WorldWideScience

Sample records for ir image processing

  1. Simulation of Thermal Processes in Metamaterial MM-to-IR Converter for MM-wave Imager

    International Nuclear Information System (INIS)

    Zagubisalo, Peter S; Paulish, Andrey G; Kuznetsov, Sergey A

    2014-01-01

    The main characteristics of MM-wave image detector were simulated by means of accurate numerical modelling of thermophysical processes in a metamaterial MM-to-IR converter. The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer. The absorber consists of a dielectric self-supporting film that is metallized from both sides. A micro-pattern is fabricated from one side. Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer. IR emission is detected by IR camera. In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software. The simulation results are in a good agreement with experimental results that validates the model. The simulation shows that the real time operation is provided for the converter thickness less than 3 micrometers and time response can be improved by decreasing of the converter thickness. The energy conversion efficiency of MM waves into IR radiation is over 80%. The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range. The blooming effect and ways of its reducing are also discussed. The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters

  2. A Modified Harris Corner Detection for Breast IR Image

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2014-01-01

    Full Text Available Harris corner detectors, which depend on strong invariance and a local autocorrelation function, display poor detection performance for infrared (IR images with low contrast and nonobvious edges. In addition, feature points detected by Harris corner detectors are clustered due to the numerous nonlocal maxima. This paper proposes a modified Harris corner detector that includes two unique steps for processing IR images in order to overcome the aforementioned problems. Image contrast enhancement based on a generalized form of histogram equalization (HE combined with adjusting the intensity resolution causes false contours on IR images to acquire obvious edges. Adaptive nonmaximal suppression based on eliminating neighboring pixels avoids the clustered features. Preliminary results show that the proposed method can solve the clustering problem and successfully identify the representative feature points of IR breast images.

  3. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  4. Automated jitter correction for IR image processing to assess the quality of W7-X high heat flux components

    International Nuclear Information System (INIS)

    Greuner, H; De Marne, P; Herrmann, A; Boeswirth, B; Schindler, T; Smirnow, M

    2009-01-01

    An automated IR image processing method was developed to evaluate the surface temperature distribution of cyclically loaded high heat flux (HHF) plasma facing components. IPP Garching will perform the HHF testing of a high percentage of the series production of the WENDELSTEIN 7-X (W7-X) divertor targets to minimize the number of undiscovered uncertainties in the finally installed components. The HHF tests will be performed as quality assurance (QA) complementary to the non-destructive examination (NDE) methods used during the manufacturing. The IR analysis of an HHF-loaded component detects growing debonding of the plasma facing material, made of carbon fibre composite (CFC), after a few thermal cycles. In the case of the prototype testing, the IR data was processed manually. However, a QA method requires a reliable, reproducible and efficient automated procedure. Using the example of the HHF testing of W7-X pre-series target elements, the paper describes the developed automated IR image processing method. The algorithm is based on an iterative two-step correlation analysis with an individually defined reference pattern for the determination of the jitter.

  5. Simultaneous monitoring of ice accretion and thermography of an airfoil: an IR imaging methodology

    International Nuclear Information System (INIS)

    Mohseni, M; Frioult, M; Amirfazli, A

    2012-01-01

    A novel image analysis methodology based on infrared (IR) imaging was developed for simultaneous monitoring of ice accretion and thermography of airfoils. In this study, an IR camera was calibrated and used to measure the surface temperature of the energized airfoils, and monitor the ice accretion and growth pattern on the airfoils’ surfaces. The methodology comprises the automatic processing of a series of IR video frames with the purpose of detecting ice pattern evolution during the icing test period. A specially developed MATLAB code was used to detect the iced areas in the IR images, and simultaneously monitor surface temperature evolution of the airfoil during an icing test. Knowing the correlation between the icing pattern and surface temperature changes during an icing test is essential for energy efficient design of thermal icing mitigation systems. Processed IR images were also used to determine the ice accumulation rate on the airfoil's surface in a given icing test. The proposed methodology has been demonstrated to work successfully, since the optical images taken at the end of icing tests from the airfoils’ surfaces compared well with the processed IR images detecting the ice grown outward from the airfoils’ leading edge area. (paper)

  6. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  7. Method of forming half-tone test images in the IR spectrum

    International Nuclear Information System (INIS)

    Glebova, L.N.; Gridin, A.S.; Denisov, V.N.; Dmitriev, I.Yu.; Mochalov, I.V.; Chebotarev, S.A.

    1992-01-01

    Test charts in the form of half-tone IR images, including not only an image of the interference-producing background (the underlying earth's surface and clouds), but also the observation objects, are required for conducting bench tests on the noise immunity of modern optoelectronic equipment designed to solve observation problems under background-interference conditions. The simulation of extended half-tone IR images containing the high spatial frequencies of background formations having an appreciable dynamic range of reproducible radiances is a complex problem in technical and processing aspects. The use of phosphorus as visible-to-IR converters for the creation of IR-background simulators is shown to be possible in principle in this paper. 2 refs., 3 figs

  8. Near-IR imaging of cracks in teeth

    Science.gov (United States)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  9. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  10. About possibility of temperature trace observing on a human skin through clothes by using computer processing of IR image

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2017-05-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. For this purpose, we propose to use THz camera and IR camera. Below we continue a possibility of IR camera using for a detection of temperature trace on a human body. In contrast to passive THz camera using, the IR camera does not allow to see very pronounced the object under clothing. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To find possible ways for this disadvantage overcoming we make some experiments with IR camera, produced by FLIR Company and develop novel approach for computer processing of images captured by IR camera. It allows us to increase a temperature resolution of IR camera as well as human year effective susceptibility enhancing. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments are made with observing of temperature trace from objects placed behind think overall. Demonstrated results are very important for the detection of forbidden objects, concealed inside the human body, by using non-destructive control without using X-rays.

  11. Noninvasive enhanced mid-IR imaging of breast cancer development in vivo

    Science.gov (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-11-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy is commonly used to treat breast cancer patients. We are developing an enhanced thermal IR imaging technique that has the potential to provide real-time imaging to guide tissue excision during a lumpectomy by delineating tumor margins. This enhanced thermal imaging method is a combination of IR imaging (8 to 10 μm) and selective heating of blood (˜0.5°C) relative to surrounding water-rich tissue using LED sources at low powers. Postacquisition processing of these images highlights temporal changes in temperature and the presence of vascular structures. In this study, fluorescent, standard thermal, and enhanced thermal imaging modalities, as well as physical caliper measurements, were used to monitor breast cancer tumor volumes over a 30-day study period in 19 mice implanted with 4T1-RFP tumor cells. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after day 22. The tumor volumes estimated from enhanced thermal imaging, standard thermal imaging, and caliper measurements all show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging, standard IR imaging, and caliper measurements with enhanced thermal imaging, indicating that enhanced thermal imaging monitors tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses associated with the tumor margin. In the future, this IR technique might be used to estimate tumor margins in real time during surgical procedures.

  12. Methodology for automatic process of the fired ceramic tile's internal defect using IR images and artificial neural network

    OpenAIRE

    Andrade, Roberto Márcio de; Eduardo, Alexandre Carlos

    2011-01-01

    In the ceramic industry, rarely testing systems were employed to on-line detect the presence of defects in ceramic tiles. This paper is concerned with the problem of automatic inspection of ceramic tiles using Infrared Images and Artificial Neural Network (ANN). The performance of the technique has been evaluated theoretically and experimentally from laboratory and on line tile samples. It has been performed system for IR image processing and, utilizing an Artificial Neural Network (ANN), det...

  13. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  14. Image registration of naval IR images

    Science.gov (United States)

    Rodland, Arne J.

    1996-06-01

    In a real world application an image from a stabilized sensor on a moving platform will not be 100 percent stabilized. There will always be a small unknown error in the stabilization due to factors such as dynamic deformations in the structure between sensor and reference Inertial Navigation Unit, servo inaccuracies, etc. For a high resolution imaging sensor this stabilization error causes the image to move several pixels in unknown direction between frames. TO be able to detect and track small moving objects from such a sensor, this unknown movement of the sensor image must be estimated. An algorithm that searches for land contours in the image has been evaluated. The algorithm searches for high contrast points distributed over the whole image. As long as moving objects in the scene only cover a small area of the scene, most of the points are located on solid ground. By matching the list of points from frame to frame, the movement of the image due to stabilization errors can be estimated and compensated. The point list is searched for points with diverging movement from the estimated stabilization error. These points are then assumed to be located on moving objects. Points assumed to be located on moving objects are gradually exchanged with new points located in the same area. Most of the processing is performed on the list of points and not on the complete image. The algorithm is therefore very fast and well suited for real time implementation. The algorithm has been tested on images from an experimental IR scanner. Stabilization errors were added artificially to the image such that the output from the algorithm could be compared with the artificially added stabilization errors.

  15. Data fusion of Landsat TM and IRS images in forest classification

    Science.gov (United States)

    Guangxing Wang; Markus Holopainen; Eero Lukkarinen

    2000-01-01

    Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...

  16. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....

  17. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  18. Assessment of COTS IR image simulation tools for ATR development

    Science.gov (United States)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal

    2005-05-01

    Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a

  19. Image quality testing of assembled IR camera modules

    Science.gov (United States)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  20. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    Science.gov (United States)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  1. NeuroSeek dual-color image processing infrared focal plane array

    Science.gov (United States)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  2. Multi-scale Adaptive Gain Control of IR Images

    NARCIS (Netherlands)

    Schutte, K.

    1997-01-01

    IR imagery tends to have a higher dynamic range then typical display devices such as a CRT. Global methods such as stretching and histogram equalization improve the visibility of many images, but some information in the images stays hidden for a human operator. This paper reports about the

  3. IR imaging of blood circulation of patients with vascular disease

    Science.gov (United States)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  4. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  5. Hot Spots Detection of Operating PV Arrays through IR Thermal Image Using Method Based on Curve Fitting of Gray Histogram

    Directory of Open Access Journals (Sweden)

    Jiang Lin

    2016-01-01

    Full Text Available The overall efficiency of PV arrays is affected by hot spots which should be detected and diagnosed by applying responsible monitoring techniques. The method using the IR thermal image to detect hot spots has been studied as a direct, noncontact, nondestructive technique. However, IR thermal images suffer from relatively high stochastic noise and non-uniformity clutter, so the conventional methods of image processing are not effective. The paper proposes a method to detect hotspots based on curve fitting of gray histogram. The result of MATLAB simulation proves the method proposed in the paper is effective to detect the hot spots suppressing the noise generated during the process of image acquisition.

  6. Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles

    Science.gov (United States)

    Wang, Long-tao; Jiang, Ning; Lv, Ming-shan

    2015-10-01

    With the emergence of the anti-ship missle with the capability of infrared imaging guidance, the traditional single jamming measures, because of the jamming mechanism and technical flaws or unsuitable use, greatly reduced the survival probability of the war-ship in the future naval battle. Intergrated jamming of IR weakening + smoke-screen Can not only make jamming to the search and tracking of IR imaging guidance system , but also has feasibility in conjunction, besides , which also make the best jamming effect. The research conclusion has important realistic meaning for raising the antimissile ability of surface ships. With the development of guidance technology, infrared guidance system has expanded by ir point-source homing guidance to infrared imaging guidance, Infrared imaging guidance has made breakthrough progress, Infrared imaging guidance system can use two-dimensional infrared image information of the target, achieve the precise tracking. Which has Higher guidance precision, better concealment, stronger anti-interference ability and could Target the key parts. The traditional single infrared smoke screen jamming or infrared decoy flare interference cannot be imposed effective interference. So, Research how to effectively fight against infrared imaging guided weapons threat measures and means, improving the surface ship antimissile ability is an urgent need to solve.

  7. Upconversion applied for mid-IR hyperspectral image acquisition

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Kehlet, Louis Martinus; Sanders, Nicolai Højer

    2015-01-01

    Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered....

  8. Detection of Degradation Effects in Field-Aged c-Si Solar Cells through IR Thermography and Digital Image Processing

    Directory of Open Access Journals (Sweden)

    E. Kaplani

    2012-01-01

    Full Text Available Due to the vast expansion of photovoltaic (PV module production nowadays, a great interest is shown in factors affecting PV performance and efficiency under real conditions. Particular attention is being given to degradation effects of PV cells and modules, which during the last decade are seen to be responsible for significant power losses observed in PV systems. This paper presents and analyses degradation effects observed in severely EVA discoloured PV cells from field-aged modules operating already for 18–22 years. Temperature degradation effects are identified through IR thermography in bus bars, contact solder bonds, blisters, hot spots, and hot areas. I-V curve analysis results showed an agreement between the source of electrical performance degradation and the degradation effects in the defected cell identified by the IR thermography. Finally, an algorithm was developed to automatically detect EVA discoloration in PV cells through processing of the digital image alone in a way closely imitating human perception of color. This nondestructive and noncostly solution could be applied in the detection of EVA discoloration in existing PV installations and the automatic monitoring and remote inspection of PV systems.

  9. Digital Signal Processing Based on a Clustering Algorithm for Ir/Au TES Microcalorimeter

    Science.gov (United States)

    Zen, N.; Kunieda, Y.; Takahashi, H.; Hiramoto, K.; Nakazawa, M.; Fukuda, D.; Ukibe, M.; Ohkubo, M.

    2006-02-01

    In recent years, cryogenic microcalorimeters using their superconducting transition edge have been under development for possible application to the research for astronomical X-ray observations. To improve the energy resolution of superconducting transition edge sensors (TES), several correction methods have been developed. Among them, a clustering method based on digital signal processing has recently been proposed. In this paper, we applied the clustering method to Ir/Au bilayer TES. This method resulted in almost a 10% improvement in the energy resolution. Conversely, from the point of view of imaging X-ray spectroscopy, we applied the clustering method to pixellated Ir/Au-TES devices. We will thus show how a clustering method which sorts signals by their shapes is also useful for position identification

  10. Identification of 192Ir seeds in localization images using a novel statistical pattern recognition approach and a priori information

    International Nuclear Information System (INIS)

    Bird, William F.; Chaney, Edward L.; Coggins, James M.

    1995-01-01

    unique in their ability to extract multiscale geometric information that discriminates one object from another object in gray-scale images. The labeling from MGSPR analysis can be refined using a post processing technique that incorporates a priori information including seed shape, intrastrand seed spacing, and the number of seeds per strand. The current implementation of post processing is user-guided but can be automated. The user interaction consists of pointing and clicking on a known seed in a strand. The algorithm then sequentially locates the remaining seeds belonging to that strand by fitting a predefined seed template to the seed pixels labeled by MGSPR. During the seed location process, the search is guided by the orientation of the template fit at each seed, the known seed spacing, and possible candidates for seeds further along the strand. The latter strategy permits correct labeling of poorly imaged seeds. Crossing and intertwining strands create ambiguous branching points that are resolved by minimizing an energy function that is correlated to the amount of strand bending, or flexion. Results: Challenging localization images from actual 192 Ir implants were used in our study. The images contain up to ∼20 strands, many of which intersect, and up to ∼200 seeds, many of which partially or completely overlap with other seeds. Most seeds (∼95-100%) were labeled successfully. Non-seed pixels with seed-like geometric properties were sometimes labeled incorrectly. The post processing technique successfully resolved ambiguous overlapping seeds, extrapolated poorly visualized seeds that were not labeled, and eliminated incorrectly labeled non-seed pixels. User-guided post processing also labeled seeds that were not visualized at all, e.g., due to obscuration by contrast media or a radiopaque applicator. Conclusion: Our MGSPR approach and complementary post processing technique can be used to successfully label 192 Ir seeds in digitized localization images

  11. Monitoring combat wound healing by IR hyperspectral imaging

    Science.gov (United States)

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.

    2016-03-01

    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  12. FT-IR imaging for quantitative determination of liver fat content in non-alcoholic fatty liver.

    Science.gov (United States)

    Kochan, K; Maslak, E; Chlopicki, S; Baranska, M

    2015-08-07

    In this work we apply FT-IR imaging of large areas of liver tissue cross-section samples (∼5 cm × 5 cm) for quantitative assessment of steatosis in murine model of Non-Alcoholic Fatty Liver (NAFLD). We quantified the area of liver tissue occupied by lipid droplets (LDs) by FT-IR imaging and Oil Red O (ORO) staining for comparison. Two alternative FT-IR based approaches are presented. The first, straightforward method, was based on average spectra from tissues and provided values of the fat content by using a PLS regression model and the reference method. The second one – the chemometric-based method – enabled us to determine the values of the fat content, independently of the reference method by means of k-means cluster (KMC) analysis. In summary, FT-IR images of large size liver sections may prove to be useful for quantifying liver steatosis without the need of tissue staining.

  13. Identification of {sup 192}Ir seeds in localization images using a novel statistical pattern recognition approach and a priori information

    Energy Technology Data Exchange (ETDEWEB)

    Bird, William F; Chaney, Edward L; Coggins, James M

    1995-07-01

    this study are unique in their ability to extract multiscale geometric information that discriminates one object from another object in gray-scale images. The labeling from MGSPR analysis can be refined using a post processing technique that incorporates a priori information including seed shape, intrastrand seed spacing, and the number of seeds per strand. The current implementation of post processing is user-guided but can be automated. The user interaction consists of pointing and clicking on a known seed in a strand. The algorithm then sequentially locates the remaining seeds belonging to that strand by fitting a predefined seed template to the seed pixels labeled by MGSPR. During the seed location process, the search is guided by the orientation of the template fit at each seed, the known seed spacing, and possible candidates for seeds further along the strand. The latter strategy permits correct labeling of poorly imaged seeds. Crossing and intertwining strands create ambiguous branching points that are resolved by minimizing an energy function that is correlated to the amount of strand bending, or flexion. Results: Challenging localization images from actual {sup 192}Ir implants were used in our study. The images contain up to {approx}20 strands, many of which intersect, and up to {approx}200 seeds, many of which partially or completely overlap with other seeds. Most seeds ({approx}95-100%) were labeled successfully. Non-seed pixels with seed-like geometric properties were sometimes labeled incorrectly. The post processing technique successfully resolved ambiguous overlapping seeds, extrapolated poorly visualized seeds that were not labeled, and eliminated incorrectly labeled non-seed pixels. User-guided post processing also labeled seeds that were not visualized at all, e.g., due to obscuration by contrast media or a radiopaque applicator. Conclusion: Our MGSPR approach and complementary post processing technique can be used to successfully label {sup 192}Ir

  14. Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†

    Science.gov (United States)

    Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi

    2018-04-01

    Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.

  15. Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†

    Science.gov (United States)

    Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi

    2018-06-01

    Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.

  16. Wide-band IR imaging in the NIR-MIR-FIR regions for in situ analysis of frescoes

    Science.gov (United States)

    Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C.

    2011-06-01

    Imaging methods offer several advantages in the field of conservation allowing to perform non-invasive inspection of works of art. In particular, non-invasive techniques based on imaging in different infrared (IR) regions are widely used for the investigation of paintings. Using radiation beyond the visible range, different characteristics of the inspected artwork may be revealed according to the bandwidth acquired. In this paper we present the recent results of a joint project among the two research institutes DIMEG and CNR-INO, and the restoration facility Opificio delle Pietre Dure, concerning the wide-band integration of IR imaging techniques, in the spectral ranges NIR 0.8-2.5 μm, MIR 3-5 μm, and FIR 8-12 μm, for in situ analysis of artworks. A joint, multi-mode use of reflection and thermal bands is proposed for the diagnostics of mural paintings, and it is demonstrated to be an effective tool in inspecting the layered structure. High resolution IR reflectography and, to a greater extent, IR imaging in the 3-5 μm band, are effectively used to characterize the superficial layer of the fresco and to analyze the stratigraphy of different pictorial layers. IR thermography in the 8-12 μm band is used to characterize the support deep structure. The integration of all the data provides a multi- layered and multi-spectral representation of the fresco that yields a comprehensive analysis.

  17. Non-invasive thermal IR detection of breast tumor development in vivo

    Science.gov (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-03-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy comprises the treatment of breast cancer for many patients. We are developing an enhanced thermal IR imaging technique that can be used in real-time to guide tissue excision during a lumpectomy. This novel enhanced thermal imaging method is a combination of IR imaging (8- 10 μm) and selective heating of blood (~0.5 °C) relative to surrounding water-rich tissue using LED sources at low powers. Post-acquisition processing of these images highlights temporal changes in temperature and is sensitive to the presence of vascular structures. In this study, fluorescent and enhanced thermal imaging modalities were used to estimate breast cancer tumor volumes as a function of time in 19 murine subjects over a 30-day study period. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after Day 22. The tumor volumes estimated from enhanced thermal imaging show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging and the enhanced IR images, indicating that enhanced thermal imaging is capable monitoring tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses. This novel IR technique could be used to estimate tumor margins in real-time during surgical procedures.

  18. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging.

    Science.gov (United States)

    Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C

    2018-03-01

    Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

  19. Processing Infrared Images For Fire Management Applications

    Science.gov (United States)

    Warren, John R.; Pratt, William K.

    1981-12-01

    The USDA Forest Service has used airborne infrared systems for forest fire detection and mapping for many years. The transfer of the images from plane to ground and the transposition of fire spots and perimeters to maps has been performed manually. A new system has been developed which uses digital image processing, transmission, and storage. Interactive graphics, high resolution color display, calculations, and computer model compatibility are featured in the system. Images are acquired by an IR line scanner and converted to 1024 x 1024 x 8 bit frames for transmission to the ground at a 1.544 M bit rate over a 14.7 GHZ carrier. Individual frames are received and stored, then transferred to a solid state memory to refresh the display at a conventional 30 frames per second rate. Line length and area calculations, false color assignment, X-Y scaling, and image enhancement are available. Fire spread can be calculated for display and fire perimeters plotted on maps. The performance requirements, basic system, and image processing will be described.

  20. α-Lipoic acid stabilized DTX/IR780 micelles for photoacoustic/fluorescence imaging guided photothermal therapy/chemotherapy of breast cancer.

    Science.gov (United States)

    Li, WenTing; Peng, JinRong; Yang, Qian; Chen, LiJuan; Zhang, Lan; Chen, XiaoXin; Qian, ZhiYong

    2018-05-01

    Micellar nanoparticles have unique advantages as carriers for therapeutic or imaging agents, owing to their smaller size and better penetration of tumors. However, some agents, due to their physical or chemical properties, are difficult to load into micelles. IR780 is one of these agents, and is also a promising near-infrared dye for fluorescence imaging (FI)/photoacoustic imaging (PAI) and cancer photothermal therapy (PTT). Its hydrophobic and high crystallization structure results in limited bioavailability in vivo. It is difficult to load into micelles constructed from an amphiphilic block polymer with relatively low molecular weight. In this study, we use computer simulation and introduce another small biomolecule, α-lipoic acid, into the micelles constructed from a mPEG-PCL copolymer, to lower the energy of molecular interaction between MPEG-PCL and IR780, and expect to enhance the loading capacity of the micelles to IR780. The introduction of α-lipoic acid decreases the energy of molecular interaction between MEPG-PCL and IR780 from -46.18 kJ mol-1 to -196.52 kJ mol-1 and increases the loading capacity and stability of the mPEG-PCL micelles to IR780, which also maintains the loading capacity to DTX. We further construct DTX/IR780 co-loaded mPEG-PCL micelles for FI/PAI dual modal imaging guided PTT/chemotherapy of cancer. By FI and PAI evaluation in vitro and in vivo, we demonstrate that the DTX/IR780 co-loaded micelles can be used as FI and PAI probes. By further evaluating the therapeutic outcome of PTT/chemotherapy co-therapy of breast cancer, we demonstrate that the DTX/IR780 co-loaded mPEG-PCL micelles can serve as promising candidates for FI and PAI guided PTT/chemotherapy of breast cancer.

  1. Image processing in aerial surveillance and reconnaissance: From pixels to understanding

    NARCIS (Netherlands)

    Dijk, J.; Eekeren, A.W.M. van; Rajadell Rojas, O.; Burghouts, G.J.; Schutte, K.

    2013-01-01

    Surveillance and reconnaissance tasks are currently often performed using an airborne platform such as a UAV. The airborne platform can carry different sensors. EO/IR cameras can be used to view a certain area from above. To support the task from the sensor analyst, different image processing

  2. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Science.gov (United States)

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  3. Modulation transfer function cascade model for a sampled IR imaging system.

    Science.gov (United States)

    de Luca, L; Cardone, G

    1991-05-01

    The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.

  4. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  5. Real-time image processing II; Proceedings of the Meeting, Orlando, FL, Apr. 16-18, 1990

    Science.gov (United States)

    Juday, Richard D. (Editor)

    1990-01-01

    The present conference discusses topics in the fields of feature extraction and implementation, filter and correlation algorithms, optical correlators, high-level algorithms, and digital image processing for ranging and remote driving. Attention is given to a nonlinear filter derived from topological image features, IR image segmentation through iterative thresholding, orthogonal subspaces for correlation masking, composite filter trees and image recognition via binary search, and features of matrix-coherent optical image processing. Also discussed are multitarget tracking via hybrid joint transform correlator, binary joint Fourier transform correlator considerations, global image processing operations on parallel architectures, real-time implementation of a differential range finder, and real-time binocular stereo range and motion detection.

  6. Real-time image processing II; Proceedings of the Meeting, Orlando, FL, Apr. 16-18, 1990

    Science.gov (United States)

    Juday, Richard D.

    The present conference discusses topics in the fields of feature extraction and implementation, filter and correlation algorithms, optical correlators, high-level algorithms, and digital image processing for ranging and remote driving. Attention is given to a nonlinear filter derived from topological image features, IR image segmentation through iterative thresholding, orthogonal subspaces for correlation masking, composite filter trees and image recognition via binary search, and features of matrix-coherent optical image processing. Also discussed are multitarget tracking via hybrid joint transform correlator, binary joint Fourier transform correlator considerations, global image processing operations on parallel architectures, real-time implementation of a differential range finder, and real-time binocular stereo range and motion detection.

  7. Using Fourier transform IR spectroscopy to analyze biological materials

    Science.gov (United States)

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  8. IR-based spot weld NDT in automotive applications

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  9. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  10. Infrared imaging of skin lesions

    Science.gov (United States)

    McIntosh, Laura M.; Mansfield, James R.; Jackson, Michael; Crowson, A. Neil; Mantsch, Henry H.

    2002-02-01

    IR spectroscopy produces spectra in which detailed information concerning chemical structure is inherent. Numerous studies have demonstrated that the most useful IR methods for analysis of biological tissues are microscopic image-based techniques in which fine-scaled spatial and high-quality spectral information is integrated. Unlike traditional visible microscopic methods, the contrast in IR imaging is gained by differences in spectra and the spatial heterogeneity of biochemical components, not by the addition of stains. In order for IR imaging to be more broadly accepted, non-subjective data processing methods are being developed to extract the most out of the large spectral images that are acquired. This paper demonstrates data processing techniques that have been extremely useful in the analysis of normal and abnormal skin. Analysis of skin specimens is of particular clinical importance due to the difficulty in rendering a differential diagnosis. Unstained frozen skin sections were mapped using an IR microscope. Functional group mapping, clustering routines and linear discriminant analysis were used to process the data. Functional group mapping and clustering routines were useful in the initial interpretation of images and to research for trends in uncharacterized spectral images. LDA was useful for differentiating normal from abnormal tissue once a well- defined training spectral set was established. Representative spectroscopic images are shown that demonstrate the power of IR imaging.

  11. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    Science.gov (United States)

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  12. High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Shinji; Koshikawa, Tokiko; Nakamura, Tatsuya; Fukatsu, Hiroshi; Ishigaki, Takeo [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Shouwa-ku, 466-8550, Nagoya (Japan); Aoki, Ikuo [Medical System Company, Toshiba Corporation, Tokyo (Japan)

    2003-12-01

    The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27-46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25 ) were obtained with a reconstructed voxel size of 0.6 x 0.7 x 0.8 mm{sup 3}. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in

  13. Problems of thermal IR-imaging in evaluation of burn wounds

    International Nuclear Information System (INIS)

    Nowakowski, A.

    2009-01-01

    Results of the research devoted to application of thermal IR-imaging in diagnostics of burn wounds are discussed. The main aim of the work was to develop an effective method for quantitative evaluation of the depth of a burn wound and for classification of regions for surgical treatment. The criterion of determination the area of the wound to be treated surgically is the time, which should not exceed three weeks for natural healing of a burn wound. Prediction that the healing process may last longer is concluded by immediate surgical intervention. We concentrate on using for this purpose QIRT - NDT TI methods (Quantitative Infra-Red Thermography - Non-Destructive Testing Thermal Imaging); especially - active dynamic thermography - ADT. In this work both, classical thermography using a high quality thermal camera as well as ADT are applied and the results of analysis are joined, allowing multimodality diagnostic approach and improved classification of burns requiring surgical treatment. Now our work in application of thermal imaging in determination of burns is continued for around 10 years, as the first publication showing our methodology was presented in 1999. In 2001, during the Thermosense conference, we have been awarded the Andronicos Kantsios Award for the work on Medical applications of model based dynamic thermography. Important reports of our experience in classical as well as ADT thermography are already published. Now we concentrate on practical aspects of the problem, trying to construct a measuring set to be operative even by not experienced staff and meeting all of necessary requirements for clinical applications. (author)

  14. A high resolution IR/visible imaging system for the W7-X limiter

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, G. A., E-mail: wurden@lanl.gov; Dunn, J. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stephey, L. A. [University of Wisconsin, Madison, Wisconsin 53706 (United States); Biedermann, C.; Jakubowski, M. W.; Gamradt, M. [Max Planck Institut für Plasma Physik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2016-11-15

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m{sup 2}), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  15. A high resolution IR/visible imaging system for the W7-X limiter

    International Nuclear Information System (INIS)

    Wurden, G. A.; Dunn, J. P.; Stephey, L. A.; Biedermann, C.; Jakubowski, M. W.; Gamradt, M.

    2016-01-01

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m"2), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  16. Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter

    Science.gov (United States)

    Kurt, H. Hilal

    2018-05-01

    Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.

  17. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel

    Science.gov (United States)

    Darling, Cynthia L.; Fried, Daniel

    2007-02-01

    We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.

  18. Signal and image processing systems performance evaluation, simulation, and modeling; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Nasr, Hatem N.; Bazakos, Michael E.

    The various aspects of the evaluation and modeling problems in algorithms, sensors, and systems are addressed. Consideration is given to a generic modular imaging IR signal processor, real-time architecture based on the image-processing module family, application of the Proto Ware simulation testbed to the design and evaluation of advanced avionics, development of a fire-and-forget imaging infrared seeker missile simulation, an adaptive morphological filter for image processing, laboratory development of a nonlinear optical tracking filter, a dynamic end-to-end model testbed for IR detection algorithms, wind tunnel model aircraft attitude and motion analysis, an information-theoretic approach to optimal quantization, parametric analysis of target/decoy performance, neural networks for automated target recognition parameters adaptation, performance evaluation of a texture-based segmentation algorithm, evaluation of image tracker algorithms, and multisensor fusion methodologies. (No individual items are abstracted in this volume)

  19. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    the performance of today's state of the art IR detectors for the visible/near-IR region shows a striking contrast, as the latter can have dark currents in the range of 0.001 electrons per second. Demonstrated performance of waveguide upconversion techniques still show considerable dark noise, even when working...

  20. Improved Likelihood Function in Particle-based IR Eye Tracking

    DEFF Research Database (Denmark)

    Satria, R.; Sorensen, J.; Hammoud, R.

    2005-01-01

    In this paper we propose a log likelihood-ratio function of foreground and background models used in a particle filter to track the eye region in dark-bright pupil image sequences. This model fuses information from both dark and bright pupil images and their difference image into one model. Our...... enhanced tracker overcomes the issues of prior selection of static thresholds during the detection of feature observations in the bright-dark difference images. The auto-initialization process is performed using cascaded classifier trained using adaboost and adapted to IR eye images. Experiments show good...

  1. SU-D-209-03: Radiation Dose Reduction Using Real-Time Image Processing in Interventional Radiology

    Energy Technology Data Exchange (ETDEWEB)

    Kanal, K; Moirano, J; Zamora, D; Stewart, B [University Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: To characterize changes in radiation dose after introducing a new real-time image processing technology in interventional radiology systems. Methods: Interventional radiology (IR) procedures are increasingly complex, at times requiring substantial time and radiation dose. The risk of inducing tissue reactions as well as long-term stochastic effects such as radiation-induced cancer is not trivial. To reduce this risk, IR systems are increasingly equipped with dose reduction technologies.Recently, ClarityIQ (Philips Healthcare) technology was installed in our existing neuroradiology IR (NIR) and vascular IR (VIR) suites respectively. ClarityIQ includes real-time image processing that reduces noise/artifacts, enhances images, and sharpens edges while also reducing radiation dose rates. We reviewed 412 NIR (175 pre- and 237 post-ClarityIQ) procedures and 329 VIR (156 preand 173 post-ClarityIQ) procedures performed at our institution pre- and post-ClarityIQ implementation. NIR procedures were primarily classified as interventional or diagnostic. VIR procedures included drain port, drain placement, tube change, mesenteric, and implanted venous procedures. Air Kerma (AK in units of mGy) was documented for all the cases using a commercial radiation exposure management system. Results: When considering all NIR procedures, median AK decreased from 1194 mGy to 561 mGy. When considering all VIR procedures, median AK decreased from 49 to 14 mGy. Both NIR and VIR exhibited a decrease in AK exceeding 50% after ClarityIQ implementation, a statistically significant (p<0.05) difference. Of the 5 most common VIR procedures, all median AK values decreased, but significance (p<0.05) was only reached in venous access (N=53), angio mesenteric (N=41), and drain placement procedures (N=31). Conclusion: ClarityIQ can reduce dose significantly for both NIR and VIR procedures. Image quality was not assessed in conjunction with the dose reduction.

  2. PC image processing

    International Nuclear Information System (INIS)

    Hwa, Mok Jin Il; Am, Ha Jeng Ung

    1995-04-01

    This book starts summary of digital image processing and personal computer, and classification of personal computer image processing system, digital image processing, development of personal computer and image processing, image processing system, basic method of image processing such as color image processing and video processing, software and interface, computer graphics, video image and video processing application cases on image processing like satellite image processing, color transformation of image processing in high speed and portrait work system.

  3. Automated Recognition of Vegetation and Water Bodies on the Territory of Megacities in Satellite Images of Visible and IR Bands

    Science.gov (United States)

    Mozgovoy, Dmitry k.; Hnatushenko, Volodymyr V.; Vasyliev, Volodymyr V.

    2018-04-01

    Vegetation and water bodies are a fundamental element of urban ecosystems, and water mapping is critical for urban and landscape planning and management. A methodology of automated recognition of vegetation and water bodies on the territory of megacities in satellite images of sub-meter spatial resolution of the visible and IR bands is proposed. By processing multispectral images from the satellite SuperView-1A, vector layers of recognized plant and water objects were obtained. Analysis of the results of image processing showed a sufficiently high accuracy of the delineation of the boundaries of recognized objects and a good separation of classes. The developed methodology provides a significant increase of the efficiency and reliability of updating maps of large cities while reducing financial costs. Due to the high degree of automation, the proposed methodology can be implemented in the form of a geo-information web service functioning in the interests of a wide range of public services and commercial institutions.

  4. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    Science.gov (United States)

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  5. IR-to-visible image upconverter under nonlinear crystal thermal gradient operation.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Capmany, J

    2018-01-22

    In this work we study the enhancement of the field-of-view of an infrared image up-converter by means of a thermal gradient in a PPLN crystal. Our work focuses on compact upconverters, in which both a short PPLN crystal length and high numerical aperture lenses are employed. We found a qualitative increase in both wavelength and angular tolerances, compared to a constant temperature upconverter, which makes it necessary a correct IR wavelength allocation in order to effectively increase the up-converted area.

  6. Mid-IR hyperspectral imaging for label-free histopathology and cytology

    Science.gov (United States)

    Hermes, M.; Brandstrup Morrish, R.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G. R.; Masselink, W. T.; Tidemand-Lichtenberg, P.; Pedersen, C.; Palombo, F.; Stone, N.

    2018-02-01

    Mid-infrared (MIR) imaging has emerged as a valuable tool to investigate biological samples, such as tissue histological sections and cell cultures, by providing non-destructive chemical specificity without recourse to labels. While feasibility studies have shown the capabilities of MIR imaging approaches to address key biological and clinical questions, these techniques are still far from being deployable by non-expert users. In this review, we discuss the current state of the art of MIR technologies and give an overview on technical innovations and developments with the potential to make MIR imaging systems more readily available to a larger community. The most promising developments over the last few years are discussed here. They include improvements in MIR light sources with the availability of quantum cascade lasers and supercontinuum IR sources as well as the recently developed upconversion scheme to improve the detection of MIR radiation. These technical advances can substantially speed up data acquisition of multispectral or hyperspectral datasets thus providing the end user with vast amounts of data when imaging whole tissue areas of many mm2. Therefore, effective data analysis is of tremendous importance, and progress in method development is discussed with respect to the specific biomedical context.

  7. Energy-beam processing studies on Ta/U and Ir/Ta systems

    International Nuclear Information System (INIS)

    Kaufmann, E.N.; Peercy, P.S.; Jacobson, D.C.; Draper, C.W.; Huegel, F.J.; Echer, C.J.; Makowiecki, D.M.; Balser, J.D.

    1983-01-01

    Films of Ta metal on uranium and of Ir metal on tantalum have been irradiated and melted by pulses from Q-switched Ruby and frequency-doubled Nd:YAG lasers to investigate the nature of the resulting mixtures in light of the very different binary-phase diagrams of the two systems. In addition, a two-phase Ir-Ta alloy has been surface-processed with CW CO 2 -laser radiation and with an electron beam in order to study microstructure refinement and test the advantage of using alloys as opposed to film-on-substrate combinations for the development of claddings

  8. Near-IR Spectral Imaging of Semiconductor Absorption Sites in Integrated Circuits

    Directory of Open Access Journals (Sweden)

    E. C. Samson

    2004-12-01

    Full Text Available We derive spectral maps of absorption sites in integrated circuits (ICs by varying the wavelength of the optical probe within the near-IR range. This method has allowed us to improve the contrast of the acquired images by revealing structures that have a different optical absorption from neighboring sites. A false color composite image from those acquired at different wavelengths is generated from which the response of each semiconductor structure can be deduced. With the aid of the spectral maps, nonuniform absorption was also observed in a semiconductor structure located near an electrical overstress defect. This method may prove important in failure analysis of ICs by uncovering areas exhibiting anomalous absorption, which could improve localization of defective edifices in the semiconductor parts of the microchip

  9. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    Science.gov (United States)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  10. Thermal effects of CO2 capture by solid adsorbents: some approaches by IR image processing

    International Nuclear Information System (INIS)

    Benevides Ferreira, J.F.; Pradere, C.; Batsale, J.C.; Jolly, J.; Pavageau, B.; Le Bourdon, G.; Mascetti, J.; Servant, L.

    2013-01-01

    Thanks to infrared thermography, we have studied the mechanisms of CO 2 capture by solid adsorbents (CO 2 capture via gas adsorption on various types of porous substrates) to better understand the physico-chemical mechanisms that control CO 2 -surface interactions. In order to develop in the future an efficient process for post-combustion CO 2 capture, it is necessary to quantify the energy of adsorption of the gas on the adsorbent (exothermic process). The released heat (heat of adsorption) is a key parameter for the choice of materials and for the design of capture processes. Infrared thermography is used, at first approach, to detect the temperature fields on a thin-layer of adsorbent during CO 2 adsorption. An analytical heat transfer model was developed to evaluate the adsorption heat flux and to estimate, via an inverse technique, the heat of adsorption. The main originality of our method is to estimate heat losses directly from the heat generated during the adsorption process. Then, the estimated heat loss is taken for an a posteriori calculation of the adsorption heat flux. Finally, the heat of adsorption may be estimated. The interest in using infrared thermography is also its ability to quickly change the experimental setup, for example, to switch from the adsorbent thin-layer to the adsorbent bed configuration. We present the first results tempting to link the thin-layer data to the propagation speed of the thermal front in a milli-fluidics adsorption bed, also observed by IR thermography. (authors)

  11. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  12. Research on simulated infrared image utility evaluation using deep representation

    Science.gov (United States)

    Zhang, Ruiheng; Mu, Chengpo; Yang, Yu; Xu, Lixin

    2018-01-01

    Infrared (IR) image simulation is an important data source for various target recognition systems. However, whether simulated IR images could be used as training data for classifiers depends on the features of fidelity and authenticity of simulated IR images. For evaluation of IR image features, a deep-representation-based algorithm is proposed. Being different from conventional methods, which usually adopt a priori knowledge or manually designed feature, the proposed method can extract essential features and quantitatively evaluate the utility of simulated IR images. First, for data preparation, we employ our IR image simulation system to generate large amounts of IR images. Then, we present the evaluation model of simulated IR image, for which an end-to-end IR feature extraction and target detection model based on deep convolutional neural network is designed. At last, the experiments illustrate that our proposed method outperforms other verification algorithms in evaluating simulated IR images. Cross-validation, variable proportion mixed data validation, and simulation process contrast experiments are carried out to evaluate the utility and objectivity of the images generated by our simulation system. The optimum mixing ratio between simulated and real data is 0.2≤γ≤0.3, which is an effective data augmentation method for real IR images.

  13. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues; Das TApIR Experiment IR-Absorptionsspektren fluessiger Wasserstoffisotopologe

    Energy Technology Data Exchange (ETDEWEB)

    Groessle, Robin

    2015-11-27

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  14. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    Science.gov (United States)

    Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43−at 450 cm-1 and ν4PO43− from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with

  15. Assessing various Infrared (IR microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Directory of Open Access Journals (Sweden)

    Claudia Woess

    Full Text Available Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio

  16. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Science.gov (United States)

    Woess, Claudia; Unterberger, Seraphin Hubert; Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time

  17. Structurally Integrated Coatings for Wear and Corrosion (SICWC): Arc Lamp, InfraRed (IR) Thermal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Mackiewicz-Ludtka, G.; Sebright, J. [Caterpillar Corp.

    2007-12-15

    The primary goal of this Cooperative Research and Development Agreement (CRADA) betwe1311 UT-Battelle (Contractor) and Caterpillar Inc. (Participant) was to develop the plasma arc lamp (PAL), infrared (IR) thermal processing technology 1.) to enhance surface coating performance by improving the interfacial bond strength between selected coatings and substrates; and 2.) to extend this technology base for transitioning of the arc lamp processing to the industrial Participant. Completion of the following three key technical tasks (described below) was necessary in order to accomplish this goal. First, thermophysical property data sets were successfully determined for composite coatings applied to 1010 steel substrates, with a more limited data set successfully measured for free-standing coatings. These data are necessary for the computer modeling simulations and parametric studies to; A.) simulate PAL IR processing, facilitating the development of the initial processing parameters; and B.) help develop a better understanding of the basic PAL IR fusing process fundamentals, including predicting the influence of melt pool stirring and heat tnmsfar characteristics introduced during plasma arc lamp infrared (IR) processing; Second, a methodology and a set of procedures were successfully developed and the plasma arc lamp (PAL) power profiles were successfully mapped as a function of PAL power level for the ORNL PAL. The latter data also are necessary input for the computer model to accurately simulate PAL processing during process modeling simulations, and to facilitate a better understand of the fusing process fundamentals. Third, several computer modeling codes have been evaluated as to their capabilities and accuracy in being able to capture and simulate convective mixing that may occur during PAL thermal processing. The results from these evaluation efforts are summarized in this report. The intention of this project was to extend the technology base and provide for

  18. Effect of cyclosporin A administration on the biodistribution and multipinhole {mu}SPECT imaging of [{sup 123}I]R91150 in rodent brain

    Energy Technology Data Exchange (ETDEWEB)

    Blanckaert, P.; Burvenich, I.; Bruyne, S. de; Moerman, L.; Wyffels, L.; Vos, F. de [Faculty of Pharmaceutical Sciences, Ghent University, Laboratory for Radiopharmacy, Gent (Belgium); Staelens, S. [Ghent University - IBBT, MEDISIP, Faculty of Engineering, Gent (Belgium)

    2009-03-15

    P-glycoprotein (Pgp) is an efflux protein found amongst other locations in the blood-brain barrier. It is important to investigate the effect of Pgp modulation on clinically used brain tracers, because brain uptake of the tracer can be altered by blocking of the Pgp efflux transporter. The function of Pgp can be blocked with cyclosporin A. We investigated the effect of cyclosporin A administration on the biodistribution of [{sup 123}I]R91150 in rodents, and the effect of Pgp blocking on the quality of multipinhole {mu}SPECT imaging with [{sup 123}I]R91150. The influence of increasing doses of cyclosporin A on the brain uptake of [{sup 123}I]R91150 was investigated in NMRI mice. A biodistribution study with [{sup 123}I]R91150 was performed in male Sprague-Dawley rats pretreated with cyclosporin A and not pretreated. Brain uptake of [{sup 123}I]R91150 after cyclosporin A injection was compared to the brain uptake in untreated animals, and a displacement study with ketanserin was performed in both groups. A multipinhole {mu}SPECT brain imaging study was also performed using a Milabs U-SPECT-II camera in male Sprague-Dawley rats. To exclude the effect of possible metabolites, a metabolite study was also performed. At the highest cyclosporin A dose (50 mg/kg), a sevenfold increase in brain radioactivity concentration was observed in NMRI mice. Also, a dose-response relationship was established between the dose of cyclosporin A and the brain uptake of [{sup 123}I]R91150 in mice. Compared to the control group, a five-fold increase in [{sup 123}I]R91150 radioactivity concentration was observed in the brain of Sprague-Dawley rats after cyclosporin A treatment (50 mg/kg). Radioactivity concentration in the frontal cortex increased from 0.24{+-}0.0092 to 1.58{+-}0.097% injected dose per gram of tissue after treatment with cyclosporin A (at the 1-h time-point). Blood radioactivity concentrations did not increase to the same extent. The cortical activity was displaced by

  19. Markov Processes in Image Processing

    Science.gov (United States)

    Petrov, E. P.; Kharina, N. L.

    2018-05-01

    Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.

  20. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  1. Effects of Low Carbohydrate High Protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR-/- mice: FT-IR and Raman imaging.

    Science.gov (United States)

    Wrobel, T P; Marzec, K M; Chlopicki, S; Maślak, E; Jasztal, A; Franczyk-Żarów, M; Czyżyńska-Cichoń, I; Moszkowski, T; Kostogrys, R B; Baranska, M

    2015-09-22

    Low Carbohydrate High Protein (LCHP) diet displays pro-atherogenic effects, however, the exact mechanisms involved are still unclear. Here, with the use of vibrational imaging, such as Fourier transform infrared (FT-IR) and Raman (RS) spectroscopies, we characterize biochemical content of plaques in Brachiocephalic Arteries (BCA) from ApoE/LDLR(-/-) mice fed LCHP diet as compared to control, recomended by American Institute of Nutrition, AIN diet. FT-IR images were taken from 6-10 sections of BCA from each mice and were complemented with RS measurements with higher spatial resolution of chosen areas of plaque sections. In aortic plaques from LCHP fed ApoE/LDLR(-/-) mice, the content of cholesterol and cholesterol esters was increased, while that of proteins was decreased as evidenced by global FT-IR analysis. High resolution imaging by RS identified necrotic core/foam cells, lipids (including cholesterol crystals), calcium mineralization and fibrous cap. The decreased relative thickness of the outer fibrous cap and the presence of buried caps were prominent features of the plaques in ApoE/LDLR(-/-) mice fed LCHP diet. In conclusion, FT-IR and Raman-based imaging provided a complementary insight into the biochemical composition of the plaque suggesting that LCHP diet increased plaque cholesterol and cholesterol esters contents of atherosclerotic plaque, supporting the cholesterol-driven pathogenesis of LCHP-induced atherogenesis.

  2. Surface enhanced imaging and IR spectroscopy of the biological cells on the nanostructured gold film

    Directory of Open Access Journals (Sweden)

    G.I. Dovbeshko

    2017-07-01

    Full Text Available New approach for optical imaging, structural study and cell cultivation based on the effect of the enhancement of optical signals from biomolecules and biological cells near nanostructured rough gold surface is proposed. The surface enhanced IR absorption (SEIRA spectroscopy and confocal microscopy experiments were made using the culture of SPEV (porcine embryonic kidney epithelium transplantable line and fibroblast cells, cultivated and/or adsorbed on the gold substrate. The SEIRA spectra registered from monolayer of the SPEV cells cultivated on the rough gold showed a low frequency shift of about 2 to 7 cm 1 for the most characteristic IR vibrations, compared with those adsorbed from suspension on the same substrate. An enhancement factor of 15…30 was obtained for different molecular vibrations. The confocal microscopy contrast images of the SPEV cells on rough gold substrate were obtained in laser fluorescence mode. This approach opens new possibilities for visualization of the living cells in vivo without staining. The fluorescence of the rough gold surfaces and effects responsible for our findings have been discussed.

  3. Automated processing of thermal infrared images of Osservatorio Vesuviano permanent surveillance network by using Matlab code

    Science.gov (United States)

    Sansivero, Fabio; Vilardo, Giuseppe; Caputo, Teresa

    2017-04-01

    The permanent thermal infrared surveillance network of Osservatorio Vesuviano (INGV) is composed of 6 stations which acquire IR frames of fumarole fields in the Campi Flegrei caldera and inside the Vesuvius crater (Italy). The IR frames are uploaded to a dedicated server in the Surveillance Center of Osservatorio Vesuviano in order to process the infrared data and to excerpt all the information contained. In a first phase the infrared data are processed by an automated system (A.S.I.R.A. Acq- Automated System of IR Analysis and Acquisition) developed in Matlab environment and with a user-friendly graphic user interface (GUI). ASIRA daily generates time-series of residual temperature values of the maximum temperatures observed in the IR scenes after the removal of seasonal effects. These time-series are displayed in the Surveillance Room of Osservatorio Vesuviano and provide information about the evolution of shallow temperatures field of the observed areas. In particular the features of ASIRA Acq include: a) efficient quality selection of IR scenes, b) IR images co-registration in respect of a reference frame, c) seasonal correction by using a background-removal methodology, a) filing of IR matrices and of the processed data in shared archives accessible to interrogation. The daily archived records can be also processed by ASIRA Plot (Matlab code with GUI) to visualize IR data time-series and to help in evaluating inputs parameters for further data processing and analysis. Additional processing features are accomplished in a second phase by ASIRA Tools which is Matlab code with GUI developed to extract further information from the dataset in automated way. The main functions of ASIRA Tools are: a) the analysis of temperature variations of each pixel of the IR frame in a given time interval, b) the removal of seasonal effects from temperature of every pixel in the IR frames by using an analytic approach (removal of sinusoidal long term seasonal component by using a

  4. Insight into regulation of emission color and photodeactivation process from heteroleptic to homoleptic Ir(III) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin; Zheng, Danning; Feng, Songyan; Wang, Li, E-mail: chemwangl@henu.edu.cn; Li, Junfeng, E-mail: jfli@theochem.kth.se; Zhang, Jinglai, E-mail: zhangjinglai@henu.edu.cn

    2017-03-15

    The phosphorescent process of two heteroleptic ((DMDPI){sub 2}Ir(tftap) and (tftap){sub 2}Ir(DMDPI)) and one homoleptic (Ir(DMDPI){sub 3}) Ir(III) complexes (See ) is theoretically investigated by density functional theory (DFT) and quadratic response (QR) time-dependent density functional theory (TDDFT) calculations including spin-orbit coupling (SOC). Two or three triplet excited states are confirmed for three complexes, respectively. On the basis of the respective optimized triplet geometry, the emissive wavelength is determined by the ΔSCF-DFT method. Furthermore, the radiative rate constant (k{sub r}) is also calculated corresponding to each triplet state. Combination of k{sub r} and emissive energy, the emission rule is determined. It is found that complex (DMDPI){sub 2}Ir(tftap) follows the dual emission scenarios, while complexes (tftap){sub 2}Ir(DMDPI) and Ir(DMDPI){sub 3} obey the Kasha rule. The nonradiative rate constant (k{sub nr}) is qualitatively evaluated by the construction of triplet potential surface via metal centered ({sup 3}MC d-d) state. Finally, the sequence of quantum yield is compared by both k{sub r} and k{sub nr}. The quantum yield of homoleptic Ir(III) complex Ir(DMDPI){sub 3} is higher than that of heteroleptic Ir(III) complexes (DMDPI){sub 2}Ir(tftap) and (tftap){sub 2}Ir(DMDPI). However, the emissive wavelength of Ir(DMDPI){sub 3} is in the red color region rather than blue color.

  5. High-resolution focal plane array IR detection modules and digital signal processing technologies at AIM

    Science.gov (United States)

    Cabanski, Wolfgang A.; Breiter, Rainer; Koch, R.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann; Eberhardt, Kurt; Oelmaier, Reinhard; Schneider, Harald; Walther, Martin

    2000-07-01

    Full video format focal plane array (FPA) modules with up to 640 X 512 pixels have been developed for high resolution imaging applications in either mercury cadmium telluride (MCT) mid wave (MWIR) infrared (IR) or platinum silicide (PtSi) and quantum well infrared photodetector (QWIP) technology as low cost alternatives to MCT for high performance IR imaging in the MWIR or long wave spectral band (LWIR). For the QWIP's, a new photovoltaic technology was introduced for improved NETD performance and higher dynamic range. MCT units provide fast frame rates > 100 Hz together with state of the art thermal resolution NETD hardware platforms and software for image visualization and nonuniformity correction including scene based self learning algorithms had to be developed to accomplish for the high data rates of up to 18 M pixels/s with 14-bit deep data, allowing to take into account nonlinear effects to access the full NETD by accurate reduction of residual fixed pattern noise. The main features of these modules are summarized together with measured performance data for long range detection systems with moderately fast to slow F-numbers like F/2.0 - F/3.5. An outlook shows most recent activities at AIM, heading for multicolor and faster frame rate detector modules based on MCT devices.

  6. Influence of Desorption Conditions on Analyte Sensitivity and Internal Energy in Discrete Tissue or Whole Body Imaging by IR-MALDESI

    Science.gov (United States)

    Rosen, Elias P.; Bokhart, Mark T.; Ghashghaei, H. Troy; Muddiman, David C.

    2015-06-01

    Analyte signal in a laser desorption/postionization scheme such as infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is strongly coupled to the degree of overlap between the desorbed plume of neutral material from a sample and an orthogonal electrospray. In this work, we systematically examine the effect of desorption conditions on IR-MALDESI response to pharmaceutical drugs and endogenous lipids in biological tissue using a design of experiments approach. Optimized desorption conditions have then been used to conduct an untargeted lipidomic analysis of whole body sagittal sections of neonate mouse. IR-MALDESI response to a wide range of lipid classes has been demonstrated, with enhanced lipid coverage received by varying the laser wavelength used for mass spectrometry imaging (MSI). Targeted MS2 imaging (MS2I) of an analyte, cocaine, deposited beneath whole body sections allowed determination of tissue-specific ion response factors, and CID fragments of cocaine were monitored to comment on wavelength-dependent internal energy deposition based on the "survival yield" method.

  7. Composite multi-lobe descriptor for cross spectral face recognition: matching active IR to visible light images

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.

    2015-05-01

    Matching facial images across electromagnetic spectrum presents a challenging problem in the field of biometrics and identity management. An example of this problem includes cross spectral matching of active infrared (IR) face images or thermal IR face images against a dataset of visible light images. This paper describes a new operator named Composite Multi-Lobe Descriptor (CMLD) for facial feature extraction in cross spectral matching of near-infrared (NIR) or short-wave infrared (SWIR) against visible light images. The new operator is inspired by the design of ordinal measures. The operator combines Gaussian-based multi-lobe kernel functions, Local Binary Pattern (LBP), generalized LBP (GLBP) and Weber Local Descriptor (WLD) and modifies them into multi-lobe functions with smoothed neighborhoods. The new operator encodes both the magnitude and phase responses of Gabor filters. The combining of LBP and WLD utilizes both the orientation and intensity information of edges. Introduction of multi-lobe functions with smoothed neighborhoods further makes the proposed operator robust against noise and poor image quality. Output templates are transformed into histograms and then compared by means of a symmetric Kullback-Leibler metric resulting in a matching score. The performance of the multi-lobe descriptor is compared with that of other operators such as LBP, Histogram of Oriented Gradients (HOG), ordinal measures, and their combinations. The experimental results show that in many cases the proposed method, CMLD, outperforms the other operators and their combinations. In addition to different infrared spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated in this paper. Performance of CMLD is evaluated for of each of the three cases of distances.

  8. Mid-IR Imaging: Upconversion imager improves IR gas sensing

    DEFF Research Database (Denmark)

    Sahlberg, Anna-Lena; Li, Zhongshan; Høgstedt, Lasse

    2014-01-01

    A nonlinear upconversion detector shows near-shot-noise-limited performance and compares favorably—while adding additional imaging information—to conventional cryogenic detectors in the measurement of trace-level gases at atmospheric pressure....

  9. Numerical method for IR background and clutter simulation

    Science.gov (United States)

    Quaranta, Carlo; Daniele, Gina; Balzarotti, Giorgio

    1997-06-01

    The paper describes a fast and accurate algorithm of IR background noise and clutter generation for application in scene simulations. The process is based on the hypothesis that background might be modeled as a statistical process where amplitude of signal obeys to the Gaussian distribution rule and zones of the same scene meet a correlation function with exponential form. The algorithm allows to provide an accurate mathematical approximation of the model and also an excellent fidelity with reality, that appears from a comparison with images from IR sensors. The proposed method shows advantages with respect to methods based on the filtering of white noise in time or frequency domain as it requires a limited number of computation and, furthermore, it is more accurate than the quasi random processes. The background generation starts from a reticule of few points and by means of growing rules the process is extended to the whole scene of required dimension and resolution. The statistical property of the model are properly maintained in the simulation process. The paper gives specific attention to the mathematical aspects of the algorithm and provides a number of simulations and comparisons with real scenes.

  10. Combined IR imaging-neural network method for the estimation of internal temperature in cooked chicken meat

    Science.gov (United States)

    Ibarra, Juan G.; Tao, Yang; Xin, Hongwei

    2000-11-01

    A noninvasive method for the estimation of internal temperature in chicken meat immediately following cooking is proposed. The external temperature from IR images was correlated with measured internal temperature through a multilayer neural network. To provide inputs for the network, time series experiments were conducted to obtain simultaneous observations of internal and external temperatures immediately after cooking during the cooling process. An IR camera working at the spectral band of 3.4 to 5.0 micrometers registered external temperature distributions without the interference of close-to-oven environment, while conventional thermocouples registered internal temperatures. For an internal temperature at a given time, simultaneous and lagged external temperature observations were used as the input of the neural network. Based on practical and statistical considerations, a criterion is established to reduce the nodes in the neural network input. The combined method was able to estimate internal temperature for times between 0 and 540 s within a standard error of +/- 1.01 degree(s)C, and within an error of +/- 1.07 degree(s)C for short times after cooking (3 min), with two thermograms at times t and t+30s. The method has great potential for monitoring of doneness of chicken meat in conveyor belt type cooking and can be used as a platform for similar studies in other food products.

  11. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2012-05-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing.

  12. IR characteristic simulation of city scenes based on radiosity model

    Science.gov (United States)

    Xiong, Xixian; Zhou, Fugen; Bai, Xiangzhi; Yu, Xiyu

    2013-09-01

    Reliable modeling for thermal infrared (IR) signatures of real-world city scenes is required for signature management of civil and military platforms. Traditional modeling methods generally assume that scene objects are individual entities during the physical processes occurring in infrared range. However, in reality, the physical scene involves convective and conductive interactions between objects as well as the radiations interactions between objects. A method based on radiosity model describes these complex effects. It has been developed to enable an accurate simulation for the radiance distribution of the city scenes. Firstly, the physical processes affecting the IR characteristic of city scenes were described. Secondly, heat balance equations were formed on the basis of combining the atmospheric conditions, shadow maps and the geometry of scene. Finally, finite difference method was used to calculate the kinetic temperature of object surface. A radiosity model was introduced to describe the scattering effect of radiation between surface elements in the scene. By the synthesis of objects radiance distribution in infrared range, we could obtain the IR characteristic of scene. Real infrared images and model predictions were shown and compared. The results demonstrate that this method can realistically simulate the IR characteristic of city scenes. It effectively displays the infrared shadow effects and the radiation interactions between objects in city scenes.

  13. MicrOmega IR: a new infrared hyperspectral imaging microscope or in situ analysis

    Science.gov (United States)

    Vaitua, Leroi; Bibring, Jean-Pierre; Berthé, Michel

    2017-11-01

    MicrOmega IR is an ultra miniaturized Near Infrared hyperspectral microscope for in situ analysis of samples. It is designed to be implemented on board space planetary vehicles (lander and/or rovers). It acquires images of samples typically some 5 mm in width with a spatial sampling of 20 μm. On each pixel, MicrOmega acquires the spectrum in the spectral range 0.9 - 2.6 μm, with a possibility to extend the sensibility up to 4 μm. The spectrum will be measured in up to 300 contiguous spectral channels (600 in the extended range): given the diagnostic spectral features present in this domain, it provides the composition of each spatially resolved constituent. MicrOmega has thus the potential to identify: minerals, such as pyroxene and olivine, ferric oxides, hydrated phases such as phyllosilicates, sulfates and carbonates, ices and organics. The composition of the various phases within a given sample is a critical record of its formation and evolution. Coupled to the mapping information, it provides unique clues to describe the history of the parent body. In particular, the capability to identify hydrated grains and to characterize their adjacent phases has a huge potential in the search for potential bio-relics in Martian samples. This purely non destructive characterization enables further analyses (e.g. through mass spectrometry) to be performed, and/or to contribute to sample selection to return to Earth. MicrOmega IR is coupled to a visible microscope: MicrOmega VIS. Thus, the MicrOmega instrument is developed by an international consortium: IAS (Orsay, France), LESIA (Meudon, France), CBM (Orléans, France), University Of Bern (Bern, Switzerland), IKI (Moscow, Russia). This instrument (MicrOmega IR, MicrOmega VIS and the electronics) is selected for the ESA Exomars mission (launch scheduled for 2013). MicrOmega IR will be used in a reduced spectral range (0.9 - 2.6 μm), due to power, mass and thermal constraints: however, most minerals and other

  14. About possibility of temperature trace observing on the human skin using commercially available IR camera

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2016-09-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. Three years ago, we have demonstrated principal possibility to see a temperature trace, induced by food eating or water drinking, on the human body skin by using a passive THz camera. However, this camera is very expensive. Therefore, for practice it will be very convenient if one can use the IR camera for this purpose. In contrast to passive THz camera using, the IR camera does not allow to see the object under clothing, if an image, produced by this camera, is used directly. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To overcome this disadvantage we develop novel approach for computer processing of IR camera images. It allows us to increase a temperature resolution of IR camera as well as increasing of human year effective susceptibility. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments were made with measurements of a body temperature covered by T-shirt. Shown results are very important for the detection of forbidden objects, cancelled inside the human body, by using non-destructive control without using X-rays.

  15. Contributions to the Data Warehouse 2 and Prospects of the IRS Program

    Science.gov (United States)

    Barner, Frithjof; Venkataraman, V. Raghu; Makiola, Jens

    2016-08-01

    During 2015 and 2016, the IRS program has significantly contributed to the CSC-DA Data Warehouse. From its suite of optical EO satellites which operate in the visible, near IR and shortwave IR domain, data from the HR LISS-III and MR AWiFS sensors on board of Resourcesat-2 have been provided. Resourcesat-2 so far acquired cloud-free images of a vast majority of the first and second coverage of HR_IMAGE_2015 and several monthly MR coverages for MR_IMAGE_2015 over the EEA-39. The results regarding the above mentioned data sets will be discussed including an appraisal of the possible future role of upcoming IRS EO satellites for European data requirements.

  16. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching

    Science.gov (United States)

    Meng, Xiangwei; Chen, Feng; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-10-01

    We demonstrate a simple route to fabricate closed-packed infrared (IR) silicon microlens arrays (MLAs) based on femtosecond laser irradiation assisted by wet etching method. The fabricated MLAs show high fill factor, smooth surface and good uniformity. They can be used as optical devices for IR applications. The exposure and etching parameters are optimized to obtain reproducible microlens with hexagonal and rectangular arrangements. The surface roughness of the concave MLAs is only 56 nm. This presented method is a maskless process and can flexibly change the size, shape and the fill factor of the MLAs by controlling the experimental parameters. The concave MLAs on silicon can work in IR region and can be used for IR sensors and imaging applications.

  17. Automated recognition and tracking of aerosol threat plumes with an IR camera pod

    Science.gov (United States)

    Fauth, Ryan; Powell, Christopher; Gruber, Thomas; Clapp, Dan

    2012-06-01

    Protection of fixed sites from chemical, biological, or radiological aerosol plume attacks depends on early warning so that there is time to take mitigating actions. Early warning requires continuous, autonomous, and rapid coverage of large surrounding areas; however, this must be done at an affordable cost. Once a potential threat plume is detected though, a different type of sensor (e.g., a more expensive, slower sensor) may be cued for identification purposes, but the problem is to quickly identify all of the potential threats around the fixed site of interest. To address this problem of low cost, persistent, wide area surveillance, an IR camera pod and multi-image stitching and processing algorithms have been developed for automatic recognition and tracking of aerosol plumes. A rugged, modular, static pod design, which accommodates as many as four micro-bolometer IR cameras for 45deg to 180deg of azimuth coverage, is presented. Various OpenCV1 based image-processing algorithms, including stitching of multiple adjacent FOVs, recognition of aerosol plume objects, and the tracking of aerosol plumes, are presented using process block diagrams and sample field test results, including chemical and biological simulant plumes. Methods for dealing with the background removal, brightness equalization between images, and focus quality for optimal plume tracking are also discussed.

  18. Image processing and recognition for biological images.

    Science.gov (United States)

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  19. The TApIR experiment. IR absorption spectra of liquid hydrogen isotopologues

    International Nuclear Information System (INIS)

    Groessle, Robin

    2015-01-01

    The scope of the thesis is the infrared absorption spectroscopy of liquid hydrogen isotopologues with the tritium absorption infrared spectroscopy (TApIR) experiment at the tritium laboratory Karlsruhe (TLK). The calibration process from the sample preparation to the reference measurements are described. A further issue is the classical evaluation of FTIR absorption spectra and the extension using the rolling circle filter (RCF) including the effects on statistical and systematical errors. The impact of thermal and nuclear spin temperature on the IR absorption spectra is discussed. An empirical based modeling for the IR absorption spectra of liquid hydrogen isotopologues is performed.

  20. scikit-image: image processing in Python.

    Science.gov (United States)

    van der Walt, Stéfan; Schönberger, Johannes L; Nunez-Iglesias, Juan; Boulogne, François; Warner, Joshua D; Yager, Neil; Gouillart, Emmanuelle; Yu, Tony

    2014-01-01

    scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

  1. scikit-image: image processing in Python

    Directory of Open Access Journals (Sweden)

    Stéfan van der Walt

    2014-06-01

    Full Text Available scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

  2. Methods in Astronomical Image Processing

    Science.gov (United States)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  3. The application of FT-IR spectrum method in photocuring process for polyester acrylate

    International Nuclear Information System (INIS)

    Cao Jin; Lu Xianliang; Zhang Zhenli

    1995-01-01

    This paper describes that the UV curing process of polyester acrylate can be monitored by measuring the degree of double bonds conversion with FT-IR spectroscopy. The various factors effect the UV curing rate. The relation between the curing rate and the concentration of photoinitiator, crosslinking agent, UV light intensity was discussed. (author)

  4. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  5. Test and evaluation of IR detectors and arrays II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992

    Science.gov (United States)

    Hoke, Forney M.

    The present conference discusses a radiometric calibration system for IR cameras, a methodology for testing IR focal-plane arrays in simulated nuclear radiation environments, process optimization for Si:As In-bumped focal-plane arrays, precise MTF measurements for focal-plane arrays, and IR focal-plane array crosstalk measurement. Also discussed are an imaging metric for IR focal-plane arrays, optical stimuli for high-volume automated testing of 2D HgCdTe focal-plane arrays, the evaluation of a solid-state photomultiplier focal-plane array for SDI, spectral effects on bulk photoconductors operated at cryogenic temperatures, and a novel technique for measuring the ionizing radiation effects in MOS transistors.

  6. Fluorescent microthermographic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.L.

    1993-09-01

    In the early days of microelectronics, design rules and feature sizes were large enough that sub-micron spatial resolution was not needed. Infrared or IR thermal techniques were available that calculated the object`s temperature from infrared emission. There is a fundamental spatial resolution limitation dependent on the wavelengths of light being used in the image formation process. As the integrated circuit feature sizes began to shrink toward the one micron level, the limitations imposed on IR thermal systems became more pronounced. Something else was needed to overcome this limitation. Liquid crystals have been used with great success, but they lack the temperature measurement capabilities of other techniques. The fluorescent microthermographic imaging technique (FMI) was developed to meet this need. This technique offers better than 0.01{degrees}C temperature resolution and is diffraction limited to 0.3 {mu}m spatial resolution. While the temperature resolution is comparable to that available on IR systems, the spatial resolution is much better. The FMI technique provides better spatial resolution by using a temperature dependent fluorescent film that emits light at 612 nm instead of the 1.5 {mu}m to 12 {mu}m range used by IR techniques. This tutorial starts with a review of blackbody radiation physics, the process by which all heated objects emit radiation to their surroundings, in order to understand the sources of information that are available to characterize an object`s surface temperature. The processes used in infrared thermal imaging are then detailed to point out the limitations of the technique but also to contrast it with the FMI process. The FMI technique is then described in detail, starting with the fluorescent film physics and ending with a series of examples of past applications of FMI.

  7. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    Science.gov (United States)

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.

  8. GTC/CanariCam Mid-IR Imaging of the Fullerene-rich Planetary Nebula IC 418: Searching for the Spatial Distribution of Fullerene-like Molecules

    Science.gov (United States)

    Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.

    2018-03-01

    We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.

  9. Image processing with ImageJ

    CERN Document Server

    Pascau, Javier

    2013-01-01

    The book will help readers discover the various facilities of ImageJ through a tutorial-based approach.This book is targeted at scientists, engineers, technicians, and managers, and anyone who wishes to master ImageJ for image viewing, processing, and analysis. If you are a developer, you will be able to code your own routines after you have finished reading this book. No prior knowledge of ImageJ is expected.

  10. Application of DIRI dynamic infrared imaging in reconstructive surgery

    Science.gov (United States)

    Pawlowski, Marek; Wang, Chengpu; Jin, Feng; Salvitti, Matthew; Tenorio, Xavier

    2006-04-01

    We have developed the BioScanIR System based on QWIP (Quantum Well Infrared Photodetector). Data collected by this sensor are processed using the DIRI (Dynamic Infrared Imaging) algorithms. The combination of DIRI data processing methods with the unique characteristics of the QWIP sensor permit the creation of a new imaging modality capable of detecting minute changes in temperature at the surface of the tissue and organs associated with blood perfusion due to certain diseases such as cancer, vascular disease and diabetes. The BioScanIR System has been successfully applied in reconstructive surgery to localize donor flap feeding vessels (perforators) during the pre-surgical planning stage. The device is also used in post-surgical monitoring of skin flap perfusion. Since the BioScanIR is mobile; it can be moved to the bedside for such monitoring. In comparison to other modalities, the BioScanIR can localize perforators in a single, 20 seconds scan with definitive results available in minutes. The algorithms used include (FFT) Fast Fourier Transformation, motion artifact correction, spectral analysis and thermal image scaling. The BioScanIR is completely non-invasive and non-toxic, requires no exogenous contrast agents and is free of ionizing radiation. In addition to reconstructive surgery applications, the BioScanIR has shown promise as a useful functional imaging modality in neurosurgery, drug discovery in pre-clinical animal models, wound healing and peripheral vascular disease management.

  11. Near-IR Two-Photon Fluorescent Sensor for K(+) Imaging in Live Cells.

    Science.gov (United States)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D

    2015-08-19

    A new two-photon excited fluorescent K(+) sensor is reported. The sensor comprises three moieties, a highly selective K(+) chelator as the K(+) recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (>52-fold) in detecting K(+) over other physiological metal cations. Upon binding K(+), the sensor switches from nonfluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K(+) sensing in living cells.

  12. Limewashed mural paintings as seen by VIS-IR reflectography

    Science.gov (United States)

    Fontana, R.; Striova, J.; Barucci, M.; Pampaloni, E.; Raffaelli, M.; Pezzati, L.; Mariotti, P.

    2015-06-01

    Near-Infrared (NIR) reflectography is a well-established technique for painting diagnostics, offering a fundamental contribution to the conservation of paintings. Since the '80s it has been routinely applied to study the execution technique of the author, as well as the presence of pentimenti, retouches, integrations or underdrawing. In the last decades IR reflectography has been extended to the visible (VIS) spectral range, providing information about the pigment composition. Up to now the multispectral analysis is still applied at an experimental level, as the processing of the image set is not straightforward. Rarely multispectral VIS-IR application has been applied to frescos, probably due to the lack, in most cases, of a scattering background. In this work we present the results provided by a multispectral scanning device based on single sensor acquisition, working in the 380-2500 nm spectral range, that is a laboratory prototype specifically built for research-grade imaging. The technique have been applied on a mock up simulating a mural painting substrate where an underdrawing, made of either carbon or iron-gall ink, was covered by different surface layers of limewash, the so-called scialbo.

  13. Reduction of vascular artifact on T1-weighted images of the brain by using three-dimensional double IR fast spoiled gradient echo recalled acquisition in the steady state (FSPGR) at 3.0 Tesla

    International Nuclear Information System (INIS)

    Fujiwara, Yasuhiro; Yamaguchi, Isao; Ookoshi, Yusuke; Ootani, Yuriko; Matsuda, Tsuyoshi; Ishimori, Yoshiyuki; Hayashi, Hiroyuki; Miyati, Tosiaki; Kimura, Hirohiko

    2007-01-01

    The purpose of this study was to decrease vascular artifacts caused by the in-flow effect in three-dimensional inversion recovery prepared fast spoiled gradient recalled acquisition in the steady state (3D IR FSPGR) at 3.0 Tesla. We developed 3D double IR FSPGR and investigated the signal characteristics of the new sequence. The 3D double IR FSPGR sequence uses two inversion pulses, the first for obtaining tissue contrast and the second for nulling vascular signal, which is applied at the time of the first IR period at the neck region. We have optimized scan parameters based on both phantom and in-vivo study. As a result, optimized parameters (1st TI=700 ms, 2nd TI=400 ms) successfully have produced much less vessel signal at reduction than conventional 3D IR FSPGR over a wide imaging range, while preserving the signal-to-noise ratio (SNR) and gray/white matter contrast. Moreover, the decreased artifact was also confirmed by visual inspection of the images obtained in vivo using those parameters. Thus, 3D double IR FSPGR was a useful sequence for the acquisition of T1-weighted images at 3.0 Tesla. (author)

  14. Strong-Field Physics with Mid-IR Fields

    Directory of Open Access Journals (Sweden)

    Benjamin Wolter

    2015-06-01

    Full Text Available Strong-field physics is currently experiencing a shift towards the use of mid-IR driving wavelengths. This is because they permit conducting experiments unambiguously in the quasistatic regime and enable exploiting the effects related to ponderomotive scaling of electron recollisions. Initial measurements taken in the mid-IR immediately led to a deeper understanding of photoionization and allowed a discrimination among different theoretical models. Ponderomotive scaling of rescattering has enabled new avenues towards time-resolved probing of molecular structure. Essential for this paradigm shift was the convergence of two experimental tools: (1 intense mid-IR sources that can create high-energy photons and electrons while operating within the quasistatic regime and (2 detection systems that can detect the generated high-energy particles and image the entire momentum space of the interaction in full coincidence. Here, we present a unique combination of these two essential ingredients, namely, a 160-kHz mid-IR source and a reaction microscope detection system, to present an experimental methodology that provides an unprecedented three-dimensional view of strong-field interactions. The system is capable of generating and detecting electron energies that span a 6 order of magnitude dynamic range. We demonstrate the versatility of the system by investigating electron recollisions, the core process that drives strong-field phenomena, at both low (meV and high (hundreds of eV energies. The low-energy region is used to investigate recently discovered low-energy structures, while the high-energy electrons are used to probe atomic structure via laser-induced electron diffraction. Moreover, we present, for the first time, the correlated momentum distribution of electrons from nonsequential double ionization driven by mid-IR pulses.

  15. Radioluminescence dating: the IR emission of feldspar

    International Nuclear Information System (INIS)

    Schilles, Thomas.; Habermann, Jan

    2000-01-01

    A new luminescence reader for radioluminescence (RL) measurements is presented. The system allows detection of RL emissions in the near infrared region (IR). Basic bleaching properties of the IR-RL emission of feldspars are investigated. Sunlight-bleaching experiments as a test for sensitivity changes are presented. IR-bleaching experiments were carried out to obtain information about the underlying physical processes of the IR-RL emission

  16. Hyperspectral image processing methods

    Science.gov (United States)

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  17. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  18. Studies of IR-screening smoke clouds

    Energy Technology Data Exchange (ETDEWEB)

    Cudzilo, S. [Military Univ. of Technology, Warsaw (Poland)

    2001-02-01

    This paper contains some results of research on the IR-screening capability of smoke clouds generated during the combustion process of varied pyrotechnic formulations. The smoke compositions were made from some oxygen or oxygen-free mixtures containing metal and chloroorganic compounds or mixtures based on red phosphorus. The camouflage effectiveness of clouds generated by these formulations was investigated under laboratory conditions with an infrared camera. The technique employed enables determination of radiant temperature distributions in a smoke cloud treated as an energy equivalent of a grey body emission. The results of the analysis of thermographs from the camera were the basis on which the mixtures producing screens of the highest countermeasure for thermal imaging systems have been chosen. (orig.)

  19. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  20. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  1. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  2. IR spectroscopy together with multivariate data analysis as a process analytical tool for in-line monitoring of crystallization process and solid-state analysis of crystalline product

    DEFF Research Database (Denmark)

    Pöllänen, Kati; Häkkinen, Antti; Reinikainen, Satu-Pia

    2005-01-01

    -ray powder diffraction (XRPD) as a reference technique. In order to fully utilize DRIFT, the application of multivariate techniques are needed, e.g., multivariate statistical process control (MSPC), principal component analysis (PCA) and partial least squares (PLS). The results demonstrate that multivariate...... Fourier transform infra red (ATR-FTIR) spectroscopy provides valuable information on process, which can be utilized for more controlled crystallization processes. Diffuse reflectance Fourier transform infra red (DRIFT-IR) is applied for polymorphic characterization of crystalline product using X......Crystalline product should exist in optimal polymorphic form. Robust and reliable method for polymorph characterization is of great importance. In this work, infra red (IR) spectroscopy is applied for monitoring of crystallization process in situ. The results show that attenuated total reflection...

  3. Covalent IR820-PEG-diamine nanoconjugates for theranostic applications in cancer

    Directory of Open Access Journals (Sweden)

    Fernandez-Fernandez A

    2014-10-01

    Full Text Available Alicia Fernandez-Fernandez,1,2 Romila Manchanda,1,3 Denny Carvajal,1,4 Tingjun Lei,1,5 Supriya Srinivasan,1 Anthony J McGoron11Biomedical Engineering Department, Florida International University, Miami, FL, USA; 2Physical Therapy Department, Nova Southeastern University, Fort Lauderdale, FL, USA; 3Chemistry Department, Galgotias University, Greater Noida, UP, India; 4Mount Sinai Medical Center, 5Cirle, Miami, FL, USAAbstract: Near-infrared dyes can be used as theranostic agents in cancer management, based on their optical imaging and localized hyperthermia capabilities. However, their clinical translatability is limited by issues such as photobleaching, short circulation times, and nonspecific biodistribution. Nanoconjugate formulations of cyanine dyes, such as IR820, may be able to overcome some of these limitations. We covalently conjugated IR820 with 6 kDa polyethylene glycol (PEG-diamine to create a nanoconjugate (IRPDcov with potential for in vivo applications. The conjugation process resulted in nearly spherical, uniformly distributed nanoparticles of approximately 150 nm diameter and zeta potential -0.4±0.3 mV. The IRPDcov formulation retained the ability to fluoresce and to cause hyperthermia-mediated cell-growth inhibition, with enhanced internalization and significantly enhanced cytotoxic hyperthermia effects in cancer cells compared with free dye. Additionally, IRPDcov demonstrated a significantly longer (P<0.05 plasma half-life, elimination half-life, and area under the curve (AUC value compared with IR820, indicating larger overall exposure to the theranostic agent in mice. The IRPDcov conjugate had different organ localization than did free IR820, with potential reduced accumulation in the kidneys and significantly lower (P<0.05 accumulation in the lungs. Some potential advantages of IR820-PEG-diamine nanoconjugates may include passive targeting of tumor tissue through the enhanced permeability and retention effect, prolonged

  4. using fuzzy logic in image processing

    International Nuclear Information System (INIS)

    Ashabrawy, M.A.F.

    2002-01-01

    due to the unavoidable merge between computer and mathematics, the signal processing in general and the processing in particular have greatly improved and advanced. signal processing deals with the processing of any signal data for use by a computer, while image processing deals with all kinds of images (just images). image processing involves the manipulation of image data for better appearance and viewing by people; consequently, it is a rapidly growing and exciting field to be involved in today . this work takes an applications - oriented approach to image processing .the applications; the maps and documents of the first egyptian research reactor (ETRR-1), the x-ray medical images and the fingerprints image. since filters, generally, work continuous ranges rather than discrete values, fuzzy logic techniques are more convenient.thee techniques are powerful in image processing and can deal with one- dimensional, 1-D and two - dimensional images, 2-D images as well

  5. NEAR-IR TWO PHOTON MICROSCOPY IMAGING OF SILICA NANOPARTICLES FUNCTIONALIZED WITH ISOLATED SENSITIZED Yb(III) CENTERS

    Energy Technology Data Exchange (ETDEWEB)

    Lapadula, Giuseppe; Bourdolle, Adrien; Allouche, Florian; Conley, Matthew P.; Maron, Laurent; Lukens, Wayne W.; Guyot, Yannick; Andraud, Chantal; Brasselet, Sophie; Copé; ret, Christophe; Maury, Olivier; Andersen, Richard A.

    2013-01-12

    Bright nano objects emitting in the near infrared with a maximal cross section of 41.4 x 103 GM (Goppert Mayer), were prepared by implanting ca. 180 4,4 diethylaminostyryl 2,2 bipyridine (DEAS) Yb(III) complexes on the surface of 12 nm silica nanoparticles. The surface complexes ([DEAS Ln SiO2], Ln =Y,Yb) were characterized using IR, solid state NMR, UV Vis, EXAFS spectroscopies in combination with the preparation and characterization of similar molecular analogues by analytical techniques (IR, solution NMR, UV Vis, X ray crystallography) as well as DFT calculations. Starting from the partial dehydroxylation of the silica at 700 C on high vacuum having 0.8 OH.nm 2, the grafting of Ln(N(SiMe3)2)3 generate ≤SiO Ln(N(SiMe3)2)2, which upon thermal step and coordination of the DEAS chromophore yields (≤SiO)3Ln(DEAS). Surface and molecular analogues display similar properties, in terms of DEAS binding constants absorption maxima and luminescence properties (intense emission band assigned to a ligand centered CT fluorescence and life time) in the solid state, consistent with the molecular nature of the surface species. The densely functionalized nanoparticles can be dispersed via ultra-sonication in small ca. 15-20 nm aggregates (1 to 6 elementary particles) that were detected using two photon microscopy imaging at 720 nm excitation, making them promising nano objects for bio imaging.

  6. Drift and transmission FT-IR spectroscopy of forest soils: an approach to determine decomposition processes of forest litter

    International Nuclear Information System (INIS)

    Haberhauer, G.; Gerzabek, M.H.

    1999-06-01

    A method is described to characterize organic soil layers using Fourier transformed infrared spectroscopy. The applicability of FT-IR, either dispersive or transmission, to investigate decomposition processes of spruce litter in soil originating from three different forest sites in two climatic regions was studied. Spectral information of transmission and diffuse reflection FT-IR spectra was analyzed and compared. For data evaluation Kubelka Munk (KM) transformation was applied to the DRIFT spectra. Sample preparation for DRIFT is simpler and less time consuming in comparison to transmission FT-IR, which uses KBr pellets. A variety of bands characteristics of molecular structures and functional groups has been identified for these complex samples. Analysis of both transmission FT-IR and DRIFT, showed that the intensity of distinct bands is a measure of the decomposition of forest litter. Interferences due to water adsorption spectra were reduced by DRIFT measurement in comparison to transmission FT-IR spectroscopy. However, data analysis revealed that intensity changes of several bands of DRIFT and transmission FT-IR were significantly correlated with soil horizons. The application of regression models enables identification and differentiation of organic forest soil horizons and allows to determine the decomposition status of soil organic matter in distinct layers. On the basis of the data presented in this study, it may be concluded that FT-IR spectroscopy is a powerful tool for the investigation of decomposition dynamics in forest soils. (author)

  7. Methods of digital image processing

    International Nuclear Information System (INIS)

    Doeler, W.

    1985-01-01

    Increasing use of computerized methods for diagnostical imaging of radiological problems will open up a wide field of applications for digital image processing. The requirements set by routine diagnostics in medical radiology point to picture data storage and documentation and communication as the main points of interest for application of digital image processing. As to the purely radiological problems, the value of digital image processing is to be sought in the improved interpretability of the image information in those cases where the expert's experience and image interpretation by human visual capacities do not suffice. There are many other domains of imaging in medical physics where digital image processing and evaluation is very useful. The paper reviews the various methods available for a variety of problem solutions, and explains the hardware available for the tasks discussed. (orig.) [de

  8. Looking at Art in the IR and UV

    Science.gov (United States)

    Falco, Charles

    2013-03-01

    Starting with the very earliest cave paintings art has been created to be viewed by the unaided eye and, until very recently, it wasn't even possible to see it at wavelengths outside the visible spectrum. However, it is now possible to view paintings, sculptures, manuscripts, and other cultural artifacts at wavelengths from the x-ray, through the ultraviolet (UV), to well into the infrared (IR). Further, thanks to recent advances in technology, this is becoming possible with hand-held instruments that can be used in locations that were previously inaccessible to anything but laboratory-scale image capture equipment. But, what can be learned from such ``non-visible'' images? In this talk I will briefly describe the characteristics of high resolution UV and IR imaging systems I developed for this purpose by modifying high resolution digital cameras. The sensitivity of the IR camera makes it possible to obtain images of art ``in situ'' with standard museum lighting, resolving features finer than 0.35 mm on a 1.0x0.67 m painting. I also have used both it and the UV camera in remote locations with battery-powered illumination sources. I will illustrate their capabilities with images of various examples of Western, Asian, and Islamic art in museums on three continents, describing how these images have revealed important new information about the working practices of artists as famous as Jan van Eyck. I also will describe what will be possible for this type of work with new capabilities that could be developed within the next few years. This work is based on a collaboration with David Hockney, and benefitted from image analys research supported by ARO grant W911NF-06-1-0359-P00001.

  9. Imaging infrared: Scene simulation, modeling, and real image tracking; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Triplett, Milton J.; Wolverton, James R.; Hubert, August J.

    1989-09-01

    Various papers on scene simulation, modeling, and real image tracking using IR imaging are presented. Individual topics addressed include: tactical IR scene generator, dynamic FLIR simulation in flight training research, high-speed dynamic scene simulation in UV to IR spectra, development of an IR sensor calibration facility, IR celestial background scene description, transmission measurement of optical components at cryogenic temperatures, diffraction model for a point-source generator, silhouette-based tracking for tactical IR systems, use of knowledge in electrooptical trackers, detection and classification of target formations in IR image sequences, SMPRAD: simplified three-dimensional cloud radiance model, IR target generator, recent advances in testing of thermal imagers, generic IR system models with dynamic image generation, modeling realistic target acquisition using IR sensors in multiple-observer scenarios, and novel concept of scene generation and comprehensive dynamic sensor test.

  10. Stable image acquisition for mobile image processing applications

    Science.gov (United States)

    Henning, Kai-Fabian; Fritze, Alexander; Gillich, Eugen; Mönks, Uwe; Lohweg, Volker

    2015-02-01

    Today, mobile devices (smartphones, tablets, etc.) are widespread and of high importance for their users. Their performance as well as versatility increases over time. This leads to the opportunity to use such devices for more specific tasks like image processing in an industrial context. For the analysis of images requirements like image quality (blur, illumination, etc.) as well as a defined relative position of the object to be inspected are crucial. Since mobile devices are handheld and used in constantly changing environments the challenge is to fulfill these requirements. We present an approach to overcome the obstacles and stabilize the image capturing process such that image analysis becomes significantly improved on mobile devices. Therefore, image processing methods are combined with sensor fusion concepts. The approach consists of three main parts. First, pose estimation methods are used to guide a user moving the device to a defined position. Second, the sensors data and the pose information are combined for relative motion estimation. Finally, the image capturing process is automated. It is triggered depending on the alignment of the device and the object as well as the image quality that can be achieved under consideration of motion and environmental effects.

  11. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    International Nuclear Information System (INIS)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-01-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains.Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered.A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms).There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented. (paper)

  12. Fast processing of foreign fiber images by image blocking

    OpenAIRE

    Yutao Wu; Daoliang Li; Zhenbo Li; Wenzhu Yang

    2014-01-01

    In the textile industry, it is always the case that cotton products are constitutive of many types of foreign fibers which affect the overall quality of cotton products. As the foundation of the foreign fiber automated inspection, image process exerts a critical impact on the process of foreign fiber identification. This paper presents a new approach for the fast processing of foreign fiber images. This approach includes five main steps, image block, image pre-decision, image background extra...

  13. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Vaishnav, J. Y., E-mail: jay.vaishnav@fda.hhs.gov; Jung, W. C. [Diagnostic X-Ray Systems Branch, Office of In Vitro Diagnostic Devices and Radiological Health, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States); Popescu, L. M.; Zeng, R.; Myers, K. J. [Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, United States Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, Maryland 20993 (United States)

    2014-07-15

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality.

  14. Objective assessment of image quality and dose reduction in CT iterative reconstruction

    International Nuclear Information System (INIS)

    Vaishnav, J. Y.; Jung, W. C.; Popescu, L. M.; Zeng, R.; Myers, K. J.

    2014-01-01

    Purpose: Iterative reconstruction (IR) algorithms have the potential to reduce radiation dose in CT diagnostic imaging. As these algorithms become available on the market, a standardizable method of quantifying the dose reduction that a particular IR method can achieve would be valuable. Such a method would assist manufacturers in making promotional claims about dose reduction, buyers in comparing different devices, physicists in independently validating the claims, and the United States Food and Drug Administration in regulating the labeling of CT devices. However, the nonlinear nature of commercially available IR algorithms poses challenges to objectively assessing image quality, a necessary step in establishing the amount of dose reduction that a given IR algorithm can achieve without compromising that image quality. This review paper seeks to consolidate information relevant to objectively assessing the quality of CT IR images, and thereby measuring the level of dose reduction that a given IR algorithm can achieve. Methods: The authors discuss task-based methods for assessing the quality of CT IR images and evaluating dose reduction. Results: The authors explain and review recent literature on signal detection and localization tasks in CT IR image quality assessment, the design of an appropriate phantom for these tasks, possible choices of observers (including human and model observers), and methods of evaluating observer performance. Conclusions: Standardizing the measurement of dose reduction is a problem of broad interest to the CT community and to public health. A necessary step in the process is the objective assessment of CT image quality, for which various task-based methods may be suitable. This paper attempts to consolidate recent literature that is relevant to the development and implementation of task-based methods for the assessment of CT IR image quality

  15. Biomedical Image Processing

    CERN Document Server

    Deserno, Thomas Martin

    2011-01-01

    In modern medicine, imaging is the most effective tool for diagnostics, treatment planning and therapy. Almost all modalities have went to directly digital acquisition techniques and processing of this image data have become an important option for health care in future. This book is written by a team of internationally recognized experts from all over the world. It provides a brief but complete overview on medical image processing and analysis highlighting recent advances that have been made in academics. Color figures are used extensively to illustrate the methods and help the reader to understand the complex topics.

  16. Image perception and image processing

    International Nuclear Information System (INIS)

    Wackenheim, A.

    1987-01-01

    The author develops theoretical and practical models of image perception and image processing, based on phenomenology and structuralism and leading to original perception: fundamental for a positivistic approach of research work for the development of artificial intelligence that will be able in an automated system fo 'reading' X-ray pictures. (orig.) [de

  17. Image perception and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Wackenheim, A.

    1987-01-01

    The author develops theoretical and practical models of image perception and image processing, based on phenomenology and structuralism and leading to original perception: fundamental for a positivistic approach of research work for the development of artificial intelligence that will be able in an automated system fo 'reading' X-ray pictures.

  18. Optoelectronic imaging of speckle using image processing method

    Science.gov (United States)

    Wang, Jinjiang; Wang, Pengfei

    2018-01-01

    A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.

  19. THE HST EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER

    International Nuclear Information System (INIS)

    Illingworth, G. D.; Magee, D.; Oesch, P. A.; Bouwens, R. J.; Labbé, I.; Franx, M.; Stiavelli, M.; Van Dokkum, P. G.; Trenti, M.; Carollo, C. M.; Gonzalez, V.

    2013-01-01

    The eXtreme Deep Field (XDF) combines data from 10 years of observations with the Hubble Space Telescope Advanced Camera for Surveys (ACS) and the Wide-Field Camera 3 Infra-Red (WFC3/IR) into the deepest image of the sky ever in the optical/near-IR. Since the initial observations of the Hubble Ultra-Deep Field (HUDF) in 2003, numerous surveys and programs, including supernovae follow-up, HUDF09, CANDELS, and HUDF12, have contributed additional imaging data across this region. However, these images have never been combined and made available as one complete ultra-deep image dataset. We combine them now with the XDF program. Our new and improved processing techniques provide higher quality reductions of the total dataset. All WFC3/IR and optical ACS data sets have been fully combined and accurately matched, resulting in the deepest imaging ever taken at these wavelengths, ranging from 29.1 to 30.3 AB mag (5σ in a 0.''35 diameter aperture) in 9 filters. The combined image therefore reaches to 31.2 AB mag 5σ (32.9 at 1σ) for a flat f ν source. The gains in the optical for the four filters done in the original ACS HUDF correspond to a typical improvement of 0.15 mag, with gains of 0.25 mag in the deepest areas. Such gains are equivalent to adding ∼130 to ∼240 orbits of ACS data to the HUDF. Improved processing alone results in a typical gain of ∼0.1 mag. Our 5σ (optical+near-IR) SExtractor catalogs reveal about 14,140 sources in the full field and about 7121 galaxies in the deepest part of the XDF

  20. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    Science.gov (United States)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-10-01

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.

  1. On formation mechanism of Pd–Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH3)4][IrCl6

    International Nuclear Information System (INIS)

    Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.

    2013-01-01

    The formation mechanism of Pd–Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH 3 ) 4 ][IrCl 6 ] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd–Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10–200 nm) and dendrite Ir-rich (10–50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd–Ir nanoparticles, were found to occur.Graphical Abstract

  2. Introduction to digital image processing

    CERN Document Server

    Pratt, William K

    2013-01-01

    CONTINUOUS IMAGE CHARACTERIZATION Continuous Image Mathematical Characterization Image RepresentationTwo-Dimensional SystemsTwo-Dimensional Fourier TransformImage Stochastic CharacterizationPsychophysical Vision Properties Light PerceptionEye PhysiologyVisual PhenomenaMonochrome Vision ModelColor Vision ModelPhotometry and ColorimetryPhotometryColor MatchingColorimetry ConceptsColor SpacesDIGITAL IMAGE CHARACTERIZATION Image Sampling and Reconstruction Image Sampling and Reconstruction ConceptsMonochrome Image Sampling SystemsMonochrome Image Reconstruction SystemsColor Image Sampling SystemsImage QuantizationScalar QuantizationProcessing Quantized VariablesMonochrome and Color Image QuantizationDISCRETE TWO-DIMENSIONAL LINEAR PROCESSING Discrete Image Mathematical Characterization Vector-Space Image RepresentationGeneralized Two-Dimensional Linear OperatorImage Statistical CharacterizationImage Probability Density ModelsLinear Operator Statistical RepresentationSuperposition and ConvolutionFinite-Area Superp...

  3. Simultaneous neutron radiography and infrared thermography measurement of boiling processes

    International Nuclear Information System (INIS)

    Murphy, J.H.; Glickstein, S.S.

    1997-01-01

    Boiling of water at 1 to 15 bar flowing upward within a narrow duct and a round test section was observed using both neutron radiography and infrared (IR) thermography. The IR readings of the test section outer wall temperatures show the effects of both fluid temperature and wall heat transfer coefficient variations, producing a difference between liquid and two phase regions. The IR images, in fact, appear very similar to the neutron images; both show clear indications of spatial and temporal variations in the internal fluid conditions during the boiling process

  4. Fingerprinting DNA oxidation processes: IR characterization of the 5-methyl-2'-deoxycytidine radical cation.

    Science.gov (United States)

    Bucher, Dominik B; Pilles, Bert M; Pfaffeneder, Toni; Carell, Thomas; Zinth, Wolfgang

    2014-02-24

    Methylated cytidine plays an important role as an epigenetic signal in gene regulation. Its oxidation products are assumed to be involved in active demethylation processes but also in damaging DNA. Here, we report the photochemical production of the 5-methyl-2'-deoxycytidine radical cation via a two-photon ionization process. The radical cation is detected by time-resolved IR spectroscopy and identified by band assignment using density functional theory calculations. Two final oxidation products are characterized with liquid chromatography coupled to mass spectrometry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fundamentals of electronic image processing

    CERN Document Server

    Weeks, Arthur R

    1996-01-01

    This book is directed to practicing engineers and scientists who need to understand the fundamentals of image processing theory and algorithms to perform their technical tasks. It is intended to fill the gap between existing high-level texts dedicated to specialists in the field and the need for a more practical, fundamental text on image processing. A variety of example images are used to enhance reader understanding of how particular image processing algorithms work.

  6. Image processing technology for nuclear facilities

    International Nuclear Information System (INIS)

    Lee, Jong Min; Lee, Yong Beom; Kim, Woong Ki; Park, Soon Young

    1993-05-01

    Digital image processing technique is being actively studied since microprocessors and semiconductor memory devices have been developed in 1960's. Now image processing board for personal computer as well as image processing system for workstation is developed and widely applied to medical science, military, remote inspection, and nuclear industry. Image processing technology which provides computer system with vision ability not only recognizes nonobvious information but processes large information and therefore this technique is applied to various fields like remote measurement, object recognition and decision in adverse environment, and analysis of X-ray penetration image in nuclear facilities. In this report, various applications of image processing to nuclear facilities are examined, and image processing techniques are also analysed with the view of proposing the ideas for future applications. (Author)

  7. Parallel Processing and Bio-inspired Computing for Biomedical Image Registration

    Directory of Open Access Journals (Sweden)

    Silviu Ioan Bejinariu

    2014-07-01

    Full Text Available Image Registration (IR is an optimization problem computing optimal parameters of a geometric transform used to overlay one or more source images to a given model by maximizing a similarity measure. In this paper the use of bio-inspired optimization algorithms in image registration is analyzed. Results obtained by means of three different algorithms are compared: Bacterial Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and Clonal Selection Algorithm (CSA. Depending on the images type, the registration may be: area based, which is slow but more precise, and features based, which is faster. In this paper a feature based approach based on the Scale Invariant Feature Transform (SIFT is proposed. Finally, results obtained using sequential and parallel implementations on multi-core systems for area based and features based image registration are compared.

  8. [Imaging center - optimization of the imaging process].

    Science.gov (United States)

    Busch, H-P

    2013-04-01

    Hospitals around the world are under increasing pressure to optimize the economic efficiency of treatment processes. Imaging is responsible for a great part of the success but also of the costs of treatment. In routine work an excessive supply of imaging methods leads to an "as well as" strategy up to the limit of the capacity without critical reflection. Exams that have no predictable influence on the clinical outcome are an unjustified burden for the patient. They are useless and threaten the financial situation and existence of the hospital. In recent years the focus of process optimization was exclusively on the quality and efficiency of performed single examinations. In the future critical discussion of the effectiveness of single exams in relation to the clinical outcome will be more important. Unnecessary exams can be avoided, only if in addition to the optimization of single exams (efficiency) there is an optimization strategy for the total imaging process (efficiency and effectiveness). This requires a new definition of processes (Imaging Pathway), new structures for organization (Imaging Center) and a new kind of thinking on the part of the medical staff. Motivation has to be changed from gratification of performed exams to gratification of process quality (medical quality, service quality, economics), including the avoidance of additional (unnecessary) exams. © Georg Thieme Verlag KG Stuttgart · New York.

  9. IR Sensor Synchronizing Active Shutter Glasses for 3D HDTV with Flexible Liquid Crystal Lenses

    Directory of Open Access Journals (Sweden)

    Jeong In Han

    2013-12-01

    Full Text Available IR sensor synchronizing active shutter glasses for three-dimensional high definition television (3D HDTV were developed using a flexible liquid crystal (FLC lens. The FLC lens was made on a polycarbonate (PC substrate using conventional liquid crystal display (LCD processes. The flexible liquid crystal lens displayed a maximum transmission of 32% and total response time of 2.56 ms. The transmittance, the contrast ratio and the response time of the flexible liquid crystal lens were superior to those of glass liquid crystal lenses. Microcontroller unit and drivers were developed as part of a reception module with power supply for the IR sensor synchronizing active shutter glasses with the flexible liquid crystal lens prototypes. IR sensor synchronizing active shutter glasses for 3D HDTV with flexible liquid crystal lenses produced excellent 3D images viewing characteristics.

  10. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    DEFF Research Database (Denmark)

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    -power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. In an international collaboration in the EU project MINERVA [minerva...

  11. Fast processing of foreign fiber images by image blocking

    Directory of Open Access Journals (Sweden)

    Yutao Wu

    2014-08-01

    Full Text Available In the textile industry, it is always the case that cotton products are constitutive of many types of foreign fibers which affect the overall quality of cotton products. As the foundation of the foreign fiber automated inspection, image process exerts a critical impact on the process of foreign fiber identification. This paper presents a new approach for the fast processing of foreign fiber images. This approach includes five main steps, image block, image pre-decision, image background extraction, image enhancement and segmentation, and image connection. At first, the captured color images were transformed into gray-scale images; followed by the inversion of gray-scale of the transformed images ; then the whole image was divided into several blocks. Thereafter, the subsequent step is to judge which image block contains the target foreign fiber image through image pre-decision. Then we segment the image block via OSTU which possibly contains target images after background eradication and image strengthening. Finally, we connect those relevant segmented image blocks to get an intact and clear foreign fiber target image. The experimental result shows that this method of segmentation has the advantage of accuracy and speed over the other segmentation methods. On the other hand, this method also connects the target image that produce fractures therefore getting an intact and clear foreign fiber target image.

  12. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications

    Directory of Open Access Journals (Sweden)

    Byeong Hak Kim

    2017-12-01

    Full Text Available Unmanned aerial vehicles (UAVs are equipped with optical systems including an infrared (IR camera such as electro-optical IR (EO/IR, target acquisition and designation sights (TADS, or forward looking IR (FLIR. However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC and scene-based NUC (SBNUC. However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA. In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR and long wave infrared (LWIR images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.

  13. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications

    Science.gov (United States)

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-01-01

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC. PMID:29280970

  14. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications.

    Science.gov (United States)

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-12-27

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.

  15. AUTOMATION OF IMAGE DATA PROCESSING

    Directory of Open Access Journals (Sweden)

    Preuss Ryszard

    2014-12-01

    Full Text Available This article discusses the current capabilities of automate processing of the image data on the example of using PhotoScan software by Agisoft . At present, image data obtained by various registration systems (metric and non - metric cameras placed on airplanes , satellites , or more often on UAVs is used to create photogrammetric products. Multiple registrations of object or land area (large groups of photos are captured are usually performed in order to eliminate obscured area as well as to raise the final accuracy of the photogrammetric product. Because of such a situation t he geometry of the resulting image blocks is far from the typical configuration of images . For fast images georeferencing automatic image matching algorithms are currently applied . They can create a model of a block in the local coordinate system or using initial exterior orientation and measured control points can provide image georeference in an external reference frame. In the case of non - metric image application, it is also possible to carry out self - calibration process at this stage . Image matching algorithm is also used in generation of dense point clouds reconstructing spatial shape of the object ( area. In subsequent processing steps it is possible to obtain typical photogrammetric products such as orthomosaic , DSM or DTM and a photorealistic solid model of an object . All aforementioned processing steps are implemented in a single program in contrary to standard commercial software dividing all steps into dedicated modules . I mage processing leading to final geo referenced products can be fully automated including sequential implementation of the processing steps at predetermined control parameters . The paper presents the practical results of the application fully automatic generation of othomosaic for both images obtained by a metric Vexell camera and a block of images acquired by a non - metric UAV system.

  16. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  17. Liquid Crystals, PIV and IR-Photography in Selected Technical and Biomedical Applications

    Science.gov (United States)

    Stasiek, Jan; Jewartowski, Marcin

    2017-10-01

    Thermochromic liquid crystals (TLC), Particle Image Velocimetry (PIV), Infrared Imaging Themography (IR) and True-Colour Digital Image Processing (TDIP) have been successfully used in non-intrusive technical, industrial and biomedical studies and applications. These four tools (based on the desktop computers) have come together during the past two decades to produce a powerful advanced experimental technique as a judgment of quality of information that cannot be obtained from any other imaging procedure. The brief summary of the history of this technique is reviewed, principal methods and tools are described and some examples are presented. With this objective, a new experimental technique have been developed and applied to the study of heat and mass transfer and for biomedical diagnosis. Automated evaluation allows determining the heat and flow visualisation and locate the area of suspicious tissue of human body.

  18. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  19. Motion-compensated processing of image signals

    NARCIS (Netherlands)

    2010-01-01

    In a motion-compensated processing of images, input images are down-scaled (scl) to obtain down-scaled images, the down-scaled images are subjected to motion- compensated processing (ME UPC) to obtain motion-compensated images, the motion- compensated images are up-scaled (sc2) to obtain up-scaled

  20. Invariant Face recognition Using Infrared Images

    International Nuclear Information System (INIS)

    Zahran, E.G.

    2012-01-01

    Over the past few decades, face recognition has become a rapidly growing research topic due to the increasing demands in many applications of our daily life such as airport surveillance, personal identification in law enforcement, surveillance systems, information safety, securing financial transactions, and computer security. The objective of this thesis is to develop a face recognition system capable of recognizing persons with a high recognition capability, low processing time, and under different illumination conditions, and different facial expressions. The thesis presents a study for the performance of the face recognition system using two techniques; the Principal Component Analysis (PCA), and the Zernike Moments (ZM). The performance of the recognition system is evaluated according to several aspects including the recognition rate, and the processing time. Face recognition systems that use visual images are sensitive to variations in the lighting conditions and facial expressions. The performance of these systems may be degraded under poor illumination conditions or for subjects of various skin colors. Several solutions have been proposed to overcome these limitations. One of these solutions is to work in the Infrared (IR) spectrum. IR images have been suggested as an alternative source of information for detection and recognition of faces, when there is little or no control over lighting conditions. This arises from the fact that these images are formed due to thermal emissions from skin, which is an intrinsic property because these emissions depend on the distribution of blood vessels under the skin. On the other hand IR face recognition systems still have limitations with temperature variations and recognition of persons wearing eye glasses. In this thesis we will fuse IR images with visible images to enhance the performance of face recognition systems. Images are fused using the wavelet transform. Simulation results show that the fusion of visible and

  1. Infrared upconversion hyperspectral imaging

    DEFF Research Database (Denmark)

    Kehlet, Louis Martinus; Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin

    2015-01-01

    In this Letter, hyperspectral imaging in the mid-IR spectral region is demonstrated based on nonlinear frequency upconversion and subsequent imaging using a standard Si-based CCD camera. A series of upconverted images are acquired with different phase match conditions for the nonlinear frequency...... conversion process. From this, a sequence of monochromatic images in the 3.2-3.4 mu m range is generated. The imaged object consists of a standard United States Air Force resolution target combined with a polystyrene film, resulting in the presence of both spatial and spectral information in the infrared...... image. (C) 2015 Optical Society of America...

  2. Medical image processing

    CERN Document Server

    Dougherty, Geoff

    2011-01-01

    This book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. This book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to e

  3. LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Calanog, J. A.; Cooray, A.; Ma, B.; Casey, C. M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Wardlow, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Amber, S. [Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Baes, M. [1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); Bock, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Bourne, N.; Dye, S. [School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); Bussmann, R. S. [Department of Astronomy, Space Science Building, Cornell University, Ithaca, NY 14853-6801 (United States); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Eales, S. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); and others

    2014-12-20

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 μm bright candidate lensing systems identified by the Herschel Multi-tiered Extragalactic Survey and Herschel Astrophysical Terahertz Large Area Survey. Out of 87 candidates with near-IR imaging, 15 (∼17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and previous lensing models for submillimeter galaxies (SMGs). For four new sources that also have high-resolution submillimeter maps, we test for differential lensing between the stellar and dust components and find that the 880 μm magnification factor (μ{sub 880}) is ∼1.5 times higher than the near-IR magnification factor (μ{sub NIR}), on average. We also find that the stellar emission is ∼2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.

  4. Growth and phase transformations of Ir on Ge(111)

    Science.gov (United States)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  5. Image quality dependence on image processing software in ...

    African Journals Online (AJOL)

    Image quality dependence on image processing software in computed radiography. ... Agfa CR readers use MUSICA software, and an upgrade with significantly different image ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  6. Industrial radiography with Ir-192 using computed radiographic technique

    International Nuclear Information System (INIS)

    Ngernvijit, Narippawaj; Punnachaiya, Suvit; Chankow, Nares; Sukbumperng, Ampai; Thong-Aram, Decho

    2003-01-01

    The aim of this research is to study the utilization of a low activity Ir-192 gamma source for industrial radiographic testing using the Computed Radiography (CR) system. Due to a photo-salbutamol Imaging Plate (I P) using in CR is much more radiation sensitive than a type II film with lead foil intensifying screen, the exposure time with CR can be significantly reduced. For short-lived gamma-ray source like Ir-192 source, the exposure time must be proportionally increased until it is not practical particularly for thick specimens. Generally, when the source decays to an activity of about 5 Ci or less, it will be returned to the manufacturer as a radioactive waste. In this research, the optimum conditions for radiography of a 20 mm thick welded steel sample with 2.4 Ci Ir-192 was investigated using the CR system with high resolution image plate, i.e. type Bas-SR of the Fuji Film Co. Ltd. The I P was sandwiched by a pair of 0.25 mm thick Pb intensifying sere en. Low energy scattered radiations was filtered by placing another Pb sheet with a thickness of 3 mm under the cassette. It was found that the CR image could give a contrast sensitivity of 2.5 % using only 3-minute exposure time which was comparable to the image taken by the type II film with Pb intensifying screen using the exposure time of 45 minutes

  7. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  8. Quantification of plaque area and characterization of plaque biochemical composition with atherosclerosis progression in ApoE/LDLR(-/-) mice by FT-IR imaging.

    Science.gov (United States)

    Wrobel, Tomasz P; Mateuszuk, Lukasz; Kostogrys, Renata B; Chlopicki, Stefan; Baranska, Malgorzata

    2013-11-07

    In this work the quantitative determination of atherosclerotic lesion area (ApoE/LDLR(-/-) mice) by FT-IR imaging is presented and validated by comparison with atherosclerotic lesion area determination by classic Oil Red O staining. Cluster analysis of FT-IR-based measurements in the 2800-3025 cm(-1) range allowed for quantitative analysis of the atherosclerosis plaque area, the results of which were highly correlated with those of Oil Red O histological staining (R(2) = 0.935). Moreover, a specific class obtained from a second cluster analysis of the aortic cross-section samples at different stages of disease progression (3, 4 and 6 months old) seemed to represent the macrophages (CD68) area within the atherosclerotic plaque.

  9. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  10. Development of pixellated Ir-TESs

    International Nuclear Information System (INIS)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Dayanthi, Rathnayaka M.T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-01-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μmx45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES

  11. Image Processing and Features Extraction of Fingerprint Images ...

    African Journals Online (AJOL)

    To demonstrate the importance of the image processing of fingerprint images prior to image enrolment or comparison, the set of fingerprint images in databases (a) and (b) of the FVC (Fingerprint Verification Competition) 2000 database were analyzed using a features extraction algorithm. This paper presents the results of ...

  12. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  13. Observation sequences and onboard data processing of Planet-C

    Science.gov (United States)

    Suzuki, M.; Imamura, T.; Nakamura, M.; Ishi, N.; Ueno, M.; Hihara, H.; Abe, T.; Yamada, T.

    Planet-C or VCO Venus Climate Orbiter will carry 5 cameras IR1 IR 1micrometer camera IR2 IR 2micrometer camera UVI UV Imager LIR Long-IR camera and LAC Lightning and Airglow Camera in the UV-IR region to investigate atmospheric dynamics of Venus During 30 hr orbiting designed to quasi-synchronize to the super rotation of the Venus atmosphere 3 groups of scientific observations will be carried out i image acquisition of 4 cameras IR1 IR2 UVI LIR 20 min in 2 hrs ii LAC operation only when VCO is within Venus shadow and iii radio occultation These observation sequences will define the scientific outputs of VCO program but the sequences must be compromised with command telemetry downlink and thermal power conditions For maximizing science data downlink it must be well compressed and the compression efficiency and image quality have the significant scientific importance in the VCO program Images of 4 cameras IR1 2 and UVI 1Kx1K and LIR 240x240 will be compressed using JPEG2000 J2K standard J2K is selected because of a no block noise b efficiency c both reversible and irreversible d patent loyalty free and e already implemented as academic commercial software ICs and ASIC logic designs Data compression efficiencies of J2K are about 0 3 reversible and 0 1 sim 0 01 irreversible The DE Digital Electronics unit which controls 4 cameras and handles onboard data processing compression is under concept design stage It is concluded that the J2K data compression logics circuits using space

  14. Industrial Applications of Image Processing

    Science.gov (United States)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  15. Identification of urushi coated films taken from ancient Buddha images by using PIXE, FT-IR, and organic elemental analysis

    International Nuclear Information System (INIS)

    Kagemori, N.; Umemura, K.; Yoshimura, T.; Inoue, M.; Kawai, S.; Yano, K.; Sera, K.; Futatsugawa, S.; Nakamura, Y.

    1999-01-01

    Six types of samples including urushi, urushi tree and black coating films taken from ancient Buddha images were examined by analyses of PIXE, organic element and FT-IR to identify with urushi or another material. Based on the results of three analytical experiments above mentioned, the coating materials aging over hundreds of years were identified with weathered urushi films mixed with other material. Further investigation may reveal the urushi coating techniques used in the past. (author)

  16. Multi-imaging adaptive concept for IR and submillimeter space telescopes

    Science.gov (United States)

    Vasilyev, Victor P.

    1995-06-01

    Nontraditional IR and submillimeter spaceborne telescope concept basing on blind-type parabolic multi-ring mirror is proposed and discussed. Preliminary results for optimization of mirror parameters by means of computer simulation are presented.

  17. IR technology for enhanced force protection by AIM

    Science.gov (United States)

    Breiter, R.; Ihle, T.; Rode, W.; Wendler, J.; Rühlich, I.; Haiml, M.; Ziegler, J.

    2008-04-01

    In all recent missions our forces are faced with various types of asymmetric threads like snipers, IEDs, RPGs or MANPADS. 2 nd and 3 rd Gen IR technology is a backbone of modern force protection by providing situational awareness and accurate target engagement at day/night. 3 rd Gen sensors are developed for thread warning capabilities by use of spectral or spatial information. The progress on a dual-color IR module is discussed in a separate paper [1]. A 1024x256 SWIR array with flexure bearing compressor and pulse tube cold finger provides > 50,000h lifetime for space or airborne hyperspectral imaging in pushbroom geometry with 256 spectral channels for improved change detection and remote sensing of IEDs or chemical agents. Similar concepts are pursued in the LWIR with either spectroscopic imaging or a system of LWIR FPA combined with a cooled tunable Laser to do spectroscopy with stimulated absorption of specific wavelengths. AIM introduced the RangIR sight to match the requirements of sniper teams, AGLs and weapon stations, extending the outstanding optronic performance of the fielded HuntIR with position data of a target by a laser range finder (LRF), a 3 axis digital magnetic compass (DMC) and a ballistic computer for accurate engagement of remote targets. A version with flexure bearing cooler with >30,000h life time is being developed for continuous operation in e.g. gunfire detection systems. This paper gives an overview of AIM's technologies for enhanced force protection.

  18. Image processing in radiology

    International Nuclear Information System (INIS)

    Dammann, F.

    2002-01-01

    Medical imaging processing and analysis methods have significantly improved during recent years and are now being increasingly used in clinical applications. Preprocessing algorithms are used to influence image contrast and noise. Three-dimensional visualization techniques including volume rendering and virtual endoscopy are increasingly available to evaluate sectional imaging data sets. Registration techniques have been developed to merge different examination modalities. Structures of interest can be extracted from the image data sets by various segmentation methods. Segmented structures are used for automated quantification analysis as well as for three-dimensional therapy planning, simulation and intervention guidance, including medical modelling, virtual reality environments, surgical robots and navigation systems. These newly developed methods require specialized skills for the production and postprocessing of radiological imaging data as well as new definitions of the roles of the traditional specialities. The aim of this article is to give an overview of the state-of-the-art of medical imaging processing methods, practical implications for the ragiologist's daily work and future aspects. (orig.) [de

  19. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  20. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    Directory of Open Access Journals (Sweden)

    Alejandro Wolf

    2016-07-01

    Full Text Available Images rendered by uncooled microbolometer-based infrared (IR cameras are severely degraded by the spatial non-uniformity (NU noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array’s temperature varies by approximately 15 ∘ C.

  1. Microprocessor based image processing system

    International Nuclear Information System (INIS)

    Mirza, M.I.; Siddiqui, M.N.; Rangoonwala, A.

    1987-01-01

    Rapid developments in the production of integrated circuits and introduction of sophisticated 8,16 and now 32 bit microprocessor based computers, have set new trends in computer applications. Nowadays the users by investing much less money can make optimal use of smaller systems by getting them custom-tailored according to their requirements. During the past decade there have been great advancements in the field of computer Graphics and consequently, 'Image Processing' has emerged as a separate independent field. Image Processing is being used in a number of disciplines. In the Medical Sciences, it is used to construct pseudo color images from computer aided tomography (CAT) or positron emission tomography (PET) scanners. Art, advertising and publishing people use pseudo colours in pursuit of more effective graphics. Structural engineers use Image Processing to examine weld X-rays to search for imperfections. Photographers use Image Processing for various enhancements which are difficult to achieve in a conventional dark room. (author)

  2. Image Processing: Some Challenging Problems

    Science.gov (United States)

    Huang, T. S.; Aizawa, K.

    1993-11-01

    Image processing can be broadly defined as the manipulation of signals which are inherently multidimensional. The most common such signals are photographs and video sequences. The goals of processing or manipulation can be (i) compression for storage or transmission; (ii) enhancement or restoration; (iii) analysis, recognition, and understanding; or (iv) visualization for human observers. The use of image processing techniques has become almost ubiquitous; they find applications in such diverse areas as astronomy, archaeology, medicine, video communication, and electronic games. Nonetheless, many important problems in image processing remain unsolved. It is the goal of this paper to discuss some of these challenging problems. In Section I, we mention a number of outstanding problems. Then, in the remainder of this paper, we concentrate on one of them: very-low-bit-rate video compression. This is chosen because it involves almost all aspects of image processing.

  3. An application of image processing techniques in computed tomography image analysis

    DEFF Research Database (Denmark)

    McEvoy, Fintan

    2007-01-01

    number of animals and image slices, automation of the process was desirable. The open-source and free image analysis program ImageJ was used. A macro procedure was created that provided the required functionality. The macro performs a number of basic image processing procedures. These include an initial...... process designed to remove the scanning table from the image and to center the animal in the image. This is followed by placement of a vertical line segment from the mid point of the upper border of the image to the image center. Measurements are made between automatically detected outer and inner...... boundaries of subcutaneous adipose tissue along this line segment. This process was repeated as the image was rotated (with the line position remaining unchanged) so that measurements around the complete circumference were obtained. Additionally, an image was created showing all detected boundary points so...

  4. On formation mechanism of Pd-Ir bimetallic nanoparticles through thermal decomposition of [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Asanova, Tatyana I., E-mail: nti@niic.nsc.ru; Asanov, Igor P. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation); Kim, Min-Gyu [Pohang University of Science and Technology, Beamline Research Division (Korea, Republic of); Gerasimov, Evgeny Yu. [Boreskov Institute of Catalysis SB RAS (Russian Federation); Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V. [Nikolaev Institute of Inorganic Chemistry SB RAS (Russian Federation)

    2013-10-15

    The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH{sub 3}){sub 4}][IrCl{sub 6}] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 Degree-Sign C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.Graphical Abstract.

  5. Infrared Imaging for Inquiry-Based Learning

    Science.gov (United States)

    Xie, Charles; Hazzard, Edmund

    2011-01-01

    Based on detecting long-wavelength infrared (IR) radiation emitted by the subject, IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words, an IR camera has great potential in teaching heat transfer, which is otherwise invisible. The idea of using IR imaging in teaching was first…

  6. Ir-based refractory superalloys by pulse electric current sintering (PECS) process (II prealloyed powder)

    Science.gov (United States)

    Huang, C.; Yamabe-Mitarai, Y.; Harada, H.

    2002-02-01

    Five prealloyed powder samples prepared from binary Ir-based refractory superalloys were sintered at 1800 °C for 4 h by Pulse Electric Current Sintering (PECS). No metal loss was observed during sintering. The relative densities of the sintered specimens all exceeded 90% T.D. The best one was Ir-13% Hf with the density of 97.82% T.D. Phases detected in sintered samples were in accordance with the phase diagram as expected. Fractured surfaces were observed in two samples (Ir-13% Hf and Ir-15% Zr). Some improvements obtained by using prealloyed powders instead of elemental powders, which were investigated in the previous studies, were presented.

  7. TECHNOLOGIES OF BRAIN IMAGES PROCESSING

    Directory of Open Access Journals (Sweden)

    O.M. Klyuchko

    2017-12-01

    Full Text Available The purpose of present research was to analyze modern methods of processing biological images implemented before storage in databases for biotechnological purposes. The databases further were incorporated into web-based digital systems. Examples of such information systems were described in the work for two levels of biological material organization; databases for storing data of histological analysis and of whole brain were described. Methods of neuroimaging processing for electronic brain atlas were considered. It was shown that certain pathological features can be revealed in histological image processing. Several medical diagnostic techniques (for certain brain pathologies, etc. as well as a few biotechnological methods are based on such effects. Algorithms of image processing were suggested. Electronic brain atlas was conveniently for professionals in different fields described in details. Approaches of brain atlas elaboration, “composite” scheme for large deformations as well as several methods of mathematic images processing were described as well.

  8. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate...

  9. Development of pixellated Ir-TESs

    Science.gov (United States)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Damayanthi, Rathnayaka M. T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-04-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μm×45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES.

  10. A novel data processing technique for image reconstruction of penumbral imaging

    Science.gov (United States)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  11. Successful synthesis and thermal stability of immiscible metal Au-Rh, Au-Ir andAu-Ir-Rh nanoalloys

    Science.gov (United States)

    Shubin, Yury; Plyusnin, Pavel; Sharafutdinov, Marat; Makotchenko, Evgenia; Korenev, Sergey

    2017-05-01

    We successfully prepared face-centred cubic nanoalloys in systems of Au-Ir, Au-Rh and Au-Ir-Rh, with large bulk miscibility gaps, in one-run reactions under thermal decomposition of specially synthesised single-source precursors, namely, [AuEn2][Ir(NO2)6], [AuEn2][Ir(NO2)6] х [Rh(NO2)6]1-х and [AuEn2][Rh(NO2)6]. The precursors employed contain all desired metals ‘mixed’ at the atomic level, thus providing significant advantages for obtaining alloys. The observations using high-resolution transmission electron microscopy show that the nanoalloy structures are composed of well-dispersed aggregates of crystalline domains with a mean size of 5 ± 3 nm. Еnergy dispersive x-ray spectroscopy and x-ray powder diffraction (XRD) measurements confirm the formation of AuIr, AuRh, AuIr0.75Rh0.25, AuIr0.50Rh0.50 and AuIr0.25Rh0.75 metastable solid solutions. In situ high-temperature synchrotron XRD (HTXRD) was used to study the formation mechanism of nanoalloys. The observed transformations are described by the ‘conversion chemistry’ mechanism characterised by the primary development of particles comprising atoms of only one type, followed by a chemical reaction resulting in the final formation of a nanoalloy. The obtained metastable nanoalloys exhibit essential thermal stability. Exposure to 180 °C for 30 h does not cause any dealloying process.

  12. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs

    International Nuclear Information System (INIS)

    Sensakovic, William F.; O'Dell, M.C.; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-01-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA"2 by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image processing

  13. Mid-IR Observations of Mira Circumstellar Environment

    OpenAIRE

    Marengo, Massimo; Karovska, Margarita; Fazio, Giovanni G.; Hora, Joseph L.; Hoffmann, William F.; Dayal, Aditya; Deutsch, Lynne K.

    2001-01-01

    This paper presents results from high-angular resolution mid-IR imaging of the Mira AB circumbinary environment using the MIRAC3 camera at the NASA Infrared Telescope Facility (IRTF). We resolved the dusty circumstellar envelope at 9.8, 11.7 and 18 micron around Mira A (o Ceti), and measured the size of the extended emission. Strong deviations from spherical symmetry are detected in the images of Mira AB system, including possible dust clumps in the direction of the companion (Mira B). These ...

  14. Design and Development of transducer for IR radiation measurement

    International Nuclear Information System (INIS)

    Pattarachindanuwong, Surat; Poopat, Bovornchoke; Meethong, Wachira

    2003-06-01

    Recently, IR radiation has many important roles such as for plastics industry, food industry and medical instrumentation. The consequence of exposed irradiation objects from IR can be greatly affected by the quantity of IR radiation. Therefore the objectively this research is to design and develop a transducer for IR radiation measurement. By using a quartz halogen lamp as a IR heat source of IR radiation and a thermopile sensor as a transducer. The thermal conductivity of transducer and air flow, were also considered for design and development of transducer. The study shows that the designed transducer can be used and applied in high temperature process, for example, the quality control of welding, the non-contact temperature measurement of drying oven and the testing of IR source in medical therapy device

  15. Use of personal computer image for processing a magnetic resonance image (MRI)

    International Nuclear Information System (INIS)

    Yamamoto, Tetsuo; Tanaka, Hitoshi

    1988-01-01

    Image processing of MR imaging was attempted by using a popular personal computer as 16-bit model. The computer processed the images on a 256 x 256 matrix and 512 x 512 matrix. The softwer languages for image-processing were those of Macro-Assembler performed by (MS-DOS). The original images, acuired with an 0.5 T superconducting machine (VISTA MR 0.5 T, Picker International) were transfered to the computer by the flexible disket. Image process are the display of image to monitor, other the contrast enhancement, the unsharped mask contrast enhancement, the various filter process, the edge detections or the color histogram was obtained in 1.6 sec to 67 sec, indicating that commercialzed personal computer had ability for routine clinical purpose in MRI-processing. (author)

  16. Introduction to computer image processing

    Science.gov (United States)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  17. Statistical image processing and multidimensional modeling

    CERN Document Server

    Fieguth, Paul

    2010-01-01

    Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something - an artery, a road, a DNA marker, an oil spill - from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over

  18. Characterization of Ir/Au pixel TES

    International Nuclear Information System (INIS)

    Kunieda, Y.; Takahashi, H.; Zen, N.; Damayanthi, R.M.T.; Mori, F.; Fujita, K.; Nakazawa, M.; Fukuda, D.; Ohkubo, M.

    2006-01-01

    Signal shapes and noise characteristics of an asymmetrical ten-pixel Ir/Au-TES have been studied. The asymmetric design may be effective to realize an imaging spectrometer. Distinct two exponential decays observed for X-ray events are consistent with a two-step R-T curve. A theoretical thermal model for noise in multi-pixel devices reasonably explains the experimental data

  19. Volumetric image processing: A new technique for three-dimensional imaging

    International Nuclear Information System (INIS)

    Fishman, E.K.; Drebin, B.; Magid, D.; St Ville, J.A.; Zerhouni, E.A.; Siegelman, S.S.; Ney, D.R.

    1986-01-01

    Volumetric three-dimensional (3D) image processing was performed on CT scans of 25 normal hips, and image quality and potential diagnostic applications were assessed. In contrast to surface detection 3D techniques, volumetric processing preserves every pixel of transaxial CT data, replacing the gray scale with transparent ''gels'' and shading. Anatomically, accurate 3D images can be rotated and manipulated in real time, including simulated tissue layer ''peeling'' and mock surgery or disarticulation. This pilot study suggests that volumetric rendering is a major advance in signal processing of medical image data, producing a high quality, uniquely maneuverable image that is useful for fracture interpretation, soft-tissue analysis, surgical planning, and surgical rehearsal

  20. REMOTE SENSING IMAGE QUALITY ASSESSMENT EXPERIMENT WITH POST-PROCESSING

    Directory of Open Access Journals (Sweden)

    W. Jiang

    2018-04-01

    Full Text Available This paper briefly describes the post-processing influence assessment experiment, the experiment includes three steps: the physical simulation, image processing, and image quality assessment. The physical simulation models sampled imaging system in laboratory, the imaging system parameters are tested, the digital image serving as image processing input are produced by this imaging system with the same imaging system parameters. The gathered optical sampled images with the tested imaging parameters are processed by 3 digital image processes, including calibration pre-processing, lossy compression with different compression ratio and image post-processing with different core. Image quality assessment method used is just noticeable difference (JND subject assessment based on ISO20462, through subject assessment of the gathered and processing images, the influence of different imaging parameters and post-processing to image quality can be found. The six JND subject assessment experimental data can be validated each other. Main conclusions include: image post-processing can improve image quality; image post-processing can improve image quality even with lossy compression, image quality with higher compression ratio improves less than lower ratio; with our image post-processing method, image quality is better, when camera MTF being within a small range.

  1. Image processing based detection of lung cancer on CT scan images

    Science.gov (United States)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  2. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Sensakovic, William F.; O' Dell, M.C.; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura [Florida Hospital, Imaging Administration, Orlando, FL (United States)

    2016-10-15

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA{sup 2} by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image

  3. Image quality and dose differences caused by vendor-specific image processing of neonatal radiographs.

    Science.gov (United States)

    Sensakovic, William F; O'Dell, M Cody; Letter, Haley; Kohler, Nathan; Rop, Baiywo; Cook, Jane; Logsdon, Gregory; Varich, Laura

    2016-10-01

    Image processing plays an important role in optimizing image quality and radiation dose in projection radiography. Unfortunately commercial algorithms are black boxes that are often left at or near vendor default settings rather than being optimized. We hypothesize that different commercial image-processing systems, when left at or near default settings, create significant differences in image quality. We further hypothesize that image-quality differences can be exploited to produce images of equivalent quality but lower radiation dose. We used a portable radiography system to acquire images on a neonatal chest phantom and recorded the entrance surface air kerma (ESAK). We applied two image-processing systems (Optima XR220amx, by GE Healthcare, Waukesha, WI; and MUSICA(2) by Agfa HealthCare, Mortsel, Belgium) to the images. Seven observers (attending pediatric radiologists and radiology residents) independently assessed image quality using two methods: rating and matching. Image-quality ratings were independently assessed by each observer on a 10-point scale. Matching consisted of each observer matching GE-processed images and Agfa-processed images with equivalent image quality. A total of 210 rating tasks and 42 matching tasks were performed and effective dose was estimated. Median Agfa-processed image-quality ratings were higher than GE-processed ratings. Non-diagnostic ratings were seen over a wider range of doses for GE-processed images than for Agfa-processed images. During matching tasks, observers matched image quality between GE-processed images and Agfa-processed images acquired at a lower effective dose (11 ± 9 μSv; P < 0.0001). Image-processing methods significantly impact perceived image quality. These image-quality differences can be exploited to alter protocols and produce images of equivalent image quality but lower doses. Those purchasing projection radiography systems or third-party image-processing software should be aware that image

  4. Scilab and SIP for Image Processing

    OpenAIRE

    Fabbri, Ricardo; Bruno, Odemir Martinez; Costa, Luciano da Fontoura

    2012-01-01

    This paper is an overview of Image Processing and Analysis using Scilab, a free prototyping environment for numerical calculations similar to Matlab. We demonstrate the capabilities of SIP -- the Scilab Image Processing Toolbox -- which extends Scilab with many functions to read and write images in over 100 major file formats, including PNG, JPEG, BMP, and TIFF. It also provides routines for image filtering, edge detection, blurring, segmentation, shape analysis, and image recognition. Basic ...

  5. Enhancement of image contrast in linacgram through image processing

    International Nuclear Information System (INIS)

    Suh, Hyun Suk; Shin, Hyun Kyo; Lee, Re Na

    2000-01-01

    Conventional radiation therapy portal images gives low contrast images. The purpose of this study was to enhance image contrast of a linacgram by developing a low--cost image processing method. Chest linacgram was obtained by irradiating humanoid phantom and scanned using Diagnostic-Pro scanner for image processing. Several types of scan method were used in scanning. These include optical density scan, histogram equalized scan, linear histogram based scan, linear histogram independent scan, linear optical density scan, logarithmic scan, and power square root scan. The histogram distribution of the scanned images were plotted and the ranges of the gray scale were compared among various scan types. The scanned images were then transformed to the gray window by pallette fitting method and the contrast of the reprocessed portal images were evaluated for image improvement. Portal images of patients were also taken at various anatomic sites and the images were processed by Gray Scale Expansion (GSE) method. The patient images were analyzed to examine the feasibility of using the GSE technique in clinic. The histogram distribution showed that minimum and maximum gray scale ranges of 3192 and 21940 were obtained when the image was scanned using logarithmic method and square root method, respectively. Out of 256 gray scale, only 7 to 30% of the steps were used. After expanding the gray scale to full range, contrast of the portal images were improved. Experiment performed with patient image showed that improved identification of organs were achieved by GSE in portal images of knee joint, head and neck, lung, and pelvis. Phantom study demonstrated that the GSE technique improved image contrast of a linacgram. This indicates that the decrease in image quality resulting from the dual exposure, could be improved by expanding the gray scale. As a result, the improved technique will make it possible to compare the digitally reconstructed radiographs (DRR) and simulation image for

  6. Digital Data Processing of Images

    African Journals Online (AJOL)

    Digital data processing was investigated to perform image processing. Image smoothing and restoration were explored and promising results obtained. The use of the computer, not only as a data management device, but as an important tool to render quantitative information, was illustrated by lung function determination.

  7. Image processing in diabetic related causes

    CERN Document Server

    Kumar, Amit

    2016-01-01

    This book is a collection of all the experimental results and analysis carried out on medical images of diabetic related causes. The experimental investigations have been carried out on images starting from very basic image processing techniques such as image enhancement to sophisticated image segmentation methods. This book is intended to create an awareness on diabetes and its related causes and image processing methods used to detect and forecast in a very simple way. This book is useful to researchers, Engineers, Medical Doctors and Bioinformatics researchers.

  8. Fuzzy image processing and applications with Matlab

    CERN Document Server

    Chaira, Tamalika

    2009-01-01

    In contrast to classical image analysis methods that employ ""crisp"" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge.Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging,

  9. Componential distribution analysis of food using near infrared ray image

    Science.gov (United States)

    Yamauchi, Hiroki; Kato, Kunihito; Yamamoto, Kazuhiko; Ogawa, Noriko; Ohba, Kimie

    2008-11-01

    The components of the food related to the "deliciousness" are usually evaluated by componential analysis. The component content and type of components in the food are determined by this analysis. However, componential analysis is not able to analyze measurements in detail, and the measurement is time consuming. We propose a method to measure the two-dimensional distribution of the component in food using a near infrared ray (IR) image. The advantage of our method is to be able to visualize the invisible components. Many components in food have characteristics such as absorption and reflection of light in the IR range. The component content is measured using subtraction between two wavelengths of near IR light. In this paper, we describe a method to measure the component of food using near IR image processing, and we show an application to visualize the saccharose in the pumpkin.

  10. Processing of medical images

    International Nuclear Information System (INIS)

    Restrepo, A.

    1998-01-01

    Thanks to the innovations in the technology for the processing of medical images, to the high development of better and cheaper computers, and, additionally, to the advances in the systems of communications of medical images, the acquisition, storage and handling of digital images has acquired great importance in all the branches of the medicine. It is sought in this article to introduce some fundamental ideas of prosecution of digital images that include such aspects as their representation, storage, improvement, visualization and understanding

  11. Near-IR High-Resolution Imaging Polarimetry of the SU Aur Disk: Clues for Tidal Tails?

    Science.gov (United States)

    De Leon, Jerome; Michihiro, Takami; Karr, Jennifer; Hashimoto, Jun; Kudo, Tomoyuki; Sitko, Michael; Mayama, Satoshi; Kusakabe, Nobuyuki; Grady, Carol A.; McElwain, Michael W.

    2015-01-01

    We present new high-resolution (approximately 0.09) H-band imaging observations of the circumstellar disk around the T Tauri star SU Aur. Our observations with Subaru-HiCIAO have revealed the presence of scattered light as close as 0.15 (approximately 20 AU) to the star. Within our image, we identify bright emission associated with a disk with a minimum radius of approximately 90 AU, an inclination of approximately 35 deg from the plane of the sky, and an approximate PA of 15 deg for the major axis. We find a brightness asymmetry between the northern and southern sides of the disk due to a non-axisymmetric disk structure. We also identify a pair of asymmetric tail structures extending east and west from the disk. The western tail extends at least 2. 5 (350 AU) from the star, and is probably associated with a reflection nebula previously observed at optical and near-IR wavelengths. The eastern tail extends at least 1 (140 AU) at the present signal-to-noise. These tails are likely due to an encounter with an unseen brown dwarf, but our results do not exclude the explanation that these tails are outflow cavities or jets.

  12. Tidal Distortion of the Envelope of an AGB Star IRS 3 near Sgr A{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Yusef-Zadeh, F.; Royster, M. J.; Roberts, D. A. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Wardle, M. [Department of Physics and Astronomy and Research Center for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Cotton, W.; Kunneriath, D. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Schödel, R. [Instituto de Astfisica de Andalucia (CSIC), Glorieta de la Astronomia S/N, E-18008 Granada (Spain)

    2017-03-01

    We present radio and millimeter continuum observations of the Galactic center taken with the Very Large Array (VLA) and ALMA at 44 and 226 GHz, respectively. We detect radio and millimeter emission from IRS 3, lying ∼4.″5 NW of Sgr A*, with a spectrum that is consistent with the photospheric emission from an AGB star at the Galactic center. Millimeter images reveal that the envelope of IRS 3, the brightest and most extended 3.8 μ m Galactic center stellar source, consists of two semicircular dust shells facing the direction of Sgr A*. The outer circumstellar shell, at a distance of 1.6 × 10{sup 4} au, appears to break up into “fingers” of dust directed toward Sgr A*. These features coincide with molecular CS (5–4) emission and a near-IR extinction cloud distributed between IRS 3 and Sgr A*. The NE–SW asymmetric shapes of the IRS 3 shells seen at 3.8 μ m and radio are interpreted as structures that are tidally distorted by Sgr A*. Using the kinematics of CS emission and the proper motion of IRS 3, the tidally distorted outflowing material from the envelope after 5000 yr constrains the distance of IRS 3 to ∼0.7 pc in front of or ∼0.5 pc behind Sgr A*. This suggests that the mass loss by stars near Sgr A* can supply a reservoir of molecular material near Sgr A*. We also present dark features in radio continuum images coincident with the envelope of IRS 3. These dusty stars provide examples in which high-resolution radio continuum images can identify dust-enshrouded stellar sources embedded in an ionized medium.

  13. Spot restoration for GPR image post-processing

    Science.gov (United States)

    Paglieroni, David W; Beer, N. Reginald

    2014-05-20

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  14. Image reconstruction of dynamic infrared single-pixel imaging system

    Science.gov (United States)

    Tong, Qi; Jiang, Yilin; Wang, Haiyan; Guo, Limin

    2018-03-01

    Single-pixel imaging technique has recently received much attention. Most of the current single-pixel imaging is aimed at relatively static targets or the imaging system is fixed, which is limited by the number of measurements received through the single detector. In this paper, we proposed a novel dynamic compressive imaging method to solve the imaging problem, where exists imaging system motion behavior, for the infrared (IR) rosette scanning system. The relationship between adjacent target images and scene is analyzed under different system movement scenarios. These relationships are used to build dynamic compressive imaging models. Simulation results demonstrate that the proposed method can improve the reconstruction quality of IR image and enhance the contrast between the target and the background in the presence of system movement.

  15. Intelligent medical image processing by simulated annealing

    International Nuclear Information System (INIS)

    Ohyama, Nagaaki

    1992-01-01

    Image processing is being widely used in the medical field and already has become very important, especially when used for image reconstruction purposes. In this paper, it is shown that image processing can be classified into 4 categories; passive, active, intelligent and visual image processing. These 4 classes are explained at first through the use of several examples. The results show that the passive image processing does not give better results than the others. Intelligent image processing, then, is addressed, and the simulated annealing method is introduced. Due to the flexibility of the simulated annealing, formulated intelligence is shown to be easily introduced in an image reconstruction problem. As a practical example, 3D blood vessel reconstruction from a small number of projections, which is insufficient for conventional method to give good reconstruction, is proposed, and computer simulation clearly shows the effectiveness of simulated annealing method. Prior to the conclusion, medical file systems such as IS and C (Image Save and Carry) is pointed out to have potential for formulating knowledge, which is indispensable for intelligent image processing. This paper concludes by summarizing the advantages of simulated annealing. (author)

  16. Invitation to medical image processing

    International Nuclear Information System (INIS)

    Kitasaka, Takayuki; Suenaga, Yasuhito; Mori, Kensaku

    2010-01-01

    This medical essay explains the present state of CT image processing technology about its recognition, acquisition and visualization for computer-assisted diagnosis (CAD) and surgery (CAS), and future view. Medical image processing has a series of history of its original start from the discovery of X-ray to its application to diagnostic radiography, its combination with the computer for CT, multi-detector raw CT, leading to 3D/4D images for CAD and CAS. CAD is performed based on the recognition of normal anatomical structure of human body, detection of possible abnormal lesion and visualization of its numerical figure into image. Actual instances of CAD images are presented here for chest (lung cancer), abdomen (colorectal cancer) and future body atlas (models of organs and diseases for imaging), a recent national project: computer anatomy. CAS involves the surgical planning technology based on 3D images, navigation of the actual procedure and of endoscopy. As guidance to beginning technological image processing, described are the national and international community like related academic societies, regularly conducting congresses, textbooks and workshops, and topics in the field like computed anatomy of an individual patient for CAD and CAS, its data security and standardization. In future, protective medicine is in authors' view based on the imaging technology, e.g., daily life CAD of individuals ultimately, as exemplified in the present body thermometer and home sphygmometer, to monitor one's routine physical conditions. (T.T.)

  17. Overview of image processing tools to extract physical information from JET videos

    Science.gov (United States)

    Craciunescu, T.; Murari, A.; Gelfusa, M.; Tiseanu, I.; Zoita, V.; EFDA Contributors, JET

    2014-11-01

    In magnetic confinement nuclear fusion devices such as JET, the last few years have witnessed a significant increase in the use of digital imagery, not only for the surveying and control of experiments, but also for the physical interpretation of results. More than 25 cameras are routinely used for imaging on JET in the infrared (IR) and visible spectral regions. These cameras can produce up to tens of Gbytes per shot and their information content can be very different, depending on the experimental conditions. However, the relevant information about the underlying physical processes is generally of much reduced dimensionality compared to the recorded data. The extraction of this information, which allows full exploitation of these diagnostics, is a challenging task. The image analysis consists, in most cases, of inverse problems which are typically ill-posed mathematically. The typology of objects to be analysed is very wide, and usually the images are affected by noise, low levels of contrast, low grey-level in-depth resolution, reshaping of moving objects, etc. Moreover, the plasma events have time constants of ms or tens of ms, which imposes tough conditions for real-time applications. On JET, in the last few years new tools and methods have been developed for physical information retrieval. The methodology of optical flow has allowed, under certain assumptions, the derivation of information about the dynamics of video objects associated with different physical phenomena, such as instabilities, pellets and filaments. The approach has been extended in order to approximate the optical flow within the MPEG compressed domain, allowing the manipulation of the large JET video databases and, in specific cases, even real-time data processing. The fast visible camera may provide new information that is potentially useful for disruption prediction. A set of methods, based on the extraction of structural information from the visual scene, have been developed for the

  18. Overview of image processing tools to extract physical information from JET videos

    International Nuclear Information System (INIS)

    Craciunescu, T; Tiseanu, I; Zoita, V; Murari, A; Gelfusa, M

    2014-01-01

    In magnetic confinement nuclear fusion devices such as JET, the last few years have witnessed a significant increase in the use of digital imagery, not only for the surveying and control of experiments, but also for the physical interpretation of results. More than 25 cameras are routinely used for imaging on JET in the infrared (IR) and visible spectral regions. These cameras can produce up to tens of Gbytes per shot and their information content can be very different, depending on the experimental conditions. However, the relevant information about the underlying physical processes is generally of much reduced dimensionality compared to the recorded data. The extraction of this information, which allows full exploitation of these diagnostics, is a challenging task. The image analysis consists, in most cases, of inverse problems which are typically ill-posed mathematically. The typology of objects to be analysed is very wide, and usually the images are affected by noise, low levels of contrast, low grey-level in-depth resolution, reshaping of moving objects, etc. Moreover, the plasma events have time constants of ms or tens of ms, which imposes tough conditions for real-time applications. On JET, in the last few years new tools and methods have been developed for physical information retrieval. The methodology of optical flow has allowed, under certain assumptions, the derivation of information about the dynamics of video objects associated with different physical phenomena, such as instabilities, pellets and filaments. The approach has been extended in order to approximate the optical flow within the MPEG compressed domain, allowing the manipulation of the large JET video databases and, in specific cases, even real-time data processing. The fast visible camera may provide new information that is potentially useful for disruption prediction. A set of methods, based on the extraction of structural information from the visual scene, have been developed for the

  19. Differential morphology and image processing.

    Science.gov (United States)

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  20. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  1. Selections from 2017: Image Processing with AstroImageJ

    Science.gov (United States)

    Kohler, Susanna

    2017-12-01

    Editors note:In these last two weeks of 2017, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume in January.AstroImageJ: Image Processing and Photometric Extraction for Ultra-Precise Astronomical Light CurvesPublished January2017The AIJ image display. A wide range of astronomy specific image display options and image analysis tools are available from the menus, quick access icons, and interactive histogram. [Collins et al. 2017]Main takeaway:AstroImageJ is a new integrated software package presented in a publication led byKaren Collins(Vanderbilt University,Fisk University, andUniversity of Louisville). Itenables new users even at the level of undergraduate student, high school student, or amateur astronomer to quickly start processing, modeling, and plotting astronomical image data.Why its interesting:Science doesnt just happen the momenta telescope captures a picture of a distantobject. Instead, astronomical images must firstbe carefully processed to clean up thedata, and this data must then be systematically analyzed to learn about the objects within it. AstroImageJ as a GUI-driven, easily installed, public-domain tool is a uniquelyaccessible tool for thisprocessing and analysis, allowing even non-specialist users to explore and visualizeastronomical data.Some features ofAstroImageJ:(as reported by Astrobites)Image calibration:generate master flat, dark, and bias framesImage arithmetic:combineimages viasubtraction, addition, division, multiplication, etc.Stack editing:easily perform operations on a series of imagesImage stabilization and image alignment featuresPrecise coordinate converters:calculate Heliocentric and Barycentric Julian DatesWCS coordinates:determine precisely where atelescope was pointed for an image by PlateSolving using Astronomy.netMacro and plugin support:write your own macrosMulti-aperture photometry

  2. Time resolved IR-LIGS experiments for gas-phase trace detection and temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fantoni, R.; Giorgi, M. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Snels, M. [CNR, Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali; Latzel, H.

    1997-01-01

    Time resolved Laser Induced Grating Spectroscopy (LIGS) has been performed to detect different gases in mixtures at atmospheric pressure or higher. The possibility of trace detection of minor species and of temperature measurements has been demonstrated for various molecular species either of environmental interest or involved in combustion processes. In view of the application of tracing unburned hydrocarbons in combustion chambers, the coupling of the IR-LIGS technique with imaging detection has been considered and preliminary results obtained in small size ethylene/air flames are shown.

  3. Nuclear medicine imaging and data processing

    International Nuclear Information System (INIS)

    Bell, P.R.; Dillon, R.S.

    1978-01-01

    The Oak Ridge Imaging System (ORIS) is a software operating system structure around the Digital Equipment Corporation's PDP-8 minicomputer which provides a complete range of image manipulation procedures. Through its modular design it remains open-ended for easy expansion to meet future needs. Already included in the system are image access routines for use with the rectilinear scanner or gamma camera (both static and flow studies); display hardware design and corresponding software; archival storage provisions; and, most important, many image processing techniques. The image processing capabilities include image defect removal, smoothing, nonlinear bounding, preparation of functional images, and transaxial emission tomography reconstruction from a limited number of views

  4. Multi-Sensor Fusion of Infrared and Electro-Optic Signals for High Resolution Night Images

    Directory of Open Access Journals (Sweden)

    Victor Lawrence

    2012-07-01

    Full Text Available Electro-optic (EO image sensors exhibit the properties of high resolution and low noise level at daytime, but they do not work in dark environments. Infrared (IR image sensors exhibit poor resolution and cannot separate objects with similar temperature. Therefore, we propose a novel framework of IR image enhancement based on the information (e.g., edge from EO images, which improves the resolution of IR images and helps us distinguish objects at night. Our framework superimposing/blending the edges of the EO image onto the corresponding transformed IR image improves their resolution. In this framework, we adopt the theoretical point spread function (PSF proposed by Hardie et al. for the IR image, which has the modulation transfer function (MTF of a uniform detector array and the incoherent optical transfer function (OTF of diffraction-limited optics. In addition, we design an inverse filter for the proposed PSF and use it for the IR image transformation. The framework requires four main steps: (1 inverse filter-based IR image transformation; (2 EO image edge detection; (3 registration; and (4 blending/superimposing of the obtained image pair. Simulation results show both blended and superimposed IR images, and demonstrate that blended IR images have better quality over the superimposed images. Additionally, based on the same steps, simulation result shows a blended IR image of better quality when only the original IR image is available.

  5. Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR.

    Science.gov (United States)

    Özsin, Gamzenur; Pütün, Ayşe Eren

    2017-06-01

    The objective of this study was to identify the pyrolysis of different bio-waste produced by food processing industry in a comprehensible manner. For this purpose, pyrolysis behaviors of chestnut shells (CNS), cherry stones (CS) and grape seeds (GS) were investigated by thermogravimetric analysis (TGA) combined with a Fourier-transform infrared (FT-IR) spectrometer and a mass spectrometer (MS). In order to make available theoretical groundwork for biomass pyrolysis, activation energies were calculated with the help of four different model-free kinetic methods. The results are attributed to the complex reaction schemes which imply parallel, competitive and complex reactions during pyrolysis. During pyrolysis, the evolution of volatiles was also characterized by FT-IR and MS. The main evolved gases were determined as H 2 O, CO 2 and hydrocarbons such as CH 4 and temperature dependent profiles of the species were obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Image exploitation and dissemination prototype of distributed image processing

    International Nuclear Information System (INIS)

    Batool, N.; Huqqani, A.A.; Mahmood, A.

    2003-05-01

    Image processing applications requirements can be best met by using the distributed environment. This report presents to draw inferences by utilizing the existed LAN resources under the distributed computing environment using Java and web technology for extensive processing to make it truly system independent. Although the environment has been tested using image processing applications, its design and architecture is truly general and modular so that it can be used for other applications as well, which require distributed processing. Images originating from server are fed to the workers along with the desired operations to be performed on them. The Server distributes the task among the Workers who carry out the required operations and send back the results. This application has been implemented using the Remote Method Invocation (RMl) feature of Java. Java RMI allows an object running in one Java Virtual Machine (JVM) to invoke methods on another JVM thus providing remote communication between programs written in the Java programming language. RMI can therefore be used to develop distributed applications [1]. We undertook this project to gain a better understanding of distributed systems concepts and its uses for resource hungry jobs. The image processing application is developed under this environment

  7. 4D MR imaging using robust internal respiratory signal

    International Nuclear Information System (INIS)

    Hui, CheukKai; Wen, Zhifei; Beddar, Sam; Stemkens, Bjorn; Tijssen, R H N; Van den Berg, C A T; Hwang, Ken-Pin

    2016-01-01

    The purpose of this study is to investigate the feasibility of using internal respiratory (IR) surrogates to sort four-dimensional (4D) magnetic resonance (MR) images. The 4D MR images were constructed by acquiring fast 2D cine MR images sequentially, with each slice scanned for more than one breathing cycle. The 4D volume was then sorted retrospectively using the IR signal. In this study, we propose to use multiple low-frequency components in the Fourier space as well as the anterior body boundary as potential IR surrogates. From these potential IR surrogates, we used a clustering algorithm to identify those that best represented the respiratory pattern to derive the IR signal. A study with healthy volunteers was performed to assess the feasibility of the proposed IR signal. We compared this proposed IR signal with the respiratory signal obtained using respiratory bellows. Overall, 99% of the IR signals matched the bellows signals. The average difference between the end inspiration times in the IR signal and bellows signal was 0.18 s in this cohort of matching signals. For the acquired images corresponding to the other 1% of non-matching signal pairs, the respiratory motion shown in the images was coherent with the respiratory phases determined by the IR signal, but not the bellows signal. This suggested that the IR signal determined by the proposed method could potentially correct the faulty bellows signal. The sorted 4D images showed minimal mismatched artefacts and potential clinical applicability. The proposed IR signal therefore provides a feasible alternative to effectively sort MR images in 4D. (paper)

  8. Contribution To The Data Warehouse And Prospects Of The IRS Program

    Science.gov (United States)

    Barner, Frithjof; Haydn, Rupert; Parmar, Manish; Makiola, Jens

    2013-12-01

    Over the past two years, the IRS program has again significantly contributed to the GSC-DA Data Warehouse. From its suite of optical EO satellites which operate in the visible, near IR and shortwave IR domain, multispectral data from the HR LISS-III and MR AWiFS sensors have been provided. Both cameras are implemented on board of Resourcesat-1 and Resourcesat-2 respectively. Despite reduced capacities, the Resourcesat constellation of satellites so far acquired cloud-free images of a vast majority of the first HR coverage of CORE_001 and several monthly MR coverages for CORE_008 over the EEA-39. The results regarding the above mentioned data sets will be discussed including an appraisal of the possible future role of upcoming IRS EO satellites for European data requirements.

  9. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    Completely self-contained-and heavily illustrated-this introduction to basic concepts and methodologies for digital image processing is written at a level that truly is suitable for seniors and first...

  10. Predictive images of postoperative levator resection outcome using image processing software

    Directory of Open Access Journals (Sweden)

    Mawatari Y

    2016-09-01

    Full Text Available Yuki Mawatari,1 Mikiko Fukushima2 1Igo Ophthalmic Clinic, Kagoshima, 2Department of Ophthalmology, Faculty of Life Science, Kumamoto University, Chuo-ku, Kumamoto, Japan Purpose: This study aims to evaluate the efficacy of processed images to predict postoperative appearance following levator resection.Methods: Analysis involved 109 eyes from 65 patients with blepharoptosis who underwent advancement of levator aponeurosis and Müller’s muscle complex (levator resection. Predictive images were prepared from preoperative photographs using the image processing software (Adobe Photoshop®. Images of selected eyes were digitally enlarged in an appropriate manner and shown to patients prior to surgery.Results: Approximately 1 month postoperatively, we surveyed our patients using questionnaires. Fifty-six patients (89.2% were satisfied with their postoperative appearances, and 55 patients (84.8% positively responded to the usefulness of processed images to predict postoperative appearance.Conclusion: Showing processed images that predict postoperative appearance to patients prior to blepharoptosis surgery can be useful for those patients concerned with their postoperative appearance. This approach may serve as a useful tool to simulate blepharoptosis surgery. Keywords: levator resection, blepharoptosis, image processing, Adobe Photoshop® 

  11. A System for Compressive Spectral and Polarization Imaging at Short Wave Infrared (SWIR) Wavelengths

    Science.gov (United States)

    2017-10-18

    UV -­‐ VIS -­‐IR   60mm   Apo   Macro  lens   Jenoptik-­‐Inc   $5,817.36   IR... VIS /NIR Compressive Spectral Imager”, Proceedings of IEEE International Conference on Image Processing (ICIP ’15), Quebec City, Canada, (September...imaging   system   will   lead   to   a   wide-­‐band   VIS -­‐NIR-­‐SWIR   compressive  spectral  and  polarimetric

  12. Predictive images of postoperative levator resection outcome using image processing software.

    Science.gov (United States)

    Mawatari, Yuki; Fukushima, Mikiko

    2016-01-01

    This study aims to evaluate the efficacy of processed images to predict postoperative appearance following levator resection. Analysis involved 109 eyes from 65 patients with blepharoptosis who underwent advancement of levator aponeurosis and Müller's muscle complex (levator resection). Predictive images were prepared from preoperative photographs using the image processing software (Adobe Photoshop ® ). Images of selected eyes were digitally enlarged in an appropriate manner and shown to patients prior to surgery. Approximately 1 month postoperatively, we surveyed our patients using questionnaires. Fifty-six patients (89.2%) were satisfied with their postoperative appearances, and 55 patients (84.8%) positively responded to the usefulness of processed images to predict postoperative appearance. Showing processed images that predict postoperative appearance to patients prior to blepharoptosis surgery can be useful for those patients concerned with their postoperative appearance. This approach may serve as a useful tool to simulate blepharoptosis surgery.

  13. Third-generation intelligent IR focal plane arrays

    Science.gov (United States)

    Caulfield, H. John; Jack, Michael D.; Pettijohn, Kevin L.; Schlesselmann, John D.; Norworth, Joe

    1998-03-01

    SBRC is at the forefront of industry in developing IR focal plane arrays including multi-spectral technology and '3rd generation' functions that mimic the human eye. 3rd generation devices conduct advanced processing on or near the FPA that serve to reduce bandwidth while performing needed functions such as automatic target recognition, uniformity correction and dynamic range enhancement. These devices represent a solution for processing the exorbitantly high bandwidth coming off large area FPAs without sacrificing systems sensitivity. SBRC's two-color approach leverages the company's HgCdTe technology to provide simultaneous multiband coverage, from short through long wave IR, with near theoretical performance. IR systems that are sensitive to different spectral bands achieve enhanced capabilities for target identification and advanced discrimination. This paper will provide a summary of the issues, the technology and the benefits of SBRC's third generation smart and two-color FPAs.

  14. Applied medical image processing a basic course

    CERN Document Server

    Birkfellner, Wolfgang

    2014-01-01

    A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB®/Octave scripts with image data and illustrations on an accompanying CD-ROM or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction.

  15. Image processing for medical diagnosis using CNN

    International Nuclear Information System (INIS)

    Arena, Paolo; Basile, Adriano; Bucolo, Maide; Fortuna, Luigi

    2003-01-01

    Medical diagnosis is one of the most important area in which image processing procedures are usefully applied. Image processing is an important phase in order to improve the accuracy both for diagnosis procedure and for surgical operation. One of these fields is tumor/cancer detection by using Microarray analysis. The research studies in the Cancer Genetics Branch are mainly involved in a range of experiments including the identification of inherited mutations predisposing family members to malignant melanoma, prostate and breast cancer. In bio-medical field the real-time processing is very important, but often image processing is a quite time-consuming phase. Therefore techniques able to speed up the elaboration play an important rule. From this point of view, in this work a novel approach to image processing has been developed. The new idea is to use the Cellular Neural Networks to investigate on diagnostic images, like: Magnetic Resonance Imaging, Computed Tomography, and fluorescent cDNA microarray images

  16. Near diffraction limited mid-IR spectromicroscopy using frequency upconversion

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter

    2014-01-01

    morphological and spectral imaging. Recent developments in nonlinear frequency upconversion, have demonstrated the potential to perform both imaging and spectroscopy in the mid-IR range at unparalleled low levels of illumination, the low upconversion detector noise being orders of magnitude below competing...... technologies. With these applications in mind, we have incorporated microscopy optics into an image upconversion system, achieving near diffraction limited spatial resolution in the 3 μm range. Spectroscopic information is further acquired by appropriate control of the phase match condition of the upconversion...

  17. Corner-point criterion for assessing nonlinear image processing imagers

    Science.gov (United States)

    Landeau, Stéphane; Pigois, Laurent; Foing, Jean-Paul; Deshors, Gilles; Swiathy, Greggory

    2017-10-01

    Range performance modeling of optronics imagers attempts to characterize the ability to resolve details in the image. Today, digital image processing is systematically used in conjunction with the optoelectronic system to correct its defects or to exploit tiny detection signals to increase performance. In order to characterize these processing having adaptive and non-linear properties, it becomes necessary to stimulate the imagers with test patterns whose properties are similar to the actual scene image ones, in terms of dynamic range, contours, texture and singular points. This paper presents an approach based on a Corner-Point (CP) resolution criterion, derived from the Probability of Correct Resolution (PCR) of binary fractal patterns. The fundamental principle lies in the respectful perception of the CP direction of one pixel minority value among the majority value of a 2×2 pixels block. The evaluation procedure considers the actual image as its multi-resolution CP transformation, taking the role of Ground Truth (GT). After a spatial registration between the degraded image and the original one, the degradation is statistically measured by comparing the GT with the degraded image CP transformation, in terms of localized PCR at the region of interest. The paper defines this CP criterion and presents the developed evaluation techniques, such as the measurement of the number of CP resolved on the target, the transformation CP and its inverse transform that make it possible to reconstruct an image of the perceived CPs. Then, this criterion is compared with the standard Johnson criterion, in the case of a linear blur and noise degradation. The evaluation of an imaging system integrating an image display and a visual perception is considered, by proposing an analysis scheme combining two methods: a CP measurement for the highly non-linear part (imaging) with real signature test target and conventional methods for the more linear part (displaying). The application to

  18. Tarptautinio turizmo raida ir vystymo prognozės Lietuvoje ir Lenkijoje

    OpenAIRE

    Veličkaitė, Dalia

    2009-01-01

    Išanalizuota ir įvertinta Lietuvos ir Lenkijos atvykstamojo turizmo raida 2000- 2007m., užsienio turistų srautai, apgyvendinimo paslaugų paklausa, turistų tikslai ir kelionių transporto pasirinkimas, turistų išlaidos ir šalių turizmo pajamos, iškeltos atvykstamojo turizmo problemos bei pateikti jų sprendimo siūlymai.paskutinėje darbo dalyje buvo atliktos 2008- 2015metų Lietuvos ir Lenkijos turizmo raidos prognozės. In the final master work Lithuanian and Poland arriving tourism development...

  19. Processing computed tomography images by using personal computer

    International Nuclear Information System (INIS)

    Seto, Kazuhiko; Fujishiro, Kazuo; Seki, Hirofumi; Yamamoto, Tetsuo.

    1994-01-01

    Processing of CT images was attempted by using a popular personal computer. The program for image-processing was made with C compiler. The original images, acquired with CT scanner (TCT-60A, Toshiba), were transferred to the computer by 8-inch flexible diskette. Many fundamental image-processing, such as displaying image to the monitor, calculating CT value and drawing the profile curve. The result showed that a popular personal computer had ability to process CT images. It seemed that 8-inch flexible diskette was still useful medium of transferring image data. (author)

  20. Process perspective on image quality evaluation

    Science.gov (United States)

    Leisti, Tuomas; Halonen, Raisa; Kokkonen, Anna; Weckman, Hanna; Mettänen, Marja; Lensu, Lasse; Ritala, Risto; Oittinen, Pirkko; Nyman, Göte

    2008-01-01

    The psychological complexity of multivariate image quality evaluation makes it difficult to develop general image quality metrics. Quality evaluation includes several mental processes and ignoring these processes and the use of a few test images can lead to biased results. By using a qualitative/quantitative (Interpretation Based Quality, IBQ) methodology, we examined the process of pair-wise comparison in a setting, where the quality of the images printed by laser printer on different paper grades was evaluated. Test image consisted of a picture of a table covered with several objects. Three other images were also used, photographs of a woman, cityscape and countryside. In addition to the pair-wise comparisons, observers (N=10) were interviewed about the subjective quality attributes they used in making their quality decisions. An examination of the individual pair-wise comparisons revealed serious inconsistencies in observers' evaluations on the test image content, but not on other contexts. The qualitative analysis showed that this inconsistency was due to the observers' focus of attention. The lack of easily recognizable context in the test image may have contributed to this inconsistency. To obtain reliable knowledge of the effect of image context or attention on subjective image quality, a qualitative methodology is needed.

  1. A Robust 96.6-dB-SNDR 50-kHz-Bandwidth Switched-Capacitor Delta-Sigma Modulator for IR Imagers in Space Instrumentation.

    Science.gov (United States)

    Dei, Michele; Sutula, Stepan; Cisneros, Jose; Pun, Ernesto; Jansen, Richard Jan Engel; Terés, Lluís; Serra-Graells, Francisco

    2017-06-02

    Infrared imaging technology, used both to study deep-space bodies' radiation and environmental changes on Earth, experienced constant improvements in the last few years, pushing data converter designers to face new challenges in terms of speed, power consumption and robustness against extremely harsh operating conditions. This paper presents a 96.6-dB-SNDR (Signal-to-Noise-plus-Distortion Ratio) 50-kHz-bandwidth fourth-order single-bit switched-capacitor delta-sigma modulator for ADC operating at 1.8 V and consuming 7.9 mW fit for space instrumentation. The circuit features novel Class-AB single-stage switched variable-mirror amplifiers (SVMAs) enabling low-power operation, as well as low sensitivity to both process and temperature deviations for the whole modulator. The physical implementation resulted in a 1.8-mm 2 chip integrated in a standard 0.18-µm 1-poly-6-metal (1P6M) CMOS technology, and it reaches a 164.6-dB Schreier figure of merit from experimental SNDR measurements without making use of any clock bootstrapping,analogcalibration,nordigitalcompensationtechnique. Whencoupledtoa2048×2048 IR imager, the current design allows more than 50 frames per minute with a resolution of 16 effective number of bits (ENOB) while consuming less than 300 mW.

  2. Digital processing of radiographic images

    Science.gov (United States)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  3. IR 820 dye encapsulated in polycaprolactone glycol chitosan: Poloxamer blend nanoparticles for photo immunotherapy for breast cancer

    International Nuclear Information System (INIS)

    Kumar, Piyush; Srivastava, Rohit

    2015-01-01

    In the present study, we have fabricated biocompatible and biodegradable monodisperse IR 820 encapsulated polycaprolactone (PCL) glycol chitosan (GC): Poloxamer blend nanoparticles (PP-IR NPs) for imaging and effective photo-immunotherapy. IR 820 has been used as an imaging and photothermal agent whereas glycol chitosan (GC) as an immunostimulatory agent. The combination of IR 820, poloxamer, and GC can be used effectively for photoimmunotherapy for cancer, drug-resistant and TNF-α resistant estrogen positive breast cancer. PP-IR NPs are stable in aqueous solution. The uniform size of 100–220 nm with a high zeta value of + 38 ± 2 mV led them to accumulate in cancer cells. Laser treatment did not affect the morphology of PP-IR NPs as observed under the transmission electron microscope (TEM). In vitro cytotoxicity studies on MCF-7 cells showed enhanced toxicity upon laser treatment. Further, we validated the cell death by reactive oxygen species (ROS) production. Our studies thus showed that PP-IR NPs are effective in suppressing metastatic cancer as the combinational therapy leads to the formation of apoptotic bodies in MCF-7 cells. - Highlights: • PPIR nanoparticles for photoimmunotherapy for cancer • IR 820/GC serves as theranostic and immunostimulatory. • Photoimmunotherapy enhances cytotoxicity by reactive oxygen species production

  4. IR 820 dye encapsulated in polycaprolactone glycol chitosan: Poloxamer blend nanoparticles for photo immunotherapy for breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Piyush; Srivastava, Rohit, E-mail: rsrivasta@iitb.ac.in

    2015-12-01

    In the present study, we have fabricated biocompatible and biodegradable monodisperse IR 820 encapsulated polycaprolactone (PCL) glycol chitosan (GC): Poloxamer blend nanoparticles (PP-IR NPs) for imaging and effective photo-immunotherapy. IR 820 has been used as an imaging and photothermal agent whereas glycol chitosan (GC) as an immunostimulatory agent. The combination of IR 820, poloxamer, and GC can be used effectively for photoimmunotherapy for cancer, drug-resistant and TNF-α resistant estrogen positive breast cancer. PP-IR NPs are stable in aqueous solution. The uniform size of 100–220 nm with a high zeta value of + 38 ± 2 mV led them to accumulate in cancer cells. Laser treatment did not affect the morphology of PP-IR NPs as observed under the transmission electron microscope (TEM). In vitro cytotoxicity studies on MCF-7 cells showed enhanced toxicity upon laser treatment. Further, we validated the cell death by reactive oxygen species (ROS) production. Our studies thus showed that PP-IR NPs are effective in suppressing metastatic cancer as the combinational therapy leads to the formation of apoptotic bodies in MCF-7 cells. - Highlights: • PPIR nanoparticles for photoimmunotherapy for cancer • IR 820/GC serves as theranostic and immunostimulatory. • Photoimmunotherapy enhances cytotoxicity by reactive oxygen species production.

  5. Electronic structure, local magnetism, and spin-orbit effects of Ir(IV)-, Ir(V)-, and Ir(VI)-based compounds

    Energy Technology Data Exchange (ETDEWEB)

    Laguna-Marco, M. A.; Kayser, P.; Alonso, J. A.; Martínez-Lope, M. J.; van Veenendaal, M.; Choi, Y.; Haskel, D.

    2015-06-01

    Element- and orbital-selective x-ray absorption and magnetic circular dichroism measurements are carried out to probe the electronic structure and magnetism of Ir 5d electronic states in double perovskite Sr2MIrO6 (M = Mg, Ca, Sc, Ti, Ni, Fe, Zn, In) and La2NiIrO6 compounds. All the studied systems present a significant influence of spin-orbit interactions in the electronic ground state. In addition, we find that the Ir 5d local magnetic moment shows different character depending on the oxidation state despite the net magnetization being similar for all the compounds. Ir carries an orbital contribution comparable to the spin contribution for Ir4+ (5d(5)) and Ir5+ (5d(4)) oxides, whereas the orbital contribution is quenched for Ir6+ (5d(3)) samples. Incorporation of a magnetic 3d atom allows getting insight into the magnetic coupling between 5d and 3d transition metals. Together with previous susceptibility and neutron diffractionmeasurements, the results indicate that Ir carries a significant local magnetic moment even in samples without a 3d metal. The size of the (small) net magnetization of these compounds is a result of predominant antiferromagnetic interactions between local moments coupled with structural details of each perovskite structure

  6. IR-IR Conformation Specific Spectroscopy of Na+(Glucose) Adducts

    Science.gov (United States)

    Voss, Jonathan M.; Kregel, Steven J.; Fischer, Kaitlyn C.; Garand, Etienne

    2018-01-01

    We report an IR-IR double resonance study of the structural landscape present in the Na+(glucose) complex. Our experimental approach involves minimal modifications to a typical IR predissociation setup, and can be carried out via ion-dip or isomer-burning methods, providing additional flexibility to suit different experimental needs. In the current study, the single-laser IR predissociation spectrum of Na+(glucose), which clearly indicates contributions from multiple structures, was experimentally disentangled to reveal the presence of three α-conformers and five β-conformers. Comparisons with calculations show that these eight conformations correspond to the lowest energy gas-phase structures with distinctive Na+ coordination. [Figure not available: see fulltext.

  7. FITS Liberator: Image processing software

    Science.gov (United States)

    Lindberg Christensen, Lars; Nielsen, Lars Holm; Nielsen, Kaspar K.; Johansen, Teis; Hurt, Robert; de Martin, David

    2012-06-01

    The ESA/ESO/NASA FITS Liberator makes it possible to process and edit astronomical science data in the FITS format to produce stunning images of the universe. Formerly a plugin for Adobe Photoshop, the current version of FITS Liberator is a stand-alone application and no longer requires Photoshop. This image processing software makes it possible to create color images using raw observations from a range of telescopes; the FITS Liberator continues to support the FITS and PDS formats, preferred by astronomers and planetary scientists respectively, which enables data to be processed from a wide range of telescopes and planetary probes, including ESO's Very Large Telescope, the NASA/ESA Hubble Space Telescope, NASA's Spitzer Space Telescope, ESA's XMM-Newton Telescope and Cassini-Huygens or Mars Reconnaissance Orbiter.

  8. PKCδ-mediated IRS-1 Ser24 phosphorylation negatively regulates IRS-1 function

    International Nuclear Information System (INIS)

    Greene, Michael W.; Ruhoff, Mary S.; Roth, Richard A.; Kim, Jeong-a; Quon, Michael J.; Krause, Jean A.

    2006-01-01

    The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCδ on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCδ-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCδ catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1

  9. High-Resolution Mid-IR Imaging of Jupiter's Great Red Spot: Comparing Cassini, VLT and Subaru Observations

    Science.gov (United States)

    Fletcher, Leigh N.; Orton, G. S.; Yanamandra-Fisher, P.; Irwin, P. G. J.; Baines, K. H.; Edkins, E.; Line, M. R.; Mousis, O.; Parrish, P. D.; Vanzi, L.; Fuse, T.; Fujoyoshi, T.

    2008-09-01

    In the eight years since the Cassini fly-by of Jupiter, the spatial resolution of ground-based observations of Jupiter's giant anticyclonic storm systems (the Great Red Spot, Oval BA and others) using 8m-class telescopes has surpassed the resolution of the Cassini/CIRS maps. We present a time-series of mid-IR imaging of the Great Red Spot (GRS) and its environs from the VISIR instrument on the Very Large Telescope (UT3/Melipal) and the COMICS instrument on the Subaru telescope (Hawaii). The NEMESIS optimal-estimation retrieval algorithm (Irwin et al., 2008) is used to analyse both the 7-25 micron filtered imaging from 2005-2008 and Cassini/CIRS 7-16 micron data from 2000. We demonstrate the ability to map temperatures in the 100-400 mbar range, NH3, aerosol opacity and the para-H2 fraction from the filtered imaging. Furthermore, the Cassini/CIRS spectra are used to map the PH3 mole fraction around the GRS. The thermal field, gaseous composition and aerosol distribution are used as diagnostics for the atmospheric motion associated with the GRS. Changes in the atmospheric state in response to close encounters with Oval BA and other vortices will be assessed. These results will be discussed in light of their implications for the planning of the Europa-Jupiter System Mission.

  10. Image processing. Volumetric analysis with a digital image processing system. [GAMMA]. Bildverarbeitung. Volumetrie mittels eines digitalen Bildverarbeitungssystems

    Energy Technology Data Exchange (ETDEWEB)

    Kindler, M; Radtke, F; Demel, G

    1986-01-01

    The book is arranged in seven sections, describing various applications of volumetric analysis using image processing systems, and various methods of diagnostic evaluation of images obtained by gamma scintigraphy, cardic catheterisation, and echocardiography. A dynamic ventricular phantom is explained that has been developed for checking and calibration for safe examination of patient, the phantom allowing extensive simulation of volumetric and hemodynamic conditions of the human heart: One section discusses the program development for image processing, referring to a number of different computer systems. The equipment described includes a small non-expensive PC system, as well as a standardized nuclear medical diagnostic system, and a computer system especially suited to image processing.

  11. An Approach to Improve the Quality of Infrared Images of Vein-Patterns

    Directory of Open Access Journals (Sweden)

    Chih-Lung Lin

    2011-12-01

    Full Text Available This study develops an approach to improve the quality of infrared (IR images of vein-patterns, which usually have noise, low contrast, low brightness and small objects of interest, thus requiring preprocessing to improve their quality. The main characteristics of the proposed approach are that no prior knowledge about the IR image is necessary and no parameters must be preset. Two main goals are sought: impulse noise reduction and adaptive contrast enhancement technologies. In our study, a fast median-based filter (FMBF is developed as a noise reduction method. It is based on an IR imaging mechanism to detect the noisy pixels and on a modified median-based filter to remove the noisy pixels in IR images. FMBF has the advantage of a low computation load. In addition, FMBF can retain reasonably good edges and texture information when the size of the filter window increases. The most important advantage is that the peak signal-to-noise ratio (PSNR caused by FMBF is higher than the PSNR caused by the median filter. A hybrid cumulative histogram equalization (HCHE is proposed for adaptive contrast enhancement. HCHE can automatically generate a hybrid cumulative histogram (HCH based on two different pieces of information about the image histogram. HCHE can improve the enhancement effect on hot objects rather than background. The experimental results are addressed and demonstrate that the proposed approach is feasible for use as an effective and adaptive process for enhancing the quality of IR vein-pattern images.

  12. Organization of bubble chamber image processing

    International Nuclear Information System (INIS)

    Gritsaenko, I.A.; Petrovykh, L.P.; Petrovykh, Yu.L.; Fenyuk, A.B.

    1985-01-01

    A programme of bubble chamber image processing is described. The programme is written in FORTRAN, it is developed for the DEC-10 computer and is designed for operation of semi-automation processing-measurement projects PUOS-2 and PUOS-4. Fornalization of the image processing permits to use it for different physical experiments

  13. Limb darkening in Venus night-side disk as viewed from Akatsuki IR2

    Science.gov (United States)

    Satoh, Takehiko; Nakakushi, Takashi; Sato, Takao M.; Hashimoto, George L.

    2017-10-01

    Night-side hemisphere of Venus exhibits dark and bright regions as a result of spatially inhomogeneous cloud opacity which is illuminated by infrared radiation from deeper atmosphere. The 2-μm camera (IR2) onboard Akatsuki, Japan's Venus Climate Orbiter, is equipped with three narrow-band filters (1.735, 2.26, and 2.32 μm) to image Venus night-side disk in well-known transparency windows of CO2 atmosphere (Allen and Crawford 1984). In general, a cloud feature appears brightest when it is in the disk center and becomes darker as the zenith angle of emergent light increases. Such limb darkening was observed with Galileo/NIMS and mathematically approximated (Carlson et al., 1993). Limb-darkening correction helps to identify branches, in a 1.74-μm vs. 2.3-μm radiances scatter plot, each of which corresponds to a group of aerosols with similar properties. We analyzed Akatsuki/IR2 images to characterize the limb darkening for three night-side filters.There is, however, contamination from the intense day-side disk blurred by IR2's point spread function (PSF). It is found that infrared light can be multiplly reflected within the Si substrate of IR2 detector (1024x1024 pixels PtSi array), causing elongated tail in the actual PSF. We treated this in two different ways. One is to mathematically approximate the PSF (with a combination of modified Lorentz functions) and another is to differentiate 2.26-μm image from 2.32-μm image so that the blurred light pattern can directly be obtained. By comparing results from these two methods, we are able to reasonablly clean up the night-side images and limb darkening is extracted. Physical interpretation of limb darkening, as well as "true" time variations of cloud brightness will be presented/discussed.

  14. Correcting the effect of refraction and dispersion of light in FT-IR spectroscopic imaging in transmission through thick infrared windows.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2013-01-15

    Transmission mode is one of the most common sampling methods for FT-IR spectroscopic imaging because the spectra obtained generally have a reasonable signal-to-noise ratio. However, dispersion and refraction of infrared light occurs when samples are sandwiched between infrared windows or placed underneath a layer of liquid. Dispersion and refraction cause infrared light to focus with different focal lengths depending on the wavelength (wavenumber) of the light. As a result, images obtained are in focus only at a particular wavenumber while they are defocused at other wavenumber values. In this work, a solution to correct this spread of focus by means of adding a lens on top of the infrared transparent window, such that a pseudo hemisphere is formed, has been investigated. Through this lens (or pseudo hemisphere), refraction of light is removed and the light across the spectral range has the same focal depth. Furthermore, the lens acts as a solid immersion objective and an increase of both magnification and spatial resolution (by 1.4 times) is demonstrated. The spatial resolution was investigated using an USAF resolution target, showing that the Rayleigh criterion can be achieved, as well as a sample with a sharp polymer interface to indicate the spatial resolution that can be expected in real samples. The reported approach was used to obtain chemical images of cross sections of cancer tissue and hair samples sandwiched between infrared windows showing the versatility and applicability of the method. In addition to the improved spatial resolution, the results reported herein also demonstrate that the lens can reduce the effect of scattering near the edges of tissue samples. The advantages of the presented approach, obtaining FT-IR spectroscopic images in transmission mode with the same focus across all wavenumber values and simultaneous improvement in spatial resolution, will have wide implications ranging from studies of live cells to sorption of drugs into tissues.

  15. VIP: Vortex Image Processing Package for High-contrast Direct Imaging

    Science.gov (United States)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Absil, Olivier; Christiaens, Valentin; Defrère, Denis; Mawet, Dimitri; Milli, Julien; Absil, Pierre-Antoine; Van Droogenbroeck, Marc; Cantalloube, Faustine; Hinz, Philip M.; Skemer, Andrew J.; Karlsson, Mikael; Surdej, Jean

    2017-07-01

    We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.

  16. An Applied Image Processing for Radiographic Testing

    International Nuclear Information System (INIS)

    Ratchason, Surasak; Tuammee, Sopida; Srisroal Anusara

    2005-10-01

    An applied image processing for radiographic testing (RT) is desirable because it decreases time-consuming, decreases the cost of inspection process that need the experienced workers, and improves the inspection quality. This paper presents the primary study of image processing for RT-films that is the welding-film. The proposed approach to determine the defects on weld-images. The BMP image-files are opened and developed by computer program that using Borland C ++ . The software has five main methods that are Histogram, Contrast Enhancement, Edge Detection, Image Segmentation and Image Restoration. Each the main method has the several sub method that are the selected options. The results showed that the effective software can detect defects and the varied method suit for the different radiographic images. Furthermore, improving images are better when two methods are incorporated

  17. Quantitative image processing in fluid mechanics

    Science.gov (United States)

    Hesselink, Lambertus; Helman, James; Ning, Paul

    1992-01-01

    The current status of digital image processing in fluid flow research is reviewed. In particular, attention is given to a comprehensive approach to the extraction of quantitative data from multivariate databases and examples of recent developments. The discussion covers numerical simulations and experiments, data processing, generation and dissemination of knowledge, traditional image processing, hybrid processing, fluid flow vector field topology, and isosurface analysis using Marching Cubes.

  18. Infrared detectors, focal plane arrays, and imaging sensors; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Dereniak, Eustace L.; Sampson, Robert T.

    1989-10-01

    The present conference on advancements in IR detectors, Schottky-barrier focal plane arrays, CCD image analysis, and HgCdTe materials gives attention to a 256 x 256 PtSi array for IR astronomy, proposals for a second-generation meteosat's advanced optical payload, cryogenic bipolar technology for on-focal-plane signal processing, a parallel cellular processing system for fast generation of perspective plots, and ultrahigh-speed CCD image sensors for scanning applications. Also discussed are MBE GaAs rib waveguide experiments at 10.6 microns, an interferometric thermal detector, the development status of superconducting IR detector research, the absorption coefficients of n-type Hg(1-x)Cd(x)Te samples, and the influence of the surface channel on crosstalk in HgCdTe photovoltaic arrays.

  19. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    ...-year graduate students in almost any technical discipline. The leading textbook in its field for more than twenty years, it continues its cutting-edge focus on contemporary developments in all mainstream areas of image processing-e.g...

  20. Imaging with electromagnetic spectrum applications in food and agriculture

    CERN Document Server

    Jayasuriya, Hemantha

    2014-01-01

    This book demonstrates how imaging techniques, applying different frequency bands from the electromagnetic spectrum, are used in scientific research. Illustrated with numerous examples this book is structured according to the different radiation bands: From Gamma-rays over UV and IR to radio frequencies. In order to ensure a clear understanding of the processing methodologies, the text is enriched with descriptions of how digital images are formed, acquired, processed and how to extract information from them. A special emphasis is given to the application of imaging techniques in food and agriculture research.

  1. Hyperspectral image processing

    CERN Document Server

    Wang, Liguo

    2016-01-01

    Based on the authors’ research, this book introduces the main processing techniques in hyperspectral imaging. In this context, SVM-based classification, distance comparison-based endmember extraction, SVM-based spectral unmixing, spatial attraction model-based sub-pixel mapping, and MAP/POCS-based super-resolution reconstruction are discussed in depth. Readers will gain a comprehensive understanding of these cutting-edge hyperspectral imaging techniques. Researchers and graduate students in fields such as remote sensing, surveying and mapping, geosciences and information systems will benefit from this valuable resource.

  2. A concise introduction to image processing using C++

    CERN Document Server

    Wang, Meiqing

    2008-01-01

    Image recognition has become an increasingly dynamic field with new and emerging civil and military applications in security, exploration, and robotics. Written by experts in fractal-based image and video compression, A Concise Introduction to Image Processing using C++ strengthens your knowledge of fundamentals principles in image acquisition, conservation, processing, and manipulation, allowing you to easily apply these techniques in real-world problems. The book presents state-of-the-art image processing methodology, including current industrial practices for image compression, image de-noi

  3. On some applications of diffusion processes for image processing

    International Nuclear Information System (INIS)

    Morfu, S.

    2009-01-01

    We propose a new algorithm inspired by the properties of diffusion processes for image filtering. We show that purely nonlinear diffusion processes ruled by Fisher equation allows contrast enhancement and noise filtering, but involves a blurry image. By contrast, anisotropic diffusion, described by Perona and Malik algorithm, allows noise filtering and preserves the edges. We show that combining the properties of anisotropic diffusion with those of nonlinear diffusion provides a better processing tool which enables noise filtering, contrast enhancement and edge preserving.

  4. Digital image processing mathematical and computational methods

    CERN Document Server

    Blackledge, J M

    2005-01-01

    This authoritative text (the second part of a complete MSc course) provides mathematical methods required to describe images, image formation and different imaging systems, coupled with the principle techniques used for processing digital images. It is based on a course for postgraduates reading physics, electronic engineering, telecommunications engineering, information technology and computer science. This book relates the methods of processing and interpreting digital images to the 'physics' of imaging systems. Case studies reinforce the methods discussed, with examples of current research

  5. Trends in medical image processing

    International Nuclear Information System (INIS)

    Robilotta, C.C.

    1987-01-01

    The function of medical image processing is analysed, mentioning the developments, the physical agents, and the main categories, as conection of distortion in image formation, detectability increase, parameters quantification, etc. (C.G.C.) [pt

  6. Image processing and analysis software development

    International Nuclear Information System (INIS)

    Shahnaz, R.

    1999-01-01

    The work presented in this project is aimed at developing a software 'IMAGE GALLERY' to investigate various image processing and analysis techniques. The work was divided into two parts namely the image processing techniques and pattern recognition, which further comprised of character and face recognition. Various image enhancement techniques including negative imaging, contrast stretching, compression of dynamic, neon, diffuse, emboss etc. have been studied. Segmentation techniques including point detection, line detection, edge detection have been studied. Also some of the smoothing and sharpening filters have been investigated. All these imaging techniques have been implemented in a window based computer program written in Visual Basic Neural network techniques based on Perception model have been applied for face and character recognition. (author)

  7. Application of Java technology in radiation image processing

    International Nuclear Information System (INIS)

    Cheng Weifeng; Li Zheng; Chen Zhiqiang; Zhang Li; Gao Wenhuan

    2002-01-01

    The acquisition and processing of radiation image plays an important role in modern application of civil nuclear technology. The author analyzes the rationale of Java image processing technology which includes Java AWT, Java 2D and JAI. In order to demonstrate applicability of Java technology in field of image processing, examples of application of JAI technology in processing of radiation images of large container have been given

  8. Halftoning processing on a JPEG-compressed image

    Science.gov (United States)

    Sibade, Cedric; Barizien, Stephane; Akil, Mohamed; Perroton, Laurent

    2003-12-01

    Digital image processing algorithms are usually designed for the raw format, that is on an uncompressed representation of the image. Therefore prior to transforming or processing a compressed format, decompression is applied; then, the result of the processing application is finally re-compressed for further transfer or storage. The change of data representation is resource-consuming in terms of computation, time and memory usage. In the wide format printing industry, this problem becomes an important issue: e.g. a 1 m2 input color image, scanned at 600 dpi exceeds 1.6 GB in its raw representation. However, some image processing algorithms can be performed in the compressed-domain, by applying an equivalent operation on the compressed format. This paper is presenting an innovative application of the halftoning processing operation by screening, to be applied on JPEG-compressed image. This compressed-domain transform is performed by computing the threshold operation of the screening algorithm in the DCT domain. This algorithm is illustrated by examples for different halftone masks. A pre-sharpening operation, applied on a JPEG-compressed low quality image is also described; it allows to de-noise and to enhance the contours of this image.

  9. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    Science.gov (United States)

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Image processing in 60Co container inspection system

    International Nuclear Information System (INIS)

    Wu Zhifang; Zhou Liye; Wang Liqiang; Liu Ximing

    1999-01-01

    The authors analyzes the features of 60 Co container inspection image, the design of several special processing methods for container image and some normal processing methods for two-dimensional digital image, including gray enhancement, pseudo-enhancement, space filter, edge enhancement, geometry process, etc. It gives out the way to carry out the above mentioned process in Windows 95 or Win NT. It discusses some ways to improve the image processing speed on microcomputer and good results were obtained

  11. Crack Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal, Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better than that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  12. Eliminating "Hotspots" in Digital Image Processing

    Science.gov (United States)

    Salomon, P. M.

    1984-01-01

    Signals from defective picture elements rejected. Image processing program for use with charge-coupled device (CCD) or other mosaic imager augmented with algorithm that compensates for common type of electronic defect. Algorithm prevents false interpretation of "hotspots". Used for robotics, image enhancement, image analysis and digital television.

  13. How Digital Image Processing Became Really Easy

    Science.gov (United States)

    Cannon, Michael

    1988-02-01

    In the early and mid-1970s, digital image processing was the subject of intense university and corporate research. The research lay along two lines: (1) developing mathematical techniques for improving the appearance of or analyzing the contents of images represented in digital form, and (2) creating cost-effective hardware to carry out these techniques. The research has been very effective, as evidenced by the continued decline of image processing as a research topic, and the rapid increase of commercial companies to market digital image processing software and hardware.

  14. A report on digital image processing and analysis

    International Nuclear Information System (INIS)

    Singh, B.; Alex, J.; Haridasan, G.

    1989-01-01

    This report presents developments in software, connected with digital image processing and analysis in the Centre. In image processing, one resorts to either alteration of grey level values so as to enhance features in the image or resorts to transform domain operations for restoration or filtering. Typical transform domain operations like Karhunen-Loeve transforms are statistical in nature and are used for a good registration of images or template - matching. Image analysis procedures segment grey level images into images contained within selectable windows, for the purpose of estimating geometrical features in the image, like area, perimeter, projections etc. In short, in image processing both the input and output are images, whereas in image analyses, the input is an image whereas the output is a set of numbers and graphs. (author). 19 refs

  15. Processed images in human perception: A case study in ultrasound breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yap, Moi Hoon [Department of Computer Science, Loughborough University, FH09, Ergonomics and Safety Research Institute, Holywell Park (United Kingdom)], E-mail: M.H.Yap@lboro.ac.uk; Edirisinghe, Eran [Department of Computer Science, Loughborough University, FJ.05, Garendon Wing, Holywell Park, Loughborough LE11 3TU (United Kingdom); Bez, Helmut [Department of Computer Science, Loughborough University, Room N.2.26, Haslegrave Building, Loughborough University, Loughborough LE11 3TU (United Kingdom)

    2010-03-15

    Two main research efforts in early detection of breast cancer include the development of software tools to assist radiologists in identifying abnormalities and the development of training tools to enhance their skills. Medical image analysis systems, widely known as Computer-Aided Diagnosis (CADx) systems, play an important role in this respect. Often it is important to determine whether there is a benefit in including computer-processed images in the development of such software tools. In this paper, we investigate the effects of computer-processed images in improving human performance in ultrasound breast cancer detection (a perceptual task) and classification (a cognitive task). A survey was conducted on a group of expert radiologists and a group of non-radiologists. In our experiments, random test images from a large database of ultrasound images were presented to subjects. In order to gather appropriate formal feedback, questionnaires were prepared to comment on random selections of original images only, and on image pairs consisting of original images displayed alongside computer-processed images. We critically compare and contrast the performance of the two groups according to perceptual and cognitive tasks. From a Receiver Operating Curve (ROC) analysis, we conclude that the provision of computer-processed images alongside the original ultrasound images, significantly improve the perceptual tasks of non-radiologists but only marginal improvements are shown in the perceptual and cognitive tasks of the group of expert radiologists.

  16. Processed images in human perception: A case study in ultrasound breast imaging

    International Nuclear Information System (INIS)

    Yap, Moi Hoon; Edirisinghe, Eran; Bez, Helmut

    2010-01-01

    Two main research efforts in early detection of breast cancer include the development of software tools to assist radiologists in identifying abnormalities and the development of training tools to enhance their skills. Medical image analysis systems, widely known as Computer-Aided Diagnosis (CADx) systems, play an important role in this respect. Often it is important to determine whether there is a benefit in including computer-processed images in the development of such software tools. In this paper, we investigate the effects of computer-processed images in improving human performance in ultrasound breast cancer detection (a perceptual task) and classification (a cognitive task). A survey was conducted on a group of expert radiologists and a group of non-radiologists. In our experiments, random test images from a large database of ultrasound images were presented to subjects. In order to gather appropriate formal feedback, questionnaires were prepared to comment on random selections of original images only, and on image pairs consisting of original images displayed alongside computer-processed images. We critically compare and contrast the performance of the two groups according to perceptual and cognitive tasks. From a Receiver Operating Curve (ROC) analysis, we conclude that the provision of computer-processed images alongside the original ultrasound images, significantly improve the perceptual tasks of non-radiologists but only marginal improvements are shown in the perceptual and cognitive tasks of the group of expert radiologists.

  17. Computational Intelligence in Image Processing

    CERN Document Server

    Siarry, Patrick

    2013-01-01

    Computational intelligence based techniques have firmly established themselves as viable, alternate, mathematical tools for more than a decade. They have been extensively employed in many systems and application domains, among these signal processing, automatic control, industrial and consumer electronics, robotics, finance, manufacturing systems, electric power systems, and power electronics. Image processing is also an extremely potent area which has attracted the atten­tion of many researchers who are interested in the development of new computational intelligence-based techniques and their suitable applications, in both research prob­lems and in real-world problems. Part I of the book discusses several image preprocessing algorithms; Part II broadly covers image compression algorithms; Part III demonstrates how computational intelligence-based techniques can be effectively utilized for image analysis purposes; and Part IV shows how pattern recognition, classification and clustering-based techniques can ...

  18. PCB Fault Detection Using Image Processing

    Science.gov (United States)

    Nayak, Jithendra P. R.; Anitha, K.; Parameshachari, B. D., Dr.; Banu, Reshma, Dr.; Rashmi, P.

    2017-08-01

    The importance of the Printed Circuit Board inspection process has been magnified by requirements of the modern manufacturing environment where delivery of 100% defect free PCBs is the expectation. To meet such expectations, identifying various defects and their types becomes the first step. In this PCB inspection system the inspection algorithm mainly focuses on the defect detection using the natural images. Many practical issues like tilt of the images, bad light conditions, height at which images are taken etc. are to be considered to ensure good quality of the image which can then be used for defect detection. Printed circuit board (PCB) fabrication is a multidisciplinary process, and etching is the most critical part in the PCB manufacturing process. The main objective of Etching process is to remove the exposed unwanted copper other than the required circuit pattern. In order to minimize scrap caused by the wrongly etched PCB panel, inspection has to be done in early stage. However, all of the inspections are done after the etching process where any defective PCB found is no longer useful and is simply thrown away. Since etching process costs 0% of the entire PCB fabrication, it is uneconomical to simply discard the defective PCBs. In this paper a method to identify the defects in natural PCB images and associated practical issues are addressed using Software tools and some of the major types of single layer PCB defects are Pattern Cut, Pin hole, Pattern Short, Nick etc., Therefore the defects should be identified before the etching process so that the PCB would be reprocessed. In the present approach expected to improve the efficiency of the system in detecting the defects even in low quality images

  19. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    Science.gov (United States)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  20. Cellular automata in image processing and geometry

    CERN Document Server

    Adamatzky, Andrew; Sun, Xianfang

    2014-01-01

    The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation. The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of mass...

  1. Signal and image processing algorithm performance in a virtual and elastic computing environment

    Science.gov (United States)

    Bennett, Kelly W.; Robertson, James

    2013-05-01

    The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.

  2. Image processing unit with fall-back.

    NARCIS (Netherlands)

    2011-01-01

    An image processing unit ( 100,200,300 ) for computing a sequence of output images on basis of a sequence of input images, comprises: a motion estimation unit ( 102 ) for computing a motion vector field on basis of the input images; a quality measurement unit ( 104 ) for computing a value of a

  3. Tensors in image processing and computer vision

    CERN Document Server

    De Luis García, Rodrigo; Tao, Dacheng; Li, Xuelong

    2009-01-01

    Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the developments in this branch of signal processing, offering research and discussions by experts in the area. It is suitable for advanced students working in the area of computer vision and image processing.

  4. EFFECTS OF FATLIQURING PROCESS ON LEATHERS COLOURED WITH IR REFLECTIVE DYES AND PIGMENTS

    Directory of Open Access Journals (Sweden)

    MUTLU Mehmet Mete

    2017-05-01

    Full Text Available Black coloured materials and consumer goods are known to be heating up more, because they absorb sun radiation more than light colours. This heating is a problem for the users for black automotive or motorcycle leathers and also for dark shoes and boots which are exposed to sun heat. Human vision system can distinguish visible colours between the wavelengths of 390-700 nm. So reflecting the sun radiation in the infrared area of radiation spectrum higher than 700nm, is a solution for heating problem without affecting the visible colour. For this reason IR reflective dyes and pigments are designed. A leading Leather Chemical Company has developed an IR reflecting dyeing system for leather keeping the dark coloured leathers cooler under sun radiation. Additionally in theory, fat and water content of leather affects its heating properties. In this study, effect of natural, synthetic and waterproof fatliquoring systems on heating properties of leathers coloured with IR reflective dyes and pigments are investigated.

  5. An embedded face-classification system for infrared images on an FPGA

    Science.gov (United States)

    Soto, Javier E.; Figueroa, Miguel

    2014-10-01

    We present a face-classification architecture for long-wave infrared (IR) images implemented on a Field Programmable Gate Array (FPGA). The circuit is fast, compact and low power, can recognize faces in real time and be embedded in a larger image-processing and computer vision system operating locally on an IR camera. The algorithm uses Local Binary Patterns (LBP) to perform feature extraction on each IR image. First, each pixel in the image is represented as an LBP pattern that encodes the similarity between the pixel and its neighbors. Uniform LBP codes are then used to reduce the number of patterns to 59 while preserving more than 90% of the information contained in the original LBP representation. Then, the image is divided into 64 non-overlapping regions, and each region is represented as a 59-bin histogram of patterns. Finally, the algorithm concatenates all 64 regions to create a 3,776-bin spatially enhanced histogram. We reduce the dimensionality of this histogram using Linear Discriminant Analysis (LDA), which improves clustering and enables us to store an entire database of 53 subjects on-chip. During classification, the circuit applies LBP and LDA to each incoming IR image in real time, and compares the resulting feature vector to each pattern stored in the local database using the Manhattan distance. We implemented the circuit on a Xilinx Artix-7 XC7A100T FPGA and tested it with the UCHThermalFace database, which consists of 28 81 x 150-pixel images of 53 subjects in indoor and outdoor conditions. The circuit achieves a 98.6% hit ratio, trained with 16 images and tested with 12 images of each subject in the database. Using a 100 MHz clock, the circuit classifies 8,230 images per second, and consumes only 309mW.

  6. Motion-insensitive carotid intraplaque hemorrhage imaging using 3D inversion recovery preparation stack of stars (IR-prep SOS) technique.

    Science.gov (United States)

    Kim, Seong-Eun; Roberts, John A; Eisenmenger, Laura B; Aldred, Booth W; Jamil, Osama; Bolster, Bradley D; Bi, Xiaoming; Parker, Dennis L; Treiman, Gerald S; McNally, J Scott

    2017-02-01

    Carotid artery imaging is important in the clinical management of patients at risk for stroke. Carotid intraplaque hemorrhage (IPH) presents an important diagnostic challenge. 3D magnetization prepared rapid acquisition gradient echo (MPRAGE) has been shown to accurately image carotid IPH; however, this sequence can be limited due to motion- and flow-related artifact. The purpose of this work was to develop and evaluate an improved 3D carotid MPRAGE sequence for IPH detection. We hypothesized that a radial-based k-space trajectory sequence such as "Stack of Stars" (SOS) incorporated with inversion recovery preparation would offer reduced motion sensitivity and more robust flow suppression by oversampling of central k-space. A total of 31 patients with carotid disease (62 carotid arteries) were imaged at 3T magnetic resonance imaging (MRI) with 3D IR-prep Cartesian and SOS sequences. Image quality was determined between SOS and Cartesian MPRAGE in 62 carotid arteries using t-tests and multivariable linear regression. Kappa analysis was used to determine interrater reliability. In all, 25 among 62 carotid plaques had carotid IPH by consensus from the reviewers on SOS compared to 24 on Cartesian sequence. Image quality was significantly higher with SOS compared to Cartesian (mean 3.74 vs. 3.11, P SOS acquisition yielded sharper image features with less motion (19.4% vs. 45.2%, P SOS (kappa = 0.89), higher than that of Cartesian (kappa = 0.84). By minimizing flow and motion artifacts and retaining high interrater reliability, the SOS MPRAGE has important advantages over Cartesian MPRAGE in carotid IPH detection. 1 J. Magn. Reson. Imaging 2017;45:410-417. © 2016 International Society for Magnetic Resonance in Medicine.

  7. IR-360 nuclear power plant safety functions and component classification

    International Nuclear Information System (INIS)

    Yousefpour, F.; Shokri, F.; Soltani, H.

    2010-01-01

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  8. IR-360 nuclear power plant safety functions and component classification

    Energy Technology Data Exchange (ETDEWEB)

    Yousefpour, F., E-mail: fyousefpour@snira.co [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of); Shokri, F.; Soltani, H. [Management of Nuclear Power Plant Construction Company (MASNA) (Iran, Islamic Republic of)

    2010-10-15

    The IR-360 nuclear power plant as a 2-loop PWR of 360 MWe power generation capacity is under design in MASNA Company. For design of the IR-360 structures, systems and components (SSCs), the codes and standards and their design requirements must be determined. It is a prerequisite to classify the IR-360 safety functions and safety grade of structures, systems and components correctly for selecting and adopting the suitable design codes and standards. This paper refers to the IAEA nuclear safety codes and standards as well as USNRC standard system to determine the IR-360 safety functions and to formulate the principles of the IR-360 component classification in accordance with the safety philosophy and feature of the IR-360. By implementation of defined classification procedures for the IR-360 SSCs, the appropriate design codes and standards are specified. The requirements of specific codes and standards are used in design process of IR-360 SSCs by design engineers of MASNA Company. In this paper, individual determination of the IR-360 safety functions and definition of the classification procedures and roles are presented. Implementation of this work which is described with example ensures the safety and reliability of the IR-360 nuclear power plant.

  9. Automated synthesis of image processing procedures using AI planning techniques

    Science.gov (United States)

    Chien, Steve; Mortensen, Helen

    1994-01-01

    This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.

  10. Musashi dynamic image processing system

    International Nuclear Information System (INIS)

    Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira

    1992-01-01

    In order to produce transmitted neutron dynamic images using neutron radiography, a real time system called Musashi dynamic image processing system (MDIPS) was developed to collect, process, display and record image data. The block diagram of the MDIPS is shown. The system consists of a highly sensitive, high resolution TV camera driven by a custom-made scanner, a TV camera deflection controller for optimal scanning, which adjusts to the luminous intensity and the moving speed of an object, a real-time corrector to perform the real time correction of dark current, shading distortion and field intensity fluctuation, a real time filter for increasing the image signal to noise ratio, a video recording unit and a pseudocolor monitor to realize recording in commercially available products and monitoring by means of the CRTs in standard TV scanning, respectively. The TV camera and the TV camera deflection controller utilized for producing still images can be applied to this case. The block diagram of the real-time corrector is shown. Its performance is explained. Linear filters and ranked order filters were developed. (K.I.)

  11. New Ir Bis-Carbonyl Precursor for Water Oxidation Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Daria L. [Department of Chemistry, Yale University, 225; Beltrán-Suito, Rodrigo [Department of Chemistry, Yale University, 225; Thomsen, Julianne M. [Department of Chemistry, Yale University, 225; Hashmi, Sara M. [Department of Chemical and Environmental; Materna, Kelly L. [Department of Chemistry, Yale University, 225; Sheehan, Stafford W. [Catalytic Innovations LLC, 70 Crandall; Mercado, Brandon Q. [Department of Chemistry, Yale University, 225; Brudvig, Gary W. [Department of Chemistry, Yale University, 225; Crabtree, Robert H. [Department of Chemistry, Yale University, 225

    2016-02-05

    This paper introduces IrI(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*IrIII(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue IrIV species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting IrIV species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By 1H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

  12. The use of IAEA-IRS information in Russia's nuclear power industry

    International Nuclear Information System (INIS)

    1996-01-01

    The use of IAEA-IRS information in Russia's nuclear power industry is described, including the following issues: organizational aspects; organization of the information process; assessment of information uses; examples of using IAEA-IRS information. Figs

  13. Three-dimensional image signals: processing methods

    Science.gov (United States)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  14. Analysis of Variance in Statistical Image Processing

    Science.gov (United States)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  15. Image restoration and processing methods

    International Nuclear Information System (INIS)

    Daniell, G.J.

    1984-01-01

    This review will stress the importance of using image restoration techniques that deal with incomplete, inconsistent, and noisy data and do not introduce spurious features into the processed image. No single image is equally suitable for both the resolution of detail and the accurate measurement of intensities. A good general purpose technique is the maximum entropy method and the basis and use of this will be explained. (orig.)

  16. Early skin tumor detection from microscopic images through image processing

    International Nuclear Information System (INIS)

    Siddiqi, A.A.; Narejo, G.B.; Khan, A.M.

    2017-01-01

    The research is done to provide appropriate detection technique for skin tumor detection. The work is done by using the image processing toolbox of MATLAB. Skin tumors are unwanted skin growth with different causes and varying extent of malignant cells. It is a syndrome in which skin cells mislay the ability to divide and grow normally. Early detection of tumor is the most important factor affecting the endurance of a patient. Studying the pattern of the skin cells is the fundamental problem in medical image analysis. The study of skin tumor has been of great interest to the researchers. DIP (Digital Image Processing) allows the use of much more complex algorithms for image processing, and hence, can offer both more sophisticated performance at simple task, and the implementation of methods which would be impossibly by analog means. It allows much wider range of algorithms to be applied to the input data and can avoid problems such as build up of noise and signal distortion during processing. The study shows that few works has been done on cellular scale for the images of skin. This research allows few checks for the early detection of skin tumor using microscopic images after testing and observing various algorithms. After analytical evaluation the result has been observed that the proposed checks are time efficient techniques and appropriate for the tumor detection. The algorithm applied provides promising results in lesser time with accuracy. The GUI (Graphical User Interface) that is generated for the algorithm makes the system user friendly. (author)

  17. The use of TiO2 nanoparticles to reduce refrigerator ir-reversibility

    International Nuclear Information System (INIS)

    Padmanabhan, Venkataramana Murthy V.; Palanisamy, Senthilkumar

    2012-01-01

    Highlights: ► COP of hydrocarbons mixture VCRSs increases less when compared to R134a. ► Compressor ir-reversibility of VCRSs decreases by 33% (R134a), 14% (R436A and R436B). ► Total ir-reversibility of selected VCRSs decreases. ► Exergy efficiency of R134a is exceptionally low at lower reference temperature. ► Exergy efficiency of selected VCRSs increases. - Abstract: The ir-reversibility at the process of a vapour-compression refrigeration system (VCRS) with nanoparticles in the working fluid was investigated experimentally. Mineral oil (MO) with 0.1 g L −1 TiO 2 nanoparticles mixture were used as the lubricant instead of Polyol-ester (POE) oil in the R134a, R436A (R290/R600a-56/44-wt.%) and R436B (R290/R600a-52/48-wt.%)VCRSs. The VCRS ir-reversibility at the process with the nanoparticles was investigated using second law of thermodynamics. The results indicate that R134a, R436A and R436B and MO with TiO 2 nanoparticles work normally and safely in the VCRS. The VCRSs total ir-reversibility (529, 588 and 570 W) at different process was better than the R134a, R436A and R436B and POE oil system (777, 697 and 683 W). The same tests with Al 2 O 3 nanoparticles showed that the different nanoparticles properties have little effect on the VCRS ir-reversibility. Thus, TiO 2 nanoparticles can be used in VCRS with reciprocating compressor to considerably reduce ir-reversibility at the process.

  18. Fourier Transform Infrared (FT-IR) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) Imaging of Cerebral Ischemia: Combined Analysis of Rat Brain Thin Cuts Toward Improved Tissue Classification.

    Science.gov (United States)

    Balbekova, Anna; Lohninger, Hans; van Tilborg, Geralda A F; Dijkhuizen, Rick M; Bonta, Maximilian; Limbeck, Andreas; Lendl, Bernhard; Al-Saad, Khalid A; Ali, Mohamed; Celikic, Minja; Ofner, Johannes

    2018-02-01

    Microspectroscopic techniques are widely used to complement histological studies. Due to recent developments in the field of chemical imaging, combined chemical analysis has become attractive. This technique facilitates a deepened analysis compared to single techniques or side-by-side analysis. In this study, rat brains harvested one week after induction of photothrombotic stroke were investigated. Adjacent thin cuts from rats' brains were imaged using Fourier transform infrared (FT-IR) microspectroscopy and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The LA-ICP-MS data were normalized using an internal standard (a thin gold layer). The acquired hyperspectral data cubes were fused and subjected to multivariate analysis. Brain regions affected by stroke as well as unaffected gray and white matter were identified and classified using a model based on either partial least squares discriminant analysis (PLS-DA) or random decision forest (RDF) algorithms. The RDF algorithm demonstrated the best results for classification. Improved classification was observed in the case of fused data in comparison to individual data sets (either FT-IR or LA-ICP-MS). Variable importance analysis demonstrated that both molecular and elemental content contribute to the improved RDF classification. Univariate spectral analysis identified biochemical properties of the assigned tissue types. Classification of multisensor hyperspectral data sets using an RDF algorithm allows access to a novel and in-depth understanding of biochemical processes and solid chemical allocation of different brain regions.

  19. Algorithms for image processing and computer vision

    CERN Document Server

    Parker, J R

    2010-01-01

    A cookbook of algorithms for common image processing applications Thanks to advances in computer hardware and software, algorithms have been developed that support sophisticated image processing without requiring an extensive background in mathematics. This bestselling book has been fully updated with the newest of these, including 2D vision methods in content-based searches and the use of graphics cards as image processing computational aids. It's an ideal reference for software engineers and developers, advanced programmers, graphics programmers, scientists, and other specialists wh

  20. Multi-spectral imager

    CSIR Research Space (South Africa)

    Stolper, R

    2006-02-01

    Full Text Available channel are boresighted with two beamsplitter windows; and • The IR system is boresighted. APPLICATION High-voltage environment • Detecting loose strands, bolts and nuts; • Detecting Corona discharges on insulator discs; • Detecting... and locating spark gaps; • Detecting and locating RIV sources; • Audit sub-stations and transmission lines for audio noise and Corona activities. RECORDINGS / APPLICATIONS REPORTING TOOL: MultiSOFT • Image handling software for grabbing, processing...

  1. Design for embedded image processing on FPGAs

    CERN Document Server

    Bailey, Donald G

    2011-01-01

    "Introductory material will consider the problem of embedded image processing, and how some of the issues may be solved using parallel hardware solutions. Field programmable gate arrays (FPGAs) are introduced as a technology that provides flexible, fine-grained hardware that can readily exploit parallelism within many image processing algorithms. A brief review of FPGA programming languages provides the link between a software mindset normally associated with image processing algorithms, and the hardware mindset required for efficient utilization of a parallel hardware design. The bulk of the book will focus on the design process, and in particular how designing an FPGA implementation differs from a conventional software implementation. Particular attention is given to the techniques for mapping an algorithm onto an FPGA implementation, considering timing, memory bandwidth and resource constraints, and efficient hardware computational techniques. Extensive coverage will be given of a range of image processing...

  2. Infrared photothermal imaging spectroscopy for detection of trace explosives on surfaces.

    Science.gov (United States)

    Kendziora, Christopher A; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; Byers, Jeff; Andrew McGill, R

    2015-11-01

    We are developing a technique for the standoff detection of trace explosives on relevant substrate surfaces using photothermal infrared (IR) imaging spectroscopy (PT-IRIS). This approach leverages one or more compact IR quantum cascade lasers, which are tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface and detect increases in thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral, and temporal dimensions as vectors within a detection algorithm. The ability to detect trace analytes at standoff on relevant substrates is critical for security applications but is complicated by the optical and thermal analyte/substrate interactions. This manuscript describes a series of PT-IRIS experimental results and analysis for traces of RDX, TNT, ammonium nitrate, and sucrose on steel, polyethylene, glass, and painted steel panels. We demonstrate detection at surface mass loadings comparable with fingerprint depositions ( 10μg/cm2 to 100μg/cm2) from an area corresponding to a single pixel within the thermal image.

  3. Crack detection using image processing

    International Nuclear Information System (INIS)

    Moustafa, M.A.A

    2010-01-01

    This thesis contains five main subjects in eight chapters and two appendices. The first subject discus Wiener filter for filtering images. In the second subject, we examine using different methods, as Steepest Descent Algorithm (SDA) and the Wavelet Transformation, to detect and filling the cracks, and it's applications in different areas as Nano technology and Bio-technology. In third subject, we attempt to find 3-D images from 1-D or 2-D images using texture mapping with Open Gl under Visual C ++ language programming. The fourth subject consists of the process of using the image warping methods for finding the depth of 2-D images using affine transformation, bilinear transformation, projective mapping, Mosaic warping and similarity transformation. More details about this subject will be discussed below. The fifth subject, the Bezier curves and surface, will be discussed in details. The methods for creating Bezier curves and surface with unknown distribution, using only control points. At the end of our discussion we will obtain the solid form, using the so called NURBS (Non-Uniform Rational B-Spline); which depends on: the degree of freedom, control points, knots, and an evaluation rule; and is defined as a mathematical representation of 3-D geometry that can accurately describe any shape from a simple 2-D line, circle, arc, or curve to the most complex 3-D organic free-form surface or (solid) which depends on finding the Bezier curve and creating family of curves (surface), then filling in between to obtain the solid form. Another representation for this subject is concerned with building 3D geometric models from physical objects using image-based techniques. The advantage of image techniques is that they require no expensive equipment; we use NURBS, subdivision surface and mesh for finding the depth of any image with one still view or 2D image. The quality of filtering depends on the way the data is incorporated into the model. The data should be treated with

  4. JIP: Java image processing on the Internet

    Science.gov (United States)

    Wang, Dongyan; Lin, Bo; Zhang, Jun

    1998-12-01

    In this paper, we present JIP - Java Image Processing on the Internet, a new Internet based application for remote education and software presentation. JIP offers an integrate learning environment on the Internet where remote users not only can share static HTML documents and lectures notes, but also can run and reuse dynamic distributed software components, without having the source code or any extra work of software compilation, installation and configuration. By implementing a platform-independent distributed computational model, local computational resources are consumed instead of the resources on a central server. As an extended Java applet, JIP allows users to selected local image files on their computers or specify any image on the Internet using an URL as input. Multimedia lectures such as streaming video/audio and digital images are integrated into JIP and intelligently associated with specific image processing functions. Watching demonstrations an practicing the functions with user-selected input data dramatically encourages leaning interest, while promoting the understanding of image processing theory. The JIP framework can be easily applied to other subjects in education or software presentation, such as digital signal processing, business, mathematics, physics, or other areas such as employee training and charged software consumption.

  5. Ir-Driven Dynamics of the 3-AMINOPHENOL-AMMONIA Complex

    Science.gov (United States)

    Heid, Cornelia G.; Merrill, W. G.; Case, Amanda; Crim, Fleming

    2014-06-01

    We report on gas-phase experiments investigating the predissociation and possible IR-driven isomerization of the 3-aminophenol-ammonia complex (3-AP-NH3). A molecular beam of 3-AP-NH3 is vibrationally excited with pulsed IR light, initiating an intramolecular vibrational redistribution and subsequent dissociation. The 3-AP fragment is then probed state-selectively via multiphoton ionization (REMPI) and time-of-flight mass spectrometry. Of particular interest is an IR-driven feature which we associate tentatively with a trans-cis isomerization process. We see clear correlation between the excitation of specific vibrational modes (namely the NH3 symmetric and OH stretches) and the presence of this feature, as evidenced by IR-action and IR-depletion spectra. The feature persists atop a broader signal which we assign to the predissociation of the complex and whose cutoff in REMPI-action experiments provides an upper bound on the dissociation energy for 3-AP-NH3.

  6. Infrared photothermal imaging of trace explosives on relevant substrates

    Science.gov (United States)

    Kendziora, Christopher A.; Furstenberg, Robert; Papantonakis, Michael; Nguyen, Viet; Borchert, James; Byers, Jeff; McGill, R. Andrew

    2013-06-01

    We are developing a technique for the stand-off detection of trace explosives on relevant substrate surfaces using photo-thermal infrared (IR) imaging spectroscopy (PT-IRIS). This approach leverages one or more compact IR quantum cascade lasers, tuned to strong absorption bands in the analytes and directed to illuminate an area on a surface of interest. An IR focal plane array is used to image the surface and detect small increases in thermal emission upon laser illumination. The PT-IRIS signal is processed as a hyperspectral image cube comprised of spatial, spectral and temporal dimensions as vectors within a detection algorithm. The ability to detect trace analytes on relevant substrates is critical for stand-off applications, but is complicated by the optical and thermal analyte/substrate interactions. This manuscript describes recent PT-IRIS experimental results and analysis for traces of RDX, TNT, ammonium nitrate (AN) and sucrose on relevant substrates (steel, polyethylene, glass and painted steel panels). We demonstrate that these analytes can be detected on these substrates at relevant surface mass loadings (10 μg/cm2 to 100 μg/cm2) even at the single pixel level.

  7. Synchrotron FT-IR analyses of microstructured biomineral domains: Hints to the biomineralization processes in freshwater cultured pearls.

    Science.gov (United States)

    Soldati, A. L.; Vicente-Vilas, V.; Gasharova, B.; Jacob, D. E.

    2009-04-01

    Recent investigations in freshwater cultured pearls (bio-carbonate) by micro-Raman spectroscopy (Wehrmeister et al., 2008; Soldati et al., 2008), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) imaging (Jacob et al., 2008) show that the pearl biomineralisation starts with a self assembling process in which an existing gel matrix of amorphous calcium carbonate (ACC) and organic substances reorganizes and conglomerates in small domains; these conglomerates then form prisms and mature nacreous tablets of aragonite or vaterite. Raman spectroscopy shows that the calcium carbonate polymorphs have decreasing luminescence in the order ACC>Vaterite>Aragonite, coinciding with decreasing quantities of S and P (related to the organic matrix) measured by Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS) and Electron Probe Micro Analyzer (EPMA). Although little is known about the process of transformation of the ACC gel into vaterite and aragonite, it is speculated that this probably involves dehydration and change of the accompanying organic matrix. This is also supported by our laboratory FT-IR analysis. However, due to the small size of the areas of ACC (about 10 ?m) and the biogenic crystals an in-situ high spatially resolved IR-method is needed to record how the water content and organic matrix change in the biomineralisation sequence, to understand which processes take place in the self-organization. The beamline IR-1 at the ANKA synchrotron source (Karlsruhe, Germany) was used for this experiment. Freshwater cultured pearls from China cultured in Hyriopsis cumingii mussels by tissue nucleation methods (so-called beadless pearls) as well as by bead implantation methods (aragonite nucleus) were studied. The pearls were cut in half with a diamond-plated saw and polished with diamond paste on a copper plate. Micro-Raman spectroscopy maps (Department of Geosciences, at the Johannes Gutenberg-University, Mainz) were generated

  8. Multispectral image enhancement processing for microsat-borne imager

    Science.gov (United States)

    Sun, Jianying; Tan, Zheng; Lv, Qunbo; Pei, Linlin

    2017-10-01

    With the rapid development of remote sensing imaging technology, the micro satellite, one kind of tiny spacecraft, appears during the past few years. A good many studies contribute to dwarfing satellites for imaging purpose. Generally speaking, micro satellites weigh less than 100 kilograms, even less than 50 kilograms, which are slightly larger or smaller than the common miniature refrigerators. However, the optical system design is hard to be perfect due to the satellite room and weight limitation. In most cases, the unprocessed data captured by the imager on the microsatellite cannot meet the application need. Spatial resolution is the key problem. As for remote sensing applications, the higher spatial resolution of images we gain, the wider fields we can apply them. Consequently, how to utilize super resolution (SR) and image fusion to enhance the quality of imagery deserves studying. Our team, the Key Laboratory of Computational Optical Imaging Technology, Academy Opto-Electronics, is devoted to designing high-performance microsat-borne imagers and high-efficiency image processing algorithms. This paper addresses a multispectral image enhancement framework for space-borne imagery, jointing the pan-sharpening and super resolution techniques to deal with the spatial resolution shortcoming of microsatellites. We test the remote sensing images acquired by CX6-02 satellite and give the SR performance. The experiments illustrate the proposed approach provides high-quality images.

  9. Advanced Secure Optical Image Processing for Communications

    Science.gov (United States)

    Al Falou, Ayman

    2018-04-01

    New image processing tools and data-processing network systems have considerably increased the volume of transmitted information such as 2D and 3D images with high resolution. Thus, more complex networks and long processing times become necessary, and high image quality and transmission speeds are requested for an increasing number of applications. To satisfy these two requests, several either numerical or optical solutions were offered separately. This book explores both alternatives and describes research works that are converging towards optical/numerical hybrid solutions for high volume signal and image processing and transmission. Without being limited to hybrid approaches, the latter are particularly investigated in this book in the purpose of combining the advantages of both techniques. Additionally, pure numerical or optical solutions are also considered since they emphasize the advantages of one of the two approaches separately.

  10. PARAGON-IPS: A Portable Imaging Software System For Multiple Generations Of Image Processing Hardware

    Science.gov (United States)

    Montelione, John

    1989-07-01

    Paragon-IPS is a comprehensive software system which is available on virtually all generations of image processing hardware. It is designed for an image processing department or a scientist and engineer who is doing image processing full-time. It is being used by leading R&D labs in government agencies and Fortune 500 companies. Applications include reconnaissance, non-destructive testing, remote sensing, medical imaging, etc.

  11. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  12. An integral design strategy combining optical system and image processing to obtain high resolution images

    Science.gov (United States)

    Wang, Jiaoyang; Wang, Lin; Yang, Ying; Gong, Rui; Shao, Xiaopeng; Liang, Chao; Xu, Jun

    2016-05-01

    In this paper, an integral design that combines optical system with image processing is introduced to obtain high resolution images, and the performance is evaluated and demonstrated. Traditional imaging methods often separate the two technical procedures of optical system design and imaging processing, resulting in the failures in efficient cooperation between the optical and digital elements. Therefore, an innovative approach is presented to combine the merit function during optical design together with the constraint conditions of image processing algorithms. Specifically, an optical imaging system with low resolution is designed to collect the image signals which are indispensable for imaging processing, while the ultimate goal is to obtain high resolution images from the final system. In order to optimize the global performance, the optimization function of ZEMAX software is utilized and the number of optimization cycles is controlled. Then Wiener filter algorithm is adopted to process the image simulation and mean squared error (MSE) is taken as evaluation criterion. The results show that, although the optical figures of merit for the optical imaging systems is not the best, it can provide image signals that are more suitable for image processing. In conclusion. The integral design of optical system and image processing can search out the overall optimal solution which is missed by the traditional design methods. Especially, when designing some complex optical system, this integral design strategy has obvious advantages to simplify structure and reduce cost, as well as to gain high resolution images simultaneously, which has a promising perspective of industrial application.

  13. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  14. The Pan-STARRS PS1 Image Processing Pipeline

    Science.gov (United States)

    Magnier, E.

    The Pan-STARRS PS1 Image Processing Pipeline (IPP) performs the image processing and data analysis tasks needed to enable the scientific use of the images obtained by the Pan-STARRS PS1 prototype telescope. The primary goals of the IPP are to process the science images from the Pan-STARRS telescopes and make the results available to other systems within Pan-STARRS. It also is responsible for combining all of the science images in a given filter into a single representation of the non-variable component of the night sky defined as the "Static Sky". To achieve these goals, the IPP also performs other analysis functions to generate the calibrations needed in the science image processing, and to occasionally use the derived data to generate improved astrometric and photometric reference catalogs. It also provides the infrastructure needed to store the incoming data and the resulting data products. The IPP inherits lessons learned, and in some cases code and prototype code, from several other astronomy image analysis systems, including Imcat (Kaiser), the Sloan Digital Sky Survey (REF), the Elixir system (Magnier & Cuillandre), and Vista (Tonry). Imcat and Vista have a large number of robust image processing functions. SDSS has demonstrated a working analysis pipeline and large-scale databasesystem for a dedicated project. The Elixir system has demonstrated an automatic image processing system and an object database system for operational usage. This talk will present an overview of the IPP architecture, functional flow, code development structure, and selected analysis algorithms. Also discussed is the HW highly parallel HW configuration necessary to support PS1 operational requirements. Finally, results are presented of the processing of images collected during PS1 early commissioning tasks utilizing the Pan-STARRS Test Camera #3.

  15. Spin orientations of the spin-half Ir(4+) ions in Sr3NiIrO6, Sr2IrO4, and Na2IrO3: Density functional, perturbation theory, and Madelung potential analyses.

    Science.gov (United States)

    Gordon, Elijah E; Xiang, Hongjun; Köhler, Jürgen; Whangbo, Myung-Hwan

    2016-03-21

    The spins of the low-spin Ir(4+) (S = 1/2, d(5)) ions at the octahedral sites of the oxides Sr3NiIrO6, Sr2IrO4, and Na2IrO3 exhibit preferred orientations with respect to their IrO6 octahedra. We evaluated the magnetic anisotropies of these S = 1/2 ions on the basis of density functional theory (DFT) calculations including spin-orbit coupling (SOC), and probed their origin by performing perturbation theory analyses with SOC as perturbation within the LS coupling scheme. The observed spin orientations of Sr3NiIrO6 and Sr2IrO4 are correctly predicted by DFT calculations, and are accounted for by the perturbation theory analysis. As for the spin orientation of Na2IrO3, both experimental studies and DFT calculations have not been unequivocal. Our analysis reveals that the Ir(4+) spin orientation of Na2IrO3 should have nonzero components along the c- and a-axis directions. The spin orientations determined by DFT calculations are sensitive to the accuracy of the crystal structures employed, which is explained by perturbation theory analyses when interactions between adjacent Ir(4+) ions are taken into consideration. There are indications implying that the 5d electrons of Na2IrO3 are less strongly localized compared with those of Sr3NiIrO6 and Sr2IrO4. This implication was confirmed by showing that the Madelung potentials of the Ir(4+) ions are less negative in Na2IrO3 than in Sr3NiIrO6 and Sr2IrO4. Most transition-metal S = 1/2 ions do have magnetic anisotropies because the SOC induces interactions among their crystal-field split d-states, and the associated mixing of the states modifies only the orbital parts of the states. This finding cannot be mimicked by a spin Hamiltonian because this model Hamiltonian lacks the orbital degree of freedom, thereby leading to the spin-half syndrome. The spin-orbital entanglement for the 5d spin-half ions Ir(4+) is not as strong as has been assumed.

  16. THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND MID-INFRARED IMAGING DATA

    International Nuclear Information System (INIS)

    Schirmer, M.

    2013-01-01

    The last 15 years have seen a surge of new multi-chip optical and near-IR imagers. While some of them are accompanied by specific reduction pipelines, user-friendly and generic reduction tools are uncommon. In this paper I introduce THELI, an easy-to-use graphical interface driving an end-to-end pipeline for the reduction of any optical, near-IR, and mid-IR imaging data. The advantages of THELI when compared to other approaches are highlighted. Combining a multitude of processing algorithms and third party software, THELI provides researchers with a single, homogeneous tool. A short learning curve ensures quick success for new and more experienced observers alike. All tasks are largely automated, while at the same time a high level of flexibility and alternative reduction schemes ensure that widely different scientific requirements can be met. Over 90 optical and infrared instruments at observatories world-wide are pre-configured, while more can be added by the user. The Appendices contain three walk-through examples using public data (optical, near-IR, and mid-IR). Additional extensive documentation for training and troubleshooting is available online

  17. A Document Imaging Technique for Implementing Electronic Loan Approval Process

    Directory of Open Access Journals (Sweden)

    J. Manikandan

    2015-04-01

    Full Text Available The image processing is one of the leading technologies of computer applications. Image processing is a type of signal processing, the input for image processor is an image or video frame and the output will be an image or subset of image [1]. Computer graphics and computer vision process uses an image processing techniques. Image processing systems are used in various environments like medical fields, computer-aided design (CAD, research fields, crime investigation fields and military fields. In this paper, we proposed a document image processing technique, for establishing electronic loan approval process (E-LAP [2]. Loan approval process has been tedious process, the E-LAP system attempts to reduce the complexity of loan approval process. Customers have to login to fill the loan application form online with all details and submit the form. The loan department then processes the submitted form and then sends an acknowledgement mail via the E-LAP to the requested customer with the details about list of documents required for the loan approval process [3]. The approaching customer can upload the scanned copies of all required documents. All this interaction between customer and bank take place using an E-LAP system.

  18. A Molecular and Cellular Context-Dependent Role for Ir76b in Detection of Amino Acid Taste

    Directory of Open Access Journals (Sweden)

    Anindya Ganguly

    2017-01-01

    Full Text Available Amino acid taste is expected to be a universal property among animals. Although sweet, bitter, salt, and water tastes have been well characterized in insects, the mechanisms underlying amino acid taste remain elusive. From a Drosophila RNAi screen, we identify an ionotropic receptor, Ir76b, as necessary for yeast preference. Using calcium imaging, we identify Ir76b+ amino acid taste neurons in legs, overlapping partially with sweet neurons but not those that sense other tastants. Ir76b mutants have reduced responses to amino acids, which are rescued by transgenic expression of Ir76b and a mosquito ortholog AgIr76b. Co-expression of Ir20a with Ir76b is sufficient for conferring amino acid responses in sweet-taste neurons. Notably, Ir20a also serves to block salt response of Ir76b. Our study establishes the role of a highly conserved receptor in amino acid taste and suggests a mechanism for mutually exclusive roles of Ir76b in salt- and amino-acid-sensing neurons.

  19. Automatic tissue image segmentation based on image processing and deep learning

    Science.gov (United States)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  20. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various samples. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  1. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Koerner, S.

    2000-11-01

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various materials. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  2. Image Harvest: an open-source platform for high-throughput plant image processing and analysis

    Science.gov (United States)

    Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal

    2016-01-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  3. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... and spatial co-ordinates into discrete components. The mathematical concepts involved are the sampling and transform theory. Two dimensional transforms are used for image enhancement, restoration, encoding and description too. The main objective of the image...

  4. Integrating digital topology in image-processing libraries.

    Science.gov (United States)

    Lamy, Julien

    2007-01-01

    This paper describes a method to integrate digital topology informations in image-processing libraries. This additional information allows a library user to write algorithms respecting topological constraints, for example, a seed fill or a skeletonization algorithm. As digital topology is absent from most image-processing libraries, such constraints cannot be fulfilled. We describe and give code samples for all the structures necessary for this integration, and show a use case in the form of a homotopic thinning filter inside ITK. The obtained filter can be up to a hundred times as fast as ITK's thinning filter and works for any image dimension. This paper mainly deals of integration within ITK, but can be adapted with only minor modifications to other image-processing libraries.

  5. IL 6: 2D-IR spectroscopy: chemistry and biophysics in real time

    International Nuclear Information System (INIS)

    Bredenbeck, Jens

    2010-01-01

    Pulsed multidimensional experiments, daily business in the field of NMR spectroscopy, have been demonstrated only relatively recently in IR spectroscopy. Similar as nuclear spins in multidimensional NMR, molecular vibrations are employed in multidimensional IR experiments as probes of molecular structure and dynamics, albeit with femtosecond time resolution. Different types of multidimensional IR experiments have been implemented, resembling basic NMR experiments such as NOESY, COSY and EXSY. In contrast to one-dimensional linear spectroscopy, such multidimensional experiments reveal couplings and correlations of vibrations, which are closely linked to molecular structure and its change in time. The use of mixed IR/VIS pulse sequences further extends the potential of multidimensional IR spectroscopy, enabling studies of ultrafast non-equilibrium processes as well as surface specific, highly sensitive experiments. A UV/VIS pulse preceding the IR pulse sequence can be used to prepare the system under study in a non-equilibrium state. 2D-IR snapshots of the evolving non-equilibrium system are then taken, for example during a photochemical reaction or during the photo-cycle of a light sensitive protein. Preparing the system in a non-equilibrium state by UV/Vis excitation during the IR pulse sequence allows for correlating states of reactant and product of the light triggered process via their 2D-IR cross peaks - a technique that has been used to map the connectivity between different binding sites of a ligand as it migrates through a protein. Introduction of a non-resonant VIS pulse at the end of the IR part of the experiment allows to selectively up-convert the infrared signal of interfacial molecules to the visible spectral range by sum frequency generation. In this way, femtosecond interfacial 2D-IR spectroscopy can be implemented, achieving sub-monolayer sensitivity. (author)

  6. Advances in low-level color image processing

    CERN Document Server

    Smolka, Bogdan

    2014-01-01

    Color perception plays an important role in object recognition and scene understanding both for humans and intelligent vision systems. Recent advances in digital color imaging and computer hardware technology have led to an explosion in the use of color images in a variety of applications including medical imaging, content-based image retrieval, biometrics, watermarking, digital inpainting, remote sensing, visual quality inspection, among many others. As a result, automated processing and analysis of color images has become an active area of research, to which the large number of publications of the past two decades bears witness. The multivariate nature of color image data presents new challenges for researchers and practitioners as the numerous methods developed for single channel images are often not directly applicable to multichannel  ones. The goal of this volume is to summarize the state-of-the-art in the early stages of the color image processing pipeline.

  7. Low-power low-noise analog circuits for on-focal-plane signal processing of infrared sensors

    Science.gov (United States)

    Pain, Bedabrata; Mendis, Sunetra K.; Schober, Robert C.; Nixon, Robert H.; Fossum, Eric R.

    1993-10-01

    On-focal-plane signal processing circuits for enhancement of IR imager performance are presented. To enable the detection of high background IR images, an in-pixel current-mode background suppression scheme is presented. The background suppression circuit consists of a current memory placed in the feedback loop of a CTIA and is designed for a thousand-fold suppression of the background flux, thereby easing circuit design constraints, and assuring BLIP operation even with detectors having large response non-uniformities. For improving the performance of low-background IR imagers, an on-chip column-parallel analog-to-digital converter (ADC) is presented. The design of a 10-bit ADC with 50 micrometers pitch and based on sigma-delta ((Sigma) -(Delta) ) modulation is presented. A novel IR imager readout technique featuring photoelectron counting in the unit cell is presented for ultra-low background applications. The output of the unit cell is a digital word corresponding to the incident flux density and the readout is noise free. The design of low-power (noise, high-gain (> 100,000), small real estate (60 micrometers pitch) self-biased CMOS amplifiers required for photon counting are presented.

  8. Mesh Processing in Medical Image Analysis

    DEFF Research Database (Denmark)

    The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....

  9. Signal Processing in Medical Ultrasound B-mode Imaging

    International Nuclear Information System (INIS)

    Song, Tai Kyong

    2000-01-01

    Ultrasonic imaging is the most widely used modality among modern imaging device for medical diagnosis and the system performance has been improved dramatically since early 90's due to the rapid advances in DSP performance and VLSI technology that made it possible to employ more sophisticated algorithms. This paper describes 'main stream' digital signal processing functions along with the associated implementation considerations in modern medical ultrasound imaging systems. Topics covered include signal processing methods for resolution improvement, ultrasound imaging system architectures, roles and necessity of the applications of DSP and VLSI technology in the development of the medical ultrasound imaging systems, and array signal processing techniques for ultrasound focusing

  10. Adaptive Algorithms for Automated Processing of Document Images

    Science.gov (United States)

    2011-01-01

    ABSTRACT Title of dissertation: ADAPTIVE ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES Mudit Agrawal, Doctor of Philosophy, 2011...2011 4. TITLE AND SUBTITLE Adaptive Algorithms for Automated Processing of Document Images 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...ALGORITHMS FOR AUTOMATED PROCESSING OF DOCUMENT IMAGES by Mudit Agrawal Dissertation submitted to the Faculty of the Graduate School of the University

  11. PERIODIC ACCRETION INSTABILITIES IN THE PROTOSTAR L1634 IRS 7

    Energy Technology Data Exchange (ETDEWEB)

    Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Chini, Rolf, E-mail: hodapp@ifa.hawaii.edu, E-mail: rolf.chini@astro.ruhr-uni-bochum.de [Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum (Germany)

    2015-11-10

    The small molecular cloud Lynds 1634 contains at least three outflow sources. We found one of these, IRS 7, to be variable with a period of 37.14 ± 0.04 days and an amplitude of approximately 2 mag in the K{sub s} band. The light curve consists of a quiescent phase with little or no variation, and a rapid outburst phase. During the outburst phase, the rapid variation in brightness generates light echoes that propagate into the surrounding molecular cloud, allowing a measurement of the distance to IRS 7 of 404 pc ± 35 pc. We observed only a marginally significant change in the H − K color during the outburst phase. The K-band spectrum of IRS 7 shows CO bandhead emission but its equivalent width does not change significantly with the phase of the light curve. The H{sub 2} 1–0 S(1) line emission does not follow the variability of the continuum flux. We also used the imaging data for a proper motion study of the outflows originating from the IRS 7 and the far-infrared source IRAS 05173-0555, and confirm that these are indeed distinct outflows.

  12. Optimization of super-resolution processing using incomplete image sets in PET imaging.

    Science.gov (United States)

    Chang, Guoping; Pan, Tinsu; Clark, John W; Mawlawi, Osama R

    2008-12-01

    Super-resolution (SR) techniques are used in PET imaging to generate a high-resolution image by combining multiple low-resolution images that have been acquired from different points of view (POVs). The number of low-resolution images used defines the processing time and memory storage necessary to generate the SR image. In this paper, the authors propose two optimized SR implementations (ISR-1 and ISR-2) that require only a subset of the low-resolution images (two sides and diagonal of the image matrix, respectively), thereby reducing the overall processing time and memory storage. In an N x N matrix of low-resolution images, ISR-1 would be generated using images from the two sides of the N x N matrix, while ISR-2 would be generated from images across the diagonal of the image matrix. The objective of this paper is to investigate whether the two proposed SR methods can achieve similar performance in contrast and signal-to-noise ratio (SNR) as the SR image generated from a complete set of low-resolution images (CSR) using simulation and experimental studies. A simulation, a point source, and a NEMA/IEC phantom study were conducted for this investigation. In each study, 4 (2 x 2) or 16 (4 x 4) low-resolution images were reconstructed from the same acquired data set while shifting the reconstruction grid to generate images from different POVs. SR processing was then applied in each study to combine all as well as two different subsets of the low-resolution images to generate the CSR, ISR-1, and ISR-2 images, respectively. For reference purpose, a native reconstruction (NR) image using the same matrix size as the three SR images was also generated. The resultant images (CSR, ISR-1, ISR-2, and NR) were then analyzed using visual inspection, line profiles, SNR plots, and background noise spectra. The simulation study showed that the contrast and the SNR difference between the two ISR images and the CSR image were on average 0.4% and 0.3%, respectively. Line profiles of

  13. Bio-inspired approach to multistage image processing

    Science.gov (United States)

    Timchenko, Leonid I.; Pavlov, Sergii V.; Kokryatskaya, Natalia I.; Poplavska, Anna A.; Kobylyanska, Iryna M.; Burdenyuk, Iryna I.; Wójcik, Waldemar; Uvaysova, Svetlana; Orazbekov, Zhassulan; Kashaganova, Gulzhan

    2017-08-01

    Multistage integration of visual information in the brain allows people to respond quickly to most significant stimuli while preserving the ability to recognize small details in the image. Implementation of this principle in technical systems can lead to more efficient processing procedures. The multistage approach to image processing, described in this paper, comprises main types of cortical multistage convergence. One of these types occurs within each visual pathway and the other between the pathways. This approach maps input images into a flexible hierarchy which reflects the complexity of the image data. The procedures of temporal image decomposition and hierarchy formation are described in mathematical terms. The multistage system highlights spatial regularities, which are passed through a number of transformational levels to generate a coded representation of the image which encapsulates, in a computer manner, structure on different hierarchical levels in the image. At each processing stage a single output result is computed to allow a very quick response from the system. The result is represented as an activity pattern, which can be compared with previously computed patterns on the basis of the closest match.

  14. Crack Length Detection by Digital Image Processing

    DEFF Research Database (Denmark)

    Lyngbye, Janus; Brincker, Rune

    1990-01-01

    It is described how digital image processing is used for measuring the length of fatigue cracks. The system is installed in a Personal Computer equipped with image processing hardware and performs automated measuring on plane metal specimens used in fatigue testing. Normally one can not achieve...... a resolution better then that of the image processing equipment. To overcome this problem an extrapolation technique is used resulting in a better resolution. The system was tested on a specimen loaded with different loads. The error σa was less than 0.031 mm, which is of the same size as human measuring...

  15. Automated processing of X-ray images in medicine

    International Nuclear Information System (INIS)

    Babij, Ya.S.; B'yalyuk, Ya.O.; Yanovich, I.A.; Lysenko, A.V.

    1991-01-01

    Theoretical and practical achievements in application of computing technology means for processing of X-ray images in medicine were generalized. The scheme of the main directions and tasks of processing of X-ray images was given and analyzed. The principal problems appeared in automated processing of X-ray images were distinguished. It is shown that for interpretation of X-ray images it is expedient to introduce a notion of relative operating characteristic (ROC) of a roentgenologist. Every point on ROC curve determines the individual criteria of roentgenologist to put a positive diagnosis for definite situation

  16. Employing image processing techniques for cancer detection using microarray images.

    Science.gov (United States)

    Dehghan Khalilabad, Nastaran; Hassanpour, Hamid

    2017-02-01

    Microarray technology is a powerful genomic tool for simultaneously studying and analyzing the behavior of thousands of genes. The analysis of images obtained from this technology plays a critical role in the detection and treatment of diseases. The aim of the current study is to develop an automated system for analyzing data from microarray images in order to detect cancerous cases. The proposed system consists of three main phases, namely image processing, data mining, and the detection of the disease. The image processing phase performs operations such as refining image rotation, gridding (locating genes) and extracting raw data from images the data mining includes normalizing the extracted data and selecting the more effective genes. Finally, via the extracted data, cancerous cell is recognized. To evaluate the performance of the proposed system, microarray database is employed which includes Breast cancer, Myeloid Leukemia and Lymphomas from the Stanford Microarray Database. The results indicate that the proposed system is able to identify the type of cancer from the data set with an accuracy of 95.45%, 94.11%, and 100%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Twofold processing for denoising ultrasound medical images.

    Science.gov (United States)

    Kishore, P V V; Kumar, K V V; Kumar, D Anil; Prasad, M V D; Goutham, E N D; Rahul, R; Krishna, C B S Vamsi; Sandeep, Y

    2015-01-01

    Ultrasound medical (US) imaging non-invasively pictures inside of a human body for disease diagnostics. Speckle noise attacks ultrasound images degrading their visual quality. A twofold processing algorithm is proposed in this work to reduce this multiplicative speckle noise. First fold used block based thresholding, both hard (BHT) and soft (BST), on pixels in wavelet domain with 8, 16, 32 and 64 non-overlapping block sizes. This first fold process is a better denoising method for reducing speckle and also inducing object of interest blurring. The second fold process initiates to restore object boundaries and texture with adaptive wavelet fusion. The degraded object restoration in block thresholded US image is carried through wavelet coefficient fusion of object in original US mage and block thresholded US image. Fusion rules and wavelet decomposition levels are made adaptive for each block using gradient histograms with normalized differential mean (NDF) to introduce highest level of contrast between the denoised pixels and the object pixels in the resultant image. Thus the proposed twofold methods are named as adaptive NDF block fusion with hard and soft thresholding (ANBF-HT and ANBF-ST). The results indicate visual quality improvement to an interesting level with the proposed twofold processing, where the first fold removes noise and second fold restores object properties. Peak signal to noise ratio (PSNR), normalized cross correlation coefficient (NCC), edge strength (ES), image quality Index (IQI) and structural similarity index (SSIM), measure the quantitative quality of the twofold processing technique. Validation of the proposed method is done by comparing with anisotropic diffusion (AD), total variational filtering (TVF) and empirical mode decomposition (EMD) for enhancement of US images. The US images are provided by AMMA hospital radiology labs at Vijayawada, India.

  18. First-principles study of molecular NO dissociation on Ir(100) surface

    Science.gov (United States)

    Erikat, I. A.; Hamad, B. A.; Khalifeh, J. M.

    2014-02-01

    The dissociation of NO on Ir(100) surface is investigated using density functional theory (DFT). The pathway and transition state (TS) of the dissociation of NO molecule are determined using climbing image nudge elastic band (CI-NEB). The prerequisite state of NO dissociation is determining the most stable sites of the reactant and products. We found that the most energetically stable sites are the hollow for N atom and the bridge for NO molecule as well as O atom. We found that the bending of NO is the first step of the dissociation reaction due to the increase of the back-donation from the d-band of Ir to 2 π ∗ orbital of NO, which causes the weakening of NO bond. The dissociation energy barrier of NO molecule on Ir(100) surface is 0.49 eV.

  19. Subarcsecond observations of NGC 7538 IRS 1: Continuum distribution and dynamics of molecular gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lei; Shi, Hui [National Astronomical Observatories, Chinese Academy of Sciences, A20 Datun Road, Chaoyang District, Beijing 100012 (China); Zhao, Jun-Hui [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Wright, M. C. H. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720 (United States); Sandell, Göran [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Building N232, Rm. 146, P.O. Box 1, Moffett Field, CA 94035-0001 (United States); Wu, Yue-Fang [Department of Astronomy, Peking University, Beijing 100871 (China); Brogan, Crystal; Corder, Stuartt, E-mail: lzhu@nao.cas.cn [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2013-12-10

    We report new results based on the analysis of the Submillimeter Array (SMA) and Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of NGC 7538 IRS 1 at 1.3 and 3.4 mm with subarcsecond resolutions. With angular resolutions ∼0.''7, the SMA and CARMA observations show that the continuum emission at 1.3 and 3.4 mm from the hyper-compact H II region IRS 1 is dominated by a compact source with a tail-like extended structure to the southwest of IRS 1. With a CARMA B-array image at 1.3 mm convolved to 0.''1, we resolve the hyper-compact H II region into two components: an unresolved hyper-compact core, and a north-south extension with linear sizes of <270 AU and ∼2000 AU, respectively. The fine structure observed with CARMA is in good agreement with the previous Very Large Array results at centimeter wavelengths, suggesting that the hyper-compact H II region at the center of IRS 1 is associated with an ionized bipolar outflow. We image the molecular lines OCS(19-18) and CH{sub 3}CN(12-11) as well as {sup 13}CO(2-1) surrounding IRS 1, showing a velocity gradient along the southwest-northeast direction. The spectral line profiles in {sup 13}CO(2-1), CO(2-1), and HCN(1-0) observed toward IRS 1 show broad redshifted absorption, providing evidence for gas infall with rates in the range of 3-10 × 10{sup –3} M {sub ☉} yr{sup –1} inferred from our observations.

  20. Data in support of FSH induction of IRS-2 in human granulosa cells: Mapping the transcription factor binding sites in human IRS-2 promoter

    Directory of Open Access Journals (Sweden)

    Surleen Kaur

    2016-03-01

    Full Text Available Insulin receptor substrate-2 (IRS-2 plays critical role in the regulation of various metabolic processes by insulin and IGF-1. The defects in its expression and/or function are linked to diseases like polycystic ovary syndrome (PCOS, insulin resistance and cancer. To predict the transcription factors (TFs responsible for the regulation of human IRS-2 gene expression, the transcription factor binding sites (TFBS and the corresponding TFs were investigated by analysis of IRS-2 promoter sequence using MatInspector Genomatix software (Cartharius et al., 2005 [1]. The ibid data is part of author׳s publication (Anjali et al., 2015 [2] that explains Follicle stimulating hormone (FSH mediated IRS-2 promoter activation in human granulosa cells and its importance in the pathophysiology of PCOS. Further analysis was carried out for binary interactions of TF regulatory genes in IRS-2 network using Cytoscape software tool and R-code. In this manuscript, we describe the methodology used for the identification of TFBSs in human IRS-2 promoter region and provide details on experimental procedures, analysis method, validation of data and also the raw files. The purpose of this article is to provide the data on all TFBSs in the promoter region of human IRS-2 gene as it has the potential for prediction of the regulation of IRS-2 gene in normal or diseased cells from patients with metabolic disorders and cancer. Keywords: IRS-2, TFBS, FSH, SP1, ChIP

  1. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    Science.gov (United States)

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Acquisition and Post-Processing of Immunohistochemical Images.

    Science.gov (United States)

    Sedgewick, Jerry

    2017-01-01

    Augmentation of digital images is almost always a necessity in order to obtain a reproduction that matches the appearance of the original. However, that augmentation can mislead if it is done incorrectly and not within reasonable limits. When procedures are in place for insuring that originals are archived, and image manipulation steps reported, scientists not only follow good laboratory practices, but avoid ethical issues associated with post processing, and protect their labs from any future allegations of scientific misconduct. Also, when procedures are in place for correct acquisition of images, the extent of post processing is minimized or eliminated. These procedures include white balancing (for brightfield images), keeping tonal values within the dynamic range of the detector, frame averaging to eliminate noise (typically in fluorescence imaging), use of the highest bit depth when a choice is available, flatfield correction, and archiving of the image in a non-lossy format (not JPEG).When post-processing is necessary, the commonly used applications for correction include Photoshop, and ImageJ, but a free program (GIMP) can also be used. Corrections to images include scaling the bit depth to higher and lower ranges, removing color casts from brightfield images, setting brightness and contrast, reducing color noise, reducing "grainy" noise, conversion of pure colors to grayscale, conversion of grayscale to colors typically used in fluorescence imaging, correction of uneven illumination (flatfield correction), merging color images (fluorescence), and extending the depth of focus. These corrections are explained in step-by-step procedures in the chapter that follows.

  3. The Digital Microscope and Its Image Processing Utility

    Directory of Open Access Journals (Sweden)

    Tri Wahyu Supardi

    2011-12-01

    Full Text Available Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope.

  4. Image processing on the image with pixel noise bits removed

    Science.gov (United States)

    Chuang, Keh-Shih; Wu, Christine

    1992-06-01

    Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.

  5. Advances and applications of optimised algorithms in image processing

    CERN Document Server

    Oliva, Diego

    2017-01-01

    This book presents a study of the use of optimization algorithms in complex image processing problems. The problems selected explore areas ranging from the theory of image segmentation to the detection of complex objects in medical images. Furthermore, the concepts of machine learning and optimization are analyzed to provide an overview of the application of these tools in image processing. The material has been compiled from a teaching perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics, and can be used for courses on Artificial Intelligence, Advanced Image Processing, Computational Intelligence, etc. Likewise, the material can be useful for research from the evolutionary computation, artificial intelligence and image processing co.

  6. Pipeline Processing for VISTA

    Science.gov (United States)

    Lewis, J. R.; Irwin, M.; Bunclark, P.

    2010-12-01

    The VISTA telescope is a 4 metre instrument which has recently been commissioned at Paranal, Chile. Equipped with an infrared camera, 16 2Kx2K Raytheon detectors and a 1.7 square degree field of view, VISTA represents a huge leap in infrared survey capability in the southern hemisphere. Pipeline processing of IR data is far more technically challenging than for optical data. IR detectors are inherently more unstable, while the sky emission is over 100 times brighter than most objects of interest, and varies in a complex spatial and temporal manner. To compensate for this, exposure times are kept short, leading to high nightly data rates. VISTA is expected to generate an average of 250 GB of data per night over the next 5-10 years, which far exceeds the current total data rate of all 8m-class telescopes. In this presentation we discuss the pipelines that have been developed to deal with IR imaging data from VISTA and discuss the primary issues involved in an end-to-end system capable of: robustly removing instrument and night sky signatures; monitoring data quality and system integrity; providing astrometric and photometric calibration; and generating photon noise-limited images and science-ready astronomical catalogues.

  7. Fast image acquisition and processing on a TV camera-based portal imaging system

    International Nuclear Information System (INIS)

    Baier, K.; Meyer, J.

    2005-01-01

    The present paper describes the fast acquisition and processing of portal images directly from a TV camera-based portal imaging device (Siemens Beamview Plus trademark). This approach employs not only hard- and software included in the standard package installed by the manufacturer (in particular the frame grabber card and the Matrox(tm) Intellicam interpreter software), but also a software tool developed in-house for further processing and analysis of the images. The technical details are presented, including the source code for the Matrox trademark interpreter script that enables the image capturing process. With this method it is possible to obtain raw images directly from the frame grabber card at an acquisition rate of 15 images per second. The original configuration by the manufacturer allows the acquisition of only a few images over the course of a treatment session. The approach has a wide range of applications, such as quality assurance (QA) of the radiation beam, real-time imaging, real-time verification of intensity-modulated radiation therapy (IMRT) fields, and generation of movies of the radiation field (fluoroscopy mode). (orig.)

  8. Post-processing of digital images.

    Science.gov (United States)

    Perrone, Luca; Politi, Marco; Foschi, Raffaella; Masini, Valentina; Reale, Francesca; Costantini, Alessandro Maria; Marano, Pasquale

    2003-01-01

    Post-processing of bi- and three-dimensional images plays a major role for clinicians and surgeons in both diagnosis and therapy. The new spiral (single and multislice) CT and MRI machines have allowed better quality of images. With the associated development of hardware and software, post-processing has become indispensable in many radiologic applications in order to address precise clinical questions. In particular, in CT the acquisition technique is fundamental and should be targeted and optimized to obtain good image reconstruction. Multiplanar reconstructions ensure simple, immediate display of sections along different planes. Three-dimensional reconstructions include numerous procedures: multiplanar techniques as maximum intensity projections (MIP); surface rendering techniques as the Shaded Surface Display (SSD); volume techniques as the Volume Rendering Technique; techniques of virtual endoscopy. In surgery computer-aided techniques as the neuronavigator, which with information provided by neuroimaging helps the neurosurgeon in simulating and performing the operation, are extremely interesting.

  9. Digital image processing techniques in archaeology

    Digital Repository Service at National Institute of Oceanography (India)

    Santanam, K.; Vaithiyanathan, R.; Tripati, S.

    Digital image processing involves the manipulation and interpretation of digital images with the aid of a computer. This form of remote sensing actually began in the 1960's with a limited number of researchers analysing multispectral scanner data...

  10. Radiology image orientation processing for workstation display

    Science.gov (United States)

    Chang, Chung-Fu; Hu, Kermit; Wilson, Dennis L.

    1998-06-01

    Radiology images are acquired electronically using phosphor plates that are read in Computed Radiology (CR) readers. An automated radiology image orientation processor (RIOP) for determining the orientation for chest images and for abdomen images has been devised. In addition, the chest images are differentiated as front (AP or PA) or side (Lateral). Using the processing scheme outlined, hospitals will improve the efficiency of quality assurance (QA) technicians who orient images and prepare the images for presentation to the radiologists.

  11. Image processing by use of the digital cross-correlator

    International Nuclear Information System (INIS)

    Katou, Yoshinori

    1982-01-01

    We manufactured for trial an instrument which achieved the image processing using digital correlators. A digital correlator perform 64-bit parallel correlation at 20 MH. The output of a digital correlator is a 7-bit word representing. An A-D converter is used to quantize it a precision of six bits. The resulting 6-bit word is fed to six correlators, wired in parallel. The image processing achieved in 12 bits, whose digital outputs converted an analog signal by a D-A converter. This instrument is named the digital cross-correlator. The method which was used in the image processing system calculated the convolution with the digital correlator. It makes various digital filters. In the experiment with the image processing video signals from TV camera were used. The digital image processing time was approximately 5 μs. The contrast was enhanced and smoothed. The digital cross-correlator has the image processing of 16 sorts, and was produced inexpensively. (author)

  12. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    Govinda Rajan, K.N.; Sharma, S.D.; Palaniselvam, T.; Vandana, S.; Bhatt, B.C.; Vinatha, S.; Patki, V.S.; Pendse, A.M.; Kannan, V.

    2004-01-01

    A HDR 1000 PLUS well type ionization chamber, procured from Standard Imaging, USA, and maintained by medical Physics and Safety Section (MPSS), Bhabha Atomic Research Centre (BARC), India, as a reference well chamber 1 (RWCH1), was traceably calibrated against the primary standard established by Radiological Standards Laboratory (RSL), BARC for 192 Ir HDR source, in terms of air kerma strength (AKS). An indigenously developed well-type ionization chamber, reference well chamber 2 (RWCH2) and electrometer system, fabricated by CD High Tech (CDHT) Instruments Private Ltd., Bangalore, India, was in turn calibrated against RWCH1. The CDHT system (i.e. RWCH2 and CDHT electrometer system) was taken to several hospitals, in different regions of the country, to check the calibration status of 192 Ir HDR sources. The result of this calibration audit work is reported here. (author)

  13. High-repetition-rate setup for pump-probe time-resolved XUV-IR experiments employing ion and electron momentum imaging

    Science.gov (United States)

    Pathak, Shashank; Robatjazi, Seyyed Javad; Wright Lee, Pearson; Raju Pandiri, Kanaka; Rolles, Daniel; Rudenko, Artem

    2017-04-01

    J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan KS, USA We report on the development of a versatile experimental setup for XUV-IR pump-probe experiments using a 10 kHz high-harmonic generation (HHG) source and two different charged-particle momentum imaging spectrometers. The HHG source, based on a commercial KM Labs eXtreme Ultraviolet Ultrafast Source, is capable of delivering XUV radiation of less than 30 fs pulse duration in the photon energy range of 17 eV to 100 eV. It can be coupled either to a conventional velocity map imaging (VMI) setup with an atomic, molecular, or nanoparticle target; or to a novel double-sided VMI spectrometer equipped with two delay-line detectors for coincidence studies. An overview of the setup and results of first pump-probe experiments including studies of two-color double ionization of Xe and time-resolved dynamics of photoionized CO2 molecule will be presented. This project is supported in part by National Science Foundation (NSF-EPSCOR) Award No. IIA-1430493 and in part by the Chemical science, Geosciences, and Bio-Science division, Office of Basic Energy Science, Office of science, U.S. Department of Energy. K.

  14. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  15. 640 X 480 MOS PtSi IR sensor

    Science.gov (United States)

    Sauer, Donald J.; Shallcross, Frank V.; Hseuh, Fu-Lung; Meray, Grazyna M.; Levine, Peter A.; Gilmartin, Harvey R.; Villani, Thomas S.; Esposito, Benjamin J.; Tower, John R.

    1991-12-01

    The design of a 1st and 2nd generation 640(H) X 480(V) element PtSi Schottky-barrier infrared image sensor employing a low-noise MOS X-Y addressable readout multiplexer and on-chip low-noise output amplifier is described. Measured performance characteristics for Gen 1 devices are presented along with calculated performance for the Gen 2 design. A multiplexed horizontal/vertical input address port and on-chip decoding is used to load scan data into CMOS horizontal and vertical scanning registers. This allows random access to any sub-frame in the 640 X 480 element focal plane array. By changing the digital pattern applied to the vertical scan register, the FPA can be operated in either an interlaced or non- interlaced format, and the integration time may be varied over a wide range (60 microsecond(s) to > 30 ms, for RS170 operation) resulting in a form of 'electronic shutter,' or variable exposure control. The pixel size of 24-micrometers X 24-micrometers results in a fill factor of 38% for 1.5-micrometers process design rules. The overall die size for the IR imager is 13.7 mm X 17.2 mm. All digital inputs to the chip are TTL compatible and include ESD protection.

  16. Mid-IR laser ultrasonic testing for fiber reinforced plastics

    Science.gov (United States)

    Kusano, Masahiro; Hatano, Hideki; Oguchi, Kanae; Yamawaki, Hisashi; Watanabe, Makoto; Enoki, Manabu

    2018-04-01

    Ultrasonic testing is the most common method to detect defects in materials and evaluate their sizes and locations. Since piezo-electric transducers are manually handled from point to point, it takes more costs for huge products such as airplanes. Laser ultrasonic testing (LUT) is a breakthrough technique. A pulsed laser generates ultrasonic waves on a material surface due to thermoelastic effect or ablation. The ultrasonic waves can be detected by another laser with an interferometer. Thus, LUT can realize instantaneous inspection without contacting a sample. A pulse laser with around 3.2 μm wavelength (in the mid-IR range) is more suitable to generate ultrasonic waves for fiber reinforced plastics (FRPs) because the light is well absorbed by the polymeric matrix. On the other hand, such a laser is not available in the market. In order to emit the mid-IR laser pulse, we came up with the application of an optical parametric oscillator and developed an efficient wavelength conversion device by pumping a compact Nd:YAG solid-state laser. Our mid-IR LUT system is most suitable for inspection of FRPs. The signal-to-noise ratio of ultrasonic waves generated by the mid-IR laser is higher than that by the Nd:YAG laser. The purpose of the present study is to evaluate the performance of the mid-IR LUT system in reflection mode. We investigated the effects of the material properties and the laser properties on the generated ultrasonic waves. In addition, C-scan images by the system were also presented.

  17. Measurement and Image Processing Techniques for Particle Image Velocimetry Using Solid-Phase Carbon Dioxide

    Science.gov (United States)

    2014-03-27

    stereoscopic PIV: the angular displacement configuration and the translation configuration. The angular displacement configuration is most commonly used today...images were processed using ImageJ, an open-source, Java -based image processing software available from the National Institute of Health (NIH). The

  18. Digital Image Processing Overview For Helmet Mounted Displays

    Science.gov (United States)

    Parise, Michael J.

    1989-09-01

    Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.

  19. ARTIP: Automated Radio Telescope Image Processing Pipeline

    Science.gov (United States)

    Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

    2018-02-01

    The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

  20. Infrared imaging systems: Design, analysis, modeling, and testing; Proceedings of the Meeting, Orlando, FL, Apr. 16-18, 1990

    Science.gov (United States)

    Holst, Gerald C.

    1990-10-01

    Recent experimental and theoretical investigations in IR system design, analysis, and modeling are examined in reports and reviews. Topics discussed are modeling second-generation thermal imaging systems, performance improvement of an IR imaging system using subsystem MTF analysis, human recognition of IR images, spatial frequency performance of SPRITE detectors, and optimization of Schottky-barrier IR detectors for solar blindness. IR system testing is also considered, focusing on such problems as tolerancing methodology for an IR optical telescope, system response function approach to minimize IR testing errors, and portable MRTD collimator system for fast in situ testing of FLIRs and other thermal imagers.

  1. Developments in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2015-01-01

    This book presents novel and advanced topics in Medical Image Processing and Computational Vision in order to solidify knowledge in the related fields and define their key stakeholders. It contains extended versions of selected papers presented in VipIMAGE 2013 – IV International ECCOMAS Thematic Conference on Computational Vision and Medical Image, which took place in Funchal, Madeira, Portugal, 14-16 October 2013.  The twenty-two chapters were written by invited experts of international recognition and address important issues in medical image processing and computational vision, including: 3D vision, 3D visualization, colour quantisation, continuum mechanics, data fusion, data mining, face recognition, GPU parallelisation, image acquisition and reconstruction, image and video analysis, image clustering, image registration, image restoring, image segmentation, machine learning, modelling and simulation, object detection, object recognition, object tracking, optical flow, pattern recognition, pose estimat...

  2. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  3. Processing Of Binary Images

    Science.gov (United States)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  4. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.

    Science.gov (United States)

    Morgan, David G; Ramasse, Quentin M; Browning, Nigel D

    2009-06-01

    Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.

  5. Volumetric image interpretation in radiology: scroll behavior and cognitive processes.

    Science.gov (United States)

    den Boer, Larissa; van der Schaaf, Marieke F; Vincken, Koen L; Mol, Chris P; Stuijfzand, Bobby G; van der Gijp, Anouk

    2018-05-16

    The interpretation of medical images is a primary task for radiologists. Besides two-dimensional (2D) images, current imaging technologies allow for volumetric display of medical images. Whereas current radiology practice increasingly uses volumetric images, the majority of studies on medical image interpretation is conducted on 2D images. The current study aimed to gain deeper insight into the volumetric image interpretation process by examining this process in twenty radiology trainees who all completed four volumetric image cases. Two types of data were obtained concerning scroll behaviors and think-aloud data. Types of scroll behavior concerned oscillations, half runs, full runs, image manipulations, and interruptions. Think-aloud data were coded by a framework of knowledge and skills in radiology including three cognitive processes: perception, analysis, and synthesis. Relating scroll behavior to cognitive processes showed that oscillations and half runs coincided more often with analysis and synthesis than full runs, whereas full runs coincided more often with perception than oscillations and half runs. Interruptions were characterized by synthesis and image manipulations by perception. In addition, we investigated relations between cognitive processes and found an overall bottom-up way of reasoning with dynamic interactions between cognitive processes, especially between perception and analysis. In sum, our results highlight the dynamic interactions between these processes and the grounding of cognitive processes in scroll behavior. It suggests, that the types of scroll behavior are relevant to describe how radiologists interact with and manipulate volumetric images.

  6. Image processing of early gastric cancer cases

    International Nuclear Information System (INIS)

    Inamoto, Kazuo; Umeda, Tokuo; Inamura, Kiyonari

    1992-01-01

    Computer image processing was used to enhance gastric lesions in order to improve the detection of stomach cancer. Digitization was performed in 25 cases of early gastric cancer that had been confirmed surgically and pathologically. The image processing consisted of grey scale transformation, edge enhancement (Sobel operator), and high-pass filtering (unsharp masking). Grey scale transformation improved image quality for the detection of gastric lesions. The Sobel operator enhanced linear and curved margins, and consequently, suppressed the rest. High-pass filtering with unsharp masking was superior to visualization of the texture pattern on the mucosa. Eight of 10 small lesions (less than 2.0 cm) were successfully demonstrated. However, the detection of two lesions in the antrum, was difficult even with the aid of image enhancement. In the other 15 lesions (more than 2.0 cm), the tumor surface pattern and margin between the tumor and non-pathological mucosa were clearly visualized. Image processing was considered to contribute to the detection of small early gastric cancer lesions by enhancing the pathological lesions. (author)

  7. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICA

    Directory of Open Access Journals (Sweden)

    О. E. Prokopchenko

    2015-09-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article & based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematica may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  8. Computer Vision and Image Processing: A Paper Review

    Directory of Open Access Journals (Sweden)

    victor - wiley

    2018-02-01

    Full Text Available Computer vision has been studied from many persective. It expands from raw data recording into techniques and ideas combining digital image processing, pattern recognition, machine learning and computer graphics. The wide usage has attracted many scholars to integrate with many disciplines and fields. This paper provide a survey of the recent technologies and theoretical concept explaining the development of computer vision especially related to image processing using different areas of their field application. Computer vision helps scholars to analyze images and video to obtain necessary information,    understand information on events or descriptions, and scenic pattern. It used method of multi-range application domain with massive data analysis. This paper provides contribution of recent development on reviews related to computer vision, image processing, and their related studies. We categorized the computer vision mainstream into four group e.g., image processing, object recognition, and machine learning. We also provide brief explanation on the up-to-date information about the techniques and their performance.

  9. Novel welding image processing method based on fractal theory

    Institute of Scientific and Technical Information of China (English)

    陈强; 孙振国; 肖勇; 路井荣

    2002-01-01

    Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly.

  10. Automated measurement of pressure injury through image processing.

    Science.gov (United States)

    Li, Dan; Mathews, Carol

    2017-11-01

    To develop an image processing algorithm to automatically measure pressure injuries using electronic pressure injury images stored in nursing documentation. Photographing pressure injuries and storing the images in the electronic health record is standard practice in many hospitals. However, the manual measurement of pressure injury is time-consuming, challenging and subject to intra/inter-reader variability with complexities of the pressure injury and the clinical environment. A cross-sectional algorithm development study. A set of 32 pressure injury images were obtained from a western Pennsylvania hospital. First, we transformed the images from an RGB (i.e. red, green and blue) colour space to a YC b C r colour space to eliminate inferences from varying light conditions and skin colours. Second, a probability map, generated by a skin colour Gaussian model, guided the pressure injury segmentation process using the Support Vector Machine classifier. Third, after segmentation, the reference ruler - included in each of the images - enabled perspective transformation and determination of pressure injury size. Finally, two nurses independently measured those 32 pressure injury images, and intraclass correlation coefficient was calculated. An image processing algorithm was developed to automatically measure the size of pressure injuries. Both inter- and intra-rater analysis achieved good level reliability. Validation of the size measurement of the pressure injury (1) demonstrates that our image processing algorithm is a reliable approach to monitoring pressure injury progress through clinical pressure injury images and (2) offers new insight to pressure injury evaluation and documentation. Once our algorithm is further developed, clinicians can be provided with an objective, reliable and efficient computational tool for segmentation and measurement of pressure injuries. With this, clinicians will be able to more effectively monitor the healing process of pressure

  11. Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo sequence: improvement of the image quality of oxygen-enhanced MRI

    International Nuclear Information System (INIS)

    Ohno, Yoshiharu; Hatabu, Hiroto; Higashino, Takanori; Kawamitsu, Hideaki; Watanabe, Hirokazu; Takenaka, Daisuke; Cauteren, Marc van; Sugimura, Kazuro

    2004-01-01

    Purpose: The purpose of the study presented here was to determine the improvement in image quality of oxygen-enhanced magnetic resonance (MR) subtraction imaging obtained with a centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence compared with that obtained with a conventional sequentially reordered inversion recovery single-shot HASTE (s-IR-HASTE) sequence for pulmonary imaging. Materials and methods: Oxygen-enhanced MR imaging using a 1.5 T whole body scanner was performed on 12 healthy, non-smoking volunteers. Oxygen-enhanced MR images were obtained with the coronal two-dimensional (2D) c-IR-HASTE sequence and 2D s-IR-HASTE sequence combined with respiratory triggering. For a 256x256 matrix, 132 phase-encoding steps were acquired including four steps for phase correction. Inter-echo spacing for each sequence was 4.0 ms. The effective echo time (TE) for c-IR-HASTE was 4.0 ms, and 16 ms for s-IR-HASTE. The inversion time (TI) was 900 ms. To determine the improvement in oxygen-enhanced MR subtraction imaging by c-IR-HASTE, CNRs of subtraction image, overall image quality, and image degradation of the c-IR-HASTE and s-IR-HASTE techniques were statistically compared. Results: CNR, overall image quality, and image degradation of c-IR-HASTE images showed significant improvement compared to those s-IR-HASTE images (P<0.05). Conclusion: Centrically reordered inversion recovery half-Fourier single-shot turbo spin-echo (c-IR-HASTE) sequence enhanced the signal from the lung and improved the image quality of oxygen-enhanced MR subtraction imaging

  12. High-speed image processing systems in non-destructive testing

    Science.gov (United States)

    Shashev, D. V.; Shidlovskiy, S. V.

    2017-08-01

    Digital imaging systems are using in most of both industrial and scientific industries. Such systems effectively solve a wide range of tasks in the field of non-destructive testing. There are problems in digital image processing for decades associated with the speed of the operation of such systems, sufficient to efficiently process and analyze video streams in real time, ideally in mobile small-sized devices. In this paper, we consider the use of parallel-pipeline computing architectures in image processing problems using the example of an algorithm for calculating the area of an object on a binary image. The approach used allows us to achieve high-speed performance in the tasks of digital image processing.

  13. Effects of image processing on the detective quantum efficiency

    Science.gov (United States)

    Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na

    2010-04-01

    Digital radiography has gained popularity in many areas of clinical practice. This transition brings interest in advancing the methodologies for image quality characterization. However, as the methodologies for such characterizations have not been standardized, the results of these studies cannot be directly compared. The primary objective of this study was to standardize methodologies for image quality characterization. The secondary objective was to evaluate affected factors to Modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) according to image processing algorithm. Image performance parameters such as MTF, NPS, and DQE were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) images of hand posterior-anterior (PA) for measuring signal to noise ratio (SNR), slit image for measuring MTF, white image for measuring NPS were obtained and various Multi-Scale Image Contrast Amplification (MUSICA) parameters were applied to each of acquired images. In results, all of modified images were considerably influence on evaluating SNR, MTF, NPS, and DQE. Modified images by the post-processing had higher DQE than the MUSICA=0 image. This suggests that MUSICA values, as a post-processing, have an affect on the image when it is evaluating for image quality. In conclusion, the control parameters of image processing could be accounted for evaluating characterization of image quality in same way. The results of this study could be guided as a baseline to evaluate imaging systems and their imaging characteristics by measuring MTF, NPS, and DQE.

  14. Document Image Processing: Going beyond the Black-and-White Barrier. Progress, Issues and Options with Greyscale and Colour Image Processing.

    Science.gov (United States)

    Hendley, Tom

    1995-01-01

    Discussion of digital document image processing focuses on issues and options associated with greyscale and color image processing. Topics include speed; size of original document; scanning resolution; markets for different categories of scanners, including photographic libraries, publishing, and office applications; hybrid systems; data…

  15. Topics in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2013-01-01

      The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery.   Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation.   The book brings together the current state-of-the-art in the various mul...

  16. General review of multispectral cooled IR development at CEA-Leti, France

    Science.gov (United States)

    Boulard, F.; Marmonier, F.; Grangier, C.; Adelmini, L.; Gravrand, O.; Ballet, P.; Baudry, X.; Baylet, J.; Badano, G.; Espiau de Lamaestre, R.; Bisotto, S.

    2017-02-01

    Multicolor detection capabilities, which bring information on the thermal and chemical composition of the scene, are desirable for advanced infrared (IR) imaging systems. This communication reviews intra and multiband solutions developed at CEA-Leti, from dual-band molecular beam epitaxy grown Mercury Cadmium Telluride (MCT) photodiodes to plasmon-enhanced multicolor IR detectors and backside pixelated filters. Spectral responses, quantum efficiency and detector noise performances, pros and cons regarding global system are discussed in regards to technology maturity, pixel pitch reduction, and affordability. From MWIR-LWIR large band to intra MWIR or LWIR bands peaked detection, results underline the full possibility developed at CEA-Leti.

  17. MR imaging of abnormal synovial processes

    International Nuclear Information System (INIS)

    Quinn, S.F.; Sanchez, R.; Murray, W.T.; Silbiger, M.L.; Ogden, J.; Cochran, C.

    1987-01-01

    MR imaging can directly image abnormal synovium. The authors reviewed over 50 cases with abnormal synovial processes. The abnormalities include Baker cysts, semimembranous bursitis, chronic shoulder bursitis, peroneal tendon ganglion cyst, periarticular abscesses, thickened synovium from rheumatoid and septic arthritis, and synovial hypertrophy secondary to Legg-Calve-Perthes disease. MR imaging has proved invaluable in identifying abnormal synovium, defining the extent and, to a limited degree, characterizing its makeup

  18. Quaternion Fourier transforms for signal and image processing

    CERN Document Server

    Ell, Todd A; Sangwine, Stephen J

    2014-01-01

    Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book's attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.

  19. Energy-Driven Image Interpolation Using Gaussian Process Regression

    Directory of Open Access Journals (Sweden)

    Lingling Zi

    2012-01-01

    Full Text Available Image interpolation, as a method of obtaining a high-resolution image from the corresponding low-resolution image, is a classical problem in image processing. In this paper, we propose a novel energy-driven interpolation algorithm employing Gaussian process regression. In our algorithm, each interpolated pixel is predicted by a combination of two information sources: first is a statistical model adopted to mine underlying information, and second is an energy computation technique used to acquire information on pixel properties. We further demonstrate that our algorithm can not only achieve image interpolation, but also reduce noise in the original image. Our experiments show that the proposed algorithm can achieve encouraging performance in terms of image visualization and quantitative measures.

  20. Quality control and enhancement of microwelds for Ir-192 sample holders

    International Nuclear Information System (INIS)

    Lopez, Alcides; Medina, Max; Cavero, Luis

    2013-01-01

    This study shows the micro quality results of tungsten inert gas welds on stainless steel AISI 304 of 5 sample holders for 30 discs by 3 mm diameter and 0.5 mm thick of Ir-192 sources produced in the Radioisotope Production Plant (RPP) of IPEN, generally used in industrial gammagraphy. Macrographic and conventional metallographic analysis were performed to measure the amplitude, thickness and centering parameters of the weld bead, centered data have helped to determine the parameters for welds with good quality, showing defects due to the misaligned glass lens, low magnification image and high visual angle of incidence across the 200 mm security leaded glass giving a low quality weld image due to the low magnification, large chromatic aberration resulting in a weld outside the seam, this problem was solved by changing the old optical visualization system by an external telescope specially designed for this purpose and raising the workbench so that the optical telescope axis and the weld are horizontally, achieving more rapid processes, reliable and reproducible, this new system has proved more convenient, reliable and reproducible. (authors).

  1. BOOK REVIEW: Infrared Thermal Imaging: Fundamentals, Research and Applications Infrared Thermal Imaging: Fundamentals, Research and Applications

    Science.gov (United States)

    Planinsic, Gorazd

    2011-09-01

    Ten years ago, a book with a title like this would be interesting only to a narrow circle of specialists. Thanks to rapid advances in technology, the price of thermal imaging devices has dropped sharply, so they have, almost overnight, become accessible to a wide range of users. As the authors point out in the preface, the growth of this area has led to a paradoxical situation: now there are probably more infrared (IR) cameras sold worldwide than there are people who understand the basic physics behind them and know how to correctly interpret the colourful images that are obtained with these devices. My experience confirms this. When I started using the IR camera during lectures on the didactics of physics, I soon realized that I needed more knowledge, which I later found in this book. A wide range of potential readers and topical areas provides a good motive for writing a book such as this one, but it also represents a major challenge for authors, as compromises in the style of writing and choice of topics are required. The authors of this book have successfully achieved this, and indeed done an excellent job. This book addresses a wide range of readers, from engineers, technicians, and physics and science teachers in schools and universities, to researchers and specialists who are professionally active in the field. As technology in this area has made great progress in recent times, this book is also a valuable guide for those who opt to purchase an infrared camera. Chapters in this book could be divided into three areas: the fundamentals of IR thermal imaging and related physics (two chapters); IR imaging systems and methods (two chapters) and applications, including six chapters on pedagogical applications; IR imaging of buildings and infrastructure, industrial applications, microsystems, selected topics in research and industry, and selected applications from other fields. All chapters contain numerous colour pictures and diagrams, and a rich list of relevant

  2. REVIEW OF MATHEMATICAL METHODS AND ALGORITHMS OF MEDICAL IMAGE PROCESSING ON THE EXAMPLE OF TECHNOLOGY OF MEDICAL IMAGE PROCESSING FROM WOLFRAM MATHEMATICS

    Directory of Open Access Journals (Sweden)

    O. Ye. Prokopchenko

    2015-10-01

    Full Text Available The article analyzes the basic methods and algorithms of mathematical processing of medical images as objects of computer mathematics. The presented methods and computer algorithms of mathematics relevant and may find application in the field of medical imaging - automated processing of images; as a tool for measurement and determination the optical parameters; identification and formation of medical images database. Methods and computer algorithms presented in the article and based on Wolfram Mathematica are also relevant to the problem of modern medical education. As an example of Wolfram Mathematics may be considered appropriate demonstration, such as recognition of special radiographs and morphological imaging. These methods are used to improve  the diagnostic significance and value of medical (clinical research and can serve as an educational interactive demonstration. Implementation submitted individual methods and algorithms of computer Wolfram Mathematics contributes, in general, the optimization process of practical processing and presentation of medical images.

  3. IR spectral analysis for the diagnostics of crust earthquake precursors

    Directory of Open Access Journals (Sweden)

    R. M. Umarkhodgaev

    2012-11-01

    Full Text Available Some possible physical processes are analysed that cause, under the condition of additional ionisation in a pre-breakdown electric field, emissions in the infrared (IR interval. The atmospheric transparency region of the IR spectrum at wavelengths of 7–15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analyzed. For daytime conditions, modifications of the adsorption spectra of the scattered solar emissions are studied; for nighttime, variations of emission spectra may be used for the analysis.

  4. Fundamental concepts of digital image processing

    Energy Technology Data Exchange (ETDEWEB)

    Twogood, R.E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  5. Fundamental Concepts of Digital Image Processing

    Science.gov (United States)

    Twogood, R. E.

    1983-03-01

    The field of a digital-image processing has experienced dramatic growth and increasingly widespread applicability in recent years. Fortunately, advances in computer technology have kept pace with the rapid growth in volume of image data in these and other applications. Digital image processing has become economical in many fields of research and in industrial and military applications. While each application has requirements unique from the others, all are concerned with faster, cheaper, more accurate, and more extensive computation. The trend is toward real-time and interactive operations, where the user of the system obtains preliminary results within a short enough time that the next decision can be made by the human processor without loss of concentration on the task at hand. An example of this is the obtaining of two-dimensional (2-D) computer-aided tomography (CAT) images. A medical decision might be made while the patient is still under observation rather than days later.

  6. An Efficient Secret Key Homomorphic Encryption Used in Image Processing Service

    Directory of Open Access Journals (Sweden)

    Pan Yang

    2017-01-01

    Full Text Available Homomorphic encryption can protect user’s privacy when operating on user’s data in cloud computing. But it is not practical for wide using as the data and services types in cloud computing are diverse. Among these data types, digital image is an important personal data for users. There are also many image processing services in cloud computing. To protect user’s privacy in these services, this paper proposed a scheme using homomorphic encryption in image processing. Firstly, a secret key homomorphic encryption (IGHE was constructed for encrypting image. IGHE can operate on encrypted floating numbers efficiently to adapt to the image processing service. Then, by translating the traditional image processing methods into the operations on encrypted pixels, the encrypted image can be processed homomorphically. That is, service can process the encrypted image directly, and the result after decryption is the same as processing the plain image. To illustrate our scheme, three common image processing instances were given in this paper. The experiments show that our scheme is secure, correct, and efficient enough to be used in practical image processing applications.

  7. Parallel asynchronous systems and image processing algorithms

    Science.gov (United States)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  8. Mesoporous silica nanoparticle supported PdIr bimetal catalyst for selective hydrogenation, and the significant promotional effect of Ir

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui; Huang, Chao; Yang, Fan [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Yang, Xu [Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Du, Li [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China); Liao, Shijun, E-mail: chsjliao@scut.edu.cn [The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641 (China); Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou (China)

    2015-12-01

    Graphical abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction caused by the addition of Ir. - Highlights: • Mesoporous nanoparticles were synthesized and used as support for metal catalyst. • PdIr bimetallic catalyst exhibited significantly improved hydrogenation activity. • The strong promotion of Ir was recognized firstly and investigated intensively. • PdIr exhibits 18 times higher activity than Pd to the hydrogenation of nitrobenzene. - Abstract: A mesoporous silica nanoparticle (MSN) supported bimetal catalyst, PdIr/MSN, was prepared by a facile impregnation and hydrogen reduction method. The strong promotional effect of Ir was observed and thoroughly investigated. At the optimal molar ratio of Ir to Pd (N{sub Ir}/N{sub Pd} = 0.1), the activity of PdIr{sub 0.1}/MSN was up to eight times and 28 times higher than that of monometallic Pd/MSN and Ir/MSN, respectively. The catalysts were characterized comprehensively by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and hydrogen temperature programmed reduction, which revealed that the promotional effect of Ir may be due to the enhanced dispersion of active components on the MSN, and to the intensified Pd–Ir electronic interaction

  9. Increased accuracy of single photon emission computed tomography (SPECT myocardial perfusion scintigraphy using iterative reconstruction of images

    Directory of Open Access Journals (Sweden)

    Stević Miloš

    2016-01-01

    Full Text Available Background/Aim. Filtered back projection (FBP is a common way of processing myocardial perfusion imaging (MPI studies. There are artifacts in FBP which can cause falsepositive results. Iterative reconstruction (IR is developed to reduce false positive findings in MPI studies. The aim of this study was to evaluate the difference in the number of false positive findings in MPI studies, between FBP and IR processing. Methods. We examined 107 patients with angina pectoris with MPI and coronary angiography (CAG, 77 man and 30 woman, aged 32−82. MPI studies were processed with FBP and with IR. Positive finding at MPI was visualization of the perfusion defect. Positive finding at CAG was stenosis of coronary artery. Perfusion defect at MPI without coronary artery stenosis at CAG was considered like false positive. The results were statistically analyzed with bivariate correlation, and with one sample t-test. Results. There were 20.6% normal, and 79.4% pathologic findings at FBP, 30.8% normal and 69.2% pathologic with IR and 37.4% normal and 62.6% pathologic at CAG. FBP produced 19 false-positive findings, at IR 11 false positive findings. The correlation between FBP and CAG was 0.658 (p < 0.01 and between IR and CAG 0.784 (p < 0.01. The number of false positive findings at MPI with IR was significantly lower than at FBP (p < 0.01. Conclusion. Our study shows that IR processing MPI scintigraphy has less number of false positive findings, therefore it is our choice for processing MPI studies.

  10. Bayesian image processing in two and three dimensions

    International Nuclear Information System (INIS)

    Hart, H.; Liang, Z.

    1986-01-01

    Tomographic image processing customarily analyzes data acquired over a series of projective orientations. If, however, the point source function (the matrix R) of the system is strongly depth dependent, tomographic information is also obtainable from a series of parallel planar images corresponding to different ''focal'' depths. Bayesian image processing (BIP) was carried out for two and three dimensional spatially uncorrelated discrete amplitude a priori source distributions

  11. Morphology and probability in image processing

    International Nuclear Information System (INIS)

    Fabbri, A.G.

    1985-01-01

    The author presents an analysis of some concepts which relate morphological attributes of digital objects to statistically meaningful measures. Some elementary transformations of binary images are described and examples of applications are drawn from the geological and image analysis domains. Some of the morphological models applicablle in astronomy are discussed. It is shown that the development of new spatially oriented computers leads to more extensive applications of image processing in the geosciences

  12. An image processing pipeline to detect and segment nuclei in muscle fiber microscopic images.

    Science.gov (United States)

    Guo, Yanen; Xu, Xiaoyin; Wang, Yuanyuan; Wang, Yaming; Xia, Shunren; Yang, Zhong

    2014-08-01

    Muscle fiber images play an important role in the medical diagnosis and treatment of many muscular diseases. The number of nuclei in skeletal muscle fiber images is a key bio-marker of the diagnosis of muscular dystrophy. In nuclei segmentation one primary challenge is to correctly separate the clustered nuclei. In this article, we developed an image processing pipeline to automatically detect, segment, and analyze nuclei in microscopic image of muscle fibers. The pipeline consists of image pre-processing, identification of isolated nuclei, identification and segmentation of clustered nuclei, and quantitative analysis. Nuclei are initially extracted from background by using local Otsu's threshold. Based on analysis of morphological features of the isolated nuclei, including their areas, compactness, and major axis lengths, a Bayesian network is trained and applied to identify isolated nuclei from clustered nuclei and artifacts in all the images. Then a two-step refined watershed algorithm is applied to segment clustered nuclei. After segmentation, the nuclei can be quantified for statistical analysis. Comparing the segmented results with those of manual analysis and an existing technique, we find that our proposed image processing pipeline achieves good performance with high accuracy and precision. The presented image processing pipeline can therefore help biologists increase their throughput and objectivity in analyzing large numbers of nuclei in muscle fiber images. © 2014 Wiley Periodicals, Inc.

  13. IR-laser assisted additive freeform optics manufacturing.

    Science.gov (United States)

    Hong, Zhihan; Liang, Rongguang

    2017-08-02

    Computer-controlled additive manufacturing (AM) processes, also known as three-dimensional (3D) printing, create 3D objects by the successive adding of a material or materials. While there have been tremendous developments in AM, the 3D printing of optics is lagging due to the limits in materials and tight requirements for optical applicaitons. We propose a new precision additive freeform optics manufacturing (AFOM) method using an pulsed infrared (IR) laser. Compared to ultraviolet (UV) curable materials, thermally curable optical silicones have a number of advantages, such as strong UV stability, non-yellowing, and high transmission, making it particularly suitable for optical applications. Pulsed IR laser radiation offers a distinct advantage in processing optical silicones, as the high peak intensity achieved in the focal region allows for curing the material quickly, while the brief duration of the laser-material interaction creates a negligible heat-affected zone.

  14. BOOTES-IR: near IR follow-up GRB observations by a robotic system

    International Nuclear Information System (INIS)

    Castro-Tirado, A.J.; Postrigo, A. de Ugarte; Jelinek, M.

    2005-01-01

    BOOTES-IR is the extension of the BOOTES experiment, which operates in Southern Spain since 1998, to the near IR (NIR). The goal is to follow up the early stage of the gamma ray burst (GRB) afterglow emission in the NIR, alike BOOTES does already at optical wavelengths. The scientific case that drives the BOOTES-IR performance is the study of GRBs with the support of spacecraft like INTEGRAL, SWIFT and GLAST. Given that the afterglow emission in both, the NIR and the optical, in the instances immediately following a GRB, is extremely bright (reached V = 8.9 in one case), it should be possible to detect this prompt emission at NIR wavelengths too. The combined observations by BOOTES-IR and BOOTES-1 and BOOTES-2 will allow for real time identification of trustworthy candidates to have a high redshift (z > 5). It is expected that, few minutes after a GRB, the IR magnitudes be H ∼ 7-10, hence very high quality spectra can be obtained for objects as far as z = 10 by larger instruments

  15. Development of Cytoplasmic Male Sterile IR24 and IR64 Using CW-CMS/Rf17 System.

    Science.gov (United States)

    Toriyama, Kinya; Kazama, Tomohiko

    2016-12-01

    A wild-abortive-type (WA) cytoplasmic male sterility (CMS) has been almost exclusively used for breeding three-line hybrid rice. Many indica cultivars are known to carry restorer genes for WA-CMS lines and cannot be used as maintainer lines. Especially elite indica cultivars IR24 and IR64 are known to be restorer lines for WA-CMS lines, and are used as male parents for hybrid seed production. If we develop CMS IR24 and CMS IR64, the combination of F1 pairs in hybrid rice breeding programs will be greatly broadened. For production of CMS lines and restorer lines of IR24 and IR64, we employed Chinese wild rice (CW)-type CMS/Restorer of fertility 17 (Rf17) system, in which fertility is restored by a single nuclear gene, Rf17. Successive backcrossing and marker-assisted selection of Rf17 succeeded to produce completely male sterile CMS lines and fully restored restorer lines of IR24 and IR64. CW-cytoplasm did not affect agronomic characteristics. Since IR64 is one of the most popular mega-varieties and used for breeding of many modern varieties, the CW-CMS line of IR64 will be useful for hybrid rice breeding.

  16. IR Observations of a Complete Unbiased Sample of Bright Seyfert Galaxies

    Science.gov (United States)

    Malkan, Matthew; Bendo, George; Charmandaris, Vassilis; Smith, Howard; Spinoglio, Luigi; Tommasin, Silvia

    2008-03-01

    IR spectra will measure the 2 main energy-generating processes by which galactic nuclei shine: black hole accretion and star formation. Both of these play roles in galaxy evolution, and they appear connected. To obtain a complete sample of AGN, covering the range of luminosities and column-densities, we will combine 2 complete all-sky samples with complementary selections, minimally biased by dust obscuration: the 116 IRAS 12um AGN and the 41 Swift/BAT hard Xray AGN. These galaxies have been extensively studied across the entire EM spectrum. Herschel observations have been requested and will be synergistic with the Spitzer database. IRAC and MIPS imaging will allow us to separate the nuclear and galactic continua. We are completing full IR observations of the local AGN population, most of which have already been done. The only remaining observations we request are 10 IRS/HIRES, 57 MIPS-24 and 30 IRAC pointings. These high-quality observations of bright AGN in the bolometric-flux-limited samples should be completed, for the high legacy value of complete uniform datasets. We will measure quantitatively the emission at each wavelength arising from stars and from accretion in each galactic center. Since our complete samples come from flux-limited all-sky surveys in the IR and HX, we will calculate the bi-variate AGN and star formation Luminosity Functions for the local population of active galaxies, for comparison with higher redshifts.Our second aim is to understand the physical differences between AGN classes. This requires statistical comparisons of full multiwavelength observations of complete representative samples. If the difference between Sy1s and Sy2s is caused by orientation, their isotropic properties, including those of the surrounding galactic centers, should be similar. In contrast, if they are different evolutionary stages following a galaxy encounter, then we may find observational evidence that the circumnuclear ISM of Sy2s is relatively younger.

  17. Viewpoints on Medical Image Processing: From Science to Application

    Science.gov (United States)

    Deserno (né Lehmann), Thomas M.; Handels, Heinz; Maier-Hein (né Fritzsche), Klaus H.; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-01-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment. PMID:24078804

  18. Viewpoints on Medical Image Processing: From Science to Application.

    Science.gov (United States)

    Deserno Né Lehmann, Thomas M; Handels, Heinz; Maier-Hein Né Fritzsche, Klaus H; Mersmann, Sven; Palm, Christoph; Tolxdorff, Thomas; Wagenknecht, Gudrun; Wittenberg, Thomas

    2013-05-01

    Medical image processing provides core innovation for medical imaging. This paper is focused on recent developments from science to applications analyzing the past fifteen years of history of the proceedings of the German annual meeting on medical image processing (BVM). Furthermore, some members of the program committee present their personal points of views: (i) multi-modality for imaging and diagnosis, (ii) analysis of diffusion-weighted imaging, (iii) model-based image analysis, (iv) registration of section images, (v) from images to information in digital endoscopy, and (vi) virtual reality and robotics. Medical imaging and medical image computing is seen as field of rapid development with clear trends to integrated applications in diagnostics, treatment planning and treatment.

  19. Tumor image signatures and habitats: a processing pipeline of multimodality metabolic and physiological images.

    Science.gov (United States)

    You, Daekeun; Kim, Michelle M; Aryal, Madhava P; Parmar, Hemant; Piert, Morand; Lawrence, Theodore S; Cao, Yue

    2018-01-01

    To create tumor "habitats" from the "signatures" discovered from multimodality metabolic and physiological images, we developed a framework of a processing pipeline. The processing pipeline consists of six major steps: (1) creating superpixels as a spatial unit in a tumor volume; (2) forming a data matrix [Formula: see text] containing all multimodality image parameters at superpixels; (3) forming and clustering a covariance or correlation matrix [Formula: see text] of the image parameters to discover major image "signatures;" (4) clustering the superpixels and organizing the parameter order of the [Formula: see text] matrix according to the one found in step 3; (5) creating "habitats" in the image space from the superpixels associated with the "signatures;" and (6) pooling and clustering a matrix consisting of correlation coefficients of each pair of image parameters from all patients to discover subgroup patterns of the tumors. The pipeline was applied to a dataset of multimodality images in glioblastoma (GBM) first, which consisted of 10 image parameters. Three major image "signatures" were identified. The three major "habitats" plus their overlaps were created. To test generalizability of the processing pipeline, a second image dataset from GBM, acquired on the scanners different from the first one, was processed. Also, to demonstrate the clinical association of image-defined "signatures" and "habitats," the patterns of recurrence of the patients were analyzed together with image parameters acquired prechemoradiation therapy. An association of the recurrence patterns with image-defined "signatures" and "habitats" was revealed. These image-defined "signatures" and "habitats" can be used to guide stereotactic tissue biopsy for genetic and mutation status analysis and to analyze for prediction of treatment outcomes, e.g., patterns of failure.

  20. Opportunities and applications of medical imaging and image processing techniques for nondestructive testing

    International Nuclear Information System (INIS)

    Song, Samuel Moon Ho; Cho, Jung Ho; Son, Sang Rock; Sung, Je Jonng; Ahn, Hyung Keun; Lee, Jeong Soon

    2002-01-01

    Nondestructive testing (NDT) of structures strives to extract all relevant data regarding the state of the structure without altering its form or properties. The success enjoyed by imaging and image processing technologies in the field of modem medicine forecasts similar success of image processing related techniques both in research and practice of NDT. In this paper, we focus on two particular instances of such applications: a modern vision technique for 3-D profile and shape measurement, and ultrasonic imaging with rendering for 3-D visualization. Ultrasonic imaging of 3-D structures for nondestructive evaluation purposes must provide readily recognizable 3-D images with enough details to clearly show various faults that may or may not be present. As a step towards Improving conspicuity and thus detection of faults, we propose a pulse-echo ultrasonic imaging technique to generate a 3-D image of the 3-D object under evaluation through strategic scanning and processing of the pulse-echo data. This three-dimensional processing and display improves conspicuity of faults and in addition, provides manipulation capabilities, such as pan and rotation of the 3-D structure. As a second application, we consider an image based three-dimensional shape determination system. The shape, and thus the three-dimensional coordinate information of the 3-D object, is determined solely from captured images of the 3-D object from a prescribed set of viewpoints. The approach is based on the shape from silhouette (SFS) technique and the efficacy of the SFS method is tested using a sample data set. This system may be used to visualize the 3-D object efficiently, or to quickly generate initial CAD data for reverse engineering purposes. The proposed system potentially may be used in three dimensional design applications such as 3-D animation and 3-D games.

  1. Apparatus and method X-ray image processing

    International Nuclear Information System (INIS)

    1984-01-01

    The invention relates to a method for X-ray image processing. The radiation passed through the object is transformed into an electric image signal from which the logarithmic value is determined and displayed by a display device. Its main objective is to provide a method and apparatus that renders X-ray images or X-ray subtraction images with strong reduction of stray radiation. (Auth.)

  2. Rapid, low-cost, image analysis through video processing

    International Nuclear Information System (INIS)

    Levinson, R.A.; Marrs, R.W.; Grantham, D.G.

    1976-01-01

    Remote Sensing now provides the data necessary to solve many resource problems. However, many of the complex image processing and analysis functions used in analysis of remotely-sensed data are accomplished using sophisticated image analysis equipment. High cost of this equipment places many of these techniques beyond the means of most users. A new, more economical, video system capable of performing complex image analysis has now been developed. This report describes the functions, components, and operation of that system. Processing capability of the new video image analysis system includes many of the tasks previously accomplished with optical projectors and digital computers. Video capabilities include: color separation, color addition/subtraction, contrast stretch, dark level adjustment, density analysis, edge enhancement, scale matching, image mixing (addition and subtraction), image ratioing, and construction of false-color composite images. Rapid input of non-digital image data, instantaneous processing and display, relatively low initial cost, and low operating cost gives the video system a competitive advantage over digital equipment. Complex pre-processing, pattern recognition, and statistical analyses must still be handled through digital computer systems. The video system at the University of Wyoming has undergone extensive testing, comparison to other systems, and has been used successfully in practical applications ranging from analysis of x-rays and thin sections to production of color composite ratios of multispectral imagery. Potential applications are discussed including uranium exploration, petroleum exploration, tectonic studies, geologic mapping, hydrology sedimentology and petrography, anthropology, and studies on vegetation and wildlife habitat

  3. Suitable post processing algorithms for X-ray imaging using oversampled displaced multiple images

    International Nuclear Information System (INIS)

    Thim, J; Reza, S; Nawaz, K; Norlin, B; O'Nils, M; Oelmann, B

    2011-01-01

    X-ray imaging systems such as photon counting pixel detectors have a limited spatial resolution of the pixels, based on the complexity and processing technology of the readout electronics. For X-ray imaging situations where the features of interest are smaller than the imaging system pixel size, and the pixel size cannot be made smaller in the hardware, alternative means of resolution enhancement require to be considered. Oversampling with the usage of multiple displaced images, where the pixels of all images are mapped to a final resolution enhanced image, has proven a viable method of reaching a sub-pixel resolution exceeding the original resolution. The effectiveness of the oversampling method declines with the number of images taken, the sub-pixel resolution increases, but relative to a real reduction of imaging pixel sizes yielding a full resolution image, the perceived resolution from the sub-pixel oversampled image is lower. This is because the oversampling method introduces blurring noise into the mapped final images, and the blurring relative to full resolution images increases with the oversampling factor. One way of increasing the performance of the oversampling method is by sharpening the images in post processing. This paper focus on characterizing the performance increase of the oversampling method after the use of some suitable post processing filters, for digital X-ray images specifically. The results show that spatial domain filters and frequency domain filters of the same type yield indistinguishable results, which is to be expected. The results also show that the effectiveness of applying sharpening filters to oversampled multiple images increase with the number of images used (oversampling factor), leaving 60-80% of the original blurring noise after filtering a 6 x 6 mapped image (36 images taken), where the percentage is depending on the type of filter. This means that the effectiveness of the oversampling itself increase by using sharpening

  4. SIP: A Web-Based Astronomical Image Processing Program

    Science.gov (United States)

    Simonetti, J. H.

    1999-12-01

    I have written an astronomical image processing and analysis program designed to run over the internet in a Java-compatible web browser. The program, Sky Image Processor (SIP), is accessible at the SIP webpage (http://www.phys.vt.edu/SIP). Since nothing is installed on the user's machine, there is no need to download upgrades; the latest version of the program is always instantly available. Furthermore, the Java programming language is designed to work on any computer platform (any machine and operating system). The program could be used with students in web-based instruction or in a computer laboratory setting; it may also be of use in some research or outreach applications. While SIP is similar to other image processing programs, it is unique in some important respects. For example, SIP can load images from the user's machine or from the Web. An instructor can put images on a web server for students to load and analyze on their own personal computer. Or, the instructor can inform the students of images to load from any other web server. Furthermore, since SIP was written with students in mind, the philosophy is to present the user with the most basic tools necessary to process and analyze astronomical images. Images can be combined (by addition, subtraction, multiplication, or division), multiplied by a constant, smoothed, cropped, flipped, rotated, and so on. Statistics can be gathered for pixels within a box drawn by the user. Basic tools are available for gathering data from an image which can be used for performing simple differential photometry, or astrometry. Therefore, students can learn how astronomical image processing works. Since SIP is not part of a commercial CCD camera package, the program is written to handle the most common denominator image file, the FITS format.

  5. Digital image processing an algorithmic approach with Matlab

    CERN Document Server

    Qidwai, Uvais

    2009-01-01

    Introduction to Image Processing and the MATLAB EnvironmentIntroduction Digital Image Definitions: Theoretical Account Image Properties MATLAB Algorithmic Account MATLAB CodeImage Acquisition, Types, and File I/OImage Acquisition Image Types and File I/O Basics of Color Images Other Color Spaces Algorithmic Account MATLAB CodeImage ArithmeticIntroduction Operator Basics Theoretical TreatmentAlgorithmic Treatment Coding ExamplesAffine and Logical Operations, Distortions, and Noise in ImagesIntroduction Affine Operations Logical Operators Noise in Images Distortions in ImagesAlgorithmic Account

  6. Rotation Covariant Image Processing for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Henrik Skibbe

    2013-01-01

    Full Text Available With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  7. Penn State astronomical image processing system

    International Nuclear Information System (INIS)

    Truax, R.J.; Nousek, J.A.; Feigelson, E.D.; Lonsdale, C.J.

    1987-01-01

    The needs of modern astronomy for image processing set demanding standards in simultaneously requiring fast computation speed, high-quality graphic display, large data storage, and interactive response. An innovative image processing system was designed, integrated, and used; it is based on a supermicro architecture which is tailored specifically for astronomy, which provides a highly cost-effective alternative to the traditional minicomputer installation. The paper describes the design rationale, equipment selection, and software developed to allow other astronomers with similar needs to benefit from the present experience. 9 references

  8. Software architecture for intelligent image processing using Prolog

    Science.gov (United States)

    Jones, Andrew C.; Batchelor, Bruce G.

    1994-10-01

    We describe a prototype system for interactive image processing using Prolog, implemented by the first author on an Apple Macintosh computer. This system is inspired by Prolog+, but differs from it in two particularly important respects. The first is that whereas Prolog+ assumes the availability of dedicated image processing hardware, with which the Prolog system communicates, our present system implements image processing functions in software using the C programming language. The second difference is that although our present system supports Prolog+ commands, these are implemented in terms of lower-level Prolog predicates which provide a more flexible approach to image manipulation. We discuss the impact of the Apple Macintosh operating system upon the implementation of the image-processing functions, and the interface between these functions and the Prolog system. We also explain how the Prolog+ commands have been implemented. The system described in this paper is a fairly early prototype, and we outline how we intend to develop the system, a task which is expedited by the extensible architecture we have implemented.

  9. Use of a channelized Hotelling observer to assess CT image quality and optimize dose reduction for iteratively reconstructed images.

    Science.gov (United States)

    Favazza, Christopher P; Ferrero, Andrea; Yu, Lifeng; Leng, Shuai; McMillan, Kyle L; McCollough, Cynthia H

    2017-07-01

    The use of iterative reconstruction (IR) algorithms in CT generally decreases image noise and enables dose reduction. However, the amount of dose reduction possible using IR without sacrificing diagnostic performance is difficult to assess with conventional image quality metrics. Through this investigation, achievable dose reduction using a commercially available IR algorithm without loss of low contrast spatial resolution was determined with a channelized Hotelling observer (CHO) model and used to optimize a clinical abdomen/pelvis exam protocol. A phantom containing 21 low contrast disks-three different contrast levels and seven different diameters-was imaged at different dose levels. Images were created with filtered backprojection (FBP) and IR. The CHO was tasked with detecting the low contrast disks. CHO performance indicated dose could be reduced by 22% to 25% without compromising low contrast detectability (as compared to full-dose FBP images) whereas 50% or more dose reduction significantly reduced detection performance. Importantly, default settings for the scanner and protocol investigated reduced dose by upward of 75%. Subsequently, CHO-based protocol changes to the default protocol yielded images of higher quality and doses more consistent with values from a larger, dose-optimized scanner fleet. CHO assessment provided objective data to successfully optimize a clinical CT acquisition protocol.

  10. An ImageJ plugin for ion beam imaging and data processing at AIFIRA facility

    Energy Technology Data Exchange (ETDEWEB)

    Devès, G.; Daudin, L. [Univ. Bordeaux, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Bessy, A.; Buga, F.; Ghanty, J.; Naar, A.; Sommar, V. [Univ. Bordeaux, F-33170 Gradignan (France); Michelet, C.; Seznec, H.; Barberet, P. [Univ. Bordeaux, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)

    2015-04-01

    Quantification and imaging of chemical elements at the cellular level requires the use of a combination of techniques such as micro-PIXE, micro-RBS, STIM, secondary electron imaging associated with optical and fluorescence microscopy techniques employed prior to irradiation. Such a numerous set of methods generates an important amount of data per experiment. Typically for each acquisition the following data has to be processed: chemical map for each element present with a concentration above the detection limit, density and backscattered maps, mean and local spectra corresponding to relevant region of interest such as whole cell, intracellular compartment, or nanoparticles. These operations are time consuming, repetitive and as such could be source of errors in data manipulation. In order to optimize data processing, we have developed a new tool for batch data processing and imaging. This tool has been developed as a plugin for ImageJ, a versatile software for image processing that is suitable for the treatment of basic IBA data operations. Because ImageJ is written in Java, the plugin can be used under Linux, Mas OS X and Windows in both 32-bits and 64-bits modes, which may interest developers working on open-access ion beam facilities like AIFIRA. The main features of this plugin are presented here: listfile processing, spectroscopic imaging, local information extraction, quantitative density maps and database management using OMERO.

  11. Dual emitter IrQ(ppy)2 for OLED applications: Synthesis and spectroscopic analysis

    International Nuclear Information System (INIS)

    Ciobotaru, I.C.; Polosan, S.; Ciobotaru, C.C.

    2014-01-01

    The synthesis of organometallic compound with iridium and two types of ligands, quinoline and phenylpyridine, was done successfully. The absorption spectra of this compound have shown broad peaks in a visible region assigned to metal-to-ligands charge transfer and in UV region assigned to intraligand absorptions. The photoluminescence spectra exhibit dual character in which the red emission is more intense than the green one. In cathodoluminescence measurements, under electron beam, the powder obtained after recrystallization from dichloromethane, shows similar behaviors with photoluminescence spectra. The cathodoluminescence images have shown a luminescent crystalline powder with triclinic structure. This compound exhibits combined vibrational modes, which proves the presence in the same molecule of both ligands. Density Functional Theory calculation was involved in order to identify the main vibrations of this compound. Highlights: • Mixed-ligand of IrQ(ppy) 2 synthesis which gives green and red phosphorescence due to the MCLT processes coming from two types of ligands. • Absorption, photoluminescence, infrared spectroscopy and cathodoluminescence measurements for characterization of IrQ(ppy) 2 organometallic compound. • Experimental results have been compared with the output files obtained from Density Functional Theory by using the Gaussian 03W software

  12. Ultra-high-speed inversion recovery echo planar MR imaging

    International Nuclear Information System (INIS)

    Stehling, M.K.; Ordidge, R.J.; Coxon, R.; Chapman, B.; Houseman, A.M.; Guifoyle, D.; Blamire, A.; Gibbs, P.; Mansfield, P.

    1988-01-01

    Fast two-dimensional FT MR imaging techniques such as fast low-angle shot do not allow inversion recovery (IR). Rapid repetition of low-angle pulses is incompatible with a 180 0 inversion pulse. Echo planar imaging (EPI) can be applied in conjunction with IR, because after preparation of the spin system, a complete image is acquired. Data acquisition in less than 100 msec and real-time display allows interactive optimization of inversion time (4.0-9,000 msec) with little time penalty. The authors have applied IR EPI to the study of the brain, liver, and kidneys in normal volunteers and patients. Technical details are presented, and the applications of this first ultra-high-speed IR technique will be shown

  13. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

    Science.gov (United States)

    Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

    2014-01-01

    Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

  14. Architecture Of High Speed Image Processing System

    Science.gov (United States)

    Konishi, Toshio; Hayashi, Hiroshi; Ohki, Tohru

    1988-01-01

    One of architectures for a high speed image processing system which corresponds to a new algorithm for a shape understanding is proposed. And the hardware system which is based on the archtecture was developed. Consideration points of the architecture are mainly that using processors should match with the processing sequence of the target image and that the developed system should be used practically in an industry. As the result, it was possible to perform each processing at a speed of 80 nano-seconds a pixel.

  15. A Study of Search Intermediary Working Notes: Implications for IR System Design.

    Science.gov (United States)

    Spink, Amanda; Goodrum, Abby

    1996-01-01

    Reports findings from an exploratory study investigating working notes created during encoding and external storage (EES) processes by human search intermediaries (librarians at the University of North Texas) using a Boolean information retrieval (IR) system. Implications for the design of IR interfaces and further research is discussed.…

  16. Study on Processing Method of Image Shadow

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2014-07-01

    Full Text Available In order to effectively remove disturbance of shadow and enhance robustness of information processing of computer visual image, this paper makes study on inspection and removal of image shadow. It makes study the continual removal algorithm of shadow based on integration, the illumination surface and texture, it respectively introduces their work principles and realization method, it can effectively carrying processing for shadow by test.

  17. Ngc7538 Irs1 - A Highly Collimated Ionized Wind Source Powered By Accretion

    Science.gov (United States)

    Sandell, Goran H. L.; Wright, M.; Goss, W.; Corder, S.

    2009-01-01

    Recent images show that NGC7538 IRS1 is not a conventional Ultracompact or Hypercompact HII region, but is completely wind-excited (other broad recombination line hypercompact HII regions may be similar to IRS1). NGC 7538 IRS1 is a well studied young high-mass star (L 2 10^5 L_Sun).VLA images at 6 and 2 cm (Cambell 1984; ApJ, 282, L27) showed a compact bipolar core (lobe separation 0.2") with more extended faint lobes. Recombination line observations (Gaume et al. 1995, ApJ, 438, 776) show extremely wide line profiles indicating substantial mass motion of the ionized gas. We re-analyzed high angular resolution VLA archive data from 6 cm to 7 mm, and measured the flux from the compact core and the extended (1.5 - 2") bipolar lobes. We find that the compact core has a spectral index, alpha 0.6, which could be explained by an optically thick hypercompact core with a density gradient. However, the size of the core shrinks with increasing frequency; from 0.24" at 6 cm to 0.1" at 7 mm, consistent with that expected for a collimated jet (Reynolds 1986, ApJ, 304, 713). If we do a crude size correction so that we compare emission from the optically thick inner part of the jet for a set of 2 cm and 7 mm observations we get alpha 1.6, i.e. close to the optically thick value. BIMA and CARMA continuum observations at 3 mm show some dust excess, while. HCO+ J=1-0 observations combined with FCRAO single dish data show a clear inverse P Cygni profile towards IRS1. These observations confirm that IRS1 is heavily accreting with an accretion rate 2 10^-4 M_Sun/year, sufficient to quench the formation of an HII region.

  18. Earth Observation Services (Image Processing Software)

    Science.gov (United States)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  19. Combined MW-IR Precipitation Evolving Technique (PET of convective rain fields

    Directory of Open Access Journals (Sweden)

    F. Di Paola

    2012-11-01

    Full Text Available This paper describes a new multi-sensor approach for convective rain cell continuous monitoring based on rainfall derived from Passive Microwave (PM remote sensing from the Low Earth Orbit (LEO satellite coupled with Infrared (IR remote sensing Brightness Temperature (TB from the Geosynchronous (GEO orbit satellite. The proposed technique, which we call Precipitation Evolving Technique (PET, propagates forward in time and space the last available rain-rate (RR maps derived from Advanced Microwave Sounding Units (AMSU and Microwave Humidity Sounder (MHS observations by using IR TB maps of water vapor (6.2 μm and thermal-IR (10.8 μm channels from a Spinning Enhanced Visible and Infrared Imager (SEVIRI radiometer. PET is based on two different modules, the first for morphing and tracking rain cells and the second for dynamic calibration IR-RR. The Morphing module uses two consecutive IR data to identify the motion vector to be applied to the rain field so as to propagate it in time and space, whilst the Calibration module computes the dynamic relationship between IR and RR in order to take into account genesis, extinction or size variation of rain cells. Finally, a combination of the Morphing and Calibration output provides a rainfall map at IR space and time scale, and the whole procedure is reiterated by using the last RR map output until a new MW-based rainfall is available. The PET results have been analyzed with respect to two different PM-RR retrieval algorithms for seven case studies referring to different rainfall convective events. The qualitative, dichotomous and continuous assessments show an overall ability of this technique to propagate rain field at least for 2–3 h propagation time.

  20. Digital image processing for radiography in nuclear power plants

    International Nuclear Information System (INIS)

    Heidt, H.; Rose, P.; Raabe, P.; Daum, W.

    1985-01-01

    With the help of digital processing of radiographic images from reactor-components it is possible to increase the security and objectiveness of the evaluation. Several examples of image processing procedures (contrast enhancement, density profiles, shading correction, digital filtering, superposition of images etc.) show the advantages for the visualization and evaluation of radiographs. Digital image processing can reduce some of the restrictions of radiography in nuclear power plants. In addition a higher degree of automation can be cost-saving and increase the quality of radiographic evaluation. The aim of the work performed was to to improve the readability of radiographs for the human observer. The main problem is lack of contrast and the presence of disturbing structures like weld seams. Digital image processing of film radiographs starts with the digitization of the image. Conventional systems use TV-cameras or scanners and provide a dynamic range of 1.5. to 3 density units, which are digitized to 256 grey levels. For the enhancement process it is necessary that the grey level range covers the density range of the important regions of the presented film. On the other hand the grey level coverage should not be wider than necessary to minimize the width of digitization steps. Poor digitization makes flaws and cracks invisible and spoils all further image processing

  1. Graphical user interface for image acquisition and processing

    Science.gov (United States)

    Goldberg, Kenneth A.

    2002-01-01

    An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.

  2. IDAPS (Image Data Automated Processing System) System Description

    Science.gov (United States)

    1988-06-24

    This document describes the physical configuration and components used in the image processing system referred to as IDAPS (Image Data Automated ... Processing System). This system was developed by the Environmental Research Institute of Michigan (ERIM) for Eglin Air Force Base. The system is designed

  3. Defects quantization in industrial radiographs by image processing

    International Nuclear Information System (INIS)

    Briand, F.Y.; Brillault, B.; Philipp, S.

    1988-01-01

    This paper refers to the industrial application of image processing using Non Destructive Testing by radiography. The various problems involved by the conception of a numerical tool are described. This tool intends to help radiograph experts to quantify defects and to follow up their evolution, using numerical techniques. The sequences of processings that achieve defect segmentation and quantization are detailed. They are based on the thorough knowledge of radiographs formation techniques. The process uses various methods of image analysis, including textural analysis and morphological mathematics. The interface between the final product and users will occur in an explicit language, using the terms of radiographic expertise without showing any processing details. The problem is thoroughly described: image formation, digitization, processings fitted to flaw morphology and finally product structure in progress. 12 refs [fr

  4. TPD IR studies of CO desorption from zeolites CuY and CuX

    Science.gov (United States)

    Datka, Jerzy; Kozyra, Paweł

    2005-06-01

    The desorption of CO from zeolites CuY and CuX was followed by TPD-IR method. This is a combination of temperature programmed desorption and IR spectroscopy. In this method, the status of activated zeolite (before adsorption), the process of adsorption, and the status of adsorbed molecules can be followed by IR spectroscopy, and the process of desorption (with linear temperature increase) can be followed both by IR spectroscopy and by mass spectrometry. IR spectra have shown two kinds of Cu + sites in both CuY and CuX. Low frequency (l.f.) band (2140 cm -1 in CuY and 2130 cm -1 in CuX) of adsorbed CO represents Cu + sites for which π back donation is stronger and σ donation is weaker whereas high frequency h.f. band (2160 cm -1 in CuY and 2155 cm -1 in CuX) represent Cu + sites for which π back donation is weaker and σ donation is stronger. The TPD-IR experiments evidenced that the Cu + sites represented by l.f. band bond CO more weakly than those represented by h.f. one, indicating that σ donation has more important impact to the strength of Cu +-CO bonding. On the contrary, π back donation has bigger contribution to the activation of adsorbed molecules.

  5. Quality Control in Automated Manufacturing Processes – Combined Features for Image Processing

    Directory of Open Access Journals (Sweden)

    B. Kuhlenkötter

    2006-01-01

    Full Text Available In production processes the use of image processing systems is widespread. Hardware solutions and cameras respectively are available for nearly every application. One important challenge of image processing systems is the development and selection of appropriate algorithms and software solutions in order to realise ambitious quality control for production processes. This article characterises the development of innovative software by combining features for an automatic defect classification on product surfaces. The artificial intelligent method Support Vector Machine (SVM is used to execute the classification task according to the combined features. This software is one crucial element for the automation of a manually operated production process

  6. Residual stress in silicon wafer using IR polariscope

    Science.gov (United States)

    Lu, Zhijia; Wang, Pin; Asundi, Anand

    2008-09-01

    The infrared phase shift polariscope (IR-PSP) is a full-field optical technique for stress analysis in Silicon wafers. Phase shift polariscope is preferred to a conventional polariscope, as it can provide quantitative information of the normal stress difference and the shear stress in the specimen. The method is based on the principles of photoelasticity, in which stresses induces temporary birefringence in materials which can be quantitatively analyzed using a phase shift polariscope. Compared to other stress analysis techniques such as x-ray diffraction or laser scanning, infrared photoelastic stress analysis provides full-field information with high resolution and in near real time. As the semiconductor fabrication is advancing, larger wafers, thinner films and more compact packages are being manufactured. This results in a growing demand of process control. Residual stress exist in silicon during semiconductor fabrication and these stresses may make cell processing difficult or even cause the failure of the silicon. Reducing these stresses would improve manufacturability and reliability. Therefore stress analysis is essential to trace the root cause of the stresses. The polariscope images are processed using MATLAB and four-step phase shifting method to provide quantitative as well as qualitative information regarding the residual stress of the sample. The system is calibrated using four-point bend specimen and then the residual stress distribution in a MEMS sample is shown.

  7. Pattern recognition and expert image analysis systems in biomedical image processing (Invited Paper)

    Science.gov (United States)

    Oosterlinck, A.; Suetens, P.; Wu, Q.; Baird, M.; F. M., C.

    1987-09-01

    This paper gives an overview of pattern recoanition techniques (P.R.) used in biomedical image processing and problems related to the different P.R. solutions. Also the use of knowledge based systems to overcome P.R. difficulties, is described. This is illustrated by a common example ofabiomedical image processing application.

  8. Polarization information processing and software system design for simultaneously imaging polarimetry

    Science.gov (United States)

    Wang, Yahui; Liu, Jing; Jin, Weiqi; Wen, Renjie

    2015-08-01

    Simultaneous imaging polarimetry can realize real-time polarization imaging of the dynamic scene, which has wide application prospect. This paper first briefly illustrates the design of the double separate Wollaston Prism simultaneous imaging polarimetry, and then emphases are put on the polarization information processing methods and software system design for the designed polarimetry. Polarization information processing methods consist of adaptive image segmentation, high-accuracy image registration, instrument matrix calibration. Morphological image processing was used for image segmentation by taking dilation of an image; The accuracy of image registration can reach 0.1 pixel based on the spatial and frequency domain cross-correlation; Instrument matrix calibration adopted four-point calibration method. The software system was implemented under Windows environment based on C++ programming language, which realized synchronous polarization images acquisition and preservation, image processing and polarization information extraction and display. Polarization data obtained with the designed polarimetry shows that: the polarization information processing methods and its software system effectively performs live realize polarization measurement of the four Stokes parameters of a scene. The polarization information processing methods effectively improved the polarization detection accuracy.

  9. Effects of image processing on the detective quantum efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na [Yonsei University, Wonju (Korea, Republic of)

    2010-02-15

    The evaluation of image quality is an important part of digital radiography. The modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) are widely accepted measurements of the digital radiographic system performance. However, as the methodologies for such characterization have not been standardized, it is difficult to compare directly reported the MTF, NPS, and DQE results. In this study, we evaluated the effect of an image processing algorithm for estimating the MTF, NPS, and DQE. The image performance parameters were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) posterior-anterior (PA) images of a hand for measuring the signal to noise ratio (SNR), the slit images for measuring the MTF, and the white images for measuring the NPS were obtained, and various multi-Scale image contrast amplification (MUSICA) factors were applied to each of the acquired images. All of the modifications of the images obtained by using image processing had a considerable influence on the evaluated image quality. In conclusion, the control parameters of image processing can be accounted for evaluating characterization of image quality in same way. The results of this study should serve as a baseline for based on evaluating imaging systems and their imaging characteristics by MTF, NPS, and DQE measurements.

  10. Effects of image processing on the detective quantum efficiency

    International Nuclear Information System (INIS)

    Park, Hye-Suk; Kim, Hee-Joung; Cho, Hyo-Min; Lee, Chang-Lae; Lee, Seung-Wan; Choi, Yu-Na

    2010-01-01

    The evaluation of image quality is an important part of digital radiography. The modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) are widely accepted measurements of the digital radiographic system performance. However, as the methodologies for such characterization have not been standardized, it is difficult to compare directly reported the MTF, NPS, and DQE results. In this study, we evaluated the effect of an image processing algorithm for estimating the MTF, NPS, and DQE. The image performance parameters were evaluated using the international electro-technical commission (IEC 62220-1)-defined RQA5 radiographic techniques. Computed radiography (CR) posterior-anterior (PA) images of a hand for measuring the signal to noise ratio (SNR), the slit images for measuring the MTF, and the white images for measuring the NPS were obtained, and various multi-Scale image contrast amplification (MUSICA) factors were applied to each of the acquired images. All of the modifications of the images obtained by using image processing had a considerable influence on the evaluated image quality. In conclusion, the control parameters of image processing can be accounted for evaluating characterization of image quality in same way. The results of this study should serve as a baseline for based on evaluating imaging systems and their imaging characteristics by MTF, NPS, and DQE measurements.

  11. Plume characteristics and dynamics of UV and IR laser-desorbed oligonucleotides.

    Science.gov (United States)

    Merrigan, Tony L; Timson, David J; Hunniford, C Adam; Catney, Martin; McCullough, Robert W

    2012-05-01

    Laser desorption of dye-tagged oligonucleotides was studied using laser-induced fluorescence imaging. Desorption with ultra violet (UV) and infra-red (IR) lasers resulted in forward directed plumes of molecules. In the case of UV desorption, the initial shot desorbed approximately seven-fold more material than subsequent shots. In contrast, the initial shot in IR desorption resulted in the ejection of less material compared to subsequent shots and these plumes had a component directed along the path of the laser. Thermal equilibrium of the molecules in the plume was achieved after approximately 25 μs with a spread in molecular temperature which was described by a modified Maxwell-Boltzmann equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. IR and OLAP in XML document warehouses

    DEFF Research Database (Denmark)

    Perez, Juan Manuel; Pedersen, Torben Bach; Berlanga, Rafael

    2005-01-01

    In this paper we propose to combine IR and OLAP (On-Line Analytical Processing) technologies to exploit a warehouse of text-rich XML documents. In the system we plan to develop, a multidimensional implementation of a relevance modeling document model will be used for interactively querying...

  13. Image analysis for ophthalmological diagnosis image processing of Corvis ST images using Matlab

    CERN Document Server

    Koprowski, Robert

    2016-01-01

    This monograph focuses on the use of analysis and processing methods for images from the Corvis® ST tonometer. The presented analysis is associated with the quantitative, repeatable and fully automatic evaluation of the response of the eye, eyeball and cornea to an air-puff. All the described algorithms were practically implemented in MATLAB®. The monograph also describes and provides the full source code designed to perform the discussed calculations. As a result, this monograph is intended for scientists, graduate students and students of computer science and bioengineering as well as doctors wishing to expand their knowledge of modern diagnostic methods assisted by various image analysis and processing methods.

  14. Image processing for medical diagnosis of human organs

    International Nuclear Information System (INIS)

    Tamura, Shin-ichi

    1989-01-01

    The report first describes expectations and needs for diagnostic imaging in the field of clinical medicine, radiation medicine in particular, viewed by the author as an image processing expert working at a medical institute. Then, medical image processing techniques are discussed in relation to advanced information processing techniques that are currently drawing much attention in the field of engineering. Finally, discussion is also made of practical applications of image processing techniques to diagnosis. In the field of clinical diagnosis, advanced equipment such as PACS (picture archiving and communication system) has come into wider use, and efforts have been made to shift from visual examination to more quantitative and objective diagnosis by means of such advanced systems. In clinical medicine, practical, robust systems are more useful than sophisticated ones. It is difficult, though important, to develop completely automatized diagnostic systems. The urgent, realistic goal, therefore, is to develop effective diagnosis support systems. In particular, operation support systems equipped with three-dimensional displays will be very useful. (N.K.)

  15. New impressive capabilities of SE-workbench for EO/IR real-time rendering of animated scenarios including flares

    Science.gov (United States)

    Le Goff, Alain; Cathala, Thierry; Latger, Jean

    2015-10-01

    To provide technical assessments of EO/IR flares and self-protection systems for aircraft, DGA Information superiority resorts to synthetic image generation to model the operational battlefield of an aircraft, as viewed by EO/IR threats. For this purpose, it completed the SE-Workbench suite from OKTAL-SE with functionalities to predict a realistic aircraft IR signature and is yet integrating the real-time EO/IR rendering engine of SE-Workbench called SE-FAST-IR. This engine is a set of physics-based software and libraries that allows preparing and visualizing a 3D scene for the EO/IR domain. It takes advantage of recent advances in GPU computing techniques. The recent past evolutions that have been performed concern mainly the realistic and physical rendering of reflections, the rendering of both radiative and thermal shadows, the use of procedural techniques for the managing and the rendering of very large terrains, the implementation of Image- Based Rendering for dynamic interpolation of plume static signatures and lastly for aircraft the dynamic interpolation of thermal states. The next step is the representation of the spectral, directional, spatial and temporal signature of flares by Lacroix Defense using OKTAL-SE technology. This representation is prepared from experimental data acquired during windblast tests and high speed track tests. It is based on particle system mechanisms to model the different components of a flare. The validation of a flare model will comprise a simulation of real trials and a comparison of simulation outputs to experimental results concerning the flare signature and above all the behavior of the stimulated threat.

  16. Evaluation of clinical image processing algorithms used in digital mammography.

    Science.gov (United States)

    Zanca, Federica; Jacobs, Jurgen; Van Ongeval, Chantal; Claus, Filip; Celis, Valerie; Geniets, Catherine; Provost, Veerle; Pauwels, Herman; Marchal, Guy; Bosmans, Hilde

    2009-03-01

    Screening is the only proven approach to reduce the mortality of breast cancer, but significant numbers of breast cancers remain undetected even when all quality assurance guidelines are implemented. With the increasing adoption of digital mammography systems, image processing may be a key factor in the imaging chain. Although to our knowledge statistically significant effects of manufacturer-recommended image processings have not been previously demonstrated, the subjective experience of our radiologists, that the apparent image quality can vary considerably between different algorithms, motivated this study. This article addresses the impact of five such algorithms on the detection of clusters of microcalcifications. A database of unprocessed (raw) images of 200 normal digital mammograms, acquired with the Siemens Novation DR, was collected retrospectively. Realistic simulated microcalcification clusters were inserted in half of the unprocessed images. All unprocessed images were subsequently processed with five manufacturer-recommended image processing algorithms (Agfa Musica 1, IMS Raffaello Mammo 1.2, Sectra Mamea AB Sigmoid, Siemens OPVIEW v2, and Siemens OPVIEW v1). Four breast imaging radiologists were asked to locate and score the clusters in each image on a five point rating scale. The free-response data were analyzed by the jackknife free-response receiver operating characteristic (JAFROC) method and, for comparison, also with the receiver operating characteristic (ROC) method. JAFROC analysis revealed highly significant differences between the image processings (F = 8.51, p < 0.0001), suggesting that image processing strongly impacts the detectability of clusters. Siemens OPVIEW2 and Siemens OPVIEW1 yielded the highest and lowest performances, respectively. ROC analysis of the data also revealed significant differences between the processing but at lower significance (F = 3.47, p = 0.0305) than JAFROC. Both statistical analysis methods revealed that the

  17. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  18. Image processing for HTS SQUID probe microscope

    International Nuclear Information System (INIS)

    Hayashi, T.; Koetitz, R.; Itozaki, H.; Ishikawa, T.; Kawabe, U.

    2005-01-01

    An HTS SQUID probe microscope has been developed using a high-permeability needle to enable high spatial resolution measurement of samples in air even at room temperature. Image processing techniques have also been developed to improve the magnetic field images obtained from the microscope. Artifacts in the data occur due to electromagnetic interference from electric power lines, line drift and flux trapping. The electromagnetic interference could successfully be removed by eliminating the noise peaks from the power spectrum of fast Fourier transforms of line scans of the image. The drift between lines was removed by interpolating the mean field value of each scan line. Artifacts in line scans occurring due to flux trapping or unexpected noise were removed by the detection of a sharp drift and interpolation using the line data of neighboring lines. Highly detailed magnetic field images were obtained from the HTS SQUID probe microscope by the application of these image processing techniques

  19. The Dark Energy Survey Image Processing Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, E.; et al.

    2018-01-09

    The Dark Energy Survey (DES) is a five-year optical imaging campaign with the goal of understanding the origin of cosmic acceleration. DES performs a 5000 square degree survey of the southern sky in five optical bands (g,r,i,z,Y) to a depth of ~24th magnitude. Contemporaneously, DES performs a deep, time-domain survey in four optical bands (g,r,i,z) over 27 square degrees. DES exposures are processed nightly with an evolving data reduction pipeline and evaluated for image quality to determine if they need to be retaken. Difference imaging and transient source detection are also performed in the time domain component nightly. On a bi-annual basis, DES exposures are reprocessed with a refined pipeline and coadded to maximize imaging depth. Here we describe the DES image processing pipeline in support of DES science, as a reference for users of archival DES data, and as a guide for future astronomical surveys.

  20. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  1. Current status on image processing in medical fields in Japan

    International Nuclear Information System (INIS)

    Atsumi, Kazuhiko

    1979-01-01

    Information on medical images are classified in the two patterns. 1) off-line images on films-x-ray films, cell image, chromosome image etc. 2) on-line images detected through sensors, RI image, ultrasonic image, thermogram etc. These images are divided into three characteristic, two dimensional three dimensional and dynamic images. The research on medical image processing have been reported in several meeting in Japan and many fields on images have been studied on RI, thermogram, x-ray film, x-ray-TV image, cancer cell, blood cell, bacteria, chromosome, ultrasonics, and vascular image. Processing on TI image useful and easy because of their digital displays. Software on smoothing, restoration (iterative approximation), fourier transformation, differentiation and subtration. Image on stomach and chest x-ray films have been processed automatically utilizing computer system. Computed Tomography apparatuses have been already developed in Japan and automated screening instruments on cancer cells and recently on blood cells classification have been also developed. Acoustical holography imaging and moire topography have been also studied in Japan. (author)

  2. Image Segmentation and Processing for Efficient Parking Space Analysis

    OpenAIRE

    Tutika, Chetan Sai; Vallapaneni, Charan; R, Karthik; KP, Bharath; Muthu, N Ruban Rajesh Kumar

    2018-01-01

    In this paper, we develop a method to detect vacant parking spaces in an environment with unclear segments and contours with the help of MATLAB image processing capabilities. Due to the anomalies present in the parking spaces, such as uneven illumination, distorted slot lines and overlapping of cars. The present-day conventional algorithms have difficulties processing the image for accurate results. The algorithm proposed uses a combination of image pre-processing and false contour detection ...

  3. Fingerprint image enhancement by differential hysteresis processing.

    Science.gov (United States)

    Blotta, Eduardo; Moler, Emilce

    2004-05-10

    A new method to enhance defective fingerprints images through image digital processing tools is presented in this work. When the fingerprints have been taken without any care, blurred and in some cases mostly illegible, as in the case presented here, their classification and comparison becomes nearly impossible. A combination of spatial domain filters, including a technique called differential hysteresis processing (DHP), is applied to improve these kind of images. This set of filtering methods proved to be satisfactory in a wide range of cases by uncovering hidden details that helped to identify persons. Dactyloscopy experts from Policia Federal Argentina and the EAAF have validated these results.

  4. The operation technology of realtime image processing system (Datacube)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Lee, Yong Bum; Lee, Nam Ho; Choi, Young Soo; Park, Soon Yong; Park, Jin Seok

    1997-02-01

    In this project, a Sparc VME-based MaxSparc system, running the solaris operating environment, is selected as the dedicated image processing hardware for robot vision applications. In this report, the operation of Datacube maxSparc system, which is high performance realtime image processing hardware, is systematized. And image flow example programs for running MaxSparc system are studied and analyzed. The state-of-the-arts of Datacube system utilizations are studied and analyzed. For the next phase, advanced realtime image processing platform for robot vision application is going to be developed. (author). 19 refs., 71 figs., 11 tabs.

  5. Modeling and performance assessment in QinetiQ of EO and IR airborne reconnaissance systems

    Science.gov (United States)

    Williams, John W.; Potter, Gary E.

    2002-11-01

    QinetiQ are the technical authority responsible for specifying the performance requirements for the procurement of airborne reconnaissance systems, on behalf of the UK MoD. They are also responsible for acceptance of delivered systems, overseeing and verifying the installed system performance as predicted and then assessed by the contractor. Measures of functional capability are central to these activities. The conduct of these activities utilises the broad technical insight and wide range of analysis tools and models available within QinetiQ. This paper focuses on the tools, methods and models that are applicable to systems based on EO and IR sensors. The tools, methods and models are described, and representative output for systems that QinetiQ has been responsible for is presented. The principle capability applicable to EO and IR airborne reconnaissance systems is the STAR (Simulation Tools for Airborne Reconnaissance) suite of models. STAR generates predictions of performance measures such as GRD (Ground Resolved Distance) and GIQE (General Image Quality) NIIRS (National Imagery Interpretation Rating Scales). It also generates images representing sensor output, using the scene generation software CAMEO-SIM and the imaging sensor model EMERALD. The simulated image 'quality' is fully correlated with the predicted non-imaging performance measures. STAR also generates image and table data that is compliant with STANAG 7023, which may be used to test ground station functionality.

  6. Imaging of lipids in atherosclerotic lesion in aorta from ApoE/LDLR-/- mice by FT-IR spectroscopy and Hierarchical Cluster Analysis.

    Science.gov (United States)

    P Wrobel, Tomasz; Mateuszuk, Lukasz; Chlopicki, Stefan; Malek, Kamilla; Baranska, Malgorzata

    2011-12-21

    Spectroscopy-based approaches can provide an insight into the biochemical composition of a tissue sample. In the present work Fourier transform infrared (FT-IR) spectroscopy was used to develop a reliable methodology to study the content of free fatty acids, triglycerides, cholesteryl esters as well as cholesterol in aorta from mice with atherosclerosis (ApoE/LDLR(-/-) mice). In particular, distribution and concentration of palmitic, oleic and linoleic acid derivatives were analyzed. Spectral analysis of pure compounds allowed for clear discrimination between free fatty acids and other similar moieties based on the carbonyl band position (1699-1710 cm(-1) range). In order to distinguish cholesteryl esters from triglycerides a ratio of carbonyl band to signal at 1010 cm(-1) was used. Imaging of lipids in atherosclerotic aortic lesions in ApoE/LDLR(-/-) mice was followed by Hierarchical Cluster Analysis (HCA). The aorta from C57Bl/6J control mice (fed with chow diet) was used for comparison. The measurements were completed with an FT-IR spectrometer equipped with a 128 × 128 FPA detector. In cross-section of aorta from ApoE/LDLR(-/-) mice a region of atherosclerotic plaque was clearly identified by HCA, which was later divided into 2 sub-regions, one characterized by the higher content of cholesterol, while the other by higher contents of cholesteryl esters. HCA of tissues deposited on normal microscopic glass, hence limited to the 2200-3800 cm(-1) spectral range, also identified a region of atherosclerotic plaque. Importantly, this region correlates with the area stained by standard histological staining for atherosclerotic plaque (Oil Red O). In conclusion, the use of FT-IR and HCA may provide a novel tool for qualitative and quantitative analysis of contents and distribution of lipids in atherosclerotic plaque.

  7. Matching rendered and real world images by digital image processing

    Science.gov (United States)

    Mitjà, Carles; Bover, Toni; Bigas, Miquel; Escofet, Jaume

    2010-05-01

    Recent advances in computer-generated images (CGI) have been used in commercial and industrial photography providing a broad scope in product advertising. Mixing real world images with those rendered from virtual space software shows a more or less visible mismatching between corresponding image quality performance. Rendered images are produced by software which quality performance is only limited by the resolution output. Real world images are taken with cameras with some amount of image degradation factors as lens residual aberrations, diffraction, sensor low pass anti aliasing filters, color pattern demosaicing, etc. The effect of all those image quality degradation factors can be characterized by the system Point Spread Function (PSF). Because the image is the convolution of the object by the system PSF, its characterization shows the amount of image degradation added to any taken picture. This work explores the use of image processing to degrade the rendered images following the parameters indicated by the real system PSF, attempting to match both virtual and real world image qualities. The system MTF is determined by the slanted edge method both in laboratory conditions and in the real picture environment in order to compare the influence of the working conditions on the device performance; an approximation to the system PSF is derived from the two measurements. The rendered images are filtered through a Gaussian filter obtained from the taking system PSF. Results with and without filtering are shown and compared measuring the contrast achieved in different final image regions.

  8. Processing of space images and geologic interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Yudin, V S

    1981-01-01

    Using data for standard sections, a correlation was established between natural formations in geologic/geophysical dimensions and the form they take in the imaging. With computer processing, important data can be derived from the image. Use of the above correlations has allowed to make a number of preliminary classifications of tectonic structures, and to determine certain ongoing processes in the given section. The derived data may be used for search of useful minerals.

  9. Advances in the Application of Image Processing Fruit Grading

    OpenAIRE

    Fang , Chengjun; Hua , Chunjian

    2013-01-01

    International audience; In the perspective of actual production, the paper presents the advances in the application of image processing fruit grading from several aspects, such as processing precision and processing speed of image processing technology. Furthermore, the different algorithms about detecting size, shape, color and defects are combined effectively to reduce the complexity of each algorithm and achieve a balance between the processing precision and processing speed are keys to au...

  10. Geometric correction of radiographic images using general purpose image processing program

    International Nuclear Information System (INIS)

    Kim, Eun Kyung; Cheong, Ji Seong; Lee, Sang Hoon

    1994-01-01

    The present study was undertaken to compare geometric corrected image by general-purpose image processing program for the Apple Macintosh II computer (NIH Image, Adobe Photoshop) with standardized image by individualized custom fabricated alignment instrument. Two non-standardized periapical films with XCP film holder only were taken at the lower molar portion of 19 volunteers. Two standardized periapical films with customized XCP film holder with impression material on the bite-block were taken for each person. Geometric correction was performed with Adobe Photoshop and NIH Image program. Specially, arbitrary image rotation function of 'Adobe Photoshop' and subtraction with transparency function of 'NIH Image' were utilized. The standard deviations of grey values of subtracted images were used to measure image similarity. Average standard deviation of grey values of subtracted images if standardized group was slightly lower than that of corrected group. However, the difference was found to be statistically insignificant (p>0.05). It is considered that we can use 'NIH Image' and 'Adobe Photoshop' program for correction of nonstandardized film, taken with XCP film holder at lower molar portion.

  11. ESR investigation of NR and IR rubber vulcanized with different cross-link agents

    Directory of Open Access Journals (Sweden)

    P. Posadas

    2016-01-01

    Full Text Available This study evaluates the formation of radical species in natural rubber (NR and poly-isoprene rubber (IR during the vulcanization process and the uniaxial deformation of the formed networks by means of Electron Spin Resonance (ESR. Vulcanization of NR and IR always shows a radical pathway, where the different vulcanization systems dictate the concentration of radical species in the course of this complex process. The greatest concentration of radicals were detected during the vulcanization with sulfur/accelerator based on efficient systems (EV, followed by conventional (CV and sulfur donor systems, whereas azide and organic peroxide agents showed smaller concentration of radicals. Independently of the vulcanization system, certain amount of radicals was detected on the vulcanized samples after the end of the vulcanization process. Comparison between different matrices demonstrates that NR always shows higher concentration of radicals than IR in the vulcanization process as well as during uniaxial deformation, fact that could be associated to the presence of nonrubber components in NR.

  12. Intensity dependence of nonsequential double ionization of helium in IR+XUV two-color laser fields

    International Nuclear Information System (INIS)

    Jin, Facheng; Wang, Bingbing; Chen, Jing; Yang, Yujun; Yan, Zong-Chao

    2016-01-01

    By applying the frequency-domain theory, we investigate the dependence of momentum spectra on laser intensity in a nonsequential double ionization (NSDI) process of helium in infrared (IR) and extreme ultraviolet (XUV) two-color laser fields. We find that the two-color laser fields play distinct roles in an NSDI process, where the IR laser field mainly determines the width of each band, and the XUV laser field mainly plays a role on the NSDI probability. Furthermore, an NSDI process can be decoupled into a two-step process: an above-threshold ionization (ATI), followed by a laser-assisted collision (LAC). It is found that, the IR laser field is responsible for broadening the peak in the ATI process and providing additional momenta to the two ionized electrons in the LAC process; while the XUV laser field plays a crucial role on the strength of the spectrum in the ATI process, and influences the radii of orbits in momentum space in the LAC process. (paper)

  13. Evaluation of processing methods for static radioisotope scan images

    International Nuclear Information System (INIS)

    Oakberg, J.A.

    1976-12-01

    Radioisotope scanning in the field of nuclear medicine provides a method for the mapping of a radioactive drug in the human body to produce maps (images) which prove useful in detecting abnormalities in vital organs. At best, radioisotope scanning methods produce images with poor counting statistics. One solution to improving the body scan images is using dedicated small computers with appropriate software to process the scan data. Eleven methods for processing image data are compared

  14. Digital image processing in NDT : Application to industrial radiography

    International Nuclear Information System (INIS)

    Aguirre, J.; Gonzales, C.; Pereira, D.

    1988-01-01

    Digital image processing techniques are applied to image enhancement discontinuity detection and characterization is radiographic test. Processing is performed mainly by image histogram modification, edge enhancement, texture and user interactive segmentation. Implementation was achieved in a microcomputer with video image capture system. Results are compared with those obtained through more specialized equipment main frame computers and high precision mechanical scanning digitisers. Procedures are intended as a precious stage for automatic defect detection

  15. Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J.; Kokoh, K.B.; Coutanceau, C.; Leger, J.-M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Dos Anjos, D.M. [Equipe Electrocatalyse, UMR 6503 CNRS, Universite de Poitiers, 40 avenue du Recteur Pineau 86022 Poitiers Cedex (France); Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil); Olivi, P.; De Andrade, A.R. [Departamento de Quimica da Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Av. Bandeirantes, 3900, 14040-901 Ribeirao Preto, SP (Brazil); Tremiliosi-Filho, G. [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 780, 13560-970 Sao Carlos, SP (Brazil)

    2007-08-01

    Binary PtIr, PtSn and ternary PtSnIr electrocatalysts were prepared by the Pechini-Adams modified method on carbon Vulcan XC-72, and these materials were characterized by TEM and XRD. The XRD results showed that the electrocatalysts consisted of the Pt displaced phase, suggesting the formation of solid solutions between the metals Pt/Ir and Pt/Sn. However, the increase in Sn loading promoted phase separation, with the formation of peaks typical of cubic Pt{sub 3}Sn. The electrochemical investigation of these different electrode materials was carried out as a function of the electrocatalyst composition, in a 0.5 mol dm{sup -3} H{sub 2}SO{sub 4} solution, with either the presence or the absence of ethanol. Cyclic voltammetric measurements and chronoamperometric results obtained at room temperature showed that PtSn/C and PtSnIr/C displayed better electrocatalytic activity for ethanol electrooxidation compared to PtIr/C and Pt/C, mainly at low potentials. The oxidation process was also investigated by in situ infrared reflectance spectroscopy, to identify the adsorbed species. Linearly adsorbed CO and CO{sub 2} were found, indicating that the cleavage of the C-C bond in the ethanol substrate occurred during the oxidation process. At 90 C, the Pt{sub 89}Sn{sub 11}/C and Pt{sub 68}Sn{sub 9}Ir{sub 23}/C electrocatalysts displayed higher current and power performances as anode materials in a direct ethanol fuel cell (DEFC). (author)

  16. STATYBINIŲ MEDŽIAGŲ KONKURENCINGUMAS IR TENDENCIJOS

    OpenAIRE

    Kontrimas, Robertas

    2010-01-01

    Darbe analizuojamas statybinių medžiagų konkurencingumas, nustatyti statybinių medžiagų konkurencingumą įtakojantys veiksniai ir pateikti pasiūlymai rinkos gerinimui. Pasitvirtino hipotezė, kad statybinių medžiagų paklausą ir kainas įtakoja klientų poreikiai ir jų finansinės galimybės, tačiau pasaulinės krizės įtaka yra labai ženkli,. Atlikta darbuotojų ir pirkėjų apklausa padėjo nustatyti, kokios statybinės medžiagos dažniausiai yra perkamos, kaip klientai ir darbuotojai vertina įmonę ir jos...

  17. IV-VI mid-IR tunable lasers and detectors with external resonant cavities

    Science.gov (United States)

    Zogg, H.; Rahim, M.; Khiar, A.; Fill, M.; Felder, F.; Quack, N.; Blunier, S.; Dual, J.

    2009-08-01

    Wavelength tunable emitters and detectors in the mid-IR wavelength region allow applications including thermal imaging and spectroscopy. Such devices may be realized using a resonant cavity. By mechanically changing the cavity length with MEMS mirror techniques, the wavelengths may be tuned over a considerable range. Vertical external cavity surface emitting lasers (VECSEL) may be applied for gas spectroscopy. Resonant cavity enhanced detectors (RCED) are sensitive at the cavity resonance only. They may be applied for low resolution spectroscopy, and, when arrays of such detectors are realized, as multicolor IR-FPA or IR-AFPA (IR-adaptive focal plane arrays). We review mid-infrared RCEDs and VECSELs using narrow gap IV-VI (lead chalcogenide) materials like PbTe and PbSe as the active medium. IV-VIs are fault tolerant and allow easy wavelength tuning. The VECSELs operate up to above room temperature and emit in the 4 - 5 μm range with a PbSe active layer. RCEDs with PbTe absorbing layers above 200 K operating temperature have higher sensitivities than the theoretical limit for a similar broad-band detector coupled with a passive tunable band-filter.

  18. Optical design for a breadboard high-resolution spectrometer for SIRTF/IRS

    Science.gov (United States)

    Brown, Robert J.; Houck, James R.; van Cleve, Jeffrey E.

    1996-11-01

    The optical design of a breadboard high resolution infrared spectrometer for the IRS instrument on the SIRTF mission is discussed. The spectrometer uses a crossed echelle grating configuration to cover the spectral region from 10 to 20 micrometer with a resolving power of approximately equals 600. The all reflective spectrometer forms a nearly diffraction limited image of the two dimensional spectrum on a 128 multiplied by 128 arsenic doped silicon area array with 75 micrometer pixels. The design aspects discussed include, grating numerology, image quality, packaging and alignment philosophy.

  19. Quantum Computation-Based Image Representation, Processing Operations and Their Applications

    Directory of Open Access Journals (Sweden)

    Fei Yan

    2014-10-01

    Full Text Available A flexible representation of quantum images (FRQI was proposed to facilitate the extension of classical (non-quantum-like image processing applications to the quantum computing domain. The representation encodes a quantum image in the form of a normalized state, which captures information about colors and their corresponding positions in the images. Since its conception, a handful of processing transformations have been formulated, among which are the geometric transformations on quantum images (GTQI and the CTQI that are focused on the color information of the images. In addition, extensions and applications of FRQI representation, such as multi-channel representation for quantum images (MCQI, quantum image data searching, watermarking strategies for quantum images, a framework to produce movies on quantum computers and a blueprint for quantum video encryption and decryption have also been suggested. These proposals extend classical-like image and video processing applications to the quantum computing domain and offer a significant speed-up with low computational resources in comparison to performing the same tasks on traditional computing devices. Each of the algorithms and the mathematical foundations for their execution were simulated using classical computing resources, and their results were analyzed alongside other classical computing equivalents. The work presented in this review is intended to serve as the epitome of advances made in FRQI quantum image processing over the past five years and to simulate further interest geared towards the realization of some secure and efficient image and video processing applications on quantum computers.

  20. An invertebrate embryologist's guide to routine processing of confocal images.

    Science.gov (United States)

    von Dassow, George

    2014-01-01

    It is almost impossible to use a confocal microscope without encountering the need to transform the raw data through image processing. Adherence to a set of straightforward guidelines will help ensure that image manipulations are both credible and repeatable. Meanwhile, attention to optimal data collection parameters will greatly simplify image processing, not only for convenience but for quality and credibility as well. Here I describe how to conduct routine confocal image processing tasks, including creating 3D animations or stereo images, false coloring or merging channels, background suppression, and compressing movie files for display.

  1. ADAPTIVE OPTICS IMAGING OF FOVEAL SPARING IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION.

    Science.gov (United States)

    Querques, Giuseppe; Kamami-Levy, Cynthia; Georges, Anouk; Pedinielli, Alexandre; Capuano, Vittorio; Blanco-Garavito, Rocio; Poulon, Fanny; Souied, Eric H

    2016-02-01

    To describe adaptive optics (AO) imaging of foveal sparing in geographic atrophy (GA) secondary to age-related macular degeneration. Flood-illumination AO infrared (IR) fundus images were obtained in four consecutive patients with GA using an AO retinal camera (rtx1; Imagine Eyes). Adaptive optics IR images were overlaid with confocal scanning laser ophthalmoscope near-IR autofluorescence images to allow direct correlation of en face AO features with areas of foveal sparing. Adaptive optics appearance of GA and foveal sparing, preservation of functional photoreceptors, and cone densities in areas of foveal sparing were investigated. In 5 eyes of 4 patients (all female; mean age 74.2 ± 11.9 years), a total of 5 images, sized 4° × 4°, of foveal sparing visualized on confocal scanning laser ophthalmoscope near-IR autofluorescence were investigated by AO imaging. En face AO images revealed GA as regions of inhomogeneous hyperreflectivity with irregularly dispersed hyporeflective clumps. By direct comparison with adjacent regions of GA, foveal sparing appeared as well-demarcated areas of reduced reflectivity with less hyporeflective clumps (mean 14.2 vs. 3.2; P = 0.03). Of note, in these areas, en face AO IR images revealed cone photoreceptors as hyperreflective dots over the background reflectivity (mean cone density 3,271 ± 1,109 cones per square millimeter). Microperimetry demonstrated residual function in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence. Adaptive optics allows the appreciation of differences in reflectivity between regions of GA and foveal sparing. Preservation of functional cone photoreceptors was demonstrated on en face AO IR images in areas of foveal sparing detected by confocal scanning laser ophthalmoscope near-IR autofluorescence.

  2. Manual for IRS Coding. Joint IAEA/NEA International Reporting System for Operating Experience

    International Nuclear Information System (INIS)

    2011-01-01

    The International Reporting System for Operating Experience (IRS) is jointly operated by the International Atomic Energy Agency (IAEA) and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (OECD/NEA). In early 2010, the IAEA and OECD/NEA jointly issued the IRS Guidelines, which described the reporting system and process and gave users the necessary elements to enable them to produce IRS reports to a high standard of quality while retaining the effectiveness of the system expected by all Member States operating nuclear power plants. The purpose of the present Manual for IRS Coding is to provide supplementary guidance specifically on the coding element of IRS reports to ensure uniform coding of events that are reported through IRS. This Coding Manual does not supersede the IRS Guidelines, but rather, supports users and preparers in achieving a consistent and high level of quality in their IRS reports. Consistency and high quality in the IRS reports allow stakeholders to search and retrieve specific event information with ease. In addition, well-structured reports also enhance the efficient management of the IRS database. This Coding Manual will give specific guidance on the application of each section of the IRS codes, with examples where necessary, of when and how these codes are to be applied. As this reporting system is owned by the Member States, this manual has been developed and approved by the IRS National Coordinators with the assistance of the IAEA and NEA secretariats

  3. Development of X-ray radiography examination technology by image processing method

    Energy Technology Data Exchange (ETDEWEB)

    Min, Duck Kee; Koo, Dae Seo; Kim, Eun Ka [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-06-01

    Because the dimension of nuclear fuel rods was measured with rapidity and accuracy by X-ray radiography examination, the set-up of image processing system which was composed of 979 CCD-L camera, image processing card and fluorescent lighting was carried out, and the image processing system enabled image processing to perform. The examination technology of X-ray radiography, which enabled dimension measurement of nuclear fuel rods to perform, was developed by image processing method. The result of dimension measurement of standard fuel rod by image processing method was 2% reduction in relative measuring error than that of X-ray radiography film, while the former was better by 100 {approx} 200 {mu}m in measuring accuracy than the latter. (author). 9 refs., 22 figs., 3 tabs.

  4. Roles of medical image processing in medical physics

    International Nuclear Information System (INIS)

    Arimura, Hidetaka

    2011-01-01

    Image processing techniques including pattern recognition techniques play important roles in high precision diagnosis and radiation therapy. The author reviews a symposium on medical image information, which was held in the 100th Memorial Annual Meeting of the Japan Society of Medical Physics from September 23rd to 25th. In this symposium, we had three invited speakers, Dr. Akinobu Shimizu, Dr. Hideaki Haneishi, and Dr. Hirohito Mekata, who are active engineering researchers of segmentation, image registration, and pattern recognition, respectively. In this paper, the author reviews the roles of the medical imaging processing in medical physics field, and the talks of the three invited speakers. (author)

  5. Discrimination of Chinese Sauce liquor using FT-IR and two-dimensional correlation IR spectroscopy

    Science.gov (United States)

    Sun, Su-Qin; Li, Chang-Wen; Wei, Ji-Ping; Zhou, Qun; Noda, Isao

    2006-11-01

    We applied the three-step IR macro-fingerprint identification method to obtain the IR characteristic fingerprints of so-called Chinese Sauce liquor (Moutai liquor and Kinsly liquor) and a counterfeit Moutai. These fingerprints can be used for the identification and discrimination of similar liquor products. The comparison of their conventional IR spectra, as the first step of identification, shows that the primary difference in Sauce liquor is the intensity of characteristic peaks at 1592 and 1225 cm -1. The comparison of the second derivative IR spectra, as the second step of identification, shows that the characteristic absorption in 1400-1800 cm -1 is substantially different. The comparison of 2D-IR correlation spectra, as the third and final step of identification, can discriminate the liquors from another direction. Furthermore, the method was successfully applied to the discrimination of a counterfeit Moutai from the genuine Sauce liquor. The success of the three-step IR macro-fingerprint identification to provide a rapid and effective method for the identification of Chinese liquor suggests the potential extension of this technique to the identification and discrimination of other wine and spirits, as well.

  6. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  7. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.

    Science.gov (United States)

    Koprowski, Robert

    2015-11-01

    The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Limiting liability via high resolution image processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwade, L.E.; Overlin, T.K.

    1996-12-31

    The utilization of high resolution image processing allows forensic analysts and visualization scientists to assist detectives by enhancing field photographs, and by providing the tools and training to increase the quality and usability of field photos. Through the use of digitized photographs and computerized enhancement software, field evidence can be obtained and processed as `evidence ready`, even in poor lighting and shadowed conditions or darkened rooms. These images, which are most often unusable when taken with standard camera equipment, can be shot in the worst of photographic condition and be processed as usable evidence. Visualization scientists have taken the use of digital photographic image processing and moved the process of crime scene photos into the technology age. The use of high resolution technology will assist law enforcement in making better use of crime scene photography and positive identification of prints. Valuable court room and investigation time can be saved and better served by this accurate, performance based process. Inconclusive evidence does not lead to convictions. Enhancement of the photographic capability helps solve one major problem with crime scene photos, that if taken with standard equipment and without the benefit of enhancement software would be inconclusive, thus allowing guilty parties to be set free due to lack of evidence.

  9. Performance Measure as Feedback Variable in Image Processing

    Directory of Open Access Journals (Sweden)

    Ristić Danijela

    2006-01-01

    Full Text Available This paper extends the view of image processing performance measure presenting the use of this measure as an actual value in a feedback structure. The idea behind is that the control loop, which is built in that way, drives the actual feedback value to a given set point. Since the performance measure depends explicitly on the application, the inclusion of feedback structures and choice of appropriate feedback variables are presented on example of optical character recognition in industrial application. Metrics for quantification of performance at different image processing levels are discussed. The issues that those metrics should address from both image processing and control point of view are considered. The performance measures of individual processing algorithms that form a character recognition system are determined with respect to the overall system performance.

  10. Towards Portable Large-Scale Image Processing with High-Performance Computing.

    Science.gov (United States)

    Huo, Yuankai; Blaber, Justin; Damon, Stephen M; Boyd, Brian D; Bao, Shunxing; Parvathaneni, Prasanna; Noguera, Camilo Bermudez; Chaganti, Shikha; Nath, Vishwesh; Greer, Jasmine M; Lyu, Ilwoo; French, William R; Newton, Allen T; Rogers, Baxter P; Landman, Bennett A

    2018-05-03

    High-throughput, large-scale medical image computing demands tight integration of high-performance computing (HPC) infrastructure for data storage, job distribution, and image processing. The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has constructed a large-scale image storage and processing infrastructure that is composed of (1) a large-scale image database using the eXtensible Neuroimaging Archive Toolkit (XNAT), (2) a content-aware job scheduling platform using the Distributed Automation for XNAT pipeline automation tool (DAX), and (3) a wide variety of encapsulated image processing pipelines called "spiders." The VUIIS CCI medical image data storage and processing infrastructure have housed and processed nearly half-million medical image volumes with Vanderbilt Advanced Computing Center for Research and Education (ACCRE), which is the HPC facility at the Vanderbilt University. The initial deployment was natively deployed (i.e., direct installations on a bare-metal server) within the ACCRE hardware and software environments, which lead to issues of portability and sustainability. First, it could be laborious to deploy the entire VUIIS CCI medical image data storage and processing infrastructure to another HPC center with varying hardware infrastructure, library availability, and software permission policies. Second, the spiders were not developed in an isolated manner, which has led to software dependency issues during system upgrades or remote software installation. To address such issues, herein, we describe recent innovations using containerization techniques with XNAT/DAX which are used to isolate the VUIIS CCI medical image data storage and processing infrastructure from the underlying hardware and software environments. The newly presented XNAT/DAX solution has the following new features: (1) multi-level portability from system level to the application level, (2) flexible and dynamic software

  11. Making the PACS workstation a browser of image processing software: a feasibility study using inter-process communication techniques.

    Science.gov (United States)

    Wang, Chunliang; Ritter, Felix; Smedby, Orjan

    2010-07-01

    To enhance the functional expandability of a picture archiving and communication systems (PACS) workstation and to facilitate the integration of third-part image-processing modules, we propose a browser-server style method. In the proposed solution, the PACS workstation shows the front-end user interface defined in an XML file while the image processing software is running in the background as a server. Inter-process communication (IPC) techniques allow an efficient exchange of image data, parameters, and user input between the PACS workstation and stand-alone image-processing software. Using a predefined communication protocol, the PACS workstation developer or image processing software developer does not need detailed information about the other system, but will still be able to achieve seamless integration between the two systems and the IPC procedure is totally transparent to the final user. A browser-server style solution was built between OsiriX (PACS workstation software) and MeVisLab (Image-Processing Software). Ten example image-processing modules were easily added to OsiriX by converting existing MeVisLab image processing networks. Image data transfer using shared memory added communication based on IPC techniques is an appealing method that allows PACS workstation developers and image processing software developers to cooperate while focusing on different interests.

  12. A software package for biomedical image processing and analysis

    International Nuclear Information System (INIS)

    Goncalves, J.G.M.; Mealha, O.

    1988-01-01

    The decreasing cost of computing power and the introduction of low cost imaging boards justifies the increasing number of applications of digital image processing techniques in the area of biomedicine. There is however a large software gap to be fulfilled, between the application and the equipment. The requirements to bridge this gap are twofold: good knowledge of the hardware provided and its interface to the host computer, and expertise in digital image processing and analysis techniques. A software package incorporating these two requirements was developed using the C programming language, in order to create a user friendly image processing programming environment. The software package can be considered in two different ways: as a data structure adapted to image processing and analysis, which acts as the backbone and the standard of communication for all the software; and as a set of routines implementing the basic algorithms used in image processing and analysis. Hardware dependency is restricted to a single module upon which all hardware calls are based. The data structure that was built has four main features: hierchical, open, object oriented, and object dependent dimensions. Considering the vast amount of memory needed by imaging applications and the memory available in small imaging systems, an effective image memory management scheme was implemented. This software package is being used for more than one and a half years by users with different applications. It proved to be an excellent tool for helping people to get adapted into the system, and for standardizing and exchanging software, yet preserving flexibility allowing for users' specific implementations. The philosophy of the software package is discussed and the data structure that was built is described in detail

  13. A gamma cammera image processing system

    International Nuclear Information System (INIS)

    Chen Weihua; Mei Jufang; Jiang Wenchuan; Guo Zhenxiang

    1987-01-01

    A microcomputer based gamma camera image processing system has been introduced. Comparing with other systems, the feature of this system is that an inexpensive microcomputer has been combined with specially developed hardware, such as, data acquisition controller, data processor and dynamic display controller, ect. Thus the process of picture processing has been speeded up and the function expense ratio of the system raised

  14. The recent and prospective developments of cooled IR FPAs for double application at Electron NRI

    Science.gov (United States)

    Arutunov, V. A.; Vasilyev, I. S.; Ivanov, V. G.; Prokofyev, A. E.

    2003-09-01

    The recent and prospective developments of monolithic silicon IR-Schottky-barrier staring focal plane arrays (IR SB FPAs), photodetector assembly, and digital thermal imaging cameras (TICs) at Electron National Research Institute (Electron NRI) are considered. Basic parameters for IR SB FPAs with 256x256 and 512x512 pixels, and TICs based on these arrays are presented. The problems emerged while proceeding from the developments of IR SB FPAs for the wavelength range from 3 μm to 5 μm to the developments of those ones for xLWIR range are indicated (an abrupt increase in the level of background architecture). Possibility for further improvement in basic parameters of IR SB FPAs are discussed (a decrease in threshold signal power down to 0.5-1.0"1013 W/element with an increase in quantum efficiency, a decrease in output noise and proceeding to Schottky barriers of degenerated semiconductor/silicon heterojunction, and implementation of these array parameters in photodetector assembly with improved thermal background shielding taking into consideration an optical structure of TIC for concrete application). It is concluded that relative simplicity of the technology and expected low cost of monolithic silicon IR SB FPAs with basic parameters compared with hybrid IR FPAs for the wavelength ranges from 3 μm to 5 μm and from 8 μm to 12 μm maintain large monolithic IR SB FPAs as a basis for developments of double application digital TICs in the Russian Federation.

  15. Intensity-dependent point spread image processing

    International Nuclear Information System (INIS)

    Cornsweet, T.N.; Yellott, J.I.

    1984-01-01

    There is ample anatomical, physiological and psychophysical evidence that the mammilian retina contains networks that mediate interactions among neighboring receptors, resulting in intersecting transformations between input images and their corresponding neural output patterns. The almost universally accepted view is that the principal form of interaction involves lateral inhibition, resulting in an output pattern that is the convolution of the input with a ''Mexican hat'' or difference-of-Gaussians spread function, having a positive center and a negative surround. A closely related process is widely applied in digital image processing, and in photography as ''unsharp masking''. The authors show that a simple and fundamentally different process, involving no inhibitory or subtractive terms can also account for the physiological and psychophysical findings that have been attributed to lateral inhibition. This process also results in a number of fundamental effects that occur in mammalian vision and that would be of considerable significance in robotic vision, but which cannot be explained by lateral inhibitory interaction

  16. Image processing in radiology. Current applications

    International Nuclear Information System (INIS)

    Neri, E.; Caramella, D.; Bartolozzi, C.

    2008-01-01

    Few fields have witnessed such impressive advances as image processing in radiology. The progress achieved has revolutionized diagnosis and greatly facilitated treatment selection and accurate planning of procedures. This book, written by leading experts from many countries, provides a comprehensive and up-to-date description of how to use 2D and 3D processing tools in clinical radiology. The first section covers a wide range of technical aspects in an informative way. This is followed by the main section, in which the principal clinical applications are described and discussed in depth. To complete the picture, a third section focuses on various special topics. The book will be invaluable to radiologists of any subspecialty who work with CT and MRI and would like to exploit the advantages of image processing techniques. It also addresses the needs of radiographers who cooperate with clinical radiologists and should improve their ability to generate the appropriate 2D and 3D processing. (orig.)

  17. Attenuated total reflectance-FT-IR spectroscopy for gunshot residue analysis: potential for ammunition determination.

    Science.gov (United States)

    Bueno, Justin; Sikirzhytski, Vitali; Lednev, Igor K

    2013-08-06

    The ability to link a suspect to a particular shooting incident is a principal task for many forensic investigators. Here, we attempt to achieve this goal by analysis of gunshot residue (GSR) through the use of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR) combined with statistical analysis. The firearm discharge process is analogous to a complex chemical process. Therefore, the products of this process (GSR) will vary based upon numerous factors, including the specific combination of the firearm and ammunition which was discharged. Differentiation of FT-IR data, collected from GSR particles originating from three different firearm-ammunition combinations (0.38 in., 0.40 in., and 9 mm calibers), was achieved using projection to latent structures discriminant analysis (PLS-DA). The technique was cross (leave-one-out), both internally and externally, validated. External validation was achieved via assignment (caliber identification) of unknown FT-IR spectra from unknown GSR particles. The results demonstrate great potential for ATR-FT-IR spectroscopic analysis of GSR for forensic purposes.

  18. Low level image processing techniques using the pipeline image processing engine in the flight telerobotic servicer

    Science.gov (United States)

    Nashman, Marilyn; Chaconas, Karen J.

    1988-01-01

    The sensory processing system for the NASA/NBS Standard Reference Model (NASREM) for telerobotic control is described. This control system architecture was adopted by NASA of the Flight Telerobotic Servicer. The control system is hierarchically designed and consists of three parallel systems: task decomposition, world modeling, and sensory processing. The Sensory Processing System is examined, and in particular the image processing hardware and software used to extract features at low levels of sensory processing for tasks representative of those envisioned for the Space Station such as assembly and maintenance are described.

  19. An Automated, Image Processing System for Concrete Evaluation

    International Nuclear Information System (INIS)

    Baumgart, C.W.; Cave, S.P.; Linder, K.E.

    1998-01-01

    Allied Signal Federal Manufacturing ampersand Technologies (FM ampersand T) was asked to perform a proof-of-concept study for the Missouri Highway and Transportation Department (MHTD), Research Division, in June 1997. The goal of this proof-of-concept study was to ascertain if automated scanning and imaging techniques might be applied effectively to the problem of concrete evaluation. In the current evaluation process, a concrete sample core is manually scanned under a microscope. Voids (or air spaces) within the concrete are then detected visually by a human operator by incrementing the sample under the cross-hairs of a microscope and by counting the number of ''pixels'' which fall within a void. Automation of the scanning and image analysis processes is desired to improve the speed of the scanning process, to improve evaluation consistency, and to reduce operator fatigue. An initial, proof-of-concept image analysis approach was successfully developed and demonstrated using acquired black and white imagery of concrete samples. In this paper, the automated scanning and image capture system currently under development will be described and the image processing approach developed for the proof-of-concept study will be demonstrated. A development update and plans for future enhancements are also presented

  20. Digital image processing and analysis human and computer vision applications with CVIPtools

    CERN Document Server

    Umbaugh, Scott E

    2010-01-01

    Section I Introduction to Digital Image Processing and AnalysisDigital Image Processing and AnalysisOverviewImage Analysis and Computer VisionImage Processing and Human VisionKey PointsExercisesReferencesFurther ReadingComputer Imaging SystemsImaging Systems OverviewImage Formation and SensingCVIPtools SoftwareImage RepresentationKey PointsExercisesSupplementary ExercisesReferencesFurther ReadingSection II Digital Image Analysis and Computer VisionIntroduction to Digital Image AnalysisIntroductionPreprocessingBinary Image AnalysisKey PointsExercisesSupplementary ExercisesReferencesFurther Read

  1. Real-time progressive hyperspectral image processing endmember finding and anomaly detection

    CERN Document Server

    Chang, Chein-I

    2016-01-01

    The book covers the most crucial parts of real-time hyperspectral image processing: causality and real-time capability. Recently, two new concepts of real time hyperspectral image processing, Progressive Hyperspectral Imaging (PHSI) and Recursive Hyperspectral Imaging (RHSI). Both of these can be used to design algorithms and also form an integral part of real time hyperpsectral image processing. This book focuses on progressive nature in algorithms on their real-time and causal processing implementation in two major applications, endmember finding and anomaly detection, both of which are fundamental tasks in hyperspectral imaging but generally not encountered in multispectral imaging. This book is written to particularly address PHSI in real time processing, while a book, Recursive Hyperspectral Sample and Band Processing: Algorithm Architecture and Implementation (Springer 2016) can be considered as its companion book. Includes preliminary background which is essential to those who work in hyperspectral ima...

  2. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    Science.gov (United States)

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA

  3. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    Science.gov (United States)

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  4. Effects of optimization and image processing in digital chest radiography

    International Nuclear Information System (INIS)

    Kheddache, S.; Maansson, L.G.; Angelhed, J.E.; Denbratt, L.; Gottfridsson, B.; Schlossman, D.

    1991-01-01

    A digital system for chest radiography based on a large image intensifier was compared to a conventional film-screen system. The digital system was optimized with regard to spatial and contrast resolution and dose. The images were digitally processed for contrast and edge enhancement. A simulated pneumothorax and two and two simulated nodules were positioned over the lungs and the mediastinum of an anthro-pomorphic phantom. Observer performance was evaluated with Receiver Operating Characteristic (ROC) analysis. Five observers assessed the processed digital images and the conventional full-size radiographs. The time spent viewing the full-size radiographs and the digital images was recorded. For the simulated pneumothorax, the results showed perfect performance for the full-size radiographs and detectability was high also for the processed digital images. No significant differences in the detectability of the simulated nodules was seen between the two imaging systems. The results for the digital images showed a significantly improved detectability for the nodules in the mediastinum as compared to a previous ROC study where no optimization and image processing was available. No significant difference in detectability was seen between the former and the present ROC study for small nodules in the lung. No difference was seen in the time spent assessing the conventional full-size radiographs and the digital images. The study indicates that