WorldWideScience

Sample records for ir cloud images

  1. Studies of IR-screening smoke clouds

    Energy Technology Data Exchange (ETDEWEB)

    Cudzilo, S. [Military Univ. of Technology, Warsaw (Poland)

    2001-02-01

    This paper contains some results of research on the IR-screening capability of smoke clouds generated during the combustion process of varied pyrotechnic formulations. The smoke compositions were made from some oxygen or oxygen-free mixtures containing metal and chloroorganic compounds or mixtures based on red phosphorus. The camouflage effectiveness of clouds generated by these formulations was investigated under laboratory conditions with an infrared camera. The technique employed enables determination of radiant temperature distributions in a smoke cloud treated as an energy equivalent of a grey body emission. The results of the analysis of thermographs from the camera were the basis on which the mixtures producing screens of the highest countermeasure for thermal imaging systems have been chosen. (orig.)

  2. Method of forming half-tone test images in the IR spectrum

    International Nuclear Information System (INIS)

    Glebova, L.N.; Gridin, A.S.; Denisov, V.N.; Dmitriev, I.Yu.; Mochalov, I.V.; Chebotarev, S.A.

    1992-01-01

    Test charts in the form of half-tone IR images, including not only an image of the interference-producing background (the underlying earth's surface and clouds), but also the observation objects, are required for conducting bench tests on the noise immunity of modern optoelectronic equipment designed to solve observation problems under background-interference conditions. The simulation of extended half-tone IR images containing the high spatial frequencies of background formations having an appreciable dynamic range of reproducible radiances is a complex problem in technical and processing aspects. The use of phosphorus as visible-to-IR converters for the creation of IR-background simulators is shown to be possible in principle in this paper. 2 refs., 3 figs

  3. Introducing two Random Forest based methods for cloud detection in remote sensing images

    Science.gov (United States)

    Ghasemian, Nafiseh; Akhoondzadeh, Mehdi

    2018-07-01

    Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The

  4. Deep convective cloud characterizations from both broadband imager and hyperspectral infrared sounder measurements

    Science.gov (United States)

    Ai, Yufei; Li, Jun; Shi, Wenjing; Schmit, Timothy J.; Cao, Changyong; Li, Wanbiao

    2017-02-01

    Deep convective storms have contributed to airplane accidents, making them a threat to aviation safety. The most common method to identify deep convective clouds (DCCs) is using the brightness temperature difference (BTD) between the atmospheric infrared (IR) window band and the water vapor (WV) absorption band. The effectiveness of the BTD method for DCC detection is highly related to the spectral resolution and signal-to-noise ratio (SNR) of the WV band. In order to understand the sensitivity of BTD to spectral resolution and SNR for DCC detection, a BTD to noise ratio method using the difference between the WV and IR window radiances is developed to assess the uncertainty of DCC identification for different instruments. We examined the case of AirAsia Flight QZ8501. The brightness temperatures (Tbs) over DCCs from this case are simulated for BTD sensitivity studies by a fast forward radiative transfer model with an opaque cloud assumption for both broadband imager (e.g., Multifunction Transport Satellite imager, MTSAT-2 imager) and hyperspectral IR sounder (e.g., Atmospheric Infrared Sounder) instruments; we also examined the relationship between the simulated Tb and the cloud top height. Results show that despite the coarser spatial resolution, BTDs measured by a hyperspectral IR sounder are much more sensitive to high cloud tops than broadband BTDs. As demonstrated in this study, a hyperspectral IR sounder can identify DCCs with better accuracy.

  5. Premier's imaging IR limb sounder

    Science.gov (United States)

    Kraft, Stefan; Bézy, Jean-Loup; Meynart, Roland; Langen, Jörg; Carnicero Dominguez, Bernardo; Bensi, Paolo; Silvestrin, Pierluigi

    2017-11-01

    The Imaging IR Limb Sounder (IRLS) is one of the two instruments planned on board of the candidate Earth Explorer Core Mission PREMIER. PREMIER stands for PRocess Exploration through Measurements of Infrared and Millimetre-wave Emitted Radiation. PREMIER went recently through the process of a feasibility study (Phase A) within the Earth Observation Envelope Program. Emerging from recent advanced instrument technologies IRLS shall, next to a millimetre-wave limb sounder (called STEAMR), explore the benefits of three-dimensional limb sounding with embedded cloud imaging capability. Such 3D imaging technology is expected to open a new era of limb sounding that will allow detailed studies of the link between atmospheric composition and climate, since it will map simultaneously fields of temperature and many trace gases in the mid/upper troposphere and stratosphere across a large vertical and horizontal field of view and with high vertical and horizontal resolution. PREMIER shall fly in a tandem formation looking backwards to METOP's swath and thereby improve meteorological and environmental analyses.

  6. Jovian cloud structure from 5-mu M images

    Science.gov (United States)

    Ortiz, J. L.; Moreno, F.; Molina, A.; Roos-Serote, M.; Orton, G. S.

    1999-09-01

    Most radiative transfer studies place the cloud clearings responsible for the 5-mu m bright areas at pressure levels greater than 1.5 bar whereas the low-albedo clouds are placed at lower pressure levels, in the so-called ammonia cloud. If this picture is correct, and assuming that the strong vertical shear of the zonal wind detected by the Galileo Entry Probe exists at all latitudes in Jupiter, the bright areas at 5 mu m should drift faster than the dark clouds, which is not observed. At the Galileo Probe Entry latitude this can be explained by a wave, but this is not a likely explanation for all regions where the anticorrelation between 5-mu m brightness and red-nIR reflectivity is observed. Therefore, either the vertical zonal wind shears are not global or cloud clearings and dark clouds are located at the same pressure level. We have developed a multiple scattering radiative transfer code to model the limb-darkening at several jovian features derived from IRTF 4.8-mu m images, in order to retrieve information on the cloud levels. The limb darkening coefficients range from 1.4 at hot spots to 0.58 at the Equatorial Region. We also find that reflected light is dominant over thermal emission in the Equatorial Region, as already pointed out by other investigators. Preliminary results from our code tend to favor the idea that the ammonia cloud is a very high-albedo cloud with little influence on the contrast seen in the red and nIR and that a deeper cloud at P >1.5 bar can be responsible for the cloud clearings and for the low-albedo features simultaneously. This research was supported by the Comision Interministerial de Ciencia y Tecnologia under contract ESP96-0623.

  7. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    Science.gov (United States)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  8. Thermal-to-visible transducer (TVT) for thermal-IR imaging

    Science.gov (United States)

    Flusberg, Allen; Swartz, Stephen; Huff, Michael; Gross, Steven

    2008-04-01

    We have been developing a novel thermal-to-visible transducer (TVT), an uncooled thermal-IR imager that is based on a Fabry-Perot Interferometer (FPI). The FPI-based IR imager can convert a thermal-IR image to a video electronic image. IR radiation that is emitted by an object in the scene is imaged onto an IR-absorbing material that is located within an FPI. Temperature variations generated by the spatial variations in the IR image intensity cause variations in optical thickness, modulating the reflectivity seen by a probe laser beam. The reflected probe is imaged onto a visible array, producing a visible image of the IR scene. This technology can provide low-cost IR cameras with excellent sensitivity, low power consumption, and the potential for self-registered fusion of thermal-IR and visible images. We will describe characteristics of requisite pixelated arrays that we have fabricated.

  9. A dearth of OH/IR stars in the Small Magellanic Cloud

    Science.gov (United States)

    Goldman, Steven R.; van Loon, Jacco Th.; Gómez, José F.; Green, James A.; Zijlstra, Albert A.; Nanni, Ambra; Imai, Hiroshi; Whitelock, Patricia A.; Groenewegen, Martin A. T.; Oliveira, Joana M.

    2018-01-01

    We present the results of targeted observations and a survey of 1612-, 1665- and 1667-MHz circumstellar OH maser emission from asymptotic giant branch (AGB) stars and red supergiants (RSGs) in the Small Magellanic Cloud (SMC), using the Parkes and Australia Telescope Compact Array (ATCA) radio telescopes. No clear OH maser emission has been detected in any of our observations targeting luminous, long-period, large-amplitude variable stars, which have been confirmed spectroscopically and photometrically to be mid- to late-M spectral type. These observations have probed 3-4 times deeper than any OH maser survey in the SMC. Using a bootstrapping method with Large Magellanic Cloud (LMC) and Galactic OH/IR star samples and our SMC observation upper limits, we have calculated the likelihood of not detecting maser emission in any of the two sources considered to be the top maser candidates to be less than 0.05 per cent, assuming a similar pumping mechanism as the LMC and Galactic OH/IR sources. We have performed a population comparison of the Magellanic Clouds and used Spitzer IRAC and MIPS photometry to confirm that we have observed all high luminosity SMC sources that are expected to exhibit maser emission. We suspect that, compared to the OH/IR stars in the Galaxy and LMC, the reduction in metallicity may curtail the dusty wind phase at the end of the evolution of the most massive cool stars. We also suspect that the conditions in the circumstellar envelope change beyond a simple scaling of abundances and wind speed with metallicity.

  10. Molecular Hydrogen Images of Star Forming Regions in the Magellanic Clouds

    Science.gov (United States)

    Probst, Ronald G.; Barba, R.; Bolatto, A.; Chu, Y.; Points, S.; Rubio, M.; Smith, C.

    2011-01-01

    The Large and Small Magellanic Clouds exhibit a variety of star formation physics with multiple phase components in low metallicity, gas rich environments. The 10 K, 100 K, and 104 K regimes are well explored. We are imaging LMC and SMC star forming regions in 2.12 micron H2 emission which arises in the 1000 K transition zone of molecular clouds. This is an NOAO Survey program using the widefield IR camera NEWFIRM on the CTIO 4-m Blanco telescope during its limited southern deployment. The data set will have immediate morphological applications and will provide target selection for followup infrared spectroscopy. We will provide a public archive of fully calibrated images with no proprietary period. NOAO is operated by the Association of Universities for Research in Astronomy, under cooperative agreement with the National Science Foundation.

  11. Near-IR imaging of cracks in teeth

    Science.gov (United States)

    Fried, William A.; Simon, Jacob C.; Lucas, Seth; Chan, Kenneth H.; Darling, Cynthia L.; Staninec, Michal; Fried, Daniel

    2014-02-01

    Dental enamel is highly transparent at near-IR wavelengths and several studies have shown that these wavelengths are well suited for optical transillumination for the detection and imaging of tooth decay. We hypothesize that these wavelengths are also well suited for imaging cracks in teeth. Extracted teeth with suspected cracks were imaged at several wavelengths in the near-IR from 1300-1700-nm. Extracted teeth were also examined with optical coherence tomography to confirm the existence of suspected cracks. Several teeth of volunteers were also imaged in vivo at 1300-nm to demonstrate clinical potential. In addition we induced cracks in teeth using a carbon dioxide laser and imaged crack formation and propagation in real time using near-IR transillumination. Cracks were clearly visible using near-IR imaging at 1300-nm in both in vitro and in vivo images. Cracks and fractures also interfered with light propagation in the tooth aiding in crack identification and assessment of depth and severity.

  12. Recent Progress on the Second Generation CMORPH: LEO-IR Based Precipitation Estimates and Cloud Motion Vector

    Science.gov (United States)

    Xie, Pingping; Joyce, Robert; Wu, Shaorong

    2015-04-01

    As reported at the EGU General Assembly of 2014, a prototype system was developed for the second generation CMORPH to produce global analyses of 30-min precipitation on a 0.05olat/lon grid over the entire globe from pole to pole through integration of information from satellite observations as well as numerical model simulations. The second generation CMORPH is built upon the Kalman Filter based CMORPH algorithm of Joyce and Xie (2011). Inputs to the system include rainfall and snowfall rate retrievals from passive microwave (PMW) measurements aboard all available low earth orbit (LEO) satellites, precipitation estimates derived from infrared (IR) observations of geostationary (GEO) as well as LEO platforms, and precipitation simulations from numerical global models. Key to the success of the 2nd generation CMORPH, among a couple of other elements, are the development of a LEO-IR based precipitation estimation to fill in the polar gaps and objectively analyzed cloud motion vectors to capture the cloud movements of various spatial scales over the entire globe. In this presentation, we report our recent work on the refinement for these two important algorithm components. The prototype algorithm for the LEO IR precipitation estimation is refined to achieve improved quantitative accuracy and consistency with PMW retrievals. AVHRR IR TBB data from all LEO satellites are first remapped to a 0.05olat/lon grid over the entire globe and in a 30-min interval. Temporally and spatially co-located data pairs of the LEO TBB and inter-calibrated combined satellite PMW retrievals (MWCOMB) are then collected to construct tables. Precipitation at a grid box is derived from the TBB through matching the PDF tables for the TBB and the MWCOMB. This procedure is implemented for different season, latitude band and underlying surface types to account for the variations in the cloud - precipitation relationship. At the meantime, a sub-system is developed to construct analyzed fields of

  13. The benefit of limb cloud imaging for infrared limb sounding of tropospheric trace gases

    Directory of Open Access Journals (Sweden)

    G. Heinemann

    2009-06-01

    Full Text Available Advances in detector technology enable a new generation of infrared limb sounders to measure 2-D images of the atmosphere. A proposed limb cloud imager (LCI mode will detect clouds with a spatial resolution unprecedented for limb sounding. For the inference of temperature and trace gas distributions, detector pixels of the LCI have to be combined into super-pixels which provide the required signal-to-noise and information content for the retrievals. This study examines the extent to which tropospheric coverage can be improved in comparison to limb sounding using a fixed field of view with the size of the super-pixels, as in conventional limb sounders. The study is based on cloud topographies derived from (a IR brightness temperatures (BT of geostationary weather satellites in conjunction with ECMWF temperature profiles and (b ice and liquid water content data of the Consortium for Small-scale Modeling-Europe (COSMO-EU of the German Weather Service. Limb cloud images are simulated by matching the cloud topography with the limb sounding line of sight (LOS. The analysis of the BT data shows that the reduction of the spatial sampling along the track has hardly any effect on the gain in information. The comparison between BT and COSMO-EU data identifies the strength of both data sets, which are the representation of the horizontal cloud extent for the BT data and the reproduction of the cloud amount for the COSMO-EU data. The results of the analysis of both data sets show the great advantage of the cloud imager. However, because both cloud data sets do not present the complete fine structure of the real cloud fields in the atmosphere it is assumed that the results tend to underestimate the increase in information. In conclusion, real measurements by such an instrument may result in an even higher benefit for tropospheric limb retrievals.

  14. iMAGE cloud: medical image processing as a service for regional healthcare in a hybrid cloud environment.

    Science.gov (United States)

    Liu, Li; Chen, Weiping; Nie, Min; Zhang, Fengjuan; Wang, Yu; He, Ailing; Wang, Xiaonan; Yan, Gen

    2016-11-01

    To handle the emergence of the regional healthcare ecosystem, physicians and surgeons in various departments and healthcare institutions must process medical images securely, conveniently, and efficiently, and must integrate them with electronic medical records (EMRs). In this manuscript, we propose a software as a service (SaaS) cloud called the iMAGE cloud. A three-layer hybrid cloud was created to provide medical image processing services in the smart city of Wuxi, China, in April 2015. In the first step, medical images and EMR data were received and integrated via the hybrid regional healthcare network. Then, traditional and advanced image processing functions were proposed and computed in a unified manner in the high-performance cloud units. Finally, the image processing results were delivered to regional users using the virtual desktop infrastructure (VDI) technology. Security infrastructure was also taken into consideration. Integrated information query and many advanced medical image processing functions-such as coronary extraction, pulmonary reconstruction, vascular extraction, intelligent detection of pulmonary nodules, image fusion, and 3D printing-were available to local physicians and surgeons in various departments and healthcare institutions. Implementation results indicate that the iMAGE cloud can provide convenient, efficient, compatible, and secure medical image processing services in regional healthcare networks. The iMAGE cloud has been proven to be valuable in applications in the regional healthcare system, and it could have a promising future in the healthcare system worldwide.

  15. Future development of IR thermovision weather satellite equipment

    Science.gov (United States)

    Listratov, A. V.

    1974-01-01

    The self radiation of the surface being viewed is used for image synthesis in IR thermovision equipment. The installation of such equipment aboard weather satellites makes it possible to obtain cloud cover pictures of the earth's surface in a complete orbit, regardless of the illumination conditions, and also provides quantitative information on the underlying surface temperature and cloud top height. Such equipment is used successfully aboard the Soviet satellites of the Meteor system, and experimentally on the American satellites of the Nimbus series. With regard to surface resolution, the present-day IR weather satellite equipment is inferior to the television equipment. This is due primarily to the comparatively low detectivity of the IR detectors used. While IR equipment has several fundamental advantages in comparison with the conventional television equipment, the problem arises of determining the possibility for future development of weather satellite IR thermovision equipment. Criteria are examined for evaluating the quality of IR.

  16. The design and application of a multi-band IR imager

    Science.gov (United States)

    Li, Lijuan

    2018-02-01

    Multi-band IR imaging system has many applications in security, national defense, petroleum and gas industry, etc. So the relevant technologies are getting more and more attention in rent years. As we know, when used in missile warning and missile seeker systems, multi-band IR imaging technology has the advantage of high target recognition capability and low false alarm rate if suitable spectral bands are selected. Compared with traditional single band IR imager, multi-band IR imager can make use of spectral features in addition to space and time domain features to discriminate target from background clutters and decoys. So, one of the key work is to select the right spectral bands in which the feature difference between target and false target is evident and is well utilized. Multi-band IR imager is a useful instrument to collect multi-band IR images of target, backgrounds and decoys for spectral band selection study at low cost and with adjustable parameters and property compared with commercial imaging spectrometer. In this paper, a multi-band IR imaging system is developed which is suitable to collect 4 spectral band images of various scenes at every turn and can be expanded to other short-wave and mid-wave IR spectral bands combination by changing filter groups. The multi-band IR imaging system consists of a broad band optical system, a cryogenic InSb large array detector, a spinning filter wheel and electronic processing system. The multi-band IR imaging system's performance is tested in real data collection experiments.

  17. A Modified Harris Corner Detection for Breast IR Image

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2014-01-01

    Full Text Available Harris corner detectors, which depend on strong invariance and a local autocorrelation function, display poor detection performance for infrared (IR images with low contrast and nonobvious edges. In addition, feature points detected by Harris corner detectors are clustered due to the numerous nonlocal maxima. This paper proposes a modified Harris corner detector that includes two unique steps for processing IR images in order to overcome the aforementioned problems. Image contrast enhancement based on a generalized form of histogram equalization (HE combined with adjusting the intensity resolution causes false contours on IR images to acquire obvious edges. Adaptive nonmaximal suppression based on eliminating neighboring pixels avoids the clustered features. Preliminary results show that the proposed method can solve the clustering problem and successfully identify the representative feature points of IR breast images.

  18. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    Science.gov (United States)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  19. Data and image fusion for geometrical cloud characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, L.R.; Buch, K.A.; Sun, Chen-Hui; Diegert, C.

    1997-04-01

    Clouds have a strong influence on the Earth`s climate and therefore on climate change. An important step in improving the accuracy of models that predict global climate change, general circulation models, is improving the parameterization of clouds and cloud-radiation interactions. Improvements in the next generation models will likely include the effect of cloud geometry on the cloud-radiation parameterizations. We have developed and report here methods for characterizing the geometrical features and three-dimensional properties of clouds that could be of significant value in developing these new parameterizations. We developed and report here a means of generating and imaging synthetic clouds which we used to test our characterization algorithms; a method for using Taylor`s hypotheses to infer spatial averages from temporal averages of cloud properties; a computer method for automatically classifying cloud types in an image; and a method for producing numerical three-dimensional renderings of cloud fields based on the fusion of ground-based and satellite images together with meteorological data.

  20. Contributions to the Data Warehouse 2 and Prospects of the IRS Program

    Science.gov (United States)

    Barner, Frithjof; Venkataraman, V. Raghu; Makiola, Jens

    2016-08-01

    During 2015 and 2016, the IRS program has significantly contributed to the CSC-DA Data Warehouse. From its suite of optical EO satellites which operate in the visible, near IR and shortwave IR domain, data from the HR LISS-III and MR AWiFS sensors on board of Resourcesat-2 have been provided. Resourcesat-2 so far acquired cloud-free images of a vast majority of the first and second coverage of HR_IMAGE_2015 and several monthly MR coverages for MR_IMAGE_2015 over the EEA-39. The results regarding the above mentioned data sets will be discussed including an appraisal of the possible future role of upcoming IRS EO satellites for European data requirements.

  1. Multilayered Clouds Identification and Retrieval for CERES Using MODIS

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Yi, Yuhong; Huang, Jainping; Lin, Bin; Fan, Alice; Gibson, Sharon; Chang, Fu-Lung

    2006-01-01

    Traditionally, analyses of satellite data have been limited to interpreting the radiances in terms of single layer clouds. Generally, this results in significant errors in the retrieved properties for multilayered cloud systems. Two techniques for detecting overlapped clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. The first technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other method uses microwave (MWR) data. The use of BTD, the 11-12 micrometer brightness temperature difference, in conjunction with tau, the retrieved visible optical depth, was suggested by Kawamoto et al. (2001) and used by Pavlonis et al. (2004) as a means to detect multilayered clouds. Combining visible (VIS; 0.65 micrometer) and infrared (IR) retrievals of cloud properties with microwave (MW) retrievals of cloud water temperature Tw and liquid water path LWP retrieved from satellite microwave imagers appears to be a fruitful approach for detecting and retrieving overlapped clouds (Lin et al., 1998, Ho et al., 2003, Huang et al., 2005). The BTD method is limited to optically thin cirrus over low clouds, while the MWR method is limited to ocean areas only. With the availability of VIS and IR data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and MW data from the Advanced Microwave Scanning Radiometer EOS (AMSR-E), both on Aqua, it is now possible to examine both approaches simultaneously. This paper explores the use of the BTD method as applied to MODIS and AMSR-E data taken from the Aqua satellite over non-polar ocean surfaces.

  2. High-dynamic-range imaging for cloud segmentation

    Science.gov (United States)

    Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan

    2018-04-01

    Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.

  3. New Satellite Estimates of Mixed-Phase Cloud Properties: A Synergistic Approach for Application to Global Satellite Imager Data

    Science.gov (United States)

    Smith, W. L., Jr.; Spangenberg, D.; Fleeger, C.; Sun-Mack, S.; Chen, Y.; Minnis, P.

    2016-12-01

    Determining accurate cloud properties horizontally and vertically over a full range of time and space scales is currently next to impossible using data from either active or passive remote sensors or from modeling systems. Passive satellite imagers provide horizontal and temporal resolution of clouds, but little direct information on vertical structure. Active sensors provide vertical resolution but limited spatial and temporal coverage. Cloud models embedded in NWP can produce realistic clouds but often not at the right time or location. Thus, empirical techniques that integrate information from multiple observing and modeling systems are needed to more accurately characterize clouds and their impacts. Such a strategy is employed here in a new cloud water content profiling technique developed for application to satellite imager cloud retrievals based on VIS, IR and NIR radiances. Parameterizations are developed to relate imager retrievals of cloud top phase, optical depth, effective radius and temperature to ice and liquid water content profiles. The vertical structure information contained in the parameterizations is characterized climatologically from cloud model analyses, aircraft observations, ground-based remote sensing data, and from CloudSat and CALIPSO. Thus, realistic cloud-type dependent vertical structure information (including guidance on cloud phase partitioning) circumvents poor assumptions regarding vertical homogeneity that plague current passive satellite retrievals. This paper addresses mixed phase cloud conditions for clouds with glaciated tops including those associated with convection and mid-latitude storm systems. Novel outcomes of our approach include (1) simultaneous retrievals of ice and liquid water content and path, which are validated with active sensor, microwave and in-situ data, and yield improved global cloud climatologies, and (2) new estimates of super-cooled LWC, which are demonstrated in aviation safety applications and

  4. Three-dimensional cloud characterization from paired whole-sky imaging cameras

    International Nuclear Information System (INIS)

    Allmen, M.; Kegelmeyer, W.P. Jr.

    1994-01-01

    Three-dimensional (3-D) cloud characterization permits the derivation of important cloud geometry properties such as fractional cloudiness, mean cloud and clear length, aspect ratio, and the morphology of cloud cover. These properties are needed as input to the hierarchical diagnosis (HD) and instantaneous radiative transfer (IRF) models, to validate sub-models for cloud occurrence and formation, and to Central Site radiative flux calculations. A full 3-D characterization will eventually require the integration of disparate Cloud and Radiation Testbed (CART) data sources: whole-sky imagers (WSIs), radar, satellites, ceilometers, volume-imaging lidar, and other sensors. In this paper, we demonstrate how an initial 3-D cloud property, cloud base height, can be determined from fusing paired times series of images from two whole-sky imagers

  5. Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.; Huang, Hung-Lung

    2007-01-01

    A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites.

  6. Cloud Optimized Image Format and Compression

    Science.gov (United States)

    Becker, P.; Plesea, L.; Maurer, T.

    2015-04-01

    Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.

  7. Data fusion of Landsat TM and IRS images in forest classification

    Science.gov (United States)

    Guangxing Wang; Markus Holopainen; Eero Lukkarinen

    2000-01-01

    Data fusion of Landsat TM images and Indian Remote Sensing satellite panchromatic image (IRS-1C PAN) was studied and compared to the use of TM or IRS image only. The aim was to combine the high spatial resolution of IRS-1C PAN to the high spectral resolution of Landsat TM images using a data fusion algorithm. The ground truth of the study was based on a sample of 1,020...

  8. IMAGE TO POINT CLOUD METHOD OF 3D-MODELING

    Directory of Open Access Journals (Sweden)

    A. G. Chibunichev

    2012-07-01

    Full Text Available This article describes the method of constructing 3D models of objects (buildings, monuments based on digital images and a point cloud obtained by terrestrial laser scanner. The first step is the automated determination of exterior orientation parameters of digital image. We have to find the corresponding points of the image and point cloud to provide this operation. Before the corresponding points searching quasi image of point cloud is generated. After that SIFT algorithm is applied to quasi image and real image. SIFT algorithm allows to find corresponding points. Exterior orientation parameters of image are calculated from corresponding points. The second step is construction of the vector object model. Vectorization is performed by operator of PC in an interactive mode using single image. Spatial coordinates of the model are calculated automatically by cloud points. In addition, there is automatic edge detection with interactive editing available. Edge detection is performed on point cloud and on image with subsequent identification of correct edges. Experimental studies of the method have demonstrated its efficiency in case of building facade modeling.

  9. Cardiovascular imaging environment: will the future be cloud-based?

    Science.gov (United States)

    Kawel-Boehm, Nadine; Bluemke, David A

    2017-07-01

    In cardiovascular CT and MR imaging large datasets have to be stored, post-processed, analyzed and distributed. Beside basic assessment of volume and function in cardiac magnetic resonance imaging e.g., more sophisticated quantitative analysis is requested requiring specific software. Several institutions cannot afford various types of software and provide expertise to perform sophisticated analysis. Areas covered: Various cloud services exist related to data storage and analysis specifically for cardiovascular CT and MR imaging. Instead of on-site data storage, cloud providers offer flexible storage services on a pay-per-use basis. To avoid purchase and maintenance of specialized software for cardiovascular image analysis, e.g. to assess myocardial iron overload, MR 4D flow and fractional flow reserve, evaluation can be performed with cloud based software by the consumer or complete analysis is performed by the cloud provider. However, challenges to widespread implementation of cloud services include regulatory issues regarding patient privacy and data security. Expert commentary: If patient privacy and data security is guaranteed cloud imaging is a valuable option to cope with storage of large image datasets and offer sophisticated cardiovascular image analysis for institutions of all sizes.

  10. The algorithm to generate color point-cloud with the registration between panoramic image and laser point-cloud

    International Nuclear Information System (INIS)

    Zeng, Fanyang; Zhong, Ruofei

    2014-01-01

    Laser point cloud contains only intensity information and it is necessary for visual interpretation to obtain color information from other sensor. Cameras can provide texture, color, and other information of the corresponding object. Points with color information of corresponding pixels in digital images can be used to generate color point-cloud and is conducive to the visualization, classification and modeling of point-cloud. Different types of digital cameras are used in different Mobile Measurement Systems (MMS).the principles and processes for generating color point-cloud in different systems are not the same. The most prominent feature of the panoramic images is the field of 360 degrees view angle in the horizontal direction, to obtain the image information around the camera as much as possible. In this paper, we introduce a method to generate color point-cloud with panoramic image and laser point-cloud, and deduce the equation of the correspondence between points in panoramic images and laser point-clouds. The fusion of panoramic image and laser point-cloud is according to the collinear principle of three points (the center of the omnidirectional multi-camera system, the image point on the sphere, the object point). The experimental results show that the proposed algorithm and formulae in this paper are correct

  11. Room temperature mid-IR single photon spectral imaging

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2012-01-01

    Spectral imaging and detection of mid-infrared (mid-IR) wavelengths are emerging as an enabling technology of great technical and scientific interest; primarily because important chemical compounds display unique and strong mid-IR spectral fingerprints revealing valuable chemical information. Whi...... 20 % for polarized incoherent light at 3 \\mum. The proposed method is relevant for existing and new mid-IR applications like gas analysis and medical diagnostics....

  12. Spatiotemporal High-Resolution Cloud Mapping with a Ground-Based IR Scanner

    Directory of Open Access Journals (Sweden)

    Benjamin Brede

    2017-01-01

    Full Text Available The high spatiotemporal variability of clouds requires automated monitoring systems. This study presents a retrieval algorithm that evaluates observations of a hemispherically scanning thermal infrared radiometer, the NubiScope, to produce georeferenced, spatially explicit cloud maps. The algorithm uses atmospheric temperature and moisture profiles and an atmospheric radiative transfer code to differentiate between cloudy and cloudless measurements. In case of a cloud, it estimates its position by using the temperature profile and viewing geometry. The proposed algorithm was tested with 25 cloud maps generated by the Fmask algorithm from Landsat 7 images. The overall cloud detection rate was ranging from 0.607 for zenith angles of 0 to 10° to 0.298 for 50–60° on a pixel basis. The overall detection of cloudless pixels was 0.987 for zenith angles of 30–40° and much more stable over the whole range of zenith angles compared to cloud detection. This proves the algorithm’s capability in detecting clouds, but even better cloudless areas. Cloud-base height was best estimated up to a height of 4000 m compared to ceilometer base heights but showed large deviation above that level. This study shows the potential of the NubiScope system to produce high spatial and temporal resolution cloud maps. Future development is needed for a more accurate determination of cloud height with thermal infrared measurements.

  13. Limb darkening in Venus night-side disk as viewed from Akatsuki IR2

    Science.gov (United States)

    Satoh, Takehiko; Nakakushi, Takashi; Sato, Takao M.; Hashimoto, George L.

    2017-10-01

    Night-side hemisphere of Venus exhibits dark and bright regions as a result of spatially inhomogeneous cloud opacity which is illuminated by infrared radiation from deeper atmosphere. The 2-μm camera (IR2) onboard Akatsuki, Japan's Venus Climate Orbiter, is equipped with three narrow-band filters (1.735, 2.26, and 2.32 μm) to image Venus night-side disk in well-known transparency windows of CO2 atmosphere (Allen and Crawford 1984). In general, a cloud feature appears brightest when it is in the disk center and becomes darker as the zenith angle of emergent light increases. Such limb darkening was observed with Galileo/NIMS and mathematically approximated (Carlson et al., 1993). Limb-darkening correction helps to identify branches, in a 1.74-μm vs. 2.3-μm radiances scatter plot, each of which corresponds to a group of aerosols with similar properties. We analyzed Akatsuki/IR2 images to characterize the limb darkening for three night-side filters.There is, however, contamination from the intense day-side disk blurred by IR2's point spread function (PSF). It is found that infrared light can be multiplly reflected within the Si substrate of IR2 detector (1024x1024 pixels PtSi array), causing elongated tail in the actual PSF. We treated this in two different ways. One is to mathematically approximate the PSF (with a combination of modified Lorentz functions) and another is to differentiate 2.26-μm image from 2.32-μm image so that the blurred light pattern can directly be obtained. By comparing results from these two methods, we are able to reasonablly clean up the night-side images and limb darkening is extracted. Physical interpretation of limb darkening, as well as "true" time variations of cloud brightness will be presented/discussed.

  14. Analysis of the development of missile-borne IR imaging detecting technologies

    Science.gov (United States)

    Fan, Jinxiang; Wang, Feng

    2017-10-01

    Today's infrared imaging guiding missiles are facing many challenges. With the development of targets' stealth, new-style IR countermeasures and penetrating technologies as well as the complexity of the operational environments, infrared imaging guiding missiles must meet the higher requirements of efficient target detection, capability of anti-interference and anti-jamming and the operational adaptability in complex, dynamic operating environments. Missileborne infrared imaging detecting systems are constrained by practical considerations like cost, size, weight and power (SWaP), and lifecycle requirements. Future-generation infrared imaging guiding missiles need to be resilient to changing operating environments and capable of doing more with fewer resources. Advanced IR imaging detecting and information exploring technologies are the key technologies that affect the future direction of IR imaging guidance missiles. Infrared imaging detecting and information exploring technologies research will support the development of more robust and efficient missile-borne infrared imaging detecting systems. Novelty IR imaging technologies, such as Infrared adaptive spectral imaging, are the key to effectively detect, recognize and track target under the complicated operating and countermeasures environments. Innovative information exploring techniques for the information of target, background and countermeasures provided by the detection system is the base for missile to recognize target and counter interference, jamming and countermeasure. Modular hardware and software development is the enabler for implementing multi-purpose, multi-function solutions. Uncooled IRFPA detectors and High-operating temperature IRFPA detectors as well as commercial-off-the-shelf (COTS) technology will support the implementing of low-cost infrared imaging guiding missiles. In this paper, the current status and features of missile-borne IR imaging detecting technologies are summarized. The key

  15. Automatic cloud coverage assessment of Formosat-2 image

    Science.gov (United States)

    Hsu, Kuo-Hsien

    2011-11-01

    Formosat-2 satellite equips with the high-spatial-resolution (2m ground sampling distance) remote sensing instrument. It has been being operated on the daily-revisiting mission orbit by National Space organization (NSPO) of Taiwan since May 21 2004. NSPO has also serving as one of the ground receiving stations for daily processing the received Formosat- 2 images. The current cloud coverage assessment of Formosat-2 image for NSPO Image Processing System generally consists of two major steps. Firstly, an un-supervised K-means method is used for automatically estimating the cloud statistic of Formosat-2 image. Secondly, manual estimation of cloud coverage from Formosat-2 image is processed by manual examination. Apparently, a more accurate Automatic Cloud Coverage Assessment (ACCA) method certainly increases the efficiency of processing step 2 with a good prediction of cloud statistic. In this paper, mainly based on the research results from Chang et al, Irish, and Gotoh, we propose a modified Formosat-2 ACCA method which considered pre-processing and post-processing analysis. For pre-processing analysis, cloud statistic is determined by using un-supervised K-means classification, Sobel's method, Otsu's method, non-cloudy pixels reexamination, and cross-band filter method. Box-Counting fractal method is considered as a post-processing tool to double check the results of pre-processing analysis for increasing the efficiency of manual examination.

  16. Remote sensing image segmentation based on Hadoop cloud platform

    Science.gov (United States)

    Li, Jie; Zhu, Lingling; Cao, Fubin

    2018-01-01

    To solve the problem that the remote sensing image segmentation speed is slow and the real-time performance is poor, this paper studies the method of remote sensing image segmentation based on Hadoop platform. On the basis of analyzing the structural characteristics of Hadoop cloud platform and its component MapReduce programming, this paper proposes a method of image segmentation based on the combination of OpenCV and Hadoop cloud platform. Firstly, the MapReduce image processing model of Hadoop cloud platform is designed, the input and output of image are customized and the segmentation method of the data file is rewritten. Then the Mean Shift image segmentation algorithm is implemented. Finally, this paper makes a segmentation experiment on remote sensing image, and uses MATLAB to realize the Mean Shift image segmentation algorithm to compare the same image segmentation experiment. The experimental results show that under the premise of ensuring good effect, the segmentation rate of remote sensing image segmentation based on Hadoop cloud Platform has been greatly improved compared with the single MATLAB image segmentation, and there is a great improvement in the effectiveness of image segmentation.

  17. Noninvasive enhanced mid-IR imaging of breast cancer development in vivo

    Science.gov (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-11-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy is commonly used to treat breast cancer patients. We are developing an enhanced thermal IR imaging technique that has the potential to provide real-time imaging to guide tissue excision during a lumpectomy by delineating tumor margins. This enhanced thermal imaging method is a combination of IR imaging (8 to 10 μm) and selective heating of blood (˜0.5°C) relative to surrounding water-rich tissue using LED sources at low powers. Postacquisition processing of these images highlights temporal changes in temperature and the presence of vascular structures. In this study, fluorescent, standard thermal, and enhanced thermal imaging modalities, as well as physical caliper measurements, were used to monitor breast cancer tumor volumes over a 30-day study period in 19 mice implanted with 4T1-RFP tumor cells. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after day 22. The tumor volumes estimated from enhanced thermal imaging, standard thermal imaging, and caliper measurements all show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging, standard IR imaging, and caliper measurements with enhanced thermal imaging, indicating that enhanced thermal imaging monitors tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses associated with the tumor margin. In the future, this IR technique might be used to estimate tumor margins in real time during surgical procedures.

  18. Assessment of COTS IR image simulation tools for ATR development

    Science.gov (United States)

    Seidel, Heiko; Stahl, Christoph; Bjerkeli, Frode; Skaaren-Fystro, Paal

    2005-05-01

    Following the tendency of increased use of imaging sensors in military aircraft, future fighter pilots will need onboard artificial intelligence e.g. ATR for aiding them in image interpretation and target designation. The European Aeronautic Defence and Space Company (EADS) in Germany has developed an advanced method for automatic target recognition (ATR) which is based on adaptive neural networks. This ATR method can assist the crew of military aircraft like the Eurofighter in sensor image monitoring and thereby reduce the workload in the cockpit and increase the mission efficiency. The EADS ATR approach can be adapted for imagery of visual, infrared and SAR sensors because of the training-based classifiers of the ATR method. For the optimal adaptation of these classifiers they have to be trained with appropriate and sufficient image data. The training images must show the target objects from different aspect angles, ranges, environmental conditions, etc. Incomplete training sets lead to a degradation of classifier performance. Additionally, ground truth information i.e. scenario conditions like class type and position of targets is necessary for the optimal adaptation of the ATR method. In Summer 2003, EADS started a cooperation with Kongsberg Defence & Aerospace (KDA) from Norway. The EADS/KDA approach is to provide additional image data sets for training-based ATR through IR image simulation. The joint study aims to investigate the benefits of enhancing incomplete training sets for classifier adaptation by simulated synthetic imagery. EADS/KDA identified the requirements of a commercial-off-the-shelf IR simulation tool capable of delivering appropriate synthetic imagery for ATR development. A market study of available IR simulation tools and suppliers was performed. After that the most promising tool was benchmarked according to several criteria e.g. thermal emission model, sensor model, targets model, non-radiometric image features etc., resulting in a

  19. Investigation of conspicuous infrared star cluster and star-forming region RCW 38 IR Cluster

    International Nuclear Information System (INIS)

    Gyulbudaghian, A.L.; May, J.

    2008-01-01

    An infrared star cluster RCW 38 IR Cluster, which is also a massive star-forming region, is investigated. The results of observations with SEST (Cerro is Silla, Chile) telescope on 2.6-mm 12 CO spectral line and with SIMBA on 1.2-mm continuum are given. The 12 CO observations revealed the existence of several molecular clouds, two of which (clouds I and 2) are connected with the object RCW 38 IR Cluster. Cloud 1 is a massive cloud, which has a depression in which the investigated object is embedded. It is not excluded that the depression was formed by the wind and/or emission from the young bright stars belonging to the star cluster. Rotation of cloud 2, around the axis having SE-NW direction, with an angular velocity ω 4.6 · 10 -14 s -1 is also found. A red-shifted outflow with velocity ∼+5.6 km/s, in the SE direction and perpendicular to the elongation of cloud 2 has been also found. The investigated cluster is associated with an IR point source IRAS 08573-4718, which has IR colours typical for a, non-evolved embedded (in the cloud) stellar object. The cluster is also connected with a water maser. The SIMBA image shoves the existence of a central bright condensation, coinciding with the cluster itself, and two extensions. One of these extensions (the one with SW-NE direction) coincides, both in place and shape, with cloud 2, so that it is not excluded the possibility that this extension might be also rotating like cloud 2. In the vicinity of these extensions there are condensations resembling HH objects

  20. Image quality testing of assembled IR camera modules

    Science.gov (United States)

    Winters, Daniel; Erichsen, Patrik

    2013-10-01

    Infrared (IR) camera modules for the LWIR (8-12_m) that combine IR imaging optics with microbolometer focal plane array (FPA) sensors with readout electronics are becoming more and more a mass market product. At the same time, steady improvements in sensor resolution in the higher priced markets raise the requirement for imaging performance of objectives and the proper alignment between objective and FPA. This puts pressure on camera manufacturers and system integrators to assess the image quality of finished camera modules in a cost-efficient and automated way for quality control or during end-of-line testing. In this paper we present recent development work done in the field of image quality testing of IR camera modules. This technology provides a wealth of additional information in contrast to the more traditional test methods like minimum resolvable temperature difference (MRTD) which give only a subjective overall test result. Parameters that can be measured are image quality via the modulation transfer function (MTF) for broadband or with various bandpass filters on- and off-axis and optical parameters like e.g. effective focal length (EFL) and distortion. If the camera module allows for refocusing the optics, additional parameters like best focus plane, image plane tilt, auto-focus quality, chief ray angle etc. can be characterized. Additionally, the homogeneity and response of the sensor with the optics can be characterized in order to calculate the appropriate tables for non-uniformity correction (NUC). The technology can also be used to control active alignment methods during mechanical assembly of optics to high resolution sensors. Other important points that are discussed are the flexibility of the technology to test IR modules with different form factors, electrical interfaces and last but not least the suitability for fully automated measurements in mass production.

  1. Cloud computing in medical imaging.

    Science.gov (United States)

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  2. Cloud2IR: Infrared thermography and environmental sensors integrated in an autonomoussystem for long term monitoring of structures

    Science.gov (United States)

    Crinière, Antoine; Dumoulin, Jean; Mevel, Laurent; Andrade-Barroso, Guillermo

    2016-04-01

    Since late 2014, the project Cloud2SM aims to develop a robust information system able to assess the long term monitoring of civil engineering structures as well as interfacing various sensors and data. Cloud2SM address three main goals, the management of distributed data and sensors network, the asynchronous processing of the data through network and the local management of the sensors themselves [1]. Integrated to this project Cloud2IR is an autonomous sensor system dedicated to the long term monitoring of infrastructures. Past experimentations have shown the need as well as usefulness of such system [2]. Before Cloud2IR an initially laboratory oriented system was used, which implied heavy operating system to be used [3]. Based on such system Cloud2IR has benefited of the experimental knowledge acquired to redefine a lighter architecture based on generics standards, more appropriated to autonomous operations on field and which can be later included in a wide distributed architecture such as Cloud2SM. The sensor system can be divided in two parts. The sensor side, this part is mainly composed by the various sensors drivers themselves as the infrared camera, the weather station or the pyranometers and their different fixed configurations. In our case, as infrared camera are slightly different than other kind of sensors, the system implement in addition an RTSP server which can be used to set up the FOV as well as other measurement parameter considerations. The second part can be seen as the data side, which is common to all sensors. It instantiate through a generic interface all the sensors and control the data access loop (not the requesting). This side of the system is weakly coupled (see data coupling) with the sensor side. It can be seen as a general framework able to aggregate any sensor data, type or size and automatically encapsulate them in various generic data format as HDF5 or cloud data as OGC SWE standard. This whole part is also responsible of the

  3. CLOUD DETECTION OF OPTICAL SATELLITE IMAGES USING SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    K.-Y. Lee

    2016-06-01

    Full Text Available Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012 uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+ and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate

  4. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    Science.gov (United States)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  5. Imaging infrared: Scene simulation, modeling, and real image tracking; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    Science.gov (United States)

    Triplett, Milton J.; Wolverton, James R.; Hubert, August J.

    1989-09-01

    Various papers on scene simulation, modeling, and real image tracking using IR imaging are presented. Individual topics addressed include: tactical IR scene generator, dynamic FLIR simulation in flight training research, high-speed dynamic scene simulation in UV to IR spectra, development of an IR sensor calibration facility, IR celestial background scene description, transmission measurement of optical components at cryogenic temperatures, diffraction model for a point-source generator, silhouette-based tracking for tactical IR systems, use of knowledge in electrooptical trackers, detection and classification of target formations in IR image sequences, SMPRAD: simplified three-dimensional cloud radiance model, IR target generator, recent advances in testing of thermal imagers, generic IR system models with dynamic image generation, modeling realistic target acquisition using IR sensors in multiple-observer scenarios, and novel concept of scene generation and comprehensive dynamic sensor test.

  6. Progress towards NASA MODIS and Suomi NPP Cloud Property Data Record Continuity

    Science.gov (United States)

    Platnick, S.; Meyer, K.; Holz, R.; Ackerman, S. A.; Heidinger, A.; Wind, G.; Platnick, S. E.; Wang, C.; Marchant, B.; Frey, R.

    2017-12-01

    The Suomi NPP VIIRS imager provides an opportunity to extend the 17+ year EOS MODIS climate data record into the next generation operational era. Similar to MODIS, VIIRS provides visible through IR observations at moderate spatial resolution with a 1330 LT equatorial crossing consistent with the MODIS on the Aqua platform. However, unlike MODIS, VIIRS lacks key water vapor and CO2 absorbing channels used for high cloud detection and cloud-top property retrievals. In addition, there is a significant mismatch in the spectral location of the 2.2 μm shortwave-infrared channels used for cloud optical/microphysical retrievals and cloud thermodynamic phase. Given these instrument differences between MODIS EOS and VIIRS S-NPP/JPSS, a merged MODIS-VIIRS cloud record to serve the science community in the coming decades requires different algorithm approaches than those used for MODIS alone. This new approach includes two parallel efforts: (1) Imager-only algorithms with only spectral channels common to VIIRS and MODIS (i.e., eliminate use of MODIS CO2 and NIR/IR water vapor channels). Since the algorithms are run with similar spectral observations, they provide a basis for establishing a continuous cloud data record across the two imagers. (2) Merged imager and sounder measurements (i.e.., MODIS-AIRS, VIIRS-CrIS) in lieu of higher-spatial resolution MODIS absorption channels absent on VIIRS. The MODIS-VIIRS continuity algorithm for cloud optical property retrievals leverages heritage algorithms that produce the existing MODIS cloud mask (MOD35), optical and microphysical properties product (MOD06), and the NOAA AWG Cloud Height Algorithm (ACHA). We discuss our progress towards merging the MODIS observational record with VIIRS in order to generate cloud optical property climate data record continuity across the observing systems. In addition, we summarize efforts to reconcile apparent radiometric biases between analogous imager channels, a critical consideration for

  7. PERIODIC ACCRETION INSTABILITIES IN THE PROTOSTAR L1634 IRS 7

    Energy Technology Data Exchange (ETDEWEB)

    Hodapp, Klaus W. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Chini, Rolf, E-mail: hodapp@ifa.hawaii.edu, E-mail: rolf.chini@astro.ruhr-uni-bochum.de [Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum (Germany)

    2015-11-10

    The small molecular cloud Lynds 1634 contains at least three outflow sources. We found one of these, IRS 7, to be variable with a period of 37.14 ± 0.04 days and an amplitude of approximately 2 mag in the K{sub s} band. The light curve consists of a quiescent phase with little or no variation, and a rapid outburst phase. During the outburst phase, the rapid variation in brightness generates light echoes that propagate into the surrounding molecular cloud, allowing a measurement of the distance to IRS 7 of 404 pc ± 35 pc. We observed only a marginally significant change in the H − K color during the outburst phase. The K-band spectrum of IRS 7 shows CO bandhead emission but its equivalent width does not change significantly with the phase of the light curve. The H{sub 2} 1–0 S(1) line emission does not follow the variability of the continuum flux. We also used the imaging data for a proper motion study of the outflows originating from the IRS 7 and the far-infrared source IRAS 05173-0555, and confirm that these are indeed distinct outflows.

  8. Multi-scale Adaptive Gain Control of IR Images

    NARCIS (Netherlands)

    Schutte, K.

    1997-01-01

    IR imagery tends to have a higher dynamic range then typical display devices such as a CRT. Global methods such as stretching and histogram equalization improve the visibility of many images, but some information in the images stays hidden for a human operator. This paper reports about the

  9. Identification of clouds and aurorae in optical data images

    CERN Document Server

    Seviour, R; Honary, F

    2003-01-01

    In this paper we present an automatic image recognition technique used to identify clouds and aurorae in digital images, taken with a CCD all-sky imager. The image recognition algorithm uses image segmentation to generate a binary block object image. Object analysis is then performed on the binary block image, the results of which are used to assess whether clouds, aurorae and stars are present in the original image. The need for such an algorithm arises because the optical study of particle precipitation into the Earth's atmosphere by the Ionosphere and Radio Propagation Group at Lancaster generates vast data-sets, over 25 000 images/year, making manual classification of all the images impractical.

  10. Featured Image: A Molecular Cloud Outside Our Galaxy

    Science.gov (United States)

    Kohler, Susanna

    2018-06-01

    What do molecular clouds look like outside of our own galaxy? See for yourself in the images above and below of N55, a molecular cloud located in the Large Magellanic Cloud (LMC). In a recent study led by Naslim Neelamkodan (Academia Sinica Institute of Astronomy and Astrophysics, Taiwan), a team of scientists explore N55 to determine how its cloud properties differ from clouds within the Milky Way. The image above reveals the distribution of infrared-emitting gas and dust observed in three bands by the Spitzer Space Telescope. Overplotted in cyan are observations from the Atacama Submillimeter Telescope Experiment tracing the clumpy, warm molecular gas. Below, new observations from the Atacama Large Millimeter/submillimeter Array (ALMA) reveal the sub-parsec-scale molecular clumps in greater detail, showing the correlation of massive clumps with Spitzer-identified young stellar objects (crosses). The study presented here indicates that this cloud in the LMC is the site of massive star formation, with properties similar to equivalent clouds in the Milky Way. To learn more about the authors findings, check out the article linked below.CitationNaslim N. et al 2018 ApJ 853 175. doi:10.3847/1538-4357/aaa5b0

  11. Cloud classification using whole-sky imager data

    Energy Technology Data Exchange (ETDEWEB)

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R. [Sandia National Labs., Livermore, CA (United States)

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  12. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  13. Image registration of naval IR images

    Science.gov (United States)

    Rodland, Arne J.

    1996-06-01

    In a real world application an image from a stabilized sensor on a moving platform will not be 100 percent stabilized. There will always be a small unknown error in the stabilization due to factors such as dynamic deformations in the structure between sensor and reference Inertial Navigation Unit, servo inaccuracies, etc. For a high resolution imaging sensor this stabilization error causes the image to move several pixels in unknown direction between frames. TO be able to detect and track small moving objects from such a sensor, this unknown movement of the sensor image must be estimated. An algorithm that searches for land contours in the image has been evaluated. The algorithm searches for high contrast points distributed over the whole image. As long as moving objects in the scene only cover a small area of the scene, most of the points are located on solid ground. By matching the list of points from frame to frame, the movement of the image due to stabilization errors can be estimated and compensated. The point list is searched for points with diverging movement from the estimated stabilization error. These points are then assumed to be located on moving objects. Points assumed to be located on moving objects are gradually exchanged with new points located in the same area. Most of the processing is performed on the list of points and not on the complete image. The algorithm is therefore very fast and well suited for real time implementation. The algorithm has been tested on images from an experimental IR scanner. Stabilization errors were added artificially to the image such that the output from the algorithm could be compared with the artificially added stabilization errors.

  14. Simultaneous monitoring of ice accretion and thermography of an airfoil: an IR imaging methodology

    International Nuclear Information System (INIS)

    Mohseni, M; Frioult, M; Amirfazli, A

    2012-01-01

    A novel image analysis methodology based on infrared (IR) imaging was developed for simultaneous monitoring of ice accretion and thermography of airfoils. In this study, an IR camera was calibrated and used to measure the surface temperature of the energized airfoils, and monitor the ice accretion and growth pattern on the airfoils’ surfaces. The methodology comprises the automatic processing of a series of IR video frames with the purpose of detecting ice pattern evolution during the icing test period. A specially developed MATLAB code was used to detect the iced areas in the IR images, and simultaneously monitor surface temperature evolution of the airfoil during an icing test. Knowing the correlation between the icing pattern and surface temperature changes during an icing test is essential for energy efficient design of thermal icing mitigation systems. Processed IR images were also used to determine the ice accumulation rate on the airfoil's surface in a given icing test. The proposed methodology has been demonstrated to work successfully, since the optical images taken at the end of icing tests from the airfoils’ surfaces compared well with the processed IR images detecting the ice grown outward from the airfoils’ leading edge area. (paper)

  15. IR imaging of blood circulation of patients with vascular disease

    Science.gov (United States)

    Wang, Hsin; Wade, Dwight R., Jr.; Kam, Jack

    2004-04-01

    We conducted a preliminary IR imaging study of blood circulation in patients with peripheral vascular diseases. Abnormal blood flow is common in older adults, especially those with elevated blood lipids, diabetes, hypertension, and a history of smoking. All of these conditions have a high prevalence in our population, often with more than one condition in the same individual. The differences in blood flow is revealed by temperature differences in areas of the extremities as well as other regions of the body. However, what is needed is an imaging technique that is relatively inexpensive and can reveal the blood flow in real time. The IR imaging can show detailed venous system and small tempearture changes associated with blood flow. Six patients with vascular diseases were tested in a clinic set up. Their legs and feet were imaged. We observed large temperature differences (cooling of more than 10° C) at the foot, especially toes. More valuable information were obtained from the temperature distribution maps. IR thermography is potentially a very valuable tool for medical application, especially for vascular diseases.

  16. A holistic image segmentation framework for cloud detection and extraction

    Science.gov (United States)

    Shen, Dan; Xu, Haotian; Blasch, Erik; Horvath, Gregory; Pham, Khanh; Zheng, Yufeng; Ling, Haibin; Chen, Genshe

    2013-05-01

    Atmospheric clouds are commonly encountered phenomena affecting visual tracking from air-borne or space-borne sensors. Generally clouds are difficult to detect and extract because they are complex in shape and interact with sunlight in a complex fashion. In this paper, we propose a clustering game theoretic image segmentation based approach to identify, extract, and patch clouds. In our framework, the first step is to decompose a given image containing clouds. The problem of image segmentation is considered as a "clustering game". Within this context, the notion of a cluster is equivalent to a classical equilibrium concept from game theory, as the game equilibrium reflects both the internal and external (e.g., two-player) cluster conditions. To obtain the evolutionary stable strategies, we explore three evolutionary dynamics: fictitious play, replicator dynamics, and infection and immunization dynamics (InImDyn). Secondly, we use the boundary and shape features to refine the cloud segments. This step can lower the false alarm rate. In the third step, we remove the detected clouds and patch the empty spots by performing background recovery. We demonstrate our cloud detection framework on a video clip provides supportive results.

  17. The Application of the Technology of 3D Satellite Cloud Imaging in Virtual Reality Simulation

    Directory of Open Access Journals (Sweden)

    Xiao-fang Xie

    2007-05-01

    Full Text Available Using satellite cloud images to simulate clouds is one of the new visual simulation technologies in Virtual Reality (VR. Taking the original data of satellite cloud images as the source, this paper depicts specifically the technology of 3D satellite cloud imaging through the transforming of coordinates and projection, creating a DEM (Digital Elevation Model of cloud imaging and 3D simulation. A Mercator projection was introduced to create a cloud image DEM, while solutions for geodetic problems were introduced to calculate distances, and the outer-trajectory science of rockets was introduced to obtain the elevation of clouds. For demonstration, we report on a computer program to simulate the 3D satellite cloud images.

  18. Cloud Overlapping Detection Algorithm Using Solar and IR Wavelengths With GOSE Data Over ARM/SGP Site

    Science.gov (United States)

    Kawamoto, Kazuaki; Minnis, Patrick; Smith, William L., Jr.

    2001-01-01

    One of the most perplexing problems in satellite cloud remote sensing is the overlapping of cloud layers. Although most techniques assume a 1-layer cloud system in a given retrieval of cloud properties, many observations are affected by radiation from more than one cloud layer. As such, cloud overlap can cause errors in the retrieval of many properties including cloud height, optical depth, phase, and particle size. A variety of methods have been developed to identify overlapped clouds in a given satellite imager pixel. Baum el al. (1995) used CO2 slicing and a spatial coherence method to demonstrate a possible analysis method for nighttime detection of multilayered clouds. Jin and Rossow (1997) also used a multispectral CO2 slicing technique for a global analysis of overlapped cloud amount. Lin et al. (1999) used a combination infrared, visible, and microwave data to detect overlapped clouds over water. Recently, Baum and Spinhirne (2000) proposed 1.6 and 11 microns. bispectral threshold method. While all of these methods have made progress in solving this stubborn problem, none have yet proven satisfactory for continuous and consistent monitoring of multilayer cloud systems. It is clear that detection of overlapping clouds from passive instruments such as satellite radiometers is in an immature stage of development and requires additional research. Overlapped cloud systems also affect the retrievals of cloud properties over the ARM domains (e.g., Minnis et al 1998) and hence should identified as accurately as possible. To reach this goal, it is necessary to determine which information can be exploited for detecting multilayered clouds from operational meteorological satellite data used by ARM. This paper examines the potential information available in spectral data available on the Geostationary Operational Environmental Satellite (GOES) imager and the NOAA Advanced Very High Resolution Radiometer (AVHRR) used over the ARM SGP and NSA sites to study the

  19. Image selection as a service for cloud computing environments

    KAUST Repository

    Filepp, Robert

    2010-12-01

    Customers of Cloud Services are expected to choose specific machine images to instantiate in order to host their workloads. Unfortunately very little information is provided to the users to enable them to make intelligent choices. We believe that as the number of images proliferates it will become increasingly difficult for users to decide effectively. Cloud service providers often allow their customers to instantiate standard system images, to modify their instances, and to store images of these customized instances for public or private future use. Storing modified instances as images enables customers to avoid re-provisioning and re-configuration of required resources thereby reducing their future costs. However Cloud service providers generally do not expose details regarding the configurations of the images in a rigorous canonical fashion nor offer services that assist clients in the best target image selection to support client transformation objectives. Rather, they allow customers to enter a free-form description of an image based on client\\'s best effort. This means in order to find a "best fit" image to instantiate, a human user must review potentially thousands of image descriptions, reading each description to evaluate its suitability as a platform to host their source application. Furthermore, the actual content of the selected image may differ greatly from its description. Finally, even images that have been customized and retained for future use may need additional provisioning and customization to accommodate specific needs. In this paper we propose a service that accumulates image configuration details in a canonical fashion and a further service that employs an algorithm to order images per best fit /least cost in conformance to user-specified policies. These services collectively facilitate workload transformation into enterprise cloud environments.

  20. Research into the usage of integrated jamming of IR weakening and smoke-screen resisting the IR imaging guided missiles

    Science.gov (United States)

    Wang, Long-tao; Jiang, Ning; Lv, Ming-shan

    2015-10-01

    With the emergence of the anti-ship missle with the capability of infrared imaging guidance, the traditional single jamming measures, because of the jamming mechanism and technical flaws or unsuitable use, greatly reduced the survival probability of the war-ship in the future naval battle. Intergrated jamming of IR weakening + smoke-screen Can not only make jamming to the search and tracking of IR imaging guidance system , but also has feasibility in conjunction, besides , which also make the best jamming effect. The research conclusion has important realistic meaning for raising the antimissile ability of surface ships. With the development of guidance technology, infrared guidance system has expanded by ir point-source homing guidance to infrared imaging guidance, Infrared imaging guidance has made breakthrough progress, Infrared imaging guidance system can use two-dimensional infrared image information of the target, achieve the precise tracking. Which has Higher guidance precision, better concealment, stronger anti-interference ability and could Target the key parts. The traditional single infrared smoke screen jamming or infrared decoy flare interference cannot be imposed effective interference. So, Research how to effectively fight against infrared imaging guided weapons threat measures and means, improving the surface ship antimissile ability is an urgent need to solve.

  1. Self-Similar Spin Images for Point Cloud Matching

    Science.gov (United States)

    Pulido, Daniel

    based on the concept of self-similarity to aid in the scale and feature matching steps. An open problem in fusion is how best to extract features from two point clouds and then perform feature-based matching. The proposed approach for this matching step is the use of local self-similarity as an invariant measure to match features. In particular, the proposed approach is to combine the concept of local self-similarity with a well-known feature descriptor, Spin Images, and thereby define "Self-Similar Spin Images". This approach is then extended to the case of matching two points clouds in very different coordinate systems (e.g., a geo-referenced Lidar point cloud and stereo-image derived point cloud without geo-referencing). The use of Self-Similar Spin Images is again applied to address this problem by introducing a "Self-Similar Keyscale" that matches the spatial scales of two point clouds. Another open problem is how best to detect changes in content between two point clouds. A method is proposed to find changes between two point clouds by analyzing the order statistics of the nearest neighbors between the two clouds, and thereby define the "Nearest Neighbor Order Statistic" method. Note that the well-known Hausdorff distance is a special case as being just the maximum order statistic. Therefore, by studying the entire histogram of these nearest neighbors it is expected to yield a more robust method to detect points that are present in one cloud but not the other. This approach is applied at multiple resolutions. Therefore, changes detected at the coarsest level will yield large missing targets and at finer levels will yield smaller targets.

  2. Real-Time Estimation of Volcanic ASH/SO2 Cloud Height from Combined Uv/ir Satellite Observations and Numerical Modeling

    Science.gov (United States)

    Vicente, Gilberto A.

    An efficient iterative method has been developed to estimate the vertical profile of SO2 and ash clouds from volcanic eruptions by comparing near real-time satellite observations with numerical modeling outputs. The approach uses UV based SO2 concentration and IR based ash cloud images, the volcanic ash transport model PUFF and wind speed, height and directional information to find the best match between the simulated and the observed displays. The method is computationally fast and is being implemented for operational use at the NOAA Volcanic Ash Advisory Centers (VAACs) in Washington, DC, USA, to support the Federal Aviation Administration (FAA) effort to detect, track and measure volcanic ash cloud heights for air traffic safety and management. The presentation will show the methodology, results, statistical analysis and SO2 and Aerosol Index input products derived from the Ozone Monitoring Instrument (OMI) onboard the NASA EOS/Aura research satellite and from the Global Ozone Monitoring Experiment-2 (GOME-2) instrument in the MetOp-A. The volcanic ash products are derived from AVHRR instruments in the NOAA POES-16, 17, 18, 19 as well as MetOp-A. The presentation will also show how a VAAC volcanic ash analyst interacts with the system providing initial condition inputs such as location and time of the volcanic eruption, followed by the automatic real-time tracking of all the satellite data available, subsequent activation of the iterative approach and the data/product delivery process in numerical and graphical format for operational applications.

  3. Upconversion applied for mid-IR hyperspectral image acquisition

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Kehlet, Louis Martinus; Sanders, Nicolai Højer

    2015-01-01

    Different schemes for upconversion mid-IR hyperspectral imaging is implemented and compared in terms of spectral coverage, spectral resolution, speed and noise. Phasematch scanning and scanning of the object within the field of view is considered....

  4. RESEARCH OF REGISTRATION APPROACHES OF THERMAL INFRARED IMAGES AND INTENSITY IMAGES OF POINT CLOUD

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-09-01

    Full Text Available In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT,EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  5. Contribution To The Data Warehouse And Prospects Of The IRS Program

    Science.gov (United States)

    Barner, Frithjof; Haydn, Rupert; Parmar, Manish; Makiola, Jens

    2013-12-01

    Over the past two years, the IRS program has again significantly contributed to the GSC-DA Data Warehouse. From its suite of optical EO satellites which operate in the visible, near IR and shortwave IR domain, multispectral data from the HR LISS-III and MR AWiFS sensors have been provided. Both cameras are implemented on board of Resourcesat-1 and Resourcesat-2 respectively. Despite reduced capacities, the Resourcesat constellation of satellites so far acquired cloud-free images of a vast majority of the first HR coverage of CORE_001 and several monthly MR coverages for CORE_008 over the EEA-39. The results regarding the above mentioned data sets will be discussed including an appraisal of the possible future role of upcoming IRS EO satellites for European data requirements.

  6. A spatial study of the mid-IR emission features in four Herbig Ae/Be stars

    NARCIS (Netherlands)

    Boersma, C.; Peeters, E.; Martin-Hernandez, N. L.; van der Wolk, G.; Verhoeff, A. P.; Tielens, A. G. G. M.; Waters, L. B. F. M.; Pel, J. W.

    Context. Infrared (IR) spectroscopy and imaging provide a prime tool to study the characteristics of polycyclic aromatic hydrocarbon (PAH) molecules and the mineralogy in regions of star formation. Herbig Ae/Be stars are known to have varying amounts of natal cloud material present in their

  7. Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method

    Science.gov (United States)

    Minnis, Patrick; Hong, Gang; Sun-Mack, Szedung; Smith, William L.; Chen, Yan; Miller, Steven D.

    2016-05-01

    Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth τ is limited to nonopaque cirrus with τ < 8. The Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN) method is developed in this paper by training Moderate Resolution Imaging Spectroradiometer (MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 µm against CloudSat-estimated τ during the nighttime using 2 months of matched global data from 2007. An independent data set comprising observations from the same 2 months of 2008 was used to validate the ICODIN. One 4-channel and three 3-channel versions of the ICODIN were tested. The training and validation results show that IR channels can be used to estimate ice cloud τ up to 150 with correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. However, τ for the deepest clouds is still underestimated in many instances. The corresponding RMS differences relative to CloudSat are ~100 and ~72%. If the opaque clouds are properly identified with the IR methods, the RMS differences in the retrieved optical depths are ~62%. The 3.7 µm channel appears to be most sensitive to optical depth changes but is constrained by poor precision at low temperatures. A method for estimating total optical depth is explored for estimation of cloud water path in the future. Factors affecting the uncertainties and potential improvements are discussed. With improved techniques for discriminating between opaque and semitransparent ice clouds, the method can ultimately improve cloud property monitoring over the entire diurnal cycle.

  8. An Uneven Illumination Correction Algorithm for Optical Remote Sensing Images Covered with Thin Clouds

    Directory of Open Access Journals (Sweden)

    Xiaole Shen

    2015-09-01

    Full Text Available The uneven illumination phenomenon caused by thin clouds will reduce the quality of remote sensing images, and bring adverse effects to the image interpretation. To remove the effect of thin clouds on images, an uneven illumination correction can be applied. In this paper, an effective uneven illumination correction algorithm is proposed to remove the effect of thin clouds and to restore the ground information of the optical remote sensing image. The imaging model of remote sensing images covered by thin clouds is analyzed. Due to the transmission attenuation, reflection, and scattering, the thin cloud cover usually increases region brightness and reduces saturation and contrast of the image. As a result, a wavelet domain enhancement is performed for the image in Hue-Saturation-Value (HSV color space. We use images with thin clouds in Wuhan area captured by QuickBird and ZiYuan-3 (ZY-3 satellites for experiments. Three traditional uneven illumination correction algorithms, i.e., multi-scale Retinex (MSR algorithm, homomorphic filtering (HF-based algorithm, and wavelet transform-based MASK (WT-MASK algorithm are performed for comparison. Five indicators, i.e., mean value, standard deviation, information entropy, average gradient, and hue deviation index (HDI are used to analyze the effect of the algorithms. The experimental results show that the proposed algorithm can effectively eliminate the influences of thin clouds and restore the real color of ground objects under thin clouds.

  9. 3D Point Cloud Reconstruction from Single Plenoptic Image

    Directory of Open Access Journals (Sweden)

    F. Murgia

    2016-06-01

    Full Text Available Novel plenoptic cameras sample the light field crossing the main camera lens. The information available in a plenoptic image must be processed, in order to create the depth map of the scene from a single camera shot. In this paper a novel algorithm, for the reconstruction of 3D point cloud of the scene from a single plenoptic image, taken with a consumer plenoptic camera, is proposed. Experimental analysis is conducted on several test images, and results are compared with state of the art methodologies. The results are very promising, as the quality of the 3D point cloud from plenoptic image, is comparable with the quality obtained with current non-plenoptic methodologies, that necessitate more than one image.

  10. Synergistic multi-sensor and multi-frequency retrieval of cloud ice water path constrained by CloudSat collocations

    International Nuclear Information System (INIS)

    Islam, Tanvir; Srivastava, Prashant K.

    2015-01-01

    The cloud ice water path (IWP) is one of the major parameters that have a strong influence on earth's radiation budget. Onboard satellite sensors are recognized as valuable tools to measure the IWP in a global scale. Albeit, active sensors such as the Cloud Profiling Radar (CPR) onboard the CloudSat satellite has better capability to measure the ice water content profile, thus, its vertical integral, IWP, than any passive microwave (MW) or infrared (IR) sensors. In this study, we investigate the retrieval of IWP from MW and IR sensors, including AMSU-A, MHS, and HIRS instruments on-board the N19 satellite, such that the retrieval is consistent with the CloudSat IWP estimates. This is achieved through the collocations between the passive satellite measurements and CloudSat scenes. Potential benefit of synergistic multi-sensor multi-frequency retrieval is investigated. Two modeling approaches are explored for the IWP retrieval – generalized linear model (GLM) and neural network (NN). The investigation has been carried out over both ocean and land surface types. The MW/IR synergy is found to be retrieved more accurate IWP than the individual AMSU-A, MHS, or HIRS measurements. Both GLM and NN approaches have been able to exploit the synergistic retrievals. - Highlights: • MW/IR synergy is investigated for IWP retrieval. • The IWP retrieval is modeled using CloudSat collocations. • Two modeling approaches are explored – GLM and ANN. • MW/IR synergy performs better than the MW or IR only retrieval

  11. Retrieval of Ice Cloud Properties Using an Optimal Estimation Algorithm and MODIS Infrared Observations. Part I: Forward Model, Error Analysis, and Information Content

    Science.gov (United States)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2016-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (tau), effective radius (r(sub eff)), and cloud top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary data sets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available.

  12. Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations. Part I: Forward model, error analysis, and information content

    Science.gov (United States)

    Wang, Chenxi; Platnick, Steven; Zhang, Zhibo; Meyer, Kerry; Yang, Ping

    2018-01-01

    An optimal estimation (OE) retrieval method is developed to infer three ice cloud properties simultaneously: optical thickness (τ), effective radius (reff), and cloud-top height (h). This method is based on a fast radiative transfer (RT) model and infrared (IR) observations from the MODerate resolution Imaging Spectroradiometer (MODIS). This study conducts thorough error and information content analyses to understand the error propagation and performance of retrievals from various MODIS band combinations under different cloud/atmosphere states. Specifically, the algorithm takes into account four error sources: measurement uncertainty, fast RT model uncertainty, uncertainties in ancillary datasets (e.g., atmospheric state), and assumed ice crystal habit uncertainties. It is found that the ancillary and ice crystal habit error sources dominate the MODIS IR retrieval uncertainty and cannot be ignored. The information content analysis shows that, for a given ice cloud, the use of four MODIS IR observations is sufficient to retrieve the three cloud properties. However, the selection of MODIS IR bands that provide the most information and their order of importance varies with both the ice cloud properties and the ambient atmospheric and the surface states. As a result, this study suggests the inclusion of all MODIS IR bands in practice since little a priori information is available. PMID:29707470

  13. Cloud cover over the equatorial eastern Pacific derived from July 1983 International Satellite Cloud Climatology Project data using a hybrid bispectral threshold method

    Science.gov (United States)

    Minnis, Patrick; Harrison, Edwin F.; Gibson, Gary G.

    1987-01-01

    A set of visible and IR data obtained with GOES from July 17-31, 1983 is analyzed using a modified version of the hybrid bispectral threshold method developed by Minnis and Harrison (1984). This methodology can be divided into a set of procedures or optional techniques to determine the proper contaminate clear-sky temperature or IR threshold. The various optional techniques are described; the options are: standard, low-temperature limit, high-reflectance limit, low-reflectance limit, coldest pixel and thermal adjustment limit, IR-only low-cloud temperature limit, IR clear-sky limit, and IR overcast limit. Variations in the cloud parameters and the characteristics and diurnal cycles of trade cumulus and stratocumulus clouds over the eastern equatorial Pacific are examined. It is noted that the new method produces substantial changes in about one third of the cloud amount retrieval; and low cloud retrievals are affected most by the new constraints.

  14. Images from Galileo of the Venus cloud deck

    Science.gov (United States)

    Belton, M.J.S.; Gierasch, P.J.; Smith, M.D.; Helfenstein, P.; Schinder, P.J.; Pollack, James B.; Rages, K.A.; Ingersoll, A.P.; Klaasen, K.P.; Veverka, J.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Fanale, F.P.; Greeley, R.; Greenberg, R.; Head, J. W.; Morrison, D.; Neukum, G.; Pilcher, C.B.

    1991-01-01

    Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR. In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

  15. Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction

    Science.gov (United States)

    Su, X.

    2017-12-01

    A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.

  16. Long-term Behaviour Of Venus Winds At Cloud Level From Virtis/vex Observations

    Science.gov (United States)

    Hueso, Ricardo; Peralta, J.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Piccioni, G.; Drossart, P.

    2009-09-01

    The Venus Express (VEX) mission has been in orbit to Venus for more than three years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present an analysis of the overall dynamics of Venus’ atmosphere at both levels using observations that cover a large fraction of the VIRTIS dataset. We will present our latest results concerning the zonal winds, the overall stability in the lower cloud deck motions and the variability in the upper cloud. Meridional winds are also observed in the upper and lower cloud in the UV and IR images obtained with VIRTIS. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present more irregular, variable and less intense motions in the meridional direction. Acknowledgements This work has been funded by Spanish MEC AYA2006-07735 with FEDER support and Grupos Gobierno Vasco IT-464-07. RH acknowledges a "Ramón y Cajal” contract from MEC.

  17. Reflective all-sky thermal infrared cloud imager.

    Science.gov (United States)

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  18. Toward Confirming a Framework for Securing the Virtual Machine Image in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Raid Khalid Hussein

    2017-04-01

    Full Text Available The concept of cloud computing has arisen thanks to academic work in the fields of utility computing, distributed computing, virtualisation, and web services. By using cloud computing, which can be accessed from anywhere, newly-launched businesses can minimise their start-up costs. Among the most important notions when it comes to the construction of cloud computing is virtualisation. While this concept brings its own security risks, these risks are not necessarily related to the cloud. The main disadvantage of using cloud computing is linked to safety and security. This is because anybody which chooses to employ cloud computing will use someone else’s hard disk and CPU in order to sort and store data. In cloud environments, a great deal of importance is placed on guaranteeing that the virtual machine image is safe and secure. Indeed, a previous study has put forth a framework with which to protect the virtual machine image in cloud computing. As such, the present study is primarily concerned with confirming this theoretical framework so as to ultimately secure the virtual machine image in cloud computing. This will be achieved by carrying out interviews with experts in the field of cloud security.

  19. Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    Science.gov (United States)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens

    2018-03-01

    An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.

  20. GIFT-Cloud: A data sharing and collaboration platform for medical imaging research.

    Science.gov (United States)

    Doel, Tom; Shakir, Dzhoshkun I; Pratt, Rosalind; Aertsen, Michael; Moggridge, James; Bellon, Erwin; David, Anna L; Deprest, Jan; Vercauteren, Tom; Ourselin, Sébastien

    2017-02-01

    Clinical imaging data are essential for developing research software for computer-aided diagnosis, treatment planning and image-guided surgery, yet existing systems are poorly suited for data sharing between healthcare and academia: research systems rarely provide an integrated approach for data exchange with clinicians; hospital systems are focused towards clinical patient care with limited access for external researchers; and safe haven environments are not well suited to algorithm development. We have established GIFT-Cloud, a data and medical image sharing platform, to meet the needs of GIFT-Surg, an international research collaboration that is developing novel imaging methods for fetal surgery. GIFT-Cloud also has general applicability to other areas of imaging research. GIFT-Cloud builds upon well-established cross-platform technologies. The Server provides secure anonymised data storage, direct web-based data access and a REST API for integrating external software. The Uploader provides automated on-site anonymisation, encryption and data upload. Gateways provide a seamless process for uploading medical data from clinical systems to the research server. GIFT-Cloud has been implemented in a multi-centre study for fetal medicine research. We present a case study of placental segmentation for pre-operative surgical planning, showing how GIFT-Cloud underpins the research and integrates with the clinical workflow. GIFT-Cloud simplifies the transfer of imaging data from clinical to research institutions, facilitating the development and validation of medical research software and the sharing of results back to the clinical partners. GIFT-Cloud supports collaboration between multiple healthcare and research institutions while satisfying the demands of patient confidentiality, data security and data ownership. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. GEWEX cloud assessment: A review

    Science.gov (United States)

    Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu

    2013-05-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.

  2. Registration of vehicle based panoramic image and LiDAR point cloud

    Science.gov (United States)

    Chen, Changjun; Cao, Liang; Xie, Hong; Zhuo, Xiangyu

    2013-10-01

    Higher quality surface information would be got when data from optical images and LiDAR were integrated, owing to the fact that optical images and LiDAR point cloud have unique characteristics that make them preferable in many applications. While most previous works focus on registration of pinhole perspective cameras to 2D or 3D LiDAR data. In this paper, a method for the registration of vehicle based panoramic image and LiDAR point cloud is proposed. Using the translation among panoramic image, single CCD image, laser scanner and Position and Orientation System (POS) along with the GPS/IMU data, precise co-registration between the panoramic image and the LiDAR point cloud in the world system is achieved. Results are presented under a real world data set collected by a new developed Mobile Mapping System (MMS) integrated with a high resolution panoramic camera, two laser scanners and a POS.

  3. Temporal co-registration for TROPOMI cloud clearing

    Directory of Open Access Journals (Sweden)

    I. Genkova

    2012-03-01

    Full Text Available The TROPOspheric Monitoring Instrument (TROPOMI is anticipated to provide high-quality and timely global atmospheric composition information through observations of atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, methane, formaldehyde and aerosol properties. The methane and the aerosol retrievals require very precise cloud clearing, which is difficult to achieve at the TROPOMI spatial resolution (7 by 7 km and without thermal IR measurements. The TROPOMI carrier – the Sentinel 5 Precursor (S5P, does not include a cloud imager, thus it is planned to fly the S5P mission in a constellation with an instrument yielding an accurate cloud mask. The cloud imagery data will be provided by the US NPOESS Preparatory Project (NPP mission, which will have the Visible Infrared Imager Radiometer Suite (VIIRS on board (Scalione, 2004. This paper investigates the temporal co-registration requirements for suitable time differences between the VIIRS measurements of clouds and the TROPOMI methane and aerosol measurements, so that the former could be used for cloud clearing. The temporal co-registration is studied using Meteosat Second Generation (MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI data with 15 min temporal resolution (Veefkind, 2008b, and with data from the Geostationary Operational Environmental Satellite – 10 (GOES-10 having 1 min temporal resolution. The aim is to understand and assess the relation between the amount of allowed cloud contamination and the required time difference between the two satellites' overflights. Quantitative analysis shows that a time difference of approximately 5 min is sufficient (in most conditions to use the cloud information from the first instrument for cloud clearing in the retrievals using data from the second instrument. In recent years the A-train constellation demonstrated the benefit of flying satellites in formation. Therefore this study's findings will be

  4. Secure public cloud platform for medical images sharing.

    Science.gov (United States)

    Pan, Wei; Coatrieux, Gouenou; Bouslimi, Dalel; Prigent, Nicolas

    2015-01-01

    Cloud computing promises medical imaging services offering large storage and computing capabilities for limited costs. In this data outsourcing framework, one of the greatest issues to deal with is data security. To do so, we propose to secure a public cloud platform devoted to medical image sharing by defining and deploying a security policy so as to control various security mechanisms. This policy stands on a risk assessment we conducted so as to identify security objectives with a special interest for digital content protection. These objectives are addressed by means of different security mechanisms like access and usage control policy, partial-encryption and watermarking.

  5. Preliminary Results from the First Deployment of a Tethered-Balloon Cloud Particle Imager Instrument Package in Arctic Stratus Clouds at Ny-Alesund

    Science.gov (United States)

    Lawson, P.; Stamnes, K.; Stamnes, J.; Zmarzly, P.; O'Connor, D.; Koskulics, J.; Hamre, B.

    2008-12-01

    A tethered balloon system specifically designed to collect microphysical data in mixed-phase clouds was deployed in Arctic stratus clouds during May 2008 near Ny-Alesund, Svalbard, at 79 degrees North Latitude. This is the first time a tethered balloon system with a cloud particle imager (CPI) that records high-resolution digital images of cloud drops and ice particles has been operated in cloud. The custom tether supplies electrical power to the instrument package, which in addition to the CPI houses a 4-pi short-wavelength radiometer and a met package that measures temperature, humidity, pressure, GPS position, wind speed and direction. The instrument package was profiled vertically through cloud up to altitudes of 1.6 km. Since power was supplied to the instrument package from the ground, it was possible to keep the balloon package aloft for extended periods of time, up to 9 hours at Ny- Ålesund, which was limited only by crew fatigue. CPI images of cloud drops and the sizes, shapes and degree of riming of ice particles are shown throughout vertical profiles of Arctic stratus clouds. The images show large regions of mixed-phase cloud from -8 to -2 C. The predominant ice crystal habits in these regions are needles and aggregates of needles. The amount of ice in the mixed-phase clouds varied considerably and did not appear to be a function of temperature. On some occasions, ice was observed near cloud base at -2 C with supercooled cloud above to - 8 C that was devoid of ice. Measurements of shortwave radiation are also presented. Correlations between particle distributions and radiative measurements will be analyzed to determine the effect of these Arctic stratus clouds on radiative forcing.

  6. Influence of Ice Cloud Microphysics on Imager-Based Estimates of Earth's Radiation Budget

    Science.gov (United States)

    Loeb, N. G.; Kato, S.; Minnis, P.; Yang, P.; Sun-Mack, S.; Rose, F. G.; Hong, G.; Ham, S. H.

    2016-12-01

    A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget from the TOA down to the surface along with the associated atmospheric and surface properties that influence it. CERES relies on a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, high-resolution spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. While the TOA radiation budget is largely determined directly from accurate broadband radiometer measurements, the surface radiation budget is derived indirectly through radiative transfer model calculations initialized using imager-based cloud and aerosol retrievals and meteorological assimilation data. Because ice cloud particles exhibit a wide range of shapes, sizes and habits that cannot be independently retrieved a priori from passive visible/infrared imager measurements, assumptions about the scattering properties of ice clouds are necessary in order to retrieve ice cloud optical properties (e.g., optical depth) from imager radiances and to compute broadband radiative fluxes. This presentation will examine how the choice of an ice cloud particle model impacts computed shortwave (SW) radiative fluxes at the top-of-atmosphere (TOA) and surface. The ice cloud particle models considered correspond to those from prior, current and future CERES data product versions. During the CERES Edition2 (and Edition3) processing, ice cloud particles were assumed to be smooth hexagonal columns. In the Edition4, roughened hexagonal columns are assumed. The CERES team is now working on implementing in a future version an ice cloud particle model comprised of a two-habit ice cloud model consisting of roughened hexagonal columns and aggregates of roughened columnar elements. In each case, we use the same ice particle model in both the

  7. Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series

    Science.gov (United States)

    Champion, Nicolas

    2016-06-01

    Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pl

  8. AUTOMATIC DETECTION OF CLOUDS AND SHADOWS USING HIGH RESOLUTION SATELLITE IMAGE TIME SERIES

    Directory of Open Access Journals (Sweden)

    N. Champion

    2016-06-01

    Full Text Available Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8

  9. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    Science.gov (United States)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  10. OpenID Connect as a security service in cloud-based medical imaging systems.

    Science.gov (United States)

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model.

  11. A cloud mask methodology for high resolution remote sensing data combining information from high and medium resolution optical sensors

    Science.gov (United States)

    Sedano, Fernando; Kempeneers, Pieter; Strobl, Peter; Kucera, Jan; Vogt, Peter; Seebach, Lucia; San-Miguel-Ayanz, Jesús

    2011-09-01

    This study presents a novel cloud masking approach for high resolution remote sensing images in the context of land cover mapping. As an advantage to traditional methods, the approach does not rely on thermal bands and it is applicable to images from most high resolution earth observation remote sensing sensors. The methodology couples pixel-based seed identification and object-based region growing. The seed identification stage relies on pixel value comparison between high resolution images and cloud free composites at lower spatial resolution from almost simultaneously acquired dates. The methodology was tested taking SPOT4-HRVIR, SPOT5-HRG and IRS-LISS III as high resolution images and cloud free MODIS composites as reference images. The selected scenes included a wide range of cloud types and surface features. The resulting cloud masks were evaluated through visual comparison. They were also compared with ad-hoc independently generated cloud masks and with the automatic cloud cover assessment algorithm (ACCA). In general the results showed an agreement in detected clouds higher than 95% for clouds larger than 50 ha. The approach produced consistent results identifying and mapping clouds of different type and size over various land surfaces including natural vegetation, agriculture land, built-up areas, water bodies and snow.

  12. Auto-Scaling of Geo-Based Image Processing in an OpenStack Cloud Computing Environment

    Directory of Open Access Journals (Sweden)

    Sanggoo Kang

    2016-08-01

    Full Text Available Cloud computing is a base platform for the distribution of large volumes of data and high-performance image processing on the Web. Despite wide applications in Web-based services and their many benefits, geo-spatial applications based on cloud computing technology are still developing. Auto-scaling realizes automatic scalability, i.e., the scale-out and scale-in processing of virtual servers in a cloud computing environment. This study investigates the applicability of auto-scaling to geo-based image processing algorithms by comparing the performance of a single virtual server and multiple auto-scaled virtual servers under identical experimental conditions. In this study, the cloud computing environment is built with OpenStack, and four algorithms from the Orfeo toolbox are used for practical geo-based image processing experiments. The auto-scaling results from all experimental performance tests demonstrate applicable significance with respect to cloud utilization concerning response time. Auto-scaling contributes to the development of web-based satellite image application services using cloud-based technologies.

  13. Leveraging the Cloud for Robust and Efficient Lunar Image Processing

    Science.gov (United States)

    Chang, George; Malhotra, Shan; Wolgast, Paul

    2011-01-01

    The Lunar Mapping and Modeling Project (LMMP) is tasked to aggregate lunar data, from the Apollo era to the latest instruments on the LRO spacecraft, into a central repository accessible by scientists and the general public. A critical function of this task is to provide users with the best solution for browsing the vast amounts of imagery available. The image files LMMP manages range from a few gigabytes to hundreds of gigabytes in size with new data arriving every day. Despite this ever-increasing amount of data, LMMP must make the data readily available in a timely manner for users to view and analyze. This is accomplished by tiling large images into smaller images using Hadoop, a distributed computing software platform implementation of the MapReduce framework, running on a small cluster of machines locally. Additionally, the software is implemented to use Amazon's Elastic Compute Cloud (EC2) facility. We also developed a hybrid solution to serve images to users by leveraging cloud storage using Amazon's Simple Storage Service (S3) for public data while keeping private information on our own data servers. By using Cloud Computing, we improve upon our local solution by reducing the need to manage our own hardware and computing infrastructure, thereby reducing costs. Further, by using a hybrid of local and cloud storage, we are able to provide data to our users more efficiently and securely. 12 This paper examines the use of a distributed approach with Hadoop to tile images, an approach that provides significant improvements in image processing time, from hours to minutes. This paper describes the constraints imposed on the solution and the resulting techniques developed for the hybrid solution of a customized Hadoop infrastructure over local and cloud resources in managing this ever-growing data set. It examines the performance trade-offs of using the more plentiful resources of the cloud, such as those provided by S3, against the bandwidth limitations such use

  14. Cloud-based processing of multi-spectral imaging data

    Science.gov (United States)

    Bernat, Amir S.; Bolton, Frank J.; Weiser, Reuven; Levitz, David

    2017-03-01

    Multispectral imaging holds great promise as a non-contact tool for the assessment of tissue composition. Performing multi - spectral imaging on a hand held mobile device would allow to bring this technology and with it knowledge to low resource settings to provide a state of the art classification of tissue health. This modality however produces considerably larger data sets than white light imaging and requires preliminary image analysis for it to be used. The data then needs to be analyzed and logged, while not requiring too much of the system resource or a long computation time and battery use by the end point device. Cloud environments were designed to allow offloading of those problems by allowing end point devices (smartphones) to offload computationally hard tasks. For this end we present a method where the a hand held device based around a smartphone captures a multi - spectral dataset in a movie file format (mp4) and compare it to other image format in size, noise and correctness. We present the cloud configuration used for segmenting images to frames where they can later be used for further analysis.

  15. Results from the Two-Year Infrared Cloud Imager Deployment at ARM's NSA Observatory in Barrow, Alaska

    Science.gov (United States)

    Shaw, J. A.; Nugent, P. W.

    2016-12-01

    Ground-based longwave-infrared (LWIR) cloud imaging can provide continuous cloud measurements in the Arctic. This is of particular importance during the Arctic winter when visible wavelength cloud imaging systems cannot operate. This method uses a thermal infrared camera to observe clouds and produce measurements of cloud amount and cloud optical depth. The Montana State University Optical Remote Sensor Laboratory deployed an infrared cloud imager (ICI) at the Atmospheric Radiation Monitoring North Slope of Alaska site at Barrow, AK from July 2012 through July 2014. This study was used to both understand the long-term operation of an ICI in the Arctic and to study the consistency of the ICI data products in relation to co-located active and passive sensors. The ICI was found to have a high correlation (> 0.92) with collocated cloud instruments and to produce an unbiased data product. However, the ICI also detects thin clouds that are not detected by most operational cloud sensors. Comparisons with high-sensitivity actively sensed cloud products confirm the existence of these thin clouds. Infrared cloud imaging systems can serve a critical role in developing our understanding of cloud cover in the Arctic by provided a continuous annual measurement of clouds at sites of interest.

  16. Automatic registration of terrestrial point cloud using panoramic reflectance images

    NARCIS (Netherlands)

    Kang, Z.

    2008-01-01

    Much attention is paid to registration of terrestrial point clouds nowadays. Research is carried out towards improved efficiency and automation of the registration process. This paper reports a new approach for point clouds registration utilizing reflectance panoramic images. The approach follows a

  17. Low level cloud motion vectors from Kalpana-1 visible images

    Indian Academy of Sciences (India)

    . In this paper, an attempt has been made to retrieve low-level cloud motion vectors using Kalpana-1 visible (VIS) images at every half an hour. The VIS channel provides better detection of low level clouds, which remain obscure in thermal IR ...

  18. Atmospheric Profiles, Clouds and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas

    Science.gov (United States)

    2014-09-30

    developed by incorporating the proposed IR sensors and ground-sky temperature difference algorithm into a tethered balloon borne payload (Figure 3...into the cloud base. RESULTS FROM FY 2014 • A second flight of the tethered balloon -borne IR cloud margin sensor was conducted in Colorado on...Figure 3: Tethered balloon -borne IR sensing payload IR Cloud Margin Sensor Figure 4: First successful flight validation of the IR cloud

  19. Cloud Image Data Center for Healthcare Network in Taiwan.

    Science.gov (United States)

    Weng, Shao-Jen; Lai, Lai-Shiun; Gotcher, Donald; Wu, Hsin-Hung; Xu, Yeong-Yuh; Yang, Ching-Wen

    2016-04-01

    This paper investigates how a healthcare network in Taiwan uses a practical cloud image data center (CIDC) to communicate with its constituent hospital branches. A case study approach was used. The study was carried out in the central region of Taiwan, with four hospitals belonging to the Veterans Hospital healthcare network. The CIDC provides synchronous and asynchronous consultation among these branches. It provides storage, platforms, and services on demand to the hospitals. Any branch-client can pull up the patient's medical images from any hospital off this cloud. Patients can be examined at the branches, and the images and reports can be further evaluated by physicians in the main Taichung Veterans General Hospital (TVGH) to enhance the usage and efficiency of equipment in the various branches, thereby shortening the waiting time of patients. The performance of the CIDC over 5 years shows: (1) the total number of cross-hospital images accessed with CDC in the branches was 132,712; and (2) TVGH assisted the branches in keying in image reports using the CIDC 4,424 times; and (3) Implementation of the system has improved management, efficiency, speed and quality of care. Therefore, the results lead to the recommendation of continuing and expanding the cloud computing architecture to improve information sharing among branches in the healthcare network.

  20. Small Galactic H II regions. II. The molecular clouds and star formation

    International Nuclear Information System (INIS)

    Hunter, D.A.; Thronson, H.A. Jr.; Wilton, C.

    1990-01-01

    CO maps of molecular clouds associated with 11 small Galactic H II regions are presented and compared with IR images obtained by IRAS. The molecular masses of the clouds are computed and compared with the masses of the stellar content. The mapped clouds have masses of 1000-60,000 solar and are typical of the more numerous, smaller Galactic molecular clouds. All of the clouds have recently made massive OB stars, and many have complex spatial and kinematic structures. The coincidence of IRAS sources and CO peaks suggests that many of the clouds have sites of star formation other than the optically visible H II region. Star-formation efficiencies are uncertain, with values for the clouds ranging from 0.02 to 0.6 with an average value of 0.2. There is no trend of the upper stellar mass limit with Galactic radius and with molecular cloud mass. 53 refs

  1. The Use of the Deep Convective Cloud Technique (DCCT) to Monitor On-Orbit Performance of the Geostationary Lightning Mapper (GLM): Use of Lightning Imaging Sensor (LIS) Data as Proxy

    Science.gov (United States)

    Buechler, Dennis E.; Christian, H. J.; Koshak, William J.; Goodman, Steve J.

    2013-01-01

    The Geostationary Lightning Mapper (GLM) on the next generation Geostationary Operational Environmental Satellite-R (GOES-R) will not have onboard calibration capability to monitor its performance. The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite has been providing observations of total lightning over the Earth's Tropics since 1997. The GLM design is based on LIS heritage, making it a good proxy dataset. This study examines the performance of LIS throughout its time in orbit. This was accomplished through application of the Deep Convective Cloud Technique (DCCT) (Doelling et al., 2004) to LIS background pixel radiance data. The DCCT identifies deep convective clouds by their cold Infrared (IR) brightness temperatures and using them as invariant targets in the solar reflective portion of the solar spectrum. The GLM and LIS operate in the near-IR at a wavelength of 777.4 nm. In the present study the IR data is obtained from the Visible Infrared Sensor (VIRS) which is collocated with LIS onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The DCCT is applied to LIS observations for July and August of each year from 1998-2010. The resulting distributions of LIS background DCC pixel radiance for each July August are very similar, indicating stable performance. The mean radiance of the DCCT analysis does not show a long term trend and the maximum deviation of the July August mean radiance for each year is within 0.7% of the overall mean. These results demonstrate that there has been no discernible change in LIS performance throughout its lifetime. A similar approach will used for monitoring the performance of GLM, with cold clouds identified using IR data from the Advanced Baseline Imager (ABI) which will also be located on GOES-R. Since GLM is based on LIS design heritage, the LIS results indicate that GLM should also experience stable performance over its lifetime.

  2. Virtual Machine Images Management in Cloud Environments

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Nowadays, the demand for scalability in distributed systems has led a design philosophy in which virtual resources need to be configured in a flexible way to provide services to a large number of users. The configuration and management of such an architecture is challenging (e.g.: 100,000 compute cores on the private cloud together with thousands of cores on external cloud resources). There is the need to process CPU intensive work whilst ensuring that the resources are shared fairly between different users of the system, and guarantee that all nodes are up to date with new images containing the latest software configurations. Different types of automated systems can be used to facilitate the orchestration. CERN’s current system, composed of different technologies such as OpenStack, Packer, Puppet, Rundeck and Docker will be introduced and explained, together with the process used to create new Virtual Machines images at CERN.

  3. 12MAP: Cloud Disaster Recovery Based on Image-Instance Mapping

    OpenAIRE

    Nadgowda , Shripad; Jayachandran , Praveen; Verma , Akshat

    2013-01-01

    Part 2: Cloud Computing; International audience; Virtual machines (VMs) in a cloud use standardized ‘golden master’ images, standard software catalog and management tools. This facilitates quick provisioning of VMs and helps reduce the cost of managing the cloud by reducing the need for specialized software skills. However, knowledge of this similarity is lost post-provisioning, as VMs could experience different changes and may drift away from one another. In this work, we propose the 12MAP s...

  4. Monitoring combat wound healing by IR hyperspectral imaging

    Science.gov (United States)

    Howle, Chris R.; Spear, Abigail M.; Gazi, Ehsan; Crane, Nicole J.

    2016-03-01

    In recent conflicts, battlefield injuries consist largely of extensive soft injuries from blasts and high energy projectiles, including gunshot wounds. Repair of these large, traumatic wounds requires aggressive surgical treatment, including multiple surgical debridements to remove devitalised tissue and to reduce bacterial load. Identifying those patients with wound complications, such as infection and impaired healing, could greatly assist health care teams in providing the most appropriate and personalised care for combat casualties. Candidate technologies to enable this benefit include the fusion of imaging and optical spectroscopy to enable rapid identification of key markers. Hence, a novel system based on IR negative contrast imaging (NCI) is presented that employs an optical parametric oscillator (OPO) source comprising a periodically-poled LiNbO3 (PPLN) crystal. The crystal operates in the shortwave and midwave IR spectral regions (ca. 1.5 - 1.9 μm and 2.4 - 3.8 μm, respectively). Wavelength tuning is achieved by translating the crystal within the pump beam. System size and complexity are minimised by the use of single element detectors and the intracavity OPO design. Images are composed by raster scanning the monochromatic beam over the scene of interest; the reflection and/or absorption of the incident radiation by target materials and their surrounding environment provide a method for spatial location. Initial results using the NCI system to characterise wound biopsies are presented here.

  5. Cloud solution for histopathological image analysis using region of interest based compression.

    Science.gov (United States)

    Kanakatte, Aparna; Subramanya, Rakshith; Delampady, Ashik; Nayak, Rajarama; Purushothaman, Balamuralidhar; Gubbi, Jayavardhana

    2017-07-01

    Recent technological gains have led to the adoption of innovative cloud based solutions in medical imaging field. Once the medical image is acquired, it can be viewed, modified, annotated and shared on many devices. This advancement is mainly due to the introduction of Cloud computing in medical domain. Tissue pathology images are complex and are normally collected at different focal lengths using a microscope. The single whole slide image contains many multi resolution images stored in a pyramidal structure with the highest resolution image at the base and the smallest thumbnail image at the top of the pyramid. Highest resolution image will be used for tissue pathology diagnosis and analysis. Transferring and storing such huge images is a big challenge. Compression is a very useful and effective technique to reduce the size of these images. As pathology images are used for diagnosis, no information can be lost during compression (lossless compression). A novel method of extracting the tissue region and applying lossless compression on this region and lossy compression on the empty regions has been proposed in this paper. The resulting compression ratio along with lossless compression on tissue region is in acceptable range allowing efficient storage and transmission to and from the Cloud.

  6. COMPARISON OF POINT CLOUDS DERIVED FROM AERIAL IMAGE MATCHING WITH DATA FROM AIRBORNE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    Dominik Wojciech

    2017-04-01

    Full Text Available The aim of this study was to invest igate the properties of point clouds derived from aerial image matching and to compare them with point clouds from airborne laser scanning. A set of aerial images acquired in years 2010 - 2013 over the city of Elblag were used for the analysis. Images were acquired with the use of three digital cameras: DMC II 230, DMC I and DigiCAM60 with a GSD varying from 4.5 cm to 15 cm. Eight sets of images that were used in the study were acquired at different stages of the growing season – from March to December. Two L iDAR point clouds were used for the comparison – one with a density of 1.3 p/m 2 and a second with a density of 10 p/m 2 . Based on the input images point clouds were created with the use of the semi - global matching method. The properties of the obtained poi nt clouds were analyzed in three ways: – b y the comparison of the vertical accuracy of point clouds with reference to a terrain profile surveyed on bare ground with GPS - RTK method – b y visual assessment of point cloud profiles generated both from SGM and LiDAR point clouds – b y visual assessment of a digital surface model generated from a SGM point cloud with reference to a digital surface model generated from a LiDAR point cloud. The conducted studies allowed a number of observations about the quality o f SGM point clouds to be formulated with respect to different factors. The main factors having influence on the quality of SGM point clouds are GSD and base/height ratio. The essential problem related to SGM point clouds are areas covered with vegetation w here SGM point clouds are visibly worse in terms of both accuracy and the representation of terrain surface. It is difficult to expect that in these areas SG M point clouds could replace LiDAR point clouds. This leads to a general conclusion that SGM point clouds are less reliable, more unpredictable and are dependent on more factors than LiDAR point clouds. Nevertheless, SGM point

  7. Infrared reflection nebulae in Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Pendleton, Y.; Werner, M.W.; Capps, R.; Lester, D.; Hawaii Univ., Honolulu; Texas Univ., Austin)

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08. 27 references

  8. Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing

    Science.gov (United States)

    Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane

    2012-01-01

    Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then

  9. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.

    2014-05-01

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.

  10. CubeSat Constellation Cloud Winds(C3Winds) A New Wind Observing System to Study Mesoscale Cloud Dynamics and Processes

    Science.gov (United States)

    Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.; hide

    2016-01-01

    The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.

  11. Cloud Classification in Wide-Swath Passive Sensor Images Aided by Narrow-Swath Active Sensor Data

    Directory of Open Access Journals (Sweden)

    Hongxia Wang

    2018-05-01

    Full Text Available It is a challenge to distinguish between different cloud types because of the complexity and diversity of cloud coverage, which is a significant clutter source that impacts on target detection and identification from the images of space-based infrared sensors. In this paper, a novel strategy for cloud classification in wide-swath passive sensor images is developed, which is aided by narrow-swath active sensor data. The strategy consists of three steps, that is, the orbit registration, most matching donor pixel selection, and cloud type assignment for each recipient pixel. A new criterion for orbit registration is proposed so as to improve the matching accuracy. The most matching donor pixel is selected via the Euclidean distance and the square sum of the radiance relative differences between the recipient and the potential donor pixels. Each recipient pixel is then assigned a cloud type that corresponds to the most matching donor. The cloud classification of the Moderate Resolution Imaging Spectroradiometer (MODIS images is performed with the aid of the data from Cloud Profiling Radar (CPR. The results are compared with the CloudSat product 2B-CLDCLASS, as well as those that are obtained using the method of the International Satellite Cloud Climatology Project (ISCCP, which demonstrates the superior classification performance of the proposed strategy.

  12. An Improved Cloud Classification Algorithm for China's FY-2C Multi-Channel Images Using Artificial Neural Network.

    Science.gov (United States)

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  13. A Classification-oriented Method of Feature Image Generation for Vehicle-borne Laser Scanning Point Clouds

    Directory of Open Access Journals (Sweden)

    YANG Bisheng

    2016-02-01

    Full Text Available An efficient method of feature image generation of point clouds to automatically classify dense point clouds into different categories is proposed, such as terrain points, building points. The method first uses planar projection to sort points into different grids, then calculates the weights and feature values of grids according to the distribution of laser scanning points, and finally generates the feature image of point clouds. Thus, the proposed method adopts contour extraction and tracing means to extract the boundaries and point clouds of man-made objects (e.g. buildings and trees in 3D based on the image generated. Experiments show that the proposed method provides a promising solution for classifying and extracting man-made objects from vehicle-borne laser scanning point clouds.

  14. An Intelligent Cloud Storage Gateway for Medical Imaging.

    Science.gov (United States)

    Viana-Ferreira, Carlos; Guerra, António; Silva, João F; Matos, Sérgio; Costa, Carlos

    2017-09-01

    Historically, medical imaging repositories have been supported by indoor infrastructures. However, the amount of diagnostic imaging procedures has continuously increased over the last decades, imposing several challenges associated with the storage volume, data redundancy and availability. Cloud platforms are focused on delivering hardware and software services over the Internet, becoming an appealing solution for repository outsourcing. Although this option may bring financial and technological benefits, it also presents new challenges. In medical imaging scenarios, communication latency is a critical issue that still hinders the adoption of this paradigm. This paper proposes an intelligent Cloud storage gateway that optimizes data access times. This is achieved through a new cache architecture that combines static rules and pattern recognition for eviction and prefetching. The evaluation results, obtained from experiments over a real-world dataset, show that cache hit ratios can reach around 80%, leading to reductions of image retrieval times by over 60%. The combined use of eviction and prefetching policies proposed can significantly reduce communication latency, even when using a small cache in comparison to the total size of the repository. Apart from the performance gains, the proposed system is capable of adjusting to specific workflows of different institutions.

  15. FT-IR imaging for quantitative determination of liver fat content in non-alcoholic fatty liver.

    Science.gov (United States)

    Kochan, K; Maslak, E; Chlopicki, S; Baranska, M

    2015-08-07

    In this work we apply FT-IR imaging of large areas of liver tissue cross-section samples (∼5 cm × 5 cm) for quantitative assessment of steatosis in murine model of Non-Alcoholic Fatty Liver (NAFLD). We quantified the area of liver tissue occupied by lipid droplets (LDs) by FT-IR imaging and Oil Red O (ORO) staining for comparison. Two alternative FT-IR based approaches are presented. The first, straightforward method, was based on average spectra from tissues and provided values of the fat content by using a PLS regression model and the reference method. The second one – the chemometric-based method – enabled us to determine the values of the fat content, independently of the reference method by means of k-means cluster (KMC) analysis. In summary, FT-IR images of large size liver sections may prove to be useful for quantifying liver steatosis without the need of tissue staining.

  16. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  17. AUTOMATIC CLOUD DETECTION FROM MULTI-TEMPORAL SATELLITE IMAGES: TOWARDS THE USE OF PLÉIADES TIME SERIES

    Directory of Open Access Journals (Sweden)

    N. Champion

    2012-08-01

    Full Text Available Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images and is based on a region-growing procedure. Seeds (corresponding to clouds are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images. Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011. In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.

  18. A novel technique for extracting clouds base height using ground based imaging

    Directory of Open Access Journals (Sweden)

    E. Hirsch

    2011-01-01

    Full Text Available The height of a cloud in the atmospheric column is a key parameter in its characterization. Several remote sensing techniques (passive and active, either ground-based or on space-borne platforms and in-situ measurements are routinely used in order to estimate top and base heights of clouds. In this article we present a novel method that combines thermal imaging from the ground and sounded wind profile in order to derive the cloud base height. This method is independent of cloud types, making it efficient for both low boundary layer and high clouds. In addition, using thermal imaging ensures extraction of clouds' features during daytime as well as at nighttime. The proposed technique was validated by comparison to active sounding by ceilometers (which is a standard ground based method, to lifted condensation level (LCL calculations, and to MODIS products obtained from space. As all passive remote sensing techniques, the proposed method extracts only the height of the lowest cloud layer, thus upper cloud layers are not detected. Nevertheless, the information derived from this method can be complementary to space-borne cloud top measurements when deep-convective clouds are present. Unlike techniques such as LCL, this method is not limited to boundary layer clouds, and can extract the cloud base height at any level, as long as sufficient thermal contrast exists between the radiative temperatures of the cloud and its surrounding air parcel. Another advantage of the proposed method is its simplicity and modest power needs, making it particularly suitable for field measurements and deployment at remote locations. Our method can be further simplified for use with visible CCD or CMOS camera (although nighttime clouds will not be observed.

  19. A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.

    Science.gov (United States)

    Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo

    2015-01-01

    The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images.

  20. Venus: cloud level circulation during 1982 as determined from Pioneer cloud photopolarimeter images. 11. Solar longitude dependent circulation

    International Nuclear Information System (INIS)

    Limaye, S.S.

    1988-01-01

    Pioneer Venus Orbiter images obtained in 1982 indicate a marked solar-locked dependence of cloud level circulation in both averaged cloud motions and cloud layer UV reflectivity. An apparent relationship is noted between horizontal divergence and UV reflectivity: the highest reflectivities are associated with regions of convergence at high latitudes, while lower values are associated with equatorial latitude regions where the motions are divergent. In solar-locked coordinates, the rms deviation of normalized UV brightness is higher at 45-deg latitudes than in equatorial regions. 37 references

  1. Testing a polarimetric cloud imager aboard research vessel Polarstern: comparison of color-based and polarimetric cloud detection algorithms.

    Science.gov (United States)

    Barta, András; Horváth, Gábor; Horváth, Ákos; Egri, Ádám; Blahó, Miklós; Barta, Pál; Bumke, Karl; Macke, Andreas

    2015-02-10

    Cloud cover estimation is an important part of routine meteorological observations. Cloudiness measurements are used in climate model evaluation, nowcasting solar radiation, parameterizing the fluctuations of sea surface insolation, and building energy transfer models of the atmosphere. Currently, the most widespread ground-based method to measure cloudiness is based on analyzing the unpolarized intensity and color distribution of the sky obtained by digital cameras. As a new approach, we propose that cloud detection can be aided by the additional use of skylight polarization measured by 180° field-of-view imaging polarimetry. In the fall of 2010, we tested such a novel polarimetric cloud detector aboard the research vessel Polarstern during expedition ANT-XXVII/1. One of our goals was to test the durability of the measurement hardware under the extreme conditions of a trans-Atlantic cruise. Here, we describe the instrument and compare the results of several different cloud detection algorithms, some conventional and some newly developed. We also discuss the weaknesses of our design and its possible improvements. The comparison with cloud detection algorithms developed for traditional nonpolarimetric full-sky imagers allowed us to evaluate the added value of polarimetric quantities. We found that (1) neural-network-based algorithms perform the best among the investigated schemes and (2) global information (the mean and variance of intensity), nonoptical information (e.g., sun-view geometry), and polarimetric information (e.g., the degree of polarization) improve the accuracy of cloud detection, albeit slightly.

  2. Cloud cover detection combining high dynamic range sky images and ceilometer measurements

    Science.gov (United States)

    Román, R.; Cazorla, A.; Toledano, C.; Olmo, F. J.; Cachorro, V. E.; de Frutos, A.; Alados-Arboledas, L.

    2017-11-01

    This paper presents a new algorithm for cloud detection based on high dynamic range images from a sky camera and ceilometer measurements. The algorithm is also able to detect the obstruction of the sun. This algorithm, called CPC (Camera Plus Ceilometer), is based on the assumption that under cloud-free conditions the sky field must show symmetry. The symmetry criteria are applied depending on ceilometer measurements of the cloud base height. CPC algorithm is applied in two Spanish locations (Granada and Valladolid). The performance of CPC retrieving the sun conditions (obstructed or unobstructed) is analyzed in detail using as reference pyranometer measurements at Granada. CPC retrievals are in agreement with those derived from the reference pyranometer in 85% of the cases (it seems that this agreement does not depend on aerosol size or optical depth). The agreement percentage goes down to only 48% when another algorithm, based on Red-Blue Ratio (RBR), is applied to the sky camera images. The retrieved cloud cover at Granada and Valladolid is compared with that registered by trained meteorological observers. CPC cloud cover is in agreement with the reference showing a slight overestimation and a mean absolute error around 1 okta. A major advantage of the CPC algorithm with respect to the RBR method is that the determined cloud cover is independent of aerosol properties. The RBR algorithm overestimates cloud cover for coarse aerosols and high loads. Cloud cover obtained only from ceilometer shows similar results than CPC algorithm; but the horizontal distribution cannot be obtained. In addition, it has been observed that under quick and strong changes on cloud cover ceilometers retrieve a cloud cover fitting worse with the real cloud cover.

  3. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Chun-Xiang Shi

    2009-07-01

    Full Text Available The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C data. First, the capabilities of six widely-used Artificial Neural Network (ANN methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA and a Support Vector Machine (SVM, using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm imagery. The result shows that: (1 ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2 among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM and Probabilistic Neural Network (PNN. Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  4. University of California, San Diego (UCSD) Sky Imager Cloud Position Study Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kleissl, J. [Univ. of California, San Diego, CA (United States); Urquhart, B. [Univ. of California, San Diego, CA (United States); Ghonima, M. [Univ. of California, San Diego, CA (United States); Dahlin, E. [Univ. of California, San Diego, CA (United States); Nguyen, A. [Univ. of California, San Diego, CA (United States); Kurtz, B. [Univ. of California, San Diego, CA (United States); Chow, C. W. [Univ. of California, San Diego, CA (United States); Mejia, F. A. [Univ. of California, San Diego, CA (United States)

    2016-04-01

    During the University of California, San Diego (UCSD) Sky Imager Cloud Position Study, two University of California, San Diego Sky Imagers (USI) (Figure 1) were deployed the U.S. Department of Energy(DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains SGP) research facility. The UCSD Sky Imagers were placed 1.7 km apart to allow for stereographic determination of the cloud height for clouds over approximately 1.5 km. Images with a 180-degree field of view were captured from both systems during daylight hours every 30 seconds beginning on March 11, 2013 and ending on November 4, 2013. The spatial resolution of the images was 1,748 × 1,748, and the intensity resolution was 16 bits using a high-dynamic-range capture process. The cameras use a fisheye lens, so the images are distorted following an equisolid angle projection.

  5. Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†

    Science.gov (United States)

    Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi

    2018-04-01

    Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.

  6. Mid-infrared multi-wavelength imaging of Ophiuchus IRS 48 transitional disk†

    Science.gov (United States)

    Honda, Mitsuhiko; Okada, Kazushi; Miyata, Takashi; Mulders, Gijs D.; Swearingen, Jeremy R.; Kamizuka, Takashi; Ohsawa, Ryou; Fujiyoshi, Takuya; Fujiwara, Hideaki; Uchiyama, Mizuho; Yamashita, Takuya; Onaka, Takashi

    2018-06-01

    Transitional disks around the Herbig Ae/Be stars are fascinating targets in the contexts of disk evolution and planet formation. Oph IRS 48 is one of such Herbig Ae stars, which shows an inner dust cavity and azimuthally lopsided large dust distribution. We present new images of Oph IRS 48 at eight mid-infrared (MIR) wavelengths from 8.59 to 24.6 μm taken with COMICS mounted on the 8.2 m Subaru Telescope. The N-band (7 to 13 μm) images show that the flux distribution is centrally peaked with a slight spatial extent, while the Q-band (17 to 25 μm) images show asymmetric double peaks (east and west). Using 18.8- and 24.6 μm images, we derived the dust temperature at both east and west peaks to be 135 ± 22 K. Thus, the asymmetry may not be attributed to a difference in the temperature. Comparing our results with previous modeling works, we conclude that the inner disk is aligned to the outer disk. A shadow cast by the optically thick inner disk has a great influence on the morphology of MIR thermal emission from the outer disk.

  7. Creating cloud-free Landsat ETM+ data sets in tropical landscapes: cloud and cloud-shadow removal

    Science.gov (United States)

    Sebastián Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez

    2007-01-01

    Clouds and cloud shadows are common features of visible and infrared remotelysensed images collected from many parts of the world, particularly in humid and tropical regions. We have developed a simple and semiautomated method to mask clouds and shadows in Landsat ETM+ imagery, and have developed a recent cloud-free composite of multitemporal images for Puerto Rico and...

  8. Pediatric Trauma Transfer Imaging Inefficiencies-Opportunities for Improvement with Cloud Technology.

    Science.gov (United States)

    Puckett, Yana; To, Alvin

    2016-01-01

    This study examines the inefficiencies of radiologic imaging transfers from one hospital to the other during pediatric trauma transfers in an era of cloud based information sharing. Retrospective review of all patients transferred to a pediatric trauma center from 2008-2014 was performed. Imaging was reviewed for whether imaging accompanied the patient, whether imaging was able to be uploaded onto computer for records, whether imaging had to be repeated, and whether imaging obtained at outside hospitals (OSH) was done per universal pediatric trauma guidelines. Of the 1761 patients retrospectively reviewed, 559 met our inclusion criteria. Imaging was sent with the patient 87.7% of the time. Imaging was unable to be uploaded 31.9% of the time. CT imaging had to be repeated 1.8% of the time. CT scan was not done per universal pediatric trauma guidelines 1.2% of the time. Our study demonstrated that current imaging transfer is inefficient, leads to excess ionizing radiation, and increased healthcare costs. Universal implementation of cloud based radiology has the potential to eliminate excess ionizing radiation to children, improve patient care, and save cost to healthcare system.

  9. Pediatric Trauma Transfer Imaging Inefficiencies—Opportunities for Improvement with Cloud Technology

    Directory of Open Access Journals (Sweden)

    Yana Puckett

    2016-02-01

    Full Text Available BACKGROUND: This study examines the inefficiencies of radiologic imaging transfers from one hospital to the other during pediatric trauma transfers in an era of cloud based information sharing. METHODS: Retrospective review of all patients transferred to a pediatric trauma center from 2008–2014 was performed. Imaging was reviewed for whether imaging accompanied the patient, whether imaging was able to be uploaded onto computer for records, whether imaging had to be repeated, and whether imaging obtained at outside hospitals (OSH was done per universal pediatric trauma guidelines. RESULTS: Of the 1761 patients retrospectively reviewed, 559 met our inclusion criteria. Imaging was sent with the patient 87.7% of the time. Imaging was unable to be uploaded 31.9% of the time. CT imaging had to be repeated 1.8% of the time. CT scan was not done per universal pediatric trauma guidelines 1.2% of the time. CONCLUSION: Our study demonstrated that current imaging transfer is inefficient, leads to excess ionizing radiation, and increased healthcare costs. Universal implementation of cloud based radiology has the potential to eliminate excess ionizing radiation to children, improve patient care, and save cost to healthcare system.

  10. The relationships between precipitation, convective cloud and tropical cyclone intensity change

    Science.gov (United States)

    Ruan, Z.; Wu, Q.

    2017-12-01

    Using 16 years precipitation, brightness temperature (IR BT) data and tropical cyclone (TC) information, this study explores the relationship between precipitation, convective cloud and tropical cyclone (TC) intensity change in the Western North Pacific Ocean. It is found that TC intensity has positive relation with TC precipitation. TC precipitation increases with increased TC intensity. Based on the different phase of diurnal cycle, convective TC clouds were divided into very cold deep convective clouds (IR BTs<208K) and cold high clouds (208K

  11. Innovative monolithic detector for tri-spectral (THz, IR, Vis) imaging

    Science.gov (United States)

    Pocas, S.; Perenzoni, M.; Massari, N.; Simoens, F.; Meilhan, J.; Rabaud, W.; Martin, S.; Delplanque, B.; Imperinetti, P.; Goudon, V.; Vialle, C.; Arnaud, A.

    2012-10-01

    Fusion of multispectral images has been explored for many years for security and used in a number of commercial products. CEA-Leti and FBK have developed an innovative sensor technology that gathers monolithically on a unique focal plane arrays, pixels sensitive to radiation in three spectral ranges that are terahertz (THz), infrared (IR) and visible. This technology benefits of many assets for volume market: compactness, full CMOS compatibility on 200mm wafers, advanced functions of the CMOS read-out integrated circuit (ROIC), and operation at room temperature. The ROIC houses visible APS diodes while IR and THz detections are carried out by microbolometers collectively processed above the CMOS substrate. Standard IR bolometric microbridges (160x160 pixels) are surrounding antenna-coupled bolometers (32X32 pixels) built on a resonant cavity customized to THz sensing. This paper presents the different technological challenges achieved in this development and first electrical and sensitivity experimental tests.

  12. Image selection as a service for cloud computing environments

    KAUST Repository

    Filepp, Robert; Shwartz, Larisa; Ward, Christopher; Kearney, Robert D.; Cheng, Karen; Young, Christopher C.; Ghosheh, Yanal

    2010-01-01

    Customers of Cloud Services are expected to choose specific machine images to instantiate in order to host their workloads. Unfortunately very little information is provided to the users to enable them to make intelligent choices. We believe

  13. Tidal Distortion of the Envelope of an AGB Star IRS 3 near Sgr A{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Yusef-Zadeh, F.; Royster, M. J.; Roberts, D. A. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Wardle, M. [Department of Physics and Astronomy and Research Center for Astronomy, Astrophysics and Astrophotonics, Macquarie University, Sydney NSW 2109 (Australia); Cotton, W.; Kunneriath, D. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Schödel, R. [Instituto de Astfisica de Andalucia (CSIC), Glorieta de la Astronomia S/N, E-18008 Granada (Spain)

    2017-03-01

    We present radio and millimeter continuum observations of the Galactic center taken with the Very Large Array (VLA) and ALMA at 44 and 226 GHz, respectively. We detect radio and millimeter emission from IRS 3, lying ∼4.″5 NW of Sgr A*, with a spectrum that is consistent with the photospheric emission from an AGB star at the Galactic center. Millimeter images reveal that the envelope of IRS 3, the brightest and most extended 3.8 μ m Galactic center stellar source, consists of two semicircular dust shells facing the direction of Sgr A*. The outer circumstellar shell, at a distance of 1.6 × 10{sup 4} au, appears to break up into “fingers” of dust directed toward Sgr A*. These features coincide with molecular CS (5–4) emission and a near-IR extinction cloud distributed between IRS 3 and Sgr A*. The NE–SW asymmetric shapes of the IRS 3 shells seen at 3.8 μ m and radio are interpreted as structures that are tidally distorted by Sgr A*. Using the kinematics of CS emission and the proper motion of IRS 3, the tidally distorted outflowing material from the envelope after 5000 yr constrains the distance of IRS 3 to ∼0.7 pc in front of or ∼0.5 pc behind Sgr A*. This suggests that the mass loss by stars near Sgr A* can supply a reservoir of molecular material near Sgr A*. We also present dark features in radio continuum images coincident with the envelope of IRS 3. These dusty stars provide examples in which high-resolution radio continuum images can identify dust-enshrouded stellar sources embedded in an ionized medium.

  14. Influence of carbon dioxide clouds on early martian climate.

    Science.gov (United States)

    Mischna, M A; Kasting, J F; Pavlov, A; Freedman, R

    2000-06-01

    Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.

  15. Wide-band IR imaging in the NIR-MIR-FIR regions for in situ analysis of frescoes

    Science.gov (United States)

    Daffara, C.; Pezzati, L.; Ambrosini, D.; Paoletti, D.; Di Biase, R.; Mariotti, P. I.; Frosinini, C.

    2011-06-01

    Imaging methods offer several advantages in the field of conservation allowing to perform non-invasive inspection of works of art. In particular, non-invasive techniques based on imaging in different infrared (IR) regions are widely used for the investigation of paintings. Using radiation beyond the visible range, different characteristics of the inspected artwork may be revealed according to the bandwidth acquired. In this paper we present the recent results of a joint project among the two research institutes DIMEG and CNR-INO, and the restoration facility Opificio delle Pietre Dure, concerning the wide-band integration of IR imaging techniques, in the spectral ranges NIR 0.8-2.5 μm, MIR 3-5 μm, and FIR 8-12 μm, for in situ analysis of artworks. A joint, multi-mode use of reflection and thermal bands is proposed for the diagnostics of mural paintings, and it is demonstrated to be an effective tool in inspecting the layered structure. High resolution IR reflectography and, to a greater extent, IR imaging in the 3-5 μm band, are effectively used to characterize the superficial layer of the fresco and to analyze the stratigraphy of different pictorial layers. IR thermography in the 8-12 μm band is used to characterize the support deep structure. The integration of all the data provides a multi- layered and multi-spectral representation of the fresco that yields a comprehensive analysis.

  16. International inter-rater agreement in scoring acne severity utilizing cloud-based image sharing of mobile phone photographs.

    Science.gov (United States)

    Foolad, Negar; Ornelas, Jennifer N; Clark, Ashley K; Ali, Ifrah; Sharon, Victoria R; Al Mubarak, Luluah; Lopez, Andrés; Alikhan, Ali; Al Dabagh, Bishr; Firooz, Alireza; Awasthi, Smita; Liu, Yu; Li, Chin-Shang; Sivamani, Raja K

    2017-09-01

    Cloud-based image sharing technology allows facilitated sharing of images. Cloud-based image sharing technology has not been well-studied for acne assessments or treatment preferences, among international evaluators. We evaluated inter-rater variability of acne grading and treatment recommendations among an international group of dermatologists that assessed photographs. This is a prospective, single visit photographic study to assess inter-rater agreement of acne photographs shared through an integrated mobile device, cloud-based, and HIPAA-compliant platform. Inter-rater agreements for global acne assessment and acne lesion counts were evaluated by the Kendall's coefficient of concordance while correlations between treatment recommendations and acne severity were calculated by Spearman's rank correlation coefficient. There was good agreement for the evaluation of inflammatory lesions (KCC = 0.62, P cloud-based image sharing for acne assessment. Cloud-based sharing may facilitate acne care and research among international collaborators. © 2017 The International Society of Dermatology.

  17. CO-REGISTRATION AIRBORNE LIDAR POINT CLOUD DATA AND SYNCHRONOUS DIGITAL IMAGE REGISTRATION BASED ON COMBINED ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    Z. H. Yang

    2016-06-01

    Full Text Available Aim at the problem of co-registration airborne laser point cloud data with the synchronous digital image, this paper proposed a registration method based on combined adjustment. By integrating tie point, point cloud data with elevation constraint pseudo observations, using the principle of least-squares adjustment to solve the corrections of exterior orientation elements of each image, high-precision registration results can be obtained. In order to ensure the reliability of the tie point, and the effectiveness of pseudo observations, this paper proposed a point cloud data constrain SIFT matching and optimizing method, can ensure that the tie points are located on flat terrain area. Experiments with the airborne laser point cloud data and its synchronous digital image, there are about 43 pixels error in image space using the original POS data. If only considering the bore-sight of POS system, there are still 1.3 pixels error in image space. The proposed method regards the corrections of the exterior orientation elements of each image as unknowns and the errors are reduced to 0.15 pixels.

  18. Increasing Security for Cloud Computing By Steganography in Image Edges

    Directory of Open Access Journals (Sweden)

    Hassan Hadi Saleh

    2017-03-01

    Full Text Available The security of data storage in “cloud” is big challenge because the data keep within resources that may be accessed by particular machines. The managing of these data and services may not be high reliable. Therefore, the security of data is highly challenging. To increase the security of data in data center of cloud, we have introduced good method to ensure data security in “cloud computing” by methods of data hiding using color images which is called steganography. The fundamental objective of this paper is to prevent "Data Access” by unauthorized or opponent users. This scheme stores data at data centers within edges of color images and retrieves data from it when it is wanted.

  19. Information Recovery Algorithm for Ground Objects in Thin Cloud Images by Fusing Guide Filter and Transfer Learning

    Directory of Open Access Journals (Sweden)

    HU Gensheng

    2018-03-01

    Full Text Available Ground object information of remote sensing images covered with thin clouds is obscure. An information recovery algorithm for ground objects in thin cloud images is proposed by fusing guide filter and transfer learning. Firstly, multi-resolution decomposition of thin cloud target images and cloud-free guidance images is performed by using multi-directional nonsubsampled dual-tree complex wavelet transform. Then the decomposed low frequency subbands are processed by using support vector guided filter and transfer learning respectively. The decomposed high frequency subbands are enhanced by using modified Laine enhancement function. The low frequency subbands output by guided filter and those predicted by transfer learning model are fused by the method of selection and weighting based on regional energy. Finally, the enhanced high frequency subbands and the fused low frequency subbands are reconstructed by using inverse multi-directional nonsubsampled dual-tree complex wavelet transform to obtain the ground object information recovery images. Experimental results of Landsat-8 OLI multispectral images show that, support vector guided filter can effectively preserve the detail information of the target images, domain adaptive transfer learning can effectively extend the range of available multi-source and multi-temporal remote sensing images, and good effects for ground object information recover are obtained by fusing guide filter and transfer learning to remove thin cloud on the remote sensing images.

  20. Dense range images from sparse point clouds using multi-scale processing

    NARCIS (Netherlands)

    Do, Q.L.; Ma, L.; With, de P.H.N.

    2013-01-01

    Multi-modal data processing based on visual and depth/range images has become relevant in computer vision for 3D reconstruction applications such as city modeling, robot navigation etc. In this paper, we generate highaccuracy dense range images from sparse point clouds to facilitate such

  1. Effects of high altitude clouds on the earth's infrared radiation flux

    Science.gov (United States)

    Wang, W.-C.; Kaplan, L. D.

    1983-01-01

    Attention is given to the results of a study of cirrus cloud properties which employed the Goddard Laboratory for Atmospheric Sciences' general circulation model and concentrated on the effects of the nonblackness of high clouds on the IR radiation flux. Although the thermal radiation flux is very sensitive to the treatment of cirrus optical properties in the IR, a more realistic assessment will depend on better parameterizations for cirrus cloud formation, persistence, and dissipation.

  2. EVALUATION OF METHODS FOR COREGISTRATION AND FUSION OF RPAS-BASED 3D POINT CLOUDS AND THERMAL INFRARED IMAGES

    Directory of Open Access Journals (Sweden)

    L. Hoegner

    2016-06-01

    Full Text Available This paper discusses the automatic coregistration and fusion of 3d point clouds generated from aerial image sequences and corresponding thermal infrared (TIR images. Both RGB and TIR images have been taken from a RPAS platform with a predefined flight path where every RGB image has a corresponding TIR image taken from the same position and with the same orientation with respect to the accuracy of the RPAS system and the inertial measurement unit. To remove remaining differences in the exterior orientation, different strategies for coregistering RGB and TIR images are discussed: (i coregistration based on 2D line segments for every single TIR image and the corresponding RGB image. This method implies a mainly planar scene to avoid mismatches; (ii coregistration of both the dense 3D point clouds from RGB images and from TIR images by coregistering 2D image projections of both point clouds; (iii coregistration based on 2D line segments in every single TIR image and 3D line segments extracted from intersections of planes fitted in the segmented dense 3D point cloud; (iv coregistration of both the dense 3D point clouds from RGB images and from TIR images using both ICP and an adapted version based on corresponding segmented planes; (v coregistration of both image sets based on point features. The quality is measured by comparing the differences of the back projection of homologous points in both corrected RGB and TIR images.

  3. Assuring virtual network function image integrity and host sealing in telco cloud

    NARCIS (Netherlands)

    Lal, S.; Ravidas, S.; Oliver, I.; Taleb, T.

    In Telco cloud environment, virtual network func- tions (VNFs) can be shipped in the form of virtual machine images and hosted over commodity hardware. It is likely that these VNF images will contain highly sensitive data and mission critical network operations. For this reason, these VNF images are

  4. Estimation of cloud optical thickness by processing SEVIRI images and implementing a semi analytical cloud property retrieval algorithm

    Science.gov (United States)

    Pandey, P.; De Ridder, K.; van Lipzig, N.

    2009-04-01

    Clouds play a very important role in the Earth's climate system, as they form an intermediate layer between Sun and the Earth. Satellite remote sensing systems are the only means to provide information about clouds on large scales. The geostationary satellite, Meteosat Second Generation (MSG) has onboard an imaging radiometer, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). SEVIRI is a 12 channel imager, with 11 channels observing the earth's full disk with a temporal resolution of 15 min and spatial resolution of 3 km at nadir, and a high resolution visible (HRV) channel. The visible channels (0.6 µm and 0.81 µm) and near infrared channel (1.6µm) of SEVIRI are being used to retrieve the cloud optical thickness (COT). The study domain is over Europe covering the region between 35°N - 70°N and 10°W - 30°E. SEVIRI level 1.5 images over this domain are being acquired from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) archive. The processing of this imagery, involves a number of steps before estimating the COT. The steps involved in pre-processing are as follows. First, the digital count number is acquired from the imagery. Image geo-coding is performed in order to relate the pixel positions to the corresponding longitude and latitude. Solar zenith angle is determined as a function of latitude and time. The radiometric conversion is done using the values of offsets and slopes of each band. The values of radiance obtained are then used to calculate the reflectance for channels in the visible spectrum using the information of solar zenith angle. An attempt is made to estimate the COT from the observed radiances. A semi analytical algorithm [Kokhanovsky et al., 2003] is implemented for the estimation of cloud optical thickness from the visible spectrum of light intensity reflected from clouds. The asymptotical solution of the radiative transfer equation, for clouds with large optical thickness, is the basis of

  5. Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements

    Directory of Open Access Journals (Sweden)

    J. T. Wiensz

    2013-01-01

    Full Text Available We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.

  6. Simulation of Thermal Processes in Metamaterial MM-to-IR Converter for MM-wave Imager

    International Nuclear Information System (INIS)

    Zagubisalo, Peter S; Paulish, Andrey G; Kuznetsov, Sergey A

    2014-01-01

    The main characteristics of MM-wave image detector were simulated by means of accurate numerical modelling of thermophysical processes in a metamaterial MM-to-IR converter. The converter represents a multilayer structure consisting of an ultra thin resonant metamaterial absorber and a perfect emissive layer. The absorber consists of a dielectric self-supporting film that is metallized from both sides. A micro-pattern is fabricated from one side. Resonant absorption of the MM waves induces the converter heating that yields enhancement of IR emission from the emissive layer. IR emission is detected by IR camera. In this contribution an accurate numerical model for simulation of the thermal processes in the converter structure was created by using COMSOL Multiphysics software. The simulation results are in a good agreement with experimental results that validates the model. The simulation shows that the real time operation is provided for the converter thickness less than 3 micrometers and time response can be improved by decreasing of the converter thickness. The energy conversion efficiency of MM waves into IR radiation is over 80%. The converter temperature increase is a linear function of a MM-wave radiation power within three orders of the dynamic range. The blooming effect and ways of its reducing are also discussed. The model allows us to choose the ways of converter structure optimization and improvement of image detector parameters

  7. Monstrous Ice Cloud System in Titan's Present South Polar Stratosphere

    Science.gov (United States)

    Anderson, Carrie; Samuelson, Robert; McLain, Jason; Achterberg, Richard; Flasar, F. Michael; Milam, Stefanie

    2015-11-01

    During southern autumn when sunlight was still available, Cassini's Imaging Science Subsystem discovered a cloud around 300 km near Titan's south pole (West, R. A. et al., AAS/DPS Abstracts, 45, #305.03, 2013); the cloud was later determined by Cassini's Visible and InfraRed Mapping Spectrometer to contain HCN ice (de Kok et al., Nature, 514, pp 65-67, 2014). This cloud has proven to be only the tip of an extensive ice cloud system contained in Titan's south polar stratosphere, as seen through the night-vision goggles of Cassini's Composite InfraRed Spectrometer (CIRS). As the sun sets and the gloom of southern winter approaches, evidence is beginning to accumulate from CIRS far-IR spectra that a massive system of nitrile ice clouds is developing in Titan's south polar stratosphere. Even during the depths of northern winter, nothing like the strength of this southern system was evident in corresponding north polar regions.From the long slant paths that are available from limb-viewing CIRS far-IR spectra, we have the first definitive detection of the ν6 band of cyanoacetylene (HC3N) ice in Titan’s south polar stratosphere. In addition, we also see a strong blend of nitrile ice lattice vibration features around 160 cm-1. From these data we are able to derive ice abundances. The most prominent (and still chemically unidentified) ice emission feature, the Haystack, (at 220 cm-1) is also observed. We establish the vertical distributions of the ice cloud systems associated with both the 160 cm-1 feature and the Haystack. The ultimate aim is to refine the physical and possibly the chemical relationships between the two. Transmittance thin film spectra of nitrile ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory are used to support these analyses.

  8. SPITZER IRS SPECTRA OF LUMINOUS 8 μm SOURCES IN THE LARGE MAGELLANIC CLOUD: TESTING COLOR-BASED CLASSIFICATIONS

    International Nuclear Information System (INIS)

    Buchanan, Catherine L.; Kastner, Joel H.; Hrivnak, Bruce J.; Sahai, Raghvendra

    2009-01-01

    We present archival Spitzer Infrared Spectrograph (IRS) spectra of 19 luminous 8 μm selected sources in the Large Magellanic Cloud (LMC). The object classes derived from these spectra and from an additional 24 spectra in the literature are compared with classifications based on Two Micron All Sky Survey (2MASS)/MSX (J, H, K, and 8 μm) colors in order to test the 'JHK8' (Kastner et al.) classification scheme. The IRS spectra confirm the classifications of 22 of the 31 sources that can be classified under the JHK8 system. The spectroscopic classification of 12 objects that were unclassifiable in the JHK8 scheme allow us to characterize regions of the color-color diagrams that previously lacked spectroscopic verification, enabling refinements to the JHK8 classification system. The results of these new classifications are consistent with previous results concerning the identification of the most infrared-luminous objects in the LMC. In particular, while the IRS spectra reveal several new examples of asymptotic giant branch (AGB) stars with O-rich envelopes, such objects are still far outnumbered by carbon stars (C-rich AGB stars). We show that Spitzer IRAC/MIPS color-color diagrams provide improved discrimination between red supergiants and oxygen-rich and carbon-rich AGB stars relative to those based on 2MASS/MSX colors. These diagrams will enable the most luminous IR sources in Local Group galaxies to be classified with high confidence based on their Spitzer colors. Such characterizations of stellar populations will continue to be possible during Spitzer's warm mission through the use of IRAC [3.6]-[4.5] and 2MASS colors.

  9. NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 2+ Cloud Top Pressure (CTP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cloud Top Pressure product contains an image with pixel values identifying the atmospheric pressure at the top of a cloud layer. The product is generated in...

  10. Characterization of a novel miniaturized burst-mode infrared laser system for IR-MALDESI mass spectrometry imaging.

    Science.gov (United States)

    Ekelöf, Måns; Manni, Jeffrey; Nazari, Milad; Bokhart, Mark; Muddiman, David C

    2018-03-01

    Laser systems are widely used in mass spectrometry as sample probes and ionization sources. Mid-infrared lasers are particularly suitable for analysis of high water content samples such as animal and plant tissues, using water as a resonantly excited sacrificial matrix. Commercially available mid-IR lasers have historically been bulky and expensive due to cooling requirements. This work presents a novel air-cooled miniature mid-IR laser with adjustable burst-mode output and details an evaluation of its performance for mass spectrometry imaging. The miniature laser was found capable of generating sufficient energy for complete ablation of animal tissue in the context of an IR-MALDESI experiment with exogenously added ice matrix, yielding several hundred confident metabolite identifications. Graphical abstract The use of a novel miniature 2.94 μm burst-mode laser in IR-MALDESI allows for rapid and sensitive mass spectrometry imaging of a whole mouse.

  11. CERES cloud property retrievals from imagers on TRMM, Terra, and Aqua

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Heck, Patrick W.; Doelling, David R.; Trepte, Qing Z.

    2004-02-01

    The micro- and macrophysical properties of clouds play a crucial role in Earth"s radiation budget. The NASA Clouds and Earth"s Radiant Energy System (CERES) is providing simultaneous measurements of the radiation and cloud fields on a global basis to improve the understanding and modeling of the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. Cloud properties derived for CERES from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites are compared to ensure consistency between the products to ensure the reliability of the retrievals from multiple platforms at different times of day. Comparisons of cloud fraction, height, optical depth, phase, effective particle size, and ice and liquid water paths from the two satellites show excellent consistency. Initial calibration comparisons are also very favorable. Differences between the Aqua and Terra results are generally due to diurnally dependent changes in the clouds. Additional algorithm refinement is needed over the polar regions for Aqua and at night over those same areas for Terra. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  12. Study on the cloud detection of GOCI by using the simulated surface reflectance from BRDF-model for the land application and meteorological utilization

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Woo, Sun-Hee; Chae, Tae-Byeong

    2016-04-01

    COMS (Communication, Ocean, and Meteorological Satellite) was launched at French Guiana Kourou space center on 27 June 2010. Geostationary Ocean Color Imager (GOCI), which is the first ocean color geostationary satellite in the world for observing the ocean phenomena, is able to obtain the scientific data per an hour from 00UTC to 07UTC. Moreover, the spectral channels of GOCI would enable not only monitoring for the ocean, but for extracting the information of the land surface over the Korean Peninsula, Japan, and Eastern China. Since it is extremely important to utilize GOCI data accurately for the land application, cloud pixels over the surface have to be removed. Unfortunately, infra-red (IR) channels that can easily detect the water vapor with the cloud top temperature, are not included in the GOCI sensor. In this paper, the advanced cloud masking algorithm will be proposed with visible and near-IR (NIR) bands that are within GOCI bands. The main obstacle of cloud masking with GOCI is how to handle the high variable surface reflectance, which is mainly depending on the solar zenith angle. In this study, we use semi-empirical BRDF model to simulate the surface reflectance by using 16 day composite cloudy free image. When estimating the simulated surface reflectance, same geometry for GOCI observation was applied. The simulated surface reflectance is used to discriminate cloud areas especially for the thin cloud and shows more reasonable result than original threshold methods.

  13. DSCOVR/EPIC observations of SO2 reveal dynamics of young volcanic eruption clouds

    Science.gov (United States)

    Carn, S. A.; Krotkov, N. A.; Taylor, S.; Fisher, B. L.; Li, C.; Bhartia, P. K.; Prata, F. J.

    2017-12-01

    Volcanic emissions of sulfur dioxide (SO2) and ash have been measured by ultraviolet (UV) and infrared (IR) sensors on US and European polar-orbiting satellites since the late 1970s. Although successful, the main limitation of these observations from low Earth orbit (LEO) is poor temporal resolution (once per day at low latitudes). Furthermore, most currently operational geostationary satellites cannot detect SO2, a key tracer of volcanic plumes, limiting our ability to elucidate processes in fresh, rapidly evolving volcanic eruption clouds. In 2015, the launch of the Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) provided the first opportunity to observe volcanic clouds from the L1 Lagrange point. EPIC is a 10-band spectroradiometer spanning UV to near-IR wavelengths with two UV channels sensitive to SO2, and a ground resolution of 25 km. The unique L1 vantage point provides continuous observations of the sunlit Earth disk, from sunrise to sunset, offering multiple daily observations of volcanic SO2 and ash clouds in the EPIC field of view. When coupled with complementary retrievals from polar-orbiting UV and IR sensors such as the Ozone Monitoring Instrument (OMI), the Ozone Mapping and Profiler Suite (OMPS), and the Atmospheric Infrared Sounder (AIRS), we demonstrate how the increased observation frequency afforded by DSCOVR/EPIC permits more timely volcanic eruption detection and novel analyses of the temporal evolution of volcanic clouds. Although EPIC has detected several mid- to high-latitude volcanic eruptions since launch, we focus on recent eruptions of Bogoslof volcano (Aleutian Islands, AK, USA). A series of EPIC exposures from May 28-29, 2017, uniquely captures the evolution of SO2 mass in a young Bogoslof eruption cloud, showing separation of SO2- and ice-rich regions of the cloud. We show how analyses of these sequences of EPIC SO2 data can elucidate poorly understood processes in transient eruption

  14. Cloud screening Coastal Zone Color Scanner images using channel 5

    Science.gov (United States)

    Eckstein, B. A.; Simpson, J. J.

    1991-01-01

    Clouds are removed from Coastal Zone Color Scanner (CZCS) data using channel 5. Instrumentation problems require pre-processing of channel 5 before an intelligent cloud-screening algorithm can be used. For example, at intervals of about 16 lines, the sensor records anomalously low radiances. Moreover, the calibration equation yields negative radiances when the sensor records zero counts, and pixels corrupted by electronic overshoot must also be excluded. The remaining pixels may then be used in conjunction with the procedure of Simpson and Humphrey to determine the CZCS cloud mask. These results plus in situ observations of phytoplankton pigment concentration show that pre-processing and proper cloud-screening of CZCS data are necessary for accurate satellite-derived pigment concentrations. This is especially true in the coastal margins, where pigment content is high and image distortion associated with electronic overshoot is also present. The pre-processing algorithm is critical to obtaining accurate global estimates of pigment from spacecraft data.

  15. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    Science.gov (United States)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  16. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images.

    Science.gov (United States)

    Prieur, Fabrice; Zorgani, Ali; Catheline, Stefan; Souchon, Rémi; Mestas, Jean-Louis; Lafond, Maxime; Lafon, Cyril

    2015-07-01

    The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized.

  17. Discriminating satellite IR anomalies associated with the MS 7.1 Yushu earthquake in China

    Science.gov (United States)

    Qin, Kai; Wu, Lixin; Zheng, Shuo; Ma, Weiyu

    2018-03-01

    In the process of exploring pre-earthquake thermal anomalies using satellite infrared data, Blackett et al. (2011) found that the previously reported anomalies before the 2001 Mw 7.7 Gujarat earthquake, in India, were related to positive biases caused by data gaps due to cloud cover and mosaicing of neighboring orbits of MODIS satellite data. They supposed that such effects could also be responsible for other cases. We noted a strip-shaped TIR anomaly on March 17th, 2010, 28 days before the Ms. 7.1 Yushu earthquake (Qin et al., 2011). Here we again investigate multi-year infrared satellite data in different bands to discriminate whether the anomaly is associated with the earthquake, or is only bias caused by the data gaps. From the water vapor images, we find lots of clouds that have TIR anomalies. However, on the cloudiness background, there is an obvious strip-shaped gap matching the tectonic faults almost perfectly. In particular, the animation loops of hourly water vapor images show that the cloud kept moving from west to east, while they never covered the strip-shaped gap. We consider that the cloud with this special spatial pattern should have implied the abnormal signals associated with the seismogenic process. Based on current physical models, the satellite IR anomalies both on TIR and water vapor bands can qualitatively be explained using synthetic mechanisms.

  18. AUGUSTO'S Sundial: Image-Based Modeling for Reverse Engeneering Purposes

    Science.gov (United States)

    Baiocchi, V.; Barbarella, M.; Del Pizzo, S.; Giannone, F.; Troisi, S.; Piccaro, C.; Marcantonio, D.

    2017-02-01

    A photogrammetric survey of a unique archaeological site is reported in this paper. The survey was performed using both a panoramic image-based solution and by classical procedure. The panoramic image-based solution was carried out employing a commercial solution: the Trimble V10 Imaging Rover (IR). Such instrument is an integrated cameras system that captures 360 degrees digital panoramas, composed of 12 images, with a single push. The direct comparison of the point clouds obtained with traditional photogrammetric procedure and V10 stations, using the same GCP coordinates has been carried out in Cloud Compare, open source software that can provide the comparison between two point clouds supplied by all the main statistical data. The site is a portion of the dial plate of the "Horologium Augusti" inaugurated in 9 B.C.E. in the area of Campo Marzio and still present intact in the same position, in a cellar of a building in Rome, around 7 meter below the present ground level.

  19. α-Lipoic acid stabilized DTX/IR780 micelles for photoacoustic/fluorescence imaging guided photothermal therapy/chemotherapy of breast cancer.

    Science.gov (United States)

    Li, WenTing; Peng, JinRong; Yang, Qian; Chen, LiJuan; Zhang, Lan; Chen, XiaoXin; Qian, ZhiYong

    2018-05-01

    Micellar nanoparticles have unique advantages as carriers for therapeutic or imaging agents, owing to their smaller size and better penetration of tumors. However, some agents, due to their physical or chemical properties, are difficult to load into micelles. IR780 is one of these agents, and is also a promising near-infrared dye for fluorescence imaging (FI)/photoacoustic imaging (PAI) and cancer photothermal therapy (PTT). Its hydrophobic and high crystallization structure results in limited bioavailability in vivo. It is difficult to load into micelles constructed from an amphiphilic block polymer with relatively low molecular weight. In this study, we use computer simulation and introduce another small biomolecule, α-lipoic acid, into the micelles constructed from a mPEG-PCL copolymer, to lower the energy of molecular interaction between MPEG-PCL and IR780, and expect to enhance the loading capacity of the micelles to IR780. The introduction of α-lipoic acid decreases the energy of molecular interaction between MEPG-PCL and IR780 from -46.18 kJ mol-1 to -196.52 kJ mol-1 and increases the loading capacity and stability of the mPEG-PCL micelles to IR780, which also maintains the loading capacity to DTX. We further construct DTX/IR780 co-loaded mPEG-PCL micelles for FI/PAI dual modal imaging guided PTT/chemotherapy of cancer. By FI and PAI evaluation in vitro and in vivo, we demonstrate that the DTX/IR780 co-loaded micelles can be used as FI and PAI probes. By further evaluating the therapeutic outcome of PTT/chemotherapy co-therapy of breast cancer, we demonstrate that the DTX/IR780 co-loaded mPEG-PCL micelles can serve as promising candidates for FI and PAI guided PTT/chemotherapy of breast cancer.

  20. FAR-INFRARED OBSERVATIONS OF THE VERY LOW LUMINOSITY EMBEDDED SOURCE L1521F-IRS IN THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Terebey, Susan; Fich, Michel; Noriega-Crespo, Alberto; Padgett, Deborah L.; Brooke, Tim; Carey, Sean; McCabe, Caer-Eve; Rebull, Luisa; Fukagawa, Misato; Audard, Marc; Evans, Neal J.; Guedel, Manuel; Hines, Dean; Huard, Tracy; Knapp, Gillian R.; Menard, Francois; Monin, Jean-Louis

    2009-01-01

    We investigate the environment of the very low luminosity object L1521F-IRS using data from the Taurus Spitzer Legacy Survey. The MIPS 160 μm image shows both extended emission from the Taurus cloud and emission from multiple cold cores over a 1 0 x 2 0 region. Analysis shows that the cloud dust temperature is 14.2 ± 0.4 K and the extinction ratio is A 160 /A K = 0.010 ± 0.001 up to A V ∼ 4 mag. We find κ 160 = 0.23 ± 0.046 cm 2 g -1 for the specific opacity of the gas-dust mixture. Therefore, for dust in the Taurus cloud we find that the 160 μm opacity is significantly higher than that measured for the diffuse interstellar medium, but not too different from dense cores, even at modest extinction values. Furthermore, the 160 μm image shows features that do not appear in the IRAS 100 μm image. We identify six regions as cold cores, i.e., colder than 14.2 K, all of which have counterparts in extinction maps or C 18 O maps. Three of the six cores contain embedded young stellar objects, which demonstrates the cores are sites of current star formation. We compare the effects of L1521F-IRS on its natal core and find there is no evidence for dust heating at 160 or 100 μm by the embedded source. From the infrared luminosity L TIR = 0.024 L sun we find L bol-int =0.034-0.046 L odot , thus confirming the source's low luminosity. Comparison of L1521F-IRS with theoretical simulations for the very early phases of star formation appears to rule out the first core collapse phase. The evolutionary state appears similar to or younger than the class 0 phase, and the estimated mass is likely to be substellar.

  1. Reconstruction of 3D Shapes of Opaque Cumulus Clouds from Airborne Multiangle Imaging: A Proof-of-Concept

    Science.gov (United States)

    Davis, A. B.; Bal, G.; Chen, J.

    2015-12-01

    Operational remote sensing of microphysical and optical cloud properties is invariably predicated on the assumption of plane-parallel slab geometry for the targeted cloud. The sole benefit of this often-questionable assumption about the cloud is that it leads to one-dimensional (1D) radiative transfer (RT)---a textbook, computationally tractable model. We present new results as evidence that, thanks to converging advances in 3D RT, inverse problem theory, algorithm implementation, and computer hardware, we are at the dawn of a new era in cloud remote sensing where we can finally go beyond the plane-parallel paradigm. Granted, the plane-parallel/1D RT assumption is reasonable for spatially extended stratiform cloud layers, as well as the smoothly distributed background aerosol layers. However, these 1D RT-friendly scenarios exclude cases that are critically important for climate physics. 1D RT---whence operational cloud remote sensing---fails catastrophically for cumuliform clouds that have fully 3D outer shapes and internal structures driven by shallow or deep convection. For these situations, the first order of business in a robust characterization by remote sensing is to abandon the slab geometry framework and determine the 3D geometry of the cloud, as a first step toward bone fide 3D cloud tomography. With this specific goal in mind, we deliver a proof-of-concept for an entirely new kind of remote sensing applicable to 3D clouds. It is based on highly simplified 3D RT and exploits multi-angular suites of cloud images at high spatial resolution. Airborne sensors like AirMSPI readily acquire such data. The key element of the reconstruction algorithm is a sophisticated solution of the nonlinear inverse problem via linearization of the forward model and an iteration scheme supported, where necessary, by adaptive regularization. Currently, the demo uses a 2D setting to show how either vertical profiles or horizontal slices of the cloud can be accurately reconstructed

  2. COMPREHENSIVE COMPARISON OF TWO IMAGE-BASED POINT CLOUDS FROM AERIAL PHOTOS WITH AIRBORNE LIDAR FOR LARGE-SCALE MAPPING

    Directory of Open Access Journals (Sweden)

    E. Widyaningrum

    2017-09-01

    Full Text Available The integration of computer vision and photogrammetry to generate three-dimensional (3D information from images has contributed to a wider use of point clouds, for mapping purposes. Large-scale topographic map production requires 3D data with high precision and accuracy to represent the real conditions of the earth surface. Apart from LiDAR point clouds, the image-based matching is also believed to have the ability to generate reliable and detailed point clouds from multiple-view images. In order to examine and analyze possible fusion of LiDAR and image-based matching for large-scale detailed mapping purposes, point clouds are generated by Semi Global Matching (SGM and by Structure from Motion (SfM. In order to conduct comprehensive and fair comparison, this study uses aerial photos and LiDAR data that were acquired at the same time. Qualitative and quantitative assessments have been applied to evaluate LiDAR and image-matching point clouds data in terms of visualization, geometric accuracy, and classification result. The comparison results conclude that LiDAR is the best data for large-scale mapping.

  3. Design and use of the IR gas-cloud scanner for measurement and imaging of the spatial distribution of gases at workplaces

    Science.gov (United States)

    ter Kuile, Willem M.; van Veen, J. J.; Knoll, Bas

    1995-02-01

    Usual sampling methods and instruments for checking compliance with `threshold limit values' (TLV) of gaseous components do not provide much information on the mechanism which caused the measured workday average concentration. In the case of noncompliance this information is indispensable for the design of cost effective measures. The infrared gas cloud (IGC) scanner visualizes the spatial distribution of specific gases at a workplace in a quantitative image with a calibrated grayvalue scale. This helps to find the cause of an over- exposure, and so it permits effective abatement of high exposures in the working environment. This paper deals with the technical design of the IGC scanner. Its use is illustrated by some real-world problems. The measuring principle and the technical operation of the IGC-scanner are described. Special attention is given to the pros and cons of retro-reflector screens, the noise reduction methods and image presentation and interpretation. The latter is illustrated by the images produced by the measurements. Essentially the IGC scanner can be used for selective open-path measurement of all gases with a concentration in the ppm range and sufficiently strong distinct absorption lines in the infrared region between 2.5 micrometers and 14.0 micrometers . Further it could be useful for testing the efficiency of ventilation systems and the remote detection of gas leaks. We conclude that a new powerful technique has been added to the industrial hygiene facilities for controlling and improving the work environment.

  4. 3D FT-IR imaging spectroscopy of phase-separation in a poly(3-hydroxybutyrate)/poly(L-lactic acid) blend

    Science.gov (United States)

    Miriam Unger; Julia Sedlmair; Heinz W. Siesler; Carol Hirschmugl; Barbara Illman

    2014-01-01

    In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(L-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography,...

  5. The benefit of limb cloud imaging for infrared limb sounding of tropospheric trace gases

    OpenAIRE

    G. Heinemann; P. Preusse; R. Spang; S. Adams

    2009-01-01

    Advances in detector technology enable a new generation of infrared limb sounders to measure 2-D images of the atmosphere. A proposed limb cloud imager (LCI) mode will detect clouds with a spatial resolution unprecedented for limb sounding. For the inference of temperature and trace gas distributions, detector pixels of the LCI have to be combined into super-pixels which provide the required signal-to-noise and information content for the retrievals. This study examines the extent to which tr...

  6. Modulation transfer function cascade model for a sampled IR imaging system.

    Science.gov (United States)

    de Luca, L; Cardone, G

    1991-05-01

    The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.

  7. Study of the relations between cloud properties and atmospheric conditions using ground-based digital images

    Science.gov (United States)

    Bakalova, Kalinka

    The aerosol constituents of the earth atmosphere are of great significance for the radiation budget and global climate of the planet. They are the precursors of clouds that in turn play an essential role in these processes and in the hydrological cycle of the Earth. Understanding the complex aerosol-cloud interactions requires a detailed knowledge of the dynamical processes moving the water vapor through the atmosphere, and of the physical mechanisms involved in the formation and growth of cloud particles. Ground-based observations on regional and short time scale provide valuable detailed information about atmospheric dynamics and cloud properties, and are used as a complementary tool to the global satellite observations. The objective of the present paper is to study the physical properties of clouds as displayed in ground-based visible images, and juxtapose them to the specific surface and atmospheric meteorological conditions. The observations are being carried out over the urban area of the city of Sofia, Bulgaria. The data obtained from visible images of clouds enable a quantitative description of texture and morphological features of clouds such as shape, thickness, motion, etc. These characteristics are related to cloud microphysical properties. The changes of relative humidity and the horizontal visibility are considered to be representative of the variations of the type (natural/manmade) and amount of the atmospheric aerosols near the earth surface, and potentially, the cloud drop number concentration. The atmospheric dynamics is accounted for by means of the values of the atmospheric pressure, temperature, wind velocity, etc., observed at the earth's surface. The advantage of ground-based observations of clouds compared to satellite ones is in the high spatial and temporal resolution of the obtained data about the lowermost cloud layer, which in turn is sensitive to the meteorological regimes that determine cloud formation and evolution. It turns out

  8. Improvements in AVHRR Daytime Cloud Detection Over the ARM NSA Site

    Science.gov (United States)

    Chakrapani, V.; Spangenberg, D. A.; Doelling, D. R.; Minnis, P.; Trepte, Q. Z.; Arduini, R. F.

    2001-01-01

    Clouds play an important role in the radiation budget over Arctic and Antarctic. Because of limited surface observing capabilities, it is necessary to detect clouds over large areas using satellite imagery. At low and mid-latitudes, satellite-observed visible (VIS; 0.65 micrometers) and infrared (IR; 11 micrometers) radiance data are used to derive cloud fraction, temperature, and optical depth. However, the extreme variability in the VIS surface albedo makes the detection of clouds from satellite a difficult process in polar regions. The IR data often show that the surface is nearly the same temperature or even colder than clouds, further complicating cloud detection. Also, the boundary layer can have large areas of haze, thin fog, or diamond dust that are not seen in standard satellite imagery. Other spectral radiances measured by satellite imagers provide additional information that can be used to more accurately discriminate clouds from snow and ice. Most techniques currently use a fixed reflectance or temperature threshold to decide between clouds and clear snow. Using a subjective approach, Minnis et al. (2001) found that the clear snow radiance signatures vary as a function of viewing and illumination conditions as well as snow condition. To routinely process satellite imagery over polar regions with an automated algorithm, it is necessary to account for this angular variability and the change in the background reflectance as snow melts, vegetation grows over land, and melt ponds form on pack ice. This paper documents the initial satellite-based cloud product over the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) site at Barrow for use by the modeling community. Cloud amount and height are determined subjectively using an adaptation of the methodology of Minnis et al. (2001) and the radiation fields arc determined following the methods of Doelling et al. (2001) as applied to data taken during the Surface Heat and Energy Budget of the

  9. Using IR Imaging of Water Surfaces for Estimating Piston Velocities

    Science.gov (United States)

    Gålfalk, M.; Bastviken, D.; Arneborg, L.

    2013-12-01

    The transport of gasses dissolved in surface waters across the water-atmosphere interface is controlled by the piston velocity (k). This coefficient has large implications for, e.g., greenhouse gas fluxes but is challenging to quantify in situ. At present, empirical k-wind speed relationships from a small number of studies and systems are often extrapolated without knowledge of model performance. It is therefore of interest to search for new methods for estimating k, and to compare the pros and cons of existing and new methods. Wind speeds in such models are often measured at a height of 10 meters. In smaller bodies of water such as lakes, wind speeds can vary dramatically across the surface through varying degrees of wind shadow from e.g. trees at the shoreline. More local measurements of the water surface, through wave heights or surface motion mapping, could give improved k-estimates over a surface, also taking into account wind fetch. At thermal infrared (IR) wavelengths water has very low reflectivity (depending on viewing angle) than can go below 1%, meaning that more than 99% is heat radiation giving a direct measurement of surface temperature variations. Using an IR camera at about 100 frames/s one could map surface temperature structures at a fraction of a mm depth even with waves present. In this presentation I will focus on IR imaging as a possible tool for estimating piston velocities. Results will be presented from IR field measurements, relating the motions of surface temperature structures to k calculated from other simultaneous measurements (flux chamber and ADV-Based Dissipation Rate), but also attempting to calculate k directly from the IR surface divergence. A relation between wave height and k will also be presented.

  10. Enabling outsourcing XDS for imaging on the public cloud.

    Science.gov (United States)

    Ribeiro, Luís S; Rodrigues, Renato P; Costa, Carlos; Oliveira, José Luís

    2013-01-01

    Picture Archiving and Communication System (PACS) has been the main paradigm in supporting medical imaging workflows during the last decades. Despite its consolidation, the appearance of Cross-Enterprise Document Sharing for imaging (XDS-I), within IHE initiative, constitutes a great opportunity to readapt PACS workflow for inter-institutional data exchange. XDS-I provides a centralized discovery of medical imaging and associated reports. However, the centralized XDS-I actors (document registry and repository) must be deployed in a trustworthy node in order to safeguard patient privacy, data confidentiality and integrity. This paper presents XDS for Protected Imaging (XDS-p), a new approach to XDS-I that is capable of being outsourced (e.g. Cloud Computing) while maintaining privacy, confidentiality, integrity and legal concerns about patients' medical information.

  11. Automatic registration of Iphone images to LASER point clouds of the urban structures using shape features

    Directory of Open Access Journals (Sweden)

    B. Sirmacek

    2013-10-01

    Full Text Available Fusion of 3D airborne laser (LIDAR data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images which are taken in front of the interested urban structure by the application user and the high resolution LIDAR point clouds of the acquired by an airborne laser sensor. After finding the photo capturing position and orientation from the iPhone photograph metafile, we automatically select the area of interest in the point cloud and transform it into a range image which has only grayscale intensity levels according to the distance from the image acquisition position. We benefit from local features for registering the iPhone image to the generated range image. In this article, we have applied the registration process based on local feature extraction and graph matching. Finally, the registration result is used for facade texture mapping on the 3D building surface mesh which is generated from the LIDAR point cloud. Our experimental results indicate possible usage of the proposed algorithm framework for 3D urban map updating and enhancing purposes.

  12. The Measurement of cloud velocity using the pulsed laser and image tracking technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seong-Ouk; Baik, Seung-Hoon; Park, Seung-Kyu; Park, Nak-Gyu; Kim, Dong-lyul; Ahn, Yong-Jin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The height of the clouds is also important for the three dimensional radiative interaction of aerosols and clouds, since the radiative effects vary strongly depending whether the cloud is above, below or even embedded in an aerosol layer. Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements In this paper, we propose a new method to measure the cloud velocity. In this paper, we presented a method for the measurement of the cloud altitude and velocity using lidar's range detection and the tracking system. For the lidar system, we used an injection-seeded pulsed Nd:YAG laser as the transmitter to measure the distance to the target clouds. We used the DIC system to track the cloud image and calculate the actual displacement per unit time. The configured lidar system acquired the lidar signal of clouds at a distance of about 4 km. The developed fast correlation algorithm of the tracking, which is used to track the fast moving cloud relatively, was efficient for measuring the cloud velocity in real time. The measurement values had a linear distribution.

  13. Content-based histopathology image retrieval using CometCloud.

    Science.gov (United States)

    Qi, Xin; Wang, Daihou; Rodero, Ivan; Diaz-Montes, Javier; Gensure, Rebekah H; Xing, Fuyong; Zhong, Hua; Goodell, Lauri; Parashar, Manish; Foran, David J; Yang, Lin

    2014-08-26

    The development of digital imaging technology is creating extraordinary levels of accuracy that provide support for improved reliability in different aspects of the image analysis, such as content-based image retrieval, image segmentation, and classification. This has dramatically increased the volume and rate at which data are generated. Together these facts make querying and sharing non-trivial and render centralized solutions unfeasible. Moreover, in many cases this data is often distributed and must be shared across multiple institutions requiring decentralized solutions. In this context, a new generation of data/information driven applications must be developed to take advantage of the national advanced cyber-infrastructure (ACI) which enable investigators to seamlessly and securely interact with information/data which is distributed across geographically disparate resources. This paper presents the development and evaluation of a novel content-based image retrieval (CBIR) framework. The methods were tested extensively using both peripheral blood smears and renal glomeruli specimens. The datasets and performance were evaluated by two pathologists to determine the concordance. The CBIR algorithms that were developed can reliably retrieve the candidate image patches exhibiting intensity and morphological characteristics that are most similar to a given query image. The methods described in this paper are able to reliably discriminate among subtle staining differences and spatial pattern distributions. By integrating a newly developed dual-similarity relevance feedback module into the CBIR framework, the CBIR results were improved substantially. By aggregating the computational power of high performance computing (HPC) and cloud resources, we demonstrated that the method can be successfully executed in minutes on the Cloud compared to weeks using standard computers. In this paper, we present a set of newly developed CBIR algorithms and validate them using two

  14. Cloud Height Retrieval with Oxygen A and B Bands for the Deep Space Climate Observatory (DSCOVR) Mission

    Science.gov (United States)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2012-01-01

    Planned to fly in 2014, the Deep Space Climate Observatory (DSCOVR) would see the whole sunlit half of the Earth from the L 1 Lagrangian point and would provide simultaneous data on cloud and aerosol properties with its Earth Polychromatic Imaging Camera (EPIC). EPIC images the Earth on a 2Kx2K CCD array, which gives a horizontal resolution of about 10 km at nadir. A filter-wheel provides consecutive images in 10 spectral channels ranging from the UV to the near-IR, including the oxygen A and B bands. This paper presents a study of retrieving cloud height with EPIC's oxygen A and B bands. As the first step, we analyzed the effect of cloud optical and geometrical properties, sun-view geometry, and surface type on the cloud height determination. Second, we developed two cloud height retrieval algorithms that are based on the Mixed Lambertian-Equivalent Reflectivity (MLER) concept: one utilizes the absolute radiances at the Oxygen A and B bands and the other uses the radiance ratios between the absorption and reference channels of the two bands. Third, we applied the algorithms to the simulated EPIC data and to the data from SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) observations. Results show that oxygen A and B bands complement each other: A band is better suited for retrievals over ocean, while B band is better over vegetated land due to a much darker surface. Improvements to the MLER model, including corrections to surface contribution and photon path inside clouds, will also be discussed.

  15. Cloud Imagers Offer New Details on Earth's Health

    Science.gov (United States)

    2009-01-01

    A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis

  16. Spatiotemporal High-Resolution Cloud Mapping with a Ground-Based IR Scanner

    NARCIS (Netherlands)

    Brede, Benjamin; Thies, Boris; Bendix, Jörg; Feister, Uwe

    2017-01-01

    The high spatiotemporal variability of clouds requires automated monitoring systems. This study presents a retrieval algorithm that evaluates observations of a hemispherically scanning thermal infrared radiometer, the NubiScope, to produce georeferenced, spatially explicit cloud maps. The algorithm

  17. Development of Multi-Sensor Global Cloud and Radiance Composites for DSCOVR EPIC Imager with Subpixel Definition

    Science.gov (United States)

    Khlopenkov, K. V.; Duda, D. P.; Thieman, M. M.; Sun-Mack, S.; Su, W.; Minnis, P.; Bedka, K. M.

    2017-12-01

    The Deep Space Climate Observatory (DSCOVR) is designed to study the daytime Earth radiation budget by means of onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). EPIC imager observes in several shortwave bands (317-780 nm), while NISTAR measures the top-of-atmosphere (TOA) whole-disk radiance in shortwave and total broadband windows. Calculation of albedo and outgoing longwave flux requires a high-resolution scene identification such as the radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers. These properties have to be co-located with EPIC imager pixels to provide scene identification and to select anisotropic directional models, which are then used to adjust the NISTAR-measured radiance and subsequently obtain the global daytime shortwave and longwave fluxes. This work presents an algorithm for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. The highest quality observation is selected by means of an aggregated rating which incorporates several factors such as the nearest time relative to EPIC observation, lowest viewing zenith angle, and others. This process provides a smoother transition and avoids abrupt changes in the merged composite data. Higher spatial accuracy in the composite product is achieved by using the inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into the EPIC-view domain by convolving composite pixels with the EPIC point spread function (PSF) defined with a half-pixel accuracy. Within every EPIC footprint, the PSF-weighted average radiances and cloud properties are computed for each cloud phase and then stored within five data subsets (clear-sky, water cloud, ice cloud, total cloud, and no

  18. Auto-Scaling of Geo-Based Image Processing in an OpenStack Cloud Computing Environment

    OpenAIRE

    Sanggoo Kang; Kiwon Lee

    2016-01-01

    Cloud computing is a base platform for the distribution of large volumes of data and high-performance image processing on the Web. Despite wide applications in Web-based services and their many benefits, geo-spatial applications based on cloud computing technology are still developing. Auto-scaling realizes automatic scalability, i.e., the scale-out and scale-in processing of virtual servers in a cloud computing environment. This study investigates the applicability of auto-scaling to geo-bas...

  19. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    Science.gov (United States)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  20. Automatic Cloud and Shadow Detection in Optical Satellite Imagery Without Using Thermal Bands—Application to Suomi NPP VIIRS Images over Fennoscandia

    Directory of Open Access Journals (Sweden)

    Eija Parmes

    2017-08-01

    Full Text Available In land monitoring applications, clouds and shadows are considered noise that should be removed as automatically and quickly as possible, before further analysis. This paper presents a method to detect clouds and shadows in Suomi NPP satellite’s VIIRS (Visible Infrared Imaging Radiometer Suite satellite images. The proposed cloud and shadow detection method has two distinct features when compared to many other methods. First, the method does not use the thermal bands and can thus be applied to other sensors which do not contain thermal channels, such as Sentinel-2 data. Secondly, the method uses the ratio between blue and green reflectance to detect shadows. Seven hundred and forty-seven VIIRS images over Fennoscandia from August 2014 to April 2016 were processed to train and develop the method. Twenty four points from every tenth of the images were used in accuracy assessment. These 1752 points were interpreted visually to cloud, cloud shadow and clear classes, then compared to the output of the cloud and shadow detection. The comparison on VIIRS images showed 94.2% correct detection rates and 11.1% false alarms for clouds, and respectively 36.1% and 82.7% for shadows. The results on cloud detection were similar to state-of-the-art methods. Shadows showed correctly on the northern edge of the clouds, but many shadows were wrongly assigned to other classes in some cases (e.g., to water class on lake and forest boundary, or with shadows over cloud. This may be due to the low spatial resolution of VIIRS images, where shadows are only a few pixels wide and contain lots of mixed pixels.

  1. Image velocimetry for clouds with relaxation labeling based on deformation consistency

    International Nuclear Information System (INIS)

    Horinouchi, Takeshi; Murakami, Shin-ya; Yamazaki, Atsushi; Kouyama, Toru; Ogohara, Kazunori; Yamada, Manabu; Watanabe, Shigeto

    2017-01-01

    Correlation-based cloud tracking has been extensively used to measure atmospheric winds, but still difficulty remains. In this study, aiming at developing a cloud tracking system for Akatsuki, an artificial satellite orbiting Venus, a formulation is developed for improving the relaxation labeling technique to select appropriate peaks of cross-correlation surfaces which tend to have multiple peaks. The formulation makes an explicit use of consistency inherent in the type of cross-correlation method where template sub-images are slid without deformation; if the resultant motion vectors indicate a too-large deformation, it is contradictory to the assumption of the method. The deformation consistency is exploited further to develop two post processes; one clusters the motion vectors into groups within each of which the consistency is perfect, and the other extends the groups using the original candidate lists. These processes are useful to eliminate erroneous vectors, distinguish motion vectors at different altitudes, and detect phase velocities of waves in fluids such as atmospheric gravity waves. As a basis of the relaxation labeling and the post processes as well as uncertainty estimation, the necessity to find isolated (well-separated) peaks of cross-correlation surfaces is argued, and an algorithm to realize it is presented. All the methods are implemented, and their effectiveness is demonstrated with initial images obtained by the ultraviolet imager onboard Akatsuki. Since the deformation consistency regards the logical consistency inherent in template matching methods, it should have broad application beyond cloud tracking. (paper)

  2. Image velocimetry for clouds with relaxation labeling based on deformation consistency

    Science.gov (United States)

    Horinouchi, Takeshi; Murakami, Shin-ya; Kouyama, Toru; Ogohara, Kazunori; Yamazaki, Atsushi; Yamada, Manabu; Watanabe, Shigeto

    2017-08-01

    Correlation-based cloud tracking has been extensively used to measure atmospheric winds, but still difficulty remains. In this study, aiming at developing a cloud tracking system for Akatsuki, an artificial satellite orbiting Venus, a formulation is developed for improving the relaxation labeling technique to select appropriate peaks of cross-correlation surfaces which tend to have multiple peaks. The formulation makes an explicit use of consistency inherent in the type of cross-correlation method where template sub-images are slid without deformation; if the resultant motion vectors indicate a too-large deformation, it is contradictory to the assumption of the method. The deformation consistency is exploited further to develop two post processes; one clusters the motion vectors into groups within each of which the consistency is perfect, and the other extends the groups using the original candidate lists. These processes are useful to eliminate erroneous vectors, distinguish motion vectors at different altitudes, and detect phase velocities of waves in fluids such as atmospheric gravity waves. As a basis of the relaxation labeling and the post processes as well as uncertainty estimation, the necessity to find isolated (well-separated) peaks of cross-correlation surfaces is argued, and an algorithm to realize it is presented. All the methods are implemented, and their effectiveness is demonstrated with initial images obtained by the ultraviolet imager onboard Akatsuki. Since the deformation consistency regards the logical consistency inherent in template matching methods, it should have broad application beyond cloud tracking.

  3. IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels.

    Science.gov (United States)

    Yokogawa, Sozo; Oshiyama, Itaru; Ikeda, Harumi; Ebiko, Yoshiki; Hirano, Tomoyuki; Saito, Suguru; Oinoue, Takashi; Hagimoto, Yoshiya; Iwamoto, Hayato

    2017-06-19

    We report on the IR sensitivity enhancement of back-illuminated CMOS Image Sensor (BI-CIS) with 2-dimensional diffractive inverted pyramid array structure (IPA) on crystalline silicon (c-Si) and deep trench isolation (DTI). FDTD simulations of semi-infinite thick c-Si having 2D IPAs on its surface whose pitches over 400 nm shows more than 30% improvement of light absorption at λ = 850 nm and the maximum enhancement of 43% with the 540 nm pitch at the wavelength is confirmed. A prototype BI-CIS sample with pixel size of 1.2 μm square containing 400 nm pitch IPAs shows 80% sensitivity enhancement at λ = 850 nm compared to the reference sample with flat surface. This is due to diffraction with the IPA and total reflection at the pixel boundary. The NIR images taken by the demo camera equip with a C-mount lens show 75% sensitivity enhancement in the λ = 700-1200 nm wavelength range with negligible spatial resolution degradation. Light trapping CIS pixel technology promises to improve NIR sensitivity and appears to be applicable to many different image sensor applications including security camera, personal authentication, and range finding Time-of-Flight camera with IR illuminations.

  4. Cloud and radiance measurements with the VIS/NIR Daylight Whole Sky Imager at Lindenberg (Germany)

    Energy Technology Data Exchange (ETDEWEB)

    Feister, U. [Deutscher Wetterdienst, Meteorologisches Observatorium Lindenberg (Germany); Shields, J. [Scripps Inst. of Oceanography, Univ. of California, San Diego (United States)

    2005-10-01

    Ground-based cloud data acquired with the whole sky imager (WSI) are analyzed in relation to measurements of solar radiation performed at the Lindenberg Meteorological Observatory. Cloud fractions derived by the cloud detection algorithm from WSI images acquired during daylight hours between 2002 and 2004 are compared with conventional cloud observations for the two sites Potsdam and Lindenberg, and also with ceilometer data of cloud-base heights at Lindenberg. The comparison statistics are discussed in the context of different principles of measurement. A few case studies illustrate the strong scattering effect of clouds on solar radiance and irradiance measured at the ground in different spectral regions. Particularly clouds close to the apparent position of the sun lead to strong enhancements of solar diffuse irradiance incident on horizontal planes and hemispheres that substantially exceed corresponding clear-sky values. Irradiances derived from WSI sky radiance fields are shown in comparison to pyranometer data of diffuse irradiance and radiative transfer model calculations performed for clear sky conditions. Examples of spectral sky radiances with moving contrails illustrate the significant enhancement the contrails have compared to clear sky, even though they may have a relatively small direct effect on global irradiance values. As contrails are observed at Lindenberg for about 18 to 19% of daylight hours, and part of them become clouds, the indirect impact of these changes on solar irradiance received at the ground may not be negligible. (orig.)

  5. High-resolution T1-weighted 3D real IR imaging of the temporal bone using triple-dose contrast material

    Energy Technology Data Exchange (ETDEWEB)

    Naganawa, Shinji; Koshikawa, Tokiko; Nakamura, Tatsuya; Fukatsu, Hiroshi; Ishigaki, Takeo [Department of Radiology, Nagoya University School of Medicine, 65 Tsurumai-cho, Shouwa-ku, 466-8550, Nagoya (Japan); Aoki, Ikuo [Medical System Company, Toshiba Corporation, Tokyo (Japan)

    2003-12-01

    The small structures in the temporal bone are surrounded by bone and air. The objectives of this study were (a) to compare contrast-enhanced T1-weighted images acquired by fast spin-echo-based three-dimensional real inversion recovery (3D rIR) against those acquired by gradient echo-based 3D SPGR in the visualization of the enhancement of small structures in the temporal bone, and (b) to determine whether either 3D rIR or 3D SPGR is useful for visualizing enhancement of the cochlear lymph fluid. Seven healthy men (age range 27-46 years) volunteered to participate in this study. All MR imaging was performed using a dedicated bilateral quadrature surface phased-array coil for temporal bone imaging at 1.5 T (Visart EX, Toshiba, Tokyo, Japan). The 3D rIR images (TR/TE/TI: 1800 ms/10 ms/500 ms) and flow-compensated 3D SPGR images (TR/TE/FA: 23 ms/10 ms/25 ) were obtained with a reconstructed voxel size of 0.6 x 0.7 x 0.8 mm{sup 3}. Images were acquired before and 1, 90, 180, and 270 min after the administration of triple-dose Gd-DTPA-BMA (0.3 mmol/kg). In post-contrast MR images, the degree of enhancement of the cochlear aqueduct, endolymphatic sac, subarcuate artery, geniculate ganglion of the facial nerve, and cochlear lymph fluid space was assessed by two radiologists. The degree of enhancement was scored as follows: 0 (no enhancement); 1 (slight enhancement); 2 (intermediate between 1 and 3); and 3 (enhancement similar to that of vessels). Enhancement scores for the endolymphatic sac, subarcuate artery, and geniculate ganglion were higher in 3D rIR than in 3D SPGR. Washout of enhancement in the endolymphatic sac appeared to be delayed compared with that in the subarcuate artery, suggesting that the enhancement in the endolymphatic sac may have been due in part to non-vascular tissue enhancement. Enhancement of the cochlear lymph space was not observed in any of the subjects in 3D rIR and 3D SPGR. The 3D rIR sequence may be more sensitive than the 3D SPGR sequence in

  6. Cloud Computing for radiologists.

    Science.gov (United States)

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  7. Cloud Computing for radiologists

    International Nuclear Information System (INIS)

    Kharat, Amit T; Safvi, Amjad; Thind, SS; Singh, Amarjit

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future

  8. Cloud computing for radiologists

    Directory of Open Access Journals (Sweden)

    Amit T Kharat

    2012-01-01

    Full Text Available Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  9. A high resolution IR/visible imaging system for the W7-X limiter

    Energy Technology Data Exchange (ETDEWEB)

    Wurden, G. A., E-mail: wurden@lanl.gov; Dunn, J. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stephey, L. A. [University of Wisconsin, Madison, Wisconsin 53706 (United States); Biedermann, C.; Jakubowski, M. W.; Gamradt, M. [Max Planck Institut für Plasma Physik, Wendelsteinstrasse 1, 17491 Greifswald (Germany)

    2016-11-15

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m{sup 2}), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  10. A high resolution IR/visible imaging system for the W7-X limiter

    International Nuclear Information System (INIS)

    Wurden, G. A.; Dunn, J. P.; Stephey, L. A.; Biedermann, C.; Jakubowski, M. W.; Gamradt, M.

    2016-01-01

    A high-resolution imaging system, consisting of megapixel mid-IR and visible cameras along the same line of sight, has been prepared for the new W7-X stellarator and was operated during Operational Period 1.1 to view one of the five inboard graphite limiters. The radial line of sight, through a large diameter (184 mm clear aperture) uncoated sapphire window, couples a direct viewing 1344 × 784 pixel FLIR SC8303HD camera. A germanium beam-splitter sends visible light to a 1024 × 1024 pixel Allied Vision Technologies Prosilica GX1050 color camera. Both achieve sub-millimeter resolution on the 161 mm wide, inertially cooled, segmented graphite tiles. The IR and visible cameras are controlled via optical fibers over full Camera Link and dual GigE Ethernet (2 Gbit/s data rates) interfaces, respectively. While they are mounted outside the cryostat at a distance of 3.2 m from the limiter, they are close to a large magnetic trim coil and require soft iron shielding. We have taken IR data at 125 Hz to 1.25 kHz frame rates and seen that surface temperature increases in excess of 350 °C, especially on leading edges or defect hot spots. The IR camera sees heat-load stripe patterns on the limiter and has been used to infer limiter power fluxes (∼1–4.5 MW/m"2), during the ECRH heating phase. IR images have also been used calorimetrically between shots to measure equilibrated bulk tile temperature, and hence tile energy inputs (in the range of 30 kJ/tile with 0.6 MW, 6 s heating pulses). Small UFO’s can be seen and tracked by the FLIR camera in some discharges. The calibrated visible color camera (100 Hz frame rate) has also been equipped with narrow band C-III and H-alpha filters, to compare with other diagnostics, and is used for absolute particle flux determination from the limiter surface. Sometimes, but not always, hot-spots in the IR are also seen to be bright in C-III light.

  11. HIERARCHICAL REGULARIZATION OF POLYGONS FOR PHOTOGRAMMETRIC POINT CLOUDS OF OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    L. Xie

    2017-05-01

    Full Text Available Despite the success of multi-view stereo (MVS reconstruction from massive oblique images in city scale, only point clouds and triangulated meshes are available from existing MVS pipelines, which are topologically defect laden, free of semantical information and hard to edit and manipulate interactively in further applications. On the other hand, 2D polygons and polygonal models are still the industrial standard. However, extraction of the 2D polygons from MVS point clouds is still a non-trivial task, given the fact that the boundaries of the detected planes are zigzagged and regularities, such as parallel and orthogonal, cannot preserve. Aiming to solve these issues, this paper proposes a hierarchical polygon regularization method for the photogrammetric point clouds from existing MVS pipelines, which comprises of local and global levels. After boundary points extraction, e.g. using alpha shapes, the local level is used to consolidate the original points, by refining the orientation and position of the points using linear priors. The points are then grouped into local segments by forward searching. In the global level, regularities are enforced through a labeling process, which encourage the segments share the same label and the same label represents segments are parallel or orthogonal. This is formulated as Markov Random Field and solved efficiently. Preliminary results are made with point clouds from aerial oblique images and compared with two classical regularization methods, which have revealed that the proposed method are more powerful in abstracting a single building and is promising for further 3D polygonal model reconstruction and GIS applications.

  12. Jupiter's Multi-level Clouds

    Science.gov (United States)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity

  13. A comparison of performance of automatic cloud coverage assessment algorithm for Formosat-2 image using clustering-based and spatial thresholding methods

    Science.gov (United States)

    Hsu, Kuo-Hsien

    2012-11-01

    Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.

  14. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  15. Water ice clouds observations with PFS on Mars Express

    Science.gov (United States)

    Moroz, V. I.; Zasova, L. V.; Formisano, V.; Grassi, D.; Ignatiev, N. I.; Giuranna, M.; Maturilli, A.; Pfs Team

    The water ice cloud observation is one of the scientific goals of PFS. Presence and properties of the ice particles are identified from absorption features, observed in both spectral ranges of PFS. Being in the near perihelion condition, the temperature of the Martian atmosphere is pretty high and ice clouds exist only in some places, for example, related to topography or at north high latitudes et etc. The ice clouds are observed often above the tops of the volcanoes. We have found the ice clouds above Olympus (orbit 37) and Ascraeus Mons (orbit 68). Effective radius of particles according to the thermal IR is preliminary estimated of 1 μ m, which leads to the visual opacity of 0.2 -0.3 above Olympus and of maximum of 0.6 above Ascraeus Mons. In the case of Ascraeus Mons the ice clouds are observed on the south slope near the top of the volcano. The maximum surface temperature, observed there, results in the upward flux of warm air, which, cooling, provides the condensation of H2O. We will present a detailed analysis of the ice clouds, observed over the planet in the IR spectral range.

  16. Exploration of the Infrared Sensitivity for a ZnSe Electrode of an IR Image Converter

    Science.gov (United States)

    Kurt, H. Hilal

    2018-05-01

    Significant improvement has been carried out in the field of the II-VI group semiconductor device technology. Semiconductors based on the II-VI group are attractive due to their alternative uses for thermal imaging systems and photonic applications. This study focuses on experimental work on the optical, electrical and structural characterization of an infrared (IR) photodetector zinc selenide (ZnSe). In addition, the IR sensitivity of the ZnSe has primarily been investigated by exploiting the IR responses of the material for various gas pressures, p, and interelectrode distances, d, in the IR converter. The experimental findings include the results of plasma current and plasma discharge emission under various illumination conditions in the IR region. The electron density distributions inside the gas discharge gap have also been simulated in two-dimensional media. Experimentally, the current-voltage, current-time, and discharge light emission plots are produced for a wide experimental parameter range. Consequently, the structural and optical properties have been studied through atomic force microscopy and Fourier-transform infrared spectroscopy techniques to obtain a comprehensive knowledge of the material.

  17. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  18. Diurnal, Seasonal, and Interannual Variations of Cloud Properties Derived for CERES From Imager Data

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Brown, Richard R.; Gibson, Sharon; Heck, Patrick W.

    2004-01-01

    Simultaneous measurement of the radiation and cloud fields on a global basis is a key component in the effort to understand and model the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project, begun in 1998, is meeting this need. Broadband shortwave (SW) and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth OD from the TRMM Visible Infrared Scanner (VIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Besides aiding the interpretation of the broadband radiances, the CERES cloud properties are valuable for understanding cloud variations at a variety of scales. In this paper, the resulting CERES cloud data taken to date are averaged at several temporal scales to examine the temporal and spatial variability of the cloud properties on a global scale at a 1 resolution.

  19. The cloud monitor by an infrared camera at the Telescope Array experiment

    International Nuclear Information System (INIS)

    Shibata, F.

    2011-01-01

    The mesurement of the extensive air shower using the fluorescence detectors (FDs) is affected by the condition of the atmosphere. In particular, FD aperture is limited by cloudiness. If cloud exists on the light path from extensive air shower to FDs, fluorescence photons will be absorbed drastically. Therefore cloudiness of FD's field of view (FOV) is one of important quality cut condition in FD analysis. In the Telescope Array (TA), an infrared (IR) camera with 320x236 pixels and a filed of view of 25.8 deg. x19.5 deg. has been installed at an observation site for cloud monitoring during FD observations. This IR camera measures temperature of the sky every 30 min during FD observation. IR camera is mounted on steering table, which can be changed in elevation and azimuthal direction. Clouds can be seen at a higher temperature than areas of cloudless sky from these temperature maps. In this paper, we discuss the quality of the cloud monitoring data, the analysis method, and current quality cut condition of cloudiness in FD analysis.

  20. About possibility of temperature trace observing on a human skin through clothes by using computer processing of IR image

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Shestakov, Ivan L.; Blednov, Roman G.

    2017-05-01

    One of urgent security problems is a detection of objects placed inside the human body. Obviously, for safety reasons one cannot use X-rays for such object detection widely and often. For this purpose, we propose to use THz camera and IR camera. Below we continue a possibility of IR camera using for a detection of temperature trace on a human body. In contrast to passive THz camera using, the IR camera does not allow to see very pronounced the object under clothing. Of course, this is a big disadvantage for a security problem solution based on the IR camera using. To find possible ways for this disadvantage overcoming we make some experiments with IR camera, produced by FLIR Company and develop novel approach for computer processing of images captured by IR camera. It allows us to increase a temperature resolution of IR camera as well as human year effective susceptibility enhancing. As a consequence of this, a possibility for seeing of a human body temperature changing through clothing appears. We analyze IR images of a person, which drinks water and eats chocolate. We follow a temperature trace on human body skin, caused by changing of temperature inside the human body. Some experiments are made with observing of temperature trace from objects placed behind think overall. Demonstrated results are very important for the detection of forbidden objects, concealed inside the human body, by using non-destructive control without using X-rays.

  1. Real-time near-IR imaging of laser-ablation crater evolution in dental enamel

    Science.gov (United States)

    Darling, Cynthia L.; Fried, Daniel

    2007-02-01

    We have shown that the enamel of the tooth is almost completely transparent near 1310-nm in the near-infrared and that near-IR (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue and for observing defects in the interior of the tooth. Lasers are now routinely used for many applications in dentistry including the ablation of dental caries. The objective of this study was to test the hypothesis that real-time NIR imaging can be used to monitor laser-ablation under varying conditions to assess peripheral thermal and transient-stress induced damage and to measure the rate and efficiency of ablation. Moreover, NIR imaging may have considerable potential for monitoring the removal of demineralized areas of the tooth during cavity preparations. Sound human tooth sections of approximately 3-mm thickness were irradiated by a CO II laser under varying conditions with and without a water spray. The incision area in the interior of each sample was imaged using a tungsten-halogen lamp with band-pass filter centered at 131--nm combined with an InGaAs focal plane array with a NIR zoom microscope in transillumination. Due to the high transparency of enamel at 1310-nm, laser-incisions were clearly visible to the dentin-enamel junction and crack formation, dehydration and irreversible thermal changes were observed during ablation. This study showed that there is great potential for near-IR imaging to monitor laser-ablation events in real-time to: assess safe laser operating parameters by imaging thermal and stress-induced damage, elaborate the mechanisms involved in ablation such as dehydration, and monitor the removal of demineralized enamel.

  2. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    the performance of today's state of the art IR detectors for the visible/near-IR region shows a striking contrast, as the latter can have dark currents in the range of 0.001 electrons per second. Demonstrated performance of waveguide upconversion techniques still show considerable dark noise, even when working...

  3. Jupiter's Great Red Spot upper cloud morphology and dynamics from JunoCam images

    Science.gov (United States)

    Sanchez-Lavega, A.; Hueso, R.; Eichstädt, G.; Orton, G.; Rogers, J.; Hansen, C. J.; Momary, T.; Tabataba-Vakili, F.

    2017-12-01

    We present an analysis of RGB color-composite images of the Great Red Spot (GRS) obtained with JunoCam during Juno's seventh close flyby (PJ7) on July 11, 2017. The images have been projected as 4 cylindrical maps with a resolution of 180 pixels per degree (about 7 km/pixel) spanning a temporal interval of 9 min 41s. The GRS shows a rich variety of cloud morphologies that reveal different dynamical processes in its interior. We consider three major regions. (1) An outer peripheral ring of homogeneous reddish clouds (width about 1,300 km) traces a laminar flow. A family of at least three packets of gravity waves with a mean wavelength of 75 km is present at the internal edge of the ring (in its northern side). They occupy an area of 2,500 km in length (East-West, EW) and 670 km in the North-South (NS) direction. Single clouds in the groups forming the wave have extents of 35 km EW and 70-135 km NS. (2) A large internal region of red clouds (width about 3,200 km) contains three morphologies: (a) fields of bright cumulus-like clusters, (b) long, dark curved filaments (about 7,000 km length with 100 km width), two of them converging into an arrowhead shape, and (c) individual anticyclonic vortices with radius of 500 km that grow due to the radial shear of the wind velocity in the GRS interior as previously measured. A cumulus cluster is conspicuous inside one such anticyclone. Each single cloud element is 50 km in size and the cluster has a 25-30 percent area coverage in cumulus-convective activity, presumably due to ammonia moist convection. (3) A central core has quasi-rectangular shape, extending about 5000 km EW and 3000 km NS, that is confined by elongated clouds distributed along its periphery. Its interior is filled with the redder clouds in the GRS that have a scale 100 km and form a turbulent pattern whose cloud orientations suggest three adjacent areas with alternating cyclonic-cyclonic-anticyclonic vorticity, each with radius 650-850 km.

  4. Interferometric laser imaging for in-flight cloud droplet sizing

    International Nuclear Information System (INIS)

    Dunker, Christina; Roloff, Christoph; Grassmann, Arne

    2016-01-01

    A non-intrusive particle sizing method with a high spatial distribution is used to estimate cloud droplet spectra during flight test campaigns. The interferometric laser imaging for droplet sizing (ILIDS) method derives particle diameters of transparent spheres by evaluating the out-of-focus image patterns. This sizing approach requires a polarized monochromatic light source, a camera including an objective lens with a slit aperture, a synchronization unit and a processing tool for data evaluation. These components are adapted to a flight test environment to enable the microphysical investigation of different cloud genera. The present work addresses the design and specifications of ILIDS system, flight test preparation and selected results obtained in the lower and middle troposphere. The research platform was a Dornier Do228-101 commuter aircraft at the DLR Flight Operation Center in Braunschweig. It was equipped with the required instrumentation including a high-energy laser as the light source. A comprehensive data set of around 71 800 ILIDS images was acquired over the course of five flights. The data evaluation of the characteristic ILIDS fringe patterns relies, among other things, on a relationship between the fringe spacing and the diameter of the particle. The simplest way to extract this information from a pattern is by fringe counting, which is not viable for such an extensive number of data. A brief contrasting comparison of evaluation methods based on frequency analysis by means of fast Fourier transform and on correlation methods such as minimum quadratic difference is used to encompass the limits and accuracy of the ILIDS method for such applications. (paper)

  5. CO and IRAS detection of an intermediate-velocity cloud

    International Nuclear Information System (INIS)

    Desert, F.X.; Bazell, D.; Blitz, L.

    1990-01-01

    In the course of a radio survey of high-Galactic-latitude clouds, CO emission was detected at the position l = 210.8 deg and b = 63.1 deg with an LSR velocity of -39 km/sec. This molecular cloud constitutes the third one with an unusually large absolute velocity at these latitudes, as compared with the 5.4-km/sec cloud-to-cloud velocity dispersion of the high-latitude molecular clouds. The position is coincident with an H I intermediate-velocity cloud (GHL 11, Verschuur H, OLM 268) and the IR-excess cloud 306 in the list by Desert et al. (1988). This cloud is clearly detected at all four IRAS wavelengths and has warmer colors than the local ISM. 27 refs

  6. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    Science.gov (United States)

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  7. Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images

    Science.gov (United States)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.

    2014-11-01

    We have investigated the cloud top structure of Venus by analyzing ground-based images taken at the mid-infrared wavelengths of 8.66 μm and 11.34 μm. Venus at a solar phase angle of ∼90°, with the morning terminator in view, was observed by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope, during the period October 25-29, 2007. The disk-averaged brightness temperatures for the observation period are ∼230 K and ∼238 K at 8.66 μm and 11.34 μm, respectively. The obtained images with good signal-to-noise ratio and with high spatial resolution (∼200 km at the sub-observer point) provide several important findings. First, we present observational evidence, for the first time, of the possibility that the westward rotation of the polar features (the hot polar spots and the surrounding cold collars) is synchronized between the northern and southern hemispheres. Second, after high-pass filtering, the images reveal that streaks and mottled and patchy patterns are distributed over the entire disk, with typical amplitudes of ∼0.5 K, and vary from day to day. The detected features, some of which are similar to those seen in past UV images, result from inhomogeneities of both the temperature and the cloud top altitude. Third, the equatorial center-to-limb variations of brightness temperatures have a systematic day-night asymmetry, except those on October 25, that the dayside brightness temperatures are higher than the nightside brightness temperatures by 0-4 K under the same viewing geometry. Such asymmetry would be caused by the propagation of the migrating semidiurnal tide. Finally, by applying the lapse rates deduced from previous studies, we demonstrate that the equatorial center-to-limb curves in the two spectral channels give access to two parameters: the cloud scale height H and the cloud top altitude zc. The acceptable models for data on October 25 are obtained at H = 2.4-4.3 km and zc = 66-69 km; this supports

  8. A method of retrieving cloud top height and cloud geometrical thickness with oxygen A and B bands for the Deep Space Climate Observatory (DSCOVR) mission: Radiative transfer simulations

    International Nuclear Information System (INIS)

    Yang, Yuekui; Marshak, Alexander; Mao, Jianping; Lyapustin, Alexei; Herman, Jay

    2013-01-01

    The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) was designed to measure the atmosphere and surface properties over the whole sunlit half of the Earth from the L1 Lagrangian point. It has 10 spectral channels ranging from the UV to the near-IR, including two pairs of oxygen (O 2 ) A-band (779.5 and 764 nm) and B-band (680 and 687.75 nm) reference and absorption channels selected for the cloud height measurements. This paper presents the radiative transfer analysis pertinent to retrieving cloud top height and cloud geometrical thickness with EPIC A- and B-band observations. Due to photon cloud penetration, retrievals from either O 2 A- or B-band channels alone gives the corresponding cloud centroid height, which is lower than the cloud top. However, we show both the sum and the difference between the retrieved cloud centroid heights in the A and B bands are functions of cloud top height and cloud geometrical thickness. Based on this fact, the paper develops a new method to retrieve cloud top height and cloud geometrical thickness simultaneously for fully cloudy scenes over ocean surface. First, cloud centroid heights are calculated for both A and B bands using the ratios between the reflectances of the absorbing and reference channels; then the cloud top height and the cloud geometrical thickness are retrieved from the two dimensional look up tables that relate the sum and the difference between the retrieved centroid heights for A and B bands to the cloud top height and the cloud geometrical thickness. This method is applicable for clouds thicker than an optical depth of 5. -- Highlights: ► EPIC onboard DSCOVR is equipped with O 2 A and B band channels. ► Photon cloud penetration depths of A and B bands contain information of cloud thickness. ► A method is developed to retrieve cloud top height and cloud geometrical thickness with EPIC O 2 A- and B-band

  9. The Impact of Cross-track Infrared Sounder (CrIS) Cloud-Cleared Radiances on Hurricane Joaquin (2015) and Matthew (2016) Forecasts

    Science.gov (United States)

    Wang, Pei; Li, Jun; Li, Zhenglong; Lim, Agnes H. N.; Li, Jinlong; Schmit, Timothy J.; Goldberg, Mitchell D.

    2017-12-01

    Hyperspectral infrared (IR) sounders provide high vertical resolution atmospheric sounding information that can improve the forecast skill in numerical weather prediction. Commonly, only clear radiances are assimilated, because IR sounder observations are highly affected by clouds. A cloud-clearing (CC) technique, which removes the cloud effects from an IR cloudy field of view (FOV) and derives the cloud-cleared radiances (CCRs) or clear-sky equivalent radiances, can be an alternative yet effective way to take advantage of the thermodynamic information from cloudy skies in data assimilation. This study develops a Visible Infrared Imaging Radiometer Suite (VIIRS)-based CC method for deriving Cross-track Infrared Sounder (CrIS) CCRs under partially cloudy conditions. Due to the lack of absorption bands on VIIRS, two important quality control steps are implemented in the CC process. Validation using VIIRS clear radiances indicates that the CC method can effectively obtain the CrIS CCRs for FOVs with partial cloud cover. To compare the impacts from assimilation of CrIS original radiances and CCRs, three experiments are carried out on two storm cases, Hurricane Joaquin (2015) and Hurricane Matthew (2016), using Gridpoint Statistical Interpolation assimilation system and Weather Research and Forecasting-Advanced Research Version models. At the analysis time, more CrIS observations are assimilated when using CrIS CCRs than with CrIS original radiances. Comparing temperature, specific humidity, and U/V winds with radiosondes indicates that the data impacts are growing larger with longer time forecasts (beyond 72 h forecast). Hurricane track forecasts also show improvements from the assimilation of CrIS CCRs due to better weather system forecasts. The impacts of CCRs on intensity are basically neutral with mixed positive and negative results.

  10. A cloud collaborative medical image platform oriented by social network

    Science.gov (United States)

    Muniz, Frederico B.; Araújo, Luciano V.; Nunes, Fátima L. S.

    2017-03-01

    Computer-aided diagnosis systems using medical images and three-dimensional models as input data have greatly expanded and developed, but in terms of building suitable image databases to assess them, the challenge remains. Although there are some image databases available for this purpose, they are generally limited to certain types of exams or contain a limited number of medical cases. The objective of this work is to present the concepts and the development of a collaborative platform for sharing medical images and three-dimensional models, providing a resource to share and increase the number of images available for researchers. The collaborative cloud platform, called CATALYZER, aims to increase the availability and sharing of graphic objects, including 3D images, and their reports that are essential for research related to medical images. A survey conducted with researchers and health professionals indicated that this could be an innovative approach in the creation of medical image databases, providing a wider variety of cases together with a considerable amount of shared information among its users.

  11. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    Science.gov (United States)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  12. A ROBUST REGISTRATION ALGORITHM FOR POINT CLOUDS FROM UAV IMAGES FOR CHANGE DETECTION

    Directory of Open Access Journals (Sweden)

    A. Al-Rawabdeh

    2016-06-01

    Full Text Available Landslides are among the major threats to urban landscape and manmade infrastructure. They often cause economic losses, property damages, and loss of lives. Temporal monitoring data of landslides from different epochs empowers the evaluation of landslide progression. Alignment of overlapping surfaces from two or more epochs is crucial for the proper analysis of landslide dynamics. The traditional methods for point-cloud-based landslide monitoring rely on using a variation of the Iterative Closest Point (ICP registration procedure to align any reconstructed surfaces from different epochs to a common reference frame. However, sometimes the ICP-based registration can fail or may not provide sufficient accuracy. For example, point clouds from different epochs might fit to local minima due to lack of geometrical variability within the data. Also, manual interaction is required to exclude any non-stable areas from the registration process. In this paper, a robust image-based registration method is introduced for the simultaneous evaluation of all registration parameters. This includes the Interior Orientation Parameters (IOPs of the camera and the Exterior Orientation Parameters (EOPs of the involved images from all available observation epochs via a bundle block adjustment with self-calibration. Next, a semi-global dense matching technique is implemented to generate dense 3D point clouds for each epoch using the images captured in a particular epoch separately. The normal distances between any two consecutive point clouds can then be readily computed, because the point clouds are already effectively co-registered. A low-cost DJI Phantom II Unmanned Aerial Vehicle (UAV was customised and used in this research for temporal data collection over an active soil creep area in Lethbridge, Alberta, Canada. The customisation included adding a GPS logger and a Large-Field-Of-View (LFOV action camera which facilitated capturing high-resolution geo-tagged images

  13. a Robust Registration Algorithm for Point Clouds from Uav Images for Change Detection

    Science.gov (United States)

    Al-Rawabdeh, A.; Al-Gurrani, H.; Al-Durgham, K.; Detchev, I.; He, F.; El-Sheimy, N.; Habib, A.

    2016-06-01

    Landslides are among the major threats to urban landscape and manmade infrastructure. They often cause economic losses, property damages, and loss of lives. Temporal monitoring data of landslides from different epochs empowers the evaluation of landslide progression. Alignment of overlapping surfaces from two or more epochs is crucial for the proper analysis of landslide dynamics. The traditional methods for point-cloud-based landslide monitoring rely on using a variation of the Iterative Closest Point (ICP) registration procedure to align any reconstructed surfaces from different epochs to a common reference frame. However, sometimes the ICP-based registration can fail or may not provide sufficient accuracy. For example, point clouds from different epochs might fit to local minima due to lack of geometrical variability within the data. Also, manual interaction is required to exclude any non-stable areas from the registration process. In this paper, a robust image-based registration method is introduced for the simultaneous evaluation of all registration parameters. This includes the Interior Orientation Parameters (IOPs) of the camera and the Exterior Orientation Parameters (EOPs) of the involved images from all available observation epochs via a bundle block adjustment with self-calibration. Next, a semi-global dense matching technique is implemented to generate dense 3D point clouds for each epoch using the images captured in a particular epoch separately. The normal distances between any two consecutive point clouds can then be readily computed, because the point clouds are already effectively co-registered. A low-cost DJI Phantom II Unmanned Aerial Vehicle (UAV) was customised and used in this research for temporal data collection over an active soil creep area in Lethbridge, Alberta, Canada. The customisation included adding a GPS logger and a Large-Field-Of-View (LFOV) action camera which facilitated capturing high-resolution geo-tagged images in two epochs

  14. Time Series UAV Image-Based Point Clouds for Landslide Progression Evaluation Applications.

    Science.gov (United States)

    Al-Rawabdeh, Abdulla; Moussa, Adel; Foroutan, Marzieh; El-Sheimy, Naser; Habib, Ayman

    2017-10-18

    Landslides are major and constantly changing threats to urban landscapes and infrastructure. It is essential to detect and capture landslide changes regularly. Traditional methods for monitoring landslides are time-consuming, costly, dangerous, and the quality and quantity of the data is sometimes unable to meet the necessary requirements of geotechnical projects. This motivates the development of more automatic and efficient remote sensing approaches for landslide progression evaluation. Automatic change detection involving low-altitude unmanned aerial vehicle image-based point clouds, although proven, is relatively unexplored, and little research has been done in terms of accounting for volumetric changes. In this study, a methodology for automatically deriving change displacement rates, in a horizontal direction based on comparisons between extracted landslide scarps from multiple time periods, has been developed. Compared with the iterative closest projected point (ICPP) registration method, the developed method takes full advantage of automated geometric measuring, leading to fast processing. The proposed approach easily processes a large number of images from different epochs and enables the creation of registered image-based point clouds without the use of extensive ground control point information or further processing such as interpretation and image correlation. The produced results are promising for use in the field of landslide research.

  15. Theoretical studies of radiative properties of broken clouds

    International Nuclear Information System (INIS)

    Titov, G.A.

    1994-01-01

    One of the three goals of the Atmospheric Radiation Measurement (ARM) Program is to improve the quality of radiation models under clear sky, homogeneous cloud, and broken cloud conditions. This report is concerned with the development of the theory of radiation transfer in the broken clouds. Our approach is based on a stochastic description of the interaction between the radiation and cloud field with stochastic geometry; In the following, we discuss (1) the mean radiation fluxes in the near IR spectral range 2.7 to 3.2 μm; (2) the influence of random geometry of individual cumulus clouds on the mean fluxes of visible solar radiation; (3) the equations of the mean radiance in the statistically inhomogeneous cloud fields

  16. Hot Spots Detection of Operating PV Arrays through IR Thermal Image Using Method Based on Curve Fitting of Gray Histogram

    Directory of Open Access Journals (Sweden)

    Jiang Lin

    2016-01-01

    Full Text Available The overall efficiency of PV arrays is affected by hot spots which should be detected and diagnosed by applying responsible monitoring techniques. The method using the IR thermal image to detect hot spots has been studied as a direct, noncontact, nondestructive technique. However, IR thermal images suffer from relatively high stochastic noise and non-uniformity clutter, so the conventional methods of image processing are not effective. The paper proposes a method to detect hotspots based on curve fitting of gray histogram. The result of MATLAB simulation proves the method proposed in the paper is effective to detect the hot spots suppressing the noise generated during the process of image acquisition.

  17. Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.

    2003-12-01

    Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each

  18. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    Science.gov (United States)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; hide

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  19. A secure online image trading system for untrusted cloud environments.

    Science.gov (United States)

    Munadi, Khairul; Arnia, Fitri; Syaryadhi, Mohd; Fujiyoshi, Masaaki; Kiya, Hitoshi

    2015-01-01

    In conventional image trading systems, images are usually stored unprotected on a server, rendering them vulnerable to untrusted server providers and malicious intruders. This paper proposes a conceptual image trading framework that enables secure storage and retrieval over Internet services. The process involves three parties: an image publisher, a server provider, and an image buyer. The aim is to facilitate secure storage and retrieval of original images for commercial transactions, while preventing untrusted server providers and unauthorized users from gaining access to true contents. The framework exploits the Discrete Cosine Transform (DCT) coefficients and the moment invariants of images. Original images are visually protected in the DCT domain, and stored on a repository server. Small representation of the original images, called thumbnails, are generated and made publicly accessible for browsing. When a buyer is interested in a thumbnail, he/she sends a query to retrieve the visually protected image. The thumbnails and protected images are matched using the DC component of the DCT coefficients and the moment invariant feature. After the matching process, the server returns the corresponding protected image to the buyer. However, the image remains visually protected unless a key is granted. Our target application is the online market, where publishers sell their stock images over the Internet using public cloud servers.

  20. Real-time near IR (1310 nm) imaging of CO2 laser ablation of enamel.

    Science.gov (United States)

    Darling, Cynthia L; Fried, Daniel

    2008-02-18

    The high-transparency of dental enamel in the near-IR (NIR) can be exploited for real-time imaging of ablation crater formation during drilling with lasers. NIR images were acquired with an InGaAs focal plane array and a NIR zoom microscope during drilling incisions in human enamel samples with a lambda=9.3-microm CO(2) laser operating at repetition rates of 50-300-Hz with and without a water spray. Crack formation, dehydration and thermal changes were observed during ablation. These initial images demonstrate the potential of NIR imaging to monitor laser-ablation events in real-time to provide information about the mechanism of ablation and to evaluate the potential for peripheral thermal and mechanical damage.

  1. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)

    Science.gov (United States)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2018-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (clouds the error is mostly limited to within 10%, although for thin clouds (COT cloud masking and cloud temperature retrievals are not considered in this study. PMID:29619116

  2. IR-to-visible image upconverter under nonlinear crystal thermal gradient operation.

    Science.gov (United States)

    Maestre, H; Torregrosa, A J; Fernández-Pousa, C R; Capmany, J

    2018-01-22

    In this work we study the enhancement of the field-of-view of an infrared image up-converter by means of a thermal gradient in a PPLN crystal. Our work focuses on compact upconverters, in which both a short PPLN crystal length and high numerical aperture lenses are employed. We found a qualitative increase in both wavelength and angular tolerances, compared to a constant temperature upconverter, which makes it necessary a correct IR wavelength allocation in order to effectively increase the up-converted area.

  3. Automated jitter correction for IR image processing to assess the quality of W7-X high heat flux components

    International Nuclear Information System (INIS)

    Greuner, H; De Marne, P; Herrmann, A; Boeswirth, B; Schindler, T; Smirnow, M

    2009-01-01

    An automated IR image processing method was developed to evaluate the surface temperature distribution of cyclically loaded high heat flux (HHF) plasma facing components. IPP Garching will perform the HHF testing of a high percentage of the series production of the WENDELSTEIN 7-X (W7-X) divertor targets to minimize the number of undiscovered uncertainties in the finally installed components. The HHF tests will be performed as quality assurance (QA) complementary to the non-destructive examination (NDE) methods used during the manufacturing. The IR analysis of an HHF-loaded component detects growing debonding of the plasma facing material, made of carbon fibre composite (CFC), after a few thermal cycles. In the case of the prototype testing, the IR data was processed manually. However, a QA method requires a reliable, reproducible and efficient automated procedure. Using the example of the HHF testing of W7-X pre-series target elements, the paper describes the developed automated IR image processing method. The algorithm is based on an iterative two-step correlation analysis with an individually defined reference pattern for the determination of the jitter.

  4. Mid-IR hyperspectral imaging for label-free histopathology and cytology

    Science.gov (United States)

    Hermes, M.; Brandstrup Morrish, R.; Huot, L.; Meng, L.; Junaid, S.; Tomko, J.; Lloyd, G. R.; Masselink, W. T.; Tidemand-Lichtenberg, P.; Pedersen, C.; Palombo, F.; Stone, N.

    2018-02-01

    Mid-infrared (MIR) imaging has emerged as a valuable tool to investigate biological samples, such as tissue histological sections and cell cultures, by providing non-destructive chemical specificity without recourse to labels. While feasibility studies have shown the capabilities of MIR imaging approaches to address key biological and clinical questions, these techniques are still far from being deployable by non-expert users. In this review, we discuss the current state of the art of MIR technologies and give an overview on technical innovations and developments with the potential to make MIR imaging systems more readily available to a larger community. The most promising developments over the last few years are discussed here. They include improvements in MIR light sources with the availability of quantum cascade lasers and supercontinuum IR sources as well as the recently developed upconversion scheme to improve the detection of MIR radiation. These technical advances can substantially speed up data acquisition of multispectral or hyperspectral datasets thus providing the end user with vast amounts of data when imaging whole tissue areas of many mm2. Therefore, effective data analysis is of tremendous importance, and progress in method development is discussed with respect to the specific biomedical context.

  5. Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors

    Science.gov (United States)

    Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.

    2010-01-01

    The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with

  6. Submm-Wave Radiometry for Cloud/Humidity/Precipitation Sciences

    Science.gov (United States)

    Wu, Dong L.

    2011-01-01

    Although active sensors can provide cloud profiles at good vertical resolution, clouds are often coupled with dynamics to form fast and organized structures. Lack of understanding of these organized systems leads to great challenge for numerical models. The deficiency is partly reflected, for example, in poorly modeled intraseasonal variations (e.g., MJD). Remote sensing clouds in the middle and upper troposphere has been challenging from space. Vis/IR sensors are sensitive to the topmost cloud layers whereas low-frequency MW techniques are sensitivity to liquid and precipitation at the bottom of cloud layers. The middle-level clouds, mostly in the ice phase, require a sensor that has moderate penetration and sensitivity to cloud scattering, in order to measure cloud water content. Sensors at submm wavelengths provide promising sensitivity and coverage with the spatial resolution needed to measure cloud water content floating in the upper air. In addition, submm-wave sensors are able to provide better measurements of upper-tropospheric humidity than traditional microwave instruments.

  7. Near-IR Spectral Imaging of Semiconductor Absorption Sites in Integrated Circuits

    Directory of Open Access Journals (Sweden)

    E. C. Samson

    2004-12-01

    Full Text Available We derive spectral maps of absorption sites in integrated circuits (ICs by varying the wavelength of the optical probe within the near-IR range. This method has allowed us to improve the contrast of the acquired images by revealing structures that have a different optical absorption from neighboring sites. A false color composite image from those acquired at different wavelengths is generated from which the response of each semiconductor structure can be deduced. With the aid of the spectral maps, nonuniform absorption was also observed in a semiconductor structure located near an electrical overstress defect. This method may prove important in failure analysis of ICs by uncovering areas exhibiting anomalous absorption, which could improve localization of defective edifices in the semiconductor parts of the microchip

  8. Validation of the thermal code of RadTherm-IR, IR-Workbench, and F-TOM

    Science.gov (United States)

    Schwenger, Frédéric; Grossmann, Peter; Malaplate, Alain

    2009-05-01

    System assessment by image simulation requires synthetic scenarios that can be viewed by the device to be simulated. In addition to physical modeling of the camera, a reliable modeling of scene elements is necessary. Software products for modeling of target data in the IR should be capable of (i) predicting surface temperatures of scene elements over a long period of time and (ii) computing sensor views of the scenario. For such applications, FGAN-FOM acquired the software products RadTherm-IR (ThermoAnalytics Inc., Calumet, USA; IR-Workbench (OKTAL-SE, Toulouse, France). Inspection of the accuracy of simulation results by validation is necessary before using these products for applications. In the first step of validation, the performance of both "thermal solvers" was determined through comparison of the computed diurnal surface temperatures of a simple object with the corresponding values from measurements. CUBI is a rather simple geometric object with well known material parameters which makes it suitable for testing and validating object models in IR. It was used in this study as a test body. Comparison of calculated and measured surface temperature values will be presented, together with the results from the FGAN-FOM thermal object code F-TOM. In the second validation step, radiances of the simulated sensor views computed by RadTherm-IR and IR-Workbench will be compared with radiances retrieved from the recorded sensor images taken by the sensor that was simulated. Strengths and weaknesses of the models RadTherm-IR, IR-Workbench and F-TOM will be discussed.

  9. An Automatic Cloud Detection Method for ZY-3 Satellite

    Directory of Open Access Journals (Sweden)

    CHEN Zhenwei

    2015-03-01

    Full Text Available Automatic cloud detection for optical satellite remote sensing images is a significant step in the production system of satellite products. For the browse images cataloged by ZY-3 satellite, the tree discriminate structure is adopted to carry out cloud detection. The image was divided into sub-images and their features were extracted to perform classification between clouds and grounds. However, due to the high complexity of clouds and surfaces and the low resolution of browse images, the traditional classification algorithms based on image features are of great limitations. In view of the problem, a prior enhancement processing to original sub-images before classification was put forward in this paper to widen the texture difference between clouds and surfaces. Afterwards, with the secondary moment and first difference of the images, the feature vectors were extended in multi-scale space, and then the cloud proportion in the image was estimated through comprehensive analysis. The presented cloud detection algorithm has already been applied to the ZY-3 application system project, and the practical experiment results indicate that this algorithm is capable of promoting the accuracy of cloud detection significantly.

  10. High-contrast imaging in the cloud with klipReduce and Findr

    Science.gov (United States)

    Haug-Baltzell, Asher; Males, Jared R.; Morzinski, Katie M.; Wu, Ya-Lin; Merchant, Nirav; Lyons, Eric; Close, Laird M.

    2016-08-01

    Astronomical data sets are growing ever larger, and the area of high contrast imaging of exoplanets is no exception. With the advent of fast, low-noise detectors operating at 10 to 1000 Hz, huge numbers of images can be taken during a single hours-long observation. High frame rates offer several advantages, such as improved registration, frame selection, and improved speckle calibration. However, advanced image processing algorithms are computationally challenging to apply. Here we describe a parallelized, cloud-based data reduction system developed for the Magellan Adaptive Optics VisAO camera, which is capable of rapidly exploring tens of thousands of parameter sets affecting the Karhunen-Loève image processing (KLIP) algorithm to produce high-quality direct images of exoplanets. We demonstrate these capabilities with a visible wavelength high contrast data set of a hydrogen-accreting brown dwarf companion.

  11. Evaluation of a cloud-based local-read paradigm for imaging evaluations in oncology clinical trials for lung cancer

    International Nuclear Information System (INIS)

    Sueoka-Aragane, Naoko; Kobayashi, Naomi; Bonnard, Eric; Charbonnier, Colette; Yamamichi, Junta; Mizobe, Hideaki; Kimura, Shinya

    2015-01-01

    Although tumor response evaluated with radiological imaging is frequently used as a primary endpoint in clinical trials, it is difficult to obtain precise results because of inter- and intra-observer differences. To evaluate usefulness of a cloud-based local-read paradigm implementing software solutions that standardize imaging evaluations among international investigator sites for clinical trials of lung cancer. Two studies were performed: KUMO I and KUMO I Extension. KUMO I was a pilot study aiming at demonstrating the feasibility of cloud implementation and identifying issues regarding variability of evaluations among sites. Chest CT scans at three time-points from baseline to progression, from 10 patients with lung cancer who were treated with EGFR tyrosine kinase inhibitors, were evaluated independently by two oncologists (Japan) and one radiologist (France), through a cloud-based software solution. The KUMO I Extension was performed based on the results of KUMO I. KUMO I showed discordance rates of 40% for target lesion selection, 70% for overall response at the first time-point, and 60% for overall response at the second time-point. Since the main reason for the discordance was differences in the selection of target lesions, KUMO I Extension added a cloud-based quality control service to achieve a consensus on the selection of target lesions, resulting in an improved rate of agreement of response evaluations. The study shows the feasibility of imaging evaluations at investigator sites, based on cloud services for clinical studies involving multiple international sites. This system offers a step forward in standardizing evaluations of images among widely dispersed sites

  12. VENUS CLOUD MORPHOLOGY AND MOTIONS FROM GROUND-BASED IMAGES AT THE TIME OF THE AKATSUKI ORBIT INSERTION

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Lavega, A.; Hueso, R.; Pérez-Hoyos, S.; Mendikoa, I.; Rojas, J. F. [Departamento de Física Aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco UPV /EHU, Plaza Ingeniero Torres Quevedo, E-48013 Bilbao (Spain); Peralta, J.; Lee, Y. J. [Institute of Space and Astronautical Science (ISAS/JAXA), Sagamihara, Kanagawa (Japan); Gomez-Forrellad, J. M. [Fundació Observatori Esteve Duran, Montseny 46, E-08553 Seva, Barcelona (Spain); Horinouchi, T. [Faculty of Environment Earth Science, Hokkaido University, Hokkaido (Japan); Watanabe, S., E-mail: agustin.sanchez@ehu.es [Department of Cosmoscience, Hokkaido University, Hokkaido (Japan)

    2016-12-10

    We report Venus image observations around the two maximum elongations of the planet at 2015 June and October. From these images we describe the global atmospheric dynamics and cloud morphology in the planet before the arrival of JAXA’s Akatsuki mission on 2015 December 7. The majority of the images were acquired at ultraviolet wavelengths (380–410 nm) using small telescopes. The Venus dayside was also observed with narrowband filters at other wavelengths (890 nm, 725–950 nm, 1.435 μ m CO{sub 2} band) using the instrument PlanetCam-UPV/EHU at the 2.2 m telescope in Calar Alto Observatory. In all cases, the lucky imaging methodology was used to improve the spatial resolution of the images over the atmospheric seeing. During the April–June period, the morphology of the upper cloud showed an irregular and chaotic texture with a well-developed equatorial dark belt (afternoon hemisphere), whereas during October–December the dynamical regime was dominated by planetary-scale waves (Y-horizontal, C-reversed, and ψ -horizontal features) formed by long streaks, and banding suggesting more stable conditions. Measurements of the zonal wind velocity with cloud tracking in the latitude range from 50°N to 50°S shows agreement with retrievals from previous works.

  13. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN): Molecular clouds toward W 33; possible evidence for a cloud-cloud collision triggering O star formation

    Science.gov (United States)

    Kohno, Mikito; Torii, Kazufumi; Tachihara, Kengo; Umemoto, Tomofumi; Minamidani, Tetsuhiro; Nishimura, Atsushi; Fujita, Shinji; Matsuo, Mitsuhiro; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Ohama, Akio; Hattori, Yusuke; Sano, Hidetoshi; Yamamoto, Hiroaki; Fukui, Yasuo

    2018-05-01

    We observed molecular clouds in the W 33 high-mass star-forming region associated with compact and extended H II regions using the NANTEN2 telescope as well as the Nobeyama 45 m telescope in the J = 1-0 transitions of 12CO, 13CO, and C18O as part of the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN) legacy survey. We detected three velocity components at 35 km s-1, 45 km s-1, and 58 km s-1. The 35 km s-1 and 58 km s-1 clouds are likely to be physically associated with W 33 because of the enhanced 12CO J = 3-2 to J = 1-0 intensity ratio as R_3-2/1-0} > 1.0 due to the ultraviolet irradiation by OB stars, and morphological correspondence between the distributions of molecular gas and the infrared and radio continuum emissions excited by high-mass stars. The two clouds show complementary distributions around W 33. The velocity separation is too large to be gravitationally bound, and yet not explained by expanding motion by stellar feedback. Therefore, we discuss whether a cloud-cloud collision scenario likely explains the high-mass star formation in W 33.

  14. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  15. Cloud classification in a mediterranean location using radiation data and sky images

    International Nuclear Information System (INIS)

    Martinez-Chico, M.; Batlles, F.J.; Bosch, J.L.

    2011-01-01

    Knowledge regarding the solar radiation reaching the earth's surface and its geographical distribution is very important for the use of solar energy as a resource to produce electricity. Therefore, a proper assessment of available solar resource is particularly important to determine the placement and operation of solar thermal power plants. To perform this analysis correctly, it is necessary to determine the main factors influencing the radiation reaching the earth's surface, such as the earth's geometry, terrain, and atmospheric attenuation by gases, particles and clouds. Among these factors, it is important to emphasise the role of clouds as the main attenuating factor of radiation. Information about the amount and type of clouds present in the sky is therefore necessary to analyse both their attenuation levels and the prevalence of different sky conditions. Cloud cover is characterised according to attenuation levels, using the beam transmittance (k b , ratio of direct radiation incident on the surface to the extraterrestrial solar radiation) and hemispherical sky images. An analysis of the frequency and duration of each type of cloud cover blocking the sun's disk is also performed. Results show prevailing sky situations that make the studied area very suitable for the use of solar energy systems. -- Highlights: → Beam transmittance index k b have been used successfully to classify the cloud cover. → The proposed classification has been used to study a Mediterranean location in south-eastern Spain. → Percentage of cloudless/cloudy situations showed a good potential for solar energy applications in the studied area.

  16. Ditching the Disc: The Effects of Cloud-Based Image Sharing on Department Efficiency and Report Turnaround Times in Mammography.

    Science.gov (United States)

    Morgan, Matthew B; Young, Elizabeth; Harada, Scott; Winkler, Nicole; Riegert, Joanna; Jones, Tony; Hu, Nan; Stein, Matthew

    2017-12-01

    In screening mammography, accessing prior examination images is crucial for accurate diagnosis and avoiding false-positives. When women visit multiple institutions for their screens, these "outside" examinations must be retrieved for comparison. Traditionally, prior images are obtained by faxing requests to other institutions and waiting for standard mail (film or CD-ROM), which can greatly delay report turnaround times. Recently, advancements in cloud-based image transfer technology have opened up more efficient options for examination transfer between institutions. The objective of this study was to evaluate the effect of cloud-based image transfer on mammography department workflow, time required to obtain prior images, and report turnaround times. Sixty screening examinations requiring prior images were placed into two groups (30 each). The control group used the standard institutional protocol for requesting prior images: faxing requests and waiting for mailed examinations. The experimental group used a cloud-based transfer for both requesting and receiving examinations. The mean number of days between examination request and examination receipt was measured for both groups and compared. The mean number of days from examination request to receipt was 6.08 days (SD 3.50) in the control group compared with 3.16 days (SD 3.95) in the experimental group. Using a cloud-based image transfer to obtain prior mammograms resulted in an average reduction of 2.92 days (P = .0361; 95% confidence interval 0.20-5.65) between examination request and receipt. This improvement in system efficiency is relevant for interpreting radiologists working to improve reporting times and for patients anxious to receive their mammography results. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  17. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  18. RenderSelect: a Cloud Broker Framework for Cloud Renderfarm Services

    OpenAIRE

    Ruby, Annette J; Aisha, Banu W; Subash, Chandran P

    2016-01-01

    In the 3D studios the animation scene files undergo a process called as rendering, where the 3D wire frame models are converted into 3D photorealistic images. As the rendering process is both a computationally intensive and a time consuming task, the cloud services based rendering in cloud render farms is gaining popularity among the animators. Though cloud render farms offer many benefits, the animators hesitate to move from their traditional offline rendering to cloud services based render ...

  19. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  20. Similarity maps and hierarchical clustering for annotating FT-IR spectral images.

    Science.gov (United States)

    Zhong, Qiaoyong; Yang, Chen; Großerüschkamp, Frederik; Kallenbach-Thieltges, Angela; Serocka, Peter; Gerwert, Klaus; Mosig, Axel

    2013-11-20

    Unsupervised segmentation of multi-spectral images plays an important role in annotating infrared microscopic images and is an essential step in label-free spectral histopathology. In this context, diverse clustering approaches have been utilized and evaluated in order to achieve segmentations of Fourier Transform Infrared (FT-IR) microscopic images that agree with histopathological characterization. We introduce so-called interactive similarity maps as an alternative annotation strategy for annotating infrared microscopic images. We demonstrate that segmentations obtained from interactive similarity maps lead to similarly accurate segmentations as segmentations obtained from conventionally used hierarchical clustering approaches. In order to perform this comparison on quantitative grounds, we provide a scheme that allows to identify non-horizontal cuts in dendrograms. This yields a validation scheme for hierarchical clustering approaches commonly used in infrared microscopy. We demonstrate that interactive similarity maps may identify more accurate segmentations than hierarchical clustering based approaches, and thus are a viable and due to their interactive nature attractive alternative to hierarchical clustering. Our validation scheme furthermore shows that performance of hierarchical two-means is comparable to the traditionally used Ward's clustering. As the former is much more efficient in time and memory, our results suggest another less resource demanding alternative for annotating large spectral images.

  1. CloudSat-Based Assessment of GPM Microwave Imager Snowfall Observation Capabilities

    Directory of Open Access Journals (Sweden)

    Giulia Panegrossi

    2017-12-01

    Full Text Available The sensitivity of Global Precipitation Measurement (GPM Microwave Imager (GMI high-frequency channels to snowfall at higher latitudes (around 60°N/S is investigated using coincident CloudSat observations. The 166 GHz channel is highlighted throughout the study due to its ice scattering sensitivity and polarization information. The analysis of three case studies evidences the important combined role of total precipitable water (TPW, supercooled cloud water, and background surface composition on the brightness temperature (TB behavior for different snow-producing clouds. A regression tree statistical analysis applied to the entire GMI-CloudSat snowfall dataset indicates which variables influence the 166 GHz polarization difference (166 ∆TB and its relation to snowfall. Critical thresholds of various parameters (sea ice concentration (SIC, TPW, ice water path (IWP are established for optimal snowfall detection capabilities. The 166 ∆TB can identify snowfall events over land and sea when critical thresholds are exceeded (TPW > 3.6 kg·m−2, IWP > 0.24 kg·m−2 over land, and SIC > 57%, TPW > 5.1 kg·m−2 over sea. The complex combined 166 ∆TB-TB relationship at higher latitudes and the impact of supercooled water vertical distribution are also investigated. The findings presented in this study can be exploited to improve passive microwave snowfall detection algorithms.

  2. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC).

    Science.gov (United States)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2016-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.

  3. Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast

    International Nuclear Information System (INIS)

    Escrig, H.; Batlles, F.J.; Alonso, J.; Baena, F.M.; Bosch, J.L.; Salbidegoitia, I.B.; Burgaleta, J.I.

    2013-01-01

    Considering that clouds are the greatest causes to solar radiation blocking, short term cloud forecasting can help power plant operation and therefore improve benefits. Cloud detection, classification and motion vector determination are key to forecasting sun obstruction by clouds. Geostationary satellites provide cloud information covering wide areas, allowing cloud forecast to be performed for several hours in advance. Herein, the methodology developed and tested in this study is based on multispectral tests and binary cross correlations followed by coherence and quality control tests over resulting motion vectors. Monthly synthetic surface albedo image and a method to reject erroneous correlation vectors were developed. Cloud classification in terms of opacity and height of cloud top is also performed. A whole-sky camera has been used for validation, showing over 85% of agreement between the camera and the satellite derived cloud cover, whereas error in motion vectors is below 15%. - Highlights: ► A methodology for detection, classification and movement of clouds is presented. ► METEOSAT satellite images are used to obtain a cloud mask. ► The prediction of cloudiness is estimated with 90% in overcast conditions. ► Results for partially covered sky conditions showed a 75% accuracy. ► Motion vectors are estimated from the clouds with a success probability of 86%

  4. A New Algorithm for Detecting Cloud Height using OMPS/LP Measurements

    Science.gov (United States)

    Chen, Zhong; DeLand, Matthew; Bhartia, Pawan K.

    2016-01-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) ozone product requires the determination of cloud height for each event to establish the lower boundary of the profile for the retrieval algorithm. We have created a revised cloud detection algorithm for LP measurements that uses the spectral dependence of the vertical gradient in radiance between two wavelengths in the visible and near-IR spectral regions. This approach provides better discrimination between clouds and aerosols than results obtained using a single wavelength. Observed LP cloud height values show good agreement with coincident Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements.

  5. Retrieval of Tropospheric Profiles from IR Emission Spectra: Field Experiment and Sensitivity Study

    National Research Council Canada - National Science Library

    Theriault, J

    1993-01-01

    .... The goal of this project was the retrieval of atmospheric temperature and water vapor profiles and possibly over relevant information on clouds and aerosol properties from high resolution IR emission...

  6. ASTER cloud coverage reassessment using MODIS cloud mask products

    Science.gov (United States)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  7. Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview.

    Science.gov (United States)

    Shields, Janet E; Karr, Monette E; Johnson, Richard W; Burden, Art R

    2013-03-10

    A family of fully automated digital whole sky imagers (WSIs) has been developed at the Marine Physical Laboratory over many years, for a variety of research and military applications. The most advanced of these, the day/night whole sky imagers (D/N WSIs), acquire digital imagery of the full sky down to the horizon under all conditions from full sunlight to starlight. Cloud algorithms process the imagery to automatically detect the locations of cloud for both day and night. The instruments can provide absolute radiance distribution over the full radiance range from starlight through daylight. The WSIs were fielded in 1984, followed by the D/N WSIs in 1992. These many years of experience and development have resulted in very capable instruments and algorithms that remain unique. This article discusses the history of the development of the D/N WSIs, system design, algorithms, and data products. The paper cites many reports with more detailed technical documentation. Further details of calibration, day and night algorithms, and cloud free line-of-sight results will be discussed in future articles.

  8. Atmospheric Polarization Imaging with Variable Aerosols, Clouds, and Surface Albedo

    Science.gov (United States)

    2013-07-01

    values found in this region only during episodes of intense wildfire smoke. Detailed analysis of the aerosols in this smoke plume and their effect...Continuous outdoor operation of an all-sky polarization imager,” Proc. SPIE 7672 (Polarization: Measurement, Analysis , and Remote Sensing IX), 76720A-1-7, 7...Pust, “ Lunar corona in ice wave cloud,” 10th International Meeting on Light and Color in Nature, St. Mary’s College of Maryland, 16-20 June 2010. 2

  9. Effect of cyclosporin A administration on the biodistribution and multipinhole {mu}SPECT imaging of [{sup 123}I]R91150 in rodent brain

    Energy Technology Data Exchange (ETDEWEB)

    Blanckaert, P.; Burvenich, I.; Bruyne, S. de; Moerman, L.; Wyffels, L.; Vos, F. de [Faculty of Pharmaceutical Sciences, Ghent University, Laboratory for Radiopharmacy, Gent (Belgium); Staelens, S. [Ghent University - IBBT, MEDISIP, Faculty of Engineering, Gent (Belgium)

    2009-03-15

    P-glycoprotein (Pgp) is an efflux protein found amongst other locations in the blood-brain barrier. It is important to investigate the effect of Pgp modulation on clinically used brain tracers, because brain uptake of the tracer can be altered by blocking of the Pgp efflux transporter. The function of Pgp can be blocked with cyclosporin A. We investigated the effect of cyclosporin A administration on the biodistribution of [{sup 123}I]R91150 in rodents, and the effect of Pgp blocking on the quality of multipinhole {mu}SPECT imaging with [{sup 123}I]R91150. The influence of increasing doses of cyclosporin A on the brain uptake of [{sup 123}I]R91150 was investigated in NMRI mice. A biodistribution study with [{sup 123}I]R91150 was performed in male Sprague-Dawley rats pretreated with cyclosporin A and not pretreated. Brain uptake of [{sup 123}I]R91150 after cyclosporin A injection was compared to the brain uptake in untreated animals, and a displacement study with ketanserin was performed in both groups. A multipinhole {mu}SPECT brain imaging study was also performed using a Milabs U-SPECT-II camera in male Sprague-Dawley rats. To exclude the effect of possible metabolites, a metabolite study was also performed. At the highest cyclosporin A dose (50 mg/kg), a sevenfold increase in brain radioactivity concentration was observed in NMRI mice. Also, a dose-response relationship was established between the dose of cyclosporin A and the brain uptake of [{sup 123}I]R91150 in mice. Compared to the control group, a five-fold increase in [{sup 123}I]R91150 radioactivity concentration was observed in the brain of Sprague-Dawley rats after cyclosporin A treatment (50 mg/kg). Radioactivity concentration in the frontal cortex increased from 0.24{+-}0.0092 to 1.58{+-}0.097% injected dose per gram of tissue after treatment with cyclosporin A (at the 1-h time-point). Blood radioactivity concentrations did not increase to the same extent. The cortical activity was displaced by

  10. Megahertz rate, volumetric imaging of bubble clouds in sonothrombolysis using a sparse hemispherical receiver array

    Science.gov (United States)

    Acconcia, Christopher N.; Jones, Ryan M.; Goertz, David E.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2017-09-01

    It is well established that high intensity focused ultrasound can be used to disintegrate clots. This approach has the potential to rapidly and noninvasively resolve clot causing occlusions in cardiovascular diseases such as deep vein thrombosis (DVT). However, lack of an appropriate treatment monitoring tool is currently a limiting factor in its widespread adoption. Here we conduct cavitation imaging with a large aperture, sparse hemispherical receiver array during sonothrombolysis with multi-cycle burst exposures (0.1 or 1 ms burst lengths) at 1.51 MHz. It was found that bubble cloud generation on imaging correlated with the locations of clot degradation, as identified with high frequency (30 MHz) ultrasound following exposures. 3D images could be formed at integration times as short as 1 µs, revealing the initiation and rapid development of cavitation clouds. Equating to megahertz frame rates, this is an order of magnitude faster than any other imaging technique available for in vivo application. Collectively, these results suggest that the development of a device to perform DVT therapy procedures would benefit greatly from the integration of receivers tailored to bubble activity imaging.

  11. Fluorenyl benzothiadiazole and benzoselenadiazole near-IR fluorescent probes for two-photon fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Belfield, Kevin D.; Yao, Sheng; Kim, Bosung; Yue, Xiling

    2016-03-01

    Imaging biological samples with two-photon fluorescence (2PF) microscopy has the unique advantage of resulting high contrast 3D resolution subcellular image that can reach up to several millimeters depth. 2PF probes that absorb and emit at near IR region need to be developed. Two-photon excitation (2PE) wavelengths are less concerned as 2PE uses wavelengths doubles the absorption wavelength of the probe, which means 2PE wavelengths for probes even with absorption at visible wavelength will fall into NIR region. Therefore, probes that fluoresce at near IR region with high quantum yields are needed. A series of dyes based on 5-thienyl-2, 1, 3-benzothiadiazole and 5-thienyl-2, 1, 3-benzoselenadiazole core were synthesized as near infrared two-photon fluorophores. Fluorescence maxima wavelengths as long as 714 nm and fluorescence quantum yields as high as 0.67 were achieved. The fluorescence quantum yields of the dyes were nearly constant, regardless of solvents polarity. These diazoles exhibited large Stokes shift (GM), and high two-photon fluorescence figure of merit (FM , 1.04×10-2 GM). Cells incubated on a 3D scaffold with one of the new probes (encapsulated in Pluronic micelles) exhibited bright fluorescence, enabling 3D two-photon fluorescence imaging to a depth of 100 µm.

  12. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for

  13. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  14. Effects of Low Carbohydrate High Protein (LCHP) diet on atherosclerotic plaque phenotype in ApoE/LDLR-/- mice: FT-IR and Raman imaging.

    Science.gov (United States)

    Wrobel, T P; Marzec, K M; Chlopicki, S; Maślak, E; Jasztal, A; Franczyk-Żarów, M; Czyżyńska-Cichoń, I; Moszkowski, T; Kostogrys, R B; Baranska, M

    2015-09-22

    Low Carbohydrate High Protein (LCHP) diet displays pro-atherogenic effects, however, the exact mechanisms involved are still unclear. Here, with the use of vibrational imaging, such as Fourier transform infrared (FT-IR) and Raman (RS) spectroscopies, we characterize biochemical content of plaques in Brachiocephalic Arteries (BCA) from ApoE/LDLR(-/-) mice fed LCHP diet as compared to control, recomended by American Institute of Nutrition, AIN diet. FT-IR images were taken from 6-10 sections of BCA from each mice and were complemented with RS measurements with higher spatial resolution of chosen areas of plaque sections. In aortic plaques from LCHP fed ApoE/LDLR(-/-) mice, the content of cholesterol and cholesterol esters was increased, while that of proteins was decreased as evidenced by global FT-IR analysis. High resolution imaging by RS identified necrotic core/foam cells, lipids (including cholesterol crystals), calcium mineralization and fibrous cap. The decreased relative thickness of the outer fibrous cap and the presence of buried caps were prominent features of the plaques in ApoE/LDLR(-/-) mice fed LCHP diet. In conclusion, FT-IR and Raman-based imaging provided a complementary insight into the biochemical composition of the plaque suggesting that LCHP diet increased plaque cholesterol and cholesterol esters contents of atherosclerotic plaque, supporting the cholesterol-driven pathogenesis of LCHP-induced atherogenesis.

  15. High-resolution imaging and target designation through clouds or smoke

    Science.gov (United States)

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  16. Surface enhanced imaging and IR spectroscopy of the biological cells on the nanostructured gold film

    Directory of Open Access Journals (Sweden)

    G.I. Dovbeshko

    2017-07-01

    Full Text Available New approach for optical imaging, structural study and cell cultivation based on the effect of the enhancement of optical signals from biomolecules and biological cells near nanostructured rough gold surface is proposed. The surface enhanced IR absorption (SEIRA spectroscopy and confocal microscopy experiments were made using the culture of SPEV (porcine embryonic kidney epithelium transplantable line and fibroblast cells, cultivated and/or adsorbed on the gold substrate. The SEIRA spectra registered from monolayer of the SPEV cells cultivated on the rough gold showed a low frequency shift of about 2 to 7 cm 1 for the most characteristic IR vibrations, compared with those adsorbed from suspension on the same substrate. An enhancement factor of 15…30 was obtained for different molecular vibrations. The confocal microscopy contrast images of the SPEV cells on rough gold substrate were obtained in laser fluorescence mode. This approach opens new possibilities for visualization of the living cells in vivo without staining. The fluorescence of the rough gold surfaces and effects responsible for our findings have been discussed.

  17. Signal and image processing algorithm performance in a virtual and elastic computing environment

    Science.gov (United States)

    Bennett, Kelly W.; Robertson, James

    2013-05-01

    The U.S. Army Research Laboratory (ARL) supports the development of classification, detection, tracking, and localization algorithms using multiple sensing modalities including acoustic, seismic, E-field, magnetic field, PIR, and visual and IR imaging. Multimodal sensors collect large amounts of data in support of algorithm development. The resulting large amount of data, and their associated high-performance computing needs, increases and challenges existing computing infrastructures. Purchasing computer power as a commodity using a Cloud service offers low-cost, pay-as-you-go pricing models, scalability, and elasticity that may provide solutions to develop and optimize algorithms without having to procure additional hardware and resources. This paper provides a detailed look at using a commercial cloud service provider, such as Amazon Web Services (AWS), to develop and deploy simple signal and image processing algorithms in a cloud and run the algorithms on a large set of data archived in the ARL Multimodal Signatures Database (MMSDB). Analytical results will provide performance comparisons with existing infrastructure. A discussion on using cloud computing with government data will discuss best security practices that exist within cloud services, such as AWS.

  18. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, A.B.; Rohde, C.A.; Ho, Cheng

    2001-01-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  19. Studies of dynamics of electron clouds in STAR silicon drift detectors

    CERN Document Server

    Bellwied, R; Brandon, N; Caines, H; Chen, W; Dimassimo, D; Dyke, H; Hall, J R; Hardtke, D; Hoffmann, G W; Humanic, T J; Kotova, A I; Kotov, I V; Kraner, H W; Li, Z; Lynn, D; Middelkamp, P; Ott, G; Pandey, S U; Pruneau, C A; Rykov, V L; Schambach, J; Sedlmeir, J; Sugarbaker, E R; Takahashi, J; Wilson, W K

    2000-01-01

    The dynamics of electrons generated in silicon drift detectors was studied using an IR LED. Electrons were generated at different drift distances. In this way, the evolution of the cloud as a function of drift time was measured. Two methods were used to measure the cloud size. The method of cumulative functions was used to extract the electron cloud profiles. Another method obtains the cloud width from measurements of the charge collected on a single anode as a function of coordinate of the light spot. The evolution of the electron cloud width with drift time is compared with theoretical calculations. Experimental results agreed with theoretical expectations.

  20. OPTICAL AND NEAR-INFRARED SHOCKS IN THE L988 CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Walawender, J.; Reipurth, B.; Bally, J.

    2013-01-01

    We have searched the Lynds 988 dark cloud complex for optical (Hα and [S II]) and near-IR (H 2 2.12 μm) shocks from protostellar outflows. We find 20 new Herbig-Haro objects and 6 new H 2 shocks (MHO objects), 3 of which are cross detections. Using the morphology in the optical and near-IR, we connect several of these shocks into at least five distinct outflow systems and identify their source protostars from catalogs of infrared sources. Two outflows in the cloud, from IRAS 21014+5001 and IRAS 21007+4951, are in excess of 1 pc in length. The IRAS 21007+4951 outflow has carved a large cavity in the cloud through which background stars can be seen. Also, we have found an optical shock which is the counterflow to the previously discovered ''northwest outflow'' from LkHα 324SE

  1. Multi-provider architecture for cloud outsourcing of medical imaging repositories.

    Science.gov (United States)

    Godinho, Tiago Marques; Bastião Silva, Luís A; Costa, Carlos; Oliveira, José Luís

    2014-01-01

    Over the last few years, the extended usage of medical imaging procedures has raised the medical community attention towards the optimization of their workflows. More recently, the federation of multiple institutions into a seamless distribution network has brought hope of increased quality healthcare services along with more efficient resource management. As a result, medical institutions are constantly looking for the best infrastructure to deploy their imaging archives. In this scenario, public cloud infrastructures arise as major candidates, as they offer elastic storage space, optimal data availability without great requirements of maintenance costs or IT personnel, in a pay-as-you-go model. However, standard methodologies still do not take full advantage of outsourced archives, namely because their integration with other in-house solutions is troublesome. This document proposes a multi-provider architecture for integration of outsourced archives with in-house PACS resources, taking advantage of foreign providers to store medical imaging studies, without disregarding security. It enables the retrieval of images from multiple archives simultaneously, improving performance, data availability and avoiding the vendor-locking problem. Moreover it enables load balancing and cache techniques.

  2. A Routing Mechanism for Cloud Outsourcing of Medical Imaging Repositories.

    Science.gov (United States)

    Godinho, Tiago Marques; Viana-Ferreira, Carlos; Bastião Silva, Luís A; Costa, Carlos

    2016-01-01

    Web-based technologies have been increasingly used in picture archive and communication systems (PACS), in services related to storage, distribution, and visualization of medical images. Nowadays, many healthcare institutions are outsourcing their repositories to the cloud. However, managing communications between multiple geo-distributed locations is still challenging due to the complexity of dealing with huge volumes of data and bandwidth requirements. Moreover, standard methodologies still do not take full advantage of outsourced archives, namely because their integration with other in-house solutions is troublesome. In order to improve the performance of distributed medical imaging networks, a smart routing mechanism was developed. This includes an innovative cache system based on splitting and dynamic management of digital imaging and communications in medicine objects. The proposed solution was successfully deployed in a regional PACS archive. The results obtained proved that it is better than conventional approaches, as it reduces remote access latency and also the required cache storage space.

  3. Influence of Desorption Conditions on Analyte Sensitivity and Internal Energy in Discrete Tissue or Whole Body Imaging by IR-MALDESI

    Science.gov (United States)

    Rosen, Elias P.; Bokhart, Mark T.; Ghashghaei, H. Troy; Muddiman, David C.

    2015-06-01

    Analyte signal in a laser desorption/postionization scheme such as infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) is strongly coupled to the degree of overlap between the desorbed plume of neutral material from a sample and an orthogonal electrospray. In this work, we systematically examine the effect of desorption conditions on IR-MALDESI response to pharmaceutical drugs and endogenous lipids in biological tissue using a design of experiments approach. Optimized desorption conditions have then been used to conduct an untargeted lipidomic analysis of whole body sagittal sections of neonate mouse. IR-MALDESI response to a wide range of lipid classes has been demonstrated, with enhanced lipid coverage received by varying the laser wavelength used for mass spectrometry imaging (MSI). Targeted MS2 imaging (MS2I) of an analyte, cocaine, deposited beneath whole body sections allowed determination of tissue-specific ion response factors, and CID fragments of cocaine were monitored to comment on wavelength-dependent internal energy deposition based on the "survival yield" method.

  4. Non-invasive thermal IR detection of breast tumor development in vivo

    Science.gov (United States)

    Case, Jason R.; Young, Madison A.; Dréau, D.; Trammell, Susan R.

    2015-03-01

    Lumpectomy coupled with radiation therapy and/or chemotherapy comprises the treatment of breast cancer for many patients. We are developing an enhanced thermal IR imaging technique that can be used in real-time to guide tissue excision during a lumpectomy. This novel enhanced thermal imaging method is a combination of IR imaging (8- 10 μm) and selective heating of blood (~0.5 °C) relative to surrounding water-rich tissue using LED sources at low powers. Post-acquisition processing of these images highlights temporal changes in temperature and is sensitive to the presence of vascular structures. In this study, fluorescent and enhanced thermal imaging modalities were used to estimate breast cancer tumor volumes as a function of time in 19 murine subjects over a 30-day study period. Tumor volumes calculated from fluorescent imaging follow an exponential growth curve for the first 22 days of the study. Cell necrosis affected the tumor volume estimates based on the fluorescent images after Day 22. The tumor volumes estimated from enhanced thermal imaging show exponential growth over the entire study period. A strong correlation was found between tumor volumes estimated using fluorescent imaging and the enhanced IR images, indicating that enhanced thermal imaging is capable monitoring tumor growth. Further, the enhanced IR images reveal a corona of bright emission along the edges of the tumor masses. This novel IR technique could be used to estimate tumor margins in real-time during surgical procedures.

  5. Feeding People's Curiosity: Leveraging the Cloud for Automatic Dissemination of Mars Images

    Science.gov (United States)

    Knight, David; Powell, Mark

    2013-01-01

    Smartphones and tablets have made wireless computing ubiquitous, and users expect instant, on-demand access to information. The Mars Science Laboratory (MSL) operations software suite, MSL InterfaCE (MSLICE), employs a different back-end image processing architecture compared to that of the Mars Exploration Rovers (MER) in order to better satisfy modern consumer-driven usage patterns and to offer greater server-side flexibility. Cloud services are a centerpiece of the server-side architecture that allows new image data to be delivered automatically to both scientists using MSLICE and the general public through the MSL website (http://mars.jpl.nasa.gov/msl/).

  6. Photometric Calibration of the Barium Cloud Image in a Space Active Experiment: Determining the Release Efficiency

    International Nuclear Information System (INIS)

    Xie Liang-Hai; Li Lei; Wang Jing-Dong; Tao Ran; Cheng Bing-Jun; Zhang Yi-Teng

    2014-01-01

    The barium release experiment is an effective method to explore the near-earth environment and to study all kinds of space physics processes. The first space barium release experiment in China was successfully carried out by a sounding rocket on April 5, 2013. This work is devoted to calculating the release efficiency of the barium release by analyzing the optical image observed during the experiment. First, we present a method to calibrate the images grey value of barium cloud with the reference stars to obtain the radiant fluxes at different moments. Then the release efficiency is obtained by a curve fitting with the theoretical evolution model of barium cloud. The calculated result is basically consistent with the test value on ground

  7. Point Cloud Based Change Detection - an Automated Approach for Cloud-based Services

    Science.gov (United States)

    Collins, Patrick; Bahr, Thomas

    2016-04-01

    The fusion of stereo photogrammetric point clouds with LiDAR data or terrain information derived from SAR interferometry has a significant potential for 3D topographic change detection. In the present case study latest point cloud generation and analysis capabilities are used to examine a landslide that occurred in the village of Malin in Maharashtra, India, on 30 July 2014, and affected an area of ca. 44.000 m2. It focuses on Pléiades high resolution satellite imagery and the Airbus DS WorldDEMTM as a product of the TanDEM-X mission. This case study was performed using the COTS software package ENVI 5.3. Integration of custom processes and automation is supported by IDL (Interactive Data Language). Thus, ENVI analytics is running via the object-oriented and IDL-based ENVITask API. The pre-event topography is represented by the WorldDEMTM product, delivered with a raster of 12 m x 12 m and based on the EGM2008 geoid (called pre-DEM). For the post-event situation a Pléiades 1B stereo image pair of the AOI affected was obtained. The ENVITask "GeneratePointCloudsByDenseImageMatching" was implemented to extract passive point clouds in LAS format from the panchromatic stereo datasets: • A dense image-matching algorithm is used to identify corresponding points in the two images. • A block adjustment is applied to refine the 3D coordinates that describe the scene geometry. • Additionally, the WorldDEMTM was input to constrain the range of heights in the matching area, and subsequently the length of the epipolar line. The "PointCloudFeatureExtraction" task was executed to generate the post-event digital surface model from the photogrammetric point clouds (called post-DEM). Post-processing consisted of the following steps: • Adding the geoid component (EGM 2008) to the post-DEM. • Pre-DEM reprojection to the UTM Zone 43N (WGS-84) coordinate system and resizing. • Subtraction of the pre-DEM from the post-DEM. • Filtering and threshold based classification of

  8. New infrared observations of IRS 1, IRS 3, and the adjacent nebula in the OMC-2 cluster

    International Nuclear Information System (INIS)

    Pendelton, Y.; Werner, M.; Dinerstein, H.

    1984-01-01

    Recent reports show that near infrared reflection nebulae are often observed around embedded protostellar objects. New observations are here reported of the infrared cluster of low luminosity protostars in Orion Molecular Cloud 2 (OMC2). It has been determined that the asymmetric distribution of the extended emission seen about IRS1 is in fact another infrared reflection nebula. Observations of near infrared polarimetry, photometry, and spectrophotometry were carried out at the NASA Infrared Telescope Facility October 1982 and January 1983. (author)

  9. Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations

    Science.gov (United States)

    Putman, William; Suarez, Max

    2010-01-01

    With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.

  10. Cloud computing for radiologists

    OpenAIRE

    Amit T Kharat; Amjad Safvi; S S Thind; Amarjit Singh

    2012-01-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as...

  11. Into the Darkness: Interstellar Extinction Near the Cepheus OB3 Molecular Cloud

    Science.gov (United States)

    Fitzpatrick, Edward L.; Jacklin, S.; Massa, D.

    2014-01-01

    We present the results of a followup investigation to a study performed by Massa and Savage (1984, ApJ, 279, 310) of the properties of UV interstellar extinction in the region of the Cepheus OB3 molecular cloud. That study was performed using UV photometry and spectro-photometry from the ANS and IUE satellites. We have extended this study into the IR, utilizing the uniform database of IR photometry available from the 2MASS project. This is a part of a larger program whose goal is to study the properties of extinction in localized regions, where we hope to find clues to dust grain growth and destruction processes through spatial correlations of extinction with distinct environmental properties. Similarly to Massa and Savage’s UV results, we find that the IR extinction properties on the Cepheus OB3 region vary systematically with the apparent proximity of the target stars to the molecular cloud. We also find that the UV extinction and the IR extinction are crudely correlated. The methodology leading to these results and their implications are discussed.

  12. Cloud-based Networked Visual Servo Control

    DEFF Research Database (Denmark)

    Wu, Haiyan; Lu, Lei; Chen, Chih-Chung

    2013-01-01

    , which integrates networked computational resources for cloud image processing, is considered in this article. The main contributions of this article are i) a real-time transport protocol for transmitting large volume image data on a cloud computing platform, which enables high sampling rate visual...

  13. Infrared polarimetry of the reflection nebula near L 1551 IRS 5

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Tetsuya; Yamashita, Takuya; Sato, Shuji; Suzuki, Hiro; Hough, J H; Garden, R; Gatley, I

    1986-11-01

    The K-band polarization has been measured in the region extending 30 arcsec to the SW of L 1551 IRS5. The degree of polarization is exceptionally high, reaching approx. 67 per cent. The large polarizations and the azimuthal pattern of the position angles are attributed to scattering of infrared radiation from IRS5 by dust grains. The infrared brightness distribution resembles that of the optical nebulosity. It is proposed that infrared scattering occurs at the 'walls' of a cavity formed by the interaction of stellar winds with the ambient cloud.

  14. Absorption of solar radiation in broken clouds

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.E.; Titov, G.A.; Zhuravleva, T.B. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    It is recognized now that the plane-parallel model unsatisfactorily describes the transfer of radiation through broken clouds and that, consequently, the radiation codes of general circulation models (GCMs) must be refined. However, before any refinement in a GCM code is made, it is necessary to investigate the dependence of radiative characteristics on the effects caused by the random geometry of cloud fields. Such studies for mean fluxes of downwelling and upwelling solar radiation in the visible and near-infrared (IR) spectral range were performed by Zuev et al. In this work, we investigate the mean spectral and integrated absorption of solar radiation by broken clouds (in what follows, the term {open_quotes}mean{close_quotes} will be implied but not used, for convenience). To evaluate the potential effect of stochastic geometry, we will compare the absorption by cumulus (0.5 {le} {gamma} {le} 2) to that by equivalent stratus ({gamma} <<1) clouds; here {gamma} = H/D, H is the cloud layer thickness and D the characteristic horizontal cloud size. The equivalent stratus clouds differ from cumulus only in the aspect ratio {gamma}, all the other parameters coinciding.

  15. OPTICAL AND NEAR-INFRARED SHOCKS IN THE L988 CLOUD COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Walawender, J. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Reipurth, B. [Institute for Astronomy, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Bally, J., E-mail: joshw@naoj.org [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

    2013-09-15

    We have searched the Lynds 988 dark cloud complex for optical (H{alpha} and [S II]) and near-IR (H{sub 2} 2.12 {mu}m) shocks from protostellar outflows. We find 20 new Herbig-Haro objects and 6 new H{sub 2} shocks (MHO objects), 3 of which are cross detections. Using the morphology in the optical and near-IR, we connect several of these shocks into at least five distinct outflow systems and identify their source protostars from catalogs of infrared sources. Two outflows in the cloud, from IRAS 21014+5001 and IRAS 21007+4951, are in excess of 1 pc in length. The IRAS 21007+4951 outflow has carved a large cavity in the cloud through which background stars can be seen. Also, we have found an optical shock which is the counterflow to the previously discovered ''northwest outflow'' from LkH{alpha} 324SE.

  16. Assessing the performance of aerial image point cloud and spectral metrics in predicting boreal forest canopy cover

    Science.gov (United States)

    Melin, M.; Korhonen, L.; Kukkonen, M.; Packalen, P.

    2017-07-01

    Canopy cover (CC) is a variable used to describe the status of forests and forested habitats, but also the variable used primarily to define what counts as a forest. The estimation of CC has relied heavily on remote sensing with past studies focusing on satellite imagery as well as Airborne Laser Scanning (ALS) using light detection and ranging (lidar). Of these, ALS has been proven highly accurate, because the fraction of pulses penetrating the canopy represents a direct measurement of canopy gap percentage. However, the methods of photogrammetry can be applied to produce point clouds fairly similar to airborne lidar data from aerial images. Currently there is little information about how well such point clouds measure canopy density and gaps. The aim of this study was to assess the suitability of aerial image point clouds for CC estimation and compare the results with those obtained using spectral data from aerial images and Landsat 5. First, we modeled CC for n = 1149 lidar plots using field-measured CCs and lidar data. Next, this data was split into five subsets in north-south direction (y-coordinate). Finally, four CC models (AerialSpectral, AerialPointcloud, AerialCombi (spectral + pointcloud) and Landsat) were created and they were used to predict new CC values to the lidar plots, subset by subset, using five-fold cross validation. The Landsat and AerialSpectral models performed with RMSEs of 13.8% and 12.4%, respectively. AerialPointcloud model reached an RMSE of 10.3%, which was further improved by the inclusion of spectral data; RMSE of the AerialCombi model was 9.3%. We noticed that the aerial image point clouds managed to describe only the outermost layer of the canopy and missed the details in lower canopy, which was resulted in weak characterization of the total CC variation, especially in the tails of the data.

  17. Composite multi-lobe descriptor for cross spectral face recognition: matching active IR to visible light images

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.

    2015-05-01

    Matching facial images across electromagnetic spectrum presents a challenging problem in the field of biometrics and identity management. An example of this problem includes cross spectral matching of active infrared (IR) face images or thermal IR face images against a dataset of visible light images. This paper describes a new operator named Composite Multi-Lobe Descriptor (CMLD) for facial feature extraction in cross spectral matching of near-infrared (NIR) or short-wave infrared (SWIR) against visible light images. The new operator is inspired by the design of ordinal measures. The operator combines Gaussian-based multi-lobe kernel functions, Local Binary Pattern (LBP), generalized LBP (GLBP) and Weber Local Descriptor (WLD) and modifies them into multi-lobe functions with smoothed neighborhoods. The new operator encodes both the magnitude and phase responses of Gabor filters. The combining of LBP and WLD utilizes both the orientation and intensity information of edges. Introduction of multi-lobe functions with smoothed neighborhoods further makes the proposed operator robust against noise and poor image quality. Output templates are transformed into histograms and then compared by means of a symmetric Kullback-Leibler metric resulting in a matching score. The performance of the multi-lobe descriptor is compared with that of other operators such as LBP, Histogram of Oriented Gradients (HOG), ordinal measures, and their combinations. The experimental results show that in many cases the proposed method, CMLD, outperforms the other operators and their combinations. In addition to different infrared spectra, various standoff distances from close-up (1.5 m) to intermediate (50 m) and long (106 m) are also investigated in this paper. Performance of CMLD is evaluated for of each of the three cases of distances.

  18. Mid-IR Imaging: Upconversion imager improves IR gas sensing

    DEFF Research Database (Denmark)

    Sahlberg, Anna-Lena; Li, Zhongshan; Høgstedt, Lasse

    2014-01-01

    A nonlinear upconversion detector shows near-shot-noise-limited performance and compares favorably—while adding additional imaging information—to conventional cryogenic detectors in the measurement of trace-level gases at atmospheric pressure....

  19. High resolution depth reconstruction from monocular images and sparse point clouds using deep convolutional neural network

    Science.gov (United States)

    Dimitrievski, Martin; Goossens, Bart; Veelaert, Peter; Philips, Wilfried

    2017-09-01

    Understanding the 3D structure of the environment is advantageous for many tasks in the field of robotics and autonomous vehicles. From the robot's point of view, 3D perception is often formulated as a depth image reconstruction problem. In the literature, dense depth images are often recovered deterministically from stereo image disparities. Other systems use an expensive LiDAR sensor to produce accurate, but semi-sparse depth images. With the advent of deep learning there have also been attempts to estimate depth by only using monocular images. In this paper we combine the best of the two worlds, focusing on a combination of monocular images and low cost LiDAR point clouds. We explore the idea that very sparse depth information accurately captures the global scene structure while variations in image patches can be used to reconstruct local depth to a high resolution. The main contribution of this paper is a supervised learning depth reconstruction system based on a deep convolutional neural network. The network is trained on RGB image patches reinforced with sparse depth information and the output is a depth estimate for each pixel. Using image and point cloud data from the KITTI vision dataset we are able to learn a correspondence between local RGB information and local depth, while at the same time preserving the global scene structure. Our results are evaluated on sequences from the KITTI dataset and our own recordings using a low cost camera and LiDAR setup.

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Mask Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a high quality Environmental Data Record (EDR) of cloud masks from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument onboard...

  1. Identification of 192Ir seeds in localization images using a novel statistical pattern recognition approach and a priori information

    International Nuclear Information System (INIS)

    Bird, William F.; Chaney, Edward L.; Coggins, James M.

    1995-01-01

    Purpose / Objective: Manual labeling of individual 192 Ir seeds in localization images for dosimetry of multi-strand low-dose-rate (LDR) implants is labor intensive, tedious and prone to error. The objective of this investigation is to develop computer-based methods that analyze digitized localization images, improve dosimetric efficiency, and reduce labeling errors. Materials and Methods: 192 Ir localization films were digitized with a scanned-laser system and analyzed using Multiscale, Geometric, Statistical Pattern Recognition (MGSPR), a technique that recognizes and classifies pixels in gray-scale images based on their surrounding, neighborhood geometry. To 'teach' MGSPR how to recognize specific objects, a Gaussian-based mathematical filter set is applied to training images containing user-labeled examples of the desired objects. The filters capture a broad range of descriptive geometric information at multiple spatial scales. Principled mathematical analysis is used to determine the linear combination of filters from a large base set that yields the best discrimination between object types. Thus the sensitivity of the filters can be 'tuned' to detect specific objects such as 192 Ir seeds. For a given pixel, the output of the filter is a multi-component feature vector that uniquely describes the pixel's geometric characteristics. Pixels with similar geometric attributes have feature vectors that naturally 'cluster', or group, in the multidimensional space called 'feature space'. After statistically quantifying the training-set clusters in feature space, pixels found in new images are automatically labeled by correlation with the nearest cluster, e.g., the cluster representing 192 Ir seeds. One of the greatest challenges in statistical pattern recognition is to determine which filters result in the best labeling. Good discrimination is achieved when clusters are compact and well isolated from one another in feature space. The filters used in this study are

  2. Multi-Spectral Cloud Retrievals from Moderate Image Spectrometer (MODIS)

    Science.gov (United States)

    Platnick, Steven

    2004-01-01

    MODIS observations from the NASA EOS Terra spacecraft (1030 local time equatorial sun-synchronous crossing) launched in December 1999 have provided a unique set of Earth observation data. With the launch of the NASA EOS Aqua spacecraft (1330 local time crossing! in May 2002: two MODIS daytime (sunlit) and nighttime observations are now available in a 24-hour period allowing some measure of diurnal variability. A comprehensive set of remote sensing algorithms for cloud masking and the retrieval of cloud physical and optical properties has been developed by members of the MODIS atmosphere science team. The archived products from these algorithms have applications in climate modeling, climate change studies, numerical weather prediction, as well as fundamental atmospheric research. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. An overview of the instrument and cloud algorithms will be presented along with various examples, including an initial analysis of several operational global gridded (Level-3) cloud products from the two platforms. Statistics of cloud optical and microphysical properties as a function of latitude for land and Ocean regions will be shown. Current algorithm research efforts will also be discussed.

  3. NOAA GOES-R Series Advanced Baseline Imager (ABI) Level 2+ Cloud and Moisture Imagery Products (CMIP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Cloud and Moisture Imagery product contains one or more Earth-view images with pixel values identifying brightness values that are scaled to support visual...

  4. CLASSIFICATION BY USING MULTISPECTRAL POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    C. T. Liao

    2012-07-01

    Full Text Available Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  5. Classification by Using Multispectral Point Cloud Data

    Science.gov (United States)

    Liao, C. T.; Huang, H. H.

    2012-07-01

    Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  6. Determining ice water content from 2D crystal images in convective cloud systems

    Science.gov (United States)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  7. Cloud discrimination for ASCENDS Mission Based on Optical Phase Conjugation as a Novel Approach, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — PI at ArkLight proposes a novel scheme for making cloud discrimination in the wavelength ranges of near-IR (1-1.8 m) and mid-IR (3-4 m). This scheme is based on...

  8. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2006-12-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  9. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    International Nuclear Information System (INIS)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy; Nikutta, Robert

    2017-01-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  10. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Nikutta, Robert, E-mail: tra3595@rit.edu [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States)

    2017-07-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  11. Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service

    Science.gov (United States)

    Bao, Shunxing; Plassard, Andrew J.; Landman, Bennett A.; Gokhale, Aniruddha

    2017-01-01

    Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based “medical image processing-as-a-service” offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop’s distributed file system. Despite this promise, HBase’s load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split

  12. Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service.

    Science.gov (United States)

    Bao, Shunxing; Plassard, Andrew J; Landman, Bennett A; Gokhale, Aniruddha

    2017-04-01

    Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval. The resulting performance from these approaches is, however, impeded by standard network switches since they can saturate network bandwidth during transfer from storage to processing nodes for even moderate-sized studies. To that end, a cloud-based "medical image processing-as-a-service" offers promise in utilizing the ecosystem of Apache Hadoop, which is a flexible framework providing distributed, scalable, fault tolerant storage and parallel computational modules, and HBase, which is a NoSQL database built atop Hadoop's distributed file system. Despite this promise, HBase's load distribution strategy of region split and merge is detrimental to the hierarchical organization of imaging data (e.g., project, subject, session, scan, slice). This paper makes two contributions to address these concerns by describing key cloud engineering principles and technology enhancements we made to the Apache Hadoop ecosystem for medical imaging applications. First, we propose a row-key design for HBase, which is a necessary step that is driven by the hierarchical organization of imaging data. Second, we propose a novel data allocation policy within HBase to strongly enforce collocation of hierarchically related imaging data. The proposed enhancements accelerate data processing by minimizing network usage and localizing processing to machines where the data already exist. Moreover, our approach is amenable to the traditional scan, subject, and project-level analysis procedures, and is compatible with standard command line/scriptable image processing software. Experimental results for an illustrative sample of imaging data reveals that our new HBase policy results in a three-fold time improvement in conversion of classic DICOM to NiFTI file formats when compared with the default HBase region split policy

  13. Smoke, Clouds and Radiation Brazil NASA ER-2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS) Data

    Data.gov (United States)

    National Aeronautics and Space Administration — SCARB_ER2_MAS data are Smoke, Clouds and Radiation Brazil (SCARB) NASA ER2 Moderate Resolution Imaging Spectrometer (MODIS) Airborne Simulator (MAS)...

  14. The Economic and Social Value of an Image Exchange Network: A Case for the Cloud.

    Science.gov (United States)

    Mayo, Ray Cody; Pearson, Kathryn L; Avrin, David E; Leung, Jessica W T

    2017-01-01

    As the health care environment continually changes, radiologists look to the ACR's Imaging 3.0 ® initiative to guide the search for value. By leveraging new technology, a cloud-based image exchange network could provide secure universal access to prior images, which were previously siloed, to facilitate accurate interpretation, improved outcomes, and reduced costs. The breast imaging department represents a viable starting point given the robust data supporting the benefit of access to prior imaging studies, existing infrastructure for image sharing, and the current workflow reliance on prior images. This concept is scalable not only to the remainder of the radiology department but also to the broader medical record. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  15. FT-IR spectroscopic imaging of reactions in multiphase flow in microfluidic channels.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2012-05-01

    Rapid, in situ, and label-free chemical analysis in microfluidic devices is highly desirable. FT-IR spectroscopic imaging has previously been shown to be a powerful tool to visualize the distribution of different chemicals in flows in a microfluidic device at near video rate imaging speed without tracers or dyes. This paper demonstrates the possibility of using this imaging technology to capture the chemical information of all reactants and products at different points in time and space in a two-phase system. Differences in the rates of chemical reactions in laminar flow and segmented flow systems are also compared. Neutralization of benzoic acid in decanol with disodium phosphate in water has been used as the model reaction. Quantitative information, such as concentration profiles of reactant and products, can be extracted from the imaging data. The same feed flow rate was used in both the laminar flow and segmented flow systems. The laminar flow pattern was achieved using a plain wide T-junction, whereas the segmented flow was achieved by introducing a narrowed section and a nozzle at the T-junction. The results show that the reaction rate is limited by diffusion and is much slower with the laminar flow pattern, whereas the reaction is completed more quickly in the segmented flow due to better mixing.

  16. Exploring the Effects of Clouds on Hot Jupiter Atmospheres

    Science.gov (United States)

    Robinson, Jenna; Line, Michael

    2018-01-01

    Secondary eclipse spectroscopy of transiting exoplanets allows us to probe the atmospheric properties on the daysides of tidally locked planets. Specifically, eclipse spectra combined with atmospheric retrieval models permit constraints on the molecular abundances and vertical thermal profiles of the planetary dayside. Eclipse spectra from HST WFC3 are typically interpreted assuming that all of the near infrared light is due solely to the thermal emission of the planet. However, recent evidence suggests that reflected stellar light from clouds on the planetary daysides might contaminate the near-IR spectrum. Here, we aim to explore how reflected light from clouds within in a simplified cloud framework will alter the shape of the near infrared spectra and how they will influence our determinations of dayside temperatures and abundances. Specifically, we will use atmospheric retrieval tools to determine the biases in abundances and temperature profiles if reflected light is not taken into account. We will explore the influence of reflected light on interpretation of WFC3 spectra of the well-observed exoplanets, HD209458b and WASP-43b. We will then investigate how reflected light in the near-IR will influence our interpretation of JWST spectra.

  17. Tharsis Limb Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Annotated image of Tharsis Limb Cloud 7 September 2005 This composite of red and blue Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) daily global images acquired on 6 July 2005 shows an isolated water ice cloud extending more than 30 kilometers (more than 18 miles) above the martian surface. Clouds such as this are common in late spring over the terrain located southwest of the Arsia Mons volcano. Arsia Mons is the dark, oval feature near the limb, just to the left of the 'T' in the 'Tharsis Montes' label. The dark, nearly circular feature above the 'S' in 'Tharsis' is the volcano, Pavonis Mons, and the other dark circular feature, above and to the right of 's' in 'Montes,' is Ascraeus Mons. Illumination is from the left/lower left. Season: Northern Autumn/Southern Spring

  18. Dust and gas distribution in molecular clouds: an observational approach

    International Nuclear Information System (INIS)

    Campeggio, Loretta; Elia, Davide; Maiolo, Berlinda M T; Strafella, Francesco; Cecchi-Pestellini, Cesare

    2005-01-01

    The interstellar medium (ISM), gas and dust, appears to be arranged in clouds, whose dimensions, masses and densities span a large range of scales: from giant molecular clouds to small isolated globules. The structure of these objects show a high degree of complexity appearing, in the range of the observed scales, as a non-homogeneous ('clumpy') distribution of matter. The arrangement of the ISM is clearly relevant for the study of the fragmentation of the clouds and then of the star formation processes. To quantify observationally the ISM structure, many methods have been developed and our study is focused on some of them, exploiting multiwavelength observations of IS objects. The investigations presented here have been carried out by considering both the dust absorption (in optical and near IR wavelengths) and the gas emission (in the submm-radio spectral range). We present the maps obtained from the reduction of raw data and a first tentative analysis by means of methods as the structure function, the autocorrelation, and the Δ-variance. These are appropriate tools to highlight the complex structure of the ISM with reference to the paradigm given by the supersonic turbulence. Three observational cases are briefly discussed. In order to analyse the structure of objects characterized by different sizes, we applied the above-mentioned algorithms to the extinction map of the dark globule CB 107 and to the CO(J = 1-0) integrated intensity map of Vela Molecular Ridge, D Cloud. Finally we compare the results obtained with synthetic fractal maps known as 'fractional Brownian motion' fBm images

  19. A New Method of Cloud Detection Based on Cascaded AdaBoost

    International Nuclear Information System (INIS)

    Ma, C; Chen, F; Liu, J; Duan, J

    2014-01-01

    Cloud detection of remote sensing image is a critical step in the processing of the remote sensing images. How to quickly, accurately and effectively detect cloud on remote sensing images, is still a challenging issue in this area. In order to avoid disadvantages of the current algorithms, the cascaded AdaBoost classifier algorithm is successfully applied to the cloud detection. A new algorithm combined cascaded AdaBoost classifier and multi-features, is proposed in this paper. First, multi-features based on the color, texture and spectral features are extracted from the remote sensing image. Second, the automatic cloud detection model is obtained based on the cascaded AdaBoost algorithm. In this paper, the results show that the new algorithm can determine cloud detection model and threshold values adaptively for different resolution remote sensing training data. The accuracy of cloud detection is improved. So it is a new effective algorithm for the cloud detection of remote sensing images

  20. A Registration Method Based on Contour Point Cloud for 3D Whole-Body PET and CT Images

    Directory of Open Access Journals (Sweden)

    Zhiying Song

    2017-01-01

    Full Text Available The PET and CT fusion image, combining the anatomical and functional information, has important clinical meaning. An effective registration of PET and CT images is the basis of image fusion. This paper presents a multithread registration method based on contour point cloud for 3D whole-body PET and CT images. Firstly, a geometric feature-based segmentation (GFS method and a dynamic threshold denoising (DTD method are creatively proposed to preprocess CT and PET images, respectively. Next, a new automated trunk slices extraction method is presented for extracting feature point clouds. Finally, the multithread Iterative Closet Point is adopted to drive an affine transform. We compare our method with a multiresolution registration method based on Mattes Mutual Information on 13 pairs (246~286 slices per pair of 3D whole-body PET and CT data. Experimental results demonstrate the registration effectiveness of our method with lower negative normalization correlation (NC = −0.933 on feature images and less Euclidean distance error (ED = 2.826 on landmark points, outperforming the source data (NC = −0.496, ED = 25.847 and the compared method (NC = −0.614, ED = 16.085. Moreover, our method is about ten times faster than the compared one.

  1. Opaque cloud detection

    Science.gov (United States)

    Roskovensky, John K [Albuquerque, NM

    2009-01-20

    A method of detecting clouds in a digital image comprising, for an area of the digital image, determining a reflectance value in at least three discrete electromagnetic spectrum bands, computing a first ratio of one reflectance value minus another reflectance value and the same two values added together, computing a second ratio of one reflectance value and another reflectance value, choosing one of the reflectance values, and concluding that an opaque cloud exists in the area if the results of each of the two computing steps and the choosing step fall within three corresponding predetermined ranges.

  2. Cloud Detection by Fusing Multi-Scale Convolutional Features

    Science.gov (United States)

    Li, Zhiwei; Shen, Huanfeng; Wei, Yancong; Cheng, Qing; Yuan, Qiangqiang

    2018-04-01

    Clouds detection is an important pre-processing step for accurate application of optical satellite imagery. Recent studies indicate that deep learning achieves best performance in image segmentation tasks. Aiming at boosting the accuracy of cloud detection for multispectral imagery, especially for those that contain only visible and near infrared bands, in this paper, we proposed a deep learning based cloud detection method termed MSCN (multi-scale cloud net), which segments cloud by fusing multi-scale convolutional features. MSCN was trained on a global cloud cover validation collection, and was tested in more than ten types of optical images with different resolution. Experiment results show that MSCN has obvious advantages over the traditional multi-feature combined cloud detection method in accuracy, especially when in snow and other areas covered by bright non-cloud objects. Besides, MSCN produced more detailed cloud masks than the compared deep cloud detection convolution network. The effectiveness of MSCN make it promising for practical application in multiple kinds of optical imagery.

  3. Factors influencing the organizational adoption of cloud computing: a survey among cloud workers

    Directory of Open Access Journals (Sweden)

    Mark Stieninger

    2018-01-01

    Full Text Available Cloud computing presents an opportunity for organizations to leverage affordable, scalable, and agile technologies. However, even with the demonstrated value of cloud computing, organizations have been hesitant to adopt such technologies. Based on a multi-theoretical research model, this paper provides an empirical study targeted to better understand the adoption of cloud services. An online survey addressing the factors derived from literature for three specific popular cloud application types (cloud storage, cloud mail and cloud office was undertaken. The research model was analyzed by using variance-based structural equation modelling. Results show that the factors of compatibility, relative advantage, security and trust, as well as, a lower level of complexity lead to a more positive attitude towards cloud adoption. Complexity, compatibility, image and security and trust have direct and indirect effects on relative advantage. These factors further explain a large part of the attitude towards cloud adoption but not of its usage.

  4. Relationship between ice water path and downward longwave radiation for clouds optically thin in the infrared: Observations and model calculations

    Science.gov (United States)

    Uttal, Taneil; Matrosov, Sergey Y.; Snider, Jack B.; Kropfli, Robert A.

    1994-01-01

    A vertically pointing 3.2-cm radar is used to observe altostratus and cirrus clouds as they pass overhead. Radar reflectivities are used in combination with an empirical Z(sub i)-IWC (ice water content) relationship developed by Sassen (1987) to parameterize IWC, which is then integrated to obtain estimates of ice water path (IWP). The observed dataset is segregated into all-ice and mixed-phase periods using measurements of integrated liquid water paths (LWP) detected by a collocated, dual-channel microwave radiometer. The IWP values for the all ice periods are compared to measurements of infrared (IR) downward fluxes measured by a collocated narrowband (9.95-11.43 microns) IR radiometer, which results in scattergrams representing the observed dependence of IR fluxes on IWP. A two-stream model is used to calculate the infrared fluxes expected from ice clouds with boundary conditions specified by the actual clouds, and similar curves relating IWP and infrared fluxes are obtained. The model and observational results suggest that IWP is one of the primary controls on infrared thermal fluxes for ice clouds.

  5. Identification of {sup 192}Ir seeds in localization images using a novel statistical pattern recognition approach and a priori information

    Energy Technology Data Exchange (ETDEWEB)

    Bird, William F; Chaney, Edward L; Coggins, James M

    1995-07-01

    Purpose / Objective: Manual labeling of individual {sup 192}Ir seeds in localization images for dosimetry of multi-strand low-dose-rate (LDR) implants is labor intensive, tedious and prone to error. The objective of this investigation is to develop computer-based methods that analyze digitized localization images, improve dosimetric efficiency, and reduce labeling errors. Materials and Methods: {sup 192}Ir localization films were digitized with a scanned-laser system and analyzed using Multiscale, Geometric, Statistical Pattern Recognition (MGSPR), a technique that recognizes and classifies pixels in gray-scale images based on their surrounding, neighborhood geometry. To 'teach' MGSPR how to recognize specific objects, a Gaussian-based mathematical filter set is applied to training images containing user-labeled examples of the desired objects. The filters capture a broad range of descriptive geometric information at multiple spatial scales. Principled mathematical analysis is used to determine the linear combination of filters from a large base set that yields the best discrimination between object types. Thus the sensitivity of the filters can be 'tuned' to detect specific objects such as{sup 192} Ir seeds. For a given pixel, the output of the filter is a multi-component feature vector that uniquely describes the pixel's geometric characteristics. Pixels with similar geometric attributes have feature vectors that naturally 'cluster', or group, in the multidimensional space called 'feature space'. After statistically quantifying the training-set clusters in feature space, pixels found in new images are automatically labeled by correlation with the nearest cluster, e.g., the cluster representing {sup 192}Ir seeds. One of the greatest challenges in statistical pattern recognition is to determine which filters result in the best labeling. Good discrimination is achieved when clusters are compact and well isolated from one another in feature space. The filters used in

  6. MicrOmega IR: a new infrared hyperspectral imaging microscope or in situ analysis

    Science.gov (United States)

    Vaitua, Leroi; Bibring, Jean-Pierre; Berthé, Michel

    2017-11-01

    MicrOmega IR is an ultra miniaturized Near Infrared hyperspectral microscope for in situ analysis of samples. It is designed to be implemented on board space planetary vehicles (lander and/or rovers). It acquires images of samples typically some 5 mm in width with a spatial sampling of 20 μm. On each pixel, MicrOmega acquires the spectrum in the spectral range 0.9 - 2.6 μm, with a possibility to extend the sensibility up to 4 μm. The spectrum will be measured in up to 300 contiguous spectral channels (600 in the extended range): given the diagnostic spectral features present in this domain, it provides the composition of each spatially resolved constituent. MicrOmega has thus the potential to identify: minerals, such as pyroxene and olivine, ferric oxides, hydrated phases such as phyllosilicates, sulfates and carbonates, ices and organics. The composition of the various phases within a given sample is a critical record of its formation and evolution. Coupled to the mapping information, it provides unique clues to describe the history of the parent body. In particular, the capability to identify hydrated grains and to characterize their adjacent phases has a huge potential in the search for potential bio-relics in Martian samples. This purely non destructive characterization enables further analyses (e.g. through mass spectrometry) to be performed, and/or to contribute to sample selection to return to Earth. MicrOmega IR is coupled to a visible microscope: MicrOmega VIS. Thus, the MicrOmega instrument is developed by an international consortium: IAS (Orsay, France), LESIA (Meudon, France), CBM (Orléans, France), University Of Bern (Bern, Switzerland), IKI (Moscow, Russia). This instrument (MicrOmega IR, MicrOmega VIS and the electronics) is selected for the ESA Exomars mission (launch scheduled for 2013). MicrOmega IR will be used in a reduced spectral range (0.9 - 2.6 μm), due to power, mass and thermal constraints: however, most minerals and other

  7. Mesoscale circulation at the upper cloud level at middle latitudes from the imaging by Venus Monitoring Camera onboard Venus Express

    Science.gov (United States)

    Patsaeva, Marina; Ignatiev, Nikolay; Markiewicz, Wojciech; Khatuntsev, Igor; Titov, Dmitrij; Patsaev, Dmitry

    The Venus Monitoring Camera onboard ESA Venus Express spacecraft acquired a great number of UV images (365 nm) allowing us to track the motion of cloud features at the upper cloud layer of Venus. A digital method developed to analyze correlation functions between two UV images provided wind vector fields on the Venus day side (9-16 hours local time) from the equator to high latitudes. Sizes and regions for the correlation were chosen empirically, as a trade-off of sensitivity against noise immunity and vary from 10(°) x7.5(°) to 20(°) x10(°) depending on the grid step, making this method suitable to investigate the mesoscale circulation. Previously, the digital method was used for investigation of the circulation at low latitudes and provided good agreement with manual tracking of the motion of cloud patterns. Here we present first results obtained by this method for middle latitudes (25(°) S-75(°) S) on the basis of 270 orbits. Comparing obtained vector fields with images for certain orbits, we found a relationship between morphological patterns of the cloud cover at middle latitudes and parameters of the circulation. Elongated cloud features, so-called streaks, are typical for middle latitudes, and their orientation varies over wide range. The behavior of the vector field of velocities depends on the angle between the streak and latitude circles. In the middle latitudes the average angle of the flow deviation from the zonal direction is equal to -5.6(°) ± 1(°) (the sign “-“ means the poleward flow, the standard error is given). For certain orbits, this angle varies from -15.6(°) ± 1(°) to 1.4(°) ± 1(°) . In some regions at latitudes above 60(°) S the meridional wind is equatorward in the morning. The relationship between the cloud cover morphology and circulation peculiarity can be attributed to the motion of the Y-feature in the upper cloud layer due to the super-rotation of the atmosphere.

  8. CIMIDx: Prototype for a Cloud-Based System to Support Intelligent Medical Image Diagnosis With Efficiency.

    Science.gov (United States)

    Bhavani, Selvaraj Rani; Senthilkumar, Jagatheesan; Chilambuchelvan, Arul Gnanaprakasam; Manjula, Dhanabalachandran; Krishnamoorthy, Ramasamy; Kannan, Arputharaj

    2015-03-27

    The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called "CIMIDx", based on representative association rules that support the diagnosis of medical images (mammograms). The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype's classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user's perspective. We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information from 150 breast cancer survivors from hospitals

  9. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Daytime Cloud Optical and Microphysical Properties (DCOMP) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains a high quality Environmental Data Record (EDR) of daytime cloud optical and microphysical properties (DCOMP) from the Visible Infrared Imaging...

  10. Analysis of co-located MODIS and CALIPSO observations near clouds

    Directory of Open Access Journals (Sweden)

    T. Várnai

    2012-02-01

    Full Text Available This paper aims at helping synergistic studies in combining data from different satellites for gaining new insights into two critical yet poorly understood aspects of anthropogenic climate change, aerosol-cloud interactions and aerosol radiative effects. In particular, the paper examines the way cloud information from the MODIS (MODerate resolution Imaging Spectroradiometer imager can refine our perceptions based on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization lidar measurements about the systematic aerosol changes that occur near clouds.

    The statistical analysis of a yearlong dataset of co-located global maritime observations from the Aqua and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellites reveals that MODIS's multispectral imaging ability can greatly help the interpretation of CALIOP observations. The results show that imagers on Aqua and CALIPSO yield very similar pictures, and that the discrepancies – due mainly to wind drift and differences in view angle – do not significantly hinder aerosol measurements near clouds. By detecting clouds outside the CALIOP track, MODIS reveals that clouds are usually closer to clear areas than CALIOP data alone would suggest. The paper finds statistical relationships between the distances to clouds in MODIS and CALIOP data, and proposes a rescaling approach to statistically account for the impact of clouds outside the CALIOP track even when MODIS cannot reliably detect low clouds, for example at night or over sea ice. Finally, the results show that the typical distance to clouds depends on both cloud coverage and cloud type, and accordingly varies with location and season. In maritime areas perceived cloud free, the global median distance to clouds below 3 km altitude is in the 4–5 km range.

  11. Astronomy In The Cloud: Using Mapreduce For Image Coaddition

    Science.gov (United States)

    Wiley, Keith; Connolly, A.; Gardner, J.; Krughoff, S.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-01-01

    In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. The study of these sources will involve computational challenges such as anomaly detection, classification, and moving object tracking. Since such studies require the highest quality data, methods such as image coaddition, i.e., registration, stacking, and mosaicing, will be critical to scientific investigation. With a requirement that these images be analyzed on a nightly basis to identify moving sources, e.g., asteroids, or transient objects, e.g., supernovae, these datastreams present many computational challenges. Given the quantity of data involved, the computational load of these problems can only be addressed by distributing the workload over a large number of nodes. However, the high data throughput demanded by these applications may present scalability challenges for certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce, and in this paper we focus on its popular open-source implementation called Hadoop. In the Hadoop framework, the data is partitioned among storage attached directly to worker nodes, and the processing workload is scheduled in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us to exploit cloud computing resources, i.e., platforms where Hadoop is offered as a service. We report on our experience implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This multi-terabyte imaging dataset provides a good testbed for algorithm development since its scope and structure approximate future surveys. First, we describe MapReduce and how we adapted image coaddition to the MapReduce framework. Then we describe a number of optimizations to our basic approach and report experimental results compring their performance. This work is funded by

  12. Sahara Dust Cloud

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24 A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean. These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward. In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005. In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the AIRS retrieved total water

  13. DICOM relay over the cloud.

    Science.gov (United States)

    Silva, Luís A Bastião; Costa, Carlos; Oliveira, José Luis

    2013-05-01

    Healthcare institutions worldwide have adopted picture archiving and communication system (PACS) for enterprise access to images, relying on Digital Imaging Communication in Medicine (DICOM) standards for data exchange. However, communication over a wider domain of independent medical institutions is not well standardized. A DICOM-compliant bridge was developed for extending and sharing DICOM services across healthcare institutions without requiring complex network setups or dedicated communication channels. A set of DICOM routers interconnected through a public cloud infrastructure was implemented to support medical image exchange among institutions. Despite the advantages of cloud computing, new challenges were encountered regarding data privacy, particularly when medical data are transmitted over different domains. To address this issue, a solution was introduced by creating a ciphered data channel between the entities sharing DICOM services. Two main DICOM services were implemented in the bridge: Storage and Query/Retrieve. The performance measures demonstrated it is quite simple to exchange information and processes between several institutions. The solution can be integrated with any currently installed PACS-DICOM infrastructure. This method works transparently with well-known cloud service providers. Cloud computing was introduced to augment enterprise PACS by providing standard medical imaging services across different institutions, offering communication privacy and enabling creation of wider PACS scenarios with suitable technical solutions.

  14. Methodology for automatic process of the fired ceramic tile's internal defect using IR images and artificial neural network

    OpenAIRE

    Andrade, Roberto Márcio de; Eduardo, Alexandre Carlos

    2011-01-01

    In the ceramic industry, rarely testing systems were employed to on-line detect the presence of defects in ceramic tiles. This paper is concerned with the problem of automatic inspection of ceramic tiles using Infrared Images and Artificial Neural Network (ANN). The performance of the technique has been evaluated theoretically and experimentally from laboratory and on line tile samples. It has been performed system for IR image processing and, utilizing an Artificial Neural Network (ANN), det...

  15. Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images.

    Science.gov (United States)

    Liu, Xianming; Cheung, Gene; Lin, Chia-Wen; Zhao, Debin; Gao, Wen

    2018-07-01

    Millions of user-generated images are uploaded to social media sites like Facebook daily, which translate to a large storage cost. However, there exists an asymmetry in upload and download data: only a fraction of the uploaded images are subsequently retrieved for viewing. In this paper, we propose a cloud storage system that reduces the storage cost of all uploaded JPEG photos, at the expense of a controlled increase in computation mainly during download of requested image subset. Specifically, the system first selectively re-encodes code blocks of uploaded JPEG images using coarser quantization parameters for smaller storage sizes. Then during download, the system exploits known signal priors-sparsity prior and graph-signal smoothness prior-for reverse mapping to recover original fine quantization bin indices, with either deterministic guarantee (lossless mode) or statistical guarantee (near-lossless mode). For fast reverse mapping, we use small dictionaries and sparse graphs that are tailored for specific clusters of similar blocks, which are classified via tree-structured vector quantizer. During image upload, cluster indices identifying the appropriate dictionaries and graphs for the re-quantized blocks are encoded as side information using a differential distributed source coding scheme to facilitate reverse mapping during image download. Experimental results show that our system can reap significant storage savings (up to 12.05%) at roughly the same image PSNR (within 0.18 dB).

  16. Risk and reward in the cloud. Choosing a cloud vendor involves weighing risks versus benefits.

    Science.gov (United States)

    Degaspari, John

    2012-05-01

    More hospitals are looking to the cloud as a viable way to store clinical, imaging, and financial data. Experts acknowledge its advantages, but caution it's a step that requires careful planning and vetting of potential cloud vendors.

  17. A Study of Application Layer Paradigm for Lower Layer Energy Saving Potentials in Cloud-Edge Social User Wireless Image Sharing

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2015-08-01

    Full Text Available Energy saving becomes critical in modern cloud wireless multimedia and mobile communication systems. In this paper we propose to study a new paradigm named application layer Position-Value diversity for wireless image sharing for cloud-edge communications, which has significant energy saving potentials for modern wireless networking systems. In this new paradigm, saving energy is achieved by looking into application layer imaging traffic, in stead of MAC-PHY protocols at lower layers, and partitioning it into important positions and unimportant values. This paradigm could be integrated to existing wavelet-based tree compression, and truncation of image bit streams could be performed with regards to wireless communication energy budget estimation. Simulation results demonstrated that there are significant potentials of communication energy efficiency gain and Quality of Experience (QoE enhancement in wireless image communication systems.

  18. IR spectral analysis for the diagnostics of crust earthquake precursors

    Science.gov (United States)

    Umarkhodgaev, R. M.; Liperovsky, V. A.; Mikhailin, V. V.; Meister, C.-V.; Naumov, D. Ju

    2012-04-01

    In regions of future earthquakes, a few days before the seismic shock, the emanation of radon and hydrogen is being observed, which causes clouds of increased ionisation in the atmosphere. In the present work the possible diagnostics of these clouds using infrared (IR) spectroscopy is considered, which may be important and useful for the general geophysical system of earthquake prediction and the observation of industrial emissions of radioactive materials into the atmosphere. Some possible physical processes are analysed, which cause, under the condition of additional ionisation in a pre-breakdown electrical field, emissions in the IR interval. In doing so, the transparency region of the IR spectrum at wavelengths of 7-15 μm is taken into account. This transparency region corresponds to spectral lines of small atmospheric constituents like CH4, CO2, N2O, NO2, NO, and O3. The possible intensities of the IR emissions observable in laboratories and in nature are estimated. The acceleration process of the electrons in the pre-breakdown electrical field before its adhesion to the molecules is analysed. The laboratory equipment for the investigation of the IR absorption spectrum is constructed for the cases of normal and decreased atmospheric pressures. The syntheses of ozone and nitrous oxides are performed in the barrier discharge. It is studied if the products of the syntheses may be used to model atmospheric processes where these components take part. Spectra of products of the syntheses in the wavelength region of 2-10 μm are observed and analysed. A device is created for the syntheses and accumulation of nitrous oxides. Experiments to observe the IR-spectra of ozone and nitrous oxides during the syntheses and during the further evolution of these molecules are performed. For the earthquake prediction, practically, the investigation of emission spectra is most important, but during the laboratory experiments, the radiation of the excited molecules is shifted by a

  19. Cloud Computing and Its Applications in GIS

    Science.gov (United States)

    Kang, Cao

    2011-12-01

    Cloud computing is a novel computing paradigm that offers highly scalable and highly available distributed computing services. The objectives of this research are to: 1. analyze and understand cloud computing and its potential for GIS; 2. discover the feasibilities of migrating truly spatial GIS algorithms to distributed computing infrastructures; 3. explore a solution to host and serve large volumes of raster GIS data efficiently and speedily. These objectives thus form the basis for three professional articles. The first article is entitled "Cloud Computing and Its Applications in GIS". This paper introduces the concept, structure, and features of cloud computing. Features of cloud computing such as scalability, parallelization, and high availability make it a very capable computing paradigm. Unlike High Performance Computing (HPC), cloud computing uses inexpensive commodity computers. The uniform administration systems in cloud computing make it easier to use than GRID computing. Potential advantages of cloud-based GIS systems such as lower barrier to entry are consequently presented. Three cloud-based GIS system architectures are proposed: public cloud- based GIS systems, private cloud-based GIS systems and hybrid cloud-based GIS systems. Public cloud-based GIS systems provide the lowest entry barriers for users among these three architectures, but their advantages are offset by data security and privacy related issues. Private cloud-based GIS systems provide the best data protection, though they have the highest entry barriers. Hybrid cloud-based GIS systems provide a compromise between these extremes. The second article is entitled "A cloud computing algorithm for the calculation of Euclidian distance for raster GIS". Euclidean distance is a truly spatial GIS algorithm. Classical algorithms such as the pushbroom and growth ring techniques require computational propagation through the entire raster image, which makes it incompatible with the distributed nature

  20. First correlated measurements of the shape and scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-05-01

    Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.

  1. All your clouds are belong to us - Security analysis of cloud management interfaces

    DEFF Research Database (Denmark)

    Somorovsky, Juraj; Heiderich, Mario; Jensen, Meiko

    2011-01-01

    a complete power over the victim's account, with all the stored data included. In this paper, we provide a security analysis pertaining to the control interfaces of a large Public Cloud (Amazon) and a widely used Private Cloud software (Eucalyptus). Our research results are alarming: in regards to the Amazon......Cloud Computing resources are handled through control interfaces. It is through these interfaces that the new machine images can be added, existing ones can be modified, and instances can be started or ceased. Effectively, a successful attack on a Cloud control interface grants the attacker...... discoveries, we additionally describe the countermea-sures against these attacks, as well as introduce a novel "black box" analysis methodology for public Cloud interfaces....

  2. Web-based Data Exploration, Exploitation and Visualization Tools for Satellite Sensor VIS/IR Calibration Applications

    Science.gov (United States)

    Gopalan, A.; Doelling, D. R.; Scarino, B. R.; Chee, T.; Haney, C.; Bhatt, R.

    2016-12-01

    The CERES calibration group at NASA/LaRC has developed and deployed a suite of online data exploration and visualization tools targeted towards a range of spaceborne VIS/IR imager calibration applications for the Earth Science community. These web-based tools are driven by the open-source R (Language for Statistical Computing and Visualization) with a web interface for the user to customize the results according to their application. The tool contains a library of geostationary and sun-synchronous imager spectral response functions (SRF), incoming solar spectra, SCIAMACHY and Hyperion Earth reflected visible hyper-spectral data, and IASI IR hyper-spectral data. The suite of six specific web-based tools was designed to provide critical information necessary for sensor cross-calibration. One of the challenges of sensor cross-calibration is accounting for spectral band differences and may introduce biases if not handled properly. The spectral band adjustment factors (SBAF) are a function of the earth target, atmospheric and cloud conditions or scene type and angular conditions, when obtaining sensor radiance pairs. The SBAF will need to be customized for each inter-calibration target and sensor pair. The advantages of having a community open source tool are: 1) only one archive of SCIAMACHY, Hyperion, and IASI datasets needs to be maintained, which is on the order of 50TB. 2) the framework will allow easy incorporation of new satellite SRFs and hyper-spectral datasets and associated coincident atmospheric and cloud properties, such as PW. 3) web tool or SBAF algorithm improvements or suggestions when incorporated can benefit the community at large. 4) The customization effort is on the user rather than on the host. In this paper we discuss each of these tools in detail and explore the variety of advanced options that can be used to constrain the results along with specific use cases to highlight the value-added by these datasets.

  3. CloudGC: Recycling Idle Virtual Machines in the Cloud

    OpenAIRE

    Zhang , Bo; Al-Dhuraibi , Yahya; Rouvoy , Romain; Paraiso , Fawaz; Seinturier , Lionel

    2017-01-01

    International audience; Cloud computing conveys the image of a pool of unlimited virtual resources that can be quickly and easily provisioned to accommodate the user requirements. However, this flexibility may require to adjust physical resources at the infrastructure level to keep the pace of user requests. While elasticity can be considered as the de facto solution to support this issue, this elasticity can still be broken by budget requirements or physical limitations of a private cloud. I...

  4. Automated Detection of Cloud and Cloud Shadow in Single-Date Landsat Imagery Using Neural Networks and Spatial Post-Processing

    Directory of Open Access Journals (Sweden)

    M. Joseph Hughes

    2014-05-01

    Full Text Available The use of Landsat data to answer ecological questions is greatly increased by the effective removal of cloud and cloud shadow from satellite images. We develop a novel algorithm to identify and classify clouds and cloud shadow, SPARCS: Spatial Procedures for Automated Removal of Cloud and Shadow. The method uses a neural network approach to determine cloud, cloud shadow, water, snow/ice and clear sky classification memberships of each pixel in a Landsat scene. It then applies a series of spatial procedures to resolve pixels with ambiguous membership by using information, such as the membership values of neighboring pixels and an estimate of cloud shadow locations from cloud and solar geometry. In a comparison with FMask, a high-quality cloud and cloud shadow classification algorithm currently available, SPARCS performs favorably, with substantially lower omission errors for cloud shadow (8.0% and 3.2%, only slightly higher omission errors for clouds (0.9% and 1.3%, respectively and fewer errors of commission (2.6% and 0.3%. Additionally, SPARCS provides a measure of uncertainty in its classification that can be exploited by other algorithms that require clear sky pixels. To illustrate this, we present an application that constructs obstruction-free composites of images acquired on different dates in support of a method for vegetation change detection.

  5. Problems of thermal IR-imaging in evaluation of burn wounds

    International Nuclear Information System (INIS)

    Nowakowski, A.

    2009-01-01

    Results of the research devoted to application of thermal IR-imaging in diagnostics of burn wounds are discussed. The main aim of the work was to develop an effective method for quantitative evaluation of the depth of a burn wound and for classification of regions for surgical treatment. The criterion of determination the area of the wound to be treated surgically is the time, which should not exceed three weeks for natural healing of a burn wound. Prediction that the healing process may last longer is concluded by immediate surgical intervention. We concentrate on using for this purpose QIRT - NDT TI methods (Quantitative Infra-Red Thermography - Non-Destructive Testing Thermal Imaging); especially - active dynamic thermography - ADT. In this work both, classical thermography using a high quality thermal camera as well as ADT are applied and the results of analysis are joined, allowing multimodality diagnostic approach and improved classification of burns requiring surgical treatment. Now our work in application of thermal imaging in determination of burns is continued for around 10 years, as the first publication showing our methodology was presented in 1999. In 2001, during the Thermosense conference, we have been awarded the Andronicos Kantsios Award for the work on Medical applications of model based dynamic thermography. Important reports of our experience in classical as well as ADT thermography are already published. Now we concentrate on practical aspects of the problem, trying to construct a measuring set to be operative even by not experienced staff and meeting all of necessary requirements for clinical applications. (author)

  6. Benefits of cloud computing for PACS and archiving.

    Science.gov (United States)

    Koch, Patrick

    2012-01-01

    The goal of cloud-based services is to provide easy, scalable access to computing resources and IT services. The healthcare industry requires a private cloud that adheres to government mandates designed to ensure privacy and security of patient data while enabling access by authorized users. Cloud-based computing in the imaging market has evolved from a service that provided cost effective disaster recovery for archived data to fully featured PACS and vendor neutral archiving services that can address the needs of healthcare providers of all sizes. Healthcare providers worldwide are now using the cloud to distribute images to remote radiologists while supporting advanced reading tools, deliver radiology reports and imaging studies to referring physicians, and provide redundant data storage. Vendor managed cloud services eliminate large capital investments in equipment and maintenance, as well as staffing for the data center--creating a reduction in total cost of ownership for the healthcare provider.

  7. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip

    2007-10-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  8. Validation of Cloud Properties From Multiple Satellites Using CALIOP Data

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Bedka, Kristopher M.; Heck, Patrick W.; Palikonda, Rabindra; Sun-Mack, Sunny; Trepte, Qing

    2016-01-01

    The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) is routinely applied to multispectral imagery from several geostationary and polar-orbiting imagers to retrieve cloud properties for weather and climate applications. Validation of the retrievals with independent datasets is continuously ongoing in order to understand differences caused by calibration, spatial resolution, viewing geometry, and other factors. The CALIOP instrument provides a decade of detailed cloud observations which can be used to evaluate passive imager retrievals of cloud boundaries, thermodynamic phase, cloud optical depth, and water path on a global scale. This paper focuses on comparisons of CALIOP retrievals to retrievals from MODIS, VIIRS, AVHRR, GOES, SEVIRI, and MTSAT. CALIOP is particularly skilled at detecting weakly-scattering cirrus clouds with optical depths less than approx. 0.5. These clouds are often undetected by passive imagers and the effect this has on the property retrievals is discussed.

  9. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    Science.gov (United States)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the

  10. All-sky photogrammetry techniques to georeference a cloud field

    Science.gov (United States)

    Crispel, Pierre; Roberts, Gregory

    2018-01-01

    In this study, we present a novel method of identifying and geolocalizing cloud field elements from a portable all-sky camera stereo network based on the ground and oriented towards zenith. The methodology is mainly based on stereophotogrammetry which is a 3-D reconstruction technique based on triangulation from corresponding stereo pixels in rectified images. In cases where clouds are horizontally separated, identifying individual positions is performed with segmentation techniques based on hue filtering and contour detection algorithms. Macroscopic cloud field characteristics such as cloud layer base heights and velocity fields are also deduced. In addition, the methodology is fitted to the context of measurement campaigns which impose simplicity of implementation, auto-calibration, and portability. Camera internal geometry models are achieved a priori in the laboratory and validated to ensure a certain accuracy in the peripheral parts of the all-sky image. Then, stereophotogrammetry with dense 3-D reconstruction is applied with cameras spaced 150 m apart for two validation cases. The first validation case is carried out with cumulus clouds having a cloud base height at 1500 m a.g.l. The second validation case is carried out with two cloud layers: a cumulus fractus layer with a base height at 1000 m a.g.l. and an altocumulus stratiformis layer with a base height of 2300 m a.g.l. Velocity fields at cloud base are computed by tracking image rectangular patterns through successive shots. The height uncertainty is estimated by comparison with a Vaisala CL31 ceilometer located on the site. The uncertainty on the horizontal coordinates and on the velocity field are theoretically quantified by using the experimental uncertainties of the cloud base height and camera orientation. In the first cumulus case, segmentation of the image is performed to identify individuals clouds in the cloud field and determine the horizontal positions of the cloud centers.

  11. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Base Height (CBH) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Base Heights (CBH) from the Visible Infrared Imaging Radiometer Suite...

  12. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Cover Layer (CCL) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality Environmental Data Record (EDR) of Cloud Cover Layers (CCL) from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  13. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Optical Thickness (COT) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Optical Thickness (COT) from the Visible Infrared Imaging Radiometer Suite...

  14. Point Cloud Classification of Tesserae from Terrestrial Laser Data Combined with Dense Image Matching for Archaeological Information Extraction

    Science.gov (United States)

    Poux, F.; Neuville, R.; Billen, R.

    2017-08-01

    Reasoning from information extraction given by point cloud data mining allows contextual adaptation and fast decision making. However, to achieve this perceptive level, a point cloud must be semantically rich, retaining relevant information for the end user. This paper presents an automatic knowledge-based method for pre-processing multi-sensory data and classifying a hybrid point cloud from both terrestrial laser scanning and dense image matching. Using 18 features including sensor's biased data, each tessera in the high-density point cloud from the 3D captured complex mosaics of Germigny-des-prés (France) is segmented via a colour multi-scale abstraction-based featuring extracting connectivity. A 2D surface and outline polygon of each tessera is generated by a RANSAC plane extraction and convex hull fitting. Knowledge is then used to classify every tesserae based on their size, surface, shape, material properties and their neighbour's class. The detection and semantic enrichment method shows promising results of 94% correct semantization, a first step toward the creation of an archaeological smart point cloud.

  15. Cloud fraction and cloud base measurements from scanning Doppler lidar during WFIP-2

    Science.gov (United States)

    Bonin, T.; Long, C.; Lantz, K. O.; Choukulkar, A.; Pichugina, Y. L.; McCarty, B.; Banta, R. M.; Brewer, A.; Marquis, M.

    2017-12-01

    The second Wind Forecast Improvement Project (WFIP-2) consisted of an 18-month field deployment of a variety of instrumentation with the principle objective of validating and improving NWP forecasts for wind energy applications in complex terrain. As a part of the set of instrumentation, several scanning Doppler lidars were installed across the study domain to primarily measure profiles of the mean wind and turbulence at high-resolution within the planetary boundary layer. In addition to these measurements, Doppler lidar observations can be used to directly quantify the cloud fraction and cloud base, since clouds appear as a high backscatter return. These supplementary measurements of clouds can then be used to validate cloud cover and other properties in NWP output. Herein, statistics of the cloud fraction and cloud base height from the duration of WFIP-2 are presented. Additionally, these cloud fraction estimates from Doppler lidar are compared with similar measurements from a Total Sky Imager and Radiative Flux Analysis (RadFlux) retrievals at the Wasco site. During mostly cloudy to overcast conditions, estimates of the cloud radiating temperature from the RadFlux methodology are also compared with Doppler lidar measured cloud base height.

  16. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    Science.gov (United States)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  17. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Type and Phase Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of cloud type and phase from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  18. A cloud-based system for automatic glaucoma screening.

    Science.gov (United States)

    Fengshou Yin; Damon Wing Kee Wong; Ying Quan; Ai Ping Yow; Ngan Meng Tan; Gopalakrishnan, Kavitha; Beng Hai Lee; Yanwu Xu; Zhuo Zhang; Jun Cheng; Jiang Liu

    2015-08-01

    In recent years, there has been increasing interest in the use of automatic computer-based systems for the detection of eye diseases including glaucoma. However, these systems are usually standalone software with basic functions only, limiting their usage in a large scale. In this paper, we introduce an online cloud-based system for automatic glaucoma screening through the use of medical image-based pattern classification technologies. It is designed in a hybrid cloud pattern to offer both accessibility and enhanced security. Raw data including patient's medical condition and fundus image, and resultant medical reports are collected and distributed through the public cloud tier. In the private cloud tier, automatic analysis and assessment of colour retinal fundus images are performed. The ubiquitous anywhere access nature of the system through the cloud platform facilitates a more efficient and cost-effective means of glaucoma screening, allowing the disease to be detected earlier and enabling early intervention for more efficient intervention and disease management.

  19. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS probe

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem

    2011-10-01

    Full Text Available Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10° and 8° for side and backscattering directions (from 18° to 170°. The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  20. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-10-01

    Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  1. INFRARED DARK CLOUDS IN THE SMALL MAGELLANIC CLOUD?

    International Nuclear Information System (INIS)

    Lee, Min-Young; Stanimirovic, Snezana; Devine, Kathryn E.; Ott, Juergen; Van Loon, Jacco Th.; Oliveira, Joana M.; Bolatto, Alberto D.; Jones, Paul A.; Cunningham, Maria R.

    2009-01-01

    We have applied the unsharp-masking technique to the 24 μm image of the Small Magellanic Cloud (SMC), obtained with the Spitzer Space Telescope, to search for high-extinction regions. This technique has been used to locate very dense and cold interstellar clouds in the Galaxy, particularly infrared dark clouds (IRDCs). Fifty-five candidate regions of high extinction, namely, high-contrast regions (HCRs), have been identified from the generated decremental contrast image of the SMC. Most HCRs are located in the southern bar region and mainly distributed in the outskirts of CO clouds, but most likely contain a significant amount of H 2 . HCRs have a peak contrast at 24 μm of 2%-2.5% and a size of 8-14 pc. This corresponds to the size of typical and large Galactic IRDCs, but Galactic IRDCs are 2-3 times darker at 24 μm than our HCRs. To constrain the physical properties of the HCRs, we have performed NH 3 , N 2 H + , HNC, HCO + , and HCN observations toward one of the HCRs, HCR LIRS36-east, using the Australia Telescope Compact Array and the Mopra single-dish radio telescope. We did not detect any molecular line emission, however, our upper limits to the column densities of molecular species suggest that HCRs are most likely moderately dense with n ∼ 10 3 cm -3 . This volume density is in agreement with predictions for the cool atomic phase in low-metallicity environments. We suggest that HCRs may be tracing clouds at the transition from atomic to molecule-dominated medium, and could be a powerful way to study early stages of gas condensation in low-metallicity galaxies. Alternatively, if made up of dense molecular clumps <0.5 pc in size, HCRs could be counterparts of Galactic IRDCs, and/or regions with highly unusual abundance of very small dust grains.

  2. Measurement of optical blurring in a turbulent cloud chamber

    Science.gov (United States)

    Packard, Corey D.; Ciochetto, David S.; Cantrell, Will H.; Roggemann, Michael C.; Shaw, Raymond A.

    2016-10-01

    Earth's atmosphere can significantly impact the propagation of electromagnetic radiation, degrading the performance of imaging systems. Deleterious effects of the atmosphere include turbulence, absorption and scattering by particulates. Turbulence leads to blurring, while absorption attenuates the energy that reaches imaging sensors. The optical properties of aerosols and clouds also impact radiation propagation via scattering, resulting in decorrelation from unscattered light. Models have been proposed for calculating a point spread function (PSF) for aerosol scattering, providing a method for simulating the contrast and spatial detail expected when imaging through atmospheres with significant aerosol optical depth. However, these synthetic images and their predicating theory would benefit from comparison with measurements in a controlled environment. Recently, Michigan Technological University (MTU) has designed a novel laboratory cloud chamber. This multiphase, turbulent "Pi Chamber" is capable of pressures down to 100 hPa and temperatures from -55 to +55°C. Additionally, humidity and aerosol concentrations are controllable. These boundary conditions can be combined to form and sustain clouds in an instrumented laboratory setting for measuring the impact of clouds on radiation propagation. This paper describes an experiment to generate mixing and expansion clouds in supersaturated conditions with salt aerosols, and an example of measured imagery viewed through the generated cloud is shown. Aerosol and cloud droplet distributions measured during the experiment are used to predict scattering PSF and MTF curves, and a methodology for validating existing theory is detailed. Measured atmospheric inputs will be used to simulate aerosol-induced image degradation for comparison with measured imagery taken through actual cloud conditions. The aerosol MTF will be experimentally calculated and compared to theoretical expressions. The key result of this study is the

  3. The Global and Local Characters of Mars Perihelion Cloud Trails

    Science.gov (United States)

    Clancy, R. T.; Wolff, M. J.; Smith, M. D.; Cantor, B. A.; Spiga, A.

    2014-12-01

    We present the seasonal and spatial distribution of Mars perihelion cloud trails as mapped from Mars Reconnaissance Orbiter (MRO) MARCI (Mars Color Imager) imaging observations in 2 ultraviolet and 3 visible filters. The extended 2007-2013 period of MARCI daily global image maps reveals the widespread distribution of these high altitude clouds, which are somewhat paradoxically associated with specific surface regions. They appear as longitudinally extended (300-700 km) cloud trails with distinct leading plumes of substantial ice cloud optical depths (0.02-0.2) for such high altitudes of occurrence (40-50 km, from cloud surface shadow measurements). These plumes generate small ice particles (Reff~1 to reflect locally elevated mesospheric water ice formation that may impact the global expression of mesospheric water ice aerosols.

  4. Image transmission in mid-IR using a solid state laser pumped optical parametric oscillator

    Science.gov (United States)

    Prasad, Narasimha S.; Kratovil, Pat; Magee, James R.

    2002-04-01

    In this paper, image transmission using a mid-wave IR (MWIR) optical transceiver based free-space data link under low visibility conditions is presented. The all-solid-state MWIR transceiver primarily consisted of a passively Q-switched, short-pulsed Nd:YAG laser pumping a periodically poled lithium niobate (PPLN) based optical parametric oscillator and a Dember effect detector. The MILES transceiver generates pulse position waveforms. The optical data link consisting of transmitter drive electronics, pulse conditioning electronics and a computer generating pulses compatible with the 2400-baud rate RS232 receiver was utilized. Data formatting and RS232 transmission and reception were achieved using a computer. Data formatting transformed an arbitrary image file format compatible with the basic operation of pump laser. Images were transmitted at a date rate of 2400 kbits/sec with 16 bits/pixel. Test images consisting of 50X40 pixels and 100X80 pixels were transmitted through free-space filled with light fog up to 120 ft. Besides optical parametric oscillators, the proposed concept can be extended to optical parametric amplifiers, Raman lasers and other nonlinear optical devices to achieve multi-functionality.

  5. Mapping low- and high-density clouds in astrophysical nebulae by imaging forbidden line emission

    Science.gov (United States)

    Steiner, J. E.; Menezes, R. B.; Ricci, T. V.; Oliveira, A. S.

    2009-06-01

    Emission line ratios have been essential for determining physical parameters such as gas temperature and density in astrophysical gaseous nebulae. With the advent of panoramic spectroscopic devices, images of regions with emission lines related to these physical parameters can, in principle, also be produced. We show that, with observations from modern instruments, it is possible to transform images taken from density-sensitive forbidden lines into images of emission from high- and low-density clouds by applying a transformation matrix. In order to achieve this, images of the pairs of density-sensitive lines as well as the adjacent continuum have to be observed and combined. We have computed the critical densities for a series of pairs of lines in the infrared, optical, ultraviolet and X-rays bands, and calculated the pair line intensity ratios in the high- and low-density limit using a four- and five-level atom approximation. In order to illustrate the method, we applied it to Gemini Multi-Object Spectrograph (GMOS) Integral Field Unit (GMOS-IFU) data of two galactic nuclei. We conclude that this method provides new information of astrophysical interest, especially for mapping low- and high-density clouds; for this reason, we call it `the ld/hd imaging method'. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation on behalf of the Gemini partnership: the National Science Foundation (United States); the Science and Technology Facilities Council (United Kingdom); the National Research Council (Canada), CONICYT (Chile); the Australian Research Council (Australia); Ministério da Ciência e Tecnologia (Brazil) and Secretaria de Ciencia y Tecnologia (Argentina). E-mail: steiner@astro.iag.usp.br

  6. Cloud Spirals and Outflow in Tropical Storm Katrina

    Science.gov (United States)

    2005-01-01

    On Tuesday, August 30, 2005, NASA's Multi-angle Imaging SpectroRadiometer retrieved cloud-top heights and cloud-tracked wind velocities for Tropical Storm Katrina, as the center of the storm was situated over the Tennessee valley. At this time Katrina was weakening and no longer classified as a hurricane, and would soon become an extratropical depression. Measurements such as these can help atmospheric scientists compare results of computer-generated hurricane simulations with observed conditions, ultimately allowing them to better represent and understand physical processes occurring in hurricanes. Because air currents are influenced by the Coriolis force (caused by the rotation of the Earth), Northern Hemisphere hurricanes are characterized by an inward counterclockwise (cyclonic) rotation towards the center. It is less widely known that, at high altitudes, outward-spreading bands of cloud rotate in a clockwise (anticyclonic) direction. The image on the left shows the retrieved cloud-tracked winds as red arrows superimposed across the natural color view from MISR's nadir (vertical-viewing) camera. Both the counter-clockwise motion for the lower-level storm clouds and the clockwise motion for the upper clouds are apparent in these images. The speeds for the clockwise upper level winds have typical values between 40 and 45 m/s (144-162 km/hr). The low level counterclockwise winds have typical values between 7 and 24 m/s (25-86 km/hr), weakening with distance from the storm center. The image on the right displays the cloud-top height retrievals. Areas where cloud heights could not be retrieved are shown in dark gray. Both the wind velocity vectors and the cloud-top height field were produced by automated computer recognition of displacements in spatial features within successive MISR images acquired at different view angles and at slightly different times. The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously, viewing the entire globe

  7. Imaging and mapping the impact of clouds on skyglow with all-sky photometry.

    Science.gov (United States)

    Jechow, Andreas; Kolláth, Zoltán; Ribas, Salvador J; Spoelstra, Henk; Hölker, Franz; Kyba, Christopher C M

    2017-07-27

    Artificial skyglow is constantly growing on a global scale, with potential ecological consequences ranging up to affecting biodiversity. To understand these consequences, worldwide mapping of skyglow for all weather conditions is urgently required. In particular, the amplification of skyglow by clouds needs to be studied, as clouds can extend the reach of skyglow into remote areas not affected by light pollution on clear nights. Here we use commercial digital single lens reflex cameras with fisheye lenses for all-sky photometry. We track the reach of skyglow from a peri-urban into a remote area on a clear and a partly cloudy night by performing transects from the Spanish town of Balaguer towards Montsec Astronomical Park. From one single all-sky image, we extract zenith luminance, horizontal and scalar illuminance. While zenith luminance reaches near-natural levels at 5 km distance from the town on the clear night, similar levels are only reached at 27 km on the partly cloudy night. Our results show the dramatic increase of the reach of skyglow even for moderate cloud coverage at this site. The powerful and easy-to-use method promises to be widely applicable for studies of ecological light pollution on a global scale also by non-specialists in photometry.

  8. Strategies for cloud-top phase determination: differentiation between thin cirrus clouds and snow in manual (ground truth) analyses

    Science.gov (United States)

    Hutchison, Keith D.; Etherton, Brian J.; Topping, Phillip C.

    1996-12-01

    Quantitative assessments on the performance of automated cloud analysis algorithms require the creation of highly accurate, manual cloud, no cloud (CNC) images from multispectral meteorological satellite data. In general, the methodology to create ground truth analyses for the evaluation of cloud detection algorithms is relatively straightforward. However, when focus shifts toward quantifying the performance of automated cloud classification algorithms, the task of creating ground truth images becomes much more complicated since these CNC analyses must differentiate between water and ice cloud tops while ensuring that inaccuracies in automated cloud detection are not propagated into the results of the cloud classification algorithm. The process of creating these ground truth CNC analyses may become particularly difficult when little or no spectral signature is evident between a cloud and its background, as appears to be the case when thin cirrus is present over snow-covered surfaces. In this paper, procedures are described that enhance the researcher's ability to manually interpret and differentiate between thin cirrus clouds and snow-covered surfaces in daytime AVHRR imagery. The methodology uses data in up to six AVHRR spectral bands, including an additional band derived from the daytime 3.7 micron channel, which has proven invaluable for the manual discrimination between thin cirrus clouds and snow. It is concluded that while the 1.6 micron channel remains essential to differentiate between thin ice clouds and snow. However, this capability that may be lost if the 3.7 micron data switches to a nighttime-only transmission with the launch of future NOAA satellites.

  9. Limb clouds and dust on Mars from images obtained by the Visual Monitoring Camera (VMC) onboard Mars Express

    Science.gov (United States)

    Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.

    2018-01-01

    The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.

  10. CONTOURS BASED APPROACH FOR THERMAL IMAGE AND TERRESTRIAL POINT CLOUD REGISTRATION

    Directory of Open Access Journals (Sweden)

    A. Bennis

    2013-07-01

    Full Text Available Building energetic performances strongly depend on the thermal insulation. However the performance of the insulation materials tends to decrease over time which necessitates the continuous monitoring of the building in order to detect and repair the anomalous zones. In this paper, it is proposed to couple 2D infrared images representing the surface temperature of the building with 3D point clouds acquired with Terrestrial Laser Scanner (TLS resulting in a semi-automatic approach allowing the texturation of TLS data with infrared image of buildings. A contour-based algorithm is proposed whose main features are : 1 the extraction of high level primitive is not required 2 the use of projective transform allows to handle perspective effects 3 a point matching refinement procedure allows to cope with approximate control point selection. The procedure is applied to test modules aiming at investigating the thermal properties of material.

  11. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging lidar

    Science.gov (United States)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng

    2002-09-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  12. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry L.; Ho, Cheng

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  13. Automatic registration of iPhone images to laser point clouds of urban structures using shape features

    NARCIS (Netherlands)

    Sirmacek, B.; Lindenbergh, R.C.; Menenti, M.

    2013-01-01

    Fusion of 3D airborne laser (LIDAR) data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for

  14. A cloud-based multimodality case file for mobile devices.

    Science.gov (United States)

    Balkman, Jason D; Loehfelm, Thomas W

    2014-01-01

    Recent improvements in Web and mobile technology, along with the widespread use of handheld devices in radiology education, provide unique opportunities for creating scalable, universally accessible, portable image-rich radiology case files. A cloud database and a Web-based application for radiologic images were developed to create a mobile case file with reasonable usability, download performance, and image quality for teaching purposes. A total of 75 radiology cases related to breast, thoracic, gastrointestinal, musculoskeletal, and neuroimaging subspecialties were included in the database. Breast imaging cases are the focus of this article, as they best demonstrate handheld display capabilities across a wide variety of modalities. This case subset also illustrates methods for adapting radiologic content to cloud platforms and mobile devices. Readers will gain practical knowledge about storage and retrieval of cloud-based imaging data, an awareness of techniques used to adapt scrollable and high-resolution imaging content for the Web, and an appreciation for optimizing images for handheld devices. The evaluation of this software demonstrates the feasibility of adapting images from most imaging modalities to mobile devices, even in cases of full-field digital mammograms, where high resolution is required to represent subtle pathologic features. The cloud platform allows cases to be added and modified in real time by using only a standard Web browser with no application-specific software. Challenges remain in developing efficient ways to generate, modify, and upload radiologic and supplementary teaching content to this cloud-based platform. Online supplemental material is available for this article. ©RSNA, 2014.

  15. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Mader, Kevin [4Quant Ltd., Switzerland & Institute for Biomedical Engineering at University and ETH Zurich (Switzerland); Stampanoni, Marco [Institute for Biomedical Engineering at University and ETH Zurich, Switzerland & Swiss Light Source at Paul Scherrer Institut, Villigen (Switzerland)

    2016-01-28

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.

  16. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    International Nuclear Information System (INIS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures

  17. Exploitation of cloud top characterization from three-channel IR measurements in a physical PMW rain retrieval algorithm

    Directory of Open Access Journals (Sweden)

    F. Torricella

    2006-01-01

    Full Text Available Rainfall intensity estimates by passive microwave (PMW measurements from space perform generally better over the sea surface with respect to land, due to the problems in separating true rain signatures from those produced by surfaces having similar spectral behaviour (e.g. snow, ice, desert and semiarid grounds. The screening procedure aimed at recognizing the various surface types and delimit precipitation is based on tests that rely on PMW measurements only and global thresholds. The shortcoming is that the approach tries to discard spurious precipitating features (often detected over the land-sea border thus leading to no-rain conservative tests and thresholds. The TRMM mission, with its long record of simultaneous data from the Visible and Infrared Radiometer System (VIRS, the TRMM Microwave Imager (TMI and rain profiles from the Precipitation Radar (PR allows for unambiguous testing of the usefulness of cloud top characterization in rain detection. An intense precipitation event over the North Africa is analysed exploiting a night microphysical RGB scheme applied to VIRS measurements to classify and characterize the components of the observed scenario and to discriminate the various types of clouds. This classification is compared to the rain intensity maps derived from TMI by means of the Goddard profiling algorithm and to the near-surface rain intensities derived from PR. The comparison allows to quantify the difference between the two rain retrievals and to assess the usefulness of RGB analysis in identifying areas of precipitation.

  18. Neural network cloud top pressure and height for MODIS

    Science.gov (United States)

    Håkansson, Nina; Adok, Claudia; Thoss, Anke; Scheirer, Ronald; Hörnquist, Sara

    2018-06-01

    Cloud top height retrieval from imager instruments is important for nowcasting and for satellite climate data records. A neural network approach for cloud top height retrieval from the imager instrument MODIS (Moderate Resolution Imaging Spectroradiometer) is presented. The neural networks are trained using cloud top layer pressure data from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) dataset. Results are compared with two operational reference algorithms for cloud top height: the MODIS Collection 6 Level 2 height product and the cloud top temperature and height algorithm in the 2014 version of the NWC SAF (EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Satellite Application Facility on Support to Nowcasting and Very Short Range Forecasting) PPS (Polar Platform System). All three techniques are evaluated using both CALIOP and CPR (Cloud Profiling Radar for CloudSat (CLOUD SATellite)) height. Instruments like AVHRR (Advanced Very High Resolution Radiometer) and VIIRS (Visible Infrared Imaging Radiometer Suite) contain fewer channels useful for cloud top height retrievals than MODIS, therefore several different neural networks are investigated to test how infrared channel selection influences retrieval performance. Also a network with only channels available for the AVHRR1 instrument is trained and evaluated. To examine the contribution of different variables, networks with fewer variables are trained. It is shown that variables containing imager information for neighboring pixels are very important. The error distributions of the involved cloud top height algorithms are found to be non-Gaussian. Different descriptive statistic measures are presented and it is exemplified that bias and SD (standard deviation) can be misleading for non-Gaussian distributions. The median and mode are found to better describe the tendency of the error distributions and IQR (interquartile range) and MAE (mean absolute error) are found

  19. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Effective Particle Size (CEPS) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Effective Particle Size (CEPS) from the Visible Infrared Imaging Radiometer...

  20. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    Science.gov (United States)

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.

  1. Detection and retrieval of multi-layered cloud properties using satellite data

    Science.gov (United States)

    Minnis, Patrick; Sun-Mack, Sunny; Chen, Yan; Yi, Helen; Huang, Jianping; Nguyen, Louis; Khaiyer, Mandana M.

    2005-10-01

    Four techniques for detecting multilayered clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. A new technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other methods examined here use atmospheric sounding data (CO2-slicing, CO2), BTD, or microwave data. The CO2 and BTD methods are limited to optically thin cirrus over low clouds, while the MWR methods are limited to ocean areas only. This paper explores the use of the BTD and CO2 methods as applied to Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data taken from the Aqua satellite over ocean surfaces. Cloud properties derived from MODIS data for the Clouds and the Earth's Radiant Energy System (CERES) Project are used to classify cloud phase and optical properties. The preliminary results focus on a MODIS image taken off the Uruguayan coast. The combined MW visible infrared (MVI) method is assumed to be the reference for detecting multilayered ice-over-water clouds. The BTD and CO2 techniques accurately match the MVI classifications in only 51 and 41% of the cases, respectively. Much additional study is need to determine the uncertainties in the MVI method and to analyze many more overlapped cloud scenes.

  2. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Height (Top and Base) Environmental Data Record (EDR) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of cloud height (top and base) from the Visible Infrared Imaging Radiometer Suite...

  3. An assessment of thin cloud detection by applying bidirectional reflectance distribution function model-based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Shin, Daegeun; Choi, Sungwon; Han, Kyung-Soo; Roujean, Jean-Louis

    2017-08-01

    In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35).

  4. Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data

    Directory of Open Access Journals (Sweden)

    Y. Gu

    2012-02-01

    Full Text Available The climatic effects of dust aerosols in North Africa have been investigated using the atmospheric general circulation model (AGCM developed at the University of California, Los Angeles (UCLA. The model includes an efficient and physically based radiation parameterization scheme developed specifically for application to clouds and aerosols. Parameterization of the effective ice particle size in association with the aerosol first indirect effect based on ice cloud and aerosol data retrieved from A-Train satellite observations have been employed in climate model simulations. Offline simulations reveal that the direct solar, IR, and net forcings by dust aerosols at the top of the atmosphere (TOA generally increase with increasing aerosol optical depth. When the dust semi-direct effect is included with the presence of ice clouds, positive IR radiative forcing is enhanced since ice clouds trap substantial IR radiation, while the positive solar forcing with dust aerosols alone has been changed to negative values due to the strong reflection of solar radiation by clouds, indicating that cloud forcing associated with aerosol semi-direct effect could exceed direct aerosol forcing. With the aerosol first indirect effect, the net cloud forcing is generally reduced in the case for an ice water path (IWP larger than 20 g m−2. The magnitude of the reduction increases with IWP.

    AGCM simulations show that the reduced ice crystal mean effective size due to the aerosol first indirect effect results in less OLR and net solar flux at TOA over the cloudy area of the North Africa region because ice clouds with smaller size trap more IR radiation and reflect more solar radiation. The precipitation in the same area, however, increases due to the aerosol indirect effect on ice clouds, corresponding to the enhanced convection as indicated by reduced OLR. Adding the aerosol direct effect into the model simulation reduces the precipitation in the

  5. Making and Breaking Clouds

    Science.gov (United States)

    Kohler, Susanna

    2017-10-01

    Molecular clouds which youre likely familiar with from stunning popular astronomy imagery lead complicated, tumultuous lives. A recent study has now found that these features must be rapidly built and destroyed.Star-Forming CollapseA Hubble view of a molecular cloud, roughly two light-years long, that has broken off of the Carina Nebula. [NASA/ESA, N. Smith (University of California, Berkeley)/The Hubble Heritage Team (STScI/AURA)]Molecular gas can be found throughout our galaxy in the form of eminently photogenic clouds (as featured throughout this post). Dense, cold molecular gas makes up more than 20% of the Milky Ways total gas mass, and gravitational instabilities within these clouds lead them to collapse under their own weight, resulting in the formation of our galaxys stars.How does this collapse occur? The simplest explanation is that the clouds simply collapse in free fall, with no source of support to counter their contraction. But if all the molecular gas we observe collapsed on free-fall timescales, star formation in our galaxy would churn a rate thats at least an order of magnitude higher than the observed 12 solar masses per year in the Milky Way.Destruction by FeedbackAstronomers have theorized that there may be some mechanism that supports these clouds against gravity, slowing their collapse. But both theoretical studies and observations of the clouds have ruled out most of these potential mechanisms, and mounting evidence supports the original interpretation that molecular clouds are simply gravitationally collapsing.A sub-mm image from ESOs APEX telescope of part of the Taurus molecular cloud, roughly ten light-years long, superimposed on a visible-light image of the region. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey 2. Acknowledgment: Davide De Martin]If this is indeed the case, then one explanation for our low observed star formation rate could be that molecular clouds are rapidly destroyed by feedback from the very stars

  6. Automatic Mosaicking of Satellite Imagery Considering the Clouds

    Science.gov (United States)

    Kang, Yifei; Pan, Li; Chen, Qi; Zhang, Tong; Zhang, Shasha; Liu, Zhang

    2016-06-01

    With the rapid development of high resolution remote sensing for earth observation technology, satellite imagery is widely used in the fields of resource investigation, environment protection, and agricultural research. Image mosaicking is an important part of satellite imagery production. However, the existence of clouds leads to lots of disadvantages for automatic image mosaicking, mainly in two aspects: 1) Image blurring may be caused during the process of image dodging, 2) Cloudy areas may be passed through by automatically generated seamlines. To address these problems, an automatic mosaicking method is proposed for cloudy satellite imagery in this paper. Firstly, modified Otsu thresholding and morphological processing are employed to extract cloudy areas and obtain the percentage of cloud cover. Then, cloud detection results are used to optimize the process of dodging and mosaicking. Thus, the mosaic image can be combined with more clear-sky areas instead of cloudy areas. Besides, clear-sky areas will be clear and distortionless. The Chinese GF-1 wide-field-of-view orthoimages are employed as experimental data. The performance of the proposed approach is evaluated in four aspects: the effect of cloud detection, the sharpness of clear-sky areas, the rationality of seamlines and efficiency. The evaluation results demonstrated that the mosaic image obtained by our method has fewer clouds, better internal color consistency and better visual clarity compared with that obtained by traditional method. The time consumed by the proposed method for 17 scenes of GF-1 orthoimages is within 4 hours on a desktop computer. The efficiency can meet the general production requirements for massive satellite imagery.

  7. Near-IR Two-Photon Fluorescent Sensor for K(+) Imaging in Live Cells.

    Science.gov (United States)

    Sui, Binglin; Yue, Xiling; Kim, Bosung; Belfield, Kevin D

    2015-08-19

    A new two-photon excited fluorescent K(+) sensor is reported. The sensor comprises three moieties, a highly selective K(+) chelator as the K(+) recognition unit, a boron-dipyrromethene (BODIPY) derivative modified with phenylethynyl groups as the fluorophore, and two polyethylene glycol chains to afford water solubility. The sensor displays very high selectivity (>52-fold) in detecting K(+) over other physiological metal cations. Upon binding K(+), the sensor switches from nonfluorescent to highly fluorescent, emitting red to near-IR (NIR) fluorescence. The sensor exhibited a good two-photon absorption cross section, 500 GM at 940 nm. Moreover, it is not sensitive to pH in the physiological pH range. Time-dependent cell imaging studies via both one- and two-photon fluorescence microscopy demonstrate that the sensor is suitable for dynamic K(+) sensing in living cells.

  8. Preparation of Ultracold Atom Clouds at the Shot Noise Level

    DEFF Research Database (Denmark)

    Gajdacz, M.; Hilliard, A. J.; Kristensen, Mick

    2016-01-01

    We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^6 is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN... on this measurement, feedback is applied to reduce the atom number to a user-defined target, whereupon a second imaging series probes the number stabilized cloud. By this method, we show that the atom number in ultracold clouds can be prepared below the shot noise level....

  9. Reduction of vascular artifact on T1-weighted images of the brain by using three-dimensional double IR fast spoiled gradient echo recalled acquisition in the steady state (FSPGR) at 3.0 Tesla

    International Nuclear Information System (INIS)

    Fujiwara, Yasuhiro; Yamaguchi, Isao; Ookoshi, Yusuke; Ootani, Yuriko; Matsuda, Tsuyoshi; Ishimori, Yoshiyuki; Hayashi, Hiroyuki; Miyati, Tosiaki; Kimura, Hirohiko

    2007-01-01

    The purpose of this study was to decrease vascular artifacts caused by the in-flow effect in three-dimensional inversion recovery prepared fast spoiled gradient recalled acquisition in the steady state (3D IR FSPGR) at 3.0 Tesla. We developed 3D double IR FSPGR and investigated the signal characteristics of the new sequence. The 3D double IR FSPGR sequence uses two inversion pulses, the first for obtaining tissue contrast and the second for nulling vascular signal, which is applied at the time of the first IR period at the neck region. We have optimized scan parameters based on both phantom and in-vivo study. As a result, optimized parameters (1st TI=700 ms, 2nd TI=400 ms) successfully have produced much less vessel signal at reduction than conventional 3D IR FSPGR over a wide imaging range, while preserving the signal-to-noise ratio (SNR) and gray/white matter contrast. Moreover, the decreased artifact was also confirmed by visual inspection of the images obtained in vivo using those parameters. Thus, 3D double IR FSPGR was a useful sequence for the acquisition of T1-weighted images at 3.0 Tesla. (author)

  10. Using MODIS Cloud Regimes to Sort Diagnostic Signals of Aerosol-Cloud-Precipitation Interactions.

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin

    2017-05-27

    Coincident multi-year measurements of aerosol, cloud, precipitation and radiation at near-global scales are analyzed to diagnose their apparent relationships as suggestive of interactions previously proposed based on theoretical, observational, and model constructs. Specifically, we examine whether differences in aerosol loading in separate observations go along with consistently different precipitation, cloud properties, and cloud radiative effects. Our analysis uses a cloud regime (CR) framework to dissect and sort the results. The CRs come from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and are defined as distinct groups of cloud systems with similar co-variations of cloud top pressure and cloud optical thickness. Aerosol optical depth used as proxy for aerosol loading comes from two sources, MODIS observations, and the MERRA-2 re-analysis, and its variability is defined with respect to local seasonal climatologies. The choice of aerosol dataset impacts our results substantially. We also find that the responses of the marine and continental component of a CR are frequently quite disparate. Overall, CRs dominated by warm clouds tend to exhibit less ambiguous signals, but also have more uncertainty with regard to precipitation changes. Finally, we find weak, but occasionally systematic co-variations of select meteorological indicators and aerosol, which serves as a sober reminder that ascribing changes in cloud and cloud-affected variables solely to aerosol variations is precarious.

  11. Point cloud data management (extended abstract)

    NARCIS (Netherlands)

    Van Oosterom, P.J.M.; Ravada, S.; Horhammer, M.; Martinez Rubi, O.; Ivanova, M.; Kodde, M.; Tijssen, T.P.M.

    2014-01-01

    Point cloud data are important sources for 3D geo-information. The point cloud data sets are growing in popularity and in size. Modern Big Data acquisition and processing technologies, such as laser scanning from airborne, mobile, or static platforms, dense image matching from photos, multi-beam

  12. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    Science.gov (United States)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  13. Properties of molecular clouds containing Herbig-Haro objects

    International Nuclear Information System (INIS)

    Loren, R.B.; Evans, N.J. II; Knapp, G.R.

    1979-01-01

    We have studied the physical conditions in the molecular clouds associated with a large number of Herbig-Haro and related objects. Formaldehyde emission at 2 mm was detected in the direction of approx.15 out of 30 objects observed. Using the 2 mm H 2 CO emission and observations of 2 cm H 2 CO absorption, along the the 2.6 mm CO line, we calculate core densities of these molecular clouds. Dense cores are found near but not necessarily coincident with the HH objects. Known embedded infrared sources are more likely to be at the position of greatest density than are the HH objects themselves. The densities determined for the cloud cores are intermediate between the densities of cold, dark clouds such as L134 N and the hot clouds associated with H II regions. Thus, a continuous spectrum of densities is observed in molecular clouds. The temperature and density of the clouds in this study are not well correlated. The cores associated with HH 29 IR and T Tau are very dense (6 x 10 4 and 9 x 10 4 cm -3 ), yet have temperatures typical of cold dark clouds.The strong inverse correlation between X (H 2 CO) and density found by Wootten et al. is also found in the clouds associated with HH objects. This correlation also holds within a single cloud, indicating that the correlation is not due to differences in cloud age and evolution toward gas-phase chemical equilibrium. The decrease of X (H 2 CO) with density is more rapid than predicted by steady state ion-molecule chemistry and may be the result of increased depletion of molecules onto grain surfaces at higher density

  14. The International Satellite Cloud Climatology Project H-Series climate data record product

    Science.gov (United States)

    Young, Alisa H.; Knapp, Kenneth R.; Inamdar, Anand; Hankins, William; Rossow, William B.

    2018-03-01

    This paper describes the new global long-term International Satellite Cloud Climatology Project (ISCCP) H-series climate data record (CDR). The H-series data contain a suite of level 2 and 3 products for monitoring the distribution and variation of cloud and surface properties to better understand the effects of clouds on climate, the radiation budget, and the global hydrologic cycle. This product is currently available for public use and is derived from both geostationary and polar-orbiting satellite imaging radiometers with common visible and infrared (IR) channels. The H-series data currently span July 1983 to December 2009 with plans for continued production to extend the record to the present with regular updates. The H-series data are the longest combined geostationary and polar orbiter satellite-based CDR of cloud properties. Access to the data is provided in network common data form (netCDF) and archived by NOAA's National Centers for Environmental Information (NCEI) under the satellite Climate Data Record Program (https://doi.org/10.7289/V5QZ281S" target="_blank">https://doi.org/10.7289/V5QZ281S). The basic characteristics, history, and evolution of the dataset are presented herein with particular emphasis on and discussion of product changes between the H-series and the widely used predecessor D-series product which also spans from July 1983 through December 2009. Key refinements included in the ISCCP H-series CDR are based on improved quality control measures, modified ancillary inputs, higher spatial resolution input and output products, calibration refinements, and updated documentation and metadata to bring the H-series product into compliance with existing standards for climate data records.

  15. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains

    Science.gov (United States)

    Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43−at 450 cm-1 and ν4PO43− from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with

  16. Assessing various Infrared (IR microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Directory of Open Access Journals (Sweden)

    Claudia Woess

    Full Text Available Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio

  17. Assessing various Infrared (IR) microscopic imaging techniques for post-mortem interval evaluation of human skeletal remains.

    Science.gov (United States)

    Woess, Claudia; Unterberger, Seraphin Hubert; Roider, Clemens; Ritsch-Marte, Monika; Pemberger, Nadin; Cemper-Kiesslich, Jan; Hatzer-Grubwieser, Petra; Parson, Walther; Pallua, Johannes Dominikus

    2017-01-01

    Due to the influence of many environmental processes, a precise determination of the post-mortem interval (PMI) of skeletal remains is known to be very complicated. Although methods for the investigation of the PMI exist, there still remains much room for improvement. In this study the applicability of infrared (IR) microscopic imaging techniques such as reflection-, ATR- and Raman- microscopic imaging for the estimation of the PMI of human skeletal remains was tested. PMI specific features were identified and visualized by overlaying IR imaging data with morphological tissue structures obtained using light microscopy to differentiate between forensic and archaeological bone samples. ATR and reflection spectra revealed that a more prominent peak at 1042 cm-1 (an indicator for bone mineralization) was observable in archeological bone material when compared with forensic samples. Moreover, in the case of the archaeological bone material, a reduction in the levels of phospholipids, proteins, nucleic acid sugars, complex carbohydrates as well as amorphous or fully hydrated sugars was detectable at (reciprocal wavelengths/energies) between 3000 cm-1 to 2800 cm-1. Raman spectra illustrated a similar picture with less ν2PO43-at 450 cm-1 and ν4PO43- from 590 cm-1 to 584 cm-1, amide III at 1272 cm-1 and protein CH2 deformation at 1446 cm-1 in archeological bone material/samples/sources. A semi-quantitative determination of various distributions of biomolecules by chemi-maps of reflection- and ATR- methods revealed that there were less carbohydrates and complex carbohydrates as well as amorphous or fully hydrated sugars in archaeological samples compared with forensic bone samples. Raman- microscopic imaging data showed a reduction in B-type carbonate and protein α-helices after a PMI of 3 years. The calculated mineral content ratio and the organic to mineral ratio displayed that the mineral content ratio increases, while the organic to mineral ratio decreases with time

  18. IRAS observations of dust heating and energy balance in the Rho Ophiuchi dark cloud

    Science.gov (United States)

    Greene, Thomas P.; Young, Erick T.

    1989-01-01

    The equilibrium process dust emission in the Rho Ophiuchi dark cloud is studied. The luminosity of the cloud is found to closely match the luminosity of the clouds's known embedded and external radiation sources. There is no evidence for a large population of undetected low-luminosity sources within the cloud and unknown external heating is also only a minor source of energy. Most of the cloud's luminosity is emitted in the mid-to-far-IR. Dust temperature maps indicate that the dust is not hot enough to heat the gas to observed temperatures. A simple cloud model with a radiation field composed of flux HD 147889, S1, and Sco OB2 associations predicts the observed IRAS 60 to 100 micron in-band flux ratios for a mean cloud density n(H2) = 1400. Flattened 12 and 25 micron observations show much extended emission in these bands, suggesting stochastic heating of very small grains or large molecules.

  19. [Application of single-band brightness variance ratio to the interference dissociation of cloud for satellite data].

    Science.gov (United States)

    Qu, Wei-ping; Liu, Wen-qing; Liu, Jian-guo; Lu, Yi-huai; Zhu, Jun; Qin, Min; Liu, Cheng

    2006-11-01

    In satellite remote-sensing detection, cloud as an interference plays a negative role in data retrieval. How to discern the cloud fields with high fidelity thus comes as a need to the following research. A new method rooting in atmospheric radiation characteristics of cloud layer, in the present paper, presents a sort of solution where single-band brightness variance ratio is used to detect the relative intensity of cloud clutter so as to delineate cloud field rapidly and exactly, and the formulae of brightness variance ratio of satellite image, image reflectance variance ratio, and brightness temperature variance ratio of thermal infrared image are also given to enable cloud elimination to produce data free from cloud interference. According to the variance of the penetrating capability for different spectra bands, an objective evaluation is done on cloud penetration of them with the factors that influence penetration effect. Finally, a multi-band data fusion task is completed using the image data of infrared penetration from cirrus nothus. Image data reconstruction is of good quality and exactitude to show the real data of visible band covered by cloud fields. Statistics indicates the consistency of waveband relativity with image data after the data fusion.

  20. The Far Infrared Lines of OH as Molecular Cloud Diagnostics

    Science.gov (United States)

    Smith, Howard A.

    2004-01-01

    Future IR missions should give some priority to high resolution spectroscopic observations of the set of far-IR transitions of OH. There are 15 far-IR lines arising between the lowest eight rotational levels of OH, and ISO detected nine of them. Furthermore, ISO found the OH lines, sometimes in emission and sometimes in absorption, in a wide variety of galactic and extragalactic objects ranging from AGB stars to molecular clouds to active galactic nuclei and ultra-luminous IR galaxies. The ISO/LWS Fabry-Perot resolved the 119 m doublet line in a few of the strong sources. This set of OH lines provides a uniquely important diagnostic for many reasons: the lines span a wide wavelength range (28.9 m to 163.2 m); the transitions have fast radiative rates; the abundance of the species is relatively high; the IR continuum plays an important role as a pump; the contribution from shocks is relatively minor; and, not least, the powerful centimeter-wave radiation from OH allows comparison with radio and VLBI datasets. The problem is that the large number of sensitive free parameters, and the large optical depths of the strongest lines, make modeling the full set a difficult job. The SWAS montecarlo radiative transfer code has been used to analyze the ISO/LWS spectra of a number of objects with good success, including in both the lines and the FIR continuum; the DUSTY radiative transfer code was used to insure a self-consistent continuum. Other far IR lines including those from H2O, CO, and [OI] are also in the code. The OH lines all show features which future FIR spectrometers should be able to resolve, and which will enable further refinements in the details of each cloud's structure. Some examples are given, including the case of S140, for which independent SWAS data found evidence for bulk flows.

  1. Remote Sensing of Clouds for Solar Forecasting Applications

    Science.gov (United States)

    Mejia, Felipe

    A method for retrieving cloud optical depth (tauc) using a UCSD developed ground- based Sky Imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various tauc produced by a Radiative Transfer Model (RTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (SZA), tau c , solar pixel an- gle/scattering angle (SPA), and pixel zenith angle/view angle (PZA). The effects of these parameters are described and the functions for radiance, Ilambda (tau c ,SZA,SPA,PZA) , and the red-blue ratio, RBR(tauc ,SZA,SPA,PZA) , are retrieved from the RTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for tau c , where RBR increases with tauc up to about tauc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Imeaslambda (SPA,PZA) , in addition to RBRmeas (SPA,PZA ) to obtain a unique solution for tauc . The RRBR method is applied to images of liquid water clouds taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and compared against measurements from a microwave radiometer (MWR) and output from the Min [ MH96a ] method for overcast skies. tau c values ranged from 0-80 with values over 80 being capped and registered as 80. A tauc RMSE of 2.5 between the Min method [ MH96b ] and the USI are observed. The MWR and USI have an RMSE of 2.2 which is well within the uncertainty of the MWR. The procedure developed here provides a foundation to test and develop other cloud detection algorithms. Using the RRBR tauc estimate as an input we then explore the potential of using tomographic techniques for 3-D cloud reconstruction. The Algebraic Reconstruction Technique (ART) is applied to optical depth maps from sky images to reconstruct 3-D cloud extinction coefficients. Reconstruction accuracy

  2. Spectroscopic diagnostics for ablation cloud of tracer-encapsulated solid pellet in LHD

    International Nuclear Information System (INIS)

    Tamura, N.; Kalinina, D. V.; Sato, K.; Sudo, S.; Sergeev, V. Yu.; Miroshnikov, I. V.; Sharov, I. A.; Bakhareva, O. A.; Ivanova, D. M.; Timokhin, V. M.; Kuteev, B. V.

    2008-01-01

    In the Large Helical Device (LHD), various spectroscopic diagnostics have been applied to study the ablation process of an advanced impurity pellet, tracer-encapsulated solid pellet (TESPEL). The total light emission from the ablation cloud of TESPEL is measured by photomultipliers equipped with individual interference filters, which provide information about the TESPEL penetration depth. The spectra emitted from the TESPEL ablation cloud are measured with a 250 mm Czerny-Turner spectrometer equipped with an intensified charge coupled device detector, which is operated in the fast kinetic mode. This diagnostic allows us to evaluate the temporal evolution of the electron density in the TESPEL ablation cloud. In order to gain information about the spatial distribution of the cloud parameters, a nine image optical system that can simultaneously acquire nine images of the TESPEL ablation cloud has recently been developed. Several images of the TESPEL ablation cloud in different spectral domains will give us the spatial distribution of the TESPEL cloud density and temperature.

  3. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  4. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  5. Global cloud database from VIRS and MODIS for CERES

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Wielicki, Bruce A.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Heck, Patrick W.; Dong, Xiquan

    2003-04-01

    The NASA CERES Project has developed a combined radiation and cloud property dataset using the CERES scanners and matched spectral data from high-resolution imagers, the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The diurnal cycle can be well-characterized over most of the globe using the combinations of TRMM, Aqua, and Terra data. The cloud properties are derived from the imagers using state-of-the-art methods and include cloud fraction, height, optical depth, phase, effective particle size, emissivity, and ice or liquid water path. These cloud products are convolved into the matching CERES fields of view to provide simultaneous cloud and radiation data at an unprecedented accuracy. Results are available for at least 3 years of VIRS data and 1 year of Terra MODIS data. The various cloud products are compared with similar quantities from climatological sources and instantaneous active remote sensors. The cloud amounts are very similar to those from surface observer climatologies and are 6-7% less than those from a satellite-based climatology. Optical depths are 2-3 times smaller than those from the satellite climatology, but are within 5% of those from the surface remote sensing. Cloud droplet sizes and liquid water paths are within 10% of the surface results on average for stratus clouds. The VIRS and MODIS retrievals are very consistent with differences that usually can be explained by sampling, calibration, or resolution differences. The results should be extremely valuable for model validation and improvement and for improving our understanding of the relationship between clouds and the radiation budget.

  6. Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms

    Science.gov (United States)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; hide

    2014-01-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0

  7. Impaired Insulin Signaling is Associated with Hepatic Mitochondrial Dysfunction in IR+/−-IRS-1+/− Double Heterozygous (IR-IRS1dh Mice

    Directory of Open Access Journals (Sweden)

    Andras Franko

    2017-05-01

    Full Text Available Mitochondria play a pivotal role in energy metabolism, but whether insulin signaling per se could regulate mitochondrial function has not been identified yet. To investigate whether mitochondrial function is regulated by insulin signaling, we analyzed muscle and liver of insulin receptor (IR+/−-insulin receptor substrate-1 (IRS-1+/− double heterozygous (IR-IRS1dh mice, a well described model for insulin resistance. IR-IRS1dh mice were studied at the age of 6 and 12 months and glucose metabolism was determined by glucose and insulin tolerance tests. Mitochondrial enzyme activities, oxygen consumption, and membrane potential were assessed using spectrophotometric, respirometric, and proton motive force analysis, respectively. IR-IRS1dh mice showed elevated serum insulin levels. Hepatic mitochondrial oxygen consumption was reduced in IR-IRS1dh animals at 12 months of age. Furthermore, 6-month-old IR-IRS1dh mice demonstrated enhanced mitochondrial respiration in skeletal muscle, but a tendency of impaired glucose tolerance. On the other hand, 12-month-old IR-IRS1dh mice showed improved glucose tolerance, but normal muscle mitochondrial function. Our data revealed that deficiency in IR/IRS-1 resulted in normal or even elevated skeletal muscle, but impaired hepatic mitochondrial function, suggesting a direct cross-talk between insulin signaling and mitochondria in the liver.

  8. Cosmic ray decreases affect atmospheric aerosols and clouds

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Bondo, Torsten; Svensmark, J.

    2009-01-01

    Close passages of coronal mass ejections from the sun are signaled at the Earth's surface by Forbush decreases in cosmic ray counts. We find that low clouds contain less liquid water following Forbush decreases, and for the most influential events the liquid water in the oceanic atmosphere can...... diminish by as much as 7%. Cloud water content as gauged by the Special Sensor Microwave/Imager (SSM/I) reaches a minimum ≈7 days after the Forbush minimum in cosmic rays, and so does the fraction of low clouds seen by the Moderate Resolution Imaging Spectroradiometer (MODIS) and in the International...

  9. The Feasibility of 3d Point Cloud Generation from Smartphones

    Science.gov (United States)

    Alsubaie, N.; El-Sheimy, N.

    2016-06-01

    This paper proposes a new technique for increasing the accuracy of direct geo-referenced image-based 3D point cloud generated from low-cost sensors in smartphones. The smartphone's motion sensors are used to directly acquire the Exterior Orientation Parameters (EOPs) of the captured images. These EOPs, along with the Interior Orientation Parameters (IOPs) of the camera/ phone, are used to reconstruct the image-based 3D point cloud. However, because smartphone motion sensors suffer from poor GPS accuracy, accumulated drift and high signal noise, inaccurate 3D mapping solutions often result. Therefore, horizontal and vertical linear features, visible in each image, are extracted and used as constraints in the bundle adjustment procedure. These constraints correct the relative position and orientation of the 3D mapping solution. Once the enhanced EOPs are estimated, the semi-global matching algorithm (SGM) is used to generate the image-based dense 3D point cloud. Statistical analysis and assessment are implemented herein, in order to demonstrate the feasibility of 3D point cloud generation from the consumer-grade sensors in smartphones.

  10. The Evolution of Cloud Computing in ATLAS

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224309; The ATLAS collaboration; Berghaus, Frank; Love, Peter; Leblanc, Matthew Edgar; Di Girolamo, Alessandro; Paterson, Michael; Gable, Ian; Sobie, Randall; Field, Laurence

    2015-01-01

    The ATLAS experiment has successfully incorporated cloud computing technology and cloud resources into its primarily grid-based model of distributed computing. Cloud R&D activities continue to mature and transition into stable production systems, while ongoing evolutionary changes are still needed to adapt and refine the approaches used, in response to changes in prevailing cloud technology. In addition, completely new developments are needed to handle emerging requirements. This work will describe the overall evolution of cloud computing in ATLAS. The current status of the VM management systems used for harnessing IAAS resources will be discussed. Monitoring and accounting systems tailored for clouds are needed to complete the integration of cloud resources within ATLAS' distributed computing framework. We are developing and deploying new solutions to address the challenge of operation in a geographically distributed multi-cloud scenario, including a system for managing VM images across multiple clouds, ...

  11. Fuzzy AutoEncode Based Cloud Detection for Remote Sensing Imagery

    Directory of Open Access Journals (Sweden)

    Zhenfeng Shao

    2017-03-01

    Full Text Available Cloud detection of remote sensing imagery is quite challenging due to the influence of complicated underlying surfaces and the variety of cloud types. Currently, most of the methods mainly rely on prior knowledge to extract features artificially for cloud detection. However, these features may not be able to accurately represent the cloud characteristics under complex environment. In this paper, we adopt an innovative model named Fuzzy Autoencode Model (FAEM to integrate the feature learning ability of stacked autoencode networks and the detection ability of fuzzy function for highly accurate cloud detection on remote sensing imagery. Our proposed method begins by selecting and fusing spectral, texture, and structure information. Thereafter, the proposed technique established a FAEM to learn the deep discriminative features from a great deal of selected information. Finally, the learned features are mapped to the corresponding cloud density map with a fuzzy function. To demonstrate the effectiveness of the proposed method, 172 Landsat ETM+ images and 25 GF-1 images with different spatial resolutions are used in this paper. For the convenience of accuracy assessment, ground truth data are manually outlined. Results show that the average RER (ratio of right rate and error rate on Landsat images is greater than 29, while the average RER of Support Vector Machine (SVM is 21.8 and Random Forest (RF is 23. The results on GF-1 images exhibit similar performance as Landsat images with the average RER of 25.9, which is much higher than the results of SVM and RF. Compared to traditional methods, our technique has attained higher average cloud detection accuracy for either different spatial resolutions or various land surfaces.

  12. The application of time series models to cloud field morphology analysis

    Science.gov (United States)

    Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.

    1987-01-01

    A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.

  13. NEAR-IR TWO PHOTON MICROSCOPY IMAGING OF SILICA NANOPARTICLES FUNCTIONALIZED WITH ISOLATED SENSITIZED Yb(III) CENTERS

    Energy Technology Data Exchange (ETDEWEB)

    Lapadula, Giuseppe; Bourdolle, Adrien; Allouche, Florian; Conley, Matthew P.; Maron, Laurent; Lukens, Wayne W.; Guyot, Yannick; Andraud, Chantal; Brasselet, Sophie; Copé; ret, Christophe; Maury, Olivier; Andersen, Richard A.

    2013-01-12

    Bright nano objects emitting in the near infrared with a maximal cross section of 41.4 x 103 GM (Goppert Mayer), were prepared by implanting ca. 180 4,4 diethylaminostyryl 2,2 bipyridine (DEAS) Yb(III) complexes on the surface of 12 nm silica nanoparticles. The surface complexes ([DEAS Ln SiO2], Ln =Y,Yb) were characterized using IR, solid state NMR, UV Vis, EXAFS spectroscopies in combination with the preparation and characterization of similar molecular analogues by analytical techniques (IR, solution NMR, UV Vis, X ray crystallography) as well as DFT calculations. Starting from the partial dehydroxylation of the silica at 700 C on high vacuum having 0.8 OH.nm 2, the grafting of Ln(N(SiMe3)2)3 generate ≤SiO Ln(N(SiMe3)2)2, which upon thermal step and coordination of the DEAS chromophore yields (≤SiO)3Ln(DEAS). Surface and molecular analogues display similar properties, in terms of DEAS binding constants absorption maxima and luminescence properties (intense emission band assigned to a ligand centered CT fluorescence and life time) in the solid state, consistent with the molecular nature of the surface species. The densely functionalized nanoparticles can be dispersed via ultra-sonication in small ca. 15-20 nm aggregates (1 to 6 elementary particles) that were detected using two photon microscopy imaging at 720 nm excitation, making them promising nano objects for bio imaging.

  14. A QR code based zero-watermarking scheme for authentication of medical images in teleradiology cloud.

    Science.gov (United States)

    Seenivasagam, V; Velumani, R

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)-Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks.

  15. A QR Code Based Zero-Watermarking Scheme for Authentication of Medical Images in Teleradiology Cloud

    Directory of Open Access Journals (Sweden)

    V. Seenivasagam

    2013-01-01

    Full Text Available Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT—Singular Value Decomposition (SVD domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu’s invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks.

  16. Laser-cooling effects in few-ion clouds of Yb+

    International Nuclear Information System (INIS)

    Edwards, C.S.; Gill, P.; Klein, H.A.; Levick, A.P.; Rowley, W.R.C.

    1994-01-01

    We report some laser-cooling effects in a few 172 Yb + ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb + fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb + clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb + cloud was also observed. (orig.)

  17. MODIS-derived daily PAR simulation from cloud-free images and its validation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Liangfu; Gu, Xingfa; Tian, Guoliang [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China); The Center for National Spaceborne Demonstration, Beijing 100101 (China); Gao, Yanhua [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China); Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Yang, Lei [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China); Jilin University, Changchun 130026 (China); Liu, Qinhuo [State Key Laboratory of Remote Sensing Science, Jointly Sponsored by Institute of Remote Sensing Applications of Chinese Academy of Sciences and Beijing Normal University, Beijing 100101 (China)

    2008-06-15

    In this paper, a MODIS-derived daily PAR (photosynthetically active radiation) simulation model from cloud-free image over land surface has been developed based on Bird and Riordan's model. In this model, the total downwelling spectral surface irradiance is divided into two parts: one is beam irradiance, and another is diffuse irradiance. The attenuation of solar beam irradiance comprises scattering by the gas mixture, absorption by ozone, the gas mixture and water vapor, and scattering and absorption by aerosols. The diffuse irradiance is scattered out of the direct beam and towards the surface. The multiple ground-air interactions have been taken into account in the diffuse irradiance model. The parameters needed in this model are atmospheric water vapor content, aerosol optical thickness and spectral albedo ranging from 400 nm to 700 nm. They are all retrieved from MODIS data. Then, the instantaneous photosynthetically available radiation (IPAR) is integrated by using a weighted sum at each of the visible MODIS wavebands. Finally, a daily PAR is derived by integration of IPAR. In order to validate the MODIS-derived PAR model, we compared the field PAR measurements in 2003 and 2004 against the simulated PAR. The measurements were made at the Qianyanzhou ecological experimental station, Chinese Ecosystem Research Network. A total of 54 days of cloud-free MODIS L1B level images were used for the PAR simulation. Our results show that the simulated PAR is consistent with field measurements, where the correlation coefficient of linear regression between calculated PAR and measured PAR is 0.93396. However, there were some uncertainties in the comparison of 1 km pixel PAR with the tower flux stand measurement. (author)

  18. Multi-wavelength study of two possible cloud-cloud collision regions: IRAS 02459+6029 and IRAS 22528+5936

    International Nuclear Information System (INIS)

    Li Nan; Wang Junjie

    2012-01-01

    Based on observations of 12 CO (J=2–1), we select targets from archived Infrared Astronomical Satellite (IRAS) data of IRAS 02459+6029 and IRAS 22528+5936 as samples of cloud-cloud collision, according to the criteria given by Vallee. Then we use the Midcourse Space Experiment (MSX) A band (8.28 μm) images and the NRAO VLA Sky Survey (NVSS) (1.4 GHz) continuum images to investigate the association between molecular clouds traced by the CO contour maps. The distribution of dust and ionized hydrogen shows an obvious association with the CO contour maps toward IRAS 02459+6029. However, in the possible collision region of IRAS 22528+5936, NVSS continuum radiation is not detected and the MSX sources are merely associated with the central star. The velocity fields of the two regions indicate the direction of the pressure and interaction. In addition, we have identified candidates of young stellar objects (YSOs) by using data from the Two Micron All Sky Survey (2MASS) in JHK bands expressed in a color-color diagram. The distribution of YSOs shows that the possible collision region is denser than other regions. All the evidence suggests that IRAS 02459+6029 could be an example of cloud-cloud collision, and that IRAS 22528+5936 could be two separate non-colliding clouds. (research papers)

  19. 3D Documentation of Archaeological Excavations Using Image-Based Point Cloud

    Directory of Open Access Journals (Sweden)

    Umut Ovalı

    2017-03-01

    Full Text Available Rapid progress in digital technology enables us to create three-dimensional models using digital images. Low cost, time efficiency and accurate results of this method put to question if this technique can be an alternative to conventional documentation techniques, which generally are 2D orthogonal drawings. Accurate and detailed 3D models of archaeological features have potential for many other purposes besides geometric documentation. This study presents a recent image-based three-dimensional registration technique employed in 2013 at one of the ancient city in Turkey, using “Structure from Motion” (SfM algorithms. A commercial software is applied to investigate whether this method can be used as an alternative to other techniques. Mesh model of the some section of the excavation section of the site were produced using point clouds were produced from the digital photographs. Accuracy assessment of the produced model was realized using the comparison of the directly measured coordinates of the ground control points with produced from model. Obtained results presented that the accuracy is around 1.3 cm.

  20. Looking at Art in the IR and UV

    Science.gov (United States)

    Falco, Charles

    2013-03-01

    Starting with the very earliest cave paintings art has been created to be viewed by the unaided eye and, until very recently, it wasn't even possible to see it at wavelengths outside the visible spectrum. However, it is now possible to view paintings, sculptures, manuscripts, and other cultural artifacts at wavelengths from the x-ray, through the ultraviolet (UV), to well into the infrared (IR). Further, thanks to recent advances in technology, this is becoming possible with hand-held instruments that can be used in locations that were previously inaccessible to anything but laboratory-scale image capture equipment. But, what can be learned from such ``non-visible'' images? In this talk I will briefly describe the characteristics of high resolution UV and IR imaging systems I developed for this purpose by modifying high resolution digital cameras. The sensitivity of the IR camera makes it possible to obtain images of art ``in situ'' with standard museum lighting, resolving features finer than 0.35 mm on a 1.0x0.67 m painting. I also have used both it and the UV camera in remote locations with battery-powered illumination sources. I will illustrate their capabilities with images of various examples of Western, Asian, and Islamic art in museums on three continents, describing how these images have revealed important new information about the working practices of artists as famous as Jan van Eyck. I also will describe what will be possible for this type of work with new capabilities that could be developed within the next few years. This work is based on a collaboration with David Hockney, and benefitted from image analys research supported by ARO grant W911NF-06-1-0359-P00001.

  1. FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). III. Possible evidence for formation of NGC 6618 cluster in M 17 by cloud-cloud collision

    Science.gov (United States)

    Nishimura, Atsushi; Minamidani, Tetsuhiro; Umemoto, Tomofumi; Fujita, Shinji; Matsuo, Mitsuhiro; Hattori, Yusuke; Kohno, Mikito; Yamagishi, Mitsuyoshi; Tsuda, Yuya; Kuriki, Mika; Kuno, Nario; Torii, Kazufumi; Tsutsumi, Daichi; Okawa, Kazuki; Sano, Hidetoshi; Tachihara, Kengo; Ohama, Akio; Fukui, Yasuo

    2018-05-01

    We present 12CO (J = 1-0), 13CO (J = 1-0), and C18O (J = 1-0) images of the M 17 giant molecular clouds obtained as part of the FUGIN (FOREST Ultra-wide Galactic Plane Survey In Nobeyama) project. The observations cover the entire area of the M 17 SW and M 17 N clouds at the highest angular resolution (˜19″) to date, which corresponds to ˜0.18 pc at the distance of 2.0 kpc. We find that the region consists of four different velocity components: a very low velocity (VLV) clump, a low velocity component (LVC), a main velocity component (MVC), and a high velocity component (HVC). The LVC and the HVC have cavities. Ultraviolet photons radiated from NGC 6618 cluster penetrate into the N cloud up to ˜5 pc through the cavities and interact with molecular gas. This interaction is correlated with the distribution of young stellar objects in the N cloud. The LVC and the HVC are distributed complementarily after the HVC is displaced by 0.8 pc toward the east-southeast direction, suggesting that collision of the LVC and the HVC created the cavities in both clouds. The collision velocity and timescale are estimated to be 9.9 km s-1 and 1.1 × 105 yr, respectively. The high collision velocity can provide a mass accretion rate of up to 10^{-3} M_{⊙}yr-1, and the high column density (4 × 1023 cm-2) might result in massive cluster formation. The scenario of cloud-cloud collision likely explains well the stellar population and the formation history of the NGC 6618 cluster proposed by Hoffmeister et al. (2008, ApJ, 686, 310).

  2. Simulation modeling of cloud computing for smart grid using CloudSim

    Directory of Open Access Journals (Sweden)

    Sandeep Mehmi

    2017-05-01

    Full Text Available In this paper a smart grid cloud has been simulated using CloudSim. Various parameters like number of virtual machines (VM, VM Image size, VM RAM, VM bandwidth, cloudlet length, and their effect on cost and cloudlet completion time in time-shared and space-shared resource allocation policy have been studied. As the number of cloudlets increased from 68 to 178, greater number of cloudlets completed their execution with high cloudlet completion time in time-shared allocation policy as compared to space-shared allocation policy. Similar trend has been observed when VM bandwidth is increased from 1 Gbps to 10 Gbps and VM RAM is increased from 512 MB to 5120 MB. The cost of processing increased linearly with respect to increase in number of VMs, VM Image size and cloudlet length.

  3. Hybrid Cloud Computing Environment for EarthCube and Geoscience Community

    Science.gov (United States)

    Yang, C. P.; Qin, H.

    2016-12-01

    The NSF EarthCube Integration and Test Environment (ECITE) has built a hybrid cloud computing environment to provides cloud resources from private cloud environments by using cloud system software - OpenStack and Eucalyptus, and also manages public cloud - Amazon Web Service that allow resource synchronizing and bursting between private and public cloud. On ECITE hybrid cloud platform, EarthCube and geoscience community can deploy and manage the applications by using base virtual machine images or customized virtual machines, analyze big datasets by using virtual clusters, and real-time monitor the virtual resource usage on the cloud. Currently, a number of EarthCube projects have deployed or started migrating their projects to this platform, such as CHORDS, BCube, CINERGI, OntoSoft, and some other EarthCube building blocks. To accomplish the deployment or migration, administrator of ECITE hybrid cloud platform prepares the specific needs (e.g. images, port numbers, usable cloud capacity, etc.) of each project in advance base on the communications between ECITE and participant projects, and then the scientists or IT technicians in those projects launch one or multiple virtual machines, access the virtual machine(s) to set up computing environment if need be, and migrate their codes, documents or data without caring about the heterogeneity in structure and operations among different cloud platforms.

  4. Estimating cloud field coverage using morphological analysis

    International Nuclear Information System (INIS)

    Bar-Or, Rotem Z; Koren, Ilan; Altaratz, Orit

    2010-01-01

    The apparent cloud-free atmosphere in the vicinity of clouds ('the twilight zone') is often affected by undetectable weak signature clouds and humidified aerosols. It is suggested here to classify the atmosphere into two classes: cloud fields, and cloud-free (away from a cloud field), while detectable clouds are included in the cloud field class as a subset. Since the definition of cloud fields is ambiguous, a robust cloud field masking algorithm is presented here, based on the cloud spatial distribution. The cloud field boundaries are calculated then on the basis of the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask products and the total cloud field area is estimated for the Atlantic Ocean (50 deg. S-50 deg. N). The findings show that while the monthly averaged cloud fraction over the Atlantic Ocean during July is 53%, the cloud field fraction may reach 97%, suggesting that cloud field properties should be considered in climate studies. A comparison between aerosol optical depth values inside and outside cloud fields reveals differences in the retrieved radiative properties of aerosols depending on their location. The observed mean aerosol optical depth inside the cloud fields is more than 10% higher than outside it, indicating that such convenient cloud field masking may contribute to better estimations of aerosol direct and indirect forcing.

  5. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Letellier, F.; Lardé, R.; Le Breton, J.-M., E-mail: jean-marie.lebreton@univ-rouen.fr [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Lechevallier, L. [Groupe de Physique des Matériaux, UMR 6634 CNRS/Université et INSA de Rouen, F-76801 Saint Etienne du Rouvray (France); Département de GEII, Université de Cergy-Pontoise, F-95031 Cergy-Pontoise (France); Akmaldinov, K. [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France); CROCUS Technology, F-38025 Grenoble (France); Auffret, S.; Dieny, B.; Baltz, V., E-mail: vincent.baltz@cea.fr [SPINTEC, Univ. Grenoble-Alpes/CNRS/INAC-CEA, F-38000 Grenoble (France)

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  6. Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking

    Directory of Open Access Journals (Sweden)

    Alireza Taravat

    2015-02-01

    Full Text Available A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm with 10 hidden nodes. The multiple-layer perceptrons lead to a cloud detection accuracy of 88.96%, when trained to map two predefined values that classify cloud and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery.

  7. Dust clouds in Orion and the interstellar neutral hydrogen distribution

    International Nuclear Information System (INIS)

    Bystrova, N.V.

    1989-01-01

    According to published examples of the far IR observations in the Orion and its surroundings, several well defined dust clouds of different sizes and structure are present. For comparison of these clouds with the neutral hydrogen distribution on the area of approx. 1000 sq degs, the data from Pulkovo Sky Survey in the interstellar neutral Hydrogen Radio Line as well as special observations with the RATAN-600 telescope in 21 cm line were used. From the materials of Pulkovo HI Survey, the data were taken near the line emission at ten velocities between -21.8 and +25.6 km/s LSR for the structural component of the interstellar hydrogen emission. The results given concern mainly the Orion's Great Dust Cloud and the Lambda Orionis region where the information about the situation with the dust and interstellar hydrogen is very essential for interpretation

  8. Comparison of cloud optical depth and cloud mask applying BRDF model-based background surface reflectance

    Science.gov (United States)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.

    2017-12-01

    Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With

  9. Characteristics of old neutron stars in dense interstellar clouds

    International Nuclear Information System (INIS)

    Boehringer, H.; Morfill, G.E.; Zimmermann, H.U.

    1987-01-01

    The forms observable radiation will assume as old neutron stars pass through interstellar clouds and accrete material are examined theoretically. The radiation, mainly X-rays and gamma rays, will be partially absorbed by the surrounding dust and gas, which in turn produces far-IR radiation from warm dust and line radiation from the gas. Adiabatic compression of the accretion flow and the accretion shock are expected to produce cosmic rays, while gamma rays will be emitted by interaction of the energetic particles with the cloud material. The calculations indicate that the stars will then be identified as X-ray sources, some of which may be unidentified sources in the COS-B database. 37 references

  10. Automated cloud classification using a ground based infra-red camera and texture analysis techniques

    Science.gov (United States)

    Rumi, Emal; Kerr, David; Coupland, Jeremy M.; Sandford, Andrew P.; Brettle, Mike J.

    2013-10-01

    Clouds play an important role in influencing the dynamics of local and global weather and climate conditions. Continuous monitoring of clouds is vital for weather forecasting and for air-traffic control. Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus clouds (CB) are associated with thunderstorms, turbulence and atmospheric instability. Human observers periodically report the presence of CB and TCU clouds during operational hours at airports and observatories; however such observations are expensive and time limited. Robust, automatic classification of cloud type using infrared ground-based instrumentation offers the advantage of continuous, real-time (24/7) data capture and the representation of cloud structure in the form of a thermal map, which can greatly help to characterise certain cloud formations. The work presented here utilised a ground based infrared (8-14 μm) imaging device mounted on a pan/tilt unit for capturing high spatial resolution sky images. These images were processed to extract 45 separate textural features using statistical and spatial frequency based analytical techniques. These features were used to train a weighted k-nearest neighbour (KNN) classifier in order to determine cloud type. Ground truth data were obtained by inspection of images captured simultaneously from a visible wavelength colour camera at the same installation, with approximately the same field of view as the infrared device. These images were classified by a trained cloud observer. Results from the KNN classifier gave an encouraging success rate. A Probability of Detection (POD) of up to 90% with a Probability of False Alarm (POFA) as low as 16% was achieved.

  11. The Spitzer survey of interstellar clouds in the gould belt. VI. The Auriga-California molecular cloud observed with IRAC and MIPS

    International Nuclear Information System (INIS)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Harvey, Paul M.; Gutermuth, Robert A.; Huard, Tracy L.; Miller, Jennifer F.; Tothill, Nicholas F. H.; Nutter, David; Bourke, Tyler L.; DiFrancesco, James; Jørgensen, Jes K.; Allen, Lori E.; Chapman, Nicholas L.; Dunham, Michael M.; Merín, Bruno; Terebey, Susan; Peterson, Dawn E.

    2014-01-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μm observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg 2 with IRAC and 10.47 deg 2 with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors, and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHα 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the relative fraction of YSOs in earlier (Class I and F) and later (Class II) classes compared to other clouds. We perform simple SED modeling of the YSOs with disks to compare the mid-IR properties to disks in other clouds and identify 14 classical transition disk candidates. Although the AMC is similar in mass, size, and distance to the OMC, it is forming about 15-20 times fewer stars.

  12. The Spitzer survey of interstellar clouds in the gould belt. VI. The Auriga-California molecular cloud observed with IRAC and MIPS

    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Huard, Tracy L.; Miller, Jennifer F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Tothill, Nicholas F. H. [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Nutter, David [School of Physics and Astronomy, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); DiFrancesco, James [National Research Council Herzberg Astronomy and Astrophysics, Victoria, BC, V9E 2E7 (Canada); Jørgensen, Jes K. [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-DK-2100 Copenhagen Ø. (Denmark); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Chapman, Nicholas L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Merín, Bruno [Herschel Science Centre, ESAC-ESA, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); and others

    2014-05-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μm observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg{sup 2} with IRAC and 10.47 deg{sup 2} with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors, and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHα 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the relative fraction of YSOs in earlier (Class I and F) and later (Class II) classes compared to other clouds. We perform simple SED modeling of the YSOs with disks to compare the mid-IR properties to disks in other clouds and identify 14 classical transition disk candidates. Although the AMC is similar in mass, size, and distance to the OMC, it is forming about 15-20 times fewer stars.

  13. IR-based spot weld NDT in automotive applications

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  14. The Role of Emissivity in the Detection of Arctic Night Clouds

    Directory of Open Access Journals (Sweden)

    Filomena Romano

    2017-04-01

    Full Text Available Detection of clouds over polar areas from satellite radiometric measurements in the visible and IR atmospheric window region is rather difficult because of the high albedo of snow, possible ice covered surfaces, very low humidity, and the usual presence of atmospheric temperature inversion. Cold and highly reflective polar surfaces provide little thermal and visible contrast between clouds and the background surface. Moreover, due to the presence of temperature inversion, clouds are not always identifiable as being colder than the background. In addition, low humidity often causes polar clouds to be optically thin. Finally, polar clouds are usually composed of a mixture of ice and water, which leads to an unclear spectral signature. Single and bi-spectral threshold methods are sometimes inappropriate due to a large variability of surface emissivity and cloud conditions. The objective of this study is to demonstrate the crucial role played by surface emissivity in the detection of polar winter clouds and the potential improvement offered by infrared hyperspectral observations, such as from the Infrared Atmospheric Sounding Interferometer (IASI. In this paper a new approach for cloud detection is proposed and validated exploiting active measurements from satellite sensors, i.e., the CloudSat cloud profiling radar (CPR and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO. For a homogenous IASI field of view (FOVs, the proposed cloud detection scheme tallies with the combined CPR and CALIOP product in classifying 98.11% of the FOVs as cloudy and also classifies 97.54% of the FOVs as clear. The Hansen Kuipers discriminant reaches 0.95.

  15. An approach of point cloud denoising based on improved bilateral filtering

    Science.gov (United States)

    Zheng, Zeling; Jia, Songmin; Zhang, Guoliang; Li, Xiuzhi; Zhang, Xiangyin

    2018-04-01

    An omnidirectional mobile platform is designed for building point cloud based on an improved filtering algorithm which is employed to handle the depth image. First, the mobile platform can move flexibly and the control interface is convenient to control. Then, because the traditional bilateral filtering algorithm is time-consuming and inefficient, a novel method is proposed which called local bilateral filtering (LBF). LBF is applied to process depth image obtained by the Kinect sensor. The results show that the effect of removing noise is improved comparing with the bilateral filtering. In the condition of off-line, the color images and processed images are used to build point clouds. Finally, experimental results demonstrate that our method improves the speed of processing time of depth image and the effect of point cloud which has been built.

  16. What CFOs should know before venturing into the cloud.

    Science.gov (United States)

    Rajendran, Janakan

    2013-05-01

    There are three major trends in the use of cloud-based services for healthcare IT: Cloud computing involves the hosting of health IT applications in a service provider cloud. Cloud storage is a data storage service that can involve, for example, long-term storage and archival of information such as clinical data, medical images, and scanned documents. Data center colocation involves rental of secure space in the cloud from a vendor, an approach that allows a hospital to share power capacity and proven security protocols, reducing costs.

  17. Validating Satellite-Retrieved Cloud Properties for Weather and Climate Applications

    Science.gov (United States)

    Minnis, P.; Bedka, K. M.; Smith, W., Jr.; Yost, C. R.; Bedka, S. T.; Palikonda, R.; Spangenberg, D.; Sun-Mack, S.; Trepte, Q.; Dong, X.; Xi, B.

    2014-12-01

    Cloud properties determined from satellite imager radiances are increasingly used in weather and climate applications, particularly in nowcasting, model assimilation and validation, trend monitoring, and precipitation and radiation analyses. The value of using the satellite-derived cloud parameters is determined by the accuracy of the particular parameter for a given set of conditions, such as viewing and illumination angles, surface background, and cloud type and structure. Because of the great variety of those conditions and of the sensors used to monitor clouds, determining the accuracy or uncertainties in the retrieved cloud parameters is a daunting task. Sensitivity studies of the retrieved parameters to the various inputs for a particular cloud type are helpful for understanding the errors associated with the retrieval algorithm relative to the plane-parallel world assumed in most of the model clouds that serve as the basis for the retrievals. Real world clouds, however, rarely fit the plane-parallel mold and generate radiances that likely produce much greater errors in the retrieved parameter than can be inferred from sensitivity analyses. Thus, independent, empirical methods are used to provide a more reliable uncertainty analysis. At NASA Langley, cloud properties are being retrieved from both geostationary (GEO) and low-earth orbiting (LEO) satellite imagers for climate monitoring and model validation as part of the NASA CERES project since 2000 and from AVHRR data since 1978 as part of the NOAA CDR program. Cloud properties are also being retrieved in near-real time globally from both GEO and LEO satellites for weather model assimilation and nowcasting for hazards such as aircraft icing. This paper discusses the various independent datasets and approaches that are used to assessing the imager-based satellite cloud retrievals. These include, but are not limited to data from ARM sites, CloudSat, and CALIPSO. This paper discusses the use of the various

  18. Automatic reconstruction of 3D urban landscape by computing connected regions and assigning them an average altitude from LiDAR point cloud image

    Science.gov (United States)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2014-10-01

    The demand of 3D city modeling has been increasing in many applications such as urban planing, computer gaming with realistic city environment, car navigation system with showing 3D city map, virtual city tourism inviting future visitors to a virtual city walkthrough and others. We proposed a simple method for reconstructing a 3D urban landscape from airborne LiDAR point cloud data. The automatic reconstruction method of a 3D urban landscape was implemented by the integration of all connected regions, which were extracted and extruded from the altitude mask images. These mask images were generated from the gray scale LiDAR image by the altitude threshold ranges. In this study we demonstrated successfully in the case of Kanazawa city center scene by applying the proposed method to the airborne LiDAR point cloud data.

  19. Effective ASCII-HEX steganography for secure cloud

    International Nuclear Information System (INIS)

    Afghan, S.

    2015-01-01

    There are many reasons of cloud computing popularity some of the most important are; backup and rescue, cost effective, nearly limitless storage, automatic software amalgamation, easy access to information and many more. Pay-as-you-go model is followed to provide everything as a service. Data is secured by using standard security policies available at cloud end. In spite of its many benefits, as mentioned above, cloud computing has also some security issues. Provider as well as customer has to provide and collect data in a secure manner. Both of these issues plus efficient transmitting of data over cloud are very critical issues and needed to be resolved. There is need of security during the travel time of sensitive data over the network that can be processed or stored by the customer. Security to the customer's data at the provider end can be provided by using current security algorithms, which are not known by the customer. There is reliability problem due to existence of multiple boundaries in the cloud resource access. ASCII and HEX security with steganography is used to propose an algorithm that stores the encrypted data/cipher text in an image file which will be then sent to the cloud end. This is done by using CDM (Common Deployment Model). In future, an algorithm should be proposed and implemented for the security of virtual images in the cloud computing. (author)

  20. A deeply embedded young protoplanetary disk around L1489 IRS observed by the Submillimeter Array

    DEFF Research Database (Denmark)

    Brinch, C.; Crapsi, A.; Jørgensen, J. K.

    2007-01-01

    Context. Circumstellar disks are expected to form early in the process that leads to the formation of a young star, during the collapse of the dense molecular cloud core. Currently, it is not well understood at what stage of the collapse the disk is formed or how it subsequently evolves. Aims. We....... This misalignment of the angular momentum axes may be caused by a gradient within the angular momentum in the parental cloud, or if L1489 IRS is a binary system rather than just a single star. In the latter case, future observations looking for variability at sub-arcsecond scales may be able to constrain...

  1. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    DEFF Research Database (Denmark)

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    -power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. In an international collaboration in the EU project MINERVA [minerva...

  2. Laboratory investigation of nitrile ices of Titan's stratospheric clouds

    Science.gov (United States)

    Nna Mvondo, D.; Anderson, C. M.; McLain, J. L.; Samuelson, R. E.

    2017-09-01

    Titan's mid to lower stratosphere contains complex cloud systems of numerous organic ice particles comprised of both hydrocarbon and nitrile compounds. Most of these stratospheric ice clouds form as a result of vapor condensation formation processes. However, there are additional ice emission features such as dicyanoacetylene (C4N2) and the 220 cm-1 ice emission feature (the "Haystack") that are difficult to explain since there are no observed vapor emission features associated with these ices. In our laboratory, using a high-vacuum chamber coupled to a FTIR spectrometer, we are engaged in a dedicated investigation of Titan's stratospheric ices to interpret and constrain Cassini Composite InfraRed Spectrometer (CIRS) far-IR data. We will present laboratory transmittance spectra obtained for propionitrile (CH3CH2CN), cyanogen (C2N2) and hydrogen cyanide (HCN) ices, as well as various combinations of their mixtures, to better understand the cloud chemistry occurring in Titan's stratosphere.

  3. Cloud field classification based on textural features

    Science.gov (United States)

    Sengupta, Sailes Kumar

    1989-01-01

    An essential component in global climate research is accurate cloud cover and type determination. Of the two approaches to texture-based classification (statistical and textural), only the former is effective in the classification of natural scenes such as land, ocean, and atmosphere. In the statistical approach that was adopted, parameters characterizing the stochastic properties of the spatial distribution of grey levels in an image are estimated and then used as features for cloud classification. Two types of textural measures were used. One is based on the distribution of the grey level difference vector (GLDV), and the other on a set of textural features derived from the MaxMin cooccurrence matrix (MMCM). The GLDV method looks at the difference D of grey levels at pixels separated by a horizontal distance d and computes several statistics based on this distribution. These are then used as features in subsequent classification. The MaxMin tectural features on the other hand are based on the MMCM, a matrix whose (I,J)th entry give the relative frequency of occurrences of the grey level pair (I,J) that are consecutive and thresholded local extremes separated by a given pixel distance d. Textural measures are then computed based on this matrix in much the same manner as is done in texture computation using the grey level cooccurrence matrix. The database consists of 37 cloud field scenes from LANDSAT imagery using a near IR visible channel. The classification algorithm used is the well known Stepwise Discriminant Analysis. The overall accuracy was estimated by the percentage or correct classifications in each case. It turns out that both types of classifiers, at their best combination of features, and at any given spatial resolution give approximately the same classification accuracy. A neural network based classifier with a feed forward architecture and a back propagation training algorithm is used to increase the classification accuracy, using these two classes

  4. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    Energy Technology Data Exchange (ETDEWEB)

    Chelu, Raluca G., E-mail: ralucachelu@hotmail.com [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Wanambiro, Kevin W. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, Aga Khan University Hospital, Nairobi (Kenya); Hsiao, Albert [Department of Radiology, University of California, San Diego, CA (United States); Swart, Laurens E. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Voogd, Teun [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Hoven, Allard T. van den; Kranenburg, Matthijs van [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Coenen, Adriaan [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Boccalini, Sara [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, University Hospital, Genoa (Italy); Wielopolski, Piotr A. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vogel, Mika W. [MR Applications and Workflow – Europe, GE Healthcare B.V. Hoevelaken (Netherlands); Krestin, Gabriel P. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vasanawala, Shreyas S. [Department of Radiology, Stanford University, Stanford, CA (United States); Budde, Ricardo P.J. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Roos-Hesselink, Jolien W. [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Nieman, Koen [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands)

    2016-10-15

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  5. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    International Nuclear Information System (INIS)

    Chelu, Raluca G.; Wanambiro, Kevin W.; Hsiao, Albert; Swart, Laurens E.; Voogd, Teun; Hoven, Allard T. van den; Kranenburg, Matthijs van; Coenen, Adriaan; Boccalini, Sara; Wielopolski, Piotr A.; Vogel, Mika W.; Krestin, Gabriel P.; Vasanawala, Shreyas S.; Budde, Ricardo P.J.; Roos-Hesselink, Jolien W.; Nieman, Koen

    2016-01-01

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  6. Overview of CERES Cloud Properties Derived From VIRS AND MODIS DATA

    Science.gov (United States)

    Minis, Patrick; Geier, Erika; Wielicki, Bruce A.; Sun-Mack, Sunny; Chen, Yan; Trepte, Qing Z.; Dong, Xiquan; Doelling, David R.; Ayers, J. Kirk; Khaiyer, Mandana M.

    2006-01-01

    Simultaneous measurement of radiation and cloud fields on a global basis is recognized as a key component in understanding and modeling the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project (Wielicki et al., 1998) began addressing this issue in 1998 with its first broadband shortwave and longwave scanner on the Tropical Rainfall Measuring Mission (TRMM). This was followed by the launch of two CERES scanners each on Terra and Aqua during late 1999 and early 2002, respectively. When combined, these satellites should provide the most comprehensive global characterization of clouds and radiation to date. Unfortunately, the TRMM scanner failed during late 1998. The Terra and Aqua scanners continue to operate, however, providing measurements at a minimum of 4 local times each day. CERES was designed to scan in tandem with high resolution imagers so that the cloud conditions could be evaluated for every CERES measurement. The cloud properties are essential for converting CERES radiances shortwave albedo and longwave fluxes needed to define the radiation budget (ERB). They are also needed to unravel the impact of clouds on the ERB. The 5-channel, 2-km Visible Infrared Scanner (VIRS) on the TRMM and the 36-channel 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua are analyzed to define the cloud properties for each CERES footprint. To minimize inter-satellite differences and aid the development of useful climate-scale measurements, it was necessary to ensure that each satellite imager is calibrated in a fashion consistent with its counterpart on the other CERES satellites (Minnis et al., 2006) and that the algorithms are as similar as possible for all of the imagers. Thus, a set of cloud detection and retrieval algorithms were developed that could be applied to all three imagers utilizing as few channels as possible

  7. Security model for VM in cloud

    Science.gov (United States)

    Kanaparti, Venkataramana; Naveen K., R.; Rajani, S.; Padmvathamma, M.; Anitha, C.

    2013-03-01

    Cloud computing is a new approach emerged to meet ever-increasing demand for computing resources and to reduce operational costs and Capital Expenditure for IT services. As this new way of computation allows data and applications to be stored away from own corporate server, it brings more issues in security such as virtualization security, distributed computing, application security, identity management, access control and authentication. Even though Virtualization forms the basis for cloud computing it poses many threats in securing cloud. As most of Security threats lies at Virtualization layer in cloud we proposed this new Security Model for Virtual Machine in Cloud (SMVC) in which every process is authenticated by Trusted-Agent (TA) in Hypervisor as well as in VM. Our proposed model is designed to with-stand attacks by unauthorized process that pose threat to applications related to Data Mining, OLAP systems, Image processing which requires huge resources in cloud deployed on one or more VM's.

  8. Characterization, propagation, and simulation of sources and backgrounds; Proceedings of the Meeting, Orlando, FL, Apr. 2, 3, 1991

    Science.gov (United States)

    Watkins, Wendell R.; Clement, Dieter

    The present conference discusses the design of IR imaging radiometers, IR clutter measurements of marine backgrounds, a global evaluation of thermal IR countermeasures, the estimation of scene-correlation lengths, the dimension and lacunarity measurement of IR images using Hilbert scanning, modeling the time-dependent obscuration in simulated imaging of dust and smoke clouds, and the thermal and radiometric modeling of terrain backgrounds. Also discussed are the simulation of partially obscured scenes using the 'radiosity' method, dynamic sea-image generation, atmospheric propagation effects on pattern recognition by neural networks, a thermal model for real-time textured IR background simulation, and interferometric measurements of a high velocity mixing/shear layer. (No individual items are abstracted in this volume)

  9. Synergetic cloud fraction determination for SCIAMACHY using MERIS

    Directory of Open Access Journals (Sweden)

    C. Schlundt

    2011-02-01

    Full Text Available Since clouds play an essential role in the Earth's climate system, it is important to understand the cloud characteristics as well as their distribution on a global scale using satellite observations. The main scientific objective of SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY onboard the ENVISAT satellite is the retrieval of vertical columns of trace gases.

    On the one hand, SCIAMACHY has to be sensitive to low variations in trace gas concentrations which means the ground pixel size has to be large enough. On the other hand, such a large pixel size leads to the problem that SCIAMACHY spectra are often contaminated by clouds. SCIAMACHY spectral measurements are not well suitable to derive a reliable sub-pixel cloud fraction that can be used as input parameter for subsequent retrievals of cloud properties or vertical trace gas columns. Therefore, we use MERIS/ENVISAT spectral measurements with its high spatial resolution as sub-pixel information for the determination of MerIs Cloud fRation fOr Sciamachy (MICROS. Since MERIS covers an even broader swath width than SCIAMACHY, no problems in spatial and temporal collocation of measurements occur. This enables the derivation of a SCIAMACHY cloud fraction with an accuracy much higher as compared with other current cloud fractions that are based on SCIAMACHY's PMD (Polarization Measurement Device data.

    We present our new developed MICROS algorithm, based on the threshold approach, as well as a qualitative validation of our results with MERIS satellite images for different locations, especially with respect to bright surfaces such as snow/ice and sands. In addition, the SCIAMACHY cloud fractions derived from MICROS are intercompared with other current SCIAMACHY cloud fractions based on different approaches demonstrating a considerable improvement regarding geometric cloud fraction determination using the MICROS algorithm.

  10. The role of ensemble-based statistics in variational assimilation of cloud-affected observations from infrared imagers

    Science.gov (United States)

    Hacker, Joshua; Vandenberghe, Francois; Jung, Byoung-Jo; Snyder, Chris

    2017-04-01

    Effective assimilation of cloud-affected radiance observations from space-borne imagers, with the aim of improving cloud analysis and forecasting, has proven to be difficult. Large observation biases, nonlinear observation operators, and non-Gaussian innovation statistics present many challenges. Ensemble-variational data assimilation (EnVar) systems offer the benefits of flow-dependent background error statistics from an ensemble, and the ability of variational minimization to handle nonlinearity. The specific benefits of ensemble statistics, relative to static background errors more commonly used in variational systems, have not been quantified for the problem of assimilating cloudy radiances. A simple experiment framework is constructed with a regional NWP model and operational variational data assimilation system, to provide the basis understanding the importance of ensemble statistics in cloudy radiance assimilation. Restricting the observations to those corresponding to clouds in the background forecast leads to innovations that are more Gaussian. The number of large innovations is reduced compared to the more general case of all observations, but not eliminated. The Huber norm is investigated to handle the fat tails of the distributions, and allow more observations to be assimilated without the need for strict background checks that eliminate them. Comparing assimilation using only ensemble background error statistics with assimilation using only static background error statistics elucidates the importance of the ensemble statistics. Although the cost functions in both experiments converge to similar values after sufficient outer-loop iterations, the resulting cloud water, ice, and snow content are greater in the ensemble-based analysis. The subsequent forecasts from the ensemble-based analysis also retain more condensed water species, indicating that the local environment is more supportive of clouds. In this presentation we provide details that explain the

  11. Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images

    Science.gov (United States)

    Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.

    2012-01-01

    This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  12. Astronomy in the Cloud: Using MapReduce for Image Co-Addition

    Science.gov (United States)

    Wiley, K.; Connolly, A.; Gardner, J.; Krughoff, S.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-03-01

    In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. The study of these sources will involve computation challenges such as anomaly detection and classification and moving-object tracking. Since such studies benefit from the highest-quality data, methods such as image co-addition, i.e., astrometric registration followed by per-pixel summation, will be a critical preprocessing step prior to scientific investigation. With a requirement that these images be analyzed on a nightly basis to identify moving sources such as potentially hazardous asteroids or transient objects such as supernovae, these data streams present many computational challenges. Given the quantity of data involved, the computational load of these problems can only be addressed by distributing the workload over a large number of nodes. However, the high data throughput demanded by these applications may present scalability challenges for certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce, and in this article we focus on its popular open-source implementation called Hadoop. In the Hadoop framework, the data are partitioned among storage attached directly to worker nodes, and the processing workload is scheduled in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us to exploit cloud computing resources: i.e., platforms where Hadoop is offered as a service. We report on our experience of implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This multiterabyte imaging data set provides a good testbed for algorithm development, since its scope and structure approximate future surveys. First, we describe MapReduce and how we adapted image co-addition to the MapReduce framework. Then we describe a number of optimizations to our basic approach

  13. Providing Availability, Performance, and Scalability By Using Cloud Database

    OpenAIRE

    Prof. Dr. Alaa Hussein Al-Hamami; RafalAdeeb Al-Khashab

    2014-01-01

    With the development of the internet, new technical and concepts have attention to all users of the internet especially in the development of information technology, such as concept is cloud. Cloud computing includes different components, of which cloud database has become an important one. A cloud database is a distributed database that delivers computing as a service or in form of virtual machine image instead of a product via the internet; its advantage is that database can...

  14. A Cloud Top Pressure Algorithm for DSCOVR-EPIC

    Science.gov (United States)

    Min, Q.; Morgan, E. C.; Yang, Y.; Marshak, A.; Davis, A. B.

    2017-12-01

    The Earth Polychromatic Imaging Camera (EPIC) sensor on the Deep Space Climate Observatory (DSCOVR) satellite presents unique opportunities to derive cloud properties of the entire daytime Earth. In particular, the Oxygen A- and B-band and corresponding reference channels provide cloud top pressure information. In order to address the in-cloud penetration depth issue—and ensuing retrieval bias—a comprehensive sensitivity study has been conducted to simulate satellite-observed radiances for a wide variety of cloud structures and optical properties. Based on this sensitivity study, a cloud top pressure algorithm for DSCOVR-EPIC has been developed. Further, the algorithm has been applied to EPIC measurements.

  15. An efficient cloud detection method for high resolution remote sensing panchromatic imagery

    Science.gov (United States)

    Li, Chaowei; Lin, Zaiping; Deng, Xinpu

    2018-04-01

    In order to increase the accuracy of cloud detection for remote sensing satellite imagery, we propose an efficient cloud detection method for remote sensing satellite panchromatic images. This method includes three main steps. First, an adaptive intensity threshold value combined with a median filter is adopted to extract the coarse cloud regions. Second, a guided filtering process is conducted to strengthen the textural features difference and then we conduct the detection process of texture via gray-level co-occurrence matrix based on the acquired texture detail image. Finally, the candidate cloud regions are extracted by the intersection of two coarse cloud regions above and we further adopt an adaptive morphological dilation to refine them for thin clouds in boundaries. The experimental results demonstrate the effectiveness of the proposed method.

  16. Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai

    OpenAIRE

    Mockevičius, Arminas

    2014-01-01

    Viešosios teisės magistro studijų programos studento Armino Mockevičiaus buvo parašytas magistro baigiamasis darbas „Alkoholio ir tabako pasiūlos ir paklausos teisinio reguliavimo raida Lietuvos Respublikoje: problemos ir sprendimai“. Šis darbas parašytas Vilniuje, 2014 metais, Mykolo Romerio universiteto Teisės fakulteto Konstitucinės ir administracinės teisės institute, vadovaujant dr. Gintautui Vilkeliui, apimtis 98 p. Darbo tikslas yra atskleisti alkoholio ir tabako pasiūlos ir paklau...

  17. La Freccia Rossa: An IR-dark cloud hosting the Milky Way intermediate-mass black hole candidate

    Science.gov (United States)

    Ravi, Vikram; Vedantham, Harish; Phinney, E. Sterl

    2018-05-01

    The dynamics of the high-velocity compact molecular cloud CO-0.40-0.22 have been interpreted as evidence for a ˜105M⊙ black hole within 60 pc of Sgr A*. Recently, Oka et al. have identified a compact millimetre-continuum source, CO-0.40-0.22*, with this candidate black hole. Here we present a collation of radio and infrared data at this location. ATCA constraints on the radio spectrum, and the detection of a mid-infrared counterpart, are in tension with an Sgr A*-like model for CO-0.40-0.22* despite the comparable bolometric to Eddington luminosity ratios under the IMBH interpretation. A protostellar-disk scenario is, however, tenable. CO-0.40-0.22(*) is positionally coincident with an arrowhead-shaped infrared-dark cloud (which we call the Freccia Rossa). If the VLSR ≈ 70 km s-1 systemic velocity of CO-0.40-0.22 is common to the entire Freccia Rossa system, we hypothesise that it is the remnant of a high-velocity cloud that has plunged into the Milky Way from the Galactic halo.

  18. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  19. Improving Forecast Skill by Assimilation of AIRS Cloud Cleared Radiances RiCC

    Science.gov (United States)

    Susskind, Joel; Rosenberg, Robert I.; Iredell, Lena

    2015-01-01

    ECMWF, NCEP, and GMAO routinely assimilate radiosonde and other in-situ observations along with satellite IR and MW Sounder radiance observations. NCEP and GMAO use the NCEP GSI Data Assimilation System (DAS).GSI DAS assimilates AIRS, CrIS, IASI channel radiances Ri on a channel-by-channel, case-by-case basis, only for those channels i thought to be unaffected by cloud cover. This test excludes Ri for most tropospheric sounding channels under partial cloud cover conditions. AIRS Version-6 RiCC is a derived quantity representative of what AIRS channel i would have seen if the AIRS FOR were cloud free. All values of RiCC have case-by-case error estimates RiCC associated with them. Our experiments present to the GSI QCd values of AIRS RiCC in place of AIRS Ri observations. GSI DAS assimilates only those values of RiCC it thinks are cloud free. This potentially allows for better coverage of assimilated QCd values of RiCC as compared to Ri.

  20. Research on cloud background infrared radiation simulation based on fractal and statistical data

    Science.gov (United States)

    Liu, Xingrun; Xu, Qingshan; Li, Xia; Wu, Kaifeng; Dong, Yanbing

    2018-02-01

    Cloud is an important natural phenomenon, and its radiation causes serious interference to infrared detector. Based on fractal and statistical data, a method is proposed to realize cloud background simulation, and cloud infrared radiation data field is assigned using satellite radiation data of cloud. A cloud infrared radiation simulation model is established using matlab, and it can generate cloud background infrared images for different cloud types (low cloud, middle cloud, and high cloud) in different months, bands and sensor zenith angles.

  1. Research on simulated infrared image utility evaluation using deep representation

    Science.gov (United States)

    Zhang, Ruiheng; Mu, Chengpo; Yang, Yu; Xu, Lixin

    2018-01-01

    Infrared (IR) image simulation is an important data source for various target recognition systems. However, whether simulated IR images could be used as training data for classifiers depends on the features of fidelity and authenticity of simulated IR images. For evaluation of IR image features, a deep-representation-based algorithm is proposed. Being different from conventional methods, which usually adopt a priori knowledge or manually designed feature, the proposed method can extract essential features and quantitatively evaluate the utility of simulated IR images. First, for data preparation, we employ our IR image simulation system to generate large amounts of IR images. Then, we present the evaluation model of simulated IR image, for which an end-to-end IR feature extraction and target detection model based on deep convolutional neural network is designed. At last, the experiments illustrate that our proposed method outperforms other verification algorithms in evaluating simulated IR images. Cross-validation, variable proportion mixed data validation, and simulation process contrast experiments are carried out to evaluate the utility and objectivity of the images generated by our simulation system. The optimum mixing ratio between simulated and real data is 0.2≤γ≤0.3, which is an effective data augmentation method for real IR images.

  2. mPano: cloud-based mobile panorama view from single picture

    Science.gov (United States)

    Li, Hongzhi; Zhu, Wenwu

    2013-09-01

    Panorama view provides people an informative and natural user experience to represent the whole scene. The advances on mobile augmented reality, mobile-cloud computing, and mobile internet can enable panorama view on mobile phone with new functionalities, such as anytime anywhere query where a landmark picture is and what the whole scene looks like. To generate and explore panorama view on mobile devices faces significant challenges due to the limitations of computing capacity, battery life, and memory size of mobile phones, as well as the bandwidth of mobile Internet connection. To address the challenges, this paper presents a novel cloud-based mobile panorama view system that can generate and view panorama-view on mobile devices from a single picture, namely "Pano". In our system, first, we propose a novel iterative multi-modal image retrieval (IMIR) approach to get spatially adjacent images using both tag and content information from the single picture. Second, we propose a cloud-based parallel server synthing approach to generate panorama view in cloud, against today's local-client synthing approach that is almost impossible for mobile phones. Third, we propose predictive-cache solution to reduce latency of image delivery from cloud server to the mobile client. We have built a real mobile panorama view system and perform experiments. The experimental results demonstrated the effectiveness of our system and the proposed key component technologies, especially for landmark images.

  3. NAMMA TWO-DIMENSIONAL STEREO PROBE AND CLOUD PARTICLE IMAGER V1

    Data.gov (United States)

    National Aeronautics and Space Administration — This Cloud Microphysics dataset consists of data from two probes used to measure the size, shape, and concentration of cloud particles; the two-dimensional stereo...

  4. LENS MODELS OF HERSCHEL-SELECTED GALAXIES FROM HIGH-RESOLUTION NEAR-IR OBSERVATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Calanog, J. A.; Cooray, A.; Ma, B.; Casey, C. M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Wardlow, J. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Amber, S. [Department of Physical Sciences, The Open University, Milton Keynes MK7 6AA (United Kingdom); Baker, A. J. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Baes, M. [1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent (Belgium); Bock, J. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Bourne, N.; Dye, S. [School of Physics and Astronomy, University of Nottingham, NG7 2RD (United Kingdom); Bussmann, R. S. [Department of Astronomy, Space Science Building, Cornell University, Ithaca, NY 14853-6801 (United States); Chapman, S. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Clements, D. L. [Astrophysics Group, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Conley, A. [Center for Astrophysics and Space Astronomy 389-UCB, University of Colorado, Boulder, CO 80309 (United States); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Eales, S. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); and others

    2014-12-20

    We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 μm bright candidate lensing systems identified by the Herschel Multi-tiered Extragalactic Survey and Herschel Astrophysical Terahertz Large Area Survey. Out of 87 candidates with near-IR imaging, 15 (∼17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and previous lensing models for submillimeter galaxies (SMGs). For four new sources that also have high-resolution submillimeter maps, we test for differential lensing between the stellar and dust components and find that the 880 μm magnification factor (μ{sub 880}) is ∼1.5 times higher than the near-IR magnification factor (μ{sub NIR}), on average. We also find that the stellar emission is ∼2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.

  5. Laser-cooling effects in few-ion clouds of Yb[sup +

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, C.S. (National Physical Lab., Teddington (United Kingdom)); Gill, P. (National Physical Lab., Teddington (United Kingdom)); Klein, H.A. (National Physical Lab., Teddington (United Kingdom)); Levick, A.P. (National Physical Lab., Teddington (United Kingdom)); Rowley, W.R.C. (National Physical Lab., Teddington (United Kingdom))

    1994-08-01

    We report some laser-cooling effects in a few [sup 172]Yb[sup +] ions held in a Paul trap. Pronounced cloud-to-crystal phase transitions have been observed as discontinuities in the Yb[sup +] fluorescence spectrum of the 369 nm cooling transition. The first reported two-dimensional images of Yb[sup +] clouds with evidence of crystal structure have been recorded using a photon-counting position-sensitive detector. An ion temperature of 100 mK has been estimated from the size of a single ion image. Stepwise cooling of a re-heated, few-ion Yb[sup +] cloud was also observed. (orig.)

  6. The embedded young stars in the Taurus-Auriga molecular cloud. II - Models for scattered light images

    Science.gov (United States)

    Kenyon, Scott J.; Whitney, Barbara A.; Gomez, Mercedes; Hartmann, Lee

    1993-01-01

    We describe NIR imaging observations of embedded young stars in the Taurus-Auriga molecular cloud. We find a large range in J-K and H-K colors for these class I sources. The bluest objects have colors similar to the reddest T Tauri stars in the cloud; redder objects lie slightly above the reddening line for standard ISM dust and have apparent K extinctions of up to 5 mag. Most of these sources also show extended NIR emission on scales of 10-20 arcsec which corresponds to linear sizes of 1500-3000 AU. The NIR colors and nebular morphologies for this sample and the magnitude of linear polarization in several sources suggest scattered light produces most of the NIR emission in these objects. We present modeling results that suggest mass infall rates that agree with predictions for cold clouds and are generally consistent with rates estimated from radiative equilibrium models. For reasonable dust grain parameters, the range of colors and extinctions require flattened density distributions with polar cavities evacuated by bipolar outflows. These results support the idea that infall and outflow occur simultaneously in deeply embedded bipolar outflow sources. The data also indicate fairly large centrifugal radii and large inclinations to the rotational axis for a typical source.

  7. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    Science.gov (United States)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  8. Improving the Accuracy of Cloud Detection Using Machine Learning

    Science.gov (United States)

    Craddock, M. E.; Alliss, R. J.; Mason, M.

    2017-12-01

    Cloud detection from geostationary satellite imagery has long been accomplished through multi-spectral channel differencing in comparison to the Earth's surface. The distinction of clear/cloud is then determined by comparing these differences to empirical thresholds. Using this methodology, the probability of detecting clouds exceeds 90% but performance varies seasonally, regionally and temporally. The Cloud Mask Generator (CMG) database developed under this effort, consists of 20 years of 4 km, 15minute clear/cloud images based on GOES data over CONUS and Hawaii. The algorithms to determine cloudy pixels in the imagery are based on well-known multi-spectral techniques and defined thresholds. These thresholds were produced by manually studying thousands of images and thousands of man-hours to determine the success and failure of the algorithms to fine tune the thresholds. This study aims to investigate the potential of improving cloud detection by using Random Forest (RF) ensemble classification. RF is the ideal methodology to employ for cloud detection as it runs efficiently on large datasets, is robust to outliers and noise and is able to deal with highly correlated predictors, such as multi-spectral satellite imagery. The RF code was developed using Python in about 4 weeks. The region of focus selected was Hawaii and includes the use of visible and infrared imagery, topography and multi-spectral image products as predictors. The development of the cloud detection technique is realized in three steps. First, tuning of the RF models is completed to identify the optimal values of the number of trees and number of predictors to employ for both day and night scenes. Second, the RF models are trained using the optimal number of trees and a select number of random predictors identified during the tuning phase. Lastly, the model is used to predict clouds for an independent time period than used during training and compared to truth, the CMG cloud mask. Initial results

  9. A scalable and multi-purpose point cloud server (PCS) for easier and faster point cloud data management and processing

    Science.gov (United States)

    Cura, Rémi; Perret, Julien; Paparoditis, Nicolas

    2017-05-01

    In addition to more traditional geographical data such as images (rasters) and vectors, point cloud data are becoming increasingly available. Such data are appreciated for their precision and true three-Dimensional (3D) nature. However, managing point clouds can be difficult due to scaling problems and specificities of this data type. Several methods exist but are usually fairly specialised and solve only one aspect of the management problem. In this work, we propose a comprehensive and efficient point cloud management system based on a database server that works on groups of points (patches) rather than individual points. This system is specifically designed to cover the basic needs of point cloud users: fast loading, compressed storage, powerful patch and point filtering, easy data access and exporting, and integrated processing. Moreover, the proposed system fully integrates metadata (like sensor position) and can conjointly use point clouds with other geospatial data, such as images, vectors, topology and other point clouds. Point cloud (parallel) processing can be done in-base with fast prototyping capabilities. Lastly, the system is built on open source technologies; therefore it can be easily extended and customised. We test the proposed system with several billion points obtained from Lidar (aerial and terrestrial) and stereo-vision. We demonstrate loading speeds in the ˜50 million pts/h per process range, transparent-for-user and greater than 2 to 4:1 compression ratio, patch filtering in the 0.1 to 1 s range, and output in the 0.1 million pts/s per process range, along with classical processing methods, such as object detection.

  10. Growth and phase transformations of Ir on Ge(111)

    Science.gov (United States)

    Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.

    2017-12-01

    The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.

  11. Industrial radiography with Ir-192 using computed radiographic technique

    International Nuclear Information System (INIS)

    Ngernvijit, Narippawaj; Punnachaiya, Suvit; Chankow, Nares; Sukbumperng, Ampai; Thong-Aram, Decho

    2003-01-01

    The aim of this research is to study the utilization of a low activity Ir-192 gamma source for industrial radiographic testing using the Computed Radiography (CR) system. Due to a photo-salbutamol Imaging Plate (I P) using in CR is much more radiation sensitive than a type II film with lead foil intensifying screen, the exposure time with CR can be significantly reduced. For short-lived gamma-ray source like Ir-192 source, the exposure time must be proportionally increased until it is not practical particularly for thick specimens. Generally, when the source decays to an activity of about 5 Ci or less, it will be returned to the manufacturer as a radioactive waste. In this research, the optimum conditions for radiography of a 20 mm thick welded steel sample with 2.4 Ci Ir-192 was investigated using the CR system with high resolution image plate, i.e. type Bas-SR of the Fuji Film Co. Ltd. The I P was sandwiched by a pair of 0.25 mm thick Pb intensifying sere en. Low energy scattered radiations was filtered by placing another Pb sheet with a thickness of 3 mm under the cassette. It was found that the CR image could give a contrast sensitivity of 2.5 % using only 3-minute exposure time which was comparable to the image taken by the type II film with Pb intensifying screen using the exposure time of 45 minutes

  12. Iterative model reconstruction: Improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Seitaro, E-mail: seisei0430@nifty.com [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjyo, Chuo-ku, Kumamoto, 860-8556 (Japan); Weissman, Gaby, E-mail: Gaby.Weissman@medstar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States); Vembar, Mani, E-mail: mani.vembar@philips.com [CT Clinical Science, Philips Healthcare, c595 Miner Road, Cleveland, OH 44143 (United States); Weigold, Wm. Guy, E-mail: Guy.Weigold@MedStar.net [Department of Cardiology, MedStar Washington Hospital Center, 110 Irving Street, NW, Washington, DC 20010 (United States)

    2014-08-15

    Objectives: To investigate the effects of a new model-based type of iterative reconstruction (M-IR) technique, the iterative model reconstruction, on image quality of prospectively gated coronary CT angiography (CTA) acquired at low-tube-voltage. Methods: Thirty patients (16 men, 14 women; mean age 52.2 ± 13.2 years) underwent coronary CTA at 100-kVp on a 256-slice CT. Paired image sets were created using 3 types of reconstruction, i.e. filtered back projection (FBP), a hybrid type of iterative reconstruction (H-IR), and M-IR. Quantitative parameters including CT-attenuation, image noise, and contrast-to-noise ratio (CNR) were measured. The visual image quality, i.e. graininess, beam-hardening, vessel sharpness, and overall image quality, was scored on a 5-point scale. Lastly, coronary artery segments were evaluated using a 4-point scale to investigate the assessability of each segment. Results: There was no significant difference in coronary arterial CT attenuation among the 3 reconstruction methods. The mean image noise of FBP, H-IR, and M-IR images was 29.3 ± 9.6, 19.3 ± 6.9, and 12.9 ± 3.3 HU, respectively, there were significant differences for all comparison combinations among the 3 methods (p < 0.01). The CNR of M-IR was significantly better than of FBP and H-IR images (13.5 ± 5.0 [FBP], 20.9 ± 8.9 [H-IR] and 39.3 ± 13.9 [M-IR]; p < 0.01). The visual scores were significantly higher for M-IR than the other images (p < 0.01), and 95.3% of the coronary segments imaged with M-IR were of assessable quality compared with 76.7% of FBP- and 86.9% of H-IR images. Conclusions: M-IR can provide significantly improved qualitative and quantitative image quality in prospectively gated coronary CTA using a low-tube-voltage.

  13. Quantification of plaque area and characterization of plaque biochemical composition with atherosclerosis progression in ApoE/LDLR(-/-) mice by FT-IR imaging.

    Science.gov (United States)

    Wrobel, Tomasz P; Mateuszuk, Lukasz; Kostogrys, Renata B; Chlopicki, Stefan; Baranska, Malgorzata

    2013-11-07

    In this work the quantitative determination of atherosclerotic lesion area (ApoE/LDLR(-/-) mice) by FT-IR imaging is presented and validated by comparison with atherosclerotic lesion area determination by classic Oil Red O staining. Cluster analysis of FT-IR-based measurements in the 2800-3025 cm(-1) range allowed for quantitative analysis of the atherosclerosis plaque area, the results of which were highly correlated with those of Oil Red O histological staining (R(2) = 0.935). Moreover, a specific class obtained from a second cluster analysis of the aortic cross-section samples at different stages of disease progression (3, 4 and 6 months old) seemed to represent the macrophages (CD68) area within the atherosclerotic plaque.

  14. Comparison of CERES Cloud Properties Derived from Aqua and Terra MODIS Data and TRMM VIRS Radiances

    Science.gov (United States)

    Minnis, P.; Young, D. F.; Sun-Mack, S.; Trepte, Q. Z.; Chen, Y.; Heck, P. W.; Wielicki, B. A.

    2003-12-01

    The Clouds and Earth's Radiant Energy System (CERES) Project is obtaining Earth radiation budget measurements of unprecedented accuracy as a result of improved instruments and an analysis system that combines simultaneous, high-resolution cloud property retrievals with the broadband radiance data. The cloud properties are derived from three different satellite imagers: the Visible Infrared Scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) and the Moderate Resolution Imaging Spectroradiometers (MODIS) on the Aqua and Terra satellites. A single set of consistent algorithms using the 0.65, 1.6 or 2.1, 3.7, 10.8, and 12.0-æm channels are applied to all three imagers. The cloud properties include, cloud coverage, height, thickness, temperature, optical depth, phase, effective particle size, and liquid or ice water path. Because each satellite is in a different orbit, the results provide information on the diurnal cycle of cloud properties. Initial intercalibrations show excellent consistency between the three images except for some differences of ~ 1K between the 3.7-æm channel on Terra and those on VIRS and Aqua. The derived cloud properties are consistent with the known diurnal characteristics of clouds in different areas. These datasets should be valuable for exploring the role of clouds in the radiation budget and hydrological cycle.

  15. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as

  16. SPITZER'S MID-INFRARED VIEW ON AN OUTER-GALAXY INFRARED DARK CLOUD CANDIDATE TOWARD NGC 7538

    NARCIS (Netherlands)

    Frieswijk, W. F.; Spaans, M.; Shipman, R. F.; Teyssier, D.; Carey, S. J.; Tielens, A. G. G. M.

    2008-01-01

    Infrared dark clouds (IRDCs) represent the earliest observed stages of clustered star formation, characterized by large column densities of cold and dense molecular material observed in silhouette against a bright background of mid-IR emission. Up to now, IRDCs were predominantly known toward the

  17. Development of pixellated Ir-TESs

    International Nuclear Information System (INIS)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Dayanthi, Rathnayaka M.T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-01-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μmx45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES

  18. Diurnal Variation of Tropical Ice Cloud Microphysics inferred from Global Precipitation Measurement Microwave Imager (GPM-GMI)'s Polarimetric Measurement

    Science.gov (United States)

    Gong, J.; Zeng, X.; Wu, D. L.; Li, X.

    2017-12-01

    Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the

  19. Macrophysical properties of continental cumulus clouds from active and passive remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Kassianov, Evgueni I.; Riley, Erin A.; Kleiss, Jessica; Long, Charles N.; Riihimaki, Laura D.; Flynn, Donna M.; Flynn, Connor J M.; Berg, Larry K.

    2017-10-06

    Cloud amount is an essential and extensively used macrophysical parameter of cumulus clouds. It is commonly defined as a cloud fraction (CF) from zenith-pointing ground-based active and passive remote sensing. However, conventional retrievals of CF from the remote sensing data with very narrow field-of-view (FOV) may not be representative of the surrounding area. Here we assess its representativeness using an integrated dataset collected at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site in Oklahoma, USA. For our assessment with focus on selected days with single-layer cumulus clouds (2005-2016), we include the narrow-FOV ARM Active Remotely Sensed Clouds Locations (ARSCL) and large-FOV Total Sky Imager (TSI) cloud products, the 915-MHz Radar Wind Profiler (RWP) measurements of wind speed and direction, and also high-resolution satellite images from Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS). We demonstrate that a root-mean-square difference (RMSD) between the 15-min averaged ARSCL cloud fraction (CF) and the 15-min averaged TSI fractional sky cover (FSC) is large (up to 0.3). We also discuss how the horizontal distribution of clouds can modify the obtained large RMSD using a new uniformity metric. The latter utilizes the spatial distribution of the FSC over the 100° FOV TSI images obtained with high temporal resolution (30 sec sampling). We demonstrate that cases with more uniform spatial distribution of FSC show better agreement between the narrow-FOV CF and large-FOV FSC, reducing the RMSD by up to a factor of 2.

  20. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    Science.gov (United States)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  1. A PACS archive architecture supported on cloud services.

    Science.gov (United States)

    Silva, Luís A Bastião; Costa, Carlos; Oliveira, José Luis

    2012-05-01

    Diagnostic imaging procedures have continuously increased over the last decade and this trend may continue in coming years, creating a great impact on storage and retrieval capabilities of current PACS. Moreover, many smaller centers do not have financial resources or requirements that justify the acquisition of a traditional infrastructure. Alternative solutions, such as cloud computing, may help address this emerging need. A tremendous amount of ubiquitous computational power, such as that provided by Google and Amazon, are used every day as a normal commodity. Taking advantage of this new paradigm, an architecture for a Cloud-based PACS archive that provides data privacy, integrity, and availability is proposed. The solution is independent from the cloud provider and the core modules were successfully instantiated in examples of two cloud computing providers. Operational metrics for several medical imaging modalities were tabulated and compared for Google Storage, Amazon S3, and LAN PACS. A PACS-as-a-Service archive that provides storage of medical studies using the Cloud was developed. The results show that the solution is robust and that it is possible to store, query, and retrieve all desired studies in a similar way as in a local PACS approach. Cloud computing is an emerging solution that promises high scalability of infrastructures, software, and applications, according to a "pay-as-you-go" business model. The presented architecture uses the cloud to setup medical data repositories and can have a significant impact on healthcare institutions by reducing IT infrastructures.

  2. Cloud Properties of CERES-MODIS Edition 4 and CERES-VIIRS Edition 1

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chang, Fu-Lung; Hong, Gang; Arduini, Robert; Chen, Yan; Trepte, Qing; Yost, Chris; Smith, Rita; Brown, Ricky; hide

    2015-01-01

    The Clouds and Earth's Radiant Energy System (CERES) analyzes MODerate-resolution Imaging Spectroradiometer (MODIS) data and Visible Infrared Imaging Radiometer Suite (VIIRS) to derive cloud properties that are combine with aerosol and CERES broadband flux data to create a multi-parameter data set for climate study. CERES has produced over 15 years of data from Terra and over 13 years of data from Aqua using the CERES-MODIS Edition-2 cloud retrieval algorithm. A recently revised algorithm, CERESMODIS Edition 4, has been developed and is now generating enhanced cloud data for climate research (over 10 years for Terra and 8 years for Aqua). New multispectral retrievals of properties are included along with a multilayer cloud retrieval system. Cloud microphysical properties are reported at 3 wavelengths, 0.65, 1.24, and 2.1 microns to enable better estimates of the vertical profiles of cloud water contents. Cloud properties over snow are retrieved using the 1.24-micron channel. A new CERES-VIIRS cloud retrieval package was developed for the VIIRS spectral complement and is currently producing the CERES-VIIRS Edition 1 cloud dataset. The results from CERES-MODIS Edition 4 and CERES-VIIRS Edition 1 are presented and compared with each other and other datasets, including CALIPSO, CloudSat and the CERES-MODIS Edition-2 results.

  3. Identification of urushi coated films taken from ancient Buddha images by using PIXE, FT-IR, and organic elemental analysis

    International Nuclear Information System (INIS)

    Kagemori, N.; Umemura, K.; Yoshimura, T.; Inoue, M.; Kawai, S.; Yano, K.; Sera, K.; Futatsugawa, S.; Nakamura, Y.

    1999-01-01

    Six types of samples including urushi, urushi tree and black coating films taken from ancient Buddha images were examined by analyses of PIXE, organic element and FT-IR to identify with urushi or another material. Based on the results of three analytical experiments above mentioned, the coating materials aging over hundreds of years were identified with weathered urushi films mixed with other material. Further investigation may reveal the urushi coating techniques used in the past. (author)

  4. Multi-imaging adaptive concept for IR and submillimeter space telescopes

    Science.gov (United States)

    Vasilyev, Victor P.

    1995-06-01

    Nontraditional IR and submillimeter spaceborne telescope concept basing on blind-type parabolic multi-ring mirror is proposed and discussed. Preliminary results for optimization of mirror parameters by means of computer simulation are presented.

  5. A Multi-Year Data Set of Cloud Properties Derived for CERES from Aqua, Terra, and TRMM

    Science.gov (United States)

    Minnis, Patrick; Sunny Sun-Mack; Trepte, Quinz Z.; Yan Chen; Brown, Richard R.; Gibson, Sharon C.; Heck, Michael L.; Dong, Xiquan; Xi, Baike

    2007-01-01

    The Clouds and Earth's Radiant Energy System (CERES) Project is producing a suite of cloud properties from high-resolution imagers on several satellites and matching them precisely with broadband radiance data to study the influence of clouds and radiation on climate. The cloud properties generally compare well with independent validation sources. Distinct differences are found between the CERES cloud properties and those derived with other algorithms from the same imager data. CERES products will be updated beginning in late 2006.

  6. IR technology for enhanced force protection by AIM

    Science.gov (United States)

    Breiter, R.; Ihle, T.; Rode, W.; Wendler, J.; Rühlich, I.; Haiml, M.; Ziegler, J.

    2008-04-01

    In all recent missions our forces are faced with various types of asymmetric threads like snipers, IEDs, RPGs or MANPADS. 2 nd and 3 rd Gen IR technology is a backbone of modern force protection by providing situational awareness and accurate target engagement at day/night. 3 rd Gen sensors are developed for thread warning capabilities by use of spectral or spatial information. The progress on a dual-color IR module is discussed in a separate paper [1]. A 1024x256 SWIR array with flexure bearing compressor and pulse tube cold finger provides > 50,000h lifetime for space or airborne hyperspectral imaging in pushbroom geometry with 256 spectral channels for improved change detection and remote sensing of IEDs or chemical agents. Similar concepts are pursued in the LWIR with either spectroscopic imaging or a system of LWIR FPA combined with a cooled tunable Laser to do spectroscopy with stimulated absorption of specific wavelengths. AIM introduced the RangIR sight to match the requirements of sniper teams, AGLs and weapon stations, extending the outstanding optronic performance of the fielded HuntIR with position data of a target by a laser range finder (LRF), a 3 axis digital magnetic compass (DMC) and a ballistic computer for accurate engagement of remote targets. A version with flexure bearing cooler with >30,000h life time is being developed for continuous operation in e.g. gunfire detection systems. This paper gives an overview of AIM's technologies for enhanced force protection.

  7. Displacement fields from point cloud data: Application of particle imaging velocimetry to landslide geodesy

    Science.gov (United States)

    Aryal, Arjun; Brooks, Benjamin A.; Reid, Mark E.; Bawden, Gerald W.; Pawlak, Geno

    2012-01-01

    Acquiring spatially continuous ground-surface displacement fields from Terrestrial Laser Scanners (TLS) will allow better understanding of the physical processes governing landslide motion at detailed spatial and temporal scales. Problems arise, however, when estimating continuous displacement fields from TLS point-clouds because reflecting points from sequential scans of moving ground are not defined uniquely, thus repeat TLS surveys typically do not track individual reflectors. Here, we implemented the cross-correlation-based Particle Image Velocimetry (PIV) method to derive a surface deformation field using TLS point-cloud data. We estimated associated errors using the shape of the cross-correlation function and tested the method's performance with synthetic displacements applied to a TLS point cloud. We applied the method to the toe of the episodically active Cleveland Corral Landslide in northern California using TLS data acquired in June 2005–January 2007 and January–May 2010. Estimated displacements ranged from decimeters to several meters and they agreed well with independent measurements at better than 9% root mean squared (RMS) error. For each of the time periods, the method provided a smooth, nearly continuous displacement field that coincides with independently mapped boundaries of the slide and permits further kinematic and mechanical inference. For the 2010 data set, for instance, the PIV-derived displacement field identified a diffuse zone of displacement that preceded by over a month the development of a new lateral shear zone. Additionally, the upslope and downslope displacement gradients delineated by the dense PIV field elucidated the non-rigid behavior of the slide.

  8. Transition-edge sensor arrays for UV-optical-IR astrophysics

    International Nuclear Information System (INIS)

    Burney, J.; Bay, T.J.; Barral, J.; Brink, P.L.; Cabrera, B.; Castle, J.P.; Miller, A.J.; Nam, S.; Rosenberg, D.; Romani, R.W.; Tomada, A.

    2006-01-01

    Our research group has developed and characterized transition-edge sensor (TES) arrays for near IR-optical-near UV astrophysical observations. These detectors have a time-stamp accuracy of 0.3μs and an energy resolution of 0.16eV for 2.33eV photons at very high rates (30kHz). We have installed a 6x6 array of these TESs in an adiabatic demagnetization refrigerator equipped with windows for direct imaging. We discuss new instrumentation progress and current data in all aspects related to successful operation of this camera system, including: detector and array performance, position dependence and cross-talk, low-temperature and readout electronics, quantum and system efficiency, IR filtering, and focus and imaging

  9. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    M. Schnaiter

    2016-04-01

    Full Text Available This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere cloud chamber of the Karlsruhe Institute of Technology (KIT. A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the −40 to −60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3. It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN probe of Laboratoire de Métérologie et Physique (LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  10. Cloud Infrastructure & Applications - CloudIA

    Science.gov (United States)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  11. Modeling and Compensating Temperature-Dependent Non-Uniformity Noise in IR Microbolometer Cameras

    Directory of Open Access Journals (Sweden)

    Alejandro Wolf

    2016-07-01

    Full Text Available Images rendered by uncooled microbolometer-based infrared (IR cameras are severely degraded by the spatial non-uniformity (NU noise. The NU noise imposes a fixed-pattern over the true images, and the intensity of the pattern changes with time due to the temperature instability of such cameras. In this paper, we present a novel model and a compensation algorithm for the spatial NU noise and its temperature-dependent variations. The model separates the NU noise into two components: a constant term, which corresponds to a set of NU parameters determining the spatial structure of the noise, and a dynamic term, which scales linearly with the fluctuations of the temperature surrounding the array of microbolometers. We use a black-body radiator and samples of the temperature surrounding the IR array to offline characterize both the constant and the temperature-dependent NU noise parameters. Next, the temperature-dependent variations are estimated online using both a spatially uniform Hammerstein-Wiener estimator and a pixelwise least mean squares (LMS estimator. We compensate for the NU noise in IR images from two long-wave IR cameras. Results show an excellent NU correction performance and a root mean square error of less than 0.25 ∘ C, when the array’s temperature varies by approximately 15 ∘ C.

  12. Separating Real and Apparent Effects of Cloud, Humidity, and Dynamics on Aerosol Optical Thickness near Cloud Edges

    Science.gov (United States)

    Jeong, Myeong-Jae; Li, Zhanqing

    2010-01-01

    Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.

  13. The HEPiX Virtualisation Working Group: Towards a Grid of Clouds

    International Nuclear Information System (INIS)

    Cass, Tony

    2012-01-01

    The use of virtual machine images, as for example with Cloud services such as Amazon's Elastic Compute Cloud, is attractive for users as they have a guaranteed execution environment, something that cannot today be provided across sites participating in computing grids such as the Worldwide LHC Computing Grid. However, Grid sites often operate within computer security frameworks which preclude the use of remotely generated images. The HEPiX Virtualisation Working Group was setup with the objective to enable use of remotely generated virtual machine images at Grid sites and, to this end, has introduced the idea of trusted virtual machine images which are guaranteed to be secure and configurable by sites such that security policy commitments can be met. This paper describes the requirements and details of these trusted virtual machine images and presents a model for their use to facilitate the integration of Grid- and Cloud-based computing environments for High Energy Physics.

  14. Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro, Ricardo

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of

  15. Evaluating the Efficacy of the Cloud for Cluster Computation

    Science.gov (United States)

    Knight, David; Shams, Khawaja; Chang, George; Soderstrom, Tom

    2012-01-01

    Computing requirements vary by industry, and it follows that NASA and other research organizations have computing demands that fall outside the mainstream. While cloud computing made rapid inroads for tasks such as powering web applications, performance issues on highly distributed tasks hindered early adoption for scientific computation. One venture to address this problem is Nebula, NASA's homegrown cloud project tasked with delivering science-quality cloud computing resources. However, another industry development is Amazon's high-performance computing (HPC) instances on Elastic Cloud Compute (EC2) that promises improved performance for cluster computation. This paper presents results from a series of benchmarks run on Amazon EC2 and discusses the efficacy of current commercial cloud technology for running scientific applications across a cluster. In particular, a 240-core cluster of cloud instances achieved 2 TFLOPS on High-Performance Linpack (HPL) at 70% of theoretical computational performance. The cluster's local network also demonstrated sub-100 ?s inter-process latency with sustained inter-node throughput in excess of 8 Gbps. Beyond HPL, a real-world Hadoop image processing task from NASA's Lunar Mapping and Modeling Project (LMMP) was run on a 29 instance cluster to process lunar and Martian surface images with sizes on the order of tens of gigapixels. These results demonstrate that while not a rival of dedicated supercomputing clusters, commercial cloud technology is now a feasible option for moderately demanding scientific workloads.

  16. Infrared imaging of skin lesions

    Science.gov (United States)

    McIntosh, Laura M.; Mansfield, James R.; Jackson, Michael; Crowson, A. Neil; Mantsch, Henry H.

    2002-02-01

    IR spectroscopy produces spectra in which detailed information concerning chemical structure is inherent. Numerous studies have demonstrated that the most useful IR methods for analysis of biological tissues are microscopic image-based techniques in which fine-scaled spatial and high-quality spectral information is integrated. Unlike traditional visible microscopic methods, the contrast in IR imaging is gained by differences in spectra and the spatial heterogeneity of biochemical components, not by the addition of stains. In order for IR imaging to be more broadly accepted, non-subjective data processing methods are being developed to extract the most out of the large spectral images that are acquired. This paper demonstrates data processing techniques that have been extremely useful in the analysis of normal and abnormal skin. Analysis of skin specimens is of particular clinical importance due to the difficulty in rendering a differential diagnosis. Unstained frozen skin sections were mapped using an IR microscope. Functional group mapping, clustering routines and linear discriminant analysis were used to process the data. Functional group mapping and clustering routines were useful in the initial interpretation of images and to research for trends in uncharacterized spectral images. LDA was useful for differentiating normal from abnormal tissue once a well- defined training spectral set was established. Representative spectroscopic images are shown that demonstrate the power of IR imaging.

  17. Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals

    International Nuclear Information System (INIS)

    Ding, Jiachen; Yang, Ping; Kattawar, George W.; King, Michael D.; Platnick, Steven; Meyer, Kerry G.

    2017-01-01

    Similarity relations applied to ice cloud radiance calculations are theoretically analyzed and numerically validated. If τ(1–ϖ) and τ(1–ϖg) are conserved where τ is optical thickness, ϖ the single-scattering albedo, and g the asymmetry factor, it is possible that substantially different phase functions may give rise to similar radiances in both conservative and non-conservative scattering cases, particularly in the case of large optical thicknesses. In addition to theoretical analysis, this study uses operational ice cloud optical thickness retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 2 Collection 5 (C5) and Collection 6 (C6) cloud property products to verify radiative similarity relations. It is found that, if the MODIS C5 and C6 ice cloud optical thickness values are multiplied by their respective (1–ϖg) factors, the resultant products referred to as the effective optical thicknesses become similar with their ratio values around unity. Furthermore, the ratios of the C5 and C6 ice cloud effective optical thicknesses display an angular variation pattern similar to that of the corresponding ice cloud phase function ratios. The MODIS C5 and C6 values of ice cloud similarity parameter, defined as [(1–ϖ)/(1–ϖg)]"1"/"2, also tend to be similar. - Highlights: • Similarity relations are theoretically analyzed and validated. • Similarity relations are verified with the MODIS Level 2 Collection 5 and 6 ice cloud property products. • The product of ice cloud optical thickness and (1–ϖg) is approximately invariant. • The similarity parameter derived from the MODIS ice cloud effective radius retrieval tends to be invariant.

  18. Improved Likelihood Function in Particle-based IR Eye Tracking

    DEFF Research Database (Denmark)

    Satria, R.; Sorensen, J.; Hammoud, R.

    2005-01-01

    In this paper we propose a log likelihood-ratio function of foreground and background models used in a particle filter to track the eye region in dark-bright pupil image sequences. This model fuses information from both dark and bright pupil images and their difference image into one model. Our...... enhanced tracker overcomes the issues of prior selection of static thresholds during the detection of feature observations in the bright-dark difference images. The auto-initialization process is performed using cascaded classifier trained using adaboost and adapted to IR eye images. Experiments show good...

  19. Venus winds at cloud level from VIRTIS during the Venus Express mission

    Science.gov (United States)

    Hueso, Ricardo; Peralta, Javier; Sánchez-Lavega, Agustín.; Pérez-Hoyos, Santiago; Piccioni, Giuseppe; Drossart, Pierre

    2010-05-01

    The Venus Express (VEX) mission has been in orbit to Venus for almost four years now. The VIRTIS instrument onboard VEX observes Venus in two channels (visible and infrared) obtaining spectra and multi-wavelength images of the planet. Images in the ultraviolet range are used to study the upper cloud at 66 km while images in the infrared (1.74 μm) map the opacity of the lower cloud deck at 48 km. Here we present our latest results on the analysis of the global atmospheric dynamics at these cloud levels using a large selection over the full VIRTIS dataset. We will show the atmospheric zonal superrotation at these levels and the mean meridional motions. The zonal winds are very stable in the lower cloud at mid-latitudes to the tropics while it shows different signatures of variability in the upper cloud where solar tide effects are manifest in the data. While the upper clouds present a net meridional motion consistent with the upper branch of a Hadley cell the lower cloud present almost null global meridional motions at all latitudes but with particular features traveling both northwards and southwards in a turbulent manner depending on the cloud morphology on the observations. A particular important atmospheric feature is the South Polar vortex which might be influencing the structure of the zonal winds in the lower cloud at latitudes from the vortex location up to 55°S. Acknowledgements This work has been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and Grupos Gobierno Vasco IT-464-07.

  20. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning

    Science.gov (United States)

    Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Nex, Francesco; Vosselman, George

    2018-06-01

    Oblique aerial images offer views of both building roofs and façades, and thus have been recognized as a potential source to detect severe building damages caused by destructive disaster events such as earthquakes. Therefore, they represent an important source of information for first responders or other stakeholders involved in the post-disaster response process. Several automated methods based on supervised learning have already been demonstrated for damage detection using oblique airborne images. However, they often do not generalize well when data from new unseen sites need to be processed, hampering their practical use. Reasons for this limitation include image and scene characteristics, though the most prominent one relates to the image features being used for training the classifier. Recently features based on deep learning approaches, such as convolutional neural networks (CNNs), have been shown to be more effective than conventional hand-crafted features, and have become the state-of-the-art in many domains, including remote sensing. Moreover, often oblique images are captured with high block overlap, facilitating the generation of dense 3D point clouds - an ideal source to derive geometric characteristics. We hypothesized that the use of CNN features, either independently or in combination with 3D point cloud features, would yield improved performance in damage detection. To this end we used CNN and 3D features, both independently and in combination, using images from manned and unmanned aerial platforms over several geographic locations that vary significantly in terms of image and scene characteristics. A multiple-kernel-learning framework, an effective way for integrating features from different modalities, was used for combining the two sets of features for classification. The results are encouraging: while CNN features produced an average classification accuracy of about 91%, the integration of 3D point cloud features led to an additional

  1. Infrared Imaging for Inquiry-Based Learning

    Science.gov (United States)

    Xie, Charles; Hazzard, Edmund

    2011-01-01

    Based on detecting long-wavelength infrared (IR) radiation emitted by the subject, IR imaging shows temperature distribution instantaneously and heat flow dynamically. As a picture is worth a thousand words, an IR camera has great potential in teaching heat transfer, which is otherwise invisible. The idea of using IR imaging in teaching was first…

  2. DeepSAT's CloudCNN: A Deep Neural Network for Rapid Cloud Detection from Geostationary Satellites

    Science.gov (United States)

    Kalia, S.; Li, S.; Ganguly, S.; Nemani, R. R.

    2017-12-01

    Cloud and cloud shadow detection has important applications in weather and climate studies. It is even more crucial when we introduce geostationary satellites into the field of terrestrial remotesensing. With the challenges associated with data acquired in very high frequency (10-15 mins per scan), the ability to derive an accurate cloud/shadow mask from geostationary satellite data iscritical. The key to the success for most of the existing algorithms depends on spatially and temporally varying thresholds, which better capture local atmospheric and surface effects.However, the selection of proper threshold is difficult and may lead to erroneous results. In this work, we propose a deep neural network based approach called CloudCNN to classifycloud/shadow from Himawari-8 AHI and GOES-16 ABI multispectral data. DeepSAT's CloudCNN consists of an encoder-decoder based architecture for binary-class pixel wise segmentation. We train CloudCNN on multi-GPU Nvidia Devbox cluster, and deploy the prediction pipeline on NASA Earth Exchange (NEX) Pleiades supercomputer. We achieved an overall accuracy of 93.29% on test samples. Since, the predictions take only a few seconds to segment a full multi-spectral GOES-16 or Himawari-8 Full Disk image, the developed framework can be used for real-time cloud detection, cyclone detection, or extreme weather event predictions.

  3. The evolution of comets and the detectability of Extra-Solar Oort Clouds

    International Nuclear Information System (INIS)

    Stern, S.A.

    1989-01-01

    According the standard theory, comets are natural products of solar system formation, ejected to the Oort Cloud by gravitational scattering events during the epoch of giant planet formation. Stored far from the Sun for billions of years, comets almost certainly contain a record of the events which occurred during (and perhaps even before) the epoch of planetary formation. Two themes are examined of the evolutionary processes that affect comets in the Oort Cloud, and a search for evidence of Extra-Solar Oort Clouds (ESOCs). With regard to cometary evolution in the Oort Cloud, it was found that luminous O stars and supernovae have heated the surface layers of all comets on numerous occasions to 20 to 30 K and perhaps once to 50 K. Interstellar medium (ISM) interactions blow small grains out of the Oort Clouds, and erode the upper few hundred g/cu cm of material from cometary surfaces. The findings presented contradict the standard view that comets do not undergo physical change in the Oort Cloud. A logical consequence of the intimate connection between the Oort Cloud and our planetary system is that the detection of comet clouds around other stars would strongly indicate the sites of extant extra-solar planetary systems. A search was conducted for infrared IR emission from debris in ESOCs. After examining 17 stars using the Infrared Astronomical Satellite data base, only upper limits on ESOC emission could be set

  4. Large Scale Gaussian Processes for Atmospheric Parameter Retrieval and Cloud Screening

    Science.gov (United States)

    Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.

    2017-12-01

    Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.

  5. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  6. Supporting reputation based trust management enhancing security layer for cloud service models

    Science.gov (United States)

    Karthiga, R.; Vanitha, M.; Sumaiya Thaseen, I.; Mangaiyarkarasi, R.

    2017-11-01

    In the existing system trust between cloud providers and consumers is inadequate to establish the service level agreement though the consumer’s response is good cause to assess the overall reliability of cloud services. Investigators recognized the significance of trust can be managed and security can be provided based on feedback collected from participant. In this work a face recognition system that helps to identify the user effectively. So we use an image comparison algorithm where the user face is captured during registration time and get stored in database. With that original image we compare it with the sample image that is already stored in database. If both the image get matched then the users are identified effectively. When the confidential data are subcontracted to the cloud, data holders will become worried about the confidentiality of their data in the cloud. Encrypting the data before subcontracting has been regarded as the important resources of keeping user data privacy beside the cloud server. So in order to keep the data secure we use an AES algorithm. Symmetric-key algorithms practice a shared key concept, keeping data secret requires keeping this key secret. So only the user with private key can decrypt data.

  7. Using Fourier transform IR spectroscopy to analyze biological materials

    Science.gov (United States)

    Baker, Matthew J; Trevisan, Júlio; Bassan, Paul; Bhargava, Rohit; Butler, Holly J; Dorling, Konrad M; Fielden, Peter R; Fogarty, Simon W; Fullwood, Nigel J; Heys, Kelly A; Hughes, Caryn; Lasch, Peter; Martin-Hirsch, Pierre L; Obinaju, Blessing; Sockalingum, Ganesh D; Sulé-Suso, Josep; Strong, Rebecca J; Walsh, Michael J; Wood, Bayden R; Gardner, Peter; Martin, Francis L

    2015-01-01

    IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing. PMID:24992094

  8. Development of pixellated Ir-TESs

    Science.gov (United States)

    Zen, Nobuyuki; Takahashi, Hiroyuki; Kunieda, Yuichi; Damayanthi, Rathnayaka M. T.; Mori, Fumiakira; Fujita, Kaoru; Nakazawa, Masaharu; Fukuda, Daiji; Ohkubo, Masataka

    2006-04-01

    We have been developing Ir-based pixellated superconducting transition edge sensors (TESs). In the area of material or astronomical applications, the sensor with few eV energy resolution and over 1000 pixels imaging property is desired. In order to achieve this goal, we have been analyzing signals from pixellated TESs. In the case of a 20 pixel array of Ir-TESs, with 45 μm×45 μm pixel sizes, the incident X-ray signals have been classified into 16 groups. We have applied numerical signal analysis. On the one hand, the energy resolution of our pixellated TES is strongly degraded. However, using pulse shape analysis, we can dramatically improve the resolution. Thus, we consider that the pulse signal analysis will lead this device to be used as a practical photon incident position identifying TES.

  9. Cloud Masking for Remotely Sensed Data Using Spectral and Principal Components Analysis

    Directory of Open Access Journals (Sweden)

    A. Ahmad

    2012-06-01

    Full Text Available Two methods of cloud masking tuned to tropical conditions have been developed, based on spectral analysis and Principal Components Analysis (PCA of Moderate Resolution Imaging Spectroradiometer (MODIS data. In the spectral approach, thresholds were applied to four reflective bands (1, 2, 3, and 4, three thermal bands (29, 31 and 32, the band 2/band 1 ratio, and the difference between band 29 and 31 in order to detect clouds. The PCA approach applied a threshold to the first principal component derived from the seven quantities used for spectral analysis. Cloud detections were compared with the standard MODIS cloud mask, and their accuracy was assessed using reference images and geographical information on the study area.

  10. Assessing the consistency of UAV-derived point clouds and images acquired at different altitudes

    Science.gov (United States)

    Ozcan, O.

    2016-12-01

    Unmanned Aerial Vehicles (UAVs) offer several advantages in terms of cost and image resolution compared to terrestrial photogrammetry and satellite remote sensing system. Nowadays, UAVs that bridge the gap between the satellite scale and field scale applications were initiated to be used in various application areas to acquire hyperspatial and high temporal resolution imageries due to working capacity and acquiring in a short span of time with regard to conventional photogrammetry methods. UAVs have been used for various fields such as for the creation of 3-D earth models, production of high resolution orthophotos, network planning, field monitoring and agricultural lands as well. Thus, geometric accuracy of orthophotos and volumetric accuracy of point clouds are of capital importance for land surveying applications. Correspondingly, Structure from Motion (SfM) photogrammetry, which is frequently used in conjunction with UAV, recently appeared in environmental sciences as an impressive tool allowing for the creation of 3-D models from unstructured imagery. In this study, it was aimed to reveal the spatial accuracy of the images acquired from integrated digital camera and the volumetric accuracy of Digital Surface Models (DSMs) which were derived from UAV flight plans at different altitudes using SfM methodology. Low-altitude multispectral overlapping aerial photography was collected at the altitudes of 30 to 100 meters and georeferenced with RTK-GPS ground control points. These altitudes allow hyperspatial imagery with the resolutions of 1-5 cm depending upon the sensor being used. Preliminary results revealed that the vertical comparison of UAV-derived point clouds with respect to GPS measurements pointed out an average distance at cm-level. Larger values are found in areas where instantaneous changes in surface are present.

  11. The registration of non-cooperative moving targets laser point cloud in different view point

    Science.gov (United States)

    Wang, Shuai; Sun, Huayan; Guo, Huichao

    2018-01-01

    Non-cooperative moving target multi-view cloud registration is the key technology of 3D reconstruction of laser threedimension imaging. The main problem is that the density changes greatly and noise exists under different acquisition conditions of point cloud. In this paper, firstly, the feature descriptor is used to find the most similar point cloud, and then based on the registration algorithm of region segmentation, the geometric structure of the point is extracted by the geometric similarity between point and point, The point cloud is divided into regions based on spectral clustering, feature descriptors are created for each region, searching to find the most similar regions in the most similar point of view cloud, and then aligning the pair of point clouds by aligning their minimum bounding boxes. Repeat the above steps again until registration of all point clouds is completed. Experiments show that this method is insensitive to the density of point clouds and performs well on the noise of laser three-dimension imaging.

  12. Mid-IR Observations of Mira Circumstellar Environment

    OpenAIRE

    Marengo, Massimo; Karovska, Margarita; Fazio, Giovanni G.; Hora, Joseph L.; Hoffmann, William F.; Dayal, Aditya; Deutsch, Lynne K.

    2001-01-01

    This paper presents results from high-angular resolution mid-IR imaging of the Mira AB circumbinary environment using the MIRAC3 camera at the NASA Infrared Telescope Facility (IRTF). We resolved the dusty circumstellar envelope at 9.8, 11.7 and 18 micron around Mira A (o Ceti), and measured the size of the extended emission. Strong deviations from spherical symmetry are detected in the images of Mira AB system, including possible dust clumps in the direction of the companion (Mira B). These ...

  13. A CLOUD BOUNDARY DETECTION SCHEME COMBINED WITH ASLIC AND CNN USING ZY-3, GF-1/2 SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    Z. Guo

    2018-04-01

    Full Text Available Remote sensing optical image cloud detection is one of the most important problems in remote sensing data processing. Aiming at the information loss caused by cloud cover, a cloud detection method based on convolution neural network (CNN is presented in this paper. Firstly, a deep CNN network is used to extract the multi-level feature generation model of cloud from the training samples. Secondly, the adaptive simple linear iterative clustering (ASLIC method is used to divide the detected images into superpixels. Finally, the probability of each superpixel belonging to the cloud region is predicted by the trained network model, thereby generating a cloud probability map. The typical region of GF-1/2 and ZY-3 were selected to carry out the cloud detection test, and compared with the traditional SLIC method. The experiment results show that the average accuracy of cloud detection is increased by more than 5 %, and it can detected thin-thick cloud and the whole cloud boundary well on different imaging platforms.

  14. Characterization of Ir/Au pixel TES

    International Nuclear Information System (INIS)

    Kunieda, Y.; Takahashi, H.; Zen, N.; Damayanthi, R.M.T.; Mori, F.; Fujita, K.; Nakazawa, M.; Fukuda, D.; Ohkubo, M.

    2006-01-01

    Signal shapes and noise characteristics of an asymmetrical ten-pixel Ir/Au-TES have been studied. The asymmetric design may be effective to realize an imaging spectrometer. Distinct two exponential decays observed for X-ray events are consistent with a two-step R-T curve. A theoretical thermal model for noise in multi-pixel devices reasonably explains the experimental data

  15. A Combined Very Large Telescope and Gemini Study of the Atmosphere of the Directly Imaged Planet, Beta Pictoris b

    Science.gov (United States)

    Currie, Thayne; Burrows, Adam; Madhusudhan, Nikku; Fukagawa, Misato; Girard, Julien H.; Dawson, Rebekah; Murray-Clay, Ruth; Kenyon, Scott; Kuchner, Marc J.; Matsumura, Soko; hide

    2013-01-01

    We analyze new/archival VLT/NaCo and Gemini/NICI high-contrast imaging of the young, self-luminous planet Beta Pictoris b in seven near-to-mid IR photometric filters, using advanced image processing methods to achieve high signal-to-noise, high precision measurements. While Beta Pic b's near-IR colors mimic those of a standard, cloudy early-to-mid L dwarf, it is overluminous in the mid-infrared compared to the field L/T dwarf sequence. Few substellar/planet-mass objects-i.e., ? And b and 1RXJ 1609B-match Beta Pic b's JHKsL photometry and its 3.1 micron and 5 micron photometry are particularly difficult to reproduce. Atmosphere models adopting cloud prescriptions and large (approx. 60 micron)dust grains fail to reproduce the Beta Pic b spectrum. However, models incorporating thick clouds similar to those found forHR8799 bcde, but also with small (a fewmicrons) modal particle sizes, yield fits consistent with the data within the uncertainties. Assuming solar abundance models, thick clouds, and small dust particles (a = 4 micron), we derive atmosphere parameters of log(g) = 3.8 +/- 0.2 and Teff = 1575-1650 K, an inferred mass of 7+4 -3 MJ, and a luminosity of log(L/L) approx. -3.80 +/- 0.02. The best-estimated planet radius, is approx. equal to 1.65 +/- 0.06 RJ, is near the upper end of allowable planet radii for hot-start models given the host star's age and likely reflects challenges constructing accurate atmospheric models. Alternatively, these radii are comfortably consistent with hot-start model predictions if Beta Pic b is younger than is approx. equal to 7 Myr, consistent with a late formation well after its host star's birth approx. 12+8 -4 Myr ago.

  16. A COMBINED VERY LARGE TELESCOPE AND GEMINI STUDY OF THE ATMOSPHERE OF THE DIRECTLY IMAGED PLANET, β PICTORIS b

    International Nuclear Information System (INIS)

    Currie, Thayne; Jayawardhana, Ray; Burrows, Adam; Madhusudhan, Nikku; Fukagawa, Misato; Girard, Julien H.; Dawson, Rebekah; Murray-Clay, Ruth; Kenyon, Scott; Kuchner, Marc; Matsumura, Soko; Chambers, John; Bromley, Ben

    2013-01-01

    We analyze new/archival VLT/NaCo and Gemini/NICI high-contrast imaging of the young, self-luminous planet β Pictoris b in seven near-to-mid IR photometric filters, using advanced image processing methods to achieve high signal-to-noise, high precision measurements. While β Pic b's near-IR colors mimic those of a standard, cloudy early-to-mid L dwarf, it is overluminous in the mid-infrared compared to the field L/T dwarf sequence. Few substellar/planet-mass objects—i.e., κ And b and 1RXJ 1609B—match β Pic b's JHK s L' photometry and its 3.1 μm and 5 μm photometry are particularly difficult to reproduce. Atmosphere models adopting cloud prescriptions and large (∼60 μm) dust grains fail to reproduce the β Pic b spectrum. However, models incorporating thick clouds similar to those found for HR 8799 bcde, but also with small (a few microns) modal particle sizes, yield fits consistent with the data within the uncertainties. Assuming solar abundance models, thick clouds, and small dust particles ((a) = 4 μm), we derive atmosphere parameters of log (g) = 3.8 ± 0.2 and T eff = 1575-1650 K, an inferred mass of 7 +4 -3 M J , and a luminosity of log(L/L ☉ ) ∼–3.80 ± 0.02. The best-estimated planet radius, ≈1.65 ± 0.06 R J , is near the upper end of allowable planet radii for hot-start models given the host star's age and likely reflects challenges constructing accurate atmospheric models. Alternatively, these radii are comfortably consistent with hot-start model predictions if β Pic b is younger than ≈7 Myr, consistent with a late formation well after its host star's birth ∼12 +8 -4 Myr ago

  17. THE MAGELLANIC QUASARS SURVEY. III. SPECTROSCOPIC CONFIRMATION OF 758 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS

    International Nuclear Information System (INIS)

    Kozłowski, Szymon; Udalski, Andrzej; Szymański, M. K.; Kubiak, M.; Pietrzyński, G.; Soszyński, I.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Skowron, J.; Onken, Christopher A.; Kochanek, Christopher S.; Meixner, M.; Bonanos, A. Z.

    2013-01-01

    The Magellanic Quasars Survey (MQS) has now increased the number of quasars known behind the Magellanic Clouds by almost an order of magnitude. All survey fields in the Large Magellanic Cloud (LMC) and 70% of those in the Small Magellanic Cloud (SMC) have been observed. The targets were selected from the third phase of the Optical Gravitational Lensing Experiment (OGLE-III) based on their optical variability, mid-IR, and/or X-ray properties. We spectroscopically confirmed 758 quasars (565 in the LMC and 193 in the SMC) behind the clouds, of which 94% (527 in the LMC and 186 in the SMC) are newly identified. The MQS quasars have long-term (12 yr and growing for OGLE), high-cadence light curves, enabling unprecedented variability studies of quasars. The MQS quasars also provide a dense reference grid for measuring both the internal and bulk proper motions of the clouds, and 50 quasars are bright enough (I ∼< 18 mag) for absorption studies of the interstellar/intergalactic medium of the clouds

  18. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  19. Satellite Cloud and Radiative Property Processing and Distribution System on the NASA Langley ASDC OpenStack and OpenShift Cloud Platform

    Science.gov (United States)

    Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.

    2017-12-01

    Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.

  20. Automatic Registration of Vehicle-borne Mobile Mapping Laser Point Cloud and Sequent Panoramas

    Directory of Open Access Journals (Sweden)

    CHEN Chi

    2018-02-01

    Full Text Available An automatic registration method of mobile mapping system laser point cloud and sequence panoramic image is proposed in this paper.Firstly,hierarchical object extraction method is applied on LiDAR data to extract the building façade and outline polygons are generated to construct the skyline vectors.A virtual imaging method is proposed to solve the distortion on panoramas and corners on skylines are further detected on the virtual images combining segmentation and corner detection results.Secondly,the detected skyline vectors are taken as the registration primitives.Registration graphs are built according to the extracted skyline vector and further matched under graph edit distance minimization criteria.The matched conjugate primitives are utilized to solve the 2D-3D rough registration model to obtain the initial transformation between the sequence panoramic image coordinate system and the LiDAR point cloud coordinate system.Finally,to reduce the impact of registration primitives extraction and matching error on the registration results,the optimal transformation between the multi view stereo matching dens point cloud generated from the virtual imaging of the sequent panoramas and the LiDAR point cloud are solved by a 3D-3D ICP registration algorithm variant,thus,refine the exterior orientation parameters of panoramas indirectly.Experiments are undertaken to validate the proposed method and the results show that 1.5 pixel level registration results are achieved on the experiment dataset.The registration results can be applied to point cloud and panoramas fusion applications such as true color point cloud generation.