direct comparison of wound

  8. Ultrafast mid-IR laser scalpel: protein signals of the fundamental limits to minimally invasive surgery.

    Directory of Open Access Journals (Sweden)

    Saeid Amini-Nik

    2010-09-01

    Full Text Available Lasers have in principle the capability to cut at the level of a single cell, the fundamental limit to minimally invasive procedures and restructuring biological tissues. To date, this limit has not been achieved due to collateral damage on the macroscale that arises from thermal and shock wave induced collateral damage of surrounding tissue. Here, we report on a novel concept using a specifically designed Picosecond IR Laser (PIRL that selectively energizes water molecules in the tissue to drive ablation or cutting process faster than thermal exchange of energy and shock wave propagation, without plasma formation or ionizing radiation effects. The targeted laser process imparts the least amount of energy in the remaining tissue without any of the deleterious photochemical or photothermal effects that accompanies other laser wavelengths and pulse parameters. Full thickness incisional and excisional wounds were generated in CD1 mice using the Picosecond IR Laser, a conventional surgical laser (DELight Er:YAG or mechanical surgical tools. Transmission and scanning electron microscopy showed that the PIRL laser produced minimal tissue ablation with less damage of surrounding tissues than wounds formed using the other modalities. The width of scars formed by wounds made by the PIRL laser were half that of the scars produced using either a conventional surgical laser or a scalpel. Aniline blue staining showed higher levels of collagen in the early stage of the wounds produced using the PIRL laser, suggesting that these wounds mature faster. There were more viable cells extracted from skin using the PIRL laser, suggesting less cellular damage. β-catenin and TGF-β signalling, which are activated during the proliferative phase of wound healing, and whose level of activation correlates with the size of wounds was lower in wounds generated by the PIRL system. Wounds created with the PIRL systsem also showed a lower rate of cell proliferation. Direct

  9. Increase in the temperature of a laser plasma formed by two-frequency UV - IR irradiation of metal targets

    International Nuclear Information System (INIS)

    Antipov, A A; Grasyuk, Arkadii Z; Efimovskii, S V; Kurbasov, Sergei V; Losev, Leonid L; Soskov, V I

    1998-01-01

    An experimental investigation was made of a laser plasma formed by successive irradiation of a metal target with 30-ps UV and IR laser pulses. The UV prepulse, of 266 nm wavelength, was of relatively low intensity (∼ 10 12 W cm -2 ), whereas the intensity of an IR pulse, of 10.6 μm wavelength, was considerably higher (∼3 x 10 14 W cm -2 ) and it was delayed by 0 - 6 ns (the optimal delay was 2 ns). Such two-frequency UV - IR irradiation produced a laser plasma with an electron temperature 5 times higher than that of a plasma created by singe-frequency IR pulses of the same (∼3 x 10 14 W cm -2 ) intensity. (interaction of laser radiation with matter. laser plasma)

  10. Interference-free mid-IR laser absorption detection of methane

    International Nuclear Information System (INIS)

    Pyun, Sung Hyun; Cho, Jungwan; Davidson, David F; Hanson, Ronald K

    2011-01-01

    A novel, mid-IR scanned-wavelength laser absorption diagnostic was developed for time-resolved, interference-free, absorption measurement of methane concentration. A differential absorption (peak minus valley) scheme was used that takes advantage of the structural differences of the absorption spectrum of methane and other hydrocarbons. A peak and valley wavelength pair was selected to maximize the differential cross-section (σ peak minus valley ) of methane for the maximum signal-to-noise ratio, and to minimize that of the interfering absorbers. Methane cross-sections at the peak and valley wavelengths were measured over a range of temperatures, 1000 to 2000 K, and pressures 1.3 to 5.4 atm. The cross-sections of the interfering absorbers were assumed constant over the small wavelength interval between the methane peak and valley features. Using this diagnostic, methane concentration time histories during n-heptane pyrolysis were measured behind reflected shock waves in a shock tube. The differential absorption scheme efficiently rejected the absorption interference and successfully recovered the vapor-phase methane concentration. These measurements allowed the comparison with methane concentration time-history simulations derived from a current n-heptane reaction mechanism (Sirjean et al 2009 A high-temperature chemical kinetic model of n-alkane oxidation JetSurF version 1.0)

  11. IR and UV laser-induced morphological changes in silicon surface under oxygen atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Jarquin, J.; Fernandez-Guasti, M.; Haro-Poniatowski, E.; Hernandez-Pozos, J.L. [Laboratorio de Optica Cuantica, Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, C.P. 09340, Mexico D.F. (Mexico)

    2005-08-01

    We irradiated silicon (100) wafers with IR (1064 nm) and UV (355 nm) nanosecond laser pulses with energy densities within the ablation regime and used scanning electron microscopy to analyze the morphological changes induced on the Si surface. The changes in the wafer morphology depend both on the incident radiation wavelength and the environmental atmosphere. We have patterned Si surfaces with a single focused laser spot and, in doing the experiments with IR or UV this reveals significant differences in the initial surface cracking and pattern formation, however if the experiment is carried out in O{sub 2} the final result is an array of microcones. We also employed a random scanning technique to irradiate the silicon wafer over large areas, in this case the microstructure patterns consist of a ''semi-ordered'' array of micron-sized cones. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. 2.5 TW, two-cycle IR laser pulses via frequency domain optical parametric amplification.

    Science.gov (United States)

    Gruson, V; Ernotte, G; Lassonde, P; Laramée, A; Bionta, M R; Chaker, M; Di Mauro, L; Corkum, P B; Ibrahim, H; Schmidt, B E; Legaré, F

    2017-10-30

    Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 μm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

  13. Phase-matched generation of coherent soft and hard X-rays using IR lasers

    Science.gov (United States)

    Popmintchev, Tenio V.; Chen, Ming-Chang; Bahabad, Alon; Murnane, Margaret M.; Kapteyn, Henry C.

    2013-06-11

    Phase-matched high-order harmonic generation of soft and hard X-rays is accomplished using infrared driving lasers in a high-pressure non-linear medium. The pressure of the non-linear medium is increased to multi-atmospheres and a mid-IR (or higher) laser device provides the driving pulse. Based on this scaling, also a general method for global optimization of the flux of phase-matched high-order harmonic generation at a desired wavelength is designed.

  14. Cavitation and shock waves emission on the rigid boundary of water under mid-IR nanosecond laser pulse excitation

    Science.gov (United States)

    Pushkin, A. V.; Bychkov, A. S.; Karabutov, A. A.; Potemkin, F. V.

    2018-06-01

    The processes of conversion of light energy into mechanical energy under mid-IR nanosecond laser excitation on a rigid boundary of water are investigated. Strong water absorption of Q-switched Cr:Yb:Ho:YSGG (2.85 µm, 6 mJ, 45 ns) laser radiation provides rapid energy deposition of ~8 kJ cm‑3 accompanied with strong mechanical transients. The evolution of shock waves and cavitation bubbles is studied using the technique of shadowgraphy and acoustic measurements, and the conversion efficiency into these energy channels for various laser fluence (0.75–2.0 J cm‑2) is calculated. For 6 mJ laser pulse with fluence of 2.0 J cm‑2, the conversion into shock wave energy reaches 67%. The major part of the shock wave energy (92%) is dissipated when the shock front travels the first 250 µm, and the remaining 8% is transferred to the acoustic far field. The calculated pressure in the vicinity of water-silicon interface is 0.9 GPa. Cavitation efficiency is significantly less and reaches up to 5% of the light energy. The results of the current study could be used in laser parameters optimization for micromachining and biological tissue ablation.

  15. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    Science.gov (United States)

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  16. Comparative researches concerning cleaning chosen construction materials surface layer using UV and IR laser radiation

    International Nuclear Information System (INIS)

    Napadlek, W.; Marczak, J.; Kubicki, J.; Szudrowicz, M.

    2002-01-01

    The paper presents comparative research studies of cleaning out of deposits and pollution disposals on different constructional materials like; steel, cast iron, aluminium, copper by using UV and IR laser radiation of wavelength λ =1.064 μm; λ = 0.532 μm; λ = 0.355 μm and λ = 0.266 μm and also impulse laser TEA CO 2 at radiation λ = 10.6 μm were used for the experiments. Achieved experimental results gave us basic information on parameters and conditions and application of each used radiation wavelength. Each kind of pollution and base material should be individually treated, selecting the length of wave and radiation energy density. Laser microtreatment allows for broad cleaning application of the surface of constructional materials as well as may be used in future during manufacturing processes as: preparation of surface for PVD technology, galvanotechnics, cleaning of the surface of machine parts etc. (author)

  17. Externe verslaggeving How do current public Integrated Reports align with the IR Framework?

    NARCIS (Netherlands)

    Hurks, P.; Langendijk, H.P.A.J.; Nandram, K.

    2016-01-01

    This paper examines empirically the current practice with regard to integrated reporting according to the IR Framework among the 104 original participants (companies) of the IIRC Pilot program. We made a selection with respect to these 104 participants based on organization’s stipulation that they

  18. Online Chip Temperature Monitoring Using υce-Load Current and IR Thermography

    DEFF Research Database (Denmark)

    Ghimire, Pramod; Pedersen, Kristian Bonderup; Trintis, Ionut

    2015-01-01

    This paper presents on-state collector-emitter voltage (υce, on)-load current (Ic) method to monitor chip temperature on power insulated gate bipolar transistor (IGBT) modules in converter operation. The measurement method is also evaluated using infrared (IR) thermography. Temperature dependencies...

  19. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel

    Science.gov (United States)

    Darling, Cynthia L.; Fried, Daniel

    2007-02-01

    We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.

  20. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  1. Multi-pollutants sensors based on near-IR telecom lasers and mid-IR difference frequency generation: development and applications

    International Nuclear Information System (INIS)

    Cousin, J.

    2006-12-01

    At present the detection of VOC and other anthropic trace pollutants is an important challenge in the measurement of air quality. Infrared spectroscopy, allowing spectral regions rich in molecular absorption to be probed, is a suitable technique for in-situ monitoring of the air pollution. Thus the aim of this work was to develop instruments capable of detecting multiple pollutants for in-situ monitoring by IR spectroscopy. A first project benefited from the availability of the telecommunications lasers emitting in near-IR. This instrument was based on an external cavity diode laser (1500 - 1640 nm) in conjunction with a multipass cell (100 m). The detection sensitivity was optimised by employing a balanced detection and a sweep integration procedure. The instrument developed is deployable for in-situ measurements with a sensitivity of -8 cm -1 Hz -1/2 and allowed the quantification of chemical species such as CO 2 , CO, C 2 H 2 , CH 4 and the determination of the isotopic ratio 13 CO 2 / 12 CO 2 in combustion environment The second project consisted in mixing two near-IR fiber lasers in a non-linear crystal (PPLN) in order to produce a laser radiation by difference frequency generation in the middle-IR (3.15 - 3.43 μm), where the absorption bands of the molecules are the most intense. The first studies with this source were carried out on detection of ethylene (C 2 H 4 ) and benzene (C 6 H 6 ). Developments, characterizations and applications of these instruments in the near and middle IR are detailed and the advantages of the 2 spectral ranges is highlighted. (author)

  2. Influence of IR-laser irradiation on α-SiC-chromium silicides ceramics

    International Nuclear Information System (INIS)

    Vlasova, M.; Marquez Aguilar, P.A.; Resendiz-Gonzalez, M.C.; Kakazey, M.; Bykov, A.; Gonzalez Morales, I.

    2005-01-01

    This project investigated the influence of IR-laser irradiation (λ = 1064 nm, P = 240 mW) on composite ceramics SiC-chromium silicides (CrSi 2 , CrSi, Cr 5 Si 3 ) by methods of X-ray diffraction, electron microscopy, atomic force microscopy, and X-ray microanalysis. Samples were irradiated in air. It was established that a surface temperature of 1990 K was required to melt chromium silicides, evaporate silicon from SiC, oxidize chromium silicides, and enrich superficial layer by carbon and chromium oxide

  3. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing

    Directory of Open Access Journals (Sweden)

    Simone Borri

    2016-02-01

    Full Text Available The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF2 microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  4. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.

    Science.gov (United States)

    Borri, Simone; Siciliani de Cumis, Mario; Insero, Giacomo; Bartalini, Saverio; Cancio Pastor, Pablo; Mazzotti, Davide; Galli, Iacopo; Giusfredi, Giovanni; Santambrogio, Gabriele; Savchenkov, Anatoliy; Eliyahu, Danny; Ilchenko, Vladimir; Akikusa, Naota; Matsko, Andrey; Maleki, Lute; De Natale, Paolo

    2016-02-17

    The need for highly performing and stable methods for mid-IR molecular sensing and metrology pushes towards the development of more and more compact and robust systems. Among the innovative solutions aimed at answering the need for stable mid-IR references are crystalline microresonators, which have recently shown excellent capabilities for frequency stabilization and linewidth narrowing of quantum cascade lasers with compact setups. In this work, we report on the first system for mid-IR high-resolution spectroscopy based on a quantum cascade laser locked to a CaF₂ microresonator. Electronic locking narrows the laser linewidth by one order of magnitude and guarantees good stability over long timescales, allowing, at the same time, an easy way for finely tuning the laser frequency over the molecular absorption line. Improvements in terms of resolution and frequency stability of the source are demonstrated by direct sub-Doppler recording of a molecular line.

  5. MOLECULAR BEAM STUDIES OF IR LASER INDUCED MULTIPHOTON DISSOCIATION AND VIBRATIONAL PREDISSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuan T.; Shen, Y. Ron

    1980-06-01

    The advancement of crossed molecular beam methods, modern spectroscopy and laser technology allows us to observe chemical reactions on atomic and molecular levels in great detail. After a brief history of crossed molecular beams studies, the author describes and discusses the universal molecular beam apparatus and gives examples of crossed molecular beam studies. The crossed beam technique is compared to other techniques used to provide microscopic information on reaction dynamics. Application of crossed laser and molecular beam studies to the problem of IR multiphoton dissociation of polyatomic molecules is discussed. Study of vibrational predissociation of hydrogen-bonded and van der Waals molecular clusters are discussed. Future cases that the author considers worth pursuing that could benefit from the collisionless environment of molecular beams are enumerated.

  6. Intensity dependence of nonsequential double ionization of helium in IR+XUV two-color laser fields

    International Nuclear Information System (INIS)

    Jin, Facheng; Wang, Bingbing; Chen, Jing; Yang, Yujun; Yan, Zong-Chao

    2016-01-01

    By applying the frequency-domain theory, we investigate the dependence of momentum spectra on laser intensity in a nonsequential double ionization (NSDI) process of helium in infrared (IR) and extreme ultraviolet (XUV) two-color laser fields. We find that the two-color laser fields play distinct roles in an NSDI process, where the IR laser field mainly determines the width of each band, and the XUV laser field mainly plays a role on the NSDI probability. Furthermore, an NSDI process can be decoupled into a two-step process: an above-threshold ionization (ATI), followed by a laser-assisted collision (LAC). It is found that, the IR laser field is responsible for broadening the peak in the ATI process and providing additional momenta to the two ionized electrons in the LAC process; while the XUV laser field plays a crucial role on the strength of the spectrum in the ATI process, and influences the radii of orbits in momentum space in the LAC process. (paper)

  7. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research.

    Science.gov (United States)

    Garrone, Edoardo; Delgado, Montserrat R; Bonelli, Barbara; Arean, Carlos O

    2017-09-15

    The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.

  8. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  9. Formation of quasi-periodic nano- and microstructures on silicon surface under IR and UV femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ionin, Andrei A; Golosov, E V; Kolobov, Yu R; Kudryashov, Sergei I; Ligachev, A E; Makarov, Sergei V; Novoselov, Yurii N; Seleznev, L V; Sinitsyn, D V

    2011-01-01

    Quasi-periodic nano- and microstructures have been formed on silicon surface using IR ( λ ≈ 744 nm) and UV ( λ ≈ 248 nm) femtosecond laser pulses. The influence of the incident energy density and the number of pulses on the structured surface topology has been investigated. The silicon nanostructurisation thresholds have been determined for the above-mentioned wavelengths. Modulation of the surface relief at the doubled spatial frequency is revealed and explained qualitatively. The periods of the nanostructures formed on the silicon surface under IR and UV femtosecond laser pulses are comparatively analysed and discussed.

  10. Wavelength stabilisation during current pulsing of tapered laser

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin

    2009-01-01

    The use of external feedback to stabilise the frequency of a tapered laser during current pulsing is reported. Using this technique more than 20 W of peak power in 60 ns pulses from the tapered laser is obtained and owing to the external feedback, the laser is tunable in the 778-808 nm range...

  11. Remote sensing of petroleum contaminated water by IR lasers. Distantsionnoe obnaruzhenie neftyanykh zagryaznenii vod IK lazerom

    Energy Technology Data Exchange (ETDEWEB)

    Bogorodskii, V V; Kropotkin, M A

    1975-01-01

    The most important aspect of the protection of the environment is the prevention and elimination of the consequences of the pollution of seas, oceans, and inner water reservoirs by oil and oil products. The present booklet in a concise form presents the quantitative data characterizing the degree of sea and oceanic pollution, enumerates main sources of oil pollution, and considers the influence of the latter on ecology of the World Ocean. The available ways of water purification from surface oil products are discussed and techniques of remote sensing of oil pollution considered. The content of the work is the exposition of the results of investigations of optical properties of oil products and their films on the water in the ir spectral region and the conclusion on the possibility of the application of active remote laser radar technique for the detection of oil pollution.

  12. Development of alkali halide-optics for high power-IR laser

    International Nuclear Information System (INIS)

    Pohl, L.

    1989-01-01

    In this work 'Development of Alkali Halide-Optics for High Power-IR Laser' we investigated the purification of sodiumchloride-, potassiumchloride- and potassiumbromide-raw materials. We succeeded to reduce the content of impurities like Cu, Pb, V, Cr, Mn, Fe, Co and Ni in these raw materials to the lower of ppb's by a Complex-Adsorption-Method (CAM). Crystals were grown from purified substances by 'Kyropoulos' method'. Windows were cur thereof, polished and measured by FTIR-spectroscopy. Analytical data showed, that the resulting crystals were of lower quality than the raw materials. Because of this fact crystal-growing-conditions have to undergo a special improvement. Alkali halide windows from other sources on the market had been tested. (orig.) [de

  13. Enhanced modeling of band nonparabolicity with application to a mid-IR quantum cascade laser structure

    International Nuclear Information System (INIS)

    Vukovic, N; Radovanovic, J; Milanovic, V

    2014-01-01

    We analyze the influence of conduction-band nonparabolicity on bound electronic states in the active region of a quantum cascade laser (QCL). Our model assumes expansion of the conduction-band dispersion relation up to a fourth order in wavevector and use of a suitable second boundary condition at the interface of two III-V semiconductor layers. Numerical results, obtained by the transfer matrix method, are presented for two mid-infrared GaAs/Al 0.33 Ga 0.67 As QCL active regions, and they are in very good agreement with experimental data found in the literature. Comparison with a different nonparabolicity model is presented for the example of a GaAs/Al 0.38 Ga 0.62 As-based mid-IR QCL. Calculations have also been carried out for one THz QCL structure to illustrate the possible application of the model in the terahertz part of the spectrum. (paper)

  14. Current new applications of laser plasmas

    International Nuclear Information System (INIS)

    Hauer, A.A.; Forslund, D.W.; McKinstrie, C.J.; Wark, J.S.; Hargis, P.J. Jr.; Hamil, R.A.; Kindel, J.M.

    1988-09-01

    This report describes several new applications of laser-produced plasmas that have arisen in the last few years. Most of the applications have been an outgrowth of the active research in laser/matter interaction inspired by the pursuit of laser fusion. Unusual characteristics of high-intensity laser/matter interaction, such as intense x-ray and particle emission, were noticed early in the field and are now being employed in a significant variety of applications outside the fusion filed. Applications range from biology to materials science to pulsed-power control and particle accelerators. 92 refs., 23 figs., 4 tabs

  15. Current Status of Fractional Laser Resurfacing.

    Science.gov (United States)

    Carniol, Paul J; Hamilton, Mark M; Carniol, Eric T

    2015-01-01

    Fractional lasers were first developed based on observations of lasers designed for hair transplantation. In 2007, ablative fractional laser resurfacing was introduced. The fractionation allowed deeper tissue penetration, leading to greater tissue contraction, collagen production and tissue remodeling. Since then, fractional erbium:YAG resurfacing lasers have also been introduced. These lasers have yielded excellent results in treating photoaging, acne scarring, and dyschromia. With the adjustment of microspot density, pulse duration, number of passes, and fluence, the surgeon can adjust the treatment effects. These lasers have allowed surgeons to treat patients with higher Fitzpatrick skin types (types IV to VI) and greater individualize treatments to various facial subunits. Immunohistochemical analysis has demonstrated remodeling effects of the tissues for several months, producing longer lasting results. Adjuvant treatments are also under investigation, including concomitant face-lift, product deposition, and platelet-rich plasma. Finally, there is a short recovery time from treatment with these lasers, allowing patients to resume regular activities more quickly. Although there is a relatively high safety profile for ablative fractionated lasers, surgeons should be aware of the limitations of specific treatments and the associated risks and complications.

  16. Generation and application of soft-X-ray by means of inverse compton scattering between high quality election beam and IR laser

    International Nuclear Information System (INIS)

    Washio, M.; Sakaue, K.; Hama, Y.; Kamiya, Y.; Moriyama, R.; Hezume, K.; Saito, T.; Kuroda, R.; Kashiwagi, S.; Ushida, K.; Hayano, H.; Urakawa, J.

    2006-01-01

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emittance was about 3 mm·mrad at 100 pC of electron charge. The soft X-ray beam generation with the energy of 370 eV, which is in the energy region of so-called 'water window', by inverse Compton scattering has been performed by the collision between IR laser and the low emittance electron beams. (authors)

  17. Utilization of IR laser pumped anti-Stokes emission of Er-Yb doped systems for identification of securities

    International Nuclear Information System (INIS)

    Kuzmin, A.N.; Ryabtsev, G.I.; Ketko, G.A.; Gorelenko, A.Yu.; Demidovich, A.A.; Strek, W.; Maruszewicz, K.; Deren, P.

    1996-01-01

    In this paper we present a utilization of anti-Stokes luminescence of Er-Yb systems for identification of securities. A simple method of detection of an up-conversion phenomenon in such system by means of IR laser operating in the region 960-1010 nm is proposed. (author)

  18. Beam Transport Devices for the 10 kW IR Free Electron Laser

    International Nuclear Information System (INIS)

    Lawrence Dillon-Townes; Michael Bevins; David Kashy; Stephanie Slachtouski; Ronald Lassiter; George Neil; Michelle Shinn; Joseph Gubeli; Christopher Behre; David Douglas; David W. Waldman; George Biallas; Lawrence Munk; Christopher Gould

    2005-01-01

    Beam transport components for the 10kW IR Free Electron Laser (FEL) at Thomas Jefferson National Accelerator Facility (Jefferson Lab) were designed to manage (1) electron beam transport and (2) photon beam transport. An overview of the components will be presented in this paper. The electron beam transport components were designed to address RF heating, maintain an accelerator transport vacuum of 1 x 10 -8 torr, deliver photons to the optical cavity, and provide 50 kW of beam absorption during the energy recovery process. The components presented include a novel shielded bellows, a novel zero length beam clipper, a one decade differential pumping station with a 7.62 cm (3.0 inch) aperture, and a 50 kW beam dump. The photon beam transport components were designed to address the management of photons delivered by the accelerator transport. The optical cavity manages the photons and optical transport delivers the 10 kW of laser power to experimental labs. The optical cavity component presented is a unique high reflector vessel and the optical transport component presented is a turning mirror cassette

  19. A car-borne highly sensitive near-IR diode-laser methane detector

    International Nuclear Information System (INIS)

    Berezin, A G; Ershov, Oleg V; Shapovalov, Yu P

    2003-01-01

    A highly sensitive automated car-borne detector for measuring methane concentration in real time is designed, developed and tested under laboratory and field conditions. Measurements were made with the help of an uncooled tunable near-IR 1.65-μm laser diode. The detector consists of a multipass optical cell with a 45-m long optical path and a base length of 0.5 m. The car-borne detector is intended for monitoring the methane concentration in air from the moving car to reveal the leakage of domestic gas. The sensitivity limit (standard deviation) under field conditions is 1 ppm (20 ppb under laboratory conditions) for a measuring time of 0.4 s. The measuring technique based on the detection of a single methane line ensured a high selectivity of methane detector relative to other gases. The methane detector can be easily modified for measuring other simple-molecule gases (e.g., CO, CO 2 , HF, NO 2 , H 2 O) by replacing the diode laser and varying the parameters of the control program. (special issue devoted to the memory of academician a m prokhorov)

  20. Interactions of monochromatic visible light and near-IR radiation with cells: currently discussed mechanisms

    Science.gov (United States)

    Karu, Tiina I.

    1995-05-01

    Biological responses of cells to visible and near IR (laser) radiation occur due to physical and/or chemical changes in photoacceptor molecules, components of respiratory chains (cyt a/a3 in mitochondria, and cyt d in E. coli). As a result of the photoexcitation of electronic states, the following physical and/or chemical changes can occur: alteration of redox properties and acceleration of electron transfer, changes in biochemical activity due to local transient heating of chromophores, one-electron auto-oxidation and O2- production, and photodynamic action and 1O2 production. Different reaction channels can be activated to achieve the photobiological macroeffect. The primary physical and/or chemical changes induced by light in photoacceptor molecules are followed by a cascade of biochemical reactions in the cell that do not need further light activation and occur in the dark (photosignal transduction and amplification chains). These reactions are connected with changes in cellular homeostasis parameters. The crucial step here is thought to be an alteration of the cellular redox state: a shift towards oxidation is associated with stimulation of cellular vitality, and a shift towards reduction is linked to inhibition. Cells with a lower than normal pH, where the redox state is shifted in the reduced direction, are considered to be more sensitive to the stimulative action of light than those with the respective parameters being optimal or near optimal. This circumstance explains the possible variations in observed magnitudes of low-power laser effects. Light action on the redox state of a cell via the respiratory chain also explains the diversity of low-power laser effects. Beside explaining many controversies in the field of low-power laser effects (i.e., the diversity of effects, the variable magnitude or absence of effects in certain studies), the proposed redox-regulation mechanism may be a fundamental explanation of some clinical effects of irradiation, for

  1. Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy

    OpenAIRE

    Kawashima, Kazuhiro; Okamoto, Yuji; Annayev, Orazmuhammet; Toyokura, Nobuo; Takahashi, Ryota; Lippmaa, Mikk; Itaka, Kenji; Suzuki, Yoshikazu; Matsuki, Nobuyuki; Koinuma, Hideomi

    2017-01-01

    Abstract As an extension of combinatorial molecular layer epitaxy via ablation of perovskite oxides by a pulsed excimer laser, we have developed a laser molecular beam epitaxy (MBE) system for parallel integration of nano-scaled thin films of organic?inorganic hybrid materials. A pulsed infrared (IR) semiconductor laser was adopted for thermal evaporation of organic halide (A-site: CH3NH3I) and inorganic halide (B-site: PbI2) powder targets to deposit repeated A/B bilayer films where the thic...

  2. Laser chemistry - what is its current status

    International Nuclear Information System (INIS)

    Kleinermanns, K.; Wolfrum, J.

    1987-01-01

    In recent years, various methods have been developed to observe and to influence the course of chemical reactions using laser radiation. By selectively increasing the translational, rotational, and vibrational energies and by controlling the relative orientation of the reaction partners with tunable infrared and UV lasers, direct insight can be gained into the molecular course of the breaking and re-forming of chemical bonds. Examples for the application of lasers include the synthesis of monomers such as vinyl chloride and polymers such as polyethylene, the synthesis of biologically active substances such as vitamin D 3 , the separation of isotopes, the removal of impurities, the production of catalysts, glasses, and ceramics, and the deposition and ablation of material on surfaces. Finally, several applications of lasers in medicine are discussed. (orig.)

  3. Extending laser plasma accelerators into the mid-IR spectral domain with a next-generation ultra-fast CO2 laser

    Science.gov (United States)

    Pogorelsky, I. V.; Babzien, M.; Ben-Zvi, I.; Polyanskiy, M. N.; Skaritka, J.; Tresca, O.; Dover, N. P.; Najmudin, Z.; Lu, W.; Cook, N.; Ting, A.; Chen, Y.-H.

    2016-03-01

    Expanding the scope of relativistic plasma research to wavelengths longer than the λ/≈   0.8-1.1 μm range covered by conventional mode-locked solid-state lasers would offer attractive opportunities due to the quadratic scaling of the ponderomotive electron energy and critical plasma density with λ. Answering this quest, a next-generation mid-IR laser project is being advanced at the BNL ATF as a part of the user facility upgrade. We discuss the technical approach to this conceptually new 100 TW, 100 fs, λ  =   9-11 μm CO2 laser BESTIA (Brookhaven Experimental Supra-Terawatt Infrared at ATF) that encompasses several innovations applied for the first time to molecular gas lasers. BESTIA will enable new regimes of laser plasma accelerators. One example is shock-wave ion acceleration (SWA) from gas jets. We review ongoing efforts to achieve stable, monoenergetic proton acceleration by dynamically shaping the plasma density profile from a hydrogen gas target with laser-produced blast waves. At its full power, 100 TW BESTIA promises to achieve proton beams at an energy exceeding 200 MeV. In addition to ion acceleration in over-critical plasma, the ultra-intense mid-IR BESTIA will open up new opportunities in driving wakefields in tenuous plasmas, expanding the landscape of laser wakefield accelerator (LWFA) studies into the unexplored long-wavelength spectral domain. Simple wavelength scaling suggests that a 100 TW CO2 laser beam will be capable of efficiently generating plasma ‘bubbles’ a thousand times greater in volume compared with a near-IR solid state laser of an equivalent power. Combined with a femtosecond electron linac available at the ATF, this wavelength scaling will facilitate the study of external seeding and staging of LWFAs.

  4. Programmable current source for diode lasers stabilized optical fiber

    International Nuclear Information System (INIS)

    Gomez, J.; Camas, J.; Garcia, L.

    2012-01-01

    In this paper, we present the electronic design of a programmable stabilized current source. User can access to the source through a password, which, it has a database with the current and voltage operating points. This source was successfully used as current source in laser diode in optical fiber sensors. Variations in the laser current were carried out by a monitoring system and a control of the Direct Current (DC), which flowing through a How land source with amplifier. The laser current can be stabilized with an error percent of ± 1 μA from the threshold current (Ith) to its maximum operation current (Imax) in DC mode. The proposed design is reliable, cheap, and its output signal of stabilized current has high quality. (Author)

  5. Near-IR laser-triggered target cell collection using a carbon nanotube-based cell-cultured substrate.

    Science.gov (United States)

    Sada, Takao; Fujigaya, Tsuyohiko; Niidome, Yasuro; Nakazawa, Kohji; Nakashima, Naotoshi

    2011-06-28

    Unique near-IR optical properties of single-walled carbon nanotube (SWNTs) are of interest in many biological applications. Here we describe the selective cell detachment and collection from an SWNT-coated cell-culture dish triggered by near-IR pulse laser irradiation. First, HeLa cells were cultured on an SWNT-coated dish prepared by a spraying of an aqueous SWNT dispersion on a glass dish. The SWNT-coated dish was found to show a good cell adhesion behavior as well as a cellular proliferation rate similar to a conventional glass dish. We discovered, by near-IR pulse laser irradiation (at the laser power over 25 mW) to the cell under optical microscopic observation, a quick single-cell detachment from the SWNT-coated surface. Shockwave generation from the irradiated SWNTs is expected to play an important role for the cell detachment. Moreover, we have succeeded in catapulting the target single cell from the cultured medium when the depth of the medium was below 150 μm and the laser power was stronger than 40 mW. The captured cell maintained its original shape. The retention of the genetic information of the cell was confirmed by the polymerase chain reaction (PCR) technique. A target single-cell collection from a culture medium under optical microscopic observation is significant in wide fields of single-cell studies in biological areas.

  6. Specific features of diffuse reflection of human face skin for laser and non-laser sources of visible and near-IR light

    International Nuclear Information System (INIS)

    Dolotov, L E; Sinichkin, Yu P; Tuchin, Valerii V; Al'tshuler, G B; Yaroslavskii, I V

    2011-01-01

    The specific features of diffuse reflection from different areas of human face skin for laser and non-laser sources of visible and near-IR light have been investigated to localise the closed-eye (eyelid) region. In the visible spectral range the reflection from the eyelid skin surface can be differentiated by measuring the slope of the spectral dependence of the effective optical density of skin in the wavelength range from 650 to 700nm. In the near-IR spectral range the reflectances of the skin surface at certain wavelengths, normalised to the forehead skin reflectance, can be used as a criterion for differentiating the eyelid skin. In this case, a maximum discrimination is obtained when measuring the skin reflectances at laser wavelengths of 1310 and 1470nm, which correspond to the spectral ranges of maximum and minimum water absorption. (optical technologies in biophysics and medicine)

  7. Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers

    Science.gov (United States)

    Piron, P.; Vargas Catalan, E.; Haas, J.; Österlund, L.; Nikolajeff, F.; Andersson, P. O.; Bergström, J.; Mizaikoff, B.; Karlsson, M.

    2018-02-01

    Microfabricated diamond waveguides, between 5 and 20 μm thick, manufactured by chemical vapor deposition of diamond, followed by standard lithographic techniques and inductively coupled plasma etching of diamond, are used as bio-chemical sensors in the mid infrared domain: 5-11 μm. Infrared light, emitted from a broadly tunable quantum cascade laser with a wavelength resolution smaller than 20 nm, is coupled through the diamond waveguides for attenuated total reflection spectroscopy. The expected advantages of these waveguides are a high sensitivity due to the high number of internal reflections along the propagation direction, a high transmittance in the mid-IR domain, the bio-compatibility of diamond and the possibility of functionalizing the surface layer. The sensor will be used for analyzing different forms of proteins such as α-synuclein which is relevant in understanding the mechanism behind Parkinson's disease. The fabrication process of the waveguide, its characteristics and several geometries are introduced. The optical setup of the biosensor is described and our first measurements on two analytes to demonstrate the principle of the sensing method will be presented. Future use of this sensor includes the functionalization of the diamond waveguide sensor surface to be able to fish out alpha-synuclein from cerebrospinal fluid.

  8. Energy relaxation in IR laser excited Hg1-xCdxTe

    International Nuclear Information System (INIS)

    Storebo, A K; Brudevoll, T; Olsen, O; Norum, O C; Breivik, M

    2009-01-01

    IR laser excitation of Hg l-x Cd x Te by low-fluence femtosecond and high fluence microsecond pulses was explored for the technologically important alloy fractions x ∼ 0.2 and x ∼ 0.28. We have used first principles (LAPW) electronic structure calculations and finite element modelling, supported by Monte Carlo simulation for the description of femtosecond pulse carrier relaxation and the transport parameters. Laser wavelengths considered were 6.4 - 10.6 μm for x ∼ 0.2 and 3.8 - 4.8 μm for x ∼ 0.28, with an incident 1 microsecond pulse fluence of 2 J/cm 2 . Many energy transfer mechanisms are invoked due to the long timescales of the microsecond pulses, and a main challenge is therefore to elucidate how these interplay in situations away from thermal equilibrium. Mechanisms studied include one- and two-photon absorption (OPA and TPA) across the band gap, inter-valence band absorption (IVA) between light- and heavy hole bands, electron-hole recombination/impact ionization, band gap renormalisation, intra-band free carrier absorption (FCA), excess carrier temperatures, non-equilibrium phonon generation, and refractive index changes. In the high fluence case, lattice temperatures evolve considerably during the laser pulse in response to the heated carriers. The chosen photon energies lie just above the band gap at the starting lattice temperature of 77 K, and nonlinear effects therefore dominate as the material heats up and the band gap begins to exceed the photon energy. Because of the low photon energy we must rely on Auger recombination, inter-valence band absorption and free carrier absorption to heat the carrier plasma. Although some Hg l-x Cd x Te material parameters are now relatively well known, existing data for many of the processes are inadequate for cases far away from thermal equilibrium. Furthermore, the role of Auger recombination in relation to non-intrinsic recombination has been a matter of debate lately. In this respect, information from

  9. The Texas petawatt laser and current experiments

    International Nuclear Information System (INIS)

    Martinez, Mikael; Bang, Woosuk; Dyer, Gilliss; Wang Xiaoming; Gaul, Erhard; Borger, Teddy; Ringuette, Martin; Spinks, Michael; Quevedo, Hernan; Bernstein, Aaron; Donovan, Michael; Ditmire, Todd

    2012-01-01

    The Texas Petawatt Laser is operational with experimental campaigns executed in both F/40 and F3 target chambers. Recent improvements have resulted in intensities of >2×10 21 W/cm 2 on target. Experimental highlights include, accelerated electron energies of >2 GeV, DD fusion ion temperatures >25 keV and isochorically heated solids to 10-50 eV.

  10. Milking liquid nano-droplets by an IR laser: a new modality for the visualization of electric field lines

    International Nuclear Information System (INIS)

    Vespini, Veronica; Coppola, Sara; Grilli, Simonetta; Paturzo, Melania; Ferraro, Pietro

    2013-01-01

    Liquid handling at micron- and nano-scale is of paramount importance in many fields of application such as biotechnology and biochemistry. In fact, the microfluidics technologies play an important role in lab-on-a-chip devices and, in particular, the dispensing of liquid droplets is a required functionality. Different approaches have been developed for manipulating, dispensing and controlling nano-droplets under a wide variety of configurations. Here we demonstrate that nano-droplets can be drawn from liquid drop or film reservoirs through a sort of milking effect achieved by the absorption of IR laser radiation into a pyroelectric crystal. The generation of the pyroelectric field induced by the IR laser is calculated numerically and a specific experiment has been designed to visualize the electric field stream lines that are responsible for the liquid milking effect. The experiments performed are expected to open a new route for the visualization, measure and characterization procedures in the case of electrohydrodynamic applications. (paper)

  11. The current status of laser applications in dentistry.

    Science.gov (United States)

    Walsh, L J

    2003-09-01

    A range of lasers is now available for use in dentistry. This paper summarizes key current and emerging applications for lasers in clinical practice. A major diagnostic application of low power lasers is the detection of caries, using fluorescence elicited from hydroxyapatite or from bacterial by-products. Laser fluorescence is an effective method for detecting and quantifying incipient occlusal and cervical carious lesions, and with further refinement could be used in the same manner for proximal lesions. Photoactivated dye techniques have been developed which use low power lasers to elicit a photochemical reaction. Photoactivated dye techniques can be used to disinfect root canals, periodontal pockets, cavity preparations and sites of peri-implantitis. Using similar principles, more powerful lasers can be used for photodynamic therapy in the treatment of malignancies of the oral mucosa. Laser-driven photochemical reactions can also be used for tooth whitening. In combination with fluoride, laser irradiation can improve the resistance of tooth structure to demineralization, and this application is of particular benefit for susceptible sites in high caries risk patients. Laser technology for caries removal, cavity preparation and soft tissue surgery is at a high state of refinement, having had several decades of development up to the present time. Used in conjunction with or as a replacement for traditional methods, it is expected that specific laser technologies will become an essential component of contemporary dental practice over the next decade.

  12. Proposals of electronic-vibrational energy relaxation studies by using laser pulses synchronized with IR-SR pulses

    International Nuclear Information System (INIS)

    Nakagawa, Hideyuki

    2000-01-01

    Synchrotron radiation is expected to be the sharp infrared light source for the advanced experiments on IR and FIR spectroscopy in wide research fields. Especially, synchronized use of SR with VIS and/or UV laser light is to be a promising technique for the research on the dynamical properties of the photo-excited states in condensed materials. Some proposals are attempted for high resolution IR spectroscopy to elucidate fine interaction of molecular ions in crystalline solids with their environmental field and for time-resolved IR spectroscopic studies on the electronic and vibrational energy relaxation by using laser pulses synchronized with IR-SR pulses. Several experimental results are presented in relevance to the subjects; on high-resolution FTIR spectra of cyanide ions and metal cyanide complexes in cadmium halide crystals, on the energy up-conversion process among the vibrational levels of cyanide ions in alkali halide crystals, and on the electronic-to-vibrational energy conversion process in metal cyanide complexes. (author)

  13. Direct synthesis of graphitic mesoporous carbon from green phenolic resins exposed to subsequent UV and IR laser irradiations

    Science.gov (United States)

    Sopronyi, Mihai; Sima, Felix; Vaulot, Cyril; Delmotte, Luc; Bahouka, Armel; Matei Ghimbeu, Camelia

    2016-01-01

    The design of mesoporous carbon materials with controlled textural and structural features by rapid, cost-effective and eco-friendly means is highly demanded for many fields of applications. We report herein on the fast and tailored synthesis of mesoporous carbon by UV and IR laser assisted irradiations of a solution consisting of green phenolic resins and surfactant agent. By tailoring the UV laser parameters such as energy, pulse repetition rate or exposure time carbon materials with different pore size, architecture and wall thickness were obtained. By increasing irradiation dose, the mesopore size diminishes in the favor of wall thickness while the morphology shifts from worm-like to an ordered hexagonal one. This was related to the intensification of phenolic resin cross-linking which induces the reduction of H-bonding with the template as highlighted by 13C and 1H NMR. In addition, mesoporous carbon with graphitic structure was obtained by IR laser irradiation at room temperature and in very short time periods compared to the classical long thermal treatment at very high temperatures. Therefore, the carbon texture and structure can be tuned only by playing with laser parameters, without extra chemicals, as usually required. PMID:28000781

  14. Induced Current Characteristics Due to Laser Induced Plasma and Its Application to Laser Processing Monitoring

    International Nuclear Information System (INIS)

    Madjid, Syahrun Nur; Idris, Nasrullah; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2011-01-01

    In laser processing, suitable conditions for laser and gas play important role in ensuring a high quality of processing. To determine suitable conditions, we employed the electromagnetic phenomena associated with laser plasma generation. An electrode circuit was utilised to detect induced current due to the fast electrons propelled from the material during laser material processing. The characteristics of induced current were examined by changing parameters such as supplied voltage, laser pulse energy, number of laser shots, and type of ambient gas. These characteristics were compared with the optical emission characteristics. It was shown that the induced current technique proposed in this study is much more sensitive than the optical method in monitoring laser processing, that is to determine the precise focusing condition, and to accurately determine the moment of completion of laser beam penetration. In this study it was also shown that the induced current technique induced by CW CO 2 laser can be applied in industrial material processing for monitoring the penetration completion in a stainless steel plate drilling process.

  15. Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics

    DEFF Research Database (Denmark)

    Morris, James M.; Mackenzie, Mark D.; Petersen, Christian Rosenberg

    2018-01-01

    Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero-dispersi...... ultrafast laser inscribed waveguide devices in GASIR-1 for mid-IR integrated optics applications. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.......Ultrafast laser inscription has been used to produce channel waveguides in Ge22As20Se58 glass (GASIR-1, Umicore N.V). The mode field diameter and waveguide losses at 2.94 mu m were measured along with the waveguide dispersion in the 1 to 4.5 mu m range, which is used to estimate the zero......-dispersion wavelength. Z-scan measurements of bulk samples have also been performed to determine the nonlinear refractive index. Finally, midIR supercontinuum generation has been shown when pumping the waveguides with femtosecond pulses centered at 4.6 mu m. Supercontinuum spanning approximately 4 mu m from 2.5 to 6...

  16. High-current electron accelerator for gas-laser pumping

    Energy Technology Data Exchange (ETDEWEB)

    Badaliants, G R; Mamikonian, V A; Nersisian, G Ts; Papanian, V O

    1978-11-26

    A high-current source of pulsed electron beams has been developed for the pumping of UV gas lasers. The parameters of the device are: energy of 0.3-0.7 MeV pulse duration of 30 ns and current density (in a high-pressure laser chamber) of 40-100 A/sq cm. The principal feature of the device is the use of a rectangular cold cathode with incomplete discharge along the surface of the high-permittivity dielectric. Cathodes made of stainless steel, copper, and graphite were investigated.

  17. Semiconductor lasers with a continuous tuning range above 100 nm in the nearest IR spectral region

    Energy Technology Data Exchange (ETDEWEB)

    Kostin, Yu O; Lobintsov, A A; Shramenko, M V [OOO ' Opton' , Moscow (Russian Federation); Ladugin, M A; Marmalyuk, A A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation); Chamorovsky, A Yu [Superlum Ltd., Unit B3, Fota Point Enterprise Park, Carrigtwohill, Co Cork (Ireland); Yakubovich, S D [Moscow State Institute of Radio-Engineering, Electronics and Automation (Technical University), Moscow (Russian Federation)

    2015-08-31

    We have developed two new types of lasers based on quantum-confined semiconductor optical amplifiers with an acousto-optic tunable filter in an external fibre ring cavity. The lasers offer continuous wavelength tuning ranges from 780 to 885 and from 880 to 1010 nm, 20 mW of cw output power, and a tuning rate up to 10{sup 4} nm s{sup -1} at an instantaneous spectral linewidth less than 0.1 nm. (lasers)

  18. Conformer-Specific IR Spectroscopy of Laser-Desorbed Sulfonamide Drugs: Tautomeric and Conformational Preferences of Sulfanilamide and its Derivatives

    Science.gov (United States)

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W.

    2017-06-01

    Molecules containing the sulfonamide group R^{1}-SO_2-NHR^{2} have a longstanding history as antimicrobial agents. Even though nowadays they are not commonly used in treating humans anymore, they continue to be studied as effective inhibitors of metalloenzyme carbonic anhydrases. These enzymes are important targets for a variety of diseases, such as, for instance, breast cancer, glaucoma, and obesity. Here we present the results of our laser desorption single-conformation UV and IR study of sulfanilamide (NH_2Ph-SO_2-NHR, R=H), a variety of singly substituted derivatives, and their monohydrated complexes. Depending on the substituent, the sulfonamide group can either adopt an amino or an imino tautomeric form. The form prevalent in the crystal is not necessarily also the tautomeric form we identified in the molecular beam after laser desorbing the sample. Furthermore, we explored the effect of complexation with a single water molecule on the tautomeric and conformational preferences of the sulfonamides. Our conformer-specific IR spectra in the NH and OH stretch region (3200-3750 \\wn) suggest that the intra- and intermolecular interactions governing the structures of the monomers and water complexes are surprisingly diverse. We have undertaken both Quantum Theory of Atoms in Molecules (QTAIM) and Interacting Quantum Atoms (IQA) analyses of calculated electron densities to quantitatively characterize the nature and strengths of the intra- and intermolecular interactions prevalent in the monomer and water complex structures.

  19. Current developments with TRIUMF’s titanium-sapphire laser based resonance ionization laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, J., E-mail: LASSEN@triumf.ca; Li, R. [TRIUMF (Canada); Raeder, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Zhao, X.; Dekker, T. [TRIUMF (Canada); Heggen, H. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Kunz, P.; Levy, C. D. P.; Mostanmand, M.; Teigelhöfer, A.; Ames, F. [TRIUMF (Canada)

    2017-11-15

    Developments at TRIUMF’s isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.

  20. Near-IR imaging of thermal changes in enamel during laser ablation

    Science.gov (United States)

    Maung, Linn H.; Lee, Chulsung; Fried, Daniel

    2010-02-01

    The objective of this work was to observe the various thermal-induced optical changes that occur in the near-infrared (NIR) during drilling in dentin and enamel with the laser and the high-speed dental handpiece. Tooth sections of ~ 3 mm-thickness were prepared from extracted human incisors (N=60). Samples were ablated with a mechanically scanned CO2 laser operating at a wavelength of 9.3-μm, a 300-Hz laser pulse repetition rate, and a laser pulse duration of 10-20 μs. An InGaAs imaging camera was used to acquire real-time NIR images at 1300-nm of thermal and mechanical changes (cracks). Enamel was rapidly removed by the CO2 laser without peripheral thermal damage by mechanically scanning the laser beam while a water spray was used to cool the sample. Comparison of the peripheral thermal and mechanical changes produced while cutting with the laser and the high-speed hand-piece suggest that enamel and dentin can be removed at high speed by the CO2 laser without excessive peripheral thermal or mechanical damage. Only 2 of the 15 samples ablated with the laser showed the formation of small cracks while 9 out of 15 samples exhibited crack formation with the dental hand-piece. The first indication of thermal change is a decrease in transparency due to loss of the mobile water from pores in the enamel which increase lightscattering. To test the hypothesis that peripheral thermal changes were caused by loss of mobile water in the enamel, thermal changes were intentionally induced by heating the surface. The mean attenuation coefficient of enamel increased significantly from 2.12 +/- 0.82 to 5.08 +/- 0.98 with loss of mobile water due to heating.

  1. UV and IR laser radiation's interaction with metal film and teflon surfaces

    Science.gov (United States)

    Fedenev, A. V.; Alekseev, S. B.; Goncharenko, I. M.; Koval', N. N.; Lipatov, E. I.; Orlovskii, V. M.; Shulepov, M. A.; Tarasenko, V. F.

    2003-04-01

    The interaction of Xe ([lambda] [similar] 1.73 [mu]m) and XeCl (0.308 [mu]m) laser radiation with surfaces of metal and TiN-ceramic coatings on glass and steel substrates has been studied. Correlation between parameters of surface erosion versus laser-specific energy was investigated. Monitoring of laser-induced erosion on smooth polished surfaces was performed using optical microscopy. The correlation has been revealed between characteristic zones of thin coatings damaged by irradiation and energy distribution over the laser beam cross section allowing evaluation of defects and adhesion of coatings. The interaction of pulsed periodical CO2 ([lambda] [similar] 10.6 [mu]m), and Xe ([lambda] [similar] 1.73 [mu]m) laser radiation with surfaces of teflon (polytetrafluoroethylene—PTFE) has been studied. Monitoring of erosion track on surfaces was performed through optical microscopy. It has been shown that at pulsed periodical CO2-radiation interaction with teflon the sputtering of polymer with formation of submicron-size particles occurs. Dependencies of particle sizes, form, and sputtering velocity on laser pulse duration and target temperature have been obtained.

  2. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples

    International Nuclear Information System (INIS)

    Stepanov, E V; Glushko, A N; Kasoev, S G; Koval', A V; Lapshin, D A

    2011-01-01

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of 12 CO 2 and 13 CO 2 isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 μm). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm -1 ) are determined to be optimal for analysis of relative content of 12 CO 2 and 13 CO 2 in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO 2 in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1‰.

  3. Bone Repair on Fractures Treated with Osteosynthesis, ir Laser, Bone Graft and Guided Bone Regeneration: Histomorfometric Study

    Science.gov (United States)

    dos Santos Aciole, Jouber Mateus; dos Santos Aciole, Gilberth Tadeu; Soares, Luiz Guilherme Pinheiro; Barbosa, Artur Felipe Santos; Santos, Jean Nunes; Pinheiro, Antonio Luiz Barbosa

    2011-08-01

    The aim of this study was to evaluate, through the analysis of histomorfometric, the repair of complete tibial fracture in rabbits fixed with osteosynthesis, treated or not with infrared laser light (λ780 nm, 50 mW, CW) associated or not to the use of hydroxyapatite and guided bone regeneration (GBR). Surgical fractures were created, under general anesthesia (Ketamina 0,4 ml/Kg IP and Xilazina 0,2 ml/Kg IP), on the dorsum of 15 Oryctolagus rabbits that were divided into 5 groups and maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet and had water ad libidum. On groups II, III, IV and V the fracture was fixed with wire osteosynthesis. Animals of groups III and V were grafted with hydroxyapatite and GBR technique used. Animals of groups IV and V were irradiated at every other day during two weeks (16 J/cm2, 4×4 J/cm2). Observation time was that of 30 days. After animal death (overdose of general anesthetics) the specimes were routinely processed to wax and underwent histological analysis by light microscopy. The histomorfometric analysis showed an increased bone neoformation, increased collagen deposition, less reabsorption and inflammation when laser was associated to the HATCP. It is concluded that IR laser light was able to accelerate fracture healing and the association with HATCP and GBR resulted on increased deposition of CHA.

  4. Effect of IR Laser on Myoblasts: Prospects of Application for Counteracting Microgravity-Induced Muscle Atrophy

    Science.gov (United States)

    Monici, Monica; Cialdai, Francesca; Romano, Giovanni; Corsetto, Paola Antonia; Rizzo, Angela Maria; Caselli, Anna; Ranaldi, Francesco

    2013-02-01

    Microgravity-induced muscle atrophy is a problem of utmost importance for the impact it may have on the health and performance of astronauts. Therefore, appropriate countermeasures are needed to prevent disuse atrophy and favour muscle recovery. Muscle atrophy is characterized by loss of muscle mass and strength, and a shift in substrate utilization from fat to glucose, that leads to a reduced metabolic efficiency and enhanced fatigability. Laser therapy is already used in physical medicine and rehabilitation to accelerate muscle recovery and in sports medicine to prevent damages produced by metabolic disturbances and inflammatory reactions after heavy exercise. The aim of the research we present was to get insights on possible benefits deriving from the application of an advanced infrared laser system to counteract deficits of muscle energy metabolism and stimulate the recovery of the hypotrophic tissue. The source used was a Multiwave Locked System (MLS) laser, which combines continuous and pulsed emissions at 808 nm and 905 nm, respectively. We studied the effect of MLS treatment on morphology and energy metabolism of C2C12 cells, a widely accepted myoblast model, previously exposed to microgravity conditions modelled by a Random Positioning Machine. The MLS laser treatment was able to restore basal levels of serine/threonine protein phosphatase activity and to counteract cytoskeletal alterations and increase in glycolytic enzymes activity that occurred following the exposure to modelled microgravity. In conclusion, the results provide interesting insights for the application of infrared laser in the treatment of muscle atrophy.

  5. IR laser induced reactions: temperature distributions and detection of primary products

    International Nuclear Information System (INIS)

    Bachmann, F.

    1981-12-01

    The products of laser-driven pyrolysis in the gas phase often differ drastically from those of conventional pyrolysis. In this work some reasons for this behaviour are considered. First, temperature distributions in cylindrical cells, filled with SF 6 at low pressure and heated by cw CO 2 laser radiation, are calculated by a simple model. The influence of convection is not taken into account. Comparison of theoretical prediction and corresponding experiments included the temperature-dependent absorption cross section. In the second part we describe a molecular-beam sampling system for real time monitoring of primary products in laser-driven reactions. With this system initial tests were made in nonreacting SF 6 /rare-gas mixtures. The influence of thermal diffusion was indicated by changes in concentration when the laser was switched on and off. A theoretical treatment is given solving the time-dependent heat-conduction and diffusion equation numerically. As an example for reacting systems, the laser-driven pyrolysis of methanol with SF 6 as an absorber was studied. (orig./HT)

  6. Current Diagnosis and Management of Immune Related Adverse Events (irAEs Induced by Immune Checkpoint Inhibitor Therapy

    Directory of Open Access Journals (Sweden)

    Vivek Kumar

    2017-02-01

    Full Text Available The indications of immune checkpoint inhibitors (ICIs are set to rise further with the approval of newer agent like atezolimumab for use in patients with advanced stage urothelial carcinoma. More frequent use of ICIs has improved our understanding of their unique side effects, which are known as immune-related adverse events (irAEs. The spectrum of irAEs has expanded beyond more common manifestations such as dermatological, gastrointestinal and endocrine effects to rarer presentations involving nervous, hematopoietic and urinary systems. There are new safety data accumulating on ICIs in patients with previously diagnosed autoimmune conditions. It is challenging for clinicians to continuously update their working knowledge to diagnose and manage these events successfully. If diagnosed timely, the majority of events are completely reversible, and temporary immunosuppression with glucocorticoids, infliximab or other agents is warranted only in the most severe grade illnesses. The same principles of management will possibly apply as newer anti- cytotoxic T lymphocytes-associated antigen 4 (CTLA-4 and programmed cell death protein 1 (PD-1/PD-L1 antibodies are introduced. The current focus of research is for prophylaxis and for biomarkers to predict the onset of these toxicities. In this review we summarize the irAEs of ICIs and emphasize their growing spectrum and their management algorithms, to update oncology practitioners.

  7. Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

    KAUST Repository

    Sajid, Muhammad Bilal

    2015-01-01

    and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction

  8. Effect of absorbing coating on ablation of diamond by IR laser pulses

    Science.gov (United States)

    Kononenko, T. V.; Pivovarov, P. A.; Khomich, A. A.; Khmel'nitskii, R. A.; Konov, V. I.

    2018-03-01

    We study the possibility of increasing the efficiency and quality of laser ablation microprocessing of diamond by preliminary forming an absorbing layer on its surface. The laser pulses having a duration of 1 ps and 10 ns at a wavelength of 1030 nm irradiate the polycrystalline diamond surface coated by a thin layer of titanium or graphite. We analyse the dynamics of the growth of the crater depth as a function of the number of pulses and the change in optical transmission of the ablated surface. It is found that under irradiation by picosecond pulses the preliminary graphitisation allows one to avoid the laser-induced damage of the internal diamond volume until the appearance of a self-maintained graphitised layer. The absorbing coating (both graphite and titanium) much stronger affects ablation by nanosecond pulses, since it reduces the ablation threshold by more than an order of magnitude and allows full elimination of a laser-induced damage of deep regions of diamond and uncontrolled explosive ablation in the nearsurface layer.

  9. X-Ray Characterization of Quaternary Antimonide Materials for Mid-IR Lasers

    National Research Council Canada - National Science Library

    Lester, Luke

    2001-01-01

    .... This PL trace was generated using the equipment purchased with the grant money. We believe that new alloys constructed from AlInAsSb and GaInAsSb will be the backbone of future antimonide-based semiconductor lasers...

  10. Effects of pulsed mid-IR lasers on bovine knee joint tissues

    Science.gov (United States)

    Vari, Sandor G.; Shi, Wei-Qiang; Pergadia, Vani R.; Duffy, J. T.; Miller, J. M.; van der Veen, Maurits J.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1993-07-01

    We investigated the effect of varying Tm:YAG (2.014 micrometers ) and Ho:YAG (2.130 micrometers ) laser parameters on ablation rate and consequent thermal damage. Mid-infrared wavelengths are strongly absorbed by most biological tissues due to the tissue's high water content. The ablation rate of fresh bovine knee joint tissues (fibrous cartilage, hyaline cartilage, and bone) in saline was assessed as a function of radiant exposure (160 - 950 J/cm2), at pulse widths of 200 microsecond(s) ec for Tm:YAG and 250 microsecond(s) ec for Ho:YAG and a repetition rate of 2 Hz. All tissues used in this study could be efficiently ablated using two micron lasers. The mechanism of action is likely related to the formation and collapse of cavitation bubbles, associated with mid-infrared lasers. We concluded that the Tm:YAG and Ho:YAG lasers are capable of effective knee joint tissue ablation.

  11. Feasibility studies on macroscopic separation of carbon isotopes by IR laser chemistry - a technical report

    International Nuclear Information System (INIS)

    Mathi, P.; Nayak, A.K.; Parthasarathy, V.; Abhinandan, L.; Sarkar, S.K.

    2007-11-01

    This report describes the feasibility studies for macroscopic separation of carbon isotopes (∼ 50% enrichment level) by infrared multiphoton dissociation (IRMPD) of Freon - 22 (CF 2 HCl) using a 10Hz pulsed carbon dioxide laser in a large volume (∼ 300 litre) photochemical reactor (PCR). After a general introduction to the objective, the importance of characterization studies with a 10 Hz CO 2 laser is brought out before large scale operation in the PCR is carried out. The laboratory scale results obtained in a small cell with a lower average power (0.5 W) CO 2 laser is verified with a higher power (10 W) laser under optimal conditions. Such an exercise helps in understanding of any anomalies of the results and for applying the appropriate corrective measures while scaling up. The report deals with the design details, fabrication, installation and commissioning of the major components of the setup namely laser system, photochemical reactor, low temperature distillation unit and preparative gas chromatograph for realizing the targeted task. It further describes the standardization methodology of a sensitive analytical technique using quadrupole mass spectrometry (QMS) to ascertain the C 2 F 4 product quality (i.e. enrichment). A pre- concentration method for separating C 2 F 4 from CF 2 HCl using gas chromatography has been developed for very low-level mass spectral analysis. During this exercise, an indigenous QMS developed in VPID (erstwhile MS and ES) has also been benchmarked by comparing its performance with a commercial QMS unit. The report gives in details the operational experience of carrying out the large scale enrichment task in a batch process. The modular PCR employing a multi-pass refocusing Herriott optics for efficient photon utilization and gas blower arrangement for gas circulation during laser photolysis has given a typical production rate of about 10 mg/hr for total carbon with a 13 C isotopic purity of ∼ 40%. It further indicates the scope

  12. IR and FIR laser polarimetry as a diagnostic tool in high-. beta. and Tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, D; Machida, M; Scalabrin, A

    1986-03-01

    The change of the polarization state of an electromagnetic wave (EMW) propagating across a magnetized plasma may be used to determine plasma parameters. In a plasma machine of the Tokamak type, the Faraday rotation of the EMW allows for the determination of the product of the plasma electronic density by the poloidal magnetic field. A novel optical configuration which permits simultaneous measurements of these two parameters without the use of an auxiliary interferometric set up is proposed. By choosing appropriate laser wave length this method can be used in Tokamaks (lambda >= 1mm) and also in theta-pinch plasmas (lambda approx. 10..mu..m). The application of these results is discussed to plasma machines now in operation in Brazil, like the Tokamak/USP and theta-pinch/UNICAMP, using lasers developed at UNICAMP.

  13. IR Laser-Induced Process for Chemical Vapor Deposition of Polyselenocarbosilane Films

    Czech Academy of Sciences Publication Activity Database

    Santos, M.; Diaz, L.; Urbanová, Markéta; Pokorná, Dana; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2006-01-01

    Roč. 76, 1-2 (2006), s. 178-185 ISSN 0165-2370 R&D Projects: GA MŠk(CZ) ME 684 Grant - others:MCyT(ES) BQU2003/08531/CO2/02 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : polyselenocarbosilane * selenium * laser decomposition Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.412, year: 2006

  14. Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

    KAUST Repository

    Sajid, Muhammad Bilal

    2015-05-01

    Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of

  15. IR Laser Ablation of Silicon Monoxide in Gaseous Methanol and Hydrocarbons: Deposition of Polyoxocarbosilane

    Czech Academy of Sciences Publication Activity Database

    Dřínek, Vladislav; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2004-01-01

    Roč. 71, č. 2 (2004), s. 431-444 ISSN 0165-2370 R&D Projects: GA ČR GA203/00/1288 Institutional research plan: CEZ:AV0Z4072921; CEZ:AV0Z4032918; CEZ:AV0Z4040901 Keywords : silicon monoxide * reactive laser ablation * polyoxocarbosilane coatings Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.352, year: 2004

  16. Utilizing Near-IR Tunable Laser Absorption Spectroscopy to Study Detonation and Combustion Systems

    Science.gov (United States)

    2014-03-27

    A Hencken burner, Rotating Detonation Engine ( RDE ), and a detonation tube were studied using a Time-Devision Multiplexed Tunable Diode Laser...for the three systems. Velocity was calculated for the RDE system using the Doppler shift of the spectral lines. To perform the calculations necessary...however, the CH4 flame did not match as well. The exhaust of the RDE was studied at various equivalence ratios using a hydrogen-air mixture (H2-air

  17. Scanning mid-IR laser apparatus with eye tracking for refractive surgery

    Science.gov (United States)

    Telfair, William B.; Yoder, Paul R., Jr.; Bekker, Carsten; Hoffman, Hanna J.; Jensen, Eric F.

    1999-06-01

    A robust, real-time, dynamic eye tracker has been integrated with the short pulse mid-infrared laser scanning delivery system previously described. This system employs a Q- switched Nd:YAG laser pumped optical parametric oscillator operating at 2.94 micrometers. Previous ablation studies on human cadaver eyes and in-vivo cat eyes demonstrated very smooth ablations with extremely low damage levels similar to results with an excimer. A 4-month healing study with cats indicated no adverse healing effects. In order to treat human eyes, the tracker is required because the eyes move during the procedure due to both voluntary and involuntary motions such as breathing, heartbeat, drift, loss of fixation, saccades and microsaccades. Eye tracking techniques from the literature were compared. A limbus tracking system was best for this application. Temporal and spectral filtering techniques were implemented to reduce tracking errors, reject stray light, and increase signal to noise ratio. The expanded-capability system (IRVision AccuScan 2000 Laser System) has been tested in the lab on simulated eye targets, glass eyes, cadaver eyes, and live human subjects. Circular targets ranging from 10-mm to 14-mm diameter were successfully tracked. The tracker performed beyond expectations while the system performed myopic photorefractive keratectomy procedures on several legally blind human subjects.

  18. Measurement of the target current by inductive probe during laser interaction on terawatt laser system PALS

    Czech Academy of Sciences Publication Activity Database

    Cikhardt, Jakub; Krása, Josef; De Marco, Massimo; Pfeifer, Miroslav; Velyhan, Andriy; Krouský, Eduard; Cikhardtová, B.; Klír, Daniel; Řezáč, Karel; Ullschmied, Jiří; Skála, Jiří; Kubeš, P.; Kravárik, J.

    2014-01-01

    Roč. 85, č. 10 (2014), s. 103507-103507 ISSN 0034-6748 R&D Projects: GA MŠk LM2010014; GA MŠk(CZ) LG13029; GA ČR GAP205/12/0454; GA MŠk EE2.3.20.0279 Grant - others:LaserZdroj (OP VK 3)(XE) CZ.1.07/2.3.00/20.0279 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : laser PALS * laser-target interaction * target current * inductive probe Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) Impact factor: 1.614, year: 2014 http://dx.doi.org/10.1063/1.4898016

  19. An Analysis of the Microstructure, Macrostructure and Microhardness of Nicr-Ir Joints Produced by Laser Welding with and without Preheat

    Directory of Open Access Journals (Sweden)

    Różowicz S.

    2016-06-01

    Full Text Available This paper discusses some of the basic problems involved in laser welding of dissimilar materials with significant differences in melting points. It focuses on the micro and macrostructure of laser welded NiCr-Ir microjoints used in central spark plug electrodes. The joints were produced by welding with and without preheat using an Nd,YAG laser. The structure and composition of the welded joints were analyzed by means of a light microscope (LM and a scanning electron microscope (SEM equipped with an energy dispersive X-ray (EDX spectrometer. The microhardness of the weld area was also studied.

  20. Reactions of laser-ablated Co, Rh, and Ir with CO: Infrared spectra and density functional calculations of the metal carbonyl molecules, cations and anions in solid neon

    International Nuclear Information System (INIS)

    Zhou, M.; Andrews, L.

    1999-01-01

    Laser ablation produces metal atoms, cations, and electrons for reaction with CO during condensation in excess neon at 4 K. Infrared spectra are observed for the metal carbonyls, cations, and anions, which are identified from isotopic shifts ( 13 CO, C 18 O) and splittings using mixed isotopic precursors. Density functional calculations with pseudopotentials for Rh and Ir predict the observed carbonyl stretching frequencies within 1--2%. This characterization of the simple RhCO + , RhCO, and RhCO - (and Ir) species over a 350 cm -1 range provides a scale for comparison of larger catalytically active Rh and Ir carbonyl complexes in solution and on surfaces to estimate charge on the metal center. This work provides the first spectroscopic characterization of Rh and Ir carbonyl cations and anions except for the stable tetracarbonyl anions in solution

  1. Current Trends and Challenges in Satellite Laser Ranging

    Science.gov (United States)

    Appleby, Graham M.; Bianco, Giuseppe; Noll, Carey E.; Pavlis, Erricos C.; Pearlman, Michael R.

    2016-12-01

    Satellite Laser Ranging (SLR) is used to measure accurately the distance from ground stations to retro-reflectors on satellites and on the Moon. SLR is one of the fundamental space-geodetic techniques that define the International Terrestrial Reference Frame (ITRF), which is the basis upon which many aspects of global change over space, time, and evolving technology are measured; with VLBI the two techniques define the scale of the ITRF; alone the SLR technique defines its origin (geocenter). The importance of the reference frame has recently been recognized at the inter-governmental level through the United Nations, which adopted in February 2015 the Resolution "Global Geodetic Reference Frame for Sustainable Development." Laser Ranging provides precision orbit determination and instrument calibration and validation for satellite-borne altimeters for the better understanding of sea level change, ocean dynamics, ice mass-balance, and terrestrial topography. It is also a tool to study the dynamics of the Moon and fundamental constants and theories. With the exception of the currently in-orbit GPS constellation, all GNSS satellites now carry retro-reflectors for improved orbit determination, harmonization of reference frames, and in-orbit co-location and system performance validation; the next generation of GPS satellites due for launch from 2019 onwards will also carry retro-reflectors. The ILRS delivers weekly realizations that are accumulated sequentially to extend the ITRF and the Earth Orientation Parameter series with a daily resolution. SLR technology continues to evolve towards the next-generation laser ranging systems and it is expected to successfully meet the challenges of the GGOS2020 program for a future Global Space Geodetic Network. Ranging precision is improving as higher repetition rate, narrower pulse lasers, and faster detectors are implemented within the network. Automation and pass interleaving at some stations is expanding temporal coverage and

  2. Structural Changes Induced in Grapevine (Vitis vinifera L. DNA by Femtosecond IR Laser Pulses: A Surface-Enhanced Raman Spectroscopic Study

    Directory of Open Access Journals (Sweden)

    Nicoleta E. Dina

    2016-05-01

    Full Text Available In this work, surface-enhanced Raman spectra of ten genomic DNAs extracted from leaf tissues of different grapevine (Vitis vinifera L. varieties, respectively, are analyzed in the wavenumber range 300–1800 cm−1. Furthermore, structural changes induced in grapevine genomic nucleic acids upon femtosecond (170 fs infrared (IR laser pulse irradiation (λ = 1100 nm are discussed in detail for seven genomic DNAs, respectively. Surface-enhanced Raman spectroscopy (SERS signatures, vibrational band assignments and structural characterization of genomic DNAs are reported for each case. As a general observation, the wavenumber range between 1500 and 1660 cm−1 of the spectra seems to be modified upon laser treatment. This finding could reflect changes in the base-stacking interactions in DNA. Spectral shifts are mainly attributed to purines (dA, dG and deoxyribose. Pyrimidine residues seem to be less affected by IR femtosecond laser pulse irradiation. Furthermore, changes in the conformational properties of nucleic acid segments are observed after laser treatment. We have found that DNA isolated from Feteasca Neagra grapevine leaf tissues is the most structurally-responsive system to the femtosecond IR laser irradiation process. In addition, using unbiased computational resources by means of principal component analysis (PCA, eight different grapevine varieties were discriminated.

  3. Intensity and frequency stabilization of a laser diode by simultaneously controlling its temperature and current

    Science.gov (United States)

    Mu, Weiwei; Hu, Zhaohui; Wang, Jing; Zhou, Binquan

    2017-10-01

    Nuclear magnetic resonance gyroscope (NMRG) detects the angular velocity of the vehicle utilizing the interaction between the laser beam and the alkali metal atoms along with the noble gas atoms in the alkali vapor cell. In order to reach high precision inertial measurement target, semiconductor laser in NMRG should have good intensity and frequency stability. Generally, laser intensity and frequency are stabilized separately. In this paper, a new method to stabilize laser intensity and frequency simultaneously with double-loop feedback control is presented. Laser intensity is stabilized to the setpoint value by feedback control of laser diode's temperature. Laser frequency is stabilized to the Doppler absorption peak by feedback control of laser diode's current. The feedback control of current is a quick loop, hence the laser frequency stabilize quickly. The feedback control of temperature is a slow loop, hence the laser intensity stabilize slowly. With the feedback control of current and temperature, the laser intensity and frequency are stabilized finally. Additionally, the dependence of laser intensity and frequency on laser diode's current and temperature are analyzed, which contributes to choose suitable operating range for the laser diode. The advantage of our method is that the alkali vapor cell used for stabilizing laser frequency is the same one as the cell used for NMRG to operate, which helps to miniaturize the size of NMRG prototype. In an 8-hour continuous measurement, the long-term stability of laser intensity and frequency increased by two orders of magnitude and one order of magnitude respectively.

  4. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation

    International Nuclear Information System (INIS)

    Tuchina, E S; Tuchin, Valerii V; Khlebtsov, B N; Khlebtsov, Nikolai G

    2011-01-01

    The effect of IR laser radiation (λ = 805 - 808 nm) on the bacteria of the strain Staphylococcus aureus 209 P, incubated in indocyanine green solutions, is studied, as well as that of colloid gold nanoshells, nanocages and their conjugates with indocyanine green. It is found that the S. aureus 209 P cells are equally subjected to the IR laser radiation (λ = 805 nm) after preliminary sensitisation with indocyanine green and gold nanoparticles separately and with conjugates of nanoparticles and indocyanine green. The enhancement of photodynamic and photothermal effects by 5 % is observed after 30 min of laser illumination (λ = 808 nm) of bacteria, treated with conjugates of indocyanine green and nanocages. (optical technologies in biophysics and medicine)

  5. A novel frequency analysis method for assessing K(ir)2.1 and Na (v)1.5 currents.

    Science.gov (United States)

    Rigby, J R; Poelzing, S

    2012-04-01

    Voltage clamping is an important tool for measuring individual currents from an electrically active cell. However, it is difficult to isolate individual currents without pharmacological or voltage inhibition. Herein, we present a technique that involves inserting a noise function into a standard voltage step protocol, which allows one to characterize the unique frequency response of an ion channel at different step potentials. Specifically, we compute the fast Fourier transform for a family of current traces at different step potentials for the inward rectifying potassium channel, K(ir)2.1, and the channel encoding the cardiac fast sodium current, Na(v)1.5. Each individual frequency magnitude, as a function of voltage step, is correlated to the peak current produced by each channel. The correlation coefficient vs. frequency relationship reveals that these two channels are associated with some unique frequencies with high absolute correlation. The individual IV relationship can then be recreated using only the unique frequencies with magnitudes of high absolute correlation. Thus, this study demonstrates that ion channels may exhibit unique frequency responses.

  6. Development of a two-wavelength IR laser absorption diagnostic for propene and ethylene

    Science.gov (United States)

    Parise, T. C.; Davidson, D. F.; Hanson, R. K.

    2018-05-01

    A two-wavelength infrared laser absorption diagnostic for non-intrusive, simultaneous quantitative measurement of propene and ethylene was developed. To this end, measurements of absorption cross sections of propene and potential interfering species at 10.958 µm were acquired at high-temperatures. When used in conjunction with existing absorption cross-section measurements of ethylene and other species at 10.532 µm, a two-wavelength diagnostic was developed to simultaneously measure propene and ethylene, the two small alkenes found to generally dominate the final decomposition products of many fuel hydrocarbon pyrolysis systems. Measurements of these two species is demonstrated using this two-wavelength diagnostic scheme for propene decomposition between 1360 and 1710 K.

  7. Effect of mechanical tissue properties on thermal damage in skin after IR-laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, M.; Romano, V.; Forrer, M.; Weber, H.P. (Inst. of Applied Physics, Bern Univ. (Switzerland)); Mischler, C.; Mueller, O.M. (Anatomical Inst., Bern Univ. (Switzerland))

    1991-04-01

    The damage created instantaneously in dorsal skin and in the subjacent skeletal muscle layer after CO{sub 2} and Er{sup 3+} laser incisions is histologically and ultrastructurally investigated. Light microscopical examinations show an up to three times larger damage zone in the subcutaneous layer of skeletal muscle than in the connective tissue above. The extent of thermally altered muscle tissue is classified by different zones and characterized by comparison to long time heating injuries. The unexpectedly large damage is a result of the change of elastic properties occurring abruptly at the transition between different materials. This leads to a discontinuity of the cutting dynamics that reduces the ejection of tissue material. We show that the degree of thermal damage originates from the amount of hot material that is not ejected out of the crater acting as a secondary heat source. (orig.).

  8. IR Camera Validation of IGBT Junction Temperature Measurement via Peak Gate Current

    DEFF Research Database (Denmark)

    Baker, Nick; Dupont, Laurent; Munk-Nielsen, Stig

    2017-01-01

    partial bond-wire lift-off. Results are also compared with a traditional electrical temperature measurement method: the voltage drop under low current (VCE(low)). In all cases, the IGPeak method is found to provide a temperature slightly overestimating the temperature of the gate pad. Consequently, both...... the gate pad position and chip temperature distribution influence whether the measurement is representative of the mean junction temperature. These results remain consistent after chips are degraded through bondwire lift-off. In a paralleled IGBT configuration with non-negligible temperature disequilibrium...

  9. Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    KAUST Repository

    Alquaity, Awad

    2016-11-01

    With global emission regulations becoming stringent, development of new combustion technologies that meet future emission regulations is essential. In this vein, this dissertation presents the application of sensitive diagnostic tools to validate and improve chemical kinetic mechanisms that play a fundamental role in the design of new combustion technologies. First, a novel high sensitivity laser-based sensor with a wide frequency tuning range (900 – 1000 cm-1) was developed utilizing pulsed cavity ringdown spectroscopy (CRDS) technique. The novel laser-based sensor was illustrated by measuring trace amounts of multiple combustion intermediates, namely ethylene, propene, allene, and 1-butene in a static cell at ambient conditions. Subsequently, pulsed CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique to transient species measurements in a shock tube. The high sensitivity and fast time response (10μs) diagnostic may be utilized for measuring other key neutrals and radicals which are crucial in the oxidation chemistry of practical fuels. Secondly, a quadrupole mass spectrometer (QMS) was employed to measure relative cation mole fractions in atmospheric and low-pressure (30 Torr) flames of methane/oxygen diluted in argon. Lean, stoichiometric and rich flames were 4 examined to evaluate the dependence of ion chemistry on flame stoichiometry. Spatial distribution of cations was compared with predictions of an existing ion chemistry model. Based on the extensive measurements carried out in this work, modifications were suggested to improve the ion chemistry model to enhance the fidelity of such mechanisms. In-depth understanding of flame ion chemistry is vital to model the interaction of flames with electric fields and thereby pave the way to enable active combustion control

  10. Residual energy deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 μm

    Science.gov (United States)

    Ragadio, Jerome N.; Lee, Christian K.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the residual heat deposition during laser ablation at those IR laser wavelengths best suited for the removal of dental caries. The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth, which has the potential for causing damage to the pulp. Optimal laser ablation systems minimize the residual energy deposition in the tooth by transferring deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in the tooth was measured at laser wavelengths of 2.79, 2.94, 9.6 and 10.6 micrometer and pulse widths of 150 ns - 150 microsecond(s) . The residual energy was at a minimum for fluences well above the ablation threshold where it saturates at values from 25 - 70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual energy were measured for short (less than 20 microseconds) CO2 laser pulses at 9.6 micrometer and for Q-switched erbium laser pulses. This work was supported by NIH/NIDCR R29DE12091 and the Center for Laser Applications in Medicine, DOE DEFG0398ER62576.

  11. Hard tissue ablation with a spray-assisted mid-IR laser

    International Nuclear Information System (INIS)

    Kang, H W; Rizoiu, I; Welch, A J

    2007-01-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  12. Hard tissue ablation with a spray-assisted mid-IR laser

    Science.gov (United States)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  13. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Deyong; Li, Yunliang; Li, Hao; Weng, Yuxiang, E-mail: yxweng@iphy.ac.cn [Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wu, Xianyou [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Yu, Qingxu [School of Physics and Optoelectronic Technology, Dalian University of Technology, No. 2, Linggong Road, Dalian 116023 (China)

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.

  14. History and current status of commercial pulsed laser deposition equipment

    International Nuclear Information System (INIS)

    Greer, James A

    2014-01-01

    This paper will review the history of the scale-up of the pulsed laser deposition (PLD) process from small areas ∼1 cm 2 up to 10 m 2 starting in about 1987. It also documents the history of commercialization of PLD as various companies become involved in selling fully integrated laser deposition tools starting in 1989. The paper will highlight the current state of the art of commercial PLD equipment for R and D that is available on the market today from mainstream vendors as well as production-oriented applications directed at piezo-electric materials for microelectromechanical systems and high-temperature superconductors for coated-conductor applications. The paper clearly demonstrates that considerable improvements have been made to scaling this unique physical vapour deposition process to useful substrate sizes, and that commercial deposition equipment is readily available from a variety of vendors to address a wide variety of technologically important thin-film applications. (paper)

  15. Visible/IR light and x-rays in femtosecond synchronism from an x-ray free-electron laser

    International Nuclear Information System (INIS)

    Adams, B. A.; Experimental Facilities Division

    2005-01-01

    A way is proposed to obtain pulses of visible/infrared light in femtosecond synchronism with x-rays from an x-ray free-electron laser (XFEL), using the recently proposed emittance-slicing technique. In an XFEL undulator, only the short section of an electron bunch whose emittance is left unchanged by the slicing will emit intense coherent x-rays in the XFEL undulator. At the same time, the bunch emits highly collimated transition undulator radiation (TUR) into a cone whose opening angle is the reciprocal relativisticity parameter gamma. Due to the variation of the transverse momentum induced by the emittance slicing, the effective number of charges contributing to the TUR varies along the bunch, and is higher in the sliced-out part that emits the coherent x-rays. As with coherent synchrotron radiation (CSR), the TUR is thus coherently enhanced (CTUR) at near-infrared wavelengths. Coming from the same part of the bunch the CTUR and the coherent x-rays are perfectly synchronized to each other. Because both types of radiation are generated in the long straight XFEL undulator, there are no dispersion effects that might induce a timing jitter. With typical XFEL parameters, the energy content of the single optical cycle of near-IR CTUR light is about 100 Nano-Joule, which is quite sufficient for most pump-probe experiments

  16. Single photon infrared emission spectroscopy: a study of IR emission from UV laser excited PAHs between 3 and 15 micrometers

    Science.gov (United States)

    Cook, D. J.; Schlemmer, S.; Balucani, N.; Wagner, D. R.; Harrison, J. A.; Steiner, B.; Saykally, R. J.

    1998-01-01

    Single-photon infrared emission spectroscopy (SPIRES) has been used to measure emission spectra from polycyclic aromatic hydrocarbons (PAHs). A supersonic free-jet expansion has been used to provide emission spectra of rotationally cold and vibrationally excited naphthalene and benzene. Under these conditions, the observed width of the 3.3-micrometers (C-H stretch) band resembles the bandwidths observed in experiments in which emission is observed from naphthalene with higher rotational energy. To obtain complete coverage of IR wavelengths relevant to the unidentified infrared bands (UIRs), UV laser-induced desorption was used to generate gas-phase highly excited PAHs. Lorentzian band shapes were convoluted with the monochromator-slit function in order to determine the widths of PAH emission bands under astrophysically relevant conditions. Bandwidths were also extracted from bands consisting of multiple normal modes blended together. These parameters are grouped according to the functional groups mostly involved in the vibration, and mean bandwidths are obtained. These bandwidths are larger than the widths of the corresponding UIR bands. However, when the comparison is limited to the largest PAHs studied, the bandwidths are slightly smaller than the corresponding UIR bands. These parameters can be used to model emission spectra from PAH cations and cations of larger PAHs, which are better candidate carriers of the UIRs.

  17. Laser diode with thermal conducting, current confining film

    Science.gov (United States)

    Hawrylo, Frank Z. (Inventor)

    1980-01-01

    A laser diode formed of a rectangular parallelopiped body of single crystalline semiconductor material includes regions of opposite conductivity type indium phosphide extending to opposite surfaces of the body. Within the body is a PN junction at which light can be generated. A stripe of a conductive material is on the surface of the body to which the P type region extends and forms an ohmic contact with the P type region. The stripe is spaced from the side surfaces of the body and extends to the end surfaces of the body. A film of germanium is on the portions of the surface of the P type region which is not covered by the conductive stripe. The germanium film serves to conduct heat from the body and forms a blocking junction with the P type region so as to confine the current through the body, across the light generating PN junction, away from the side surfaces of the body.

  18. Energy relaxation in IR laser excited Hg{sub 1-x}Cd{sub x}Te

    Energy Technology Data Exchange (ETDEWEB)

    Storebo, A K; Brudevoll, T [FFI - Norwegian Defence Research Establishment, PO Box 25, NO-2027 Kjeller, Norway NTNU (Norwegian University of Science and Technology) (Norway); Olsen, O; Norum, O C [Department of Physics and Department of Electronics and Telecommunications NO-7491 Trondheim (Norway); Breivik, M, E-mail: asta-katrine.storebo@ffi.n [Department of Electronics and Telecommunications NO-7491 Trondheim (Norway)

    2009-11-15

    IR laser excitation of Hg{sub l-x}Cd{sub x}Te by low-fluence femtosecond and high fluence microsecond pulses was explored for the technologically important alloy fractions x {approx} 0.2 and x {approx} 0.28. We have used first principles (LAPW) electronic structure calculations and finite element modelling, supported by Monte Carlo simulation for the description of femtosecond pulse carrier relaxation and the transport parameters. Laser wavelengths considered were 6.4 - 10.6 {mu}m for x {approx} 0.2 and 3.8 - 4.8 {mu}m for x {approx} 0.28, with an incident 1 microsecond pulse fluence of 2 J/cm{sup 2}. Many energy transfer mechanisms are invoked due to the long timescales of the microsecond pulses, and a main challenge is therefore to elucidate how these interplay in situations away from thermal equilibrium. Mechanisms studied include one- and two-photon absorption (OPA and TPA) across the band gap, inter-valence band absorption (IVA) between light- and heavy hole bands, electron-hole recombination/impact ionization, band gap renormalisation, intra-band free carrier absorption (FCA), excess carrier temperatures, non-equilibrium phonon generation, and refractive index changes. In the high fluence case, lattice temperatures evolve considerably during the laser pulse in response to the heated carriers. The chosen photon energies lie just above the band gap at the starting lattice temperature of 77 K, and nonlinear effects therefore dominate as the material heats up and the band gap begins to exceed the photon energy. Because of the low photon energy we must rely on Auger recombination, inter-valence band absorption and free carrier absorption to heat the carrier plasma. Although some Hg{sub l-x}Cd{sub x}Te material parameters are now relatively well known, existing data for many of the processes are inadequate for cases far away from thermal equilibrium. Furthermore, the role of Auger recombination in relation to non-intrinsic recombination has been a matter of debate

  19. High resolution laser beam induced current images under trichromatic laser radiation: approximation to the solar irradiation.

    Science.gov (United States)

    Navas, F J; Alcántara, R; Fernández-Lorenzo, C; Martín-Calleja, J

    2010-03-01

    A laser beam induced current (LBIC) map of a photoactive surface is a very useful tool when it is necessary to study the spatial variability of properties such as photoconverter efficiency or factors connected with the recombination of carriers. Obtaining high spatial resolution LBIC maps involves irradiating the photoactive surface with a photonic beam with Gaussian power distribution and with a low dispersion coefficient. Laser emission fulfils these characteristics, but against it is the fact that it is highly monochromatic and therefore has a spectral distribution different to solar emissions. This work presents an instrumental system and procedure to obtain high spatial resolution LBIC maps in conditions approximating solar irradiation. The methodology developed consists of a trichromatic irradiation system based on three sources of laser excitation with emission in the red, green, and blue zones of the electromagnetic spectrum. The relative irradiation powers are determined by either solar spectrum distribution or Planck's emission formula which provides information approximate to the behavior of the system if it were under solar irradiation. In turn, an algorithm and a procedure have been developed to be able to form images based on the scans performed by the three lasers, providing information about the photoconverter efficiency of photovoltaic devices under the irradiation conditions used. This system has been checked with three photosensitive devices based on three different technologies: a commercial silicon photodiode, a commercial photoresistor, and a dye-sensitized solar cell. These devices make it possible to check how the superficial quantum efficiency has areas dependent upon the excitation wavelength while it has been possible to measure global incident photon-to-current efficiency values approximating those that would be obtained under irradiation conditions with sunlight.

  20. Non-Contact Thermal Properties Measurement with Low-Power Laser and IR Camera System

    Science.gov (United States)

    Hudson, Troy L.; Hecht, Michael H.

    2011-01-01

    problems. The use of photons to both excite and measure the thermal response of any surface material to a high resolution (estimated footprint = 10 square centimeters) is a generational leap in physical properties measurements. The proposed method consists of spot-heating the surface of a material with a low (less than 1 W) power laser. This produces a moderate (5-10 K) temperature increase in the material.

  1. Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface

    Science.gov (United States)

    Preissig, Jason; Hamilton, Kristy; Markus, Ramsey

    2012-01-01

    Numerous laser platforms exist that rejuvenate the skin by resurfacing its upper layers. In varying degrees, these lasers improve the appearance of lentigines and rhytides, eliminate photoaging, soften scarring due to acne and other causes, and treat dyspigmentation. Five major classes of dermatologic lasers are currently in common use: ablative and nonablative lasers in both fractionated and unfractionated forms as well as radiofrequency technologies. The gentler nonablative lasers allow for quicker healing, whereas harsher ablative lasers tend to be more effective. Fractionating either laser distributes the effect, increasing the number of treatments but minimizing downtime and complications. In this review article, the authors seek to inform surgeons about the current laser platforms available, clarify the differences between them, and thereby facilitate the identification of the most appropriate laser for their practice. PMID:23904818

  2. Influence of wavelength and pulse duration on peripheral thermal and mechanical damage to dentin and alveolar bone during IR laser ablation

    Science.gov (United States)

    Lee, C.; Ragadio, Jerome N.; Fried, Daniel

    2000-03-01

    The objective of this study was to measure the peripheral thermal damage produced during the laser ablation of alveolar bone and dentin for clinically relevant IR laser systems. Previous studies have demonstrated that a char layer produced around the laser incision site can inhibit the wound healing process. Moreover, in the case of dentin, a char layer is unsightly and is difficult to bond to with restorative materials. Thermal damage was assessed using polarized light microscopy for laser pulse widths from 500 ns to 300 microseconds at 2.94 micrometer and 9.6 micrometer. Water- cooling was not employed to alleviate thermal damage during the laser irradiation. At 9.6 micrometer, minimal thermal damage was observed for pulse widths on the order of the thermal relaxation time of the deposited laser energy in the tissue, 3 - 4 microseconds, and peripheral thermal damage increased with increasing pulse duration. At 2.94 micrometer, thermal damage was minimal for the Q-switched (500 ns) laser system. This study shows that 9.6 micrometer CO2 laser pulses with pulse widths of 5 - 10 microseconds are well suited for the efficient ablation of dentin and bone with minimal peripheral damage. This work was supported by NIH/NIDCR R29DE12091.

  3. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations

    Science.gov (United States)

    Najbauer, Eszter E.; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2018-01-01

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, 6 conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-live of (3.7±0.5)·103 s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser induced conversions revealed that the excitation of the stretching overtone of both the side-chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations. PMID:26201050

  4. IR Laser-induced Ablation of Ag in Dielectric Breakdown of Gaseous Hydrocarbons: Simultaneous Occurrence of Metastable HCP and Stable FCC Ag Nanostructures in C:H Shell

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Pokorná, Dana; Bakardjieva, Snejana; Šubrt, Jan; Bastl, Zdeněk; Bezdička, Petr; Pola, Josef

    2010-01-01

    Roč. 213, 2-3 (2010), s. 114-122 ISSN 1010-6030 R&D Projects: GA AV ČR IAA400720619; GA MŠk LC523 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : ir laser * dielectric breakdown * ablation Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.243, year: 2010

  5. The Effects of Remineralization via Fluoride Versus Low-Level Laser IR810 and Fluoride Agents on the Mineralization and Microhardness of Bovine Dental Enamel

    Directory of Open Access Journals (Sweden)

    Edith Lara-Carrillo

    2018-01-01

    Full Text Available The objective of this study was to assess the mineralization and microhardness of bovine dental enamel surfaces treated with fluoride, tri-calcium phosphate, and infrared (IR 810 laser irradiation. The study used 210 bovine incisors, which were divided into six groups (n = 35 in each: Group A: Untreated (control, Group B: Fluoride (Durapath-Colgate, Group C: Fluoride+Tri-calcium phosphate (Clin-Pro White-3 M, Group D: Laser IR 810 (Quantum, Group E: Fluoride+laser, and Group F: Fluoride+tri-calcium phosphate+laser. Mineralization was measured via UV-Vis spectroscopy for phosphorus and via atomic absorption spectroscopy for calcium upon demineralization and remineralization with proven agents. Microhardness (SMH was measured after enamel remineralization. Mineral loss data showed differences between the groups before and after the mineralizing agents were placed (p < 0.05. Fluoride presented the highest remineralization tendency for both calcium and phosphate, with a Vickers microhardness of 329.8 HV0.1/11 (p < 0.05. It was observed that, if remineralization solution contained fewer minerals, the microhardness surface values were higher (r = −0.268 and −0.208; p < 0.05. This study shows that fluoride has a remineralizing effect compared with calcium triphosphate and laser IR810. This in vitro study imitated the application of different remineralizing agents and showed which one was the most efficient for treating non-cavitated injuries. This can prevent the progression of lesions in patients with white spot lesions.

  6. Residual heat deposition in dental enamel during IR laser ablation at 2.79, 2.94, 9.6, and 10.6 microm.

    Science.gov (United States)

    Fried, D; Ragadio, J; Champion, A

    2001-01-01

    The principal factor limiting the rate of laser ablation of dental hard tissue is the risk of excessive heat accumulation in the tooth. Excessive heat deposition or accumulation may result in unacceptable damage to the pulp. The objective of this study was to measure the residual heat deposition during the laser ablation of dental enamel at those IR laser wavelengths well suited for the removal of dental caries. Optimal laser ablation systems minimize the residual heat deposition in the tooth by efficiently transferring the deposited laser energy to kinetic and internal energy of ejected tissue components. The residual heat deposition in dental enamel was measured at laser wavelengths of 2.79, 2.94, 9.6, and 10.6 microm and pulse widths of 150 nsec -150 microsec using bovine block "calorimeters." Water droplets were applied to the surface before ablation with 150 microsec Er:YAG laser pulses to determine the influence of an optically thick water layer on reducing heat deposition. The residual heat was at a minimum for fluences well above the ablation threshold where measured values ranged from 25-70% depending on pulse duration and wavelength for the systems investigated. The lowest values of the residual heat were measured for short (heat deposition during ablation with 150 microsec Er:YAG laser pulses. Residual heat deposition can be markedly reduced by using CO(2) laser pulses of less than 20 microsec duration and shorter Q-switched Er:YAG and Er:YSGG laser pulses for enamel ablation. Copyright 2001 Wiley-Liss, Inc.

  7. Multi-pollutants sensors based on near-IR telecom lasers and mid-IR difference frequency generation: development and applications; Instruments de mesure multi-polluants par spectroscopie infrarouge bases sur des lasers fibres et par generation de difference de frequences: developpement et applications

    Energy Technology Data Exchange (ETDEWEB)

    Cousin, J

    2006-12-15

    At present the detection of VOC and other anthropic trace pollutants is an important challenge in the measurement of air quality. Infrared spectroscopy, allowing spectral regions rich in molecular absorption to be probed, is a suitable technique for in-situ monitoring of the air pollution. Thus the aim of this work was to develop instruments capable of detecting multiple pollutants for in-situ monitoring by IR spectroscopy. A first project benefited from the availability of the telecommunications lasers emitting in near-IR. This instrument was based on an external cavity diode laser (1500 - 1640 nm) in conjunction with a multipass cell (100 m). The detection sensitivity was optimised by employing a balanced detection and a sweep integration procedure. The instrument developed is deployable for in-situ measurements with a sensitivity of < 10{sup -8} cm{sup -1} Hz{sup -1/2} and allowed the quantification of chemical species such as CO{sub 2}, CO, C{sub 2}H{sub 2}, CH{sub 4} and the determination of the isotopic ratio {sup 13}CO{sub 2}/{sup 12}CO{sub 2} in combustion environment The second project consisted in mixing two near-IR fiber lasers in a non-linear crystal (PPLN) in order to produce a laser radiation by difference frequency generation in the middle-IR (3.15 - 3.43 {mu}m), where the absorption bands of the molecules are the most intense. The first studies with this source were carried out on detection of ethylene (C{sub 2}H{sub 4}) and benzene (C{sub 6}H{sub 6}). Developments, characterizations and applications of these instruments in the near and middle IR are detailed and the advantages of the 2 spectral ranges is highlighted. (author)

  8. Experimental control of power dropouts by current modulation in a semiconductor laser with optical feedback

    International Nuclear Information System (INIS)

    Ticos, Catalin M; Andrei, Ionut R; Pascu, Mihail L; Bulinski, Mircea

    2011-01-01

    The injection current of an external-cavity semiconductor laser working in a regime of low-frequency fluctuations (LFFs) is modulated at several MHz. The rate of power dropouts in the laser emission is correlated with the amplitude and frequency of the modulating signal. The occurrence of dropouts becomes more regular when the laser is driven at 7 MHz, which is close to the dominant frequency of dropouts in the solitary laser. Driving the laser at 10 MHz also induces dropouts with a periodicity of 0.1 μs, resulting in LFFs with two dominant frequencies.

  9. Laser ablation of tumors: current concepts and recent developments

    International Nuclear Information System (INIS)

    Stroszczynski, C.; Gaffke, G.; Gnauck, M.; Ricke, J.; Felix, R.; Puls, R.; Speck, U.; Hosten, N.; Oettle, H.; Hohenberger, P.

    2004-01-01

    Purpose. The purpose of this paper is to present technical innovations and clinical results of percutaneous interventional laser ablation of tumors using new techniques. Methods. Laser ablation was performed in 182 patients (liver tumors: 131, non hepatic tumors - bone, lung, others: 51) after interdisciplinary consensus was obtained. The procedure was done using a combination of imaging modalities (CT/MRI, CT/US) or only closed high field MRI (1.5 T). All patients received an MRI-scan immediately after laser ablation. Results. In 90.9% of the patients with liver tumors, a complete ablation was achieved. Major events occurred in 5.4%. The technical success rate of laser ablation in non-hepatic tumors was high, clinical results differed depending on the treated organ. Conclusions. The treatment of tumors of the liver and other organs up to 5 cm by laser ablation was a safe procedure with a low rate of complications and side effects. Image guidance by MRI is advantageous for precise tumor visualization in all dimensions, therapy monitoring, and control of laser ablation results. (orig.) [de

  10. Development of laser heated high current DC electron gun

    International Nuclear Information System (INIS)

    Banerjee, Srutarshi; Bhattacharjee, Dhruva; Kandaswamy, E.; Ghodke, S.R.; Tiwari, Rajnish; Bakhtsingh, R.I.

    2015-01-01

    The paper deals with the development of a Laser heated cathode for Electron Accelerator. The electron gun is meant for Megawatt-class DC Accelerator for Electron Beam Flue Gas Treatment applications. Conventionally, LaB 6 cathode is indirectly heated by tungsten filaments whereas in the newly proposed gun, Laser is utilized for heating. A Nd:YAG Laser is used to heat the LaB 6 cathode to emission temperatures. The characterization of cathode heating at various Laser powers has been carried out. In initial trials, it has been observed that with 125 W of Laser power, the LaB 6 pellet was heated to 1315 ° C. Based on these experimental results, an electron gun rated for 30 kV, 350 mA CW has been designed. The optimization of gun electrode geometry has been done using CST Particle Studio in order to tune the various electron gun parameters. The beam diameter obtained in simulation is 8 mm at 100 mm from the LaB 6 cathode. The perveance obtained is 7.1 x 10 -8 A/V 3/2 . The Laser heated cathode has the advantages of eliminating the magnetic field effects of filament on the electron beam, electrical isolation needed for gun filament power supplies and better electron beam emittances. (author)

  11. Fractional lasers in dermatology - Current status and recommendations

    Directory of Open Access Journals (Sweden)

    Apratim Goel

    2011-01-01

    Full Text Available Introduction: Fractional laser technology is a new emerging technology to improve scars, fine lines, dyspigmentation, striae and wrinkles. The technique is easy, safe to use and has been used effectively for several clinical and cosmetic indications in Indian skin. Devices: Different fractional laser machines, with different wavelengths, both ablative and non-ablative, are now available in India. A detailed understanding of the device being used is recommended. Indications: Common indications include resurfacing for acne, chickenpox and surgical scars, periorbital and perioral wrinkles, photoageing changes, facial dyschromias. The use of fractional lasers in stretch marks, melasma and other pigmentary conditions, dermatological conditions such as granuloma annulare has been reported. But further data are needed before adopting them for routine use in such conditions. Physician qualification: Any qualified dermatologist may administer fractional laser treatment. He/ she should possess a Master′s degree or diploma in dermatology and should have had specific hands-on training in lasers, either during postgraduation or later at a facility which routinely performs laser procedures under a competent dermatologist or plastic surgeon with experience and training in using lasers. Since parameters may vary with different systems, specific training tailored towards the concerned device at either the manufacturer′s facility or at another center using the machine is recommended. Facility: Fractional lasers can be used in the dermatologist′s minor procedure room for the above indications. Preoperative counseling and Informed consent: Detailed counseling with respect to the treatment, desired effects and possible postoperative complications should be provided to the patient. The patient should be provided brochures to study and also adequate opportunity to seek information. A detailed consent form needs to be completed by the patient. Consent form should

  12. Direct measuring of single-cycle mid-IR light bullets path length in LiF by the laser coloration method

    Directory of Open Access Journals (Sweden)

    Chekalin Sergey

    2017-01-01

    Full Text Available A colour-centre structure formed in a LiF crystal under filamentation of a femtosecond mid-IR laser pulse with a power slightly exceeding the critical power for self-focusing has been experimentally and theoretically investigated. A single-cycle light bullet was recorded for the first time by observation of strictly periodic oscillations for the density of the color centers induced in an isotropic LiF crystal under filamentation of a laser beam with a wavelength tuned in the range from 2600 to 3900 nm, which is due to the periodic change in the light field amplitude in the light bullet formed under filamentation under propagation in dispersive medium. The light bullet path length was not more than one millimeter.

  13. Frequency Tuning of IR First-Overtone CO Laser Radiation by Diffraction Grating and Frequency Selective Output Couplers

    National Research Council Canada - National Science Library

    Ionin, Andre

    1999-01-01

    ...: The contractor will investigate, both experimentally and theoretically, the feasibility of frequency tuning the first overtone carbon monoxide laser radiation by the use of diffraction gratings...

  14. Mode structure of delay-coupled semiconductor lasers: influence of the pump current

    International Nuclear Information System (INIS)

    Erzgraeber, Hartmut; Krauskopf, Bernd; Lenstra, Daan

    2005-01-01

    We consider two identical, mutually delay-coupled semiconductor lasers and show that their compound laser modes (CLMs)-the basic continuous wave solutions-depend rather sensitively on the pump current of the lasers. Specifically, we show with figures and accompanying animations how the underlying CLM structure and the associated locking region, where both lasers operate stably with the same frequency, change as a function of the pump current. Our results provide a natural transition between rather different CLM structures that have been reported in the literature. Moreover, we demonstrate how the locking region as well as the different types of instabilities at its boundary depend on the pump current. This is of fundamental interest for the dynamics of coupled lasers and their possible application

  15. Brome isotope selective control of CF3Br molecule clustering by IR laser radiation in gas-dynamic expansion of CF3Br - Ar mixture

    Science.gov (United States)

    Apatin, V. M.; Lokhman, V. N.; Makarov, G. N.; Ogurok, N.-D. D.; Ryabov, E. A.

    2018-02-01

    We report the results of research on the experimental control of CF3Br molecule clustering under gas-dynamic expansion of the CF3Br - Ar mixture at a nozzle exit by using IR laser radiation. A cw CO2 laser is used for exciting molecules and clusters in the beam and a time-of-flight mass-spectrometer with laser UV ionisation of particles for their detection. The parameters of the gas above the nozzle are determined (compositions and pressure) at which intensive molecule clustering occurs. It is found that in the case of the CF3Br gas without carrier when the pressure P0 above the nozzle does not exceed 4 atm, molecular clusters actually are not generated in the beam. If the gas mixture of CF3Br with argon is used at a pressure ratio 1 : N, where N >= 3, and the total pressure above the nozzle is P0 >= 2 atm, then there occurs molecule clustering. We study the dependences of the efficiency of suppressing the molecule clustering on parameters of the exciting pulse, gas parameters above the nozzle, and on a distance of the molecule irradiation zone from the nozzle exit section. It is shown that in the case of resonant vibrational excitation of gas-dynamically cooled CF3Br molecules at the nozzle exit one can realise isotope-selective suppression of molecule clustering with respect to bromine isotopes. With the CF3Br - Ar mixtures having the pressure ratio 1 : 3 and 1 : 15, the enrichment factors obtained with respect to bromine isotopes are kenr ≈ 1.05 ± 0.005 and kenr ≈ 1.06 ± 0.007, respectively, under jet irradiation by laser emission in the 9R(30) line (1084.635 cm-1). The results obtained let us assume that this method can be used to control clustering of molecules comprising heavy element isotopes, which have a small isotopic shift in IR absorption spectra.

  16. IR Laser-Induced Degradation of Poly(vinyl acetate): Novel Thermal Reactions in the Solid Polymers

    Czech Academy of Sciences Publication Activity Database

    Kupčík, Jaroslav; Blazevska-Gilev, J.; Pola, Josef

    2005-01-01

    Roč. 26, č. 5 (2005), s. 386-389 ISSN 1022-1336 R&D Projects: GA ČR(CZ) GA104/04/2028 Institutional research plan: CEZ:AV0Z40720504 Keywords : laser ablation * laser-induced polymers * poly(vinyl acetate) Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.126, year: 2005

  17. Current treatments of acne: Medications, lights, lasers, and a novel 650-μs 1064-nm Nd: YAG laser.

    Science.gov (United States)

    Gold, Michael H; Goldberg, David J; Nestor, Mark S

    2017-09-01

    The treatment of acne, especially severe acne, remains a challenge to dermatologists. Therapies include retinoids, antibiotics, hormones, lights, lasers, and various combinations of these modalities. Acne is currently considered a chronic rather than an adolescent condition. The appropriate treatment depends on the patient and the severity of disease. The purpose of this study was to review current therapies for acne of all severities and to introduce the 650-μs 1064-nm laser for the treatment of acne. © 2017 Wiley Periodicals, Inc.

  18. Optimum discharge current waveforms for pumping Ne-like Ar soft X-ray laser

    International Nuclear Information System (INIS)

    Zhao Yongpeng; Jiang Shan; Xie Yao; Teng Shupeng; Wang Qi

    2011-01-01

    In order to enhance intensity of Ne-like Ar 46.9 nm soft X-ray laser pumped by capillary discharge, influences of main current waveform on Z-pinch process,time of lasing onset and laser intensity were studied. Rise-time of main current waveform was changed by varying conducting inductance of main switch. Experimental results with different rise-times show that amplitude of laser spike decreases with increasing rise-time,and time of lasing onset increases with increasing rise-time. In addition, influences of average current changing rate on laser intensity were studied. When inner diameter of capillary is 3 mm and initial pressure is 30 Pa, optimum average current changing rate is about 7.0 x 10 11 A/s. (authors)

  19. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    Science.gov (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  20. IR Laser Ablative Degradation of Poly(phenylene ether sulfone): Deposition of Films Containing Sulfone, Sulfoxide and Sulfide Groups

    Czech Academy of Sciences Publication Activity Database

    Blazevska-Gilev, J.; Bastl, Zdeněk; Šubrt, Jan; Stopka, Pavel; Pola, Josef

    2009-01-01

    Roč. 94, č. 2 (2009), s. 196-200 ISSN 0141-3910 R&D Projects: GA AV ČR IAA400720619 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : laser ablation * laser-induced degradation * poly(1,4-phenylene ether-sulfone) Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.154, year: 2009

  1. 80-W cw TEM{sub 00} IR beam generation by use of a laser-diode-side-pumped Nd:YAG rod laser

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Susumu; Fujikawa, Shuichi; Yasui, Koji [Mitsubishi Electric Corp. Amagasaki, Hyogo (Japan). Advanced Technology R and D Center

    1998-03-01

    We have demonstrated high-efficient and high-power operation of a diode-side-pumped Nd:YAG rod laser. The laser has a simple and scalable configuration consisting of a diffusive pumping reflector and an advanced cavity configuration for polarization-dependent bifocusing compensation. (author)

  2. Applicability evaluation of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Kasuya, Takashi; Ueno, Souichi; Ochiai, Makoto; Yuguchi, Yasuhiro

    2010-01-01

    We clarified a defect detecting capability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding. An underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in groove and welding surface grinding as a post treatment. Therefore groove and grinded welding surface inspections are required underwater. We curried out defect detection tests using three kinds of specimens simulated a groove, reactor vessel nozzle dissimilar metal welding materials and a laser beam welding material with a cross coil ECT probe. From experimental results, we confirmed that it is possible to detect 0.3 mm or more depth electro-discharge machining slits on machining surfaces in all specimens and an ECT has possibility as a surface inspection technique for underwater laser beam welding. (author)

  3. Jitter-correction for IR/UV-XUV pump-probe experiments at the FLASH free-electron laser

    International Nuclear Information System (INIS)

    Savelyev, Evgeny; Boll, Rebecca; Bomme, Cedric; Schirmel, Nora; Redlin, Harald

    2017-01-01

    In pump-probe experiments employing a free-electron laser (FEL) in combination with a synchronized optical femtosecond laser, the arrival-time jitter between the FEL pulse and the optical laser pulse often severely limits the temporal resolution that can be achieved. Here, we present a pump-probe experiment on the UV-induced dissociation of 2,6-difluoroiodobenzene C 6 H 3 F 2 I) molecules performed at the FLASH FEL that takes advantage of recent upgrades of the FLASH timing and synchronization system to obtain high-quality data that are not limited by the FEL arrival-time jitter. Here, we discuss in detail the necessary data analysis steps and describe the origin of the time-dependent effects in the yields and kinetic energies of the fragment ions that we observe in the experiment.

  4. First quantitative measurements by IR spectroscopy of dioxins and furans by means of broadly tunable quantum cascade lasers

    International Nuclear Information System (INIS)

    Siciliani de Cumis, M; D’Amato, F; Viciani, S; Patrizi, B; Foggi, P; Galea, C L

    2013-01-01

    We demonstrate the possibility of a quantitative analysis of the concentration of several dioxins and furans, among the most toxic ones, by only using infrared absorption laser spectroscopy. Two broadly tunable quantum cascade lasers, emitting in the mid-infrared, have been used to measure the absorption spectra of dioxins and furans, dissolved in CCl 4 , in direct absorption mode. The minimum detectable concentrations are inferred by analyzing diluted samples. A comparison between this technique and standard Fourier transform spectroscopy has been carried out and an analysis of future perspectives is reported. (paper)

  5. Mapping return currents in laser-generated Z-pinch plasmas using proton deflectometry

    International Nuclear Information System (INIS)

    Manuel, M. J.-E.; Sinenian, N.; Seguin, F. H.; Li, C. K.; Frenje, J. A.; Rinderknecht, H. G.; Casey, D. T.; Zylstra, A. B.; Petrasso, R. D.; Beg, F. N.

    2012-01-01

    Dynamic return currents and electromagnetic field structure in laser-generated Z-pinch plasmas have been measured using proton deflectometry. Experiments were modeled to accurately interpret deflections observed in proton radiographs. Current flow is shown to begin on axis and migrate outwards with the expanding coronal plasma. Magnetic field strengths of ∼1 T are generated by currents that increase from ∼2 kA to ∼7 kA over the course of the laser pulse. Proton deflectometry has been demonstrated to be a practical alternative to other magnetic field diagnostics for these types of plasmas.

  6. A IR-Femtosecond Laser Hybrid Sensor to Measure the Thermal Expansion and Thermo-Optical Coefficient of Silica-Based FBG at High Temperatures.

    Science.gov (United States)

    Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie

    2018-01-26

    In this paper, a hybrid sensor was fabricated using a IR-femtosecond laser to measure the thermal expansion and thermo-optical coefficient of silica-based fiber Bragg gratings (FBGs). The hybrid sensor was composed of an inline fiber Fabry-Perot interferometer (FFPI) cavity and a type-II FBG. Experiment results showed that the type-II FBG had three high reflectivity resonances in the wavelength ranging from 1100 to 1600 nm, showing the peaks in 1.1, 1.3 and 1.5 μm, respectively. The thermal expansion and thermo-optical coefficient (1.3 μm, 1.5 μm) of silica-based FBG, under temperatures ranging from 30 to 1100 °C, had been simultaneously calculated by measuring the wavelength of the type-II FBG and FFPI cavity length.

  7. IR Laser Decomposition of 1,3-Disilacyclobutane in Presence of Carbon Disulfide: Chemical Vapour Deposition of Polythiacarbosilane

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Pola, Josef

    2004-01-01

    Roč. 689, č. 16 (2004), s. 2697-2701 ISSN 0022-328X R&D Projects: GA MŠk ME 612 Institutional research plan: CEZ:AV0Z4072921 Keywords : laser * polythiacarbosilane * chemical vapor deposition Subject RIV: CC - Organic Chemistry Impact factor: 1.905, year: 2004

  8. Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: a laser-desorption isomer-specific UV and IR study.

    Science.gov (United States)

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2018-03-07

    To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.

  9. Optical Remote Sensing for Fence-Line Monitoring using Open-Path Quantum Cascade Laser (QCL) mono-static system for multiple target compounds in the Mid IR 7-13um (Fingerprint) region.

    Science.gov (United States)

    Zemek, P. G.

    2017-12-01

    Quantum Cascade Lasers (QCLs) are quickly replacing Tunable Diode Lasers (TDL) for multi-target species identification and quantification in both extractive and open-path (OP) Optical Remote Sensing (ORS) fence-line instrumentation. As was seen with TDL incorporation and pricing drops as the adoption by the telecommunications industry and its current scaling has improved robustness and pricing, the QCL is also, albiet more slowly, becoming a mature market. There are several advantages of QCLs over conventional TDLs such as improved brightness and beam density, high resolution, as well as the incorporation of external etalons or internal gratings to scan over wide spectral areas. QCLs typically operate in the Mid infra-red (MIR) as opposed to the Near-Infrared (NIR) region used with TDL. The MidIR is a target rich absorption band area where compounds have high absorbtivity coefficients resulting in better detection limits as compared to TDL instruments. The use of novel chemometrics and more sensitive non-cryo-cooled detectors has allowed some of the first QCL open-path instruments in both active and passive operation. Data and field studies of one of the newest QCL OP systems is presented that allows one system to measure multiple target compounds. Multiple QCL spectral regions may be stitched together to increase the capability of QCLs over TDL OP systems. A comparison of several ORS type systems will be presented.

  10. Modeling and application of plasma charge current in deep penetration laser welding

    International Nuclear Information System (INIS)

    Zhang, Xudong; Chen, Wuzhu; Jiang, Ping; Guo, Jing; Tian, Zhiling

    2003-01-01

    Plasma charge current distribution during deep penetration CO 2 laser welding was analyzed theoretically and experimentally. The laser-induced plasma above the workpiece surface expands up to the nozzle, driven by the particle concentration gradient, forming an electric potential between the workpiece and the nozzle due to the large difference between the diffusion velocities of the ions and the electrons. The plasma-induced current obtained by electrically connecting the nozzle and the workpiece can be increased by adding a negative external voltage. For a fixed set of welding conditions, the plasma charge current increases with the external voltage to a saturation value. The plasma charge current decreases as the nozzle-to-workpiece distance increases. Therefore, closed-loop control of the nozzle-to-workpiece distance for laser welding can be based on the linear relationship between the plasma charge current and the distance. In addition, the amount of plasma above the keyhole can be reduced by a transverse magnetic field, which reduces the attenuation of the incident laser power by the plasma so as to increase the laser welding thermal efficiency

  11. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Badziak, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Glowacz, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Jablonski, S [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Parys, P [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Wolowski, J [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Hora, H [Department of Theoretical Physics, University of New South Wales, Sydney (Australia); Krasa, J [Institute of Physics, ASCR, Prague (Czech Republic); Laska, L [Institute of Physics, ASCR, Prague (Czech Republic); Rohlena, K [Institute of Physics, ASCR, Prague (Czech Republic)

    2004-12-01

    Some applications of fast ions driven by a short ({<=}1 ps) laser pulse (e.g. fast ignition of ICF targets, x-ray laser pumping, laboratory astrophysics research or some nuclear physics experiments) require ion beams of picosecond (or shorter) time durations and of very high ion current densities ({approx}10{sup 10} A cm{sup -2} or higher). A possible way of producing ion beams with such extreme parameters is ballistic focusing of fast ions generated by a target normal sheath acceleration (TNSA) mechanism at relativistic laser intensities. In this paper we discuss another method, where the production of short-pulse ion beams of ultrahigh current densities is possible in a planar geometry at subrelativistic laser intensities and at a low energy ({<=}1 J) of the laser pulse. This method-referred to as skin-layer ponderomotive acceleration (S-LPA)-uses strong ponderomotive forces induced at the skin-layer interaction of a short laser pulse with a proper preplasma layer in front of a solid target. The basic features of the high-current ion generation by S-LPA were investigated using a simplified theory, numerical hydrodynamic simulations and measurements. The experiments were performed with subjoule 1 ps laser pulses interacting with massive or thin foil targets at intensities of up to 2 x 10{sup 17} W cm{sup -2}. It was found that both in the backward and forward directions highly collimated high-density ion beams (plasma blocks) with current densities at the ion source (close to the target) approaching 10{sup 10} A cm{sup -2} are produced, in accordance with the theory and numerical calculations. These ion current densities were found to be comparable to (or even higher than) those estimated from recent short-pulse TNSA experiments with relativistic laser intensities. Apart from the simpler physics of the laser-plasma interaction, the advantage of the considered method is the low energy of the driving laser pulses allowing the production of ultrahigh-current

  12. Cancer radiotherapy based on femtosecond IR laser-beam filamentation yielding ultra-high dose rates and zero entrance dose.

    Science.gov (United States)

    Meesat, Ridthee; Belmouaddine, Hakim; Allard, Jean-François; Tanguay-Renaud, Catherine; Lemay, Rosalie; Brastaviceanu, Tiberius; Tremblay, Luc; Paquette, Benoit; Wagner, J Richard; Jay-Gerin, Jean-Paul; Lepage, Martin; Huels, Michael A; Houde, Daniel

    2012-09-18

    Since the invention of cancer radiotherapy, its primary goal has been to maximize lethal radiation doses to the tumor volume while keeping the dose to surrounding healthy tissues at zero. Sadly, conventional radiation sources (γ or X rays, electrons) used for decades, including multiple or modulated beams, inevitably deposit the majority of their dose in front or behind the tumor, thus damaging healthy tissue and causing secondary cancers years after treatment. Even the most recent pioneering advances in costly proton or carbon ion therapies can not completely avoid dose buildup in front of the tumor volume. Here we show that this ultimate goal of radiotherapy is yet within our reach: Using intense ultra-short infrared laser pulses we can now deposit a very large energy dose at unprecedented microscopic dose rates (up to 10(11) Gy/s) deep inside an adjustable, well-controlled macroscopic volume, without any dose deposit in front or behind the target volume. Our infrared laser pulses produce high density avalanches of low energy electrons via laser filamentation, a phenomenon that results in a spatial energy density and temporal dose rate that both exceed by orders of magnitude any values previously reported even for the most intense clinical radiotherapy systems. Moreover, we show that (i) the type of final damage and its mechanisms in aqueous media, at the molecular and biomolecular level, is comparable to that of conventional ionizing radiation, and (ii) at the tumor tissue level in an animal cancer model, the laser irradiation method shows clear therapeutic benefits.

  13. Current-enhanced SASE using an optical laser and its application to the LCLS

    International Nuclear Information System (INIS)

    Zholents, Alexander A.; Fawley, William M.; Emma, Paul; Huang, Zhirong; Reiche, Sven; Stupakov, Gennady

    2004-01-01

    We propose a significant enhancement of the electron peak current entering a SASE undulator by inducing an energy modulation in an upstream wiggler magnet via resonant interaction with an optical laser, followed by microbunching of the energy-modulated electrons at the accelerator exit. This current enhancement allows a reduction of the FEL gain length. The x-ray output consists of a series of uniformly spaced spikes, each spike being temporally coherent. The duration of this series is controlled by the laser pulse and in principle can be narrowed down to just a single, 200-attosecond spike. Given potentially absolute temporal synchronization of the x-ray spikes to the energy-modulating laser pulse, this scheme naturally makes pump-probe experiments available to SASE FEL's. We also study various detrimental effects related to the high electron peak current

  14. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Change in the optical properties of hyaline cartilage heated by the near-IR laser radiation

    Science.gov (United States)

    Bagratashvili, Viktor N.; Bagratashvili, N. V.; Gapontsev, V. P.; Makhmutova, G. Sh; Minaev, V. P.; Omel'chenko, A. I.; Samartsev, I. E.; Sviridov, A. P.; Sobol', E. N.; Tsypina, S. I.

    2001-06-01

    The in vitro dynamics of the change in optical properties of hyaline cartilage heated by fibre lasers at wavelengths 0.97 and 1.56 μm is studied. The laser-induced bleaching (at 1.56 μm) and darkening (at 0.97 μm) of the cartilage, caused by the heating and transport of water as well as by a change in the cartilage matrix, were observed and studied. These effects should be taken into account while estimating the depth of heating of the tissue. The investigated dynamics of light scattering in the cartilage allows one to choose the optimum radiation dose for laser plastic surgery of cartilage tissues.

  15. Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor

    Science.gov (United States)

    Brandstetter, M.; Volgger, L.; Genner, A.; Jungbauer, C.; Lendl, B.

    2013-02-01

    This work reports on a compact sensor for fast and reagent-free point-of-care determination of glucose, lactate and triglycerides in blood serum based on a tunable (1030-1230 cm-1) external-cavity quantum cascade laser (EC-QCL). For simple and robust operation a single beam set-up was designed and only thermoelectric cooling was used for the employed laser and detector. Full computer control of analysis including liquid handling and data analysis facilitated routine measurements. A high optical pathlength (>100 μm) is a prerequisite for robust measurements in clinical practice. Hence, the optimum optical pathlength for transmission measurements in aqueous solution was considered in theory and experiment. The experimentally determined maximum signal-to-noise ratio (SNR) was around 140 μm for the QCL blood sensor and around 50 μm for a standard FT-IR spectrometer employing a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. A single absorption spectrum was used to calculate the analyte concentrations simultaneously by using a partial-least-squares (PLS) regression analysis. Glucose was determined in blood serum with a prediction error (RMSEP) of 6.9 mg/dl and triglycerides with an error of cross-validation (RMSECV) of 17.5 mg/dl in a set of 42 different patients. In spiked serum samples the lactate concentration could be determined with an RMSECV of 8.9 mg/dl.

  16. Impact of Humidity on Quartz-Enhanced Photoacoustic Spectroscopy Based CO Detection Using a Near-IR Telecommunication Diode Laser

    Directory of Open Access Journals (Sweden)

    Xukun Yin

    2016-01-01

    Full Text Available A near-IR CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS is evaluated using humidified nitrogen samples. Relaxation processes in the CO-N2-H2O system are investigated. A simple kinetic model is used to predict the sensor performance at different gas pressures. The results show that CO has a ~3 and ~5 times slower relaxation time constant than CH4 and HCN, respectively, under dry conditions. However, with the presence of water, its relaxation time constant can be improved by three orders of magnitude. The experimentally determined normalized detection sensitivity for CO in humid gas is 1.556 × 10 − 8   W ⋅ cm − 1 / Hz 1 / 2 .

  17. High speed, intermediate resolution, large area laser beam induced current imaging and laser scribing system for photovoltaic devices and modules

    Science.gov (United States)

    Phillips, Adam B.; Song, Zhaoning; DeWitt, Jonathan L.; Stone, Jon M.; Krantz, Patrick W.; Royston, John M.; Zeller, Ryan M.; Mapes, Meghan R.; Roland, Paul J.; Dorogi, Mark D.; Zafar, Syed; Faykosh, Gary T.; Ellingson, Randy J.; Heben, Michael J.

    2016-09-01

    We have developed a laser beam induced current imaging tool for photovoltaic devices and modules that utilizes diode pumped Q-switched lasers. Power densities on the order of one sun (100 mW/cm2) can be produced in a ˜40 μm spot size by operating the lasers at low diode current and high repetition rate. Using galvanostatically controlled mirrors in an overhead configuration and high speed data acquisition, large areas can be scanned in short times. As the beam is rastered, focus is maintained on a flat plane with an electronically controlled lens that is positioned in a coordinated fashion with the movements of the mirrors. The system can also be used in a scribing mode by increasing the diode current and decreasing the repetition rate. In either mode, the instrument can accommodate samples ranging in size from laboratory scale (few cm2) to full modules (1 m2). Customized LabVIEW programs were developed to control the components and acquire, display, and manipulate the data in imaging mode.

  18. IR Laser-Induced Thermolysis and UV Laser-Induced Photolysis of 1,3-Diethyldisiloxane: Chemical Vapour Deposition of Nanotextured Hydridoalkylsilicones

    Czech Academy of Sciences Publication Activity Database

    Urbanová, Markéta; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2001-01-01

    Roč. 11, č. 6 (2001), s. 1557-1562 ISSN 0959-9428 R&D Projects: GA AV ČR IAA4072806 Keywords : thermolysis * UV laser photolysis * composition Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.736, year: 2001

  19. The New High Magnetic Field Laboratory at Dresden: a Pulsed-Field Laboratory at an IR Free-Electron-Laser

    International Nuclear Information System (INIS)

    Pobell, F.; Bianchi, A. D.; Herrmannsdoerfer, T.; Krug, H.; Zherlitsyn, S.; Zvyagin, S.; Wosnitza, J.

    2006-01-01

    We report on the construction of a new high magnetic field user laboratory which will offer pulsed-field coils in the range (60 T, 500 ms, 40 mm) to (100 T, 10 ms, 20 mm) for maximum field, pulse time, and bore diameter of the coils. These coils will be energized by a modular 50 MJ/24 kV capacitor bank. Besides many other experimental techniques, as unique possibilities NMR in pulsed fields as well as infrared spectroscopy at 5 to 150 μm will be available by connecting the pulsed field laboratory to a nearby free-electron-laser facility

  20. A ZnGeP{sub 2} Optical Parametric Oscillator with Mid-IR Output Power 3 W Pumped by a Tm, Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Bao-Quan, Yao; Guo-Li, Zhu; You-Lun, Ju; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080 (China)

    2009-02-15

    We report an efficient mid-infrared optical parametric oscillator (OPO) pumped by a pulsed Tm,Ho-codoped GdVO4 laser. The 10-W Tm,Ho:GdVO4 laser pumped by a 801 nm diode produces 20ns pulses with a repetition rate of 10kHz at wavelength of 2.048 {mu}m. The ZnGeP{sub 2} (ZGP) OPO produces 15-ns pulses in the spectral regions 3.65-3.8 {mu}m and 4.45-4.65 {mu}m simultaneously. More than 3 W of mid-IR output power can be generated with a total OPO slope efficiency greater than 58% corresponding to incident 2 {mu}m pump power. The diode laser pump to mid-IR optical conversion efficiency is about 12%.

  1. Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations.

    Science.gov (United States)

    Miao, Xinyu; Yin, Longfei; Zhuang, Wei; Luo, Bin; Dang, Anhong; Chen, Jingbiao; Guo, Hong

    2011-08-01

    We demonstrate an external-cavity laser system using an anti-reflection coated laser diode as gain medium with about 60 nm fluorescence spectrum, and a Rb Faraday anomalous dispersion optical filter (FADOF) as frequency-selecting element with a transmission bandwidth of 1.3 GHz. With 6.4% optical feedback, a single stable longitudinal mode is obtained with a linewidth of 69 kHz. The wavelength of this laser is operating within the center of the highest transmission peak of FADOF over a diode current range from 55 mA to 142 mA and a diode temperature range from 15 °C to 35 °C, thus it is immune to the fluctuations of current and temperature.

  2. Thermal dependence of the current threshold in InGaAsN lasers

    International Nuclear Information System (INIS)

    Mon, E.; Suarez, N.; Sánchez, M.; Martin, Juan A.

    2008-01-01

    With active area of InGaAsN lasers are very attractive since they emit in the range of wavelengths of 1.3 to 1.5 pm (CET) bands of conduction of the active zone and cladding in this material [1] layers. In lasers with barriers of GaAs InGaAsN AEc around values are obtained 300 MeV, which guarantees a good confinement of electrons and reported To the order of 126 K values, however, these results have not been satisfactorily explained and there are conflicting reports about this parameter. This work simulates the thermal dependence of the current threshold of InGaAsN lasers including as main mechanisms of loss, leakage current, Auger recombination and recombination Mono [2], which was a good fit of the experimental results reported.

  3. Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer.

    Science.gov (United States)

    Al Roumy, Jalal; Perchoux, Julien; Lim, Yah Leng; Taimre, Thomas; Rakić, Aleksandar D; Bosch, Thierry

    2015-01-10

    We present a simple analytical model that describes the injection current and temperature dependence of optical feedback interferometry signal strength for a single-mode laser diode. The model is derived from the Lang and Kobayashi rate equations, and is developed both for signals acquired from the monitoring photodiode (proportional to the variations in optical power) and for those obtained by amplification of the corresponding variations in laser voltage. The model shows that both the photodiode and the voltage signal strengths are dependent on the laser slope efficiency, which itself is a function of the injection current and the temperature. Moreover, the model predicts that the photodiode and voltage signal strengths depend differently on injection current and temperature. This important model prediction was proven experimentally for a near-infrared distributed feedback laser by measuring both types of signals over a wide range of injection currents and temperatures. Therefore, this simple model provides important insight into the radically different biasing strategies required to achieve optimal sensor sensitivity for both interferometric signal acquisition schemes.

  4. Improvement of light-current characteristic linearity in a quantum well laser with asymmetric barriers

    DEFF Research Database (Denmark)

    Zubov, F. I.; Zhukov, A. E.; Shernyakov, Yu M.

    2014-01-01

    The effect of asymmetric barriers on the light-current characteristic (LCC) of a quantum well laser was studied theoretically and experimentally. It is shown that the utilization of asymmetric barriers in a waveguide prevents the nonlinearity of LCC and, consequently, allows rising of the maximum...

  5. Current limitation by an electric double layer in ion laser discharges

    International Nuclear Information System (INIS)

    Torven, S.

    1977-12-01

    A theory for current limitation in ion laser discharges is investigated. The basic mechanism considered is saturation of the positive ion flux at an electric double layer by the limited flux of neutral atoms. The result is compared with a recently published synthesis of a large number of experimental data which agree well with those predicted by the double layer model

  6. Laser desorption single-conformation UV and IR spectroscopy of the sulfonamide drug sulfanilamide, the sulfanilamide-water complex, and the sulfanilamide dimer.

    Science.gov (United States)

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2017-06-07

    We have studied the conformational preferences of the sulfonamide drug sulfanilamide, its dimer, and its monohydrated complex through laser desorption single-conformation UV and IR spectroscopy in a molecular beam. Based on potential energy curves for the inversion of the anilinic and the sulfonamide NH 2 groups calculated at DFT level, we suggest that the zero-point level wave function of the sulfanilamide monomer is appreciably delocalized over all four conformer wells. The sulfanilamide dimer, and the monohydrated complex each exhibit a single isomer in the molecular beam. The isomeric structures of the sulfanilamide dimer and the monohydrated sulfanilamide complex were assigned based on their conformer-specific IR spectra in the NH and OH stretch region. Quantum Theory of Atoms in Molecules (QTAIM) analysis of the calculated electron density in the water complex suggests that the water molecule is bound side-on in a hydrogen bonding pocket, donating one O-HO[double bond, length as m-dash]S hydrogen bond and accepting two hydrogen bonds, a NHO and a CHO hydrogen bond. QTAIM analysis of the dimer electron density suggests that the C i symmetry dimer structure exhibits two dominating N-HO[double bond, length as m-dash]S hydrogen bonds, and three weaker types of interactions: two CHO bonds, two CHN bonds, and a chalcogen OO interaction. Most interestingly, the molecular beam dimer structure closely resembles the R dimer unit - the dimer unit with the greatest interaction energy - of the α, γ, and δ crystal polymorphs. Interacting Quantum Atoms analysis provides evidence that the total intermolecular interaction in the dimer is dominated by the short-range exchange-correlation contribution.

  7. IR emission and electrical conductivity of Nd/Nb-codoped TiO{sub x} (1.5 < x < 2) thin films grown by pulsed-laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Tchiffo-Tameko, C.; Cachoncinlle, C. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Perriere, J. [Sorbonne Universités, UPMC Université Paris 06, UMR 7588, INSP, 75005 Paris (France); CNRS, UMR 7588, INSP, 75005 Paris (France); Nistor, M. [NILPRP, L 22 P.O. Box MG-36, 77125 Bucharest-Magurele (Romania); Petit, A.; Aubry, O. [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France); Pérez Casero, R. [Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Millon, E., E-mail: eric.millon@univ-orleans.fr [GREMI, UMR 7344 CNRS-Université Orléans, 45067 Orléans Cedex 2 (France)

    2016-12-15

    Highlights: • Nd/Nb-codoped TiO{sub 2} PLD films are electrically insulating and transparent in the UV visible NIR spectral domain. • Nd/Nb-codoped oxygen deficient TiO{sub x} (x ≈ 1.5) films are conductive and absorbent. • IR emission of Nd{sup 3+} in codoped TiO{sub x} films is quenched due to oxygen deficiency. • High Nb-doping rate decreases the IR emission of Nd{sup 3+} in Nd/Nb-codoped TiO{sub 2} films. - Abstract: The effect of the co-doping with Nd and Nb on electrical and optical properties of TiO{sub x} films is reported. The role of oxygen vacancies on the physical properties is also evidenced. The films are grown by pulsed-laser deposition onto (001) sapphire and (100) silicon substrates. The substrate temperature was fixed at 700 °C. To obtain either stoichiometric (TiO{sub 2}) or highly oxygen deficient (TiO{sub x} with x < 1.6) thin films, the oxygen partial pressure was adjusted at 10{sup −1} and 10{sup −6} mbar, respectively. 1%Nd-1%Nb, 1%Nd-5%Nb and 5%Nd-1%Nb co-doped TiO{sub 2} were used as bulk ceramic target. Composition, structural and morphological properties of films determined by Rutherford backscattering spectroscopy, X-ray diffraction and scanning electron microscopy, are correlated to their optical (UV–vis transmission and photoluminescence) and electrical properties (resistivity at room temperature). The most intense Nd{sup 3+} emission in the IR domain is obtained for stoichiometric films. Codoping Nd-TiO{sub x} films by Nb{sup 5+} ions is found to decrease the photoluminescence efficiency. The oxygen pressure during the growth allows to tune the optical and electrical properties: insulating and highly transparent (80% in the visible range) Nd/Nb codoped TiO{sub 2} films are obtained at high oxygen pressure, while conductive and absorbent films are grown under low oxygen pressure (10{sup −6} mbar).

  8. On the laser lift-off of lightly doped micrometer-thick n-GaN films from substrates via the absorption of IR radiation in sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Voronenkov, V. V. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Virko, M. V.; Kogotkov, V. S.; Leonidov, A. A. [Peter the Great St. Petersburg Polytechnic University (Russian Federation); Pinchuk, A. V.; Zubrilov, A. S.; Gorbunov, R. I.; Latishev, F. E.; Bochkareva, N. I.; Lelikov, Y. S.; Tarkhin, D. V.; Smirnov, A. N.; Davydov, V. Y. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Sheremet, I. A. [Financial University under the Government of the Russian Federation (Russian Federation); Shreter, Y. G., E-mail: y.shreter@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2017-01-15

    The intense absorption of CO{sub 2} laser radiation in sapphire is used to separate GaN films from GaN templates on sapphire. Scanning of the sapphire substrate by the laser leads to the thermal dissociation of GaN at the GaN/sapphire interface and to the detachment of GaN films from the sapphire. The threshold density of the laser energy at which n-GaN started to dissociate is 1.6 ± 0.5 J/cm{sup 2}. The mechanical-stress distribution and the surface morphology of GaN films and sapphire substrates before and after laser lift-off are studied by Raman spectroscopy, atomic-force microscopy, and scanning electron microscopy. A vertical Schottky diode with a forward current density of 100 A/cm{sup 2} at a voltage of 2 V and a maximum reverse voltage of 150 V is fabricated on the basis of a 9-μm-thick detached n-GaN film.

  9. Simple laser-driven, metal photocathodes as cold, high-current electron sources

    International Nuclear Information System (INIS)

    Saunders, J.D.; Ringler, T.J.; Builta, L.A.; Kauppila, T.J.; Moir, D.C.; Downey, S.W.

    1987-01-01

    Recent developments in excimer laser design have made near ultraviolet light intensities of several MWcm 2 possible in unfocused beams. These advances and recent experiments indicate that high-current, simple-metal photoemissive electron guns are now feasible. Producing more than 50 Acm 2 of illuminated cathode surface, the guns could operate at vacuums of 10 -6 torr with no complicated system components inside the vacuum enclosure. The electron beam produced by such photoemission guns would have very low emittance and high brightness. This beam would also closely follow the temporal characteristics of the laser pulse, making fast risetime, ultrashort electron beam pulses possible

  10. High current, high energy proton beams accelerated by a sub-nanosecond laser

    Czech Academy of Sciences Publication Activity Database

    Margarone, Daniele; Krása, Josef; Picciotto, A.; Torrisi, L.; Láska, Leoš; Velyhan, Andriy; Prokůpek, Jan; Ryc, L.; Parys, P.; Ullschmied, Jiří; Rus, Bedřich

    2011-01-01

    Roč. 653, č. 1 (2011), s. 159-163 ISSN 0168-9002 R&D Projects: GA ČR(CZ) GAP205/11/1165; GA AV ČR IAA100100715; GA MŠk(CZ) 7E09092 EU Projects: European Commission(XE) 212105 - ELI-PP Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser-acceleration * proton beam * high ion current * time -of-flight * proton energy distribution Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.207, year: 2011

  11. Bidirectional current triggering in planar devices based on serially connected VO2 thin films using 965 nm laser diode.

    Science.gov (United States)

    Kim, Jihoon; Park, Kyongsoo; Kim, Bong-Jun; Lee, Yong Wook

    2016-08-08

    By incorporating a 965 nm laser diode, the bidirectional current triggering of up to 30 mA was demonstrated in a two-terminal planar device based on serially connected vanadium dioxide (VO2) thin films grown by pulsed laser deposition. The bidirectional current triggering was realized by using the focused beams of laser pulses through the photo-thermally induced phase transition of VO2. The transient responses of laser-triggered currents were also investigated when laser pulses excited the device at a variety of pulse widths and repetition rates of up to 4.0 Hz. A switching contrast between off- and on-state currents was obtained as ~8333, and rising and falling times were measured as ~39 and ~29 ms, respectively, for 50 ms laser pulses.

  12. All-optical microscope autofocus based on an electrically tunable lens and a totally internally reflected IR laser.

    Science.gov (United States)

    Bathe-Peters, M; Annibale, P; Lohse, M J

    2018-02-05

    Microscopic imaging at high spatial-temporal resolution over long time scales (minutes to hours) requires rapid and precise stabilization of the microscope focus. Conventional and commercial autofocus systems are largely based on piezoelectric stages or mechanical objective actuators. Objective to sample distance is either measured by image analysis approaches or by hardware modules measuring the intensity of reflected infrared light. We propose here a truly all-optical microscope autofocus taking advantage of an electrically tunable lens and a totally internally reflected infrared probe beam. We implement a feedback-loop based on the lateral position of a totally internally reflected infrared laser on a quadrant photodetector, as an indicator of the relative defocus. We show here how to treat the combined contributions due to mechanical defocus and deformation of the tunable lens. As a result, the sample can be kept in focus without any mechanical movement, at rates up to hundreds of Hertz. The device requires only reflective optics and can be implemented at a fraction of the cost required for a comparable piezo-based actuator.

  13. Evaluation of Mid-IR Laser radiation effect on 316l stainless steel corrosion resistance in physiological saline

    International Nuclear Information System (INIS)

    Khosroshahi, M.E.; Valanezhad, A.; Tavakoli, J.

    2004-01-01

    The effects of a short pulsed (∼ 400 ns ) multi line hydrogen fluoride laser radiation operating on average at 2.8 μm has been studied on 316l stainless steel in terms of optical and physical parameters. At low fluences ≤ 8 Jcm -2 (phase l) no morphological changes occurred at the surface and melting began at ∼ 8.8 Jcm -2 (phase l l) which continued up to about 30 Jcm -2 . In this range the melting zone was effectively produced by high temperature surface centres growth which subsequently joined these centres together. Thermal ablation via surface vaporization began at ∼ 33 Jcm -2 (phase lll). The results of scanning electron microscopy evaluation and corrosion resistance experiment which was carried out using Eg and G device with cyclic potentiodynamic polarization method in a physiological (Hank's) solution indicated that pitting corrosion sensitivity was decreased i.e.. enhancement of corrosion resistance. Also, the x-ray diffraction results showed a double increase of γ (lll) at microstructure, thus in effect a super austenite stainless steel was obtained at an optimized melting fluence

  14. State of the art of CO laser angioplasty system

    Science.gov (United States)

    Arai, Tsunenori; Mizuno, Kyoichi; Miyamoto, Akira; Sakurada, Masami; Kikuchi, Makoto; Kurita, Akira; Nakamura, Haruo; Takaoka, Hidetsugu; Utsumi, Atsushi; Takeuchi, Kiyoshi

    1994-07-01

    A unique percutaneous transluminal coronary angioplasty system new IR therapy laser with IR glass fiber delivery under novel angioscope guidance was described. Carbon monoxide (CO) laser emission of 5 mm in wavelength was employed as therapy laser to achieve precise ablation of atheromatous plaque with a flexible As-S IR glass fiber for laser delivery. We developed the first medical CO laser as well as As-S IR glass fiber cable. We also developed 5.5 Fr. thin angioscope catheter with complete directional manipulatability at its tip. The system control unit could manage to prevent failure irradiations and fiber damages. This novel angioplasty system was evaluated by a stenosis model of mongrel dogs. We demonstrated the usefulness of our system to overcome current issues on laser angioplasty using multifiber catheter with over-the-guidewire system.

  15. Photoinduced electric currents in ring-shaped molecules by circularly polarized laser pulses

    International Nuclear Information System (INIS)

    Nobusada, Katsuyuki; Yabana, Kazuhiro

    2007-01-01

    We have theoretically demonstrated that circularly polarized laser pulses induce electric currents and magnetic moments in ring-shaped molecules Na 10 and benzene. The time-dependent adiabatic local density approximation is employed for this purpose, solving the time-dependent Kohn-Sham equation in real space and real time. It has been found that the electric currents are induced efficiently and persist continuously even after the laser pulses were switched off provided the frequency of the applied laser pulse is in tune with the excitation energy of the electronic excited state with the dipole strength for each molecular system. The electric currents are definitely revealed to be a second-order nonlinear optical response to the magnitude of the electric field. The magnetic dipole moments inevitably accompany the ring currents, so that the molecules are magnetized. The production of the electric currents and the magnetic moments in the present procedure is found to be much more efficient than that utilizing static magnetic fields

  16. Development of high current electron source using photoemission from metals with ultrashort laser pulses

    International Nuclear Information System (INIS)

    Tsang, T.; Srinivasan-Rao, T.; Fischer, J.

    1990-10-01

    We summarize the studies of photoemission from metal photocathodes using picosecond pulses in the UV (4.66 eV) wavelength and femtosecond laser pulses in the visible (2 eV) wavelengths. To achieve high current density yield from metal photocathodes, multiphoton photoemission using femtosecond laser pulses are suggested. Electron yield improvement incorporating surface photoemission and surface plasmon resonance in metals and metal films are demonstrated. We examine the possibility of the nonlinear photoemission process overtaking the linear process, and identity some possible complexity. To extract the large amount of electrons free of space charge, a pulsed high voltage is designed; the results of the preliminary test are presented. Finally, for the first time, the width of the electron temporal profiles are measured, utilizing the nonlinear photoelectric effect, to below 100 fsec time regime. The results indicated that the electron pulse duration follows the laser pulses and are not limited by the material. 8 refs., 15 figs

  17. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms

    DEFF Research Database (Denmark)

    Pfeiffer, Adrian N.; Cirelli, Claudio; Smolarski, Mathias

    2012-01-01

    the attoclock technique4 to obtain experimental information about the electron tunnelling geometry (the natural coordinates of the tunnelling current flow) and exit point. We confirm vanishing tunnelling delay time, show the importance of the inclusion of Stark shifts5, 6 and report on multi-electron effects......In the research area of strong-laser-field interactions and attosecond science1, tunnelling of an electron through the barrier formed by the electric field of the laser and the atomic potential is typically assumed to be the initial key process that triggers subsequent dynamics1, 2, 3. Here we use...... clearly identified by comparing results in argon and helium atoms. Our combined theory and experiment allows us to single out the geometry of the inherently one-dimensional tunnelling problem, through an asymptotic separation of the full three-dimensional problem. Our findings have implications for laser...

  18. Alternative laser system for cesium magneto-optical trap via optical injection locking to sideband of a 9-GHz current-modulated diode laser.

    Science.gov (United States)

    Diao, Wenting; He, Jun; Liu, Zhi; Yang, Baodong; Wang, Junmin

    2012-03-26

    By optical injection of an 852-nm extended-cavity diode laser (master laser) to lock the + 1-order sideband of a ~9-GHz-current-modulated diode laser (slave laser), we generate a pair of phase-locked lasers with a frequency difference up to ~9-GHz for a cesium (Cs) magneto-optical trap (MOT) with convenient tuning capability. For a cesium MOT, the master laser acts as repumping laser, locked to the Cs 6S₁/₂ (F = 3) - 6P₃/₂ (F' = 4) transition. When the + 1-order sideband of the 8.9536-GHz-current-modulated slave laser is optically injection-locked, the carrier operates on the Cs 6S₁/₂ (F = 4) - 6P₃/₂ (F' = 5) cooling cycle transition with -12 MHz detuning and acts as cooling/trapping laser. When carrying a 9.1926-GHz modulation signal, this phase-locked laser system can be applied in the fields of coherent population trapping and coherent manipulation of Cs atomic ground states.

  19. Controlling Fringe Sensitivity of Electro-Optic Holography Systems Using Laser Diode Current Modulation

    Science.gov (United States)

    Bybee, Shannon J.

    2001-01-01

    Electro-Optic Holography (EOH) is a non-intrusive, laser-based, displacement measurement technique capable of static and dynamic displacement measurements. EOH is an optical interference technique in which fringe patterns that represent displacement contour maps are generated. At excessively large displacements the fringe density may be so great that individual fringes are not resolvable using typical EOH techniques. This thesis focuses on the development and implementation of a method for controlling the sensitivity of the EOH system. This method is known as Frequency Translated Electro-Optic Holography (FTEOH). It was determined that by modulating the current source of the laser diode at integer multiples of the object vibration, the fringe pattern is governed by higher order Bessel function of the first kind and the number of fringes that represent a given displacement can be controlled. The reduction of fringes is theoretically unlimited but physically limited by the frequency bandwidth of the signal generator, providing modulation to the laser diode. Although this research technique has been verified theoretically and experimentally in this thesis, due to the current laser diode capabilities it is a tedious and time consuming process to acquire data using the FTEOH technique.

  20. Experimental Investigation on Electric Current-Aided Laser Stake Welding of Aluminum Alloy T-Joints

    Directory of Open Access Journals (Sweden)

    Xinge Zhang

    2017-11-01

    Full Text Available In the present study, aluminum alloy T-joints were welded using the laser stake-welding process. In order to improve the welding quality of the T-joints, an external electric current was used to aid the laser stake-welding process. The effects of the process parameters on the weld morphology, mechanical properties, and microstructure of the welded joints were analyzed and discussed in detail. The results indicate that the aided electric current should be no greater than a certain maximum value. Upon increasing the aided electric current, the weld width at the skin and stringer faying surface obviously increased, but there was an insignificant change in the penetration depth. Furthermore, the electric current and pressing force should be chosen to produce an expected weld width at the faying surface, whereas the laser power and welding speed should be primarily considered to obtain an optimal penetration depth. The tensile shear specimens failed across the faying surface or failed in the weld zone of the skin. The specimens that failed in the weld of the skin could resist a higher tensile shear load compared with specimens that failed across the faying surface. The microstructural observations and microhardness results demonstrated that the tensile shear load capacity of the aluminum alloy welded T-joint was mainly determined by the weld width at the faying surface.

  1. Identification of Serine Conformers by Matrix-Isolation IR Spectroscopy Aided by Near-Infrared Laser-Induced Conformational Change, 2D Correlation Analysis, and Quantum Mechanical Anharmonic Computations.

    Science.gov (United States)

    Najbauer, Eszter E; Bazsó, Gábor; Apóstolo, Rui; Fausto, Rui; Biczysko, Malgorzata; Barone, Vincenzo; Tarczay, György

    2015-08-20

    The conformers of α-serine were investigated by matrix-isolation IR spectroscopy combined with NIR laser irradiation. This method, aided by 2D correlation analysis, enabled unambiguously grouping the spectral lines to individual conformers. On the basis of comparison of at least nine experimentally observed vibrational transitions of each conformer with empirically scaled (SQM) and anharmonic (GVPT2) computed IR spectra, six conformers were identified. In addition, the presence of at least one more conformer in Ar matrix was proved, and a short-lived conformer with a half-life of (3.7 ± 0.5) × 10(3) s in N2 matrix was generated by NIR irradiation. The analysis of the NIR laser-induced conversions revealed that the excitation of the stretching overtone of both the side chain and the carboxylic OH groups can effectively promote conformational changes, but remarkably different paths were observed for the two kinds of excitations.

  2. PEP-II IR-2 Alignment

    International Nuclear Information System (INIS)

    Seryi, A

    2004-01-01

    This paper describes the first results and preliminary analysis obtained with several alignment monitoring systems recently installed in the PEP-II interaction region. The hydrostatic level system, stretched wire system, and laser tracker have been installed in addition to the existing tiltmeters and LVDT sensors. These systems detected motion of the left raft, which correlated primarily with the low energy ring (LER) current. The motion is of the order of 120 micrometers. The cause was identified as synchrotron radiation heating the beampipe, causing its expansion which then results in its deformation and offset of the IR quadrupoles. We also discuss further plans on measurements, analysis and means to counteract this motion

  3. A CO2 laser polarimeter for measurement of plasma current profile in Alcator C-Mod

    International Nuclear Information System (INIS)

    Ma, C.H.; Hutchinson, D.P.; Richards, R.K.; Irby, J.; Luke, T.

    1994-01-01

    A multichannel infrared polarimeter system for measurement of the plasma current profile in Alcator C-Mod has been designed, constructed, and tested. The system utilizes a cw CO 2 , laser at a wavelength of 10.6 μm. An electro-optic polarization-modulation technique has been used to achieve the high sensitivity required for the measurement. The recent results of the measurements as well as the feasibility of its application on ITER are presented

  4. INTERACTION OF RADIATION WITH MATTER. LASER PLASMA: Increase in the amplitude of hf currents during exposure of a neutral target to microsecond CO2 laser pulses

    Science.gov (United States)

    Antipov, A. A.; Losev, Leonid L.; Meshalkin, E. A.

    1988-09-01

    High-frequency electric currents were generated by irradiation of a metal target with CO2 laser pulses. It was found that the region where the ambient gas was photoionized had a decisive influence on the hf current amplitude. A method for increasing the amplitude of the current by creating an auxiliary laser jet on the target was proposed and used. An hf current of up to 1 A amplitude was observed at a frequency of 75 MHz and this current lasted for 1.5 μs.

  5. Current trends in laser fusion driver and beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver

    International Nuclear Information System (INIS)

    Kong, Hong Jin

    2008-01-01

    Laser fusion energy (LFE) is well known as one of the promising sources if clean energy for mankind. Laser fusion researches have been actively progressed, since Japan and the Soviet Union as well as USA developed ultrahigh power lasers at the beginning of 1970s. At present in USA, NIF (National Ignition Facility), which is the largest laser fusion facility in the world, is under construction and will be completed in 2008. Japan as a leader of the laser fusion research has developed a high energy and high power laser system, Gekko XII, and is under contemplation of FIREX projects for the fast ignition. China also has SG I, II lasers for performing the fusion research, and SG III is under construction as a next step. France is also constructing LMJ (Laser countries, many other developed countries in Europe, such as Russia, Germany, UK, and so on, have their own high energy laser systems for the fusion research. In Korea, the high power laser development started with SinMyung laser in KAIST in 1994, and KLF (KAERI Laser Facility) of KAERI was recently completed in 2007. For the practical use of laser fusion energy, the laser driver should be operated with a high repetition rate around 10Hz. Yet, current high energy laser systems, Such as NIF, Gekko XII, and etc., can be operated with only several shots per day. Some researchers have developed their own techniques to reduce the thermal loads of the laser material, by using laser diodes as pump sources and ceramic laser materials with high thermal energy scaling up for the real fusion driver. For this reason, H. J. Kong et al. proposed the beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors (SBS PCMs) for a fusion driver. Proposed beam combination has many advantages for energy scaling up; it is composed by simple optical systems with small amount of components, there is no interaction between neighbored sub beams, the SBS PCMs can be used for a high energy beam reflection with

  6. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators

    Science.gov (United States)

    Macdougal, Michael; Geske, Jon; Wang, Chad; Follman, David

    2011-06-01

    We describe the factors that go into the component choices for a short wavelength IR (SWIR) imager, which include the SWIR sensor, the lens, and the illuminator. We have shown the factors for reducing dark current, and shown that we can achieve well below 1.5 nA/cm2 for 15 μm devices at 7 °C. In addition, we have mated our InGaAs detector arrays to 640×512 readout integrated integrated circuits to make focal plane arrays (FPAs). The resulting FPAs are capable of imaging photon fluxes with wavelengths between 1 and 1.6 μm at low light levels. The dark current associated with these FPAs is extremely low, exhibiting a mean dark current density of 0.26 nA/cm2 at 0 °C. Noise due to the readout can be reduced from 95 to 57 electrons by using off-chip correlated double sampling. In addition, Aerius has developed laser arrays that provide flat illumination in scenes that are normally light-starved. The illuminators have 40% wall-plug efficiency and provide low-speckle illumination, and provide artifact-free imagery versus conventional laser illuminators.

  7. Defect detectability of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Ueno, Souichi; Kobayashi, Noriyasu; Ochiai, Makoto; Kasuya, Takashi; Yuguchi, Yasuhiro

    2011-01-01

    We clarified defect detectability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding works of dissimilar metal welding (DMW) of reactor vessel nozzle. The underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in the grooves and welded surface grinding as a post treatment. Therefore groove and welded surface inspections are required in the underwater condition. The ECT is a major candidate as this inspection technique because a penetrant testing is difficult to perform in the underwater condition. Several kinds of experiments were curried out using a cross coil an ECT probe and ECT data acquisition system in order to demonstrate the ECT defect detectability. We used specimens, simulating groove and DMW materials at an RV nozzle, with electro-discharge machining (EDM) slits over it. Additionally, we performed a detection test for artificial stress corrosion cracking (SCC) defects. From these experimental results, we confirmed that an ECT was possible to detect EDM slits 0.3 mm or more in depth and artificial SCC defects 0.02 mm to 0.48 mm in depth on machined surface. Furthermore, the underwater ECT defect detectability is equivalent to that in air. We clarified an ECT is sufficiently usable as a surface inspection technique for underwater laser beam welding works. (author)

  8. Design of laser diode driver with constant current and temperature control system

    Science.gov (United States)

    Wang, Ming-cai; Yang, Kai-yong; Wang, Zhi-guo; Fan, Zhen-fang

    2017-10-01

    A laser Diode (LD) driver with constant current and temperature control system is designed according to the LD working characteristics. We deeply researched the protection circuit and temperature control circuit based on thermos-electric cooler(TEC) cooling circuit and PID algorithm. The driver could realize constant current output and achieve stable temperature control of LD. Real-time feedback control method was adopted in the temperature control system to make LD work on its best temperature point. The output power variety and output wavelength shift of LD caused by current and temperature instability were decreased. Furthermore, the driving current and working temperature is adjustable according to specific requirements. The experiment result showed that the developed LD driver meets the characteristics of LD.

  9. Measuring Earth: Current status of the GRACE Follow-On Laser Ranging Interferometer

    Science.gov (United States)

    Schütze, Daniel; LRI Team

    2016-05-01

    The GRACE mission that was launched in 2002 has impressively proven the feasibility of low-orbit satellite-to-satellite tracking for Earth gravity observations. Especially mass transport related to Earth's hydrological system could be well resolved both spatially and temporally. This allows to study processes such as polar ice sheet decline and ground water depletion in great detail. Owing to GRACE's success, NASA and GFZ will launch the successor mission GRACE Follow-On in 2017. In addition to the microwave ranging system, GRACE Follow-On will be the first mission to use a Laser Ranging Interferometer as technology demonstrator to track intersatellite distance changes with unprecedented precision. This new ranging device inherits some of the technologies which have been developed for the future spaceborne gravitational wave detector LISA. I will present the architecture of the Laser Ranging Interferometer, point out similarities and differences to LISA, and conclude with the current status of the flight hardware production.

  10. Theory of free-electron-laser heating and current drive in magnetized plasmas

    International Nuclear Information System (INIS)

    Cohen, B.I.; Cohen, R.H.; Nevins, W.M.; Rognlien, T.D.

    1991-01-01

    The introduction of a powerful new microwave source, the free-electron laser, provides new opportunities for novel heating and current-drive schemes to be used in toroidal fusion devices. This high-power, pulsed source has a number of technical advantages for these applications, and its use is predicted to lead to improved current-drive efficiencies and opacities in reactor-grade fusion plasmas in specific cases. The Microwave Tokamak Experiment at the Lawrence Livermore National Laboratory will provide a test for some of these new heating and current-drive schemes. Although the motivation for much of this research has derived from the application of a free-electron laser to the heating of a tokamak plasma at a frequency near the electron cyclotron frequency, the underlying physics, i.e., the highly nonlinear interaction of an intense, pulsed, coherent electromagnetic wave with an electron in a magnetized plasma including relativistic effects, is of general interest. Other relevant applications include ionospheric modification by radio-frequency waves, high-energy electron accelerators, and the propagation of intense, pulsed electromagnetic waves in space and astrophysical plasmas. This review reports recent theoretical progress in the analysis and computer simulation of the absorption and current drive produced by intense pulses, and of the possible complications that may arise, e.g., parametric instabilities, nonlinear self-focusing, trapped-particle sideband instability, and instabilities of the heated plasma

  11. Hole dynamics and spin currents after ionization in strong circularly polarized laser fields

    International Nuclear Information System (INIS)

    Barth, Ingo; Smirnova, Olga

    2014-01-01

    We apply the time-dependent analytical R-matrix theory to develop a movie of hole motion in a Kr atom upon ionization by strong circularly polarized field. We find rich hole dynamics, ranging from rotation to swinging motion. The motion of the hole depends on the final energy and the spin of the photoelectron and can be controlled by the laser frequency and intensity. Crucially, hole rotation is a purely non-adiabatic effect, completely missing in the framework of quasistatic (adiabatic) tunneling theories. We explore the possibility to use hole rotation as a clock for measuring ionization time. Analyzing the relationship between the relative phases in different ionization channels we show that in the case of short-range electron-core interaction the hole is always initially aligned along the instantaneous direction of the laser field, signifying zero delays in ionization. Finally, we show that strong-field ionization in circular fields creates spin currents (i.e. different flow of spin-up and spin-down density in space) in the ions. This phenomenon is intimately related to the production of spin-polarized electrons in strong laser fields Barth and Smirnova (2013 Phys. Rev. A 88 013401). We demonstrate that rich spin dynamics of electrons and holes produced during strong field ionization can occur in typical experimental conditions and does not require relativistic intensities or strong magnetic fields. (paper)

  12. Generation of highly collimated high-current ion beams by skin-layer laser-plasma interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Badziak, J.; Jablonski, S.; Glowacz, S.

    2006-01-01

    Generation of fast ion beams by laser-induced skin-layer ponderomotive acceleration has been studied using a two-dimensional (2D) two-fluid relativistic computer code. It is shown that the key parameter determining the spatial structure and angular divergence of the ion beam is the ratio d L /L n , where d L is the laser beam diameter and L n is the plasma density gradient scale length. When d L >>L n , a dense highly collimated megaampere ion (proton) beam of the ion current density approaching TA/cm 2 can be generated by skin-layer ponderomotive acceleration, even with a tabletop subpicosecond laser

  13. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; De Marco, Massimo; Cikhardt, Jakub; Pfeifer, Miroslav; Velyhan, Andriy; Klír, Daniel; Řezáč, Karel; Limpouch, J.; Krouský, Eduard; Dostál, Jan; Ullschmied, Jiří; Dudžák, Roman

    2017-01-01

    Roč. 59, č. 6 (2017), 1-8, č. článku 065007. ISSN 0741-3335 R&D Projects: GA MŠk EF15_008/0000162; GA ČR GA16-07036S EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : laser-produced plasma * target current * electromagnetic pulse Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.392, year: 2016

  14. Direct phase-locking of a 8.6-μm quantum cascade laser to a mid-IR optical frequency comb: application to precision spectroscopy of N2O.

    Science.gov (United States)

    Gambetta, Alessio; Cassinerio, Marco; Coluccelli, Nicola; Fasci, Eugenio; Castrillo, Antonio; Gianfrani, Livio; Gatti, Davide; Marangoni, Marco; Laporta, Paolo; Galzerano, Gianluca

    2015-02-01

    We developed a high-precision spectroscopic system at 8.6 μm based on direct heterodyne detection and phase-locking of a room-temperature quantum-cascade-laser against an harmonic, 250-MHz mid-IR frequency comb obtained by difference-frequency generation. The ∼30  dB signal-to-noise ratio of the detected beat-note together with the achieved closed-loop locking bandwidth of ∼500  kHz allows for a residual integrated phase noise of 0.78 rad (1 Hz-5 MHz), for an ultimate resolution of ∼21  kHz, limited by the measured linewidth of the mid-IR comb. The system was used to perform absolute measurement of line-center frequencies for the rotational components of the ν2 vibrational band of N2O, with a relative precision of 3×10(-10).

  15. Plasma conditions for non-Maxwellian electron distributions in high current discharges and laser-produced plasmas

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.

    1993-01-01

    Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states

  16. Note: Fast compact laser shutter using a direct current motor and three-dimensional printing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Grace H., E-mail: ghzhang0@mit.edu; Braverman, Boris; Kawasaki, Akio; Vuletić, Vladan [Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-12-15

    We present a mechanical laser shutter design that utilizes a direct current electric motor to rotate a blade which blocks and unblocks a light beam. The blade and the main body of the shutter are modeled with computer aided design (CAD) and are produced by 3D printing. Rubber flaps are used to limit the blade’s range of motion, reducing vibrations and preventing undesirable blade oscillations. At its nominal operating voltage, the shutter achieves a switching speed of (1.22 ± 0.02) m/s with 1 ms activation delay and 10 μs jitter in its timing performance. The shutter design is simple, easy to replicate, and highly reliable, showing no failure or degradation in performance over more than 10{sup 8} cycles.

  17. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    Science.gov (United States)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  18. Excitation of low-frequency residual currents at combination frequencies of an ionising two-colour laser pulse

    Science.gov (United States)

    Vvedenskii, N. V.; Kostin, V. A.; Laryushin, I. D.; Silaev, A. A.

    2016-05-01

    We have studied the processes of excitation of low-frequency residual currents in a plasma produced through ionisation of gases by two-colour laser pulses in laser-plasma schemes for THz generation. We have developed an analytical approach that allows one to find residual currents in the case when one of the components of a two-colour pulse is weak enough. The derived analytical expressions show that the effective generation of the residual current (and hence the effective THz generation) is possible if the ratio of the frequencies in the two-colour laser pulse is close to a rational fraction with a not very big odd sum of the numerator and denominator. The results of numerical calculations (including those based on the solution of the three-dimensional time-dependent Schrödinger equation) agree well with the analytical results.

  19. GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.

    Science.gov (United States)

    Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa

    2011-01-31

    We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.

  20. Direct-current polarization characteristics of various AlGaAs laser diodes

    Science.gov (United States)

    Fuhr, P. L.

    1984-01-01

    Polarization characteristics of AlGaAs laser diodes having various device geometries have been measured. Measurements were performed with the laser diodes operating under dc conditions. Results show that laser diodes having different device geometries have optical outputs that exhibit varying degrees of polarization purity. Implications of this result, with respect to incoherent polarization-beam combining, are addressed.

  1. Effects of momentum transfer on sizing of current collectors for lithium-ion batteries during laser cutting

    Science.gov (United States)

    Lee, Dongkyoung; Mazumder, Jyotirmoy

    2018-02-01

    One of the challenges of the lithium-ion battery manufacturing process is the sizing of electrodes with good cut surface quality. Poor cut surface quality results in internal short circuits in the cells and significant heat generation. One of the solutions that may improve the cut quality with a high cutting speed is laser cutting due to its high energy concentration, fast processing time, high precision, small heat affected zone, flexible range of laser power and contact free process. In order to utilize the advantages of laser electrode cutting, understanding the physical phenomena for each material is crucial. Thus, this study focuses on the laser cutting of current collectors, such as pure copper and aluminum. A 3D self-consistent mathematical model for the laser cutting, including fluid flow, heat transfer, recoil pressure, multiple reflections, capillary and thermo-capillary forces, and phase changes, is presented and solved numerically. Simulation results for the laser cutting are analyzed in terms of penetration time, depth, width, and absorptivity, based on these selected laser parameters. In addition, melt pool flow, melt pool geometry and temperature distribution are investigated.

  2. Analysis of threshold current of uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers.

    Science.gov (United States)

    Jiang, Jialin; Sun, Junqiang; Gao, Jianfeng; Zhang, Ruiwen

    2017-10-30

    We propose and design uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers with the stress along direction. The micro-bridge structure is adapted for introducing uniaxial stress in Ge/SiGe quantum well. To enhance the fabrication tolerance, full-etched circular gratings with high reflectivity bandwidths of ~500 nm are deployed in laser cavities. We compare and analyze the density of state, the number of states between Γ- and L-points, the carrier injection efficiency, and the threshold current density for the uniaxially tensile stressed bulk Ge and Ge/SiGe quantum well lasers. Simulation results show that the threshold current density of the Ge/SiGe quantum well laser is much higher than that of the bulk Ge laser, even combined with high uniaxial tensile stress owing to the larger number of states between Γ- and L- points and extremely low carrier injection efficiency. Electrical transport simulation reveals that the reduced effective mass of the hole and the small conduction band offset cause the low carrier injection efficiency of the Ge/SiGe quantum well laser. Our theoretical results imply that unlike III-V material, uniaxially tensile stressed bulk Ge outperforms a Ge/SiGe quantum well with the same strain level and is a promising approach for Si-compatible light sources.

  3. A Low-Cost Miniaturized Laser Heterodyne Radiometer (Mini-LHR) for Near-ir Measurements of CO2 and CH4 in the Atmospheric Column

    Science.gov (United States)

    Steel, Emily Wilson

    2016-01-01

    The miniaturized laser heterodyne radiometer (mini-LHR) is a ground-based passive variation of a laser heterodyne radiometer that uses sunlight to measure absorption of CO2 andCH4 in the infrared. Sunlight is collected using collimation optics mounted to an AERONET sun tracker, modulated with a fiber switch and mixed with infrared laser light in a fast photoreciever.The amplitude of the resultant RF (radio frequency) beat signal correlates with the concentration of the gas in the atmospheric column.

  4. UV and IR laser induced ablation of Al2O3/SiN:H and a-Si:H/SiN:H

    Directory of Open Access Journals (Sweden)

    Schutz-Kuchly T.

    2014-01-01

    Full Text Available Experimental work on laser induced ablation of thin Al2O3(20 nm/SiN:H (70 nm and a-Si:H (20 nm/SiN:H (70 nm stacks acting, respectively, as p-type and n-type silicon surface passivation layers is reported. Results obtained using two different laser sources are compared. The stacks are efficiently removed using a femtosecond infra-red laser (1030 nm wavelength, 300 fs pulse duration but the underlying silicon surface is highly damaged in a ripple-like pattern. This collateral effect is almost completely avoided using a nanosecond ultra-violet laser (248 nm wavelength, 50 ns pulse duration, however a-Si:H flakes and Al2O3 lace remain after ablation process.

  5. Production of ultrahigh ion current densities at skin-layer subrelativistic laser-plasma interaction

    Czech Academy of Sciences Publication Activity Database

    Badziak, J.; Glowacz, S.; Jablonski, S.; Parys, P.; Wolowski, J.; Hora, H.; Krása, Josef; Láska, Leoš; Rohlena, Karel

    2005-01-01

    Roč. 46, Suppl. 12B (2005), B541-B555 ISSN 0741-3335 Grant - others:International Atomic Energy Agency in Vienna(XE) 11535/RO; State Committee for Scientific Research (KBN)(PL) 1 PO3B 043 26 Institutional research plan: CEZ:AV0Z10100523 Keywords : high-intensity laser * multiply-charged ions * thin foil targets * picosecond laser * iodine laser * proton acceleration * energetic protons * Ag ions * generation * pulses Subject RIV: BH - Optics, Masers, Laser s Impact factor: 2.902, year: 2005

  6. Multimodal backside imaging of a microcontroller using confocal laser scanning and optical-beam-induced current imaging

    Science.gov (United States)

    Finkeldey, Markus; Göring, Lena; Schellenberg, Falk; Brenner, Carsten; Gerhardt, Nils C.; Hofmann, Martin

    2017-02-01

    Microscopy imaging with a single technology is usually restricted to a single contrast mechanism. Multimodal imaging is a promising technique to improve the structural information that could be obtained about a device under test (DUT). Due to the different contrast mechanisms of laser scanning microscopy (LSM), confocal laser scanning microscopy (CLSM) and optical beam induced current microscopy (OBICM), a combination could improve the detection of structures in integrated circuits (ICs) and helps to reveal their layout. While OBIC imaging is sensitive to the changes between differently doped areas and to semiconductor-metal transitions, CLSM imaging is mostly sensitive to changes in absorption and reflection. In this work we present the implementation of OBIC imaging into a CLSM. We show first results using industry standard Atmel microcontrollers (MCUs) with a feature size of about 250nm as DUTs. Analyzing these types of microcontrollers helps to improve in the field of side-channel attacks to find hardware Trojans, possible spots for laser fault attacks and for reverse engineering. For the experimental results the DUT is placed on a custom circuit board that allows us to measure the current while imaging it in our in-house built stage scanning microscope using a near infrared (NIR) laser diode as light source. The DUT is thinned and polished, allowing backside imaging through the Si-substrate. We demonstrate the possibilities using this optical setup by evaluating OBIC, LSM and CLSM images above and below the threshold of the laser source.

  7. Modeling streamflow from coupled airborne laser scanning and acoustic Doppler current profiler data

    Science.gov (United States)

    Norris, Lam; Kean, Jason W.; Lyon, Steve

    2016-01-01

    The rating curve enables the translation of water depth into stream discharge through a reference cross-section. This study investigates coupling national scale airborne laser scanning (ALS) and acoustic Doppler current profiler (ADCP) bathymetric survey data for generating stream rating curves. A digital terrain model was defined from these data and applied in a physically based 1-D hydraulic model to generate rating curves for a regularly monitored location in northern Sweden. Analysis of the ALS data showed that overestimation of the streambank elevation could be adjusted with a root mean square error (RMSE) block adjustment using a higher accuracy manual topographic survey. The results of our study demonstrate that the rating curve generated from the vertically corrected ALS data combined with ADCP data had lower errors (RMSE = 0.79 m3/s) than the empirical rating curve (RMSE = 1.13 m3/s) when compared to streamflow measurements. We consider these findings encouraging as hydrometric agencies can potentially leverage national-scale ALS and ADCP instrumentation to reduce the cost and effort required for maintaining and establishing rating curves at gauging station sites similar to the Röån River.

  8. Linear surface photoelectric effect of gold in intense laser field as a possible high-current electron source

    International Nuclear Information System (INIS)

    Farkas, G.; Horvath, Z.G.; Toth, C.; Fotakis, C.; Hontzopoulos, E.

    1987-01-01

    Investigations were conducted on radiation-induced electron emission processes on a gold target surface with a high-intensity (2 MW/cm 2 ) KrF laser (λ = 248 nm). The single photon surface photoelectric emission obtained can be used for high-current density electron sources. The measured polarization dependence of electron current shows the dominance of the surface-type effect over that of the volume type, thereby making it possible to optimize the short, high-density electron current creation conditions. The advantage of the grazing light incidence and the multiphoton photoeffect giving rise to a 500 A/cm 2 electron current has been demonstrated

  9. Injection current minimization of InAs/InGaAs quantum dot laser by optimization of its active region and reflectivity of laser cavity edges

    International Nuclear Information System (INIS)

    Korenev, V V; Savelyev, A V; Zhukov, A E; Maximov, M V

    2015-01-01

    The ways to optimize key parameters of active region and edge reflectivity of edge- emitting semiconductor quantum dot laser are provided. It is shown that in the case of optimal cavity length and sufficiently large dispersion lasing spectrum of a given width can be obtained at injection current up to an order of magnitude lower in comparison to non-optimized sample. The influence of internal loss and edge reflection is also studied in details. (paper)

  10. Injection current minimization of InAs/InGaAs quantum dot laser by optimization of its active region and reflectivity of laser cavity edges

    Science.gov (United States)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Maximov, M. V.

    2015-11-01

    The ways to optimize key parameters of active region and edge reflectivity of edge- emitting semiconductor quantum dot laser are provided. It is shown that in the case of optimal cavity length and sufficiently large dispersion lasing spectrum of a given width can be obtained at injection current up to an order of magnitude lower in comparison to non-optimized sample. The influence of internal loss and edge reflection is also studied in details.

  11. Efficient Long Wave IR Laser from Ho:YAG 2 {mu}m Pumped ZnGeP{sub 2} Optical Parametric Oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Li-Gang,; Bao-Quan, Yao; Xiao-Ming, Duan; Guo-Li, Zhu; Yue-Zhu, Wang; You-Lun, Ju [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2010-01-15

    An efficient high power long wave infrared laser based on ZnGeP{sub 2} optical parametric oscillator pumped by a 2.09 {mu}m Tm:YLF/Ho:YAG laser at 10KHz pulse repetition rate is reported. The pump to idler conversion efficiency is 8% at 15.6 W Ho pump power level and a quantum efficiency of 31 % when the 1'idler wavelength is tuned at 8.08 {mu}m. The wavelength tuning range from 8-9.1 {mu}m is also achieved by rotating the ZGP crystal. (fundamental areas of phenomenology(including applications))

  12. [Laservaporization of the prostate: current status of the greenlight and diode laser].

    Science.gov (United States)

    Rieken, M; Bachmann, A; Gratzke, C

    2013-03-01

    In the last decade laser vaporization of the prostate has emerged as a safe and effective alternative to transurethral resection of the prostate (TURP). This was facilitated in particular by the introduction of photoselective vaporization of the prostate (PVP) with a 532 nm 80 W KTP laser in 2002. Prospective randomized trials comparing PVP and TURP with a maximum follow-up of 3 years mostly demonstrated comparable functional results. Cohort studies showed a safe application of PVP in patients under oral anticoagulation and with large prostates. Systems from various manufacturers with different maximum power output and wavelengths are now available for diode laser vaporization of the prostate. Prospective randomized trials comparing diode lasers and TURP are not yet available. In cohort studies and comparative studies PVP diode lasers are characterized by excellent hemostatic properties but functional results vary greatly with some studies reporting high reoperation rates.

  13. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    Energy Technology Data Exchange (ETDEWEB)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M. [Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, Technische Universität Berlin, Hardenbergstr. 36, EW 6-1, 10623 Berlin (Germany); Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin (Germany)

    2016-04-11

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al{sub 0.70}Ga{sub 0.30}N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm{sup 2}.

  14. Low absorption loss p-AlGaN superlattice cladding layer for current-injection deep ultraviolet laser diodes

    International Nuclear Information System (INIS)

    Martens, M.; Kuhn, C.; Ziffer, E.; Simoneit, T.; Rass, J.; Wernicke, T.; Kueller, V.; Knauer, A.; Einfeldt, S.; Weyers, M.; Kneissl, M.

    2016-01-01

    Current injection into AlGaN-based laser diode structures with high aluminum mole fractions for deep ultraviolet emission is investigated. The electrical characteristics of laser diode structures with different p-AlGaN short period superlattice (SPSL) cladding layers with various aluminum mole fractions are compared. The heterostructures contain all elements that are needed for a current-injection laser diode including cladding and waveguide layers as well as an AlGaN quantum well active region emitting near 270 nm. We found that with increasing aluminum content in the p-AlGaN cladding, the diode turn-on voltage increases, while the series resistance slightly decreases. By introducing an SPSL instead of bulk layers, the operating voltage is significantly reduced. A gain guided broad area laser diode structure with transparent p-Al_0_._7_0Ga_0_._3_0N waveguide layers and a transparent p-cladding with an average aluminum content of 81% was designed for strong confinement of the transverse optical mode and low optical losses. Using an optimized SPSL, this diode could sustain current densities of more than 4.5 kA/cm"2.

  15. Tunable lasers for waste management photochemistry applications

    International Nuclear Information System (INIS)

    Finch, F.T.

    1978-09-01

    A review of lasers with potential photochemical applications in waste management indicates that dye lasers, as a class, can provide tunable laser output through the visible and near-uv regions of the spectrum of most interest to photochemistry. Many variables can affect the performance of a specific dye laser, and the interactions of these variables, at the current state of the art, are complex. The recent literature on dye-laser characteristics has been reviewed and summarized, with emphasis on those parameters that most likely will affect the scaling of dye lasers in photochemical applications. Current costs are reviewed and correlated with output power. A new class of efficient uv lasers that appear to be scalable in both energy output and pulse rate, based on rare-gas halide excimers and similar molecules, is certain to find major applications in photochemistry. Because the most important developments are too recent to be adequately described in the literature or are the likely outcome of current experiments, the basic physics underlying the class of excimer lasers is described. Specific cost data are unavailable, but these new gas lasers should reflect costs similar to those of existing gas lasers, in particular, the pulsed CO 2 lasers. To complete the survey of tunable-laser characteristics, the technical characteristics of the various classes of lasers in the ir are summarized. Important developments in ir laser technology are being accelerated by isotope-separation research, but, initially at least, this portion of the spectrum is least likely to receive emphasis in waste-management-oriented photochemistry

  16. Thiol-thione tautomeric analysis, spectroscopic (FT-IR, Laser-Raman, NMR and UV-vis) properties and DFT computations of 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule.

    Science.gov (United States)

    Gökce, Halil; Öztürk, Nuri; Ceylan, Ümit; Alpaslan, Yelda Bingöl; Alpaslan, Gökhan

    2016-06-15

    In this study, the 5-(3-pyridyl)-4H-1,2,4-triazole-3-thiol molecule (C7H6N4S) molecule has been characterized by using FT-IR, Laser-Raman, NMR and UV-vis spectroscopies. Quantum chemical calculations have been performed to investigate the molecular structure (thione-thiol tautomerism), vibrational wavenumbers, electronic transition absorption wavelengths in DMSO solvent and vacuum, proton and carbon-13 NMR chemical shifts and HOMOs-LUMOs energies at DFT/B3LYP/6-311++G(d,p) level for all five tautomers of the title molecule. The obtained results show that the calculated vibrational wavenumbers, NMR chemical shifts and UV-vis wavelengths are in a good agreement with experimental data. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A conformational study of protonated noradrenaline by UV-UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method.

    Science.gov (United States)

    Wako, Hiromichi; Ishiuchi, Shun-Ichi; Kato, Daichi; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Fujii, Masaaki

    2017-05-03

    The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S 1 state, with the aid of relative stabilization energies of each conformer in the S 0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm -1 from the others. The significant red-shift was explained by a large contribution of the πσ* state to S 1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.

  18. An Analysis of Laser-Welded Nicr-Ir and Nicr-Pt Micro Joints on Spark Plug Electrodes in Biogas-Fuelled Engines

    Directory of Open Access Journals (Sweden)

    Grabas B.

    2016-06-01

    Full Text Available The paper deals with the laser beam welding of tips to central and side spark plug electrodes made of a nickel-chromium alloy. The tips attached to the central electrodes were made from a solid iridium wire 0.8 mm in diameter and 2 mm in length, while the tips connected to the side electrodes were made from a platinum wire 1.5 mm in diameter and 0.25 mm in thickness. In both cases, accurate positioning of the tips was required before they were resistance welded to the electrodes. Then, a fillet weld was produced with an Nd:YAG laser using single, partly overlapping conductive pulses. The laser welding was performed at different laser power levels and pulse durations. Metallographic sections of the joints were prepared to observe changes in the microstructure and determine their correlation with the changes in the process parameters. The results were used to select appropriate welding parameters for the materials joined. The microscopic analysis indicated welding imperfections such as micro cracks at the interface between the elements joined. The tips welded to the spark plug electrodes can help extend the service life of spark plugs in highly corrosive environments.

  19. Direct analysis of triterpenes from high-salt fermented cucumbers using infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI)

    Science.gov (United States)

    High-salt samples present a challenge to mass spectrometry (MS) analysis, particularly when electrospray ionization (ESI) is used, requiring extensive sample preparation steps such as desalting, extraction, and purification. In this study, infrared matrix-assisted laser desorption electrospray ioniz...

  20. Laser induced non-monotonic degradation in short-circuit current of triple-junction solar cells

    Science.gov (United States)

    Dou, Peng-Cheng; Feng, Guo-Bin; Zhang, Jian-Min; Song, Ming-Ying; Zhang, Zhen; Li, Yun-Peng; Shi, Yu-Bin

    2018-06-01

    In order to study the continuous wave (CW) laser radiation effects and mechanism of GaInP/GaAs/Ge triple-junction solar cells (TJSCs), 1-on-1 mode irradiation experiments were carried out. It was found that the post-irradiation short circuit current (ISC) of the TJSCs initially decreased and then increased with increasing of irradiation laser power intensity. To explain this phenomenon, a theoretical model had been established and then verified by post-damage tests and equivalent circuit simulations. Conclusion was drawn that laser induced alterations in the surface reflection and shunt resistance were the main causes for the observed non-monotonic decrease in the ISC of the TJSCs.

  1. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification.

    Science.gov (United States)

    Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes

    2018-02-01

    Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.

  2. Enhanced laser-energy coupling to dense plasmas driven by recirculating electron currents

    Science.gov (United States)

    Gray, R. J.; Wilson, R.; King, M.; Williamson, S. D. R.; Dance, R. J.; Armstrong, C.; Brabetz, C.; Wagner, F.; Zielbauer, B.; Bagnoud, V.; Neely, D.; McKenna, P.

    2018-03-01

    The absorption of laser energy and dynamics of energetic electrons in dense plasma is fundamental to a range of intense laser-driven particle and radiation generation mechanisms. We measure the total reflected and scattered laser energy as a function of intensity, distinguishing between the influence of pulse energy and focal spot size on total energy absorption, in the interaction with thin foils. We confirm a previously published scaling of absorption with intensity by variation of laser pulse energy, but find a slower scaling when changing the focal spot size. 2D particle-in-cell simulations show that the measured differences arise due to energetic electrons recirculating within the target and undergoing multiple interactions with the laser pulse, which enhances absorption in the case of large focal spots. This effect is also shown to be dependent on the laser pulse duration, the target thickness and the electron beam divergence. The parameter space over which this absorption enhancement occurs is explored via an analytical model. The results impact our understanding of the fundamental physics of laser energy absorption in solids and thus the development of particle and radiation sources driven by intense laser–solid interactions.

  3. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation.

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  4. Extended-bandwidth frequency sweeps of a distributed feedback laser using combined injection current and temperature modulation

    Science.gov (United States)

    Hefferman, Gerald; Chen, Zhen; Wei, Tao

    2017-07-01

    This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.

  5. High Tc superconducting current leads laser fabrication

    Directory of Open Access Journals (Sweden)

    Díez, J. C.

    1998-04-01

    Full Text Available In this work is described a laser float zone melting method designed in our laboratory to the development of superconductor Bi2Sr2CaCu2O8 current leads. The most relevant results obtained with different grown conditions and the influence of the process parameters in the properties of superconductor leads are presented.

    Las barras de alimentación basadas en el superconductor Bi2Sr2CaCu2O8 son de gran interés práctico para la fabricación de criogeneradores capaces de refrigerar bobinas superconductoras a temperaturas inferiores a 77 K e incluso cercanas a 5 K. Las propiedades mecánicas y eléctricas de dichas barras son fundamentales para determinar su grado de fiabilidad, que en última instancia determinar su aplicabilidad a escala comercial. Los parámetros de fabricación utilizando la fusión zonal inducida por láser permiten obtener fibras gruesas de este superconductor capaces de transportar elevadas corrientes a 77 K y a temperaturas inferiores, y con un comportamiento aceptable frente al ciclado térmico y al paso de elevadas intensidades de corriente eléctrica. En este trabajo se describe un sistema de fusión zonal láser diseñado en nuestro laboratorio para el desarrollo de superconductores y se resumen los resultados más significativos obtenidos según las diversas condiciones de crecimiento estudiadas, la influencia de los diversos parámetros de procesado utilizados sobre las propiedades de las fibras superconductoras obtenidas, así como su potencial uso en dispositivos prácticos.

  6. Lasers

    CERN Document Server

    Milonni, Peter W

    1988-01-01

    A comprehensive introduction to the operating principles and applications of lasers. Explains basic principles, including the necessary elements of classical and quantum physics. Provides concise discussions of various laser types including gas, solid state, semiconductor, and free electron lasers, as well as of laser resonators, diffraction, optical coherence, and many applications including holography, phase conjugation, wave mixing, and nonlinear optics. Incorporates many intuitive explanations and practical examples. Discussions are self-contained in a consistent notation and in a style that should appeal to physicists, chemists, optical scientists and engineers.

  7. Laser diode current controller with a high level of protection against electromagnetic interference

    Czech Academy of Sciences Publication Activity Database

    Lazar, Josef; Jedlička, Petr; Číp, Ondřej; Růžička, Bohdan

    2003-01-01

    Roč. 74, č. 8 (2003), s. 3816 - 3819 ISSN 0034-6748 R&D Projects: GA AV ČR IBS2508201; GA AV ČR IAA2065803; GA ČR GA101/01/1104; GA AV ČR IBS2065009 Institutional research plan: CEZ:AV0Z2065902 Keywords : laser diode * electromagnetic interference * ripple free voltage Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.343, year: 2003

  8. I.R. and F.I.R. laser polarimetry as a diagnostic tool in high-β and Tokamak plasmas

    International Nuclear Information System (INIS)

    Pereira, D.; Machida, M.; Scalabrin, A.

    1986-01-01

    The change of the polarization state of an electromagnetic wave (E.M.W.) propagating across a magnetized plasma may be used to determine plasma parameters. In a plasma machine of the Tokamak type, the Faraday rotation of the E.M.W. allows for the determination of the product of the plasma electronic density by the poloidal magnetic field. A novel optical configuration which permits simultaneous measurements of these two parameters without the use of an auxiliary interferometric set up is proposed. By choosing appropriate laser wave length this method can be used in Tokamaks (lambda >= 1mm) and also in theta-Pinches plasmas (lambda approx. 10μm). The application of these results is discussed to plasma machines now in operation in Brazil, like the Tokamak/USP and theta-Pinch/UNICAMP, using lasers developed at UNICAMP. (Author) [pt

  9. A Mid-IR 14.1 W ZnGeP{sub 2} Optical Parametric Oscillator Pumped by a Tm,Ho:GdVO{sub 4} Laser

    Energy Technology Data Exchange (ETDEWEB)

    Guo-Li, Zhu; You-Lun, Ju; Tian-Heng, Wang; Yue-Zhu, Wang [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2009-03-15

    We report a high power and high efficiency double resonant ZnGeP{sub 2} (ZGP) optical parametric oscillator (OPO) pumped by a Tm,Ho:GdVO{sub 4} laser. We employ a Tm,Ho:GdVO{sub 4} laser as the pump source operated at 2.049 {mu}m with M{sup 2} = 1.1. The ZGP OPO can generate a total combined output power of 14.1 W at 3.80 {mu}m signal and 4.45 {mu}m idler under pumping power of 28.7 W. The slope efficiency reaches 61.8%, and M{sup 2} = 3.6 for OPO output is obtained. (fundamental areas of phenomenology (including applications))

  10. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    DEFF Research Database (Denmark)

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    -power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. In an international collaboration in the EU project MINERVA [minerva...

  11. Laser Dyes

    Indian Academy of Sciences (India)

    amplification or generation of coherent light waves in the UV,. VIS, and near IR region. .... ciency in most flashlamp pumped dye lasers. It is used as reference dye .... have led to superior laser dyes with increased photostabilities. For instance ...

  12. The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with miniplates: a Raman spectral study on rabbits.

    Science.gov (United States)

    Pinheiro, Antonio L B; Santos, Nicole Ribeiro Silva; Oliveira, Priscila Chagas; Aciole, Gilberth Tadeu Santos; Ramos, Thais Andrade; Gonzalez, Tayná Assunção; da Silva, Laís Nogueira; Barbosa, Artur Felipe Santos; Silveira, Landulfo

    2013-02-01

    The aim of the present study was to assess, by Raman spectroscopy, the repair of surgical fractures fixed with internal rigid fixation (IRF) treated or not with IR laser (λ780 nm, 50 mW, 4 × 4 J/cm(2) = 16 J/cm(2), ϕ = 0.5 cm(2), CW) associated or not to the use of hydroxyapatite and guided bone regeneration (GBR). Surgical tibial fractures were created under general anesthesia on 15 rabbits that were divided into five groups, maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet and had water ad libitum. The fractures in groups II, III, IV and V were fixed with miniplates. Animals in groups III and V were grafted with hydroxyapatite and GBR technique used. Animals in groups IV and V were irradiated at every other day during 2 weeks (4 × 4 J/cm(2), 16 J/cm(2) = 112 J/cm(2)). Observation time was that of 30 days. After animal death, specimens were taken and kept in liquid nitrogen and used for Raman spectroscopy. Raman spectroscopy showed significant differences between groups (p < 0.001). Basal readings showed mean value of 1,234 ± 220.1. Group internal rigid fixation + biomaterial + laser showed higher readings (3,521 ± 2,670) and group internal rigid fixation + biomaterial the lowest (212.2 ± 119.8). In conclusion, the results of the present investigation are important clinically as spectral analysis of bone component evidenced increased levels of CHA on fractured sites by using the association of laser light to a ceramic graft.

  13. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    International Nuclear Information System (INIS)

    Haseroth, Helmut; Hora, Heinrich; Regensburg Inst. of Tech.

    1996-01-01

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10 11 C 4+ ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ''hot'' electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author)

  14. Physical mechanisms leading to high currents of highly charged ions in laser-driven ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Haseroth, Helmut [European Organization for Nuclear Research, Geneva (Switzerland); Hora, Heinrich [New South Wales Univ., Kensington, NSW (Australia)]|[Regensburg Inst. of Tech. (Germany). Anwenderzentrum

    1996-12-31

    Heavy ion sources for the big accelerators, for example, the LHC, require considerably more ions per pulse during a short time than the best developed classical ion source, the electron cyclotron resonance (ECR) provides; thus an alternative ion source is needed. This can be expected from laser-produced plasmas, where dramatically new types of ion generation have been observed. Experiments with rather modest lasers have confirmed operation with one million pulses of 1 Hz, and 10{sup 11} C{sup 4+} ions per pulse reached 2 GeV/u in the Dubna synchrotron. We review here the complexities of laser-plasma interactions to underline the unique and extraordinary possibilities that the laser ion source offers. The complexities are elaborated with respect to keV and MeV ion generation, nonlinear (ponderomotive) forces, self-focusing, resonances and ``hot`` electrons, parametric instabilities, double-layer effects, and the few ps stochastic pulsation (stuttering). Recent experiments with the laser ion source have been analyzed to distinguish between the ps and ns interaction, and it was discovered that one mechanism of highly charged ion generation is the electron impact ionization (EII) mechanism, similar to the ECR, but with so much higher plasma densities that the required very large number of ions per pulse are produced. (author).

  15. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    Science.gov (United States)

    Megalini, Ludovico

    Group III-nitride is a remarkable material system to make highly efficient and high-power optoelectronics and electronic devices because of the unique electrical, physical, chemical and structural properties it offers. In particular, InGaN-based blue Laser Diodes (LDs) have been successfully employed in a variety of applications ranging from biomedical and military devices to scientific instrumentation and consumer electronics. Recently their use in highly efficient Solid State Lighting (SSL) has been proposed because of their superior beam quality and higher efficiency at high input power density. Tremendous advances in research of GaN semi-polar and non-polar crystallographic planes have led both LEDs and LDs grown on these non-basal planes to rival with, and with the promise to outperform, their equivalent c-plane counterparts. However, still many issues need to be addressed, both related to material growth and device fabrication, including a lack of conventional wet etching techniques. GaN and its alloys with InN and AlN have proven resistant essentially to all known standard wet etching techniques, and the predominant etching methods rely on chlorine-based dry etching (RIE). These introduce sub-surface damage which can degrade the electrical properties of the epitaxial structure and reduce the reliability and lifetime of the final device. Such reasons and the limited effectiveness of passivation techniques have so far suggested to etch the LD ridges before the active region, although it is well-known that this can badly affect the device performance, especially in narrow stripe width LDs, because the gain guiding obtained in the planar configuration is weak and the low index step and high lateral current leakage result in devices with threshold current density higher than devices whose ridge is etched beyond the active region. Moreover, undercut etching of III-nitride layers has proven even more challenging, with limitations in control of the lateral etch

  16. Hermann agreement updates IRS guidelines for incentives.

    Science.gov (United States)

    Broccolo, B M; Peregrine, M W

    1995-01-01

    The October 1994 agreement between the Internal Revenue Service (IRS) and Hermann Hospital of Houston, Texas, elucidates current IRS policy on physician recruitment incentives. The IRS distinguishes between the recruiting and the retention of physicians and perimts incentives beyond reasonable compensation in the former but not the latter circumstance. This new agreement, while not legally precedential, nevertheless provides guidance for healthcare organizations seeking safe harbor protection.

  17. Dynamic characteristics of far-field radiation of current modulated phase-locked diode laser arrays

    Science.gov (United States)

    Elliott, R. A.; Hartnett, K.

    1987-01-01

    A versatile and powerful streak camera/frame grabber system for studying the evolution of the near and far field radiation patterns of diode lasers was assembled and tested. Software needed to analyze and display the data acquired with the steak camera/frame grabber system was written and the total package used to record and perform preliminary analyses on the behavior of two types of laser, a ten emitter gain guided array and a flared waveguide Y-coupled array. Examples of the information which can be gathered with this system are presented.

  18. Optimized Laser Thermal Annealing on Germanium for High Dopant Activation and Low Leakage Current

    DEFF Research Database (Denmark)

    Shayesteh, Maryam; O' Connell, Dan; Gity, Farzan

    2014-01-01

    In this paper, state-of-the-art laser thermal annealing is used to fabricate Ge diodes. We compared the effect of laser thermal annealing (LTA) and rapid thermal annealing (RTA) on dopant activation and electrical properties of phosphorus and Arsenic-doped n +/p junctions. Using LTA, high carrier...... implant conditions. On the other hand, RTA revealed very high I on/I off ratio ∼ 107 and n ∼ 1, at the cost of high dopant diffusion and lower carrier concentrations which would degrade scalability and access resistance....

  19. The effect of current direction on superconducting properties of BSCCO fibres grown by an electrically assisted laser floating zone process

    International Nuclear Information System (INIS)

    Carrasco, M F; Amaral, V S; Vieira, J M; Silva, R F; Costa, F M

    2006-01-01

    The application of an electric current of 200 mA through the molten zone of BSCCO superconducting fibres during laser floating zone processing constitutes an upgrade for improving the grain alignment. When a direct electric current (positively polarized fibre) passes through the solidification interface, the solidification conditions approach equilibrium, favouring the development of a higher amount of 2212 and 14/24 stable phases. The new electrically assisted laser floating zone (EALFZ) technique also improves the 2223 phase formation in fibres heat treated at high temperatures (860 deg. C). However, the 2223 crystals grow perpendicularly to the fibre axis at the interface between the 2212 and 14/24 phases, crossing the crystals of the main phase responsible for the current transport, cancelling the alignment effect. The resultant current density and critical temperature values were J c 77 K = 230 A cm -2 and T c = 85 K, respectively. When a lower heat treatment temperature was accomplished (820 deg. C), the 2223 transverse crystals do not develop and a higher current density value of J c 77 K = 510 A cm -2 was achieved, although with a critical temperature of T c = 90 K

  20. Visible Solid State Lasers

    NARCIS (Netherlands)

    Hikmet, R.A.M.

    2007-01-01

    Diode lasers can be found in various applications most notably in optical communication and optical storage. Visible lasers were until recently were all based on IR diode lasers. Using GaN, directly blue and violet emitting lasers have also been introduced to the market mainly in the area of optical

  1. Demonstration of a near-IR line-referenced electro-optical laser frequency comb for precision radial velocity measurements in astronomy.

    Science.gov (United States)

    Yi, X; Vahala, K; Li, J; Diddams, S; Ycas, G; Plavchan, P; Leifer, S; Sandhu, J; Vasisht, G; Chen, P; Gao, P; Gagne, J; Furlan, E; Bottom, M; Martin, E C; Fitzgerald, M P; Doppmann, G; Beichman, C

    2016-01-27

    An important technique for discovering and characterizing planets beyond our solar system relies upon measurement of weak Doppler shifts in the spectra of host stars induced by the influence of orbiting planets. A recent advance has been the introduction of optical frequency combs as frequency references. Frequency combs produce a series of equally spaced reference frequencies and they offer extreme accuracy and spectral grasp that can potentially revolutionize exoplanet detection. Here we demonstrate a laser frequency comb using an alternate comb generation method based on electro-optical modulation, with the comb centre wavelength stabilized to a molecular or atomic reference. In contrast to mode-locked combs, the line spacing is readily resolvable using typical astronomical grating spectrographs. Built using commercial off-the-shelf components, the instrument is relatively simple and reliable. Proof of concept experiments operated at near-infrared wavelengths were carried out at the NASA Infrared Telescope Facility and the Keck-II telescope.

  2. A Fabry-Pérot electro-optic sensing system using a drive-current-tuned wavelength laser diode.

    Science.gov (United States)

    Kuo, Wen-Kai; Wu, Pei-Yu; Lee, Chang-Ching

    2010-05-01

    A Fabry-Pérot enhanced electro-optic sensing system that utilizes a drive-current-tuned wavelength laser diode is presented. An electro-optic prober made of LiNbO(3) crystal with an asymmetric Fabry-Pérot cavity is used in this system. To lock the wavelength of the laser diode at resonant condition, a closed-loop power control scheme is proposed. Experiment results show that the system can keep the electro-optic prober at high sensitivity for a long working time when the closed-loop control function is on. If this function is off, the sensitivity may be fluctuated and only one-third of the best level in the worst case.

  3. Gain and Threshold Current in Type II In(AsSb Mid-Infrared Quantum Dot Lasers

    Directory of Open Access Journals (Sweden)

    Qi Lu

    2015-04-01

    Full Text Available In this work, we improved the performance of mid-infrared type II InSb/InAs quantum dot (QD laser diodes by incorporating a lattice-matched p-InAsSbP cladding layer. The resulting devices exhibited emission around 3.1 µm and operated up to 120 K in pulsed mode, which is the highest working temperature for this type of QD laser. The modal gain was estimated to be 2.9 cm−1 per QD layer. A large blue shift (~150 nm was observed in the spontaneous emission spectrum below threshold due to charging effects. Because of the QD size distribution, only a small fraction of QDs achieve threshold at the same injection level at 4 K. Carrier leakage from the waveguide into the cladding layers was found to be the main reason for the high threshold current at higher temperatures.

  4. Passivity of the bars manufactured using current technologies: laser-sintering, casting, and milling

    Science.gov (United States)

    Popescu, Diana; Popescu, Sabin; Pop, Daniel; Jivanescu, Anca; Todea, Carmen

    2014-01-01

    Implant overdentures are often selected as therapeutic options for the treatment of edentulous mandibles. "Passive-fit" between the mesostructures and the implants plays an important role in the longevity of the implant-prosthetic assembly in the oral cavity. "Mis-fit" can cause mechanical or biological complications. The purpose of this test was to investigate the passive adaptation of the bars manufactured through different technologies, and in this respect two bars (short and long) were fabricated by each process: laser-sintering, milling, casting. The tensions induced by tightening the connection screw between the bars and the underlying implants were recorded using strain gauges and used as measuring and comparing tool in testing the bars' "passivity". The results of the test showed that the milled bars had the best "passive-fit", followed by laser-sintered bars, while cast bars had the lowest adaptation level.

  5. Laser driven inertial fusion: the physical basis of current and recently proposed ignition experiments

    International Nuclear Information System (INIS)

    Atzeni, S

    2009-01-01

    A brief overview of the inertial fusion principles and schemes is presented. The bases for the laser driven ignition experiments programmed for the near future at the National Ignition Facility are outlined. These experiments adopt indirect-drive and aim at central ignition. The principles of alternate approaches, based on direct-drive and different routes to ignition (fast ignition and shock ignition) are also discussed. Gain curves are compared and discussed.

  6. Current and emerging laser sensors for greenhouse gas sensing and leak detection

    Science.gov (United States)

    Frish, Michael B.

    2014-05-01

    To reduce atmospheric accumulation of the greenhouse gases methane and carbon dioxide, networks of continuously operating sensors that monitor and map their sources are desirable. In this paper, we discuss advances in laser-based open-path leak detectors, as well as technical and economic challenges inhibiting widespread sensor deployment for "ubiquitous monitoring". We describe permanently-installed, wireless, solar-powered sensors that overcome previous installation and maintenance difficulties while providing autonomous real-time leak reporting without false alarms.

  7. 980 nm diode lasers in oral and facial practice: current state of the science and art.

    Science.gov (United States)

    Desiate, Apollonia; Cantore, Stefania; Tullo, Domenica; Profeta, Giovanni; Grassi, Felice Roberto; Ballini, Andrea

    2009-11-24

    To evaluate the safety and efficacy of a 980 nm diode laser for the treatment of benign facial pigmented and vascular lesions, and in oral surgery. 20 patients were treated with a 980 nm diode laser. Oral surgery: 5 patients (5 upper and lower frenulectomy). Fluence levels were 5-15 J/cm(2); pulse lengths were 20-60 ms; spot size was 1 mm. Vascular lesions: 10 patients (5 small angiomas, 5 telangiectases). Fluences were 6-10 J/cm(2); pulse lengths were 10-50 ms; spot size was 2 mm. In all cases the areas surrounding the lesions were cooled. Pigmented lesions: 5 patients (5 keratoses). All the lesions were evaluated by dermatoscopy before the treatment. Fluence levels were 7-15 J/cm(2); pulse lengths were 20-50 ms; spot size was 1 mm. All the patients were followed at 1, 4 and 8 weeks after the procedure. Healing in oral surgery was within 10 days. The melanoses healed completely within four weeks. All the vascular lesions healed after 15 days without any residual scarring. The end results for the use of the 980 nm diode laser in oral and facial surgery appears to be justified on the grounds of efficacy and safety of the device, and good degree of acceptance by the patients, without compromising their health and function.

  8. Strong-Field Physics with Mid-IR Fields

    Directory of Open Access Journals (Sweden)

    Benjamin Wolter

    2015-06-01

    Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.

  9. Evaluation of low level laser and interferential current in the therapy of complex regional pain syndrome by infrared thermographic camera

    Directory of Open Access Journals (Sweden)

    Kocić Mirjana

    2010-01-01

    Full Text Available Background/Aim. Complex regional pain syndrome type I (CRPS I is characterized by continuous regional pain, disproportional according to duration and intensity and to the sort of trauma or other lesion it was caused by. The aim of the study was to evaluate and compare, by using thermovison, the effects of low level laser therapy and therapy with interferential current in treatment of CRPS I. Methods. The prospective randomized controlled clinical study included 45 patients with unilateral CRPS I, after a fracture of the distal end of the radius, of the tibia and/or the fibula, treated in the Clinical Centre in Nis from 2004 to 2007. The group A consisted of 20 patients treated by low level laser therapy and kinesy-therapy, while the patients in the group B (n = 25 were treated by interferential current and kinesy-therapy. The regions of interest were filmed by a thermovision camera on both sides, before and after the 20 therapeutic procedures had been applied. Afterwards, the quantitative analysis and the comparing of thermograms taken before and after the applied therapy were performed. Results. There was statistically significant decrease of the mean maximum temperature difference between the injured and the contralateral extremity after the therapy in comparison to the status before the therapy, with the patients of the group A (p < 0.001 as well as those of the group B (p < 0.001. The decrease was statistically significantly higher in the group A than in the group B (p < 0.05. Conclusions. By the use of the infrared thermovision we showed that in the treatment of CRPS I both physical medicine methods were effective, but the effectiveness of laser therapy was statistically significantly higher compared to that of the interferential current therapy.

  10. Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets

    International Nuclear Information System (INIS)

    Huang, J.-S.; Ke, C.-B.; Lin, K.-C.

    2004-01-01

    We have investigated influence of matrix salts on the liquid droplets by laser-induced breakdown spectroscopy (LIBS). An electrospray ionization technique coupled with LIBS is employed to generate the microdroplets of the Na sample solution with various matrix salts added. A sequence of single-shot time-resolved LIB emission signals is detected. The LIB signal intensity integrated within a gate linearly correlates with the plasma-induced current response obtained simultaneously on a single-shot basis. The slopes thus obtained increase with the sample concentration, but appear to be irrespective of different matrix salts, added up to a 2000 mg/l concentration. The matrix salts involved have the same K + cation but different anions. Given a laser radiation emitting at 355 nm with the energy fixed at 23±1 mJ, a limit of detection (LOD) of 1.0 mg/l may be achieved for the Na analysis. The current normalization might have probably taken into account the ablated amount of the sample and the plasma temperature. Accordingly, the LIB/current correlated analysis becomes efficient to suppress the signal fluctuation, improve the LOD determination, and concurrently correct the matrix effect

  11. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    Padmanaban, G.; Balasubramanian, V.

    2011-01-01

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  12. External cavity diode laser-based detection of trace gases with NICE-OHMS using current modulation.

    Science.gov (United States)

    Centeno, R; Mandon, J; Cristescu, S M; Axner, O; Harren, F J M

    2015-03-09

    We combine an external cavity diode laser with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) using current modulation. With a finesse of 1600, we demonstrate noise equivalent absorption sensitivities of 4.1 x 10(-10) cm(-1) Hz(-1/2), resulting in sub-ppbv detection limits for Doppler-broadened transitions of CH(4) at 6132.3 cm(-1), C(2)H(2) at 6578.5 cm(-1) and HCN at 6541.7 cm(-1). The system is used for hydrogen cyanide detection from sweet almonds.

  13. Current status of matrix-assisted laser desorption ionisation-time of flight mass spectrometry in the clinical microbiology laboratory.

    Science.gov (United States)

    Kok, Jen; Chen, Sharon C A; Dwyer, Dominic E; Iredell, Jonathan R

    2013-01-01

    The integration of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) into many clinical microbiology laboratories has revolutionised routine pathogen identification. MALDI-TOF MS complements and has good potential to replace existing phenotypic identification methods. Results are available in a more clinically relevant timeframe, particularly in bacteraemic septic shock. Novel applications include strain typing and the detection of antimicrobial resistance, but these are not widely used. This review discusses the technical aspects, current applications, and limitations of MALDI-TOF MS.

  14. Experimental FT-IR, Laser-Raman and DFT spectroscopic analysis of a potential chemotherapeutic agent 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile.

    Science.gov (United States)

    Sert, Yusuf; Al-Turkistani, Abdulghafoor A; Al-Deeb, Omar A; El-Emam, Ali A; Ucun, Fatih; Çırak, Çağrı

    2014-01-01

    In this study, the experimental and theoretical vibrational frequencies of a newly synthesized potential chemotherapeutic agent namely, 6-(2-methylpropyl)-4-oxo-2-sulfanylidene-1,2,3,4-tetrahydropyrimidine-5-carbonitrile have been investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in solid phase have been recorded. The theoretical vibrational frequencies and optimized geometric parameters (bond lengths and bond angles) have been calculated by using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set by Gaussian 09 W software, for the first time. The assignments of the vibrational frequencies have been done by potential energy distribution (PED) analysis by using VEDA 4 software. The theoretical optimized geometric parameters and vibrational frequencies have been found to be in good agreement with the corresponding experimental data, and with the results in the literature. In addition, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies and the other related molecular energy values have been calculated and depicted. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone.

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-15

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Interband cascade lasers

    International Nuclear Information System (INIS)

    Vurgaftman, I; Meyer, J R; Canedy, C L; Kim, C S; Bewley, W W; Merritt, C D; Abell, J; Weih, R; Kamp, M; Kim, M; Höfling, S

    2015-01-01

    We review the current status of interband cascade lasers (ICLs) emitting in the midwave infrared (IR). The ICL may be considered the hybrid of a conventional diode laser that generates photons via electron–hole recombination, and an intersubband-based quantum cascade laser (QCL) that stacks multiple stages for enhanced current efficiency. Following a brief historical overview, we discuss theoretical aspects of the active region and core designs, growth by molecular beam epitaxy, and the processing of broad-area, narrow-ridge, and distributed feedback (DFB) devices. We then review the experimental performance of pulsed broad area ICLs, as well as the continuous-wave (cw) characteristics of narrow ridges having good beam quality and DFBs producing output in a single spectral mode. Because the threshold drive powers are far lower than those of QCLs throughout the λ = 3–6 µm spectral band, ICLs are increasingly viewed as the laser of choice for mid-IR laser spectroscopy applications that do not require high output power but need to be hand-portable and/or battery operated. Demonstrated ICL performance characteristics to date include threshold current densities as low as 106 A cm −2 at room temperature (RT), cw threshold drive powers as low as 29 mW at RT, maximum cw operating temperatures as high as 118 °C, maximum cw output powers exceeding 400 mW at RT, maximum cw wallplug efficiencies as high as 18% at RT, maximum cw single-mode output powers as high as 55 mW at RT, and single-mode output at λ = 5.2 µm with a cw drive power of only 138 mW at RT. (topical review)

  17. Temperature and current coefficients of lasing wavelength in tunable diode laser spectroscopy.

    Science.gov (United States)

    Fukuda, M; Mishima, T; Nakayama, N; Masuda, T

    2010-08-01

    The factors determining temperature and current coefficients of lasing wavelength are investigated and discussed under monitoring CO(2)-gas absorption spectra. The diffusion rate of Joule heating at the active layer to the surrounding region is observed by monitoring the change in the junction voltage, which is a function of temperature and the wavelength (frequency) deviation under sinusoidal current modulation. Based on the experimental results, the time interval of monitoring the wavelength after changing the ambient temperature or injected current (scanning rate) has to be constant at least to eliminate the monitoring error induced by the deviation of lasing wavelength, though the temperature and current coefficients of lasing wavelength differ with the rate.

  18. IOT Overview: IR Instruments

    Science.gov (United States)

    Mason, E.

    In this instrument review chapter the calibration plans of ESO IR instruments are presented and briefly reviewed focusing, in particular, on the case of ISAAC, which has been the first IR instrument at VLT and whose calibration plan served as prototype for the coming instruments.

  19. Dark Current Reduction of IR Detectors

    Science.gov (United States)

    2017-10-19

    hands-on experience in the lab fabricating semiconductor devices for an important application. We would also like to thank the members of AFRL...InP/InGaAs 1 Surface preparation / particle removal (repeated before every step) 2 Etch InGaAs contact mesas, used for ohmic contact and alignment 3...and dopant film in with HF dip 9 PECVD oxide #3 ~75nm (passivation) 10 Pattern oxide for metal- semiconductor contacts 11 Final metallization using e

  20. Laser Diagnostics for Reacting Flows

    National Research Council Canada - National Science Library

    Hanson, Ronald K

    2007-01-01

    ... (UV) or infrared (IR) wavelengths. The cw lasers were spectrally narrow, allowing study of innovative diagnostics based on spectral lineshapes, while the pulsed lasers provided intense bursts of photons needed for techniques based on LIF...

  1. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Science.gov (United States)

    Mangano, F.; Chambrone, L.; van Noort, R.; Miller, C.; Hatton, P.; Mangano, C.

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed. PMID:25525434

  2. The role of current sheet formation in driven plasmoid reconnection in laser-produced plasma bubbles

    Science.gov (United States)

    Lezhnin, Kirill; Fox, William; Bhattacharjee, Amitava

    2017-10-01

    We conduct a multiparametric study of driven magnetic reconnection relevant to recent experiments on colliding magnetized laser produced plasmas using the PIC code PSC. Varying the background plasma density, plasma resistivity, and plasma bubble geometry, the results demonstrate a variety of reconnection behavior and show the coupling between magnetic reconnection and global fluid evolution of the system. We consider both collision of two radially expanding bubbles where reconnection is driven through an X-point, and collision of two parallel fields where reconnection must be initiated by the tearing instability. Under various conditions, we observe transitions between fast, collisionless reconnection to a Sweet-Parker-like slow reconnection to complete stalling of the reconnection. By varying plasma resistivity, we observe the transition between fast and slow reconnection at Lundquist number S 103 . The transition from plasmoid reconnection to a single X-point reconnection also happens around S 103 . We find that the criterion δ /di < 1 is necessary for fast reconnection onset. Finally, at sufficiently high background density, magnetic reconnection can be suppressed, leading to bouncing motion of the magnetized plasma bubbles.

  3. Direct metal laser sintering titanium dental implants: a review of the current literature.

    Science.gov (United States)

    Mangano, F; Chambrone, L; van Noort, R; Miller, C; Hatton, P; Mangano, C

    2014-01-01

    Statement of Problem. Direct metal laser sintering (DMLS) is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D) computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs); to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS) was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  4. Direct Metal Laser Sintering Titanium Dental Implants: A Review of the Current Literature

    Directory of Open Access Journals (Sweden)

    F. Mangano

    2014-01-01

    Full Text Available Statement of Problem. Direct metal laser sintering (DMLS is a technology that allows fabrication of complex-shaped objects from powder-based materials, according to a three-dimensional (3D computer model. With DMLS, it is possible to fabricate titanium dental implants with an inherently porous surface, a key property required of implantation devices. Objective. The aim of this review was to evaluate the evidence for the reliability of DMLS titanium dental implants and their clinical and histologic/histomorphometric outcomes, as well as their mechanical properties. Materials and Methods. Electronic database searches were performed. Inclusion criteria were clinical and radiographic studies, histologic/histomorphometric studies in humans and animals, mechanical evaluations, and in vitro cell culture studies on DMLS titanium implants. Meta-analysis could be performed only for randomized controlled trials (RCTs; to evaluate the methodological quality of observational human studies, the Newcastle-Ottawa scale (NOS was used. Results. Twenty-seven studies were included in this review. No RCTs were found, and meta-analysis could not be performed. The outcomes of observational human studies were assessed using the NOS: these studies showed medium methodological quality. Conclusions. Several studies have demonstrated the potential for the use of DMLS titanium implants. However, further studies that demonstrate the benefits of DMLS implants over conventional implants are needed.

  5. Photonic generation of ultra-wideband signals by direct current modulation on SOA section of an SOA-integrated SGDBR laser.

    Science.gov (United States)

    Lv, Hui; Yu, Yonglin; Shu, Tan; Huang, Dexiu; Jiang, Shan; Barry, Liam P

    2010-03-29

    Photonic ultra-wideband (UWB) pulses are generated by direct current modulation of a semiconductor optical amplifier (SOA) section of an SOA-integrated sampled grating distributed Bragg reflector (SGDBR) laser. Modulation responses of the SOA section of the laser are first simulated with a microwave equivalent circuit model. Simulated results show a resonance behavior indicating the possibility to generate UWB signals with complex shapes in the time domain. The UWB pulse generation is then experimentally demonstrated for different selected wavelength channels with an SOA-integrated SGDBR laser.

  6. YCOB lasers

    International Nuclear Information System (INIS)

    Richardson, Martin; Hammons, Dennis; Eichenholz, Jason; Chai, Bruce; Ye, Qing; Jang, Won; Shah, Lawrence

    1999-01-01

    We review new developments with a new laser host material, YCa 4 O(BO 3 ) 3 or YCOB. Lasers based on this host material will open new opportunities for the development of compact, high-power, frequency-agile visible and near IR laser sources, as well as sources for ultrashort pulses. Efficient diode-pumped laser action with both Nd-doped and Yb-doped YCOB has already been demonstrated. Moreover, since these materials are biaxial, and have high nonlinear optical coefficients, they have become the first laser materials available as efficient self-frequency-doubled lasers, capable of providing tunable laser emission in several regions of the visible spectrum. Self-frequency doubling eliminates the need for inclusion of a nonlinear optical element within or external to the laser resonator. These laser materials possess excellent thermal and optical properties, have high laser-damage thresholds, and can be grown to large sizes. In addition they are non-hygroscopic. They therefore possess all the characteristics necessary for laser materials required in rugged, compact systems. Here we summarize the rapid progress made in the development of this new class of lasers, and review their potential for a number of applications. (author)

  7. Microscale Solubility Measurements of Matrix-Assisted Laser Desorption-Ionization (MALDI) Matrices Using Attenuated Total Reflection (ATR) Fourier Transform Infrared Spectroscopy (FT-IR) Coupled with Partial Least Squares (PLS) Analysis.

    Science.gov (United States)

    Gorre, Elsa; Owens, Kevin G

    2016-11-01

    In this work an attenuated total reflection Fourier transform infrared (FT-IR) absorption based method is used to measure the solubility of two matrix-assisted laser desorption-ionization (MALDI) matrices in a few pure solvents and mixtures of acetonitrile and water using low microliter amounts of solution. Results from a method that averages the values obtained from multiple calibration curves created by manual peak picking are compared to those predicted using a partial least squares (PLS) chemometrics approach. The PLS method provided solubility values that were in good agreement with the manual method with significantly greater ease of analysis. As a test, the solubility of adipic acid in acetone was measured using the two methods of analysis, and the values are in good agreement with solubility values reported in literature. The solubilities of the MALDI matrices α-cyano-4-hydroxy cinnamic acid (CHCA) and sinapinic acid (SA) were measured in a series of mixtures made from acetonitrile (ACN) and water; surprisingly, the results show a highly nonlinear trend. While both CHCA and SA show solubility values of less than 10 mg/mL in the pure solvents, the solubility value for SA increases to 56.3 mg/mL in a 75:25 v/v ACN:water mixture. This can have a significant effect on the matrix-to-analyte ratios in the MALDI experiment when sample protocols call for preparation of a saturated solution of the matrix in the chosen solvent system. © The Author(s) 2016.

  8. Impurity heterogeneity in natural pyrite and its relation to internal electric fields mapped using remote laser beam induced current

    Energy Technology Data Exchange (ETDEWEB)

    Laird, Jamie S., E-mail: csirojamie@gmail.com [CSIRO, Earth Science and Resource Engineering, Clayton, Victoria (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); School of Physics, University of Melbourne, Parkville 3010, Victoria (Australia); Large, Ross [Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); Ryan, Chris G. [CSIRO, Earth Science and Resource Engineering, Clayton, Victoria (Australia); Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Hobart, Tasmania (Australia); School of Physics, University of Melbourne, Parkville 3010, Victoria (Australia)

    2013-07-01

    Regions of band-bending in naturally occurring semiconducting sulfides are thought to drive electrochemical reactions with passing fluids. Metal bearing fluids within the right pH range interact with the electric fields at the surface resulting in precious metal ore genesis, even in under-saturated solutions. Metal reduction at the surface occurs via field assisted electron transfer from the semiconductor bulk to the ion in solution via surface states. Better understanding the role these regions and their texturing play on nucleating ore growth requires imaging of electric field distributions near the sulfide surface and correlation with underlying elemental heterogeneity. In this paper we discuss PIXE measurements made on the CSIRO Nuclear Microprobe and correlate elemental maps with laser beam induced current maps of the electric field distribution.

  9. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, M. Ben; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia); Dimassi, W.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de photovoltaique, des semiconducteurs et des nanostructures, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia)

    2009-05-15

    In the present work, we report on the effect of introducing a superficial porous silicon (PS) layer on the performance of polycrystalline silicon (pc-Si) solar cells. Laser-beam-induced current (LBIC) mapping shows that the PS treatment on the emitter of pc-Si solar cells improves their quantum response and reduce the grain boundaries (GBs) activity. After the porous silicon treatment, mapping investigation shows an enhancement of the LBIC and the internal quantum efficiency (IQE), due to an improvement of the minority carrier diffusion length and the passivation of recombination centers at the GBs as compared to the reference substrate. It was quantitatively shown that porous silicon treatment can passivate both the grains and GBs. (author)

  10. Impact of optical feedback on current-induced polarization behavior of 1550 nm vertical-cavity surface-emitting lasers.

    Science.gov (United States)

    Deng, Tao; Wu, Zheng-Mao; Xie, Yi-Yuan; Wu, Jia-Gui; Tang, Xi; Fan, Li; Panajotov, Krassimir; Xia, Guang-Qiong

    2013-06-01

    Polarization switching (PS) between two orthogonal linearly polarized fundamental modes is experimentally observed in commercial free-running 1550 nm vertical-cavity surface-emitting lasers (VCSELs) (Raycan). The characteristics of this PS are strongly modified after introducing a polarization-preserved (PP) or polarization-orthogonal (PO) optical feedback. Under the case that the external cavity is approximately 30 cm, the PP optical feedback results in the PS point shifting toward a lower injection current, and the region within which the two polarization modes coexist is enlarged with the increase of the PP feedback strength. Under too-strong PP feedback levels, the PS disappears. The impact of PO optical feedback on VCSEL polarization behavior is quite similar to that of PP optical feedback, but larger feedback strength is needed to obtain similar results.

  11. The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with wire osteosynthesis: a comparative laser fluorescence and Raman spectral study on rabbits.

    Science.gov (United States)

    Pinheiro, Antônio Luiz Barbosa; Santos, Nicole Ribeiro Silva; Oliveira, Priscila Chagas; Aciole, Gilberth Tadeu Santos; Ramos, Thais Andrade; Gonzalez, Tayná Assunção; da Silva, Laís Nogueira; Barbosa, Artur Felipe Santos; Silveira, Landulfo

    2013-05-01

    The aim of the present study was to assess, by Raman spectroscopy and laser fluorescence, the repair of surgical fractures fixed with wire osteosynthesis treated or not with infrared laser (λ780 nm, 50 mW, 4 × 4 J/cm(2) =16 J/cm(2), ϕ=0.5 cm(2), CW) associated or not to the use of hydroxyapatite and guided bone regeneration. Surgical tibial fractures were created under general anesthesia on 15 rabbits that were divided into five groups, maintained on individual cages, at day/night cycle, fed with solid laboratory pelted diet, and had water ad libitum. The fractures in groups II, III, IV, and V were fixed with wires. Animals in groups III and V were grafted with hydroxyapatite (HA) and guided bone regeneration (GBR) technique used. Animals in groups IV and V were irradiated at every other day during 2 weeks (4 × 4 J/cm(2), 16 J/cm(2) =112 J/cm(2)). Observation time was that of 30 days. After animal death, specimens were taken and kept in liquid nitrogen and used for Raman spectroscopy. The Raman results showed basal readings of 1,234.38 ± 220. Groups WO+B+L showed higher readings (1,680.22 ± 822) and group WO+B the lowest (501.425 ± 328). Fluorescence data showed basal readings of 5.83333 ± 0.7. Groups WO showed higher readings (6.91667 ± 0.9) and group WO+B+L the lowest (1.66667 ± 0.5). There were significant differences between groups on both cases (pRaman peaks of calcium hydroxyapatite (CHA) are increased, the level of fluorescence is reduced. It is concluded that the use of near-infrared lasertherapy associated to HA graft and GBR was effective in improving bone healing on fractured bones as a result of the increasing deposition of CHA measured by Raman spectroscopy and decrease of the organic components as shown by the fluorescence readings.

  12. Distribution Analysis of the Local Critical Temperature and Current Density in YBCO Coated Conductors using Low-temperature Scanning Laser and Hall Probe Microscopy

    International Nuclear Information System (INIS)

    Park, S. K.; Cho, B. R.; Park, H. Y.; Ri, H. C.

    2011-01-01

    Distribution of the local critical temperature and current density in YBCO coated conductors were analyzed using Low-temperature Scanning Laser and Hall Probe Microscopy (LTSLHPM). We prepared YBCO coated conductors of various bridge types to study the spatial distribution of the critical temperature and the current density in single and multi bridges. LTSLHPM system was modified for detailed linescan or two-dimensional scan both scanning laser and scanning Hall probe method simultaneously. We analyzed the local critical temperature of single and multi bridges from series of several linescans of scanning laser microscopy. We also investigated local current density and hysteresis curve of single bridge from experimental results of scanning Hall probe microscopy.

  13. Resonant Laser Manipulation of an Atomic Beam

    Science.gov (United States)

    2010-07-01

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Resonant Laser Manipulation of an Atomic Beam...steering and collimating flows with higher densities and energies than current common practice . One impediment to this extension is the development of...where Δεg is the ground state Stark shift, Ω is the Rabi frequency (related to intensity), Isat is the saturation intensity of the transition, and I(r

  14. Infrared laser damage thresholds in corneal tissue phantoms using femtosecond laser pulses

    Science.gov (United States)

    Boretsky, Adam R.; Clary, Joseph E.; Noojin, Gary D.; Rockwell, Benjamin A.

    2018-02-01

    Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting 100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.

  15. High speed photography diagnostics in laser-plasma interaction experiments

    International Nuclear Information System (INIS)

    Andre, M.L.

    1988-01-01

    The authors report on their effort in the development of techniques involved in laser-plasma experiments. This includes not only laser technology but also diagnostics studies and targets design and fabrication. Among the different kind of diagnostics currently used are high speed streak cameras, fast oscilloscopes and detectors sensitive in the i.r., visible, the u.v. region and the x-rays. In this presentation the authors describe the three high power lasers which are still in operation (P 102, OctAL and PHEBUS) and the main diagnostics used to characterize the plasma

  16. High peak current operation of x-ray free-electron laser multiple beam lines by suppressing coherent synchrotron radiation effects

    Science.gov (United States)

    Hara, Toru; Kondo, Chikara; Inagaki, Takahiro; Togawa, Kazuaki; Fukami, Kenji; Nakazawa, Shingo; Hasegawa, Taichi; Morimoto, Osamu; Yoshioka, Masamichi; Maesaka, Hirokazu; Otake, Yuji; Tanaka, Hitoshi

    2018-04-01

    The parallel operation of multiple beam lines is an important means to expand the opportunity of user experiments at x-ray free-electron laser (XFEL) facilities. At SPring-8 Angstrom free-electron laser (SACLA), the multi-beam-line operation had been tested using two beam lines, but transverse coherent synchrotron radiation (CSR) effects at a dogleg beam transport severely limited the laser performance. To suppress the CSR effects, a new beam optics based on two double bend achromat (DBA) structures was introduced for the dogleg. After the replacement of the beam optics, high peak current bunches of more than 10 kA are now stably transported through the dogleg and the laser pulse output is increased by a factor of 2-3. In the multi-beam-line operation of SACLA, the electron beam parameters, such as the beam energy and peak current, can be adjusted independently for each beam line. Thus the laser output can be optimized and wide spectral tunability is ensured for all beam lines.

  17. Dynamics of a gain-switched distributed feedback ridge waveguide laser in nanoseconds time scale under very high current injection conditions.

    Science.gov (United States)

    Klehr, A; Wenzel, H; Brox, O; Schwertfeger, S; Staske, R; Erbert, G

    2013-02-11

    We present detailed experimental investigations of the temporal, spectral and spatial behavior of a gain-switched distributed feedback (DFB) laser emitting at a wavelength of 1064 nm. Gain-switching is achieved by injecting nearly rectangular shaped current pulses having a length of 50 ns and a very high amplitude up to 2.5 A. The repetition frequency is 200 kHz. The laser has a ridge waveguide (RW) for lateral waveguiding with a ridge width of 3 µm and a cavity length of 1.5 mm. Time resolved investigations show, depending on the amplitude of the current pulses, that the optical power exhibits different types of oscillatory behavior during the pulses, accompanied by changes in the lateral near field intensity profiles and optical spectra. Three different types of instabilities can be distinguished: mode beating with frequencies between 25 GHz and 30 GHz, switching between different lateral intensity profiles with a frequency of 0.4 GHz and self-sustained oscillations with a frequency of 4 GHz. The investigations are of great relevance for the utilization of gain-switched DFB-RW lasers as seed lasers for fiber laser systems and in other applications, which require a high optical power.

  18. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  19. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  20. Demonstration of array eddy current technology for real-time monitoring of laser powder bed fusion additive manufacturing process

    Science.gov (United States)

    Todorov, Evgueni; Boulware, Paul; Gaah, Kingsley

    2018-03-01

    Nondestructive evaluation (NDE) at various fabrication stages is required to assure quality of feedstock and solid builds. Industry efforts are shifting towards solutions that can provide real-time monitoring of additive manufacturing (AM) fabrication process layer-by-layer while the component is being built to reduce or eliminate dependence on post-process inspection. Array eddy current (AEC), electromagnetic NDE technique was developed and implemented to directly scan the component without physical contact with the powder and fused layer surfaces at elevated temperatures inside a LPBF chamber. The technique can detect discontinuities, surface irregularities, and undesirable metallurgical phase transformations in magnetic and nonmagnetic conductive materials used for laser fusion. The AEC hardware and software were integrated with the L-PBF test bed. Two layer-by-layer tests of Inconel 625 coupons with AM built discontinuities and lack of fusion were conducted inside the L-PBF chamber. The AEC technology demonstrated excellent sensitivity to seeded, natural surface, and near-surface-embedded discontinuities, while also detecting surface topography. The data was acquired and imaged in a layer-by-layer sequence demonstrating the real-time monitoring capabilities of this new technology.

  1. Gigantic 2D laser-induced photovoltaic effect in magnetically doped topological insulators for surface zero-bias spin-polarized current generation

    Science.gov (United States)

    Shikin, A. M.; Voroshin, V. Yu; Rybkin, A. G.; Kokh, K. A.; Tereshchenko, O. E.; Ishida, Y.; Kimura, A.

    2018-01-01

    A new kind of 2D photovoltaic effect (PVE) with the generation of anomalously large surface photovoltage up to 210 meV in magnetically doped topological insulators (TIs) has been studied by the laser time-resolved pump-probe angle-resolved photoelectron spectroscopy. The PVE has maximal efficiency for TIs with high occupation of the upper Dirac cone (DC) states and the Dirac point located inside the fundamental energy gap. For TIs with low occupation of the upper DC states and the Dirac point located inside the valence band the generated surface photovoltage is significantly reduced. We have shown that the observed giant PVE is related to the laser-generated electron-hole asymmetry followed by accumulation of the photoexcited electrons at the surface. It is accompanied by the 2D relaxation process with the generation of zero-bias spin-polarized currents flowing along the topological surface states (TSSs) outside the laser beam spot. As a result, the spin-polarized current generates an effective in-plane magnetic field that is experimentally confirmed by the k II-shift of the DC relative to the bottom non-spin-polarized conduction band states. The realized 2D PVE can be considered as a source for the generation of zero-bias surface spin-polarized currents and the laser-induced local surface magnetization developed in such kind 2D TSS materials.

  2. Current Status and Future Prospects of "J-KAREN" — High Contrast, High Intensity Laser for Studying Relativistic Laser-Matter Interactions

    Science.gov (United States)

    Kiriyama, Hiromitsu; Mori, Michiaki; Okada, Hajime; Shimomura, Takuya; Nakai, Yoshiki; Tanoue, Manabu; Kondo, Shuji; Kanazawa, Shuhei; Yogo, Akifumi; Sagisaka, Akito; Ogura, Koichi; Hayashi, Yukio; Sakaki, Hironao; Pirozhkov, Alexander S.; Kotaki, Hideyuki; Fukuda, Yuji; Nishiuchi, Mamiko; Kando, Masaki; Bulanov, Sergei V.; Yamagiwa, Mitsuru; Kondo, Kiminori; Sugiyama, Akira; Bolton, Paul R.

    We present the design and characterization of a high-contrast, petawatt-class Ti:sapphire chirped-pulse amplification (CPA) laser system. Two saturable absorbers and low-gain optical parametric chirped-pulse amplification (OPCPA) preamplifier in the double CPA laser chain have improved the temporal contrast to 1.4 × 1012 on the subnanosecond time scale at 70 terawatt level. Final uncompressed broadband pulse energy is 28 J, indicating the potential for reaching peak power near 600 terawatt. We also discuss the going upgrade to over petawatt level at a 0.1 Hz repetition rate briefly.

  3. Spectrally high performing quantum cascade lasers

    Science.gov (United States)

    Toor, Fatima

    Quantum cascade (QC) lasers are versatile semiconductor light sources that can be engineered to emit light of almost any wavelength in the mid- to far-infrared (IR) and terahertz region from 3 to 300 mum [1-5]. Furthermore QC laser technology in the mid-IR range has great potential for applications in environmental, medical and industrial trace gas sensing [6-10] since several chemical vapors have strong rovibrational frequencies in this range and are uniquely identifiable by their absorption spectra through optical probing of absorption and transmission. Therefore, having a wide range of mid-IR wavelengths in a single QC laser source would greatly increase the specificity of QC laser-based spectroscopic systems, and also make them more compact and field deployable. This thesis presents work on several different approaches to multi-wavelength QC laser sources that take advantage of band-structure engineering and the uni-polar nature of QC lasers. Also, since for chemical sensing, lasers with narrow linewidth are needed, work is presented on a single mode distributed feedback (DFB) QC laser. First, a compact four-wavelength QC laser source, which is based on a 2-by-2 module design, with two waveguides having QC laser stacks for two different emission wavelengths each, one with 7.0 mum/11.2 mum, and the other with 8.7 mum/12.0 mum is presented. This is the first design of a four-wavelength QC laser source with widely different emission wavelengths that uses minimal optics and electronics. Second, since there are still several unknown factors that affect QC laser performance, results on a first ever study conducted to determine the effects of waveguide side-wall roughness on QC laser performance using the two-wavelength waveguides is presented. The results are consistent with Rayleigh scattering effects in the waveguides, with roughness effecting shorter wavelengths more than longer wavelengths. Third, a versatile time-multiplexed multi-wavelength QC laser system that

  4. On the problem of internal optical loss and current leakage in laser heterostructures based on AlGaInAs/InP solid solutions

    International Nuclear Information System (INIS)

    Veselov, D. A.; Shashkin, I. S.; Bakhvalov, K. V.; Lyutetskiy, A. V.; Pikhtin, N. A.; Rastegaeva, M. G.; Slipchenko, S. O.; Bechvay, E. A.; Strelets, V. A.; Shamakhov, V. V.; Tarasov, I. S.

    2016-01-01

    Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswave output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).

  5. On the problem of internal optical loss and current leakage in laser heterostructures based on AlGaInAs/InP solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Veselov, D. A., E-mail: dmitriy90@list.ru; Shashkin, I. S.; Bakhvalov, K. V.; Lyutetskiy, A. V.; Pikhtin, N. A.; Rastegaeva, M. G.; Slipchenko, S. O.; Bechvay, E. A.; Strelets, V. A.; Shamakhov, V. V.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2016-09-15

    Semiconductor lasers based on MOCVD-grown AlGaInAs/InP separate-confinement heterostructures are studied. It is shown that raising only the energy-gap width of AlGaInAs-waveguides without the introduction of additional barriers results in more pronounced current leakage into the cladding layers. It is found that the introduction of additional barrier layers at the waveguide–cladding-layer interface blocks current leakage into the cladding layers, but results in an increase in the internal optical loss with increasing pump current. It is experimentally demonstrated that the introduction of blocking layers makes it possible to obtain maximum values of the internal quantum efficiency of stimulated emission (92%) and continuouswave output optical power (3.2 W) in semiconductor lasers in the eye-safe wavelength range (1400–1600 nm).

  6. Energetic mid-IR femtosecond pulse generation by self-defocusing soliton-induced dispersive waves in a bulk quadratic nonlinear crystal

    DEFF Research Database (Denmark)

    Zhou, Binbin; Guo, Hairun; Bache, Morten

    2015-01-01

    Generating energetic femtosecond mid-IR pulses is crucial for ultrafast spectroscopy, and currently relies on parametric processes that, while efficient, are also complex. Here we experimentally show a simple alternative that uses a single pump wavelength without any pump synchronization and with...... by using large-aperture crystals. The technique can readily be implemented with other crystals and laser wavelengths, and can therefore potentially replace current ultrafast frequency-conversion processes to the mid-IR....... and without critical phase-matching requirements. Pumping a bulk quadratic nonlinear crystal (unpoled LiNbO3 cut for noncritical phase-mismatched interaction) with sub-mJ near-IR 50-fs pulses, tunable and broadband (∼ 1,000 cm−1) mid-IR pulses around 3.0 μm are generated with excellent spatio-temporal pulse...... quality, having up to 10.5 μJ energy (6.3% conversion). The mid-IR pulses are dispersive waves phase-matched to near-IR self-defocusing solitons created by the induced self-defocusing cascaded nonlinearity. This process is filament-free and the input pulse energy can therefore be scaled arbitrarily...

  7. Investigation on a TEA-CO II laser with surface corona pre-ionization

    Science.gov (United States)

    Behjat, A.; Aram, M.; Soltanmoradi, F.; Shabanzadeh, M.

    2006-05-01

    The construction of a surface corona UV pre-ionized TEA CO II laser is described and dependence of its average output energy of the laser to gas mixture, discharge voltage and repetition rate is investigated. The electric circuit diagram and geometry of the pre-ionization system are presented. Configuration of circuit has been designed to produce only impulsive voltage difference between the laser electrodes. Also, the triggering configuration of trigatron is prepared for fast operation to minimize the arc occurrence as much as possible. Some data of current, voltage, laser pulses and average output energy versus gas mixture and applied voltages are given. IR spectrometer is used for measurements of central output wavelength of the laser. Operation of the laser on two adjacent vibrational-rotational transitions of CO II molecule has been observed that shows the ability of this laser for working on multi-line in a same time for special applications.

  8. Sub-nanosecond cinematography in laser fusion research: current techniques and applications at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, L.W.

    1985-01-10

    Progress in laser fusion research has increased the need for detail and precision in the diagnosis of experiments. This has spawned the development and use of sophisticated sub-nanosecond resolution diagnostic systems. These systems typically use ultrafast x-ray or optical streak cameras in combination with spatially imaging or spectrally dispersing elements. These instruments provide high resolution data essential for understanding the processes occurring in the interaction of high intensity laser light with targets. Several of these types of instruments and their capabilities will be discussed. The utilization of these kinds of diagnostics systems on the nearly completed 100 kJ Nova laser facility will be described.

  9. Coupled optical resonance laser locking

    CSIR Research Space (South Africa)

    Burd, CC

    2014-10-01

    Full Text Available We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different...

  10. Continuous-wave operation of a $(20\\bar{2}\\bar{1})$ InGaN laser diode with a photoelectrochemically etched current aperture

    KAUST Repository

    Megalini, Ludovico; Becerra, Daniel L.; Farrell, Robert M.; Pourhashemi, A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.; Cohen, Daniel A.

    2015-01-01

    © 2015 The Japan Society of Applied Physics. We demonstrated selective and controllable undercut etching of the InGaN/GaN multiple quantum well (MQW) active region of a (2021) laser diode (LD) structure by photoelectrochemical etching. This technique was used to fabricate current aperture edge-emitting blue laser diodes (CALDs), whose performance was compared with that of shallow-etched ridge LDs with a nominally identical epitaxial structure. The threshold current density, threshold voltage, peak output power, and series resistance for the CA-LD (shallow-etched LD) with a 2.5-μm-wide active region were 4.4 (8.1) kA/cm2, 6.1 (7.7) V, 96.5 (63.5)mW, and 4.7 (6.0)Ω under pulsed conditions and before facet coating, respectively.

  11. Continuous-wave operation of a $(20\\bar{2}\\bar{1})$ InGaN laser diode with a photoelectrochemically etched current aperture

    KAUST Repository

    Megalini, Ludovico

    2015-03-06

    © 2015 The Japan Society of Applied Physics. We demonstrated selective and controllable undercut etching of the InGaN/GaN multiple quantum well (MQW) active region of a (2021) laser diode (LD) structure by photoelectrochemical etching. This technique was used to fabricate current aperture edge-emitting blue laser diodes (CALDs), whose performance was compared with that of shallow-etched ridge LDs with a nominally identical epitaxial structure. The threshold current density, threshold voltage, peak output power, and series resistance for the CA-LD (shallow-etched LD) with a 2.5-μm-wide active region were 4.4 (8.1) kA/cm2, 6.1 (7.7) V, 96.5 (63.5)mW, and 4.7 (6.0)Ω under pulsed conditions and before facet coating, respectively.

  12. Laser power supply

    International Nuclear Information System (INIS)

    Bernstein, D.

    1975-01-01

    The laser power supply includes a regulator which has a high voltage control loop based on a linear approximation of a laser tube negative resistance characteristic. The regulator has independent control loops for laser current and power supply high voltage

  13. High Energy, Single-Mode, All-Solid-State and Tunable UV Laser Transmitter

    Science.gov (United States)

    Prasad, Narasimha S.; Singh, Upendra N.; Hovis, FLoyd

    2007-01-01

    A high energy, single mode, all solid-state Nd:YAG laser primarily for pumping an UV converter is developed. Greater than 1 J/pulse at 50 HZ PRF and pulse widths around 22 ns have been demonstrated. Higher energy, greater efficiency may be possible. Refinements are known and practical to implement. Technology Demonstration of a highly efficient, high-pulse-energy, single mode UV wavelength generation using flash lamp pumped laser has been achieved. Greater than 90% pump depletion is observed. 190 mJ extra-cavity SFG; IR to UV efficiency > 21% (> 27% for 1 mJ seed). 160 mJ intra-cavity SFG; IR to UV efficiency up to 24% Fluence laser is being refined to match or exceed the above UV converter results. Currently the Nd:YAG pump laser development is a technology demonstration. System can be engineered for compact packaging.

  14. IR and the Earth

    DEFF Research Database (Denmark)

    Corry, Olaf; Stevenson, Hayley

    2017-01-01

    , in the end, one finite interconnected space. Together these two starting points make for the basic conundrum of Inter- national Relations and the Earth: how does a divided world live on a single globe? This introduction first provides an overview of the recent rise of ‘the environment’ in international......, ‘what has the environment ever done for IR?’, before the plan for the rest of the book sketches the content and direction of the ensuing chapters that explore the problematique of International Relations and the Earth....

  15. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    the performance of today's state of the art IR detectors for the visible/near-IR region shows a striking contrast, as the latter can have dark currents in the range of 0.001 electrons per second. Demonstrated performance of waveguide upconversion techniques still show considerable dark noise, even when working...

  16. Laser ablation principles and applications

    CERN Document Server

    1994-01-01

    Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.

  17. Detailed IR aperture measurements

    CERN Document Server

    Bruce, Roderik; Garcia Morales, Hector; Giovannozzi, Massimo; Hermes, Pascal Dominik; Mirarchi, Daniele; Quaranta, Elena; Redaelli, Stefano; Rossi, Carlo; Skowronski, Piotr Krzysztof; Wretborn, Sven Joel; CERN. Geneva. ATS Department

    2016-01-01

    MD 1673 was carried out on October 5 2016, in order to investigate in more detail the available aperture in the LHC high-luminosity insertions at 6.5 TeV and β∗=40 cm. Previous aperture measurements in 2016 during commissioning had shown that the available aperture is at the edge of protection, and that the aperture bottleneck at β∗=40 cm in certain cases is found in the separation plane instead of in the crossing plane. Furthermore, the bottlenecks were consistently found in close to the upstream end of Q3 on the side of the incoming beam, and not in Q2 on the outgoing beam as expected from calculations. Therefore, this MD aimed at measuring IR1 and IR5 separately (at 6.5 TeV and β∗=40 cm, for 185 µrad half crossing angle), to further localize the bottlenecks longitudinally using newly installed BLMs, investigate the difference in aperture between Q2 and Q3, and to see if any aperture can be gained using special orbit bumps.

  18. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  19. One-Dimensional Tunable Photonic-Crystal IR Filter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — MetroLaser proposes to design and develop an innovative narrowband tunable IR filter based on the properties of a one-dimensional photonic crystal structure with a...

  20. UV/IR Filaments for High Resolution Novel Spectroscopic Interrogation of Plumes on Nuclear Materials

    Science.gov (United States)

    2016-06-01

    Raman spectroscopy of plumes created by a laser filament. The molecules to be detected are excited by the short pulse IR pulse, while the co-propagating... spectroscopy of gas samples has been demonstrated in IR filaments [32], using the fs pulse of the filament (800 nm) to vibrationally excite the components...Petit. Isotope ratio determination of uranium by optical emission spectroscopy on a laser -produced plasma; basic investigation and analytical results

  1. Red-IR stimulated luminescence in K-feldspar: Single or multiple trap origin?

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer; Jain, Mayank; Tidemand-Lichtenberg, Peter

    2012-01-01

    We investigate on the origins of the infra-red stimulated luminescence (IRSL) signals in 3 potassium feldspars based on IR-red spectroscopy (700–1050 nm) using a fiber-coupled tunable Ti:Sapphire laser, in combination with different thermal and optical (pre)treatments of the samples. We also...

  2. The IRS-1 signaling system.

    Science.gov (United States)

    Myers, M G; Sun, X J; White, M F

    1994-07-01

    Insulin-receptor substrate 1 (IRS-1) is a principal substrate of the receptor tyrosine kinase for insulin and insulin-like growth factor 1, and a substrate for a tyrosine kinase activated by interleukin 4. IRS-1 undergoes multisite tyrosine phosphorylation and mediates downstream signals by 'docking' various proteins that contain Src homology 2 domains. IRS-1 appears to be a unique molecule; however, 4PS, a protein found mainly in hemopoietic cells, may represent another member of this family.

  3. IR Laser-Induced Co-decomposition of Dimethyl Selenide and Trisilane: Gas-Phase Formation of SiSe and Chemical Vapor Deposition of Nanostructured H/Si/Se/C Polymers.

    Czech Academy of Sciences Publication Activity Database

    Santos, M.; Díaz, L.; Urbanová, Markéta; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2007-01-01

    Roč. 188, 2-3 (2007) , s. 399-408 ISSN 1010-6030 R&D Projects: GA MŠk(CZ) ME 846 Grant - others:MCyT(ES) BQU2003/08531/C02/02 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : laser deposition * laser-induced polymers * silicon selenide Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.911, year: 2007

  4. Transparent Yttria for IR Windows and Domes - Past and Present

    National Research Council Canada - National Science Library

    Hogan, Patrick; Stefanik, Todd; Willingham, Charles; Gentilman, Richard

    2004-01-01

    ...) atmospheric transmission band at both ambient and elevated temperatures. Current state-of-the-art yttria's thermomechanical properties are adequate for a number of IR window and dome applications, but only marginal for the most demanding missions...

  5. Phenomenological scattering-rate model for the simulation of the current density and emission power in mid-infrared quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kurlov, S. S. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine); Flores, Y. V.; Elagin, M.; Semtsiv, M. P.; Masselink, W. T. [Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5–7, 10117 Berlin (Germany); Tarasov, G. G. [Institute of Semiconductor Physics, National Academy of Sciences, pr. Nauki 45, Kiev-03028 (Ukraine)

    2016-04-07

    A phenomenological scattering-rate model introduced for terahertz quantum cascade lasers (QCLs) [Schrottke et al., Semicond. Sci. Technol. 25, 045025 (2010)] is extended to mid-infrared (MIR) QCLs by including the energy dependence of the intersubband scattering rates for energies higher than the longitudinal optical phonon energy. This energy dependence is obtained from a phenomenological fit of the intersubband scattering rates based on published lifetimes of a number of MIR QCLs. In our approach, the total intersubband scattering rate is written as the product of the exchange integral for the squared moduli of the envelope functions and a phenomenological factor that depends only on the transition energy. Using the model to calculate scattering rates and imposing periodical boundary conditions on the current density, we find a good agreement with low-temperature data for current-voltage, power-current, and energy-photon flux characteristics for a QCL emitting at 5.2 μm.

  6. IR and NMR spectroscopic correlation of enterobactin by DFT

    Science.gov (United States)

    Moreno, M.; Zacarias, A.; Porzel, A.; Velasquez, L.; Gonzalez, G.; Alegría-Arcos, M.; Gonzalez-Nilo, F.; Gross, E. K. U.

    2018-06-01

    Emerging and re-emerging epidemic diseases pose an ongoing threat to global health. Currently, Enterobactin and Enterobactin derivatives have gained interest, owing to their potential application in the pharmaceutical field. As it is known [J. Am. Chem. Soc (1979) 101, 20, 6097-6104], Enterobactin (H6EB) is an efficient iron carrier synthesized and secreted by many microbial species. In order to facilitate the elucidation of enterobactin and its analogues, here we propose the creation of a H6EB standard set using Density Functional Theory Infrared (IR) and NMR spectra. We used two exchange-correlation (xc) functionals (PBE including long-range corrections sbnd LC-PBEsbnd and mPW1), 2 basis sets (QZVP and 6-31G(d)) and 2 grids (fine and ultrafine) for most of the H6EB structures dependent of dihedral angles. The results show a significant difference between the Osbnd H and Nsbnd H bands, while the Cdbnd O amide and Osbnd (Cdbnd O)sbnd IR bands are often found on top of each other. The NMR DFT calculations show a strong dependence on the xc functional, basis set, and grid used for the H6EB structure. Calculated 1H and 13C NMR spectra enable the effect of the solvent to be understood in the context of the experimental measurements. The good agreement between the experimental and the calculated spectra using LC-PBE/QZVP and ultrafine grid suggest the possibility of the systems reported here to be considered as a standard set. The dependence of electrostatic potential and frontier orbitals with the catecholamide dihedral angles of H6EB is described. The matrix-assisted laser desorption/ionization time of the flight mass spectrometry (MALDI-TOF MS) of H6EB is also reported of manner to enrich the knowledge about its reactivity.

  7. Continuous in-situ methane measurements at paddy fields in a rural area of India with poor electric infrastructure, using a low-cost instrument based on open-path near-IR laser absorption spectroscopy

    Science.gov (United States)

    Hidemori, T.; Matsumi, Y.; Nakayama, T.; Kawasaki, M.; Sasago, H.; Takahashi, K.; Imasu, R.; Takeuchi, W.; Adachi, M.; Machida, T.; Terao, Y.; Nomura, S.; Dhaka, S. K.; Singh, J.

    2015-12-01

    In southeast and south Asia, the previous satellite observations suggest that the methane emission from rice paddies is significant and important source of methane during rainy season. Since it is difficult to measure methane stably and continuously at rural areas such as the paddy fields in terms of infrastructures and maintenances, there are large uncertainties in quantitative estimation of methane emission in these areas and there are needs for more certification between satellite and ground based measurements. To measure methane concentrations continuously at difficult situations such as the center of paddy fields and wetlands, we developed the continuous in-situ measurement system, not to look for your lost keys under the streetlight. The methane gas sensor is used an open-path laser based measurement instrument (LaserMethane, ANRITSU CORPORATION), which can quickly and selectively detect average methane concentrations on the optical path of the laser beam. The developed system has the power supply and telecommunication system to run the laser gas sensor in rural areas with poor electricity infrastructure.The methane measurement system was installed at paddy fields of Sonepat, Haryana on the north of Delhi in India and has been operated from the end of 2014. The air sampling along with our measurement has been carried out once a week during daytime to calibrate the laser instrument. We found that the seasonal variation of methane concentrations was different from the satellite observations and there were significant diurnal variations, which it was difficult to detect from occasional air samplings. We will present details of the measurement system and recent results of continuous methane measurements in India.

  8. Fiber transmission and generation of ultrawideband pulses by direct current modulation of semi-conductor lasers and chirp-to-intensity conversion

    DEFF Research Database (Denmark)

    Company Torres, Victor; Prince, Kamau; Tafur Monroy, Idelfonso

    2008-01-01

    Optical pulses generated by current modulation of semiconductor lasers are strongly frequency chirped. This effect has been considered pernicious for optical communications. We take advantage of this effect for the generation of ultrawideband microwave signals by using an optical filter to achieve...... chirp-to-intensity conversion. We also experimentally achieve propagation through a 20 km nonzero dispersion shifted fiber with no degradation of the signal at the receiver. Our method constitutes a prospective low-cost solution and offers integration capabilities with fiber...

  9. Limits of applicability of a time-of-flight ion-mass analyzer in uncovering partial currents of ions emitted by pulsed laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Láska, Leoš; Rohlena, Karel; Velyhan, Andriy; Czarnecka, A.; Parys, P.; Ryc, L.; Wolowski, J.

    2010-01-01

    Roč. 165, 6-10 (2010), s. 441-450 ISSN 1042-0150 R&D Projects: GA MŠk(CZ) LC528; GA AV ČR IAA100100715 EU Projects: European Commission(XE) 228334 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523 Keywords : laser-produced plasma * time-resolved current deconvolution * ion velocity distribution * drift velocity of ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.660, year: 2010

  10. An iterative model for the steady state current distribution in oxide-confined vertical-cavity surface-emitting lasers (VCSELs)

    Science.gov (United States)

    Chuang, Hsueh-Hua

    The purpose of this dissertation is to develop an iterative model for the analysis of the current distribution in vertical-cavity surface-emitting lasers (VCSELs) using a circuit network modeling approach. This iterative model divides the VCSEL structure into numerous annular elements and uses a circuit network consisting of resistors and diodes. The measured sheet resistance of the p-distributed Bragg reflector (DBR), the measured sheet resistance of the layers under the oxide layer, and two empirical adjustable parameters are used as inputs to the iterative model to determine the resistance of each resistor. The two empirical values are related to the anisotropy of the resistivity of the p-DBR structure. The spontaneous current, stimulated current, and surface recombination current are accounted for by the diodes. The lateral carrier transport in the quantum well region is analyzed using drift and diffusion currents. The optical gain is calculated as a function of wavelength and carrier density from fundamental principles. The predicted threshold current densities for these VCSELs match the experimentally measured current densities over the wavelength range of 0.83 mum to 0.86 mum with an error of less than 5%. This model includes the effects of the resistance of the p-DBR mirrors, the oxide current-confining layer and spatial hole burning. Our model shows that higher sheet resistance under the oxide layer reduces the threshold current, but also reduces the current range over which single transverse mode operation occurs. The spatial hole burning profile depends on the lateral drift and diffusion of carriers in the quantum wells but is dominated by the voltage drop across the p-DBR region. To my knowledge, for the first time, the drift current and the diffusion current are treated separately. Previous work uses an ambipolar approach, which underestimates the total charge transferred in the quantum well region, especially under the oxide region. However, the total

  11. Laguerre-Gauss beam generation in IR and UV by subwavelength surface-relief gratings

    DEFF Research Database (Denmark)

    Vertchenko, Larissa; Shkondin, Evgeniy; Malureanu, Radu

    2017-01-01

    layerdepositions and dry etch techniques. We exploit the phenomenon of formbirefringence to give rise to the spin-to-orbital angular momentum conversion.We demonstrate that these plates can generate beams with high quality for theUV and IR range, allowing them to interact with high power laser sources orinside...... laser cavities....

  12. Eddy-current testing of fatigue degradation upon contact fatigue loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating

    Science.gov (United States)

    Savrai, R. A.; Makarov, A. V.; Gorkunov, E. S.; Soboleva, N. N.; Kogan, L. Kh.; Malygina, I. Yu.; Osintseva, A. L.; Davydova, N. A.

    2017-12-01

    The possibilities of the eddy-current method for testing the fatigue degradation under contact loading of gas powder laser clad NiCrBSi-Cr3C2 composite coating with 15 wt.% of Cr3C2 additive have been investigated. It is shown that the eddy-current testing of the fatigue degradation under contact loading of the NiCrBSi-15%Cr3C2 composite coating can be performed at high excitation frequencies 72-120 kHz of the eddy-current transducer. At that, the dependences of the eddy-current instrument readings on the number of loading cycles have both downward and upward branches, with the boundary between the branches being 3×105 cycles in the given loading conditions. This is caused, on the one hand, by cracking, and, on the other hand, by cohesive spalling and compaction of the composite coating, which affect oppositely the material resistivity and, correspondingly, the eddy-current instrument readings. The downward branch can be used to monitor the processes of crack formation and growth, the upward branch - to monitor the degree of cohesive spalling, while taking into account in the testing methodology an ambiguous character of the dependences of the eddy-current instrument readings on the number of loading cycles.

  13. Nd:YAG Laser-Based Dual-Line Detection Rayleigh Scattering and Current Efforts on UV, Filtered Rayleigh Scattering

    Science.gov (United States)

    Otugen, M. Volkan; Popovic, Svetozar

    1996-01-01

    Ongoing research in Rayleigh scattering diagnostics for variable density low speed flow applications and for supersonic flow measurements are described. During the past several years, the focus has been on the development and use of a Nd:YAG-based Rayleigh scattering system with improved signal-to-noise characteristics and with applicability to complex, confined flows. This activity serves other research projects in the Aerodynamics Laboratory which require the non-contact, accurate, time-frozen measurement of gas density, pressure, and temperature (each separately), in a fairly wide dynamic range of each parameter. Recently, with the acquisition of a new seed-injected Nd:YAG laser, effort also has been directed to the development of a high-speed velocity probe based on a spectrally resolved Rayleigh scattering technique.

  14. High-Speed Operation of Interband Cascade Lasers

    Science.gov (United States)

    Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Wright, Malcom W.; Farr, William H.; Yang, Rui Q.; Liu, H. C.

    2010-01-01

    Optical sources operating in the atmospheric window of 3-5 microns are of particular interest for the development of free-space optical communication link. It is more advantageous to operate the free-space optical communication link in 3-5-microns atmospheric transmission window than at the telecom wavelength of 1.5 m due to lower optical scattering, scintillation, and background radiation. However, the realization of optical communications at the longer wavelength has encountered significant difficulties due to lack of adequate optical sources and detectors operating in the desirable wavelength regions. Interband Cascade (IC) lasers are novel semiconductor lasers that have a great potential for the realization of high-power, room-temperature optical sources in the 3-5-microns wavelength region, yet no experimental work, until this one, was done on high-speed direct modulation of IC lasers. Here, highspeed interband cascade laser, operating at wavelength 3.0 m, has been developed and the first direct measurement of the laser modulation bandwidth has been performed using a unique, highspeed quantum well infrared photodetector (QWIP). The developed laser has modulation bandwidth exceeding 3 GHz. This constitutes a significant increase of the IC laser modulation bandwidth over currently existing devices. This result has demonstrated suitability of IC lasers as a mid-IR light source for multi-GHz free-space optical communications links

  15. Non-invasive, MRI-compatible fibreoptic device for functional near-IR reflectometry of human brain

    International Nuclear Information System (INIS)

    Sorvoja, H.S.S.; Myllylae, T S; Myllylae, Risto A; Kirillin, M Yu; Sergeeva, Ekaterina A; Elseoud, A A; Nikkinen, J; Tervonen, O; Kiviniemi, V

    2011-01-01

    A non-invasive device for measuring blood oxygen variations in human brain is designed, implemented, and tested for MRI compatibility. The device is based on principles of near-IR reflectometry; power LEDs serve as sources of probing radiation delivered to patient skin surface through optical fibres. Numerical Monte Carlo simulations of probing radiation propagation in a multilayer brain model are performed to evaluate signal levels at different source - detector separations at three operation wavelengths and an additional wavelength of 915 nm. It is shown that the device can be applied for brain activity studies using power LEDs operating at 830 and 915 nm, while employment of wavelength of 660 nm requires an increased probing power. Employment of the wavelength of 592 nm in the current configuration is unreasonable. (application of lasers and laser-optical methods in life sciences)

  16. Measurements of plasma temperature and electron density in laser ...

    Indian Academy of Sciences (India)

    of 6 ns focussed onto a copper solid sample in air at atmospheric pressure is studied spectroscopically. ... Pulsed laser-induced plasmas (LIPs) of metals and alloys formed at laser pulse ir- radiances near the .... fibre-based collection system.

  17. Low energy methods of molecular laser isotope separation

    International Nuclear Information System (INIS)

    Makarov, G N

    2015-01-01

    Of the many proposals to date for laser-assisted isotope separation methods, isotope-selective infrared (IR) multiphoton dissociation (MPD) of molecules has been the most fully developed. This concept served as the basis for the development and operation of the carbon isotope separation facility in Kaliningrad, Russia. The extension of this method to heavy elements, including uranium, is hindered by, among other factors, the high power consumption and the lack of high-efficiency high-power laser systems. In this connection, research and development covering low energy methods for the laser separation of isotopes (including those of heavy atoms) is currently in high demand. This paper reviews approaches to the realization of IR-laser-induced isotope-selective processes, some of which are potentially the basis on which low-energy methods for molecular laser isotope separation can be developed. The basic physics and chemistry, application potential, and strengths and weaknesses of these approaches are discussed. Potentially promising alternatives to the title methods are examined. (reviews of topical problems)

  18. Picosecond streak camera diagnostics of CO2 laser-produced plasmas

    International Nuclear Information System (INIS)

    Jaanimagi, P.A.; Marjoribanks, R.S.; Sancton, R.W.; Enright, G.D.; Richardson, M.C.

    1979-01-01

    The interaction of intense laser radiation with solid targets is currently of considerable interest in laser fusion studies. Its understanding requires temporal knowledge of both laser and plasma parameters on a picosecond time scale. In this paper we describe the progress we have recently made in analysing, with picosecond time resolution, various features of intense nanosecond CO 2 laser pulse interaction experiments. An infrared upconversion scheme, having linear response and <20 ps temporal resolution, has been utilized to characterise the 10 μm laser pulse. Various features of the interaction have been studied with the aid of picosecond IR and x-ray streak cameras. These include the temporal and spatial characteristics of high harmonic emission from the plasma, and the temporal development of the x-ray continuum spectrum. (author)

  19. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  20. IR technology for enhanced force protection by AIM

    Science.gov (United States)

    Breiter, R.; Ihle, T.; Rode, W.; Wendler, J.; Rühlich, I.; Haiml, M.; Ziegler, J.

    2008-04-01

    In all recent missions our forces are faced with various types of asymmetric threads like snipers, IEDs, RPGs or MANPADS. 2 nd and 3 rd Gen IR technology is a backbone of modern force protection by providing situational awareness and accurate target engagement at day/night. 3 rd Gen sensors are developed for thread warning capabilities by use of spectral or spatial information. The progress on a dual-color IR module is discussed in a separate paper [1]. A 1024x256 SWIR array with flexure bearing compressor and pulse tube cold finger provides > 50,000h lifetime for space or airborne hyperspectral imaging in pushbroom geometry with 256 spectral channels for improved change detection and remote sensing of IEDs or chemical agents. Similar concepts are pursued in the LWIR with either spectroscopic imaging or a system of LWIR FPA combined with a cooled tunable Laser to do spectroscopy with stimulated absorption of specific wavelengths. AIM introduced the RangIR sight to match the requirements of sniper teams, AGLs and weapon stations, extending the outstanding optronic performance of the fielded HuntIR with position data of a target by a laser range finder (LRF), a 3 axis digital magnetic compass (DMC) and a ballistic computer for accurate engagement of remote targets. A version with flexure bearing cooler with >30,000h life time is being developed for continuous operation in e.g. gunfire detection systems. This paper gives an overview of AIM's technologies for enhanced force protection.

  1. Application of photoluminescence imaging and laser-beam-induced-current mapping in thin film solar cell characterization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Geyuan [Iowa State Univ., Ames, IA (United States)

    2017-05-06

    My research projects are focused on application of photonics, optics and micro- fabrication technology in energy related fields. Photonic crystal fabrication research has the potential to help us generate and use light more efficiently. In order to fabricate active 3D woodpile photonic structure devices, a woodpile template is needed to enable the crystal growth process. We developed a silica woodpile template fabrication process based on two polymer transfer molding technique. A silica woodpile template is demonstrated to work with temperature up to 900 C. It provides a more economical way to explore making better 3D active woodpile photonic devices like 3D photonic light emitting diodes (LED). Optical research on solar cell testing has the potential to make our energy generation more e cient and greener. PL imaging and LBIC mapping are used to measure CdTe solar cells with different back contacts. A strong correlation between PL image defects and LBIC map defects is observed. This opens up potential application for PL imaging in fast solar cell inspection. 2D laser IV scan shows its usage in 2D parameter mapping. We show its ability to generate important information about solar cell performance locally around PL image defects.

  2. Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry in Clinical Microbiology: What Are the Current Issues?

    Science.gov (United States)

    van Belkum, Alex; Welker, Martin; Pincus, David; Charrier, Jean Philippe; Girard, Victoria

    2017-11-01

    Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has revolutionized the identification of microbial species in clinical microbiology laboratories. MALDI-TOF-MS has swiftly become the new gold-standard method owing to its key advantages of simplicity and robustness. However, as with all new methods, adoption of the MALDI-TOF MS approach is still not widespread. Optimal sample preparation has not yet been achieved for several applications, and there are continuing discussions on the need for improved database quality and the inclusion of additional microbial species. New applications such as in the field of antimicrobial susceptibility testing have been proposed but not yet translated to the level of ease and reproducibility that one should expect in routine diagnostic systems. Finally, during routine identification testing, unexpected results are regularly obtained, and the best methods for transmitting these results into clinical care are still evolving. We here discuss the success of MALDI-TOF MS in clinical microbiology and highlight fields of application that are still amenable to improvement. © The Korean Society for Laboratory Medicine.

  3. Temperature-dependent leakage current behavior of epitaxial Bi0.5Na0.5TiO3-based thin films made by pulsed laser deposition

    Science.gov (United States)

    Hejazi, M. M.; Safari, A.

    2011-11-01

    This paper discusses the electrical conduction mechanisms in a 0.88 Bi0.5Na0.5TiO3-0.08 Bi0.5K0.5TiO3-0.04 BaTiO3 thin film in the temperature range of 200-350 K. The film was deposited on a SrRuO3/SrTiO3 substrate by pulsed laser deposition technique. At all measurement temperatures, the leakage current behavior of the film matched well with the Lampert's triangle bounded by three straight lines of different slopes. The relative location of the triangle sides varied with temperature due to its effect on the density of charge carriers and un-filled traps. At low electric fields, the ohmic conduction governed the leakage mechanism. The calculated activation energy of the trap is 0.19 eV implying the presence of shallow traps in the film. With increasing the applied field, an abrupt increase in the leakage current was observed. This was attributed to a trap-filling process by the injected carriers. At sufficiently high electric fields, the leakage current obeyed the Child's trap-free square law suggesting the space charge limited current was the dominant mechanism.

  4. The laser desorption/laser ionization mass spectra of some methylated xanthines and the laser desorption of caffeine and theophylline from thin layer chromatography plates

    Science.gov (United States)

    Rogers, Kevin; Milnes, John; Gormally, John

    1993-02-01

    Laser desorption/laser ionization time-of-flight mass spectra of caffeine, theophylline, theobromine and xanthine are reported. These mass spectra are compared with published spectra obtained using electron impact ionization. Mass spectra of caffeine and theophylline obtained by IR laser desorption from thin layer chromatography plates are also described. The laser desorption of materials from thin layer chromatography plates is discussed.

  5. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance

    Directory of Open Access Journals (Sweden)

    E. J. Steig

    2014-08-01

    Full Text Available High-precision analysis of the 17O / 16O isotope ratio in water and water vapor is of interest in hydrological, paleoclimate, and atmospheric science applications. Of specific interest is the parameter 17O excess (Δ17O, a measure of the deviation from a~linear relationship between 17O / 16O and 18O / 16O ratios. Conventional analyses of Δ17O of water are obtained by fluorination of H2O to O2 that is analyzed by dual-inlet isotope ratio mass spectrometry (IRMS. We describe a new laser spectroscopy instrument for high-precision Δ17O measurements. The new instrument uses cavity ring-down spectroscopy (CRDS with laser-current-tuned cavity resonance to achieve reduced measurement drift compared with previous-generation instruments. Liquid water and water-vapor samples can be analyzed with a better than 8 per meg precision for Δ17O using integration times of less than 30 min. Calibration with respect to accepted water standards demonstrates that both the precision and the accuracy of Δ17O are competitive with conventional IRMS methods. The new instrument also achieves simultaneous analysis of δ18O, Δ17O and δD with precision of < 0.03‰, < 0.02 and < 0.2‰, respectively, based on repeated calibrated measurements.

  6. Laser Propulsion - Quo Vadis

    International Nuclear Information System (INIS)

    Bohn, Willy L.

    2008-01-01

    First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community

  7. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weicheng [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Cheng, Xiang' ai, E-mail: xiang-ai-cheng@126.com; Wang, Rui [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  8. Isotope effects of reactions in quantum solids initiated by IR + UV lasers: quantum model simulations for Cl((2)P(3/2)) + X(2)(ν) → XCl + X in X(2) matrices (X = H, D).

    Science.gov (United States)

    Korolkov, M V; Manz, J; Schild, A

    2010-09-16

    Six isotope effects (i)-(vi) are discovered for the reactions Cl + H(2)(ν) → HCl + H in solid para-H(2) ( 1 ) versus Cl + D(2)(ν) → DCl + D in ortho-D(2) ( 2 ), by means of quantum reaction dynamics simulations, within the frame of our simple model ( J. Phys. Chem. A 2009 , 113 , 7630 . ). Experimentally, the reactions may be initiated for ν = 0 and ν ≥ 1, by means of "UV only" photodissociation of the matrix-isolated precursor, Cl(2), or by "IR + UV" coirradiation ( Kettwich , S. C. , Raston , P. L. , and Anderson , D. T. J. Phys. Chem. A 2009 , 113 , 7621 . ), respectively. Specifically, (i) various shape and Feshbach reaction resonances correlate with vibrational thresholds of reactants and products, due to the near-thermoneutrality and low barrier of the system. The energetic density of resonances increases as the square root of mass, from M(X) = M(H) to M(D). (ii) The state selective reaction ( 1 ), ν = 1, is supported by a shape resonance, whereas this type of resonance is absent in ( 2 ), ν = 1. As a consequence, time-resolved measurements should monitor different three-step versus direct error-function type evolutions of the formation of the products. (iii) The effective barrier is lower for reaction 1 , ν = 0, enhancing the tunneling rate, as compared to that for reaction 2 , ν = 0. (iv) For reference, the reaction probabilities P versus total energy E(tot) in the gas exhibit sharp resonance peaks or zigzag behaviors of the reaction probability P versus total energy, near the levels of resonances ( Persky , A. and Baer , M. J. Chem. Phys . 1974 , 60 , 133 . ). These features tend to be washed out and broadened for reaction 1 , and even more so for reaction 2 . For comparison, they disappear for reactions in classical solids. (v) The slopes of P versus E(tot) below the potential barrier increase more steeply for reaction 1 , ν = 0, than for reaction 2 , ν = 0. This enhances the tunneling rate of the heavier isotopomer, reaction 2 , ν = 0

  9. Laser magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Ferrari, C.A.

    1985-01-01

    The technique of laser resonance magnetic resonance allows one to study the high-resolution spectroscopy of transient paramagnetic species, viz, atoms, radicals, and molecular ions. This article is a brief exposition of the method, describing the principles, instrumentation and applicability of the IR and FIR-LMR and shows results of HF + . (Author) [pt

  10. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  11. Dissociative photoionization of molecular hydrogen. A joint experimental and theoretical study of the electron-electron correlations induced by XUV photoionization and nuclear dynamics on IR-laser dressed transition states

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andreas

    2015-01-13

    In this thesis, the dissociative single-ionization of molecular hydrogen is investigated in a kinematically complete experiment by employing extreme ultraviolet attosecond pulse trains and infrared femtosecond laser pulses. Induced by the absorption of a single XUV photon, a pronounced energy-dependent asymmetry of the relative emission direction of the photoelectron and the ion is observed. The asymmetry pattern is explained in terms of an interference of two ionization pathways involving a doubly-excited state. This interpretation is validated by a semi-classical model which only takes the nuclear motion into account. Using this model and the observed asymmetry, it is furthermore possible to disentangle the two dissociation pathways which allows for the determination of the autoionization lifetime of the contributing doubly-excited state as a function of the internuclear distance. Moreover, using a pump-probe experiment the dissociation dynamics of molecular hydrogen is investigated. A time-delay dependent momentum distribution of the fragments is observed. With a combined quantum mechanical and semi-classical approach the mechanism giving rise to the observed time-dependence is identified in terms of an intuitive elevator mechanism.

  12. Laser fusion

    International Nuclear Information System (INIS)

    Key, M.H.; Oxford Univ.

    1990-04-01

    The use of lasers to drive implosions for the purpose of inertially confined fusion is an area of intense activity where progress compares favourably with that made in magnetic fusion and there are significant prospects for future development. In this brief review the basic concept is summarised and the current status is outlined both in the area of laser technology and in the most recent results from implosion experiments. Prospects for the future are also considered. (author)

  13. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  14. Protection of p+-n-Si Photoanodes by Sputter-Deposited Ir/IrOxThin Films

    DEFF Research Database (Denmark)

    Mei, Bastian Timo; Seger, Brian; Pedersen, Thomas

    2014-01-01

    Sputter deposition of Ir/IrOx on p+-n-Si without interfacial corrosion protection layers yielded photoanodes capable of efficient water oxidation (OER) in acidic media (1 M H2SO4). Stability of at least 18 h was shown by chronoamperomety at 1.23 V versus RHE (reversible hydrogen electrode) under 38...... density of 1 mA/cm2 at 1.05 V vs. RHE. Further improvement by heat treatment resulted in a cathodic shift of 40 mV and enabled a current density of 10 mA/cm2 (requirements for a 10% efficient tandem device) at 1.12 V vs. RHS under irradiation. Thus, the simple IrOx/Ir/p+-n-Si structures not only provide...

  15. Coupled optical resonance laser locking.

    Science.gov (United States)

    Burd, S C; du Toit, P J W; Uys, H

    2014-10-20

    We have demonstrated simultaneous laser frequency stabilization of a UV and IR laser, to coupled transitions of ions in the same spectroscopic sample, by detecting only the absorption of the UV laser. Separate signals for locking the different lasers are obtained by modulating each laser at a different frequency and using lock-in detection of a single photodiode signal. Experimentally, we simultaneously lock a 369 nm and a 935 nm laser to the (2)S(1/2) → (2)(P(1/2) and (2)D(3/2) → (3)D([3/2]1/2) transitions, respectively, of Yb(+) ions generated in a hollow cathode discharge lamp. Stabilized lasers at these frequencies are required for cooling and trapping Yb(+) ions, used in quantum information and in high precision metrology experiments. This technique should be readily applicable to other ion and neutral atom systems requiring multiple stabilized lasers.

  16. Broadly tunable picosecond ir source

    International Nuclear Information System (INIS)

    Campillo, A.J.; Hyer, R.C.; Shapiro, S.L.

    1979-01-01

    A completely grating tuned (1.9 to 2.4 μm) picosecond traveling wave IR generator capable of controlled spectral bandwidth operation down to the Fourier Transform limit is reported. Subsequent down conversion in CdSe extends tuning to 10 to 20 μm

  17. Comparison of laser-based mitigation of fused silica surface damage using mid- versus far-infrared lasers

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G; Wegner, P J

    2009-12-16

    Laser induced growth of optical damage can limit component lifetime and therefore operating costs of large-aperture fusion-class laser systems. While far-infrared (IR) lasers have been used previously to treat laser damage on fused silica optics and render it benign, little is known about the effectiveness of less-absorbing mid-IR lasers for this purpose. In this study, they quantitatively compare the effectiveness and efficiency of mid-IR (4.6 {micro}m) versus far-IR (10.6 {micro}m) lasers in mitigating damage growth on fused silica surfaces. The non-linear volumetric heating due to mid-IR laser absorption is analyzed by solving the heat equation numerically, taking into account the temperature-dependent absorption coefficient {alpha}(T) at {lambda} = 4.6 {micro}m, while far-IR laser heating is well-described by a linear analytic approximation to the laser-driven temperature rise. In both cases, the predicted results agree well with surface temperature measurements based on infrared radiometry, as well as sub-surface fictive temperature measurements based on confocal Raman microscopy. Damage mitigation efficiency is assessed using a figure of merit (FOM) relating the crack healing depth to laser power required, under minimally-ablative conditions. Based on their FOM, they show that for cracks up to at least 500 {micro}m in depth, mitigation with a 4.6 {micro}m mid-IR laser is more efficient than mitigation with a 10.6 {micro}m far-IR laser. This conclusion is corroborated by direct application of each laser system to the mitigation of pulsed laser-induced damage possessing fractures up to 225 {micro}m in depth.

  18. Compact 2100 nm laser diode module for next-generation DIRCM

    Science.gov (United States)

    Dvinelis, Edgaras; Greibus, Mindaugas; TrinkÅ«nas, Augustinas; NaujokaitÄ--, Greta; Vizbaras, Augustinas; Vizbaras, Dominykas; Vizbaras, Kristijonas

    2017-10-01

    Compact high-power 2100 nm laser diode module for next-generation directional infrared countermeasure (DIRCM) systems is presented. Next-generation DIRCM systems require compact, light-weight and robust laser modules which could provide intense IR light emission capable of disrupting the tracking sensor of heat-seeking missile. Currently used solid-state and fiber laser solutions for mid-IR band are bulky and heavy making them difficult to implement in smaller form-factor DIRCM systems. Recent development of GaSb laser diode technology greatly improved optical output powers and efficiencies of laser diodes working in 1900 - 2450 nm band [1] while also maintaining very attractive size, weight, power consumption and cost characteristics. 2100 nm laser diode module presented in this work performance is based on high-efficiency broad emitting area GaSb laser diode technology. Each laser diode emitter is able to provide 1 W of CW output optical power with working point efficiency up to 20% at temperature of 20 °C. For output beam collimation custom designed fast-axis collimator and slow-axis collimator lenses were used. These lenses were actively aligned and attached using UV epoxy curing. Total 2 emitters stacked vertically were used in 2100 nm laser diode module. Final optical output power of the module goes up to 2 W at temperature of 20 °C. Total dimensions of the laser diode module are 35 x 25 x 16 mm (L x W x H) with a weight of 28 grams. Finally output beam is bore-sighted to mechanical axes of the module housing allowing for easy integration into next-generation DIRCM systems.

  19. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  20. MID-IR LUMINOSITIES AND UV/OPTICAL STAR FORMATION RATES AT z < 1.4

    International Nuclear Information System (INIS)

    Salim, Samir; Dickinson, Mark; Michael Rich, R.; Charlot, Stephane; Lee, Janice C.; Schiminovich, David; Perez-Gonzalez, Pablo G.; Ashby, Matthew L. N.; Noeske, Kai; Papovich, Casey; Weiner, Benjamin J.; Faber, S. M.; Ivison, Rob J.; Frayer, David T.; Walton, Josiah M.; Chary, Ranga-Ram; Bundy, Kevin; Koekemoer, Anton M.

    2009-01-01

    Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z 10 -10 12 L sun ). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z IR >10 11 L sun , yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ∼50% to the mid-IR luminosity, and we see no evidence for a large population of 'IR excess' galaxies.

  1. Energy-beam processing studies on Ta/U and Ir/Ta systems

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Peercy, P.S.; Jacobson, D.C.; Draper, C.W.; Huegel, F.J.; Echer, C.J.; Makowiecki, D.M.; Balser, J.D.

    1983-01-01

    Films of Ta metal on uranium and of Ir metal on tantalum have been irradiated and melted by pulses from Q-switched Ruby and frequency-doubled Nd:YAG lasers to investigate the nature of the resulting mixtures in light of the very different binary-phase diagrams of the two systems. In addition, a two-phase Ir-Ta alloy has been surface-processed with CW CO 2 -laser radiation and with an electron beam in order to study microstructure refinement and test the advantage of using alloys as opposed to film-on-substrate combinations for the development of claddings

  2. On the NBI system for substantial current drive in a fusion power plant: Status and R and D needs for ion source and laser neutralizer

    International Nuclear Information System (INIS)

    Franzen, P.; Fantz, U.

    2014-01-01

    Highlights: • NBI is a candidate for a cw tokamak DEMO due to its high current drive efficiency. • The plug-in efficiency must be improved from the present 20–30% to more than 50%. • A suitable candidate is a photo neutralizer with almost 100% neutralization efficiency; basic feasibility studies are underway. • Cw operation with a large availability puts rather high demands on source operation with some safety margins, especially for the components with high power density loads (source back plate and extraction system). • Alternatives to the present use of cesium are under exploitations. - Abstract: The requirements for the heating and current drive systems of a fusion power plant will strongly depend on the DEMO scenario. The paper discusses the R and D needs for a neutral beam injection system — being a candidate due to the highest current drive efficiency — for the most demanding scenario, a steady state tokamak DEMO. Most important issues are the improvement of the wall-plug efficiency from the present ∼25% to the required 50–60% by improving the neutralization efficiency with a laser neutralizer system and the improvement of the reliability of the ion source operation. The demands on and the potential of decreasing the ion source operation pressure, as well as decreasing the amount of co-extracted electrons and backstreaming ions are discussed using the ITER requirements and solutions as basis. A further concern is the necessity of cesium for which either the cesium management must be improved or alternatives to cesium for the production of negative ions have to be identified

  3. Combustor deployments of femtosecond laser written fiber Bragg grating arrays for temperature measurements surpassing 1000°C

    Science.gov (United States)

    Walker, Robert B.; Ding, Huimin; Coulas, David; Mihailov, Stephen J.; Duchesne, Marc A.; Hughes, Robin W.; McCalden, David J.; Burchat, Ryan; Yandon, Robert; Yun, Sangsig; Ramachandran, Nanthan; Charbonneau, Michel

    2017-05-01

    Femtosecond Infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent to advanced power plant technologies and gas turbine engines, under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper reviews our fabrication and deployment of hundreds of fs-IR written FBGs, for monitoring temperature gradients of an oxy-fuel fluidized bed combustor and an aerospace gas turbine combustor simulator.

  4. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  5. Optical and IR light curves of VV Puppis

    International Nuclear Information System (INIS)

    Szkody, P.; Bailey, J.A.; Hough, J.H.

    1983-01-01

    We present optical (0.36 to 0.6 μm) light curves with time resolutions of seconds and infrared (IR) (1.25 to 2.2 μm) light curves with time resolutions of minutes for VV Puppis during a high state. The optical light curves show a single hump with largest amplitude in the V filter, while the IR light curves show a double hump sinusoidal variation. Flickering is evident in both the optical and IR light curves, with the largest amplitude in optical B light. Through subtraction of the low state fluxes from our high state values, we obtain a flux distribution of the accretion column which peaks at 0.55 μm and becomes #betta# 2 in the IR, consistent with current cyclotron models. Comparison of the observed IR variations throughout the orbit with the expected variations due to an M4 star heated by an accretion column at an inclination of 66 0 suggests that the IR light is a combination of the secondary star plus contributions from two emitting poles. (author)

  6. Laser-based sensor for a coolant leak detection in a nuclear reactor

    Science.gov (United States)

    Kim, T.-S.; Park, H.; Ko, K.; Lim, G.; Cha, Y.-H.; Han, J.; Jeong, D.-Y.

    2010-08-01

    Currently, the nuclear industry needs strongly a reliable detection system to continuously monitor a coolant leak during a normal operation of reactors for the ensurance of nuclear safety. In this work, we propose a new device for the coolant leak detection based on tunable diode laser spectroscopy (TDLS) by using a compact diode laser. For the feasibility experiment, we established an experimental setup consisted of a near-IR diode laser with a wavelength of about 1392 nm, a home-made multi-pass cell and a sample injection system. The feasibility test was performed for the detection of the heavy water (D2O) leaks which can happen in a pressurized heavy water reactor (PWHR). As a result, the device based on the TDLS is shown to be operated successfully in detecting a HDO molecule, which is generated from the leaked heavy water by an isotope exchange reaction between D2O and H2O. Additionally, it is suggested that the performance of the new device, such as sensitivity and stability, can be improved by adapting a cavity enhanced absorption spectroscopy and a compact DFB diode laser. We presume that this laser-based leak detector has several advantages over the conventional techniques currently employed in the nuclear power plant, such as radiation monitoring, humidity monitoring and FT-IR spectroscopy.

  7. Near-IR imaging of cracks in teeth

    Science.gov (United States)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  8. Lasers '89

    International Nuclear Information System (INIS)

    Harris, D.G.; Shay, T.M.

    1990-01-01

    This book covers the following topics: XUV, X-Ray and Gamma-Ray Lasers, excimer lasers, chemical lasers, nuclear pumped lasers, high power gas lasers, solid state lasers, laser spectroscopy. The paper presented include: Development of KrF lasers for fusion and Nuclear driven solid-state lasers

  9. Oferta ir akceptas vartojimo sutartyse

    OpenAIRE

    Ežerskytė, Ramunė

    2011-01-01

    Sutarčiai sudaryti paprastai reikia, kad viena šalis pasiūlytų sudaryti sutartį (oferta), o kita šalis sutiktų su pasiūlymu (akceptas). Sutarčių įvairovėje išskiriamos vartojimo sutartys, kurios dėl silpnesnės šalies apsaugos principo įgyvendinimo pasižymi tam tikrais ypatumais. Vartojimo sutarčių sudarymas pateikiant ofertą ir akceptą yra šio magistro baigiamojo darbo objektas. Magistro baigiamąjį darbą sudaro trys dalys. Pirmojoje darbo dalyje analizuojama vartojimo sutarties sąvoka ir spec...

  10. Digital holographic profilometry of the inner surface of a pipe using a current-induced wavelength change of a laser diode.

    Science.gov (United States)

    Yokota, Masayuki; Adachi, Toru

    2011-07-20

    Phase-shifting digital holography is applied to the measurement of the surface profile of the inner surface of a pipe for the detection of a hole in its wall. For surface contouring of the inner wall, a two-wavelength method involving an injection-current-induced wavelength change of a laser diode is used. To illuminate and obtain information on the inner surface, a cone-shaped mirror is set inside the pipe and moved along in a longitudinal direction. The distribution of a calculated optical path length in an experimental alignment is used to compensate for the distortion due to the misalignment of the mirror in the pipe. Using the proposed method, two pieces of metal sheet pasted on the inner wall of the pipe and a hole in the wall are detected. This shows that the three-dimensional profile of a metal plate on the inner wall of a pipe can be measured using simple image processing. © 2011 Optical Society of America

  11. Cascade laser applications: trends and challenges

    Science.gov (United States)

    d'Humières, B.; Margoto, Éric; Fazilleau, Yves

    2016-03-01

    When analyses need rapid measurements, cost effective monitoring and miniaturization, tunable semiconductor lasers can be very good sources. Indeed, applications like on-field environmental gas analysis or in-line industrial process control are becoming available thanks to the advantage of tunable semiconductor lasers. Advances in cascade lasers (CL) are revolutionizing Mid-IR spectroscopy with two alternatives: interband cascade lasers (ICL) in the 3-6μm spectrum and quantum cascade lasers (QCL), with more power from 3 to 300μm. The market is getting mature with strong players for driving applications like industry, environment, life science or transports. CL are not the only Mid-IR laser source. In fact, a strong competition is now taking place with other technologies like: OPO, VCSEL, Solid State lasers, Gas, SC Infrared or fiber lasers. In other words, CL have to conquer a share of the Mid-IR application market. Our study is a market analysis of CL technologies and their applications. It shows that improvements of components performance, along with the progress of infrared laser spectroscopy will drive the CL market growth. We compare CL technologies with other Mid-IR sources and estimate their share in each application market.

  12. Climate Prediction Center IR 4km Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CPC IR 4km dataset was created from all available individual geostationary satellite data which have been merged to form nearly seamless global (60N-60S) IR...

  13. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan

    2000-01-01

    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  14. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    NARCIS (Netherlands)

    Rijs, A. M.; Kabelac, M.; Abo-Riziq, A.; Hobza, P.; de Vries, M. S.

    2011-01-01

    We report double-resonant IR/UV ion-dip spectroscopy of neutral gramicidin peptides in the gas phase. The IR spectra of gramicidin A and C, recorded in both the 1000 cm(-1) to 1800 cm(-1) and the 2700 to 3750 cm(-1) region, allow structural analysis. By studying this broad IR range, various local

  15. Current developments in laser ablation-inductively coupled plasma-mass spectrometry for use in geology, forensics, and nuclear nonproliferation research

    Energy Technology Data Exchange (ETDEWEB)

    Messerly, Joshua D. [Iowa State Univ., Ames, IA (United States)

    2008-08-26

    This dissertation focused on new applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The diverse fields that were investigated show the versatility of the technique. In Chapter 2, LA-ICP-MS was used to investigate the rare earth element (REE) profiles of garnets from the Broken Hill Deposit in New South Wales, Australia. The normalized REE profiles helped to shed new light on the formation of deposits of sulfide ores. This information may be helpful in identifying the location of sulfide ore deposits in other locations. New sources of metals such as Pg, Zn, and Ag, produced from these ores, are needed to sustain our current technological society. The application of LA-ICP-MS presented in Chapter 3 is the forensics analysis of automotive putty and caulking. The elemental analysis of these materials was combined with the use of Principal Components Analysis (PCA). The PCA comparison was able to differentiate the automotive putty samples by manufacturer and lot number. The analysis of caulk was able to show a differentiation based on manufacturer, but no clear differentiation was shown by lot number. This differentiation may allow matching of evidence in the future. This will require many more analyses and the construction of a database made up of many different samples. The 4th chapter was a study of the capabilities of LA-ICP-MS for fast and precise analysis of particle ensembles for nuclear nonproliferation applications. Laser ablation has the ability to spatially resolve particle ensembles which may contain uranium or other actinides from other particles present in a sample. This is of importance in samples obtained from air on filter media. The particle ensembles of interest may be mixed in amongst dust and other particulates. A problem arises when ablating these particle ensembles directly from the filter media. Dust particles other than ones of interest may be accidentally entrained in the aerosol of the ablated particle

  16. Investigation of IR absorption spectra of oral cavity bacteria

    Science.gov (United States)

    Belikov, Andrei V.; Altshuler, Gregory B.; Moroz, Boris T.; Pavlovskaya, Irina V.

    1996-12-01

    The results of comparative investigation for IR and visual absorption spectra of oral cavity bacteria are represented by this paper. There are also shown the main differences in absorption spectra of such pure bacteria cultures as : E- coli, Candida, Staph, Epidermidis, and absorption spectra of bacteria colonies cultured in tooth root canals suspected to harbour several endodontical problems. The results of experimental research targeted to investigate an effect of such combined YAG:Nd and YAG:Cr; Tm; Ho laser parameters like: wavelength, energy density, average power and etc., to oral cavity bacteria deactivation are given finally.

  17. Reading handprinted addresses on IRS tax forms

    Science.gov (United States)

    Ramanaprasad, Vemulapati; Shin, Yong-Chul; Srihari, Sargur N.

    1996-03-01

    The hand-printed address recognition system described in this paper is a part of the Name and Address Block Reader (NABR) system developed by the Center of Excellence for Document Analysis and Recognition (CEDAR). NABR is currently being used by the IRS to read address blocks (hand-print as well as machine-print) on fifteen different tax forms. Although machine- print address reading was relatively straightforward, hand-print address recognition has posed some special challenges due to demands on processing speed (with an expected throughput of 8450 forms/hour) and recognition accuracy. We discuss various subsystems involved in hand- printed address recognition, including word segmentation, word recognition, digit segmentation, and digit recognition. We also describe control strategies used to make effective use of these subsystems to maximize recognition accuracy. We present system performance on 931 address blocks in recognizing various fields, such as city, state, ZIP Code, street number and name, and personal names.

  18. Monolayers of gold nanostars with two Near-IR LSPR capable of additive photothermal response

    KAUST Repository

    Pallavicini, Piersandro; Basile, Simone; Chirico, Giuseppe; Dacarro, Giacomo; D'Alfonso, Laura; Donà , Alice; Patrini, Maddalena; Falqui, Andrea; Sironi, Laura; Taglietti, Angelo

    2015-01-01

    Monolayers of photothermally responsive gold nanostars on PEI-coated surfaces display two Localized Surface Plasmon Resonances (LSPR) in the near-IR region that can be laser-irradiated either separately, obtaining two different T jumps, or simultaneously, obtaining a T jump equal to the sum of what obtained with separate irradiations

  19. Monolayers of gold nanostars with two Near-IR LSPR capable of additive photothermal response

    KAUST Repository

    Pallavicini, Piersandro

    2015-07-06

    Monolayers of photothermally responsive gold nanostars on PEI-coated surfaces display two Localized Surface Plasmon Resonances (LSPR) in the near-IR region that can be laser-irradiated either separately, obtaining two different T jumps, or simultaneously, obtaining a T jump equal to the sum of what obtained with separate irradiations

  20. Laser isotope and isomer separations: History and trends

    International Nuclear Information System (INIS)

    Letok'ov, V.S.

    1990-01-01

    Paper will review history and principles of laser isotope and nuclear isomer separation: laser multistep photoionization of isotopic and isomeric atoms, laser IR-UV two-step photodissociation of molecules, laser IR multiphoton photodissociation of polyatomic molecules. The comparison and areas of applications of these methods will be considered. Paper will discuss a present state of art of technology of these methods in practical scale in various countries. In conclusion the trends of research in this field including applications of laser-separated isotopes and isomers will be considered

  1. Non-inductive current probe

    DEFF Research Database (Denmark)

    Bak, Christen Kjeldahl

    1977-01-01

    The current probe described is a low-cost, shunt resistor for monitoring current pulses in e.g., pulsed lasers. Rise time is......The current probe described is a low-cost, shunt resistor for monitoring current pulses in e.g., pulsed lasers. Rise time is...

  2. The relationship between retinal damage and current intensity in a pre-clinical suprachoroidal-transretinal stimulation model using a laser-formed microporous electrode

    Science.gov (United States)

    Kanda, Hiroyuki; Nakano, Yukari; Terasawa, Yasuo; Morimoto, Takeshi; Fujikado, Takashi

    2017-10-01

    Objective. Suprachoroidal-transretinal stimulation (STS) is a stimulation method for retinal prostheses. For STS-type retinal prostheses, we developed a new type of stimulating electrode called a femtosecond laser-induced porous electrode (FLiP electrode). To verify the safety of the FLiP electrode for STS, we investigated the characteristics of STS-induced retinal injury. Approach. Sixteen eyes of pigmented rabbits were studied in this in vivo study. For each examined eye, we implanted a single-channel FLiP electrode (diameter, 0.5 mm height, 0.3 mm geometric surface area, 0.43 mm2) in a scleral pocket created at the posterior pole of the eye. A return electrode (diameter, 0.5 mm length, 3 mm) was inserted into the vitreous cavity. The eyes were divided into five groups, and each group was stimulated with a different current intensity. The stimulus intensities and the number of eyes in each group were as follows: 1.0 mA (n  =  2), 1.5 mA (n  =  3), 2.0 mA (n  =  3), 2.5 mA (n  =  4), and 3.0 mA (n  =  2). Continuous biphasic pulses (0.5 ms/phase) were applied under general anesthesia at a frequency of 20 Hz for 48 h. Fundus photography, fluorescein angiography (FA), and optical coherence tomography were performed before and after applying the electrical stimulation to evaluate the retinal injury. Main results. The 1.0 mA and 1.5 mA groups showed little or no retinal damage. Fluorescent dye leakage in FA and punctate pigmentation in the fundus were observed around the stimulation site with stimulation of 2.0 mA (1/3), 2.5 mA (1/4), and 3.0 mA (2/2). Significance. Our findings indicate that the threshold current for inducing retinal damage is greater than that for eliciting electrical phosphenes (<1 mA) with STS observed in human trials. Therefore, STS by the FLiP electrode is a safe and feasible stimulation method for retinal prostheses as long as it is used with these pulse parameters.

  3. UV and IR laser spectroscopy of isolated molecular structural dynamics

    NARCIS (Netherlands)

    Smolarek, S.

    2011-01-01

    Tijdens de afgelopen decennia is hoge-resolutielaserspectroscopie één van de meest effectieve instrumenten geworden om de fysische en chemische eigenschappen van moleculen te bestuderen. Szymon Smolarek gebruikte deze methodes om energievervalskanalen te bestuderen in DNA-basen, te onderzoeken wat

  4. Impulsive IR-multiphoton dissociation of acrolein: observation of non-statistical product vibrational excitation in CO ( v=1-12) by time resolved IR fluorescence spectroscopy

    Science.gov (United States)

    Chowdhury, P. K.

    2000-10-01

    On IR-multiphoton excitation, vibrationally highly excited acrolein molecules undergo concerted dissociation generating CO and ethylene. The vibrationally excited products, CO and ethylene, are detected immediately following the CO 2 laser pulse by observing IR fluorescence at 4.7 and 3.2 μm, respectively. The nascent CO is formed with significant vibrational excitation, with a Boltzmann population distribution for v=1-12 levels corresponding to T v=12 950±50 K. The average vibrational energy in the product CO is found to be 26 kcal mol -1, in contrast to its statistical share of 5 kcal mol -1, available from the product energy distribution. The nascent vibrationally excited ethylene either dissociates by absorbing further infrared laser photons from the tail of the CO 2 laser pulse or relaxes by collisional deactivation. Ethylene IR-fluorescence excitation spectrum showed a structure in the quasi-continuum, with a facile resonance at 10.53 μm corresponding to the 10P(14) CO 2 laser line, which explains the higher acetylene yield observed at a higher pressure. A hydrogen atom transfer mechanism followed by C-C impulsive break in the acrolein transition state may be responsible for such non-statistical product energy distribution.

  5. IR 820 dye encapsulated in polycaprolactone glycol chitosan: Poloxamer blend nanoparticles for photo immunotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Piyush; Srivastava, Rohit, E-mail: rsrivasta@iitb.ac.in

    2015-12-01

    In the present study, we have fabricated biocompatible and biodegradable monodisperse IR 820 encapsulated polycaprolactone (PCL) glycol chitosan (GC): Poloxamer blend nanoparticles (PP-IR NPs) for imaging and effective photo-immunotherapy. IR 820 has been used as an imaging and photothermal agent whereas glycol chitosan (GC) as an immunostimulatory agent. The combination of IR 820, poloxamer, and GC can be used effectively for photoimmunotherapy for cancer, drug-resistant and TNF-α resistant estrogen positive breast cancer. PP-IR NPs are stable in aqueous solution. The uniform size of 100–220 nm with a high zeta value of + 38 ± 2 mV led them to accumulate in cancer cells. Laser treatment did not affect the morphology of PP-IR NPs as observed under the transmission electron microscope (TEM). In vitro cytotoxicity studies on MCF-7 cells showed enhanced toxicity upon laser treatment. Further, we validated the cell death by reactive oxygen species (ROS) production. Our studies thus showed that PP-IR NPs are effective in suppressing metastatic cancer as the combinational therapy leads to the formation of apoptotic bodies in MCF-7 cells. - Highlights: • PPIR nanoparticles for photoimmunotherapy for cancer • IR 820/GC serves as theranostic and immunostimulatory. • Photoimmunotherapy enhances cytotoxicity by reactive oxygen species production.

  6. IR 820 dye encapsulated in polycaprolactone glycol chitosan: Poloxamer blend nanoparticles for photo immunotherapy for breast cancer

    International Nuclear Information System (INIS)

    Kumar, Piyush; Srivastava, Rohit

    2015-01-01

    In the present study, we have fabricated biocompatible and biodegradable monodisperse IR 820 encapsulated polycaprolactone (PCL) glycol chitosan (GC): Poloxamer blend nanoparticles (PP-IR NPs) for imaging and effective photo-immunotherapy. IR 820 has been used as an imaging and photothermal agent whereas glycol chitosan (GC) as an immunostimulatory agent. The combination of IR 820, poloxamer, and GC can be used effectively for photoimmunotherapy for cancer, drug-resistant and TNF-α resistant estrogen positive breast cancer. PP-IR NPs are stable in aqueous solution. The uniform size of 100–220 nm with a high zeta value of + 38 ± 2 mV led them to accumulate in cancer cells. Laser treatment did not affect the morphology of PP-IR NPs as observed under the transmission electron microscope (TEM). In vitro cytotoxicity studies on MCF-7 cells showed enhanced toxicity upon laser treatment. Further, we validated the cell death by reactive oxygen species (ROS) production. Our studies thus showed that PP-IR NPs are effective in suppressing metastatic cancer as the combinational therapy leads to the formation of apoptotic bodies in MCF-7 cells. - Highlights: • PPIR nanoparticles for photoimmunotherapy for cancer • IR 820/GC serves as theranostic and immunostimulatory. • Photoimmunotherapy enhances cytotoxicity by reactive oxygen species production

  7. LASERS: Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO2 laser preionised by a surface corona discharge

    Science.gov (United States)

    Aram, M.; Behjat, A.; Shabanzadeh, M.; Mansori, F.

    2007-01-01

    The design of a TEA CO2 laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO2 molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines.

  8. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.

    2011-01-01

    The scope of the PhD thesis presented here is the investigation of theoretical and practical aspects of laser-induced spark ignition and laser thermal ignition. Laser ignition systems are currently undergoing a rapidly development with growing intensity involving more and more research groups who mainly concentrate on the field of car and large combustion engines. This research is primarily driven by the engagement to meet the increasingly strict emission limits and by the intention to use the limited energy reserves more efficiently. For internal combustion engines, laser plasma-induced ignition will allow to combine the goals for legally required reductions of pollutant emissions and higher engine efficiencies. Also for rocket engines laser ignition turns out to be very attractive. A highly reliable ignition system like laser ignition would represent an option for introducing non-toxic propellants in order to replace highly toxic and carcinogenic hydrazine-based propellants commonly used in launch vehicle upper stages and satellites. The most important results on laser ignition and laser plasma generation, accomplished by the author and, in some respects, enriched by cooperation with colleagues are presented in the following. The emphasis of this thesis is placed on the following issues: - Two-color effects on laser plasma generation - Theoretical considerations about the focal volume concerning plasma generation - Plasma transmission experiments - Ignition experiments on laser-induced ignition - Ignition experiments on thermally-induced ignition - Feasibility study on laser ignition of rocket engines The purpose of the two-color laser plasma experiments is to investigate possible constructive interference effects of driving fields that are not monochromatic, but contain (second) harmonic radiation with respect to the goal of lowering the plasma generation threshold. Such effects have been found in a number of related processes, such as laser ablation or high

  9. Gaz Phase IR and UV Spectroscopy of Neutral Contact Ion Pairs

    Science.gov (United States)

    Habka, Sana; Brenner, Valerie; Mons, Michel; Gloaguen, Eric

    2016-06-01

    Cations and anions, in solution, tend to pair up forming ion pairs. They play a crucial role in many fundamental processes in ion-concentrated solutions and living organisms. Despite their importance and vast applications in physics, chemistry and biochemistry, they remain difficult to characterize namely because of the coexistence of several types of pairing in solution. However, an interesting alternative consists in applying highly selective gas phase spectroscopy which can offer new insights on these neutral ion pairs. Our study consists in characterizing contact ion pairs (CIPs) in isolated model systems (M+, Ph-(CH2)n-COO- with M=Li, Na, K, Rb, Cs, and n=1-3), to determine their spectral signatures and compare them to ion pairs in solution. We have used laser desorption to vaporize a solid tablet containing the desired salt. Structural information for each system was obtained by mass-selective, UV and IR laser spectroscopy combined with high level quantum chemistry calculations1. Evidence of the presence of neutral CIPs was found by scanning the π-π* transition of the phenyl ring using resonant two-photon ionization (R2PI). Then, conformational selective IR/UV double resonance spectra were recorded in the CO2- stretch region for each conformation detected. The good agreement between theoretical data obtained at the BSSE-corrected-fullCCSD(T)/dhf-TZVPP//B97-D3/dhf-TZVPP level and experimental IR spectra led us to assign the 3D structure for each ion pair formed. Spectral signatures of (M+, Ph-CH2-COO-) pairs, were assigned to a bidentate CIPs between the alkali cation and the carboxylate group. In the case of (Li+, Ph-(CH2)3-COO-) pairs, the presence of a flexible side chain promotes a cation-π interaction leading to a tridentate O-O-π structure with its unique IR and UV signatures. IR spectra obtained on isolated CIPs were found very much alike the ones published on lithium and sodium acetate in solution2. However, in the case of sodium acetate, solution

  10. Quantum well lasers

    CERN Document Server

    Zory, Jr, Peter S; Kelley, Paul

    1993-01-01

    This book provides the information necessary for the reader to achieve a thorough understanding of all aspects of QW lasers - from the basic mechanism of optical gain, through the current technolgoical state of the art, to the future technologies of quantum wires and quantum dots. In view of the growing importance of QW lasers, this book should be read by all those with an active interest in laser science and technology, from the advanced student to the experienced laser scientist.* The first comprehensive book-length treatment of quantum well lasers* Provides a detailed treatment

  11. Synthesis, structural, X-ray photoelectron spectroscopy (XPS) studies and IR induced anisotropy of Tl{sub 4}HgI{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, Lutsk, 43025 (Ukraine); Khyzhun, O.Y. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., 03142, Kyiv (Ukraine); Piasecki, M. [Institute of Physics, J. Dlugosz University Częstochowa, Armii Krajowej 13/15, Częstochowa (Poland); Kityk, I.V., E-mail: iwank74@gmail.com [Electrical Engineering Department, Czestochowa University Technology, Armii Krajowej 17, PL-42-217, Czestochowa (Poland); Lakshminarayana, G. [Wireless and Photonic Networks Research Centre, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor (Malaysia); Luzhnyi, I. [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky St., 03142, Kyiv (Ukraine); Fochuk, P.M. [Yuriy Fed’kovych Chernivtsi National University, 2 Kotziubynskoho Str., 58012, Chernivtsi (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska Street 50, 79010, Lviv (Ukraine); Levkovets, S.I.; Yurchenko, O.M.; Piskach, L.V. [Department of Inorganic and Physical Chemistry, Lesya Ukrainka Eastern European National University, Voli Ave. 13, Lutsk, 43025 (Ukraine)

    2017-02-01

    In the present work, we report on the synthesis and structural properties including X-ray protoelectron spectroscopy (XPS) analysis of Tl{sub 4}HgI{sub 6} crystals that were grown by Bridgman-Stockbarger method up to 80 mm in length and 18 mm in diameter. The existence of the ternary compound Tl{sub 4}HgI{sub 6} that melts incongruently at 641 K was confirmed. Phase equilibria and structural properties for the TlI–HgI{sub 2} system were investigated by differential thermal analysis (DTA) and X-ray diffraction (XRD) methods. X-ray photoelectron spectra were measured for both pristine and Ar{sup +} ion-bombarded Tl{sub 4}HgI{sub 6} single crystal surfaces. The data reveal that the Tl{sub 4}HgI{sub 6} single crystal is sensitive with respect to Ar{sup +} ion-bombardment as 3.0 keV Ar{sup +} irradiation over 5 min at an ion current density 14 μA/cm{sup 2} induces changes to the elemental stoichiometry of the Tl{sub 4}HgI{sub 6} surface, leading to a decrease of the mercury content in the topmost surface layers. X-ray photoelectron spectroscopy (XPS) measurements indicate very low hygroscopic nature of the Tl{sub 4}HgI{sub 6} single crystal surface. The IR coherent bicolor laser treatment at wavelengths 10.6/5.3 μm has shown an occurrence of anisotropy at wavelengths 1540 nm of Er:glass laser. This may open the applications of Tl{sub 4}HgI{sub 6} as a material for IR laser triggering. - Highlights: • Phase diagram of the HgI{sub 2}–TlI system was built. • Tl{sub 4}HgI{sub 6} single crystals were grown by Bridgman Stockbarger method. • XRD, XPS analysis was done. • Ir induced anisotropy was established. • The compounds may be proposed as Ir laser operated polarizers.

  12. Innovations in IR projector arrays

    Science.gov (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.

    2000-07-01

    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.

  13. Laser materials processing with diode lasers

    OpenAIRE

    Li, Lin; Lawrence, Jonathan; Spencer, Julian T.

    1996-01-01

    Laser materials processing is currently dominated by CO2, Nd-YAG and Excimer lasers. Continuous advances in semiconductor laser technology over the last decade have increased the average power output of the devices annualy by two fold, resulting in the commercial availability of the diode lasers today with delivery output powers in excess of 60W in CW mode and 5kW in qasi-CW mode. The advantages of compactness, high reliability, high efficiency and potential low cost, due to the mass producti...

  14. STATYBINIŲ MEDŽIAGŲ KONKURENCINGUMAS IR TENDENCIJOS

    OpenAIRE

    Kontrimas, Robertas

    2010-01-01

    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  15. Primer on laser scattering diagnostics

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1978-07-01

    The theory of laser scattering is presented in abbreviated format, with emphasis on physical interpretation, followed by sections on laser sources, practical considerations in designing experiments, and current developments in extending the techniques to multispace and multitime point measurements

  16. X-ray emission reduction and photon dose lowering by energy loss of fast electrons induced by return current during the interaction of a short-pulse high-intensity laser on a metal solid target

    Science.gov (United States)

    Compant La Fontaine, A.

    2018-04-01

    During the interaction of a short-pulse high-intensity laser with the preplasma produced by the pulse's pedestal in front of a high-Z metal solid target, high-energy electrons are produced, which in turn create an X-ray source by interacting with the atoms of the converter target. The current brought by the hot electrons is almost completely neutralized by a return current j → driven by the background electrons of the conductive target, and the force exerted on the hot electrons by the electric field E → which induces Ohmic heating j → .E → , produced by the background electrons, reduces the energy of the hot electrons and thus lowers the X-ray emission and photon dose. This effect is analyzed here by means of a simple 1-D temperature model which contains the most significant terms of the relativistic Fokker-Planck equation with electron multiple scattering, and the energy equations of ions, hot, and cold electrons are then solved numerically. This Ohmic heating energy loss fraction τOh is introduced as a corrective term in an improved photon dose model. For instance, for a ps laser pulse with 10 μm spot size, the dose obtained with a tantalum target is reduced by less than about 10% to 40% by the Ohmic heating, depending upon the plasma scale length, target thickness, laser parameters, and in particular its spot size. The laser and plasma parameters may be optimized to limit the effect of Ohmic heating, for instance at a small plasma scale length or small laser spot size. Conversely, others regimes not suitable for dose production are identified. For instance, the resistive heating is enhanced in a foam target or at a long plasma scale length and high laser spot size and intensity, as the mean emission angle θ0 of the incident hot electron bunch given by the ponderomotive force is small; thus, the dose produced by a laser interacting in a gas jet may be inhibited under these circumstances. The resistive heating may also be maximized in order to reduce

  17. Dye laser principles with applications

    CERN Document Server

    Duarte, Frank J; Liao, Peter F; Kelley, Paul

    1990-01-01

    A tutorial introduction to the field of dye lasers, Dye Laser Principles also serves as an up-to-date overview for those using dye lasers as research and industrial tools. A number of the issues discussed in this book are pertinent not only to dye lasers but also to lasers in general. Most of the chapters in the book contain problem sets that expand on the material covered in the chapter.Key Features* Dye lasers are among the most versatile and successful laser sources currently available in use Offering both pulsed and continuous-wave operation and tunable from the near ultraviole

  18. Laser Technology.

    Science.gov (United States)

    Gauger, Robert

    1993-01-01

    Describes lasers and indicates that learning about laser technology and creating laser technology activities are among the teacher enhancement processes needed to strengthen technology education. (JOW)

  19. OH/IR stars in the Galaxy

    International Nuclear Information System (INIS)

    Baud, B.

    1978-01-01

    Radio astronomical observations leading to the discovery of 71 OH/IR sources are described in this thesis. These OH/IR sources are characterized by their double peaked OH emission profile at a wavelength of 18 cm and by their strong IR infrared emission. An analysis of the distribution and radial velocities of a number of previously known and new OH/IR sources was performed. The parameter ΔV (the velocity separation between two emission peaks of the 18 cm line profile) was found to be a good criterion for a population classification with respect to stellar age

  20. Atmospheric Entry Experiments at IRS

    Science.gov (United States)

    Auweter-Kurtz, M.; Endlich, P.; Herdrich, G.; Kurtz, H.; Laux, T.; Löhle, S.; Nazina, N.; Pidan, S.

    2002-01-01

    Entering the atmosphere of celestial bodies, spacecrafts encounter gases at velocities of several km/s, thereby being subjected to great heat loads. The thermal protection systems and the environment (plasma) have to be investigated by means of computational and ground facility based simulations. For more than a decade, plasma wind tunnels at IRS have been used for the investigation of TPS materials. Nevertheless, ground tests and computer simulations cannot re- place space flights completely. Particularly, entry mission phases encounter challenging problems, such as hypersonic aerothermodynamics. Concerning the TPS, radiation-cooled materials used for reuseable spacecrafts and ablator tech- nologies are of importance. Besides the mentioned technologies, there is the goal to manage guidance navigation, con- trol, landing technology and inflatable technologies such as ballutes that aim to keep vehicles in the atmosphere without landing. The requirement to save mass and energy for planned interplanetary missions such as Mars Society Balloon Mission, Mars Sample Return Mission, Mars Express or Venus Sample Return mission led to the need for manoeuvres like aerocapture, aero-breaking and hyperbolic entries. All three are characterized by very high kinetic vehicle energies to be dissipated by the manoeuvre. In this field flight data are rare. The importance of these manoeuvres and the need to increase the knowledge of required TPS designs and behavior during such mission phases point out the need of flight experiments. As result of the experience within the plasma diagnostic tool development and the plasma wind tunnel data base, flight experiments like the PYrometric RE-entry EXperiment PYREX were developed, fully qualified and successfully flown. Flight experiments such as the entry spectrometer RESPECT and PYREX on HOPE-X are in the conceptual phase. To increase knowledge in the scope of atmospheric manoeuvres and entries, data bases have to be created combining both

  1. Comparison of air-kerma strength determinations for HDR {sup 192}Ir sources

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Brian E.; Davis, Stephen D.; Schmidt, Cal R.; Micka, John A.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2011-12-15

    Purpose: To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) {sup 192}Ir brachytherapy sources maintained by University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. Methods: The improved, laser-aligned seven-distance apparatus of University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR {sup 192}Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the {sup 192}Ir air-kerma calibration coefficient from the NIST air-kerma standards at {sup 137}Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A{sub wall} for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. Results: The average measurements when using the inverse N{sub K} interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Conclusions: Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well

  2. Comparison of air-kerma strength determinations for HDR 192Ir sources

    International Nuclear Information System (INIS)

    Rasmussen, Brian E.; Davis, Stephen D.; Schmidt, Cal R.; Micka, John A.; DeWerd, Larry A.

    2011-01-01

    Purpose: To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) 192 Ir brachytherapy sources maintained by University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. Methods: The improved, laser-aligned seven-distance apparatus of University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR 192 Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the 192 Ir air-kerma calibration coefficient from the NIST air-kerma standards at 137 Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A wall for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. Results: The average measurements when using the inverse N K interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Conclusions: Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well chambers was 0.01%, confirming that

  3. Comparison of air-kerma strength determinations for HDR (192)Ir sources.

    Science.gov (United States)

    Rasmussen, Brian E; Davis, Stephen D; Schmidt, Cal R; Micka, John A; Dewerd, Larry A

    2011-12-01

    To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) (192)Ir brachytherapy sources maintained by the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. The improved, laser-aligned seven-distance apparatus of the University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR (192)Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the (192)Ir air-kerma calibration coefficient from the NIST air-kerma standards at (137)Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A(wall) for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. The average measurements when using the inverse N(K) interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well chambers was 0.01%, confirming that it is not necessary to

  4. Peak effect in laser ablated DyBa2Cu3O7-δ films at microwave frequencies at subcritical currents

    NARCIS (Netherlands)

    Bhangale, A.R.; Raychaudhuri, P.; Banerjee, T.; Shirodkar, V.S.

    2001-01-01

    In this article we report the observation of a peak in the microwave surface resistance (at frequencies ~10 GHz) of laser ablated DyBa2Cu3O7-δ films in magnetic field ranging from 2 to 9 kOe (||c) close to the superconducting transition temperature [Tc(H)]. The exact nature of the peak is sample

  5. Ten-watt level picosecond parametric mid-IR source broadly tunable in wavelength

    Science.gov (United States)

    Vyvlečka, Michal; Novák, Ondřej; Roškot, Lukáscaron; Smrž, Martin; Mužík, Jiří; Endo, Akira; Mocek, Tomáš

    2018-02-01

    Mid-IR wavelength range (between 2 and 8 μm) offers perspective applications, such as minimally-invasive neurosurgery, gas sensing, or plastic and polymer processing. Maturity of high average power near-IR lasers is beneficial for powerful mid-IR generation by optical parametric conversion. We utilize in-house developed Yb:YAG thin-disk laser of 100 W average power at 77 kHz repetition rate, wavelength of 1030 nm, and about 2 ps pulse width for pumping of a ten-watt level picosecond mid-IR source. Seed beam is obtained by optical parametric generation in a double-pass 10 mm long PPLN crystal pumped by a part of the fundamental near-IR beam. Tunability of the signal wavelength between 1.46 μm and 1.95 μm was achieved with power of several tens of miliwatts. Main part of the fundamental beam pumps an optical parametric amplification stage, which includes a walk-off compensating pair of 10 mm long KTP crystals. We already demonstrated the OPA output signal and idler beam tunability between 1.70-1.95 μm and 2.18-2.62 μm, respectively. The signal and idler beams were amplified up to 8.5 W and 5 W, respectively, at 42 W pump without evidence of strong saturation. Thus, increase in signal and idler output power is expected for pump power increase.

  6. Teaching IR to Medical Students: A Call to Action.

    Science.gov (United States)

    Lee, Aoife M; Lee, Michael J

    2018-02-01

    Interventional radiology (IR) has grown rapidly over the last 20 years and is now an essential component of modern medicine. Despite IR's increasing penetration and reputation in healthcare systems, IR is poorly taught, if taught at all, in most medical schools. Medical students are the referrers of tomorrow and potential IR recruits and deserve to be taught IR by expert IRs. The lack of formal IR teaching curricula in many medical schools needs to be addressed urgently for the continued development and dissemination of, particularly acute, IR services throughout Europe. We call on IRs to take up the baton to teach IR to the next generation of doctors.

  7. Alignment of Duke free electron laser storage ring and optical beam delivery system

    International Nuclear Information System (INIS)

    Emamian, M.; Hower, N.

    1999-01-01

    Duke Free Electron Laser Laboratory (DFELL) hosts a 1.1 GeV electron beam storage ring facility which is capable of generating beams in the range of nearly monochromatic gamma rays to high peak power infra red (IR) laser. In this report specifications and procedures for alignment of OK-4 /Duke storage ring FEL wiggler and optical cavity mirrors will be discussed. The OK-4 FEL lasing has demonstrated a series of world record in the last few years. In August of this year the OK-4 FEL successfully commissioned to laser at 193.7 nm. Also in this article, alignment of the γ-ray and UV optical beam delivery system that is currently in progress will be described. (authors)

  8. Lasers in materials science

    CERN Document Server

    Ossi, Paolo; Zhigilei, Leonid

    2014-01-01

    This book covers various aspects of lasers in materials science, including a comprehensive overview on basic principles of laser-materials interactions and applications enabled by pulsed laser systems.  The material is organized in a coherent way, providing the reader with a harmonic architecture. While systematically covering the major current and emerging areas of lasers processing applications, the Volume provides examples of targeted modification of material properties achieved through careful control of the processing conditions and laser irradiation parameters. Special emphasis is placed on specific strategies aimed at nanoscale control of material structure and properties to match the stringent requirements of modern applications.  Laser fabrication of novel nanomaterials, which expands to the domains of photonics, photovoltaics, sensing, and biomedical applications, is also discussed in the Volume. This book assembles chapters based on lectures delivered at the Venice International School on Lasers...

  9. Ir catalysts: Preventing CH3COOH formation in ethanol oxidation

    Science.gov (United States)

    Miao, Bei; Wu, Zhipeng; Xu, Han; Zhang, Minhua; Chen, Yifei; Wang, Lichang

    2017-11-01

    Current catalysts used for ethanol oxidation reaction (EOR) cannot effectively prevent CH3COOH formation, and thus become a major hindrance for direct ethanol fuel cell applications. We report an Ir catalyst that shows great promise for a complete EOR based on density functional theory calculations using PBE functional. The reaction barrier on Ir(1 0 0) was found to be 2.10 eV for CH3COOH formation, which is much higher than currently used Pd and Pt, and 0.57 eV for Csbnd C bond cleavage in CHCO species, which are comparable to Pd and Pt. The result suggests future directions for studying optimal complete EOR catalysts.

  10. Lasers for isotope separation

    International Nuclear Information System (INIS)

    O'Hair, E.A.; Piltch, M.S.

    1976-01-01

    The Los Alamos Scientific Laboratory is conducting research on uranium enrichment. All processes being studied employ uranium molecules and use lasers to provide isotopic selectivity and enrichment. There are four well-defined infrared frequencies and two ultraviolet frequency bands of interest. The infrared frequencies are outside the range of the available lasers and an extensive research and development activity is currently underway. Lasers are available in the uv bands, however, much development work remains. The specification for the commercial uranium enrichment plant lasers will depend upon the results of the current enrichment experiments, the laser capital cost, reliability, and maintenance cost. For the processes under investigation there are specific photon requirements but latitude in how these requirements can be met. The final laser selections for the pilot plant need not be made until the mid-1980's. Between now and that time as extensive as possible a research and development effort will be maintained

  11. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  12. Atom condensation on an atomically smooth surface: Ir, Re, W, and Pd on Ir(111)

    International Nuclear Information System (INIS)

    Wang, S.C.; Ehrlich, G.

    1991-01-01

    The distribution of condensing metal atoms over the two types of sites present on an atomically smooth Ir(111) has been measured in a field ion microscope. For Ir, Re, W, and Pd from a thermal source, condensing on Ir(111) at ∼20 K, the atoms are randomly distributed, as expected if they condense at the first site struck

  13. Biochemical applications of FT-IR spectroscopy

    NARCIS (Netherlands)

    Pistorius, A.M.A.

    1996-01-01

    This thesis describes the use of (FT-)IR spectroscopy in general biochemical research. In chapter 3, IR spectroscopy is used in the quantitation of residual detergent after reconstitution of an integral membrane protein in a pre-defined lipid matrix. This chapter discusses the choice of the

  14. How to remedy Eurocentrism in IR?

    DEFF Research Database (Denmark)

    Bilgin, Pinar

    2016-01-01

    While IR's Eurocentric limits are usually acknowledged, what those limits mean for theorizing about the international is seldom clarified. In The Global Transformation, Buzan and Lawson offer a 'composite approach' that goes some way towards addressing IR's Eurocentrism, challenging existing myth...

  15. Quantitative gas analysis with FT-IR

    DEFF Research Database (Denmark)

    Bak, J.; Larsen, A.

    1995-01-01

    Calibration spectra of CO in the 2.38-5100 ppm concentration range (22 spectra) have been measured with a spectral resolution of 4 cm(-1), in the mid-IR (2186-2001 cm(-1)) region, with a Fourier transform infrared (FT-IR) instrument. The multivariate calibration method partial least-squares (PLS1...

  16. Benzene adsorption and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Bakker, J.W.; Gluhoi, A.C.; Ludwig, W.; Nieuwenhuys, B.E.

    2007-01-01

    Adsorption, decompn. and oxidn. of benzene on Ir(1 1 1) was studied by high resoln. (synchrotron) XPS, temp. programmed desorption and LEED. Mol. adsorption of benzene on Ir(1 1 1) is obsd. between 170 K and 350 K. Above this temp. both desorption and decompn. of benzene take place. An ordered

  17. Color speckle in laser displays

    Science.gov (United States)

    Kuroda, Kazuo

    2015-07-01

    At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).

  18. Choice of Eye-Safe Radiation Wavelength in UV and Near IR Spectral Bands for Remote Sensing

    OpenAIRE

    M. L. Belov; V. A. Gorodnichev; D. A. Kravtsov; A. A. Cherpakova

    2016-01-01

    The introduction of laser remote sensing systems carries a particular risk to the human’s sense of vision. A structure of the eye, and especially the retina, is the main critical organ as related to the laser radiation.The work uses the optical models of the atmosphere, correctly working in both the UV and the near-IR band, to select the eye-safe radiation wavelengths in the UV (0.355 m) and near-IR (~ 1.54 and ~ 2 m) spectral bands from the point of view of recorded lidar signal value to ful...

  19. Mock Target Window OTR and IR Design and Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wass, Alexander Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-19

    In order to fully verify temperature measurements made on the target window using infrared (IR) optical non-contact methods, actual comparative measurements are made with a real beam distribution as the heat source using Argonne National Laboratory’s (ANL) 35 MeV electron accelerator. Using Monte Carlo N-Particle (MCNP) simulations and thermal Finite Element Analysis (FEA), a cooled mock target window with thermocouple implants is designed to be used in such a test to achieve window temperatures up to 700°C. An uncoated and blackcoated mock window is designed to enhance the IR temperature measurements and verify optical transmitted radiation (OTR) imagery. This allows us to fully verify and characterize our temperature accuracy with our current IR camera method and any future method we may wish to explore using actual production conditions. This test also provides us with valuable conclusions/concerns regarding the calibration method we developed using our IR test stand at TA-53 in MPF-14.

  20. Smulkaus ir vidutinio verslo konkurencingumas Lietuvoje

    OpenAIRE

    Vijeikis, Juozas; Makštutis, Antanas

    2009-01-01

    Straipsnio mokslinė problema, naujumas ir aktualumas. Konkurencingumas kaip įmonių efektyvios veiklos reiškinys yra aktualus šalies verslo gyvenime vykdant darnios ekonominės plėtros politiką. Ši politika kaip problema smulkaus ir vidutinio verslo (SVV) plėtrai ir konkurencingumui didinti nėra sistemiškai ištirta ir aprašyta Lietuvos sąlygomis mokslinėje ir praktinėje literatūroje. Vienas svarbiausių veiksnių, siekiant spartaus ekonominio augimo, yra darnios verslininkystės plėtra Lietuvoje n...

  1. Tarptautinio turizmo raida ir vystymo prognozės Lietuvoje ir Lenkijoje

    OpenAIRE

    Veličkaitė, Dalia

    2009-01-01

    Išanalizuota ir įvertinta Lietuvos ir Lenkijos atvykstamojo turizmo raida 2000- 2007m., užsienio turistų srautai, apgyvendinimo paslaugų paklausa, turistų tikslai ir kelionių transporto pasirinkimas, turistų išlaidos ir šalių turizmo pajamos, iškeltos atvykstamojo turizmo problemos bei pateikti jų sprendimo siūlymai.paskutinėje darbo dalyje buvo atliktos 2008- 2015metų Lietuvos ir Lenkijos turizmo raidos prognozės. In the final master work Lithuanian and Poland arriving tourism development...

  2. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  3. Metastable honeycomb SrTiO_3/SrIrO_3 heterostructures

    International Nuclear Information System (INIS)

    Anderson, T. J.; Ryu, S.; Podkaminer, J. P.; Ma, Y.; Eom, C. B.; Zhou, H.; Xie, L.; Irwin, J.; Rzchowski, M. S.; Pan, X. Q.

    2016-01-01

    Recent theory predictions of exotic band topologies in (111) honeycomb perovskite SrIrO_3 layers sandwiched between SrTiO_3 have garnered much attention in the condensed matter physics and materials communities. However, perovskite SrIrO_3 film growth in the (111) direction remains unreported, as efforts to synthesize pure SrIrO_3 on (111) perovskite substrates have yielded films with monoclinic symmetry rather than the perovskite structure required by theory predictions. In this study, we report the synthesis of ultra-thin metastable perovskite SrIrO_3 films capped with SrTiO_3 grown on (111) SrTiO_3 substrates by pulsed laser deposition. The atomic structure of the ultra-thin films was examined with scanning transmission electron microscopy (STEM), which suggests a perovskite layering distinct from the bulk SrIrO_3 monoclinic phase. In-plane 3-fold symmetry for the entire heterostructure was confirmed using synchrotron surface X-ray diffraction to measure symmetry equivalent crystal truncation rods. Our findings demonstrate the ability to stabilize (111) honeycomb perovskite SrIrO_3, which provides an experimental avenue to probe the phenomena predicted for this material system.

  4. Lasers in nuclear physics

    International Nuclear Information System (INIS)

    Inamura, T.T.

    1988-01-01

    The hyperfine interaction has been reviewed from a point of view of nuclear physics. Recent progress of nuclear spectroscopy with lasers is presented as one of laser studies of fundamental physics currently pursued in Japan. Especially, the hyperfine anomaly is discussed in connection with the origin of nuclear magnetism. (author)

  5. Visualizing Infrared (IR) Spectroscopy with Computer Animation

    Science.gov (United States)

    Abrams, Charles B.; Fine, Leonard W.

    1996-01-01

    IR Tutor, an interactive, animated infrared (IR) spectroscopy tutorial has been developed for Macintosh and IBM-compatible computers. Using unique color animation, complicated vibrational modes can be introduced to beginning students. Rules governing the appearance of IR absorption bands become obvious because the vibrational modes can be visualized. Each peak in the IR spectrum is highlighted, and the animation of the corresponding normal mode can be shown. Students can study each spectrum stepwise, or click on any individual peak to see its assignment. Important regions of each spectrum can be expanded and spectra can be overlaid for comparison. An introduction to the theory of IR spectroscopy is included, making the program a complete instructional package. Our own success in using this software for teaching and research in both academic and industrial environments will be described. IR Tutor consists of three sections: (1) The 'Introduction' is a review of basic principles of spectroscopy. (2) 'Theory' begins with the classical model of a simple diatomic molecule and is expanded to include larger molecules by introducing normal modes and group frequencies. (3) 'Interpretation' is the heart of the tutorial. Thirteen IR spectra are analyzed in detail, covering the most important functional groups. This section features color animation of each normal mode, full interactivity, overlay of related spectra, and expansion of important regions. This section can also be used as a reference.

  6. Parameters of a trigatron-driven low-pulse-repetition-rate TEA CO2 laser preionised by a surface corona discharge

    International Nuclear Information System (INIS)

    Aram, M; Shabanzadeh, M; Mansori, F; Behjat, A

    2007-01-01

    The design of a TEA CO 2 laser with UV preionisation by a surface corona discharge is described and the dependences of its average output energy on the gas-flow rate, discharge voltage and pulse repetition rate are presented. The scheme of the electric circuit and the geometry of the pre-ionisation system are considered. The electric circuit is designed to produce only impulse voltage difference between the laser electrodes. The triggering system of the trigatron is used to prevent the appearance of the arc. The dependences of the current, voltage and average output energy on the gas-mixture composition and applied voltages at a low pulse repetition rate are presented. The central output wavelength of the laser was measured with an IR spectrometer. Lasing at two adjacent vibrational-rotational transitions of the CO 2 molecule was observed, which demonstrates the possibility of simultaneous lasing at several lines. (lasers)

  7. Vartotojų lojalumas : formavimas ir valdymas

    OpenAIRE

    Zikienė, Kristina

    2010-01-01

    Vienas iš esminių daugelio organizacijų tikslų, garantuojančių tolesnį sėkmingą konkuravimą nuolat besikeičiančiame verslo pasaulyje, yra vartotojų lojalumo įgijimas ir išlaikymas. Įvairios lojalumo formavimo ir valdymo problemos plačiai ir detaliai analizuojamos šioje mokomojoje knygoje. Knyga pradedama vartotojų lojalumo analize marketingo mokslo raidos kontekste. Tolesnis dėmesys skiriamas vartotojų lojalumo vadybinio aspekto analizei, atskleidžiant vartotojų lojalumo koncepcijos teorines ...

  8. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  9. Laser fusion program overview

    International Nuclear Information System (INIS)

    Emmett, J.L.

    1977-01-01

    This program is structured to proceed through a series of well defined fusion milestones to proof of the scientific feasibility, of laser fusion with the Shiva Nova system. Concurrently, those key technical areas, such as advanced lasers, which are required to progress beyond proof of feasibility, are being studied. We have identified and quantified the opportunities and key technical issues in military applications, such as weapons effects simulations, and in civilian applications, such as central-station electric power production. We summarize the current status and future plans for the laser fusion program at LLL, emphasizing the civilian applications of laser fusion

  10. Laser transmitter system

    International Nuclear Information System (INIS)

    Dye, R.A.

    1975-01-01

    A laser transmitter system is disclosed which utilizes mechanical energy for generating an output pulse. The laser system includes a current developing device such as a piezoelectric crystal which charges a storage device such as a capacitor in response to a mechanical input signal. The capacitor is coupled to a switching device, such as a silicon controlled rectifier (SCR). The switching device is coupled to a laser transmitter such as a GaAs laser diode, which provides an output signal in response to the capacitor being discharged

  11. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  12. Free electron laser

    International Nuclear Information System (INIS)

    Ortega, J.M.; Billardon, M.

    1986-01-01

    Operation principle of a laser and an oscillator are recalled together with the klystron one. In the free electron laser, electrons go through an undulator or an optical klystron. Principles of the last one are given. The two distinct ways of producing coherent radiation with an undulator and an optical klystron are presented. The first one is the use of the free electron laser, the second is to make use of the spontaneous emission generation (harmonics generation). The different current types of free electron lasers are presented (Stanford, Los Alamos, Aco at Orsay). Prospects and applications are given in conclusion [fr

  13. Mid-IR hyperspectral imaging for label-free histopathology and cytology

    Science.gov (United States)

    Hermes, M.; Brandstrup Morrish, R.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G. R.; Masselink, W. T.; Tidemand-Lichtenberg, P.; Pedersen, C.; Palombo, F.; Stone, N.

    2018-02-01

    Mid-infrared (MIR) imaging has emerged as a valuable tool to investigate biological samples, such as tissue histological sections and cell cultures, by providing non-destructive chemical specificity without recourse to labels. While feasibility studies have shown the capabilities of MIR imaging approaches to address key biological and clinical questions, these techniques are still far from being deployable by non-expert users. In this review, we discuss the current state of the art of MIR technologies and give an overview on technical innovations and developments with the potential to make MIR imaging systems more readily available to a larger community. The most promising developments over the last few years are discussed here. They include improvements in MIR light sources with the availability of quantum cascade lasers and supercontinuum IR sources as well as the recently developed upconversion scheme to improve the detection of MIR radiation. These technical advances can substantially speed up data acquisition of multispectral or hyperspectral datasets thus providing the end user with vast amounts of data when imaging whole tissue areas of many mm2. Therefore, effective data analysis is of tremendous importance, and progress in method development is discussed with respect to the specific biomedical context.

  14. Characterization of Pb(Zr, Ti)O3 thin films fabricated by plasma enhanced chemical vapor deposition on Ir-based electrodes

    International Nuclear Information System (INIS)

    Lee, Hee-Chul; Lee, Won-Jong

    2002-01-01

    Structural and electrical characteristics of Pb(Zr, Ti)O 3 (PZT) ferroelectric thin films deposited on various Ir-based electrodes (Ir, IrO 2 , and Pt/IrO 2 ) using electron cyclotron resonance plasma enhanced chemical vapor deposition were investigated. On the Ir electrode, stoichiometric PZT films with pure perovskite phase could be obtained over a very wide range of processing conditions. However, PZT films prepared on the IrO 2 electrode contain a large amount of PbO x phases and exhibited high Pb-excess composition. The deposition characteristics were dependent on the behavior of PbO molecules on the electrode surface. The PZT thin film capacitors prepared on the Ir bottom electrode showed different electrical properties depending on top electrode materials. The PZT capacitors with Ir, IrO 2 , and Pt top electrodes showed good leakage current characteristics, whereas those with the Ru top electrode showed a very high leakage current density. The PZT capacitor exhibited the best fatigue endurance with an IrO 2 top electrode. An Ir top electrode provided better fatigue endurance than a Pt top electrode. The PZT capacitor with an Ir-based electrode is thought to be attractive for the application to ferroelectric random access memory devices because of its wide processing window for a high-quality ferroelectric film and good polarization, fatigue, and leakage current characteristics

  15. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  16. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  17. Mid-infrared lasers for energy frontier plasma accelerators

    Directory of Open Access Journals (Sweden)

    I. V. Pogorelsky

    2016-09-01

    Full Text Available Plasma wake field accelerators driven with solid-state near-IR lasers have been considered as an alternative to conventional rf accelerators for next-generation TeV-class lepton colliders. Here, we extend this study to the mid-IR spectral domain covered by CO_{2} lasers. We conclude that the increase in the laser driver wavelength favors the regime of laser wake field acceleration with a low plasma density and high electric charge. This regime is the most beneficial for gamma colliders to be converted from lepton colliders via inverse Compton scattering. Selecting a laser wavelength to drive a Compton gamma source is essential for the design of such a machine. The revealed benefits from spectral diversification of laser drivers for future colliders and off-spring applications validate ongoing efforts in advancing the ultrafast CO_{2} laser technology.

  18. Principles of Lasers

    CERN Document Server

    Svelto, Orazio

    2010-01-01

    This new Fifth Edition of Principles of Lasers incorporates corrections to the previous edition. The text’s essential mission remains the same: to provide a wide-ranging yet unified description of laser behavior, physics, technology, and current applications. Dr. Svelto emphasizes the physical rather than the mathematical aspects of lasers, and presents the subject in the simplest terms compatible with a correct physical understanding. Praise for earlier editions: "Professor Svelto is himself a longtime laser pioneer and his text shows the breadth of his broad acquaintance with all aspects of the field … Anyone mastering the contents of this book will be well prepared to understand advanced treatises and research papers in laser science and technology." (Arthur L. Schawlow, 1981 Nobel Laureate in Physics) "Already well established as a self-contained introduction to the physics and technology of lasers … Professor Svelto’s book, in this lucid translation by David Hanna, can be strongly recommended for...

  19. Activity uniformity of Ir-192 seeds

    International Nuclear Information System (INIS)

    Ling, C.C.; Gromadzki, Z.C.

    1981-01-01

    A simple device that uses materials and apparatus commonly available in a radiotherapy department has been designed, fabricated and used in routine quality control relative to the activity uniformity of clinical Ir-192 seeds in ribbons. Detailed evaluation indicated that this system is easy to use and can yield relative activity measurements of individual Ir-192 seeds accurate to within 2%. With this device, activity uniformity of commercial Ir-192 seeds from two manufacturers has been assessed. For the seven shipments of Ir-192 seeds studied, the root mean square variations of individual seed strength from the average of each shipment ranged from 3.4 to 7.1%. Variation in seed activity by more than +- 10% from the average is not uncommon

  20. Implementing GPS into Pave-IR.

    Science.gov (United States)

    2009-03-01

    To further enhance the capabilities of the Pave-IR thermal segregation detection system developed at the Texas Transportation Institute, researchers incorporated global positioning system (GPS) data collection into the thermal profiles. This GPS capa...

  1. Joint IAEA/NEA IRS guidelines

    International Nuclear Information System (INIS)

    1997-01-01

    The Incident Reporting System (IRS) is an international system jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD/NEA). The fundamental objective of the IRS is to contribute to improving the safety of commercial nuclear power plants (NPPs) which are operated worldwide. This objective can be achieved by providing timely and detailed information on both technical and human factors related to events of safety significance which occur at these plants. The purpose of these guidelines, which supersede the previous IAEA Safety Series No. 93 (Part II) and the NEA IRS guidelines, is to describe the system and to give users the necessary background and guidance to enable them to produce IRS reports meeting a high standard of quality while retaining the high efficiency of the system expected by all Member States operating nuclear power plants

  2. Hybrid nanomaterial and its applications: IR sensing and energy harvesting

    Science.gov (United States)

    Tseng, Yi-Hsuan

    sensitivity and detection limit were due to the temperature difference between the two junctions formed by the nanohybrid thin film and copper-wire electrodes under asymmetric IR illumination, and the difference between the effective Seebeck coefficient of the nanohybrid thin film and that of the Cu wires. The IR sensor embedded in polydimethylsiloxane (PDMS) layers was also fabricated and tested to demonstrate its potential application as a flexible IR sensor. In another application, energy harvesting, a new type of thermoelectric microgenerator enabled with the SWNTs-CuS nanoparticles hybrid nanomaterial, was fabricated. This type of microgenerator did not require any cooling or heat sink element to maintain the temperature difference or gradient in the device. Instead, the integrated nanomaterials in the device enhanced the local temperature and thus produced and maintained an intrinsic temperature difference or gradient across the microgenerator, thereby converting light and heat directly into electricity. In order to enhance the maximum output voltage, the incoming light had to be focused on the thin film region. A tunable lens was fabricated to collect and focus the ambient light on the thin film to enhance the output voltage of the microgenerators. The tunable lens was fabricated with a flexible polymer, PDMS. Therefore, the focal length of the tunable lens can be adjusted by pumping oil into the lens chamber to deform a PDMS membrane, resulting in the changed focus of the lens. In order to enhance the output power, two different arrays of thermoelectric generators in series and in parallel were fabricated. A hybrid nanomaterial thin film was also used to enhance the temperature gradient of the thermoelectric generators. For the devices in series, the generated voltage of all thermoelectric generators was combined together to enhance the output voltage. With the device in parallel, it can be used to combine all of the current of thermoelectric generators together to

  3. Multiplexing of spatial modes in the mid-IR region

    Science.gov (United States)

    Gailele, Lucas; Maweza, Loyiso; Dudley, Angela; Ndagano, Bienvenu; Rosales-Guzman, Carmelo; Forbes, Andrew

    2017-02-01

    Traditional optical communication systems optimize multiplexing in polarization and wavelength both trans- mitted in fiber and free-space to attain high bandwidth data communication. Yet despite these technologies, we are expected to reach a bandwidth ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers infinite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial degrees of freedom. OAM modes are multiplexed and de-multiplexed by the use of spatial light modulators (SLM). Implementation of complex amplitude modulation is employed on laser beams phase and amplitude to generate Laguerre-Gaussian (LG) modes. Modal decomposition is employed to detect these modes due to their orthogonality as they propagate in space. We demonstrate data transfer by sending images as a proof-of concept in a lab-based scheme. We demonstrate the creation and detection of OAM modes in the mid-IR region as a precursor to a mid-IR free-space communication link.

  4. Nonlinear optical response of chalcogenide glassy semiconductors in the IR and THz ranges studied with the femtosecond resolution in time

    DEFF Research Database (Denmark)

    Romanova, E.; Guizard, S.; Wang, Tianwu

    2017-01-01

    Two time-resolved experimental methods have been used for characterization of the non-linear optical response of chalcogenide glasses of the system As-S-Se-Te in IR and THz ranges upon excitation by femtosecond laser pulses at 800 nm wavelength. Photoinduced conductivity and refractivity were stu...

  5. Synthesis of a highly active carbon-supported Ir-V/C catalyst for the hydrogen oxidation reaction in PEMFC

    International Nuclear Information System (INIS)

    Li Bing; Qiao Jinli; Yang Daijun; Zheng Junsheng; Ma Jianxin; Zhang Jiujun; Wang Haijiang

    2009-01-01

    The active, carbon-supported Ir and Ir-V nanoclusters with well-controlled particle size, dispersity, and composition uniformity, have been synthesized via an ethylene glycol method using IrCl 3 and NH 4 VO 3 as the Ir and V precursors. The nanostructured catalysts were characterized by X-ray diffraction and high-resolution transmission electron microscopy. The catalytic activities of these carbon-supported nanoclusters were screened by applying on-line cyclic voltammetry and electrochemical impedance spectroscopy techniques, which were used to characterize the electrochemical properties of fuel cells using several anode Ir/C and Ir-V/C catalysts. It was found that Ir/C and Ir-V/C catalysts affect the performance of electrocatalysts significantly based on the discharge characteristics of the fuel cell. The catalyst Ir-V/C at 40 wt.% displayed the highest catalytic activity to hydrogen oxidation reaction and, therefore, high cell performance is achieved which results in a maximum power density of 563 mW cm -2 at 0.512 V and 70 deg. C in a real H 2 /air fuel cell. This performance is 20% higher as compared to the commercial available Pt/C catalyst. Fuel cell life test at a constant current density of 1000 mA cm -2 in a H 2 /O 2 condition shows good stability of anode Ir-V/C after 100 h of continuous operation.

  6. Widely tunable terahertz source based on intra-cavity frequency mixing in quantum cascade laser arrays

    International Nuclear Information System (INIS)

    Jiang, Aiting; Jung, Seungyong; Jiang, Yifan; Kim, Jae Hyun; Belkin, Mikhail A.; Vijayraghavan, Karun

    2015-01-01

    We demonstrate a compact monolithic terahertz source continuously tunable from 1.9 THz to 3.9 THz with the maximum peak power output of 106 μW at 3.46 THz at room temperature. The source consists of an array of 10 electrically tunable quantum cascade lasers with intra-cavity terahertz difference-frequency generation. To increase fabrication yield and achieve high THz peak power output in our devices, a dual-section current pumping scheme is implemented using two electrically isolated grating sections to independently control gain for the two mid-IR pumps

  7. Soft X-ray generation via inverse compton scattering between high quality electron beam and high power laser

    International Nuclear Information System (INIS)

    Masakazu Washio; Kazuyuki Sakaue; Yoshimasa Hama; Yoshio Kamiya; Tomoko Gowa; Akihiko Masuda; Aki Murata; Ryo Moriyama; Shigeru Kashiwagi; Junji Urakawa

    2007-01-01

    High quality beam generation project based on High-Tech Research Center Project, which has been approved by Ministry of Education, Culture, Sports, Science and Technology in 1999, has been conducted by advance research institute for science and engineering, Waseda University. In the project, laser photo-cathode RF-gun has been selected for the high quality electron beam source. RF cavities with low dark current, which were made by diamond turning technique, have been successfully manufactured. The low emittance electron beam was realized by choosing the modified laser injection technique. The obtained normalized emmitance was about 3 m.mrad at 100 pC of electron charge. The soft x-ray beam generation with the energy of 370 eV, which is in the energy region of so-called water window, by inverse Compton scattering has been performed by the collision between IR laser and the low emmitance electron beams. (Author)

  8. Automatic temperature computation for realistic IR simulation

    Science.gov (United States)

    Le Goff, Alain; Kersaudy, Philippe; Latger, Jean; Cathala, Thierry; Stolte, Nilo; Barillot, Philippe

    2000-07-01

    Polygon temperature computation in 3D virtual scenes is fundamental for IR image simulation. This article describes in detail the temperature calculation software and its current extensions, briefly presented in [1]. This software, called MURET, is used by the simulation workshop CHORALE of the French DGA. MURET is a one-dimensional thermal software, which accurately takes into account the material thermal attributes of three-dimensional scene and the variation of the environment characteristics (atmosphere) as a function of the time. Concerning the environment, absorbed incident fluxes are computed wavelength by wavelength, for each half an hour, druing 24 hours before the time of the simulation. For each polygon, incident fluxes are compsed of: direct solar fluxes, sky illumination (including diffuse solar fluxes). Concerning the materials, classical thermal attributes are associated to several layers, such as conductivity, absorption, spectral emissivity, density, specific heat, thickness and convection coefficients are taken into account. In the future, MURET will be able to simulate permeable natural materials (water influence) and vegetation natural materials (woods). This model of thermal attributes induces a very accurate polygon temperature computation for the complex 3D databases often found in CHORALE simulations. The kernel of MUET consists of an efficient ray tracer allowing to compute the history (over 24 hours) of the shadowed parts of the 3D scene and a library, responsible for the thermal computations. The great originality concerns the way the heating fluxes are computed. Using ray tracing, the flux received in each 3D point of the scene accurately takes into account the masking (hidden surfaces) between objects. By the way, this library supplies other thermal modules such as a thermal shows computation tool.

  9. FT-IR Microspectroscopy of Rat Ear Cartilage.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Rat ear cartilage was studied using Fourier transform-infrared (FT-IR microspectroscopy to expand the current knowledge which has been established for relatively more complex cartilage types. Comparison of the FT-IR spectra of the ear cartilage extracellular matrix (ECM with published data on articular cartilage, collagen II and 4-chondroitin-sulfate standards, as well as of collagen type I-containing dermal collagen bundles (CBs with collagen type II, was performed. Ear cartilage ECM glycosaminoglycans (GAGs were revealed histochemically and as a reduction in ECM FT-IR spectral band heights (1140-820 cm-1 after testicular hyaluronidase digestion. Although ear cartilage is less complex than articular cartilage, it contains ECM components with a macromolecular orientation as revealed using polarization microscopy. Collagen type II and GAGs, which play a structural role in the stereo-arrangement of the ear cartilage, contribute to its FT-IR spectrum. Similar to articular cartilage, ear cartilage showed that proteoglycans add a contribution to the collagen amide I spectral region, a finding that does not recommend this region for collagen type II quantification purposes. In contrast to articular cartilage, the symmetric stretching vibration of -SO3- groups at 1064 cm-1 appeared under-represented in the FT-IR spectral profile of ear cartilage. Because the band corresponding to the asymmetric stretching vibration of -SO3- groups (1236-1225 cm-1 overlapped with that of amide III bands, it is not recommended for evaluation of the -SO3- contribution to the FT-IR spectrum of the ear cartilage ECM. Instead, a peak (or shoulder at 1027-1016 cm-1 could be better considered for this intent. Amide I/amide II ratios as calculated here and data from the literature suggest that protein complexes of the ear cartilage ECM are arranged with a lower helical conformation compared to pure collagen II. The present results could motivate further studies on this tissue

  10. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    Science.gov (United States)

    Greer, James A.

    2011-11-01

    , and evaporation equipment as well. This multilayer feature would certainly benefit the MAPLE process for the growth of multilayer organic materials. Another more recent advancement in thin-film laser deposition is that of Resonant Infra Red Pulsed Laser Deposition (RIRPLD) of polymer materials. This process is more akin to standard PLD but uses tunable lasers with which to select the proper wavelength to couple to vibration bands of a solid polymer, or in some cases a polymer/solvent MAPLE mixture. This technique was developed under a collaboration of researchers at the Naval Research Labs and the Free Electron Laser (FEL) at Vanderbilt University. The wide tuning range of the FEL and its relatively high power make it a very attractive source for RIRPLD. However, the price of such lasers—of order several million dollars in capital costs alone—is very high and well beyond the budgets of most research institutions. Advances in RIRPLD are currently limited due to the scarcity of tunable lasers with sufficient power in the IR range of interest to obtain reasonable deposition rates. Over the past nine years commercial equipment for MAPLE has been on the market and new lasers are being developed that may significantly improve MAPLE and RIRPLD capabilities. Examples of basic single-target MAPLE equipment, as well as multiple target MAPLE systems are described. Discussion of current lasers for MAPLE and RIRPLD are given. Finally, even though these processes have been around for a significant amount of time there are still many unknowns associated with these techniques that still should be explored before these processes can be used for production of useful products. Some of these issues which need to be addressed will be discussed.

  11. Mid-infrared pulsed laser ultrasonic testing for carbon fiber reinforced plastics.

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Watanabe, Makoto; Takekawa, Shunji; Yamawaki, Hisashi; Oguchi, Kanae; Enoki, Manabu

    2018-03-01

    Laser ultrasonic testing (LUT) can realize contactless and instantaneous non-destructive testing, but its signal-to-noise ratio must be improved in order to measure carbon fiber reinforced plastics (CFRPs). We have developed a mid-infrared (mid-IR) laser source optimal for generating ultrasonic waves in CFRPs by using a wavelength conversion device based on an optical parametric oscillator. This paper reports a comparison of the ultrasonic generation behavior between the mid-IR laser and the Nd:YAG laser. The mid-IR laser generated a significantly larger ultrasonic amplitude in CFRP laminates than a conventional Nd:YAG laser. In addition, our study revealed that the surface epoxy matrix of CFRPs plays an important role in laser ultrasonic generation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Anisotropic Magnetoresistance in Antiferromagnetic Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    C. Wang

    2014-11-01

    Full Text Available We report point-contact measurements of anisotropic magnetoresistance (AMR in a single crystal of antiferromagnetic Mott insulator Sr_{2}IrO_{4}. The point-contact technique is used here as a local probe of magnetotransport properties on the nanoscale. The measurements at liquid nitrogen temperature reveal negative magnetoresistances (up to 28% for modest magnetic fields (250 mT applied within the IrO_{2} a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of magnetoresistance shows a crossover from fourfold to twofold symmetry in response to an increasing magnetic field with angular variations in resistance from 1% to 14%. We tentatively attribute the fourfold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of antiferromagnetic-coupled moments in Sr_{2}IrO_{4}. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys or oxides (0.1%–0.5% and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order, and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also to better harness the power of spintronics in a more technically favorable fashion.

  13. Tunable dye laser research at U. N. E

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S C

    1976-10-01

    Attempts to extend present tunable radiation sources into the wavelength region from 140 to 330 nm are presented in the following areas: frequency doubling and parametric upconversion methods, frequency mixing techniques in metal vapors, the pulsed N/sub 2/ laser, tunable dye lasers for the near uv to ir spectral range, heat pipe ovens, and preliminary experiments. (MHR)

  14. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    International Nuclear Information System (INIS)

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-01-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy (∼20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes

  15. Materials characterization of impregnated W and W–Ir cathodes after oxygen poisoning

    International Nuclear Information System (INIS)

    Polk, James E.; Capece, Angela M.

    2015-01-01

    Highlights: • Impregnated W and W–Ir cathodes were operated with 100 ppm of oxygen in Xe gas. • High concentrations of oxygen accelerated the formation of tungstate layers. • The W–Ir emitter exhibited less erosion and redeposition at the upstream end. • Tungsten was preferentially transported in the insert plasma of the W–Ir cathode. - Abstract: Electric thrusters use hollow cathodes as the electron source for generating the plasma discharge and for beam neutralization. These cathodes contain porous tungsten emitters impregnated with BaO material to achieve a lower surface work function and are operated with xenon propellant. Oxygen contaminants in the xenon plasma can poison the emitter surface, resulting in a higher work function and increased operating temperature. This could lead directly to cathode failure by preventing discharge ignition or could accelerate evaporation of the BaO material. Exposures over hundreds of hours to very high levels of oxygen can result in increased temperatures, oxidation of the tungsten substrate, and the formation of surface layers of barium tungstates. In this work, we present results of a cathode test in which impregnated tungsten and tungsten–iridium emitters were operated with 100 ppm of oxygen in the xenon plasma for several hundred hours. The chemical and morphological changes were studied using scanning electron microscopy, energy dispersive spectroscopy, and laser profilometry. The results provide strong evidence that high concentrations of oxygen accelerate the formation of tungstate layers in both types of emitters, a phenomenon not inherent to normal cathode operation. Deposits of pure tungsten were observed on the W–Ir emitter, indicating that tungsten is preferentially removed from the surface and transported in the insert plasma. A W–Ir cathode surface will therefore evolve to a pure W composition, eliminating the work function benefit of W–Ir. However, the W–Ir emitter exhibited less erosion

  16. Iridium Interfacial Stack - IrIS

    Science.gov (United States)

    Spry, David

    2012-01-01

    Iridium Interfacial Stack (IrIS) is the sputter deposition of high-purity tantalum silicide (TaSi2-400 nm)/platinum (Pt-200 nm)/iridium (Ir-200 nm)/platinum (Pt-200 nm) in an ultra-high vacuum system followed by a 600 C anneal in nitrogen for 30 minutes. IrIS simultaneously acts as both a bond metal and a diffusion barrier. This bondable metallization that also acts as a diffusion barrier can prevent oxygen from air and gold from the wire-bond from infiltrating silicon carbide (SiC) monolithically integrated circuits (ICs) operating above 500 C in air for over 1,000 hours. This TaSi2/Pt/Ir/Pt metallization is easily bonded for electrical connection to off-chip circuitry and does not require extra anneals or masking steps. There are two ways that IrIS can be used in SiC ICs for applications above 500 C: it can be put directly on a SiC ohmic contact metal, such as Ti, or be used as a bond metal residing on top of an interconnect metal. For simplicity, only the use as a bond metal is discussed. The layer thickness ratio of TaSi2 to the first Pt layer deposited thereon should be 2:1. This will allow Si from the TaSi2 to react with the Pt to form Pt2Si during the 600 C anneal carried out after all layers have been deposited. The Ir layer does not readily form a silicide at 600 C, and thereby prevents the Si from migrating into the top-most Pt layer during future anneals and high-temperature IC operation. The second (i.e., top-most) deposited Pt layer needs to be about 200 nm to enable easy wire bonding. The thickness of 200 nm for Ir was chosen for initial experiments; further optimization of the Ir layer thickness may be possible via further experimentation. Ir itself is not easily wire-bonded because of its hardness and much higher melting point than Pt. Below the iridium layer, the TaSi2 and Pt react and form desired Pt2Si during the post-deposition anneal while above the iridium layer remains pure Pt as desired to facilitate easy and strong wire-bonding to the Si

  17. Some applications on laser material processing

    International Nuclear Information System (INIS)

    Oros, C.

    2005-01-01

    An overview of the state-of-the-art in laser material processing for a large types of lasers from IR (CO 2 laser, NdYAG laser) to UV (excimer laser) and different kinds of materials (metals, dielectrics) is given. Laser radiation has found a wide range of applications as machining tool for various kinds of materials processing. The machining geometry, the work piece geometry, the material properties and economic productivity claim for customized systems with special design for beam guiding, shaping and delivery in order to fully utilize the laser radiation for surface processing with optimum efficiency, maximum processing speed and high processing quality. The laser-material interaction involves complex processes of heating, melting, vaporization, ejection of atoms, ions, and molecules, shock waves, plasma initiation and plasma expansion. The interaction is dependent on the laser beam parameters (pulse duration, energy and wavelength), the solid target properties and the surrounding environments condition. Experimental results for laser surface melting and laser ablation are given. Also, assuming the applicability of a one dimensional model for short pulses used, and restricting condition to single-pulse exposure, the temperature rise on the target was calculated taking account of the finite optical absorption depth and pulse duration of the laser

  18. Completely automated open-path FT-IR spectrometry.

    Science.gov (United States)

    Griffiths, Peter R; Shao, Limin; Leytem, April B

    2009-01-01

    Atmospheric analysis by open-path Fourier-transform infrared (OP/FT-IR) spectrometry has been possible for over two decades but has not been widely used because of the limitations of the software of commercial instruments. In this paper, we describe the current state-of-the-art of the hardware and software that constitutes a contemporary OP/FT-IR spectrometer. We then describe advances that have been made in our laboratory that have enabled many of the limitations of this type of instrument to be overcome. These include not having to acquire a single-beam background spectrum that compensates for absorption features in the spectra of atmospheric water vapor and carbon dioxide. Instead, an easily measured "short path-length" background spectrum is used for calculation of each absorbance spectrum that is measured over a long path-length. To accomplish this goal, the algorithm used to calculate the concentrations of trace atmospheric molecules was changed from classical least-squares regression (CLS) to partial least-squares regression (PLS). For calibration, OP/FT-IR spectra are measured in pristine air over a wide variety of path-lengths, temperatures, and humidities, ratioed against a short-path background, and converted to absorbance; the reference spectrum of each analyte is then multiplied by randomly selected coefficients and added to these background spectra. Automatic baseline correction for small molecules with resolved rotational fine structure, such as ammonia and methane, is effected using wavelet transforms. A novel method of correcting for the effect of the nonlinear response of mercury cadmium telluride detectors is also incorporated. Finally, target factor analysis may be used to detect the onset of a given pollutant when its concentration exceeds a certain threshold. In this way, the concentration of atmospheric species has been obtained from OP/FT-IR spectra measured at intervals of 1 min over a period of many hours with no operator intervention.

  19. Discharge-current characteristics in UV-preionized Kr/He, F2/He gas-mixtures and KrF excimer laser gas. Shigaisen yobi denri Kr/He, F2/He kongo kitai hoden oyobi KrF laser reiki hoden no denryu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, N.; Kawakami, H.; Yukimura, K. (Doshisha University, Kyoto (Japan))

    1992-08-15

    In order to study effects of Kr and F2 on discharge characteristics of KrF excimer laser gas, gap phenomena in Kr/He and F2/He gas-mixtures were observed and discharge current (I[sub d]) was measured. In the range where Kr concentration was over 10% in Kr/He gas, in which production of filamentation as well as glow discharge started, discontinuous change in I[sub d] in the second or third half cycle was observed. According to the results of experiments and model analyses, it was considered that the discontinuity of the current showed the transition point to filamentation. When F2 concentration was in the range between 0.1 and 0.3% in F2/He mixture gas, filamentation and arc with glow were observed. Sine-waveform I[sub d] ended in the first half cycle, and began to flow again after cessation or had almost constant current due to arc and others. When F2 was over 0.4%, only are discharge was observed. It was thus found that F2 has a large effect on discharge characteristics of KrF laser gas. 18 refs., 9 figs.

  20. Q-switched all-solid-state lasers and application in processing of thin-film solar cell

    Science.gov (United States)

    Liu, Liangqing; Wang, Feng

    2009-08-01

    Societal pressure to renewable clean energy is increasing which is expected to be used as part of an overall strategy to address global warming and oil crisis. Photovoltaic energy conversion devices are on a rapidly accelerating growth path driven by government, of which the costs and prices lower continuously. The next generation thin-film devices are considered to be more efficiency and greatly reduced silicon consumption, resulting in dramatically lower per unit fabrication costs. A key aspect of these devices is patterning large panels to create a monolithic array of series-interconnected cells to form a low current, high voltage module. This patterning is accomplished in three critical scribing processes called P1, P2, and P3. All-solid-state Q-switched lasers are the technology of choice for these processes, due to their advantages of compact configuration, high peak-value power, high repeat rate, excellent beam quality and stability, delivering the desired combination of high throughput and narrow, clean scribes. The end pumped all-solid-state lasers could achieve 1064nm IR resources with pulse width of nanoseconds adopting acoustic-optics Q-switch, shorter than 20ns. The repeat rate is up to 100kHz and the beam quality is close to diffraction limit. Based on this, 532nm green lasers, 355nm UV lasers and 266nm DUV lasers could be carried out through nonlinear frequency conversion. Different wave length lasers are chose to process selective materials. For example, 8-15 W IR lasers are used to scribe the TCO film (P1); 1-5 W green lasers are suitable for scribing the active semiconductor layers (P2) and the back contact layers (P3). Our company, Wuhan Lingyun Photo-electronic System Co. Ltd, has developed 20W IR and 5W green end-pumped Q-switched all-solid-state lasers for thin-film solar industry. Operating in high repeat rates, the speed of processing is up to 2.0 m/s.

  1. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  2. Single-nucleotide polymorphism of INS, INSR, IRS1, IRS2, PPAR-G ...

    Indian Academy of Sciences (India)

    2017-03-02

    Mar 2, 2017 ... Abstract. Polycystic ovary syndrome (PCOS) is the most common and a complex female endocrine disorder, and is one of the leading cause of female infertility. Here, we aimed to investigate the association of single-nucleotide polymorphism of INS, INSR,. IRS1, IRS2, PPAR-G and CAPN10 gene in the ...

  3. Status of the Nike KrF laser

    International Nuclear Information System (INIS)

    Lehmberg, R.H.; Bodner, S.E.; Gerber, K.A.; Kearney, K.J.; McLean, E.A.; Obenschain, S.P.; Pawley, C.J.; Pronko, M.S.; Sethian, J.D.; Stamper, J.A.; Sullivan, C.A.; Webster, W.D.; McGeoch, M.W.

    1995-01-01

    This document presents the main features of the NIKE laser currently under development at the Naval Research Laboratory. The aim of this KrF laser is to address technological and physics issues of direct-drive laser fusion. (TEC)

  4. Status of the USA program on the development of submillimeter lasers to measure ion temperatures

    International Nuclear Information System (INIS)

    Barnett, C.F.; Hutchinson, D.P.; Vander Sluis, K.; Staats, P.A.

    1977-01-01

    The concept of ion laser scattering is outlined briefly and the parameters of the required submillimeter laser system are described. The current state of the development of lasers, laser and viewing dumps, and detectors is reviewed

  5. Application of 1013 ohm Faraday cup current amplifiers for boron isotopic analyses by solution mode and laser ablation multicollector inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Lloyd, Nicholas S; Sadekov, Aleksey Yu; Misra, Sambuddha

    2018-01-15

    Boron isotope ratios (δ 11 B values) are used as a proxy for seawater paleo-pH, amongst several other applications. The analytical precision can be limited by the detection of low intensity ion beams from limited sample amounts. High-gain amplifiers offer improvements in signal/noise ratio and can be used to increase measurement precision and reduce sample amounts. 10 13 ohm amplifier technology has previously been applied to several radiogenic systems, but has thus far not been applied to non-traditional stable isotopes. Here we apply 10 13 ohm amplifier technology for the measurement of boron isotope ratios using solution mode MC-ICP-MS and laser ablation mode (LA-)MC-ICP-MS techniques. Precision is shown for reference materials as well as for low-volume foraminifera samples. The baseline uncertainty for a 0.1 pA 10 B + ion beam is reduced to ohm amplifier technology is demonstrated to offer advantages for the determination of δ 11 B values by both MC-ICP-MS and LA-MC-ICP-MS for small samples of biogenic carbonates, such as foraminifera shells. 10 13 ohm amplifier technology will also be of benefit to other non-traditional stable isotope measurements. Copyright © 2017 John Wiley & Sons, Ltd.

  6. The Newest Laser Processing

    International Nuclear Information System (INIS)

    Lee, Baek Yeon

    2007-01-01

    This book mentions laser processing with laser principle, laser history, laser beam property, laser kinds, foundation of laser processing such as laser oscillation, characteristic of laser processing, laser for processing and its characteristic, processing of laser hole including conception of processing of laser hole and each material, and hole processing of metal material, cut of laser, reality of cut, laser welding, laser surface hardening, application case of special processing and safety measurement of laser.

  7. Laser solenoid: an alternate use of lasers in fusion power

    International Nuclear Information System (INIS)

    Rose, P.H.

    1977-01-01

    A unique laser assisted fusion approach is under development at Mathematical Sciences Northwest, Inc. (MSNW). This approach captures one of the most developed aspects of high energy laser technology, the efficient, large, scalable, pulsed electron beam initiated, electric discharge, CO 2 infrared laser. This advanced technology is then combined with the simple geometry of a linear magnetic confinement system. The laser solenoid concept will be described, current work and experimental progress will be discussed, and the technological problems of building such a system will be assessed. Finally a comparison will be made of the technology and economics for the laser solenoid and alternative fusion approaches

  8. Laser propulsion for orbit transfer - Laser technology issues

    Science.gov (United States)

    Horvath, J. C.; Frisbee, R. H.

    1985-01-01

    Using reasonable near-term mission traffic models (1991-2000 being the assumed operational time of the system) and the most current unclassified laser and laser thruster information available, it was found that space-based laser propulsion orbit transfer vehicles (OTVs) can outperform the aerobraked chemical OTV over a 10-year life-cycle. The conservative traffic models used resulted in an optimum laser power of about 1 MW per laser. This is significantly lower than the power levels considered in other studies. Trip time was taken into account only to the extent that the system was sized to accomplish the mission schedule.

  9. Comparing the use of 4.6 um lasers versus 10.6 um lasers for mitigating damage site growth on fused silica surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S T; Matthews, M J; Elhadj, S; Cooke, D; Guss, G M; Draggoo, V G; Wegner, P J

    2010-10-21

    The advantage of using mid-infrared (IR) 4.6 {micro}m lasers, versus far-infrared 10.6 {micro}m lasers, for mitigating damage growth on fused silica is investigated. In contrast to fused silica's high absorption at 10.6 {micro}m, silica absorption at 4.6 {micro}m is two orders of magnitude less. The much reduced absorption at 4.6 {micro}m enables deep heat penetration into fused silica when it is heated using the mid-IR laser, which in turn leads to more effective mitigation of damage sites with deep cracks. The advantage of using mid-IR versus far-IR laser for damage growth mitigation under non-evaporative condition is quantified by defining a figure of merit (FOM) that relates the crack healing depth to laser power required. Based on our FOM, we show that for damage cracks up to at least 500 {micro}m in depth, mitigation using a 4.6 {micro}m mid-IR laser is more efficient than mitigation using a 10.6 {micro}m far-IR laser.

  10. Kas netilpo tarp politikos ir diplomatijos?

    OpenAIRE

    Streikus, Arūnas

    2008-01-01

    The review analyzes A. Kasparavičius’s monograph “Tarp Politikos ir Diplomatijos: Šventasis Sostas ir Lietuvos Respublika” (Vilnius, 2008). The historiographic value of the study is undisputed. A. Kasperavičius had an opportunity to use a broad spectrum of sources, among which two sets of archive documents stand out: the funds of the archives of Ministry of Foreign Affairs of Lithuania and the Lithuanian Embassy under the Holy See in Rome. A. Kasparavičius managed to avoid the arid scientific...

  11. Elecciones Legislativas en Irán

    Directory of Open Access Journals (Sweden)

    José Antonio Sainz de la Peña

    2012-05-01

    Full Text Available Las elecciones legislativas en Irán, una vez eliminados los reformistas se han celebrado en un clima de rivalidad. Las elecciones tenían que dejar claro quién mandaba en Irán, si los clérigos y el Guía el ayatolá Seyed Ali Jamenei o, el Presidente de la República, el laico Mahmud Ahmadineyad, apoyado en el Cuerpo de Guardias Revolucionarios. La realidad ha sido que las facciones conservadoras encabezadas por el Frente Unido Principalista, apoyados por el Guía Supremo, han obtenido el triunfo.

  12. Lasers and uranium isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, L

    1987-12-01

    The use of lasers by the electronuclear industry to enrich uranium is discussed, particularly economic aspects. The SILMO and SILVA processes (chosen by France for industrial development) are presented. Criteria which lead to the choice of lasers and to their set-up (architecture of the chain) are described. For electricity - consumption linked to the use of lasers of 40 kWh/STU, a laser uranium enrichment plant with 10 STU/yr capacity requires 50kW of light from copper vapor lasers, i.e., 500 units each having 100W capacity, compared with the 40W units currently marketed.

  13. Development of Laser Application Technology for Stable Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-04-15

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed.

  14. Development of Laser Application Technology for Stable Isotope Production

    International Nuclear Information System (INIS)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee

    2007-04-01

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed

  15. Laser spectroscopy and dynamics of transient species

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  16. Single-mode, All-Solid-State Nd:YAG Laser Pumped UV Converter

    Science.gov (United States)

    Prasad, Narasimha S.; Armstrong, Darrell, J.; Edwards, William C.; Singh, Upendra N.

    2008-01-01

    In this paper, the status of a high-energy, all solid-state Nd:YAG laser pumped nonlinear optics based UV converter development is discussed. The high-energy UV transmitter technology is being developed for ozone sensing applications from space based platforms using differential lidar technique. The goal is to generate greater than 200 mJ/pulse with 10-50 Hz PRF at wavelengths of 308 nm and 320 nm. A diode-pumped, all-solid-state and single longitudinal mode Nd:YAG laser designed to provide conductively cooled operation at 1064 nm has been built and tested. Currently, this pump laser provides an output pulse energy of >1 J/pulse at 50 Hz PRF and a pulsewidth of 22 ns with an electrical-to-optical system efficiency of greater than 7% and a M(sup 2) value of UV converter arrangement basically consists of an IR Optical Parametric Oscillator (OPO) and a Sum Frequency Generator (SFG) setups that are pumped by 532 nm wavelength obtained via Second Harmonic Generation (SHG). In this paper, the operation of an inter cavity SFG with CW laser seeding scheme generating 320 nm wavelength is presented. Efforts are underway to improve conversion efficiency of this mJ class UV converter by modifying the spatial beam profile of the pump laser.

  17. Cascade generation in Al laser induced plasma

    Science.gov (United States)

    Nagli, Lev; Gaft, Michael; Raichlin, Yosef; Gornushkin, Igor

    2018-05-01

    We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s 25s 2S1/2 → 3s24p 2P1/2,3/2 → 3s24s 2S1/2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312-1315 nm. The 3s25s2S 1/2 starting IR generation level is directly pumped from the 3s23p 2P3/2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1/2 → 4p 2P3/2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma.

  18. Identification of {sup 192}Ir seeds in localization images using a novel statistical pattern recognition approach and a priori information

    Energy Technology Data Exchange (ETDEWEB)

    Bird, William F; Chaney, Edward L; Coggins, James M

    1995-07-01

    Purpose / Objective: Manual labeling of individual {sup 192}Ir seeds in localization images for dosimetry of multi-strand low-dose-rate (LDR) implants is labor intensive, tedious and prone to error. The objective of this investigation is to develop computer-based methods that analyze digitized localization images, improve dosimetric efficiency, and reduce labeling errors. Materials and Methods: {sup 192}Ir localization films were digitized with a scanned-laser system and analyzed using Multiscale, Geometric, Statistical Pattern Recognition (MGSPR), a technique that recognizes and classifies pixels in gray-scale images based on their surrounding, neighborhood geometry. To 'teach' MGSPR how to recognize specific objects, a Gaussian-based mathematical filter set is applied to training images containing user-labeled examples of the desired objects. The filters capture a broad range of descriptive geometric information at multiple spatial scales. Principled mathematical analysis is used to determine the linear combination of filters from a large base set that yields the best discrimination between object types. Thus the sensitivity of the filters can be 'tuned' to detect specific objects such as{sup 192} Ir seeds. For a given pixel, the output of the filter is a multi-component feature vector that uniquely describes the pixel's geometric characteristics. Pixels with similar geometric attributes have feature vectors that naturally 'cluster', or group, in the multidimensional space called 'feature space'. After statistically quantifying the training-set clusters in feature space, pixels found in new images are automatically labeled by correlation with the nearest cluster, e.g., the cluster representing {sup 192}Ir seeds. One of the greatest challenges in statistical pattern recognition is to determine which filters result in the best labeling. Good discrimination is achieved when clusters are compact and well isolated from one another in feature space. The filters used in

  19. Identification of 192Ir seeds in localization images using a novel statistical pattern recognition approach and a priori information

    International Nuclear Information System (INIS)

    Bird, William F.; Chaney, Edward L.; Coggins, James M.

    1995-01-01

    Purpose / Objective: Manual labeling of individual 192 Ir seeds in localization images for dosimetry of multi-strand low-dose-rate (LDR) implants is labor intensive, tedious and prone to error. The objective of this investigation is to develop computer-based methods that analyze digitized localization images, improve dosimetric efficiency, and reduce labeling errors. Materials and Methods: 192 Ir localization films were digitized with a scanned-laser system and analyzed using Multiscale, Geometric, Statistical Pattern Recognition (MGSPR), a technique that recognizes and classifies pixels in gray-scale images based on their surrounding, neighborhood geometry. To 'teach' MGSPR how to recognize specific objects, a Gaussian-based mathematical filter set is applied to training images containing user-labeled examples of the desired objects. The filters capture a broad range of descriptive geometric information at multiple spatial scales. Principled mathematical analysis is used to determine the linear combination of filters from a large base set that yields the best discrimination between object types. Thus the sensitivity of the filters can be 'tuned' to detect specific objects such as 192 Ir seeds. For a given pixel, the output of the filter is a multi-component feature vector that uniquely describes the pixel's geometric characteristics. Pixels with similar geometric attributes have feature vectors that naturally 'cluster', or group, in the multidimensional space called 'feature space'. After statistically quantifying the training-set clusters in feature space, pixels found in new images are automatically labeled by correlation with the nearest cluster, e.g., the cluster representing 192 Ir seeds. One of the greatest challenges in statistical pattern recognition is to determine which filters result in the best labeling. Good discrimination is achieved when clusters are compact and well isolated from one another in feature space. The filters used in this study are

  20. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  1. TIJAH: Embracing IR Methods in XML Databases

    NARCIS (Netherlands)

    List, Johan; Mihajlovic, V.; Ramirez, Georgina; de Vries, A.P.; Hiemstra, Djoerd; Blok, H.E.

    2005-01-01

    This paper discusses our participation in INEX (the Initiative for the Evaluation of XML Retrieval) using the TIJAH XML-IR system. TIJAH's system design follows a `standard' layered database architecture, carefully separating the conceptual, logical and physical levels. At the conceptual level, we

  2. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael

    2005-01-01

    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...

  3. Isolated Gramicidin Peptides Probed by IR Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rijs, A. M.; Kabeláč, Martin; Abo-Riziq, A.; Hobza, Pavel; de Vries, M. S.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 1816-1821 ISSN 1439-4235 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550808 Institutional research plan: CEZ:AV0Z40550506 Keywords : density functional calculations * gramicidin * IR spectroscopy * protein folding Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.412, year: 2011

  4. Airborne pipeline leak detection: UV or IR?

    Science.gov (United States)

    Babin, François; Gravel, Jean-François; Allard, Martin

    2016-05-01

    This paper presents a study of different approaches to the measurement of the above ground vapor plume created by the spill caused by a small 0.1 l/min (or less) leak in an underground liquid petroleum pipeline. The scenarios are those for the measurement from an airborne platform. The usual approach is that of IR absorption, but in the case of liquid petroleum products, there are drawbacks that will be discussed, especially when using alkanes to detect a leak. The optical measurements studied include UV enhanced Raman lidar, UV fluorescence lidar and IR absorption path integrated lidars. The breadboards used for testing the different approaches will be described along with the set-ups for leak simulation. Although IR absorption would intuitively be the most sensitive, it is shown that UV-Raman could be an alternative. When using the very broad alkane signature in the IR, the varying ground spectral reflectance are a problem. It is also determined that integrated path measurements are preferred, the UV enhanced Raman measurements showing that the vapor plume stays very close to the ground.

  5. Near IR spectra of symbiotic stars

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    The author reports on recent observations from the near IR spectra of symbiotic stars. The helium and oxygen lines useful for the construction of theoretical models are identified. Observations for cool stars and novae (nebular phase) are outlined and the spectra of specific symbiotic stars between lambdalambda 8000-11000 are presented and discussed. (Auth./C.F.)

  6. Methanol decomposition and oxidation on Ir(111)

    NARCIS (Netherlands)

    Weststrate, C.J.; Ludwig, W.; Bakker, J.W.; Gluhoi, A.C.; Nieuwenhuys, B.E.

    2007-01-01

    The adsorption, decompn., and oxidn. of methanol (CH3OH) has been studied on Ir(111) using temp.-programmed desorption and high-energy resoln. fast XPS. Mol. methanol desorption from a methanol-satd. surface at low temp. shows three desorption peaks, around 150 K (alpha ), around 170 K (beta 1), and

  7. Column Stores as an IR Prototyping Tool

    NARCIS (Netherlands)

    H.F. Mühleisen (Hannes); T. Samar (Thaer); J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    textabstract. We make the suggestion that instead of implementing custom index structures and query evaluation algorithms, IR researchers should simply store document representations in a column-oriented relational database and write ranking models using SQL. For rapid prototyping, this is

  8. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  9. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output

    Directory of Open Access Journals (Sweden)

    Q. Y. Lu

    2017-04-01

    Full Text Available Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device’s dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.

  10. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  11. Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter

    Science.gov (United States)

    Kurt, H. Hilal

    2018-05-01

    Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.

  12. Ir-Ni oxide as a promising material for nerve and brain stimulating electrodes

    Directory of Open Access Journals (Sweden)

    Joan Stilling

    2014-09-01

    Full Text Available Tremendous potential for successful medical device development lies in both electrical stimulation therapies and neuronal prosthetic devices, which can be utilized in an extensive number of neurological disorders. These technologies rely on the successful electrical stimulation of biological tissue (i.e. neurons through the use of electrodes. However, this technology faces the principal problem of poor stimulus selectivity due to the currently available electrode’s large size relative to its targeted population of neurons. Irreversible damage to both the stimulated tissue and electrode are limiting factors in miniaturization of this technology, as charge density increases with decreasing electrode size. In an attempt to find an equilibrium between these two opposing constraints (electrode size and charge density, the objective of this work was to develop a novel iridium-nickel oxide (Ir0.2-Ni0.8-oxide coating that could intrinsically offer high charge storage capacity. Thermal decomposition was used to fabricate titanium oxide, iridium oxide, nickel oxide, and bimetallic iridium-nickel oxide coatings on titanium electrode substrates. The Ir0.2-Ni0.8-oxide coating yielded the highest intrinsic (material property and extrinsic (material property + surface area charge storage capacity (CSC among the investigated materials, exceeding the performance of the current state-of-the-art neural stimulating electrode, Ir-oxide. This indicates that the Ir0.2-Ni0.8-oxide material is a promising alternative to currently used Ir-oxide, Pt, Au and carbon-based stimulating electrodes.

  13. Mobile CARS - IRS Instrument for Simultaneous Spectroscopic Measurement of Multiple Properties in Gaseous Flows

    Science.gov (United States)

    Bivolaru, Daniel; Lee, Joseph W.; Jones, Stephen B.; Tedder, Sarah A.; Danehy, Paul M.; Weikl, M. C.; Magnotti, G.; Cutler, Andrew D.

    2007-01-01

    This paper describes a measurement system based on the dual-pump coherent anti-Stokes Raman spectroscopy (CARS) and interferometric Rayleigh scattering (IRS) methods. The IRS measurement is performed simultaneously with the CARS measurement using a common green laser beam as a narrow-band light source. The mobile CARS-IRS instrument is designed for the use both in laboratories as well as in ground-based combustion test facilities. Furthermore, it is designed to be easily transported between laboratory and test facility. It performs single-point spatially and temporally resolved simultaneous measurements of temperature, species mole fraction of N2, O2, and H2, and two-components of velocity. A mobile laser system can be placed inside or outside the test facility, while a beam receiving and monitoring system is placed near the measurement location. Measurements in a laboratory small-scale Mach 1.6 H2-air combustion-heated supersonic jet were performed to test the capability of the system. Final setup and pretests of a larger scale reacting jet are ongoing at NASA Langley Research Center s Direct Connect Supersonic Combustor Test Facility (DCSCTF).

  14. Metal-Mesh Optical Filter Technology for Mid IR, Far IR, and Submillimeter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovative, high transmission band-pass filter technology proposed here is an improvement in multilayer metal-mesh filter design and manufacture for the far IR...

  15. Laser Stabilization with Laser Cooled Strontium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Takashi Røjle

    The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting the nonli......The frequency stability of current state-of-the-art stabilized clock lasers are limited by thermal fluctuations of the ultra-stable optical reference cavities used for their frequency stabilization. In this work, we study the possibilities for surpassing this thermal limit by exploiting...... the nonlinear effects from coupling of an optical cavity to laser cooled atoms having a narrow transition linewidth. Here, we have realized such a system where a thermal sample of laser cooled strontium-88 atoms are coupled to an optical cavity. The strontium-88 atoms were probed on the narrow 1S0-3P1 inter......-combination line at 689 nm in a strongly saturated regime. The dynamics of the atomic induced phase shift and absorption of the probe light were experimentally studied in details with the purpose of applications to laser stabilization. The atomic sample temperature was in the mK range which brought this system out...

  16. Surface modification of polyethylene terephthalate using excimer and CO2 laser

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2002-01-01

    Complete text of publication follows. Attempts have been made to evaluate microstructuring which affects cell behaviour, physical and chemical changes produced by laser irradiation onto the polyethylene terephthalate (PET) surface. The surfaces of PET were irradiated using the CO 2 laser and KrF excimer pulsed laser. The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-IR) and contact angle measurements. ATR-IR Spectra showed that the crystallinity in the surface region decreased due to the CO 2 laser and excimer laser irradiation. Scanning electron microscopy observations showed that the morphology of the laser irradiated PET surface changed due to laser irradiation. The results obtained from the cell behaviour studies revealed that changes of physico-chemical properties of the laser treated PET film have significantly changed in comparison with the unmodified PET

  17. Laser-assisted shape selective fragmentation of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, P.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 117942 Moscow (Russian Federation); Simakin, A.V. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 117942 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 117942 Moscow (Russian Federation)]. E-mail: shafeev@kapella.gpi.ru; Viau, G. [ITODYS, UMR 7086, Universite Paris 7-Denis Diderot, case 7090, 2 place Jussieu, 75251 Paris Cedex 05 (France); Soumare, Y. [ITODYS, UMR 7086, Universite Paris 7-Denis Diderot, case 7090, 2 place Jussieu, 75251 Paris Cedex 05 (France); Bozon-Verduraz, F. [ITODYS, UMR 7086, Universite Paris 7-Denis Diderot, case 7090, 2 place Jussieu, 75251 Paris Cedex 05 (France)

    2007-07-31

    Experimental results are presented on laser-assisted fragmentation of gold-containing nanoparticles suspended in liquids (either ethanol or water). Two kinds of nanoparticles are considered: (i) elongated Au nanorods synthesized by laser ablation of a gold target immersed in liquid phase; (ii) gold-covered NiCo nanorods with high aspect ratio ({theta} {approx} 10) synthesized by wet chemistry processes. The shape selectivity induced by laser fragmentation of these nanorods is gained via tuning the wavelength of laser radiation into different parts of the spectrum of their plasmon resonance corresponding to different aspect ratios {theta}. Fragmentation is performed using three laser wavelengths, involving a Cu vapour laser (510 and 578 nm) and a Nd:YAG (1064 nm). Nanoparticles are characterized by UV-vis spectrometry, Transmission Electron Microscopy (TEM). The effect of laser pulse duration (nanosecond against picosecond range) is also studied in the case of fragmentation with an IR laser radiation.

  18. The Supercontinuum Laser Source Fundamentals with Updated References

    CERN Document Server

    Alfano, Robert R

    2006-01-01

    Photonics and nonlinear optics are important areas of science, engineering and technology. One of the most important ultrafast nonlinear optical processes is the supercontinuum (SC) – the production of intense white light pulses covering: uv, visible, NIR, MIR, and IR. It is produced using ultrashort laser pulses (ps/fs) to produce the ultrabroad band of frequencies. This book covers the fundamental principles and surveys research of current thinkers and experts in the field with updated references of the key breakthroughs over the past decade and a half. The application of SC are time-resolved pump-SC probe absorption and excitation spectroscopy for chemistry, biology and physics fundamental processes; optical coherence tomography; ultrashort pulse generation in femtosecond and attosecond regions; frequency clocks; phase stabilization; optical communication; atmospheric science; lightning control; optical medical imaging; biological cell imaging; and metrology standards.

  19. Harmonics generation of a terahertz wakefield free-electron laser from a dielectric loaded waveguide excited by a direct current electron beam.

    Science.gov (United States)

    Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin

    2016-06-01

    We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.

  20. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.