WorldWideScience

Sample records for ions bombardment effects

  1. Self-heating effect induced by ion bombardment on polycrystalline Al surface nanostructures evolution

    Indian Academy of Sciences (India)

    H Wang; Y Zhen; H Wjiang; J T Liu

    2012-06-01

    We studied the self-heating effect during ion bombardment process on polycrystalline Al foils. An anisotropic surface morphology evolution has been observed. The adjacent peaks’ fusion along the direction perpendicular to the ion beam projection smoothen the surface. Fusion along the parallel direction has been suppressed due to Ar+ ion bombardment. It attributes to the result of the competition between the isotropic thermal effect, due to the self-heating effect by energy exchange between incident ions and Al surface, and the suppression by continuous ion bombardment with a certain incident angle. Varying the incident ion beam angle with the angular range 32° < < 82°, the ripple wave vector, , is found to be parallel to the ion beam direction, whereas for > 82° , is perpendicular to the beam direction. The critical angle, c, is close to 82°, which is different from Bradley and Harper’s prediction and attributes to the self-heating effect.

  2. Luminescence effects of ion-beam bombardment of CdTe surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, J., E-mail: javier.olvera@uam.e [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, O. [Optronlab Group, Dpto. Fisica Materia Condensada, Edificio I-D, Universidad de Valladolid, Paseo de Belen 1, 47011 Valladolid (Spain); Plaza, J.L.; Dieguez, E. [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2009-09-15

    In the present work, we report the effect of low-energy ion bombardment on CdTe surfaces. The effect is revealed by FESEM images and photoluminescence (PL) measurements carried out before and after irradiation of CdTe polycrystals by means of an ion-beam sputtering (IBS) system. An important improvement in the luminescence of CdTe was observed in the irradiated areas, related to defect-free surfaces.

  3. Effect of Ion Bombardment on the Growth and Properties of Hydrogenated Amorphous Silicon-Germanium Alloys

    Science.gov (United States)

    Perrin, Jérôme; Takeda, Yoshihiko; Hirano, Naoto; Matsuura, Hideharu; Matsuda, Akihisa

    1989-01-01

    We report a systematic investigation of the effect of ion bombardment during the growth of amorphous silicon-germanium alloy films from silane and germane rf-glow discharge. Independent control of the plasma and the ion flux and energy is obtained by using a triode configuration. The ion contribution to the total deposition rate can reach 20% on negatively biased substrates. Although the Si and Ge composition of the film does not depend on the ion flux and energy, the optical, structural and electronic properties are drastically modified at low deposition temperatures when the maximum ion energy increases up to 50 eV, and remain constant above 50 eV. For a Ge atomic concentration of 37% and a temperature of 135°C, the optical gap decreases from 1.67 to 1.45 eV. This is correlated with a modification of hydrogen bonding configurations. Silicon dihydride sites disappear and preferential attachment of hydrogen to silicon is reduced in favour of germanium. Moreover the photoconductivity increases which shows that ion bombardment is a key parameter to optimize the quality of low band gap amorphous silicon-germanium alloys.

  4. Ion bombardment of polyimide films

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, B. J.; Vasile, M. J.

    1989-07-01

    Surface modification techniques such as wet chemical etching, oxidizing flames, and plasma treatments (inert ion sputtering and reactive ion etching) have been used to change the surface chemistry of polymers and improve adhesion. With an increase in the use of polyimides for microelectronic applications, the technique of ion sputtering to enhance polymer-to-metal adhesion is receiving increased attention. For this study, the argon-ion bombardment surfaces of pyromellitic dianhydride and oxydianiline (PMDA--ODA) and biphenyl tetracarboxylic dianhydride and phenylene diamine (BPDA--PDA) polyimide films were characterized with x-ray photoelectron spectroscopy (XPS) as a function of ion dose. Graphite and high-density polyethylene were also examined by XPS for comparison of C 1/ital s/ peak width and binding-energy assignments. Results indicate that at low ion doses the surface of the polyimide does not change chemically, although adsorbed species are eliminated. At higher doses the chemical composition is altered and is dramatically reflected in the C 1/ital s/ spectra where graphiticlike structures become evident and the prominent carbonyl peak is reduced significantly. Both polyimides demonstrate similar chemical changes after heavy ion bombardment. Atomic composition of PMDA--ODA and BPDA--PDA polymers are almost identical after heavy ion bombardment.

  5. Ion bombardment in RF photoguns

    Energy Technology Data Exchange (ETDEWEB)

    Pozdeyev,E.; Kayran, D.; Litvinenko, V. N.

    2009-05-04

    A linac-ring eRHIC design requires a high-intensity CW source of polarized electrons. An SRF gun is viable option that can deliver the required beam. Numerical simulations presented elsewhere have shown that ion bombardment can occur in an RF gun, possibly limiting lifetime of a NEA GaAs cathode. In this paper, we analytically solve the equations of motion of ions in an RF gun using the ponderomotive potential of the Rf field. We apply the method to the BNL 1/2-cell SRF photogun and demonstrate that a significant portion of ions produced in the gun can reach the cathode if no special precautions are taken. Also, the paper discusses possible mitigation techniques that can reduce the rate of ion bombardment.

  6. Effect of low energy ion bombardment on structure and photoluminescence characterization of Al-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Chenggang; Yu, Tao; Wu, Zaofeng; Wu, Xuemei [Department of Physics, Soochow University, Soochow 215006 (China); Zhuge, Lanjian, E-mail: ljzhuge@suda.edu.cn [Analysis and Testing Center, Soochow University, Soochow 215006 (China)

    2012-12-01

    Al-doped zinc oxide (AZO) films are prepared by dual ion-beam assisted sputter deposition at room temperature. An assisting argon ion beam (ion energy E{sub i} = 0-300 eV) directly bombards the substrate surface to modify the properties of the AZO films. The effects of assisting ion beam energy on the characteristics of AZO films were investigated based on transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and photoluminescence measurement. With increasing assisting ion beam bombardment, the crystalline quality of the AZO films was improved and the oxygen vacancies were increased observably. Two red emissions originating from the oxygen vacancies in the films appear at 1.71 and 1.64 eV. This study suggests that wide-band-gap materials could act as effective visible light emitters and ion beam bombardment provides a simple route to synthesize such materials. - Highlights: Black-Right-Pointing-Pointer Al-doped ZnO (AZO) thin films were prepared by dual ion-beam sputter deposition. Black-Right-Pointing-Pointer By assisting-ion beam bombardment, AZO films have a better c-axis orientation. Black-Right-Pointing-Pointer The crystalline quality of AZO films was improved by assisting-ion beam bombardment. Black-Right-Pointing-Pointer Two red emissions originate from the oxygen vacancies in the films.

  7. Effect of bombardment with iron ions on the evolution of helium, hydrogen, and deuterium blisters in silicon

    Science.gov (United States)

    Reutov, V. F.; Dmitriev, S. N.; Sokhatskii, A. S.; Zaluzhnyi, A. G.

    2017-02-01

    The effect of bombardment with iron ions on the evolution of gas porosity in silicon single crystals has been studied. Gas porosity has been produced by implantation hydrogen, deuterium, and helium ions with energies of 17, 12.5, and 20 keV, respectively, in identical doses of 1 × 1017 cm-2 at room temperature. For such energy of bombarding ions, the ion doping profiles have been formed at the same distance from the irradiated surface of the sample. Then, the samples have been bombarded with iron Fe10+ ions with energy of 150 keV in a dose of 5.9 × 1014 cm-2. Then 30-min isochoric annealing has been carried out with an interval of 50°C in the temperature range of 250-900°C. The samples have been analyzed using optical and electron microscopes. An extremely strong synergetic effect of sequential bombardment of silicon single crystals with gas ions and iron ions at room temperature on the nucleation and growth of gas porosity during postradiation annealing has been observed. For example, it has been shown that the amorphous layer formed in silicon by additional bombardment with iron ions stimulates the evolution of helium blisters, slightly retards the evolution of hydrogen blisters, and completely suppresses the evolution of deuterium blisters. The results of experiments do not provide an adequate explanation of the reason for this difference; additional targeted experiments are required.

  8. Biological Effects of Low Energy Ar+ Ion Bombardment on Silkworm Eggs: a Novel Animal Model

    Science.gov (United States)

    Xu, Jiaping; Wu, Yuejin; Liu, Xuelan; Yuan, Hang; Yu, Zengliang

    2009-06-01

    In this study, we found for the first time that silkworm eggs were able to survive in vacuum for a long period of time. Subsequently, low energy Ar+ ions with different energies and fluences were used to bombard silkworm eggs so as to explore the resulting biological effects. Results showed that (i) the exposure of silkworm eggs to vacuum within 10 min did not cause significant impact on the hatching rates, while the irradiation of silkworm eggs by Ar+ ions of 25 keV or 30 keV with fluences ranging from 2.6×2.6 × 1015 ion/cm2 to 8×2.6 × 1015 ion/cm2 caused a significant impact on the hatching rates, and the hatching rates decreased with the increase in the fluence and energy level; (ii) the irradiation of silkworm eggs by Ar+ ions of 30 keV with a fluence of 8×2.6 × 1015 ion/cm2 or 9×2.6 × 1015 ion/cm2 resulted in a noticeable etching on the egg shell surface which could be observed by a scanning electron microscope; and (iii) the irradiation of silkworm eggs by Ar+ ions of 30 keV with a fluence of 9×2.6 × 1015 ion/cm2 generated several mutant phenotypes which were observed in the 5th instar silkworms and a moth.

  9. Biological Effects of Low Energy Ar+ Ion Bombardment on Silkworm Eggs: a Novel Animal Model

    Institute of Scientific and Technical Information of China (English)

    XU Jiaping; WU Yuejin; LIU Xuelan; YUAN Hang; YU Zengliang

    2009-01-01

    In this study, we found for the first time that silkworm eggs were able to survive in vacuum for a long period of time. Subsequently, low energy Ar+ ions with different energies and fluences were used to bombard silkworm eggs so as to explore the resulting biological effects. Results showed that (i) the exposure of silkworm eggs to vacuum within 10 min did not cause significant impact on the hatching rates, while the irradiation of silkworm eggs by Ar+ ions of 25 keY or 30 keV with fluences ranging from 2.6×2.6 × 1015 ion/cm2 to 8×2.6 × 1015ion/cm2 caused a significant impact on the hatching rates, and the hatching rates decreased with the increase in the fluence and energy level; (ii) the irradiation of silkworm eggs by Ar+ ions of 30 keV with a fluence of 8×2.6 × 1015 ion/cm2 or 9×2.6×1015 ion/cm2 resulted in a noticeable etching on the egg shell surface which could be observed by a scanning electron microscope; and (iii) the irradiation of silkworm eggs by Ar+ ions of 30 keV with a fluence of 9×2.6 × 1015 ion/cm2 generated several mutant phenotypes which were observed in the 5th instar silkworms and a moth.

  10. The effects of argon ion bombardment on the corrosion resistance of tantalum

    Science.gov (United States)

    Ramezani, A. H.; Sari, A. H.; Shokouhy, A.

    2017-02-01

    Application of ion beam has been widely used as a surface modification method to improve surface properties. This paper investigates the effect of argon ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, argon ions with energy of 30 keV and in doses of 1 × 1017-10 × 1017 ions/cm2 were used. The surface bombardment with inert gases mainly produces modified topography and morphology of the surface. Atomic Force Microscopy was also used to patterned the roughness variations prior to and after the implantation phase. Additionally, the corrosion investigation apparatus wear was applied to compare resistance against tantalum corrosion both before and after ion implantation. The results show that argon ion implantation has a substantial impact on increasing resistance against tantalum corrosion. After the corrosion test, scanning electron microscopy (SEM) analyzed the samples' surface morphologies. In addition, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this paper was to obtain the perfect condition for the formation of tantalum corrosion resistance. In order to evaluate the effect of the ion implantation on the corrosion behavior, potentiodynamic tests were performed. The results show that the corrosion resistance of the samples strongly depends on the implantation doses.

  11. Synergistic effects of vacuum ultraviolet radiation, ion bombardment, and heating in 193 nm photoresist roughening and degradation

    Science.gov (United States)

    Nest, D.; Graves, D. B.; Engelmann, S.; Bruce, R. L.; Weilnboeck, F.; Oehrlein, G. S.; Andes, C.; Hudson, E. A.

    2008-04-01

    The roles of ultraviolet/vacuum ultraviolet (UV/VUV) photons, Ar+ ion bombardment and heating in the roughening of 193nm photoresist have been investigated. Atomic force microscopy measurements show minimal surface roughness after UV/VUV-only or ion-only exposures at any temperature. Simultaneous UV/VUV, ion bombardment, and heating to surface temperatures of 60-100°C result in increased surface roughness, and is comparable to argon plasma-exposed samples. Ion bombardment creates a modified near-surface layer while UV/VUV radiation results in loss of carbon-oxygen bonds up to a depth of ˜100nm. Enhanced roughness is only observed in the presence of all three effects.

  12. Effects of low and high energy ion bombardment on ETFE polymer

    Science.gov (United States)

    Minamisawa, R. A.; De Almeida, A.; Abidzina, V.; Parada, M. A.; Muntele, I.; Ila, D.

    2007-04-01

    The polymer ethylenetetrafluoroethylene (ETFE) is used as anti-adherent coatings for food packages and radiation dosimeters. In this work, we compare the damage induced in ETFE bombarded with 100 keV Si ions with that induced by 1 MeV proton bombardment. The damage depends on the type, energy and intensity of the irradiation. Irradiated films were analyzed with optical absorption photospectrometry, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy to determine the chemical nature of the structural changes caused by ion irradiation. Computer simulations were performed to evaluate the radiation damage.

  13. Aluminum work function: Effect of oxidation, mechanical scraping and ion bombardment

    Science.gov (United States)

    Vinet, P.; Lemogne, T.; Montes, H.

    1985-01-01

    Surface studies have been performed on aluminum polycrystalline surfaces which have been mechanically scraped. Such studies were initiated in order to understand surface effects occurring in tribological processes which involve rubbing surfaces and the effects of adsorption of oxygen. To characterize the surfaces, the following three different experimental approaches have been used: (1) X.P.S. (X-ray photoelectron spectroscopy), in order to check the cleanliness of the surfaces and follow the adsorption and oxidation kinetics; (2) Analysis of the work function changes by following the energy spectra of secondary electrons emitted under low energy electron bombardment; and (3) Analysis of photoemission intensities under U.V. excitation. The reference state being chosen to be the surface cleaned by ion bombardment and exposures to oxygen atmospheres have been shown to lower the work function of clean polycrystalline aluminum by 1.2 eV. The oxygen pressure is found to affect only the kinetics of these experiments. Mechanical scraping has been shown to induce a decrease ( 0.3 eV) in the work function, which could sharply modify the kinetics of adsorption on the surface.

  14. The effect of crystal orientation on the behavior of a polycrystalline tungsten surface under focused Ga{sup +} ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Ran Guang, E-mail: gran@xmu.edu.cn [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Wu Shenghua [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Liu Xiang; Wu Jihong [Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Li, Ning [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Zu Xiaotao [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Wang Lumin, E-mail: lmwang@umich.edu [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We in situ investigated the microstructure evolution during FIB bombardment. Black-Right-Pointing-Pointer The irradiation behaviors depended significantly on the crystal orientation. Black-Right-Pointing-Pointer Tungsten grain with (0 0 1) crystal orientation showed good irradiation resistance. - Abstract: The effect of crystal orientation on the behavior of a tungsten surface under a 30 keV focused Ga{sup +} ion beam with different bombardment angles has been investigated by in situ scanning electron microscopy and electron backscatter diffraction. Results indicate that the grains of tungsten with various orientations behave quite differently. Grains with a (0 0 1) direction parallel to the ion beam always maintain a much smoother surface morphology with less mass removal after ion bombardment, indicating a lower sputtering yield. The orientation dependence of surface sputtering of tungsten can be used to guide the fabrication of tungsten-based first wall component in a nuclear fusion reactor.

  15. Ions Bombardment in Thin Films and Surface Processing

    Institute of Scientific and Technical Information of China (English)

    许沭华; 任兆杏

    2003-01-01

    Ions bombardment is very important in thin films and surface processing. The ionenergy and ion flux are two important parameters in ion bombardment. The ion current densitymainly dependent on the plasma density gives the number of energetic ions bombarding thesubstrate. The self-bias voltage in plasma sheath accelerates plasma ions towards the substrate.RF discharge can increase plasma density and RF bias can also provide the insulator substrate witha plasma sheath. In order to choose and control ion energy, ion density, the angle of incidence,and ion species, ion beam sources are used. New types of electrodeless ion sources (RF, MW,ECR-MW) have been introduced in detail. In the last, the effects of ion bombardment on thinfilms and surface processing are presented.

  16. Polygonisation of ionic single crystals - a new effect of swift ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Turos, A.; Nowicki, L. [The Andrzej Soltan Institute for Nuclear Studies, Warsaw (Poland); Garrido, F.; Thome, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse, Orsay (France); Fromknecht, R. [Research Center Karlsruhe, INFP, Karlsruhe (Germany); Domagala, J. [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    1999-05-01

    Isostructural oxide single crystals of the fluorite structure: stabilized cubic zirconia and UO{sub 2} were bombarded at room temperature with 72 MeV iodine ions or 340 MeV Xe ions, respectively. The aim of this paper was the study of structural transformations induced by ion bombardment in two different regimes: at 72 MeV where the radiation damage production is strongly influenced by collision cascades and at higher energies where the ionization mechanism prevails. The structure of as-grown and implanted single crystals was examined using the RBS/channeling technique and X-ray diffraction analysis. Some of the samples were also investigated by transmission electron microscopy. It was observed that the residual damage depends strongly on energy loss mechanism, and hence on the incident ion energy. At high incident energies solidification of latent tracks in UO{sub 2} leads to their polygonisation. Since the energy of 72 MeV is too low for latent track formation, the resulting damage is composed of dislocation and clusters and is similar to that created by the ion bombardment at low energies. The amount of defects was strongly enhanced by the interaction of ionised regions with collision cascades. (author) 14 refs, 4 figs

  17. Effect of ion bombardment on the surface morphology of Zn-films sputtered in an unbalanced magnetron

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J.; Matous, J.; Valvoda, V. [Academy of Sciences, Prague (Czech Republic). Inst. of Physics

    1995-02-01

    It is well known that magnetron sputtered films of low melting point T{sub m} materials have (due to their crystallisation at low substrate temperatures, T < 100{sup o}C) rough and diffusely reflecting surfaces, even when thin, for instance about 20 nm for In films. Only extremely thin films have a smooth and specular reflecting surface. This paper reports on the possibility of sputtering thick films of low T{sub m} materials with a smooth, optically specular reflecting surface using an unbalanced magnetron. To demonstrate this possibility, Zn films were studied and it was shown that a surface roughness of the film can be effectively controlled by ion bombardment of the film during growth. The smoothing of the Zn film does not depend on film thickness but on ion bombardment of the growing film. (author).

  18. Ion-Bombardment of X-Ray Multilayer Coatings - Comparison of Ion Etching and Ion Assisted Deposition

    NARCIS (Netherlands)

    Puik, E. J.; van der Wiel, M. J.; Zeijlemaker, H.; Verhoeven, J.

    1991-01-01

    The effects of two forms of ion bombardment treatment on the reflectivity of multilayer X-ray coatings were compared: ion etching of the metal layers, taking place after deposition, and ion bombardment during deposition, the so-called ion assisted deposition. The ion beam was an Ar+ beam of 200 eV,

  19. The effect of CH4/H2 ratio on the surface properties of HDPE treated by CHx ion beam bombardment

    Science.gov (United States)

    Ding, Wanyu; Guo, Yuanyuan; Ju, Dongying; Sato, Susumu; Tsunoda, Teruo

    2016-06-01

    The surface of high density polyethylene (HDPE) substrate was bombarded by the CHx group ion beam, which was generated by the mixture of CH4/H2. Varying the CH4/H2 ratio, HDPE surfaces with different chemical bond structures and properties were obtained. Raman and XPS results show that sp2 and sp3 bond structures are formed at HDPE surface bombarded by CHx group ions. The sp3 bond fraction at bombarded HDPE surface depends on the H2 ratio in CH4/H2 mixture, because the H ion/atom/molecule can improve the growth of sp3 bond structure. For HDPE surface bombarded by CH4/H2 = 50/50, sp3 bond fraction reaches the maximum of 30.5%, the surface roughness decreases to 17.04 nm, and the static contact angle of polar H2O molecule increased to 140.2∘.

  20. Effect of field cooling process and ion-beam bombardment on the exchange bias of NiCo/(Ni, Co)O bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Lin, K.-W., E-mail: kwlin@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Liu, H.-Y. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Wei, D.-H. [National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan (China); Li, G.J. [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Pong, P.W.T., E-mail: ppong@eee.hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong)

    2014-11-03

    The research on exchange coupled ferromagnetic/antiferromagnetic (FM/AF) bilayers has been the foundation of spintronic applications such as hard disk reading heads and spin torque oscillators. In order to further explore the exchange bias behavior of NiCo/(Ni, Co)O bilayers, effect of field cooling process, magnetic angular dependence, and ion-beam bombardment was investigated. The difference in film composition resulted in remarkable distinction in crystalline structures and domain patterns. The exchange bias field (H{sub ex}) in the bilayer systems exhibited a strong angular dependence. The negative H{sub ex} after a field cooling process indicated that the polarity of H{sub ex} can be defined by aligning the magnetization orientation of the FM NiCo layer with the applied field. Moreover, enhanced exchange bias effect was observed in the NiCo/(Ni, Co)O bilayers that resulted from the surface of the (Ni, Co)O layers bombarded with different Ar{sup +} ion-beam energies using End-Hall voltages from 0 V to 150 V. The interface spin structures as well as the surface domain patterns were altered by the ion-beam bombardment process. These results indicated that the exchange bias field of NiCo/(Ni, Co)O bilayer systems could be tailored by field cooling process, angular dependence of magnetic properties, and post ion-beam bombardment. - Highlights: • Strong angular dependence was observed in the exchange bias of NiCo/(Ni, Co)O bilayers. • The field cooling process resulted in negative exchange bias. • Moderate ion-beam bombardment on (NiCo)O layers enhanced exchange bias at 298 K. • High-energy ion bombardment strengthened the exchange coupling in field cooled bilayer. • The structural deformation was responsible for the change in magnetic properties.

  1. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  2. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  3. Effects of low energy ion bombardment on the formation of cubic iron mononitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Prieto, Pilar [Departamento de Física Aplicada M-12, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Figuera, Juan de la [Instituto de Química-Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid (Spain); Sanz, José M. [Departamento de Física Aplicada M-12, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Marco, José F. [Instituto de Química-Física “Rocasolano”, CSIC, Serrano 119, 28006 Madrid (Spain)

    2013-07-31

    The formation of cubic nitrides with stoichiometry close to FeN obtained by ion assisted sputter deposition has been studied as a function of deposition parameters. In particular, we have explored the influence of the energy deposited by the assistant beam per deposited Fe atom to understand changes in composition, phase formation and nanocrystallinity of the films. An optimum N{sub 2}{sup +} ion energy and a J{sub N}/J{sub Fe} ratio (J{sub N} and J{sub Fe} represent the current density of N{sub 2}{sup +} ions and Fe atoms respectively) have been determined in order to obtain only iron mononitride phases. X-ray diffraction and Mössbauer spectroscopy revealed a phase evolution from ε-Fe{sub x(x≈2)}N to γ″ and γ‴-FeN as the N{sub 2}{sup +} ion energy and the J{sub N}/J{sub Fe} flux ratio increase. Pure nanocrystalline iron mononitride, with nitrogen content close to 50%, is obtained when J{sub N}/J{sub Fe} ratio reaches 5.9 and the N{sub 2}{sup +} ion energy is 63.4 eV. Further increments of N{sub 2}{sup +} energies and J{sub N}/J{sub Fe} values reverse this behavior and a phase evolution from γ″ and γ‴-FeN to ε-Fe{sub x(x≈2)}N is found. This behavior is attributed to energy damage and resputtering phenomena. It has also been found that γ‴-FeN phase coexists with γ″-FeN phase when the deposition is performed at room temperature. - Highlights: • We have grown iron nitride FeN{sub x(0.6} {sub ≤x≤1)} thin films by dual ion beam sputtering. • Effects of N{sub 2}{sup +} ion assistance in the formation of Fe mononitride phases are studied. • Nanocrystalline Fe mononitride with a composition FeN{sub x≈1} is obtained. • A phase evolution ε → γ‴ + γ″ → ε is observed as E{sub Fe} increases. • γ‴-FeN phase coexists with γ″-FeN at room temperature deposition conditions.

  4. Evolution of clusters in energetic heavy ion bombarded amorphous graphite

    CERN Document Server

    Akhtar, M N; Ahmad, Shoaib

    2016-01-01

    Carbon clusters have been generated by a novel technique of energetic heavy ion bombardment of amorphous graphite. The evolution of clusters and their subsequent fragmentation under continuing ion bombardment is revealed by detecting various clusters in the energy spectra of the direct recoils emitted as a result of collision between ions and the surface constituents.

  5. Enhanced diffusion and precipitation in Cu: In alloys due to low energy ion bombardment

    Science.gov (United States)

    Rivaud, L.; Ward, I. D.; Eltoukhy, A. H.; Greene, J. E.

    1981-01-01

    The effects of low energy Ar + ion bombardment on supersaturated Cu: 10at%-In alloys at room temperature were investigated using scanning transmission electron microscopy and Auger electron spectroscopy. Both 1 and 3 keV Ar + bombardment resulted in the preferential sputter removal of In. The surface and altered layer remained supersaturated however, and ion bombardment enhanced diffusion was sufficient to allow the precipitation of In-rich δ-phase (~30 at% In) particles in the near-surface region. The average precipitate size and number density in samples bombarded with 3 keV Ar + ions were ~200 Å and 10 10 cm -2 as compared to 150 A and 10 9 cm -2 in samples bombarded at 1 keV. The ion bombardment induced precipitates nucleated within the grains rather than, as was observed for thermally induced precipitates, at grain boundaries.

  6. Channeling Effect in Polycrystalline Deuterium-Saturated CVD Diamond Target Bombarded by Deuterium Ion Beam

    CERN Document Server

    Bagulya, A V; Negodaev, M A; Rusetskii, A S; Chubenko, A P; Ralchenko, V G; Bolshakov, A P

    2014-01-01

    At the ion accelerator HELIS at the LPI, the neutron yield is investigated in DD reactions within a polycrystalline deuterium-saturated CVD diamond, during an irradiation of its surface by a deuterium ion beam with the energy less than 30 keV. The measurements of the neutron flux in the beam direction are performed in dependence on the target angle, \\b{eta}, with respect to the beam axis. These measurements are performed using a multichannel detector based on He3 counters. A significant anisotropy in neutron yield is observed, it was higher by a factor of 3 at \\b{eta}=0 compared to that at \\b{eta} = +-45{\\deg}. The possible reasons for the anisotropy, including ion channeling, are discussed.

  7. Angular distribution of Rh atoms desorbed from ion-bombarded Rh l brace 100 r brace : Effect of local environment

    Energy Technology Data Exchange (ETDEWEB)

    Maboudian, R.; Postawa, Z.; El-Maazawi, M.; Garrison, B.J.; Winograd, N. (Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (USA))

    1990-10-15

    Energy-resolved angular distributions of Rh atoms desorbed by 5 keV Ar-ion bombardment of the Rh{l brace}100{r brace} surface are measured with use of a multiphoton resonance ionization technique. The results are shown to be in good agreement with molecular-dynamics simulations of the ion-impact event using the same interaction potential optimized previously to describe desorption from Rh{l brace}111{r brace}. In addition, by analyzing contour plots of the surface potential energy, the trend in the experimental results for Rh{l brace}100{r brace} and those previously published for Rh{l brace}111{r brace} are well explained. Based on this analysis, it is concluded that the peak in the polar-angle distribution of neutral particles desorbed from ion-bombarded single crystals is mainly determined by the relative positions of surface atoms which influence the trajectory of an exiting particle via channeling and blocking. Moreover, the anisotropy of the momentum imparted to the surface atoms in the last collision leads to an enhancement of ejection along certain crystallographic directions.

  8. Ion-bombardment-induced reduction in vacancies and its enhanced effect on conductivity and reflectivity in hafnium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhiqing; Wang, Jiafu; Hu, Chaoquan; Zhang, Xiaobo; Dang, Jianchen; Gao, Jing; Zheng, Weitao [Jilin University, School of Materials Science and Engineering, Key Laboratory of Mobile Materials, MOE, and State Key Laboratory of Superhard Materials, Changchun (China); Zhang, Sam [Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Wang, Xiaoyi [Chinese Academy of Sciences, Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Changchun (China); Chen, Hong [Jilin University, Department of Control Science and Engineering, Changchun (China)

    2016-08-15

    Although the role of ion bombardment on electrical conductivity and optical reflectivity of transition metal nitrides films was reported previously, the results were controversial and the mechanism was not yet well explored. Here, we show that proper ion bombardment, induced by applying the negative bias voltage (V{sub b}), significantly improves the electrical conductivity and optical reflectivity in rocksalt hafnium nitride films regardless of level of stoichiometry (i.e., in both near-stoichiometric HfN{sub 1.04} and over-stoichiometric HfN{sub 1.17} films). The observed improvement arises from the increase in the concentration of free electrons and the relaxation time as a result of reduction in nitrogen and hafnium vacancies in the films. Furthermore, HfN{sub 1.17} films have always much lower electrical conductivity and infrared reflectance than HfN{sub 1.04} films for a given V{sub b}, owing to more hafnium vacancies because of larger composition deviation from HfN exact stoichiometry (N:Hf = 1:1). These new insights are supported by good agreement between experimental results and theoretical calculations. (orig.)

  9. Directional effect on coloration in LiF crystal by H{sup +} and H{sub 2}{sup +} ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Gan Mingle; Naramoto, Hiroshi; Aoki, Yasushi; Yamamoto, Shunya; Zeng Jianer; Takeshita, Hidefumi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    In the present paper, the first results are reported about the coloration in LiF crystals induced by bombardments of single hydrogen ions (H{sup +}) and molecular hydrogen ions (H{sub 2}{sup +}) with the same velocity under the <100> aligned and random conditions. For the single hydrogen ion irradiation, the coloration is rather simple. The F-type color center absorption under the <100> aligned condition becomes larger than that under the random condition with the dose increase because of larger fraction of electronic energy loss under channeling condition. On the contrary, the coloration for the molecular ions does not show big channeling effect. In the low dose region some difference can be seen but the difference of coloration is not observed any more with the dose increase. The pronounced coloration for molecular ions under the channeling condition is observed in comparison with that for single ions. (author)

  10. Oxidation of nickel surfaces by low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Saric, Iva [Faculty of Civil Engineering, University of Rijeka (Croatia); Center for Micro and Nano Sciences and Technologies, University of Rijeka (Croatia); Peter, Robert; Kavre, Ivna; Badovinac, Ivana Jelovica; Petravic, Mladen [Center for Micro and Nano Sciences and Technologies, University of Rijeka (Croatia); Department of Physics, University of Rijeka (Croatia)

    2016-03-15

    We have studied formation of oxides on Ni surfaces by low energy oxygen bombardment using X-ray photoemission spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). Different oxidation states of Ni ions have been identified in XPS spectra measured around Ni 2p and O 1s core-levels. We have compared our results with thermal oxidation of Ni and shown that ion bombardment is more efficient in creating thin oxide films on Ni surfaces. The dominant Ni-oxide in both oxidation processes is NiO (Ni{sup 2+} oxidation state), while some Ni{sub 2}O{sub 3} contributions (Ni{sup 3+} oxidation state) are still present in all oxidised samples. The oxide thickness of bombarded Ni samples, as determined by SIMS, was shown to be related to the penetration depth of oxygen ions in Ni.

  11. Molecular dynamics simulation of graphene bombardment with Si ion

    Science.gov (United States)

    Qin, Xin-Mao; Gao, Ting-Hong; Yan, Wan-Jun; Guo, Xiao-Tian; Xie, Quan

    2014-03-01

    Molecular dynamics simulations with Tersoff-Ziegler-Biersack-Littmark (Tersoff-ZBL) potential and adaptive intermolecular reactive empirical bond order (AIREBO) potential are performed to study the effect of irradiated graphene with silicon ion at several positions and energy levels of 0.1-1000 eV. The simulations reveal four processes: absorption, replacement, transmission and damage. At energies below 110 eV, the dominant process is absorption. For atom in group (a), the process that takes place is replacement, in which the silicon ion removes one carbon atom and occupies the place of the eliminated atom at the incident energy of 72-370 eV. Transmission is present at energies above 100 eV for atom in group (d). Damage is a very important process in current bombardment, and there are four types of defects: single vacancy, replacement-single vacancy, double vacancy and nanopore. The simulations provide a fundamental understanding of the silicon bombardment of graphene, and the parameters required to develop graphene-based devices by controlling defect formation.

  12. Scanning tunneling microscopy and spectroscopy of ion-bombarded Si(111) and Si(100) surfaces

    NARCIS (Netherlands)

    Zandvliet, H.J.W.; Elswijk, H.B.; Loenen, van E.J.; Tsong, I.S.T.

    1992-01-01

    Surfaces of Si(111)-(7×7) and Si(100)-(2×1) were bombarded by 3-keV Ar+ ions at doses of ≤1012 ions cm-2 to study the effect of individual ion impacts on the atomic structure of surfaces. Atom-resolved images show damaged regions of missing and displaced atoms. Current-imaging tunneling spectroscop

  13. IR and UV irradiations on ion bombarded polycrystalline silver

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Anwar, E-mail: anwarlatif@uet.edu.p [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan); Khaleeq-ur-Rahman, M.; Bhatti, K.A.; Rafique, M.S.; Rizvi, Z.H. [Department of Physics, University of Engineering and Technology, Lahore 54890 (Pakistan)

    2010-10-15

    Ion bombarded polycrystalline fine polished silver surfaces are exposed to Nd:YAG (1064 nm, 10 mJ, 12 ns) and KrF excimer (248 nm, 57 mJ, 20 ns) lasers to examine structural and morphological changes employing X-ray diffractometry and optical microscopy, respectively. Irradiation causes considerable changes in grain sizes. Hydrodynamic sputtering is found to be dominant in heat affected zones (HAZs). Craters with irregular boundary and non-uniform thermal conduction are resulted on laser ablated surfaces of ion bombarded specimens. No disturbance takes place in the d-spacing of the planes of irradiated samples.

  14. Fluence and fluence rate effects on electrical conductivity and shrinkage in polyimide bombarded by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Trigaud, T. [LEPOFI, Faculte des Sci., Limoges (France); Moliton, J.P. [LEPOFI, Faculte des Sci., Limoges (France); Jussiaux, C. [LEPOFI, Faculte des Sci., Limoges (France); Maziere, B. [LEPOFI, Faculte des Sci., Limoges (France)

    1996-02-01

    When the ion fluence is increasing, a diminishing of the thickness and a rise in electrical conductivity can be simultaneously observed with polyimide films. However, in the 100 keV energy range, a saturation limit appears in both processes. Two experimental processes are presented to increase the conductivity limit ({approx_equal}10{sup -1} S cm{sup -1} with N{sup +} ions), while the shrinkage effect is maintained or even reduced. (1) Multiple irradiations of N{sup +} ions implemented from high to low energies induce tenfold increase in conductivity, and stop the thickness decrease beyond a fluence threshold. (2) Liquid-metal ion sources (LMIS) with Ga{sup +} ions (keV) perform high conductivities (above 300 S cm{sup -1}) without notable shrinkage. (orig.).

  15. Low energy ion bombardment enhanced diffusion, segregation, and phase transformations in Cu:In alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rivaud, L.; Eltoukhy, A.H.; Greene, J.E. (Illinois Univ., Urbana (USA). Materials Research Lab.; Illinois Univ., Urbana (USA). Coordinated Science Lab.; Illinois Univ., Urbana (USA). Dept. of Metallurgy and Mining Engineering)

    1982-04-01

    Scanning transmission electron microscopy and Auger electron spectroscopy were used to investigate the effects of low energy Ar/sup +/ ion bombardment of supersaturated Cu:In alloys. Ion bombardment always resulted in the preferential sputtering of In although for sample temperatures Tsub(s) approximately > 250/sup 0/C, In loss due to preferential sputtering was increasingly compensated by radiation enhanced surface segregation. At room temperature, the steady state In concentration in the altered layer during irradiation remained supersaturated and enhanced diffusion to ion bombardment-created point defect sinks resulted in the volume precipitation of randomly dispersed In-rich delta phase particles in the near-surface region. Thermally induced precipitates nucleated only at grain boundaries and were only observed at Tsub(s) >= 250/sup 0/C. The average size and number density of radiation-induced precipitates increased with increasing ion bombardment energy Esub(f). Upon termination of ion bombardment at Tsub(s) >= 250/sup 0/C, the In surface concentration always returned to approximately 30 at%. The recovery time for this process decreased with increasing Tsub(s) and Esub(f) due to fast diffusion through near-surface regions containing residual damage such as dislocation loops. The measured widths of the compositionally altered layers were on the order of the ion penetration range.

  16. Nanometer-scale sharpening and surface roughening of ZnO nanorods by argon ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Shyamal, E-mail: shyamal@iitbbs.ac.in [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Behera, Akshaya K. [School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751013 (India); Banerjee, Amarabha; Tribedi, Lokesh C. [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India); Som, Tapobrata [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Ayyub, Pushan, E-mail: pushan@tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2012-07-01

    We report the effects of exposing a hydrothermally grown, single crystalline ZnO nanorod array to a beam of 50 keV argon ions at room temperature. High resolution electron microscopy reveals that the ion bombardment results in a nanometer-scale roughening of the nanorod sidewalls, which were almost atomically flat in the pristine sample. Ion bombardment further causes the flat, Almost-Equal-To 100 nm diameter nanorod tips to get sharpened to ultrafine points less than 10 nm across. While tip sharpening is attributed to preferential sputtering, the formation of crystalline surface protuberances can be ascribed to surface instability due to curvature dependent sputtering and surface diffusion under argon-ion bombardment. Both the nanoscale roughening as well as the tip sharpening are expected to favorably impact a wide variety of applications, such as those involving catalysis, gas sensing, solar cells, field emission and gas discharge.

  17. Cluster primary ion bombardment of organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kollmer, F

    2004-06-15

    In order to evaluate their potential for molecular surface analysis, we applied monoatomic (Ga, Cs, Au, Bi) as well as polyatomic (SF{sub 5}, Au{sub n}, Bi{sub n}, C{sub 60}) primary ions to a series of organic samples. For the model system Irganox 1010 on LDPE we determined the secondary ion yield, the disappearance cross section and the resulting ion formation efficiency as a function of the primary ion energy. As a general result the efficiency is improved with the mass of the monoatomic primary ion. A further increase is obtained by the use of polyatomic primary ions. According to this, highest efficiencies are obtained for C{sub 60}, the lowest for Ga. Additionally, molecular imaging was performed on real world samples (electronic components, pharmaceuticals): for this a cluster LMIS operated with Ga, AuGe or Bi was applied. The results reveal the potential of cluster SIMS to overcome existing limitations and to establish TOF-SIMS for new applications in the fields of polymers, biology and medicine.

  18. Cluster primary ion bombardment of organic materials

    Science.gov (United States)

    Kollmer, F.

    2004-06-01

    In order to evaluate their potential for molecular surface analysis, we applied monoatomic (Ga, Cs, Au, Bi) as well as polyatomic (SF 5, Au n, Bi n, C 60) primary ions to a series of organic samples. For the model system Irganox 1010 on LDPE we determined the secondary ion yield, the disappearance cross section and the resulting ion formation efficiency as a function of the primary ion energy. As a general result the efficiency is improved with the mass of the monoatomic primary ion. A further increase is obtained by the use of polyatomic primary ions. According to this, highest efficiencies are obtained for C 60, the lowest for Ga. Additionally, molecular imaging was performed on real world samples (electronic components, pharmaceuticals): for this a cluster LMIS operated with Ga, AuGe or Bi was applied. The results reveal the potential of cluster SIMS to overcome existing limitations and to establish TOF-SIMS for new applications in the fields of polymers, biology and medicine.

  19. Valence-band states of ion-bombarded polystyrene

    Energy Technology Data Exchange (ETDEWEB)

    Terrasi, A. (Istituto di Metodologie e Tecnologie per la Microelettronica, CNR, Corso Italia 57, 95129 Catania, Italy (IT)); Foti, G. (Dipartimento di Fisica, Universita di Catania, Corso Italia 57, 95129 Catania, (Italy)); Hwu, Y. (Synchrotron Radiation Center, University of Wisconsin-Madison, 3731 Schneider Drive, Stoughton, Wisconsin 53589-3097 (USA)); Margaritondo, G. (Ecole Polytechnique Federale de Lausanne, Department de Physique, PHB-Ecublens, CH 1015 Lausanne, (Switzerland))

    1991-08-01

    Ion-bombarded polystyrene with a 0.5-keV Ar{sup +} beam has been investigated by means of photoelectron spectroscopy performed with synchrotron radiation. After a dose of 10{sup 15} ions/cm{sup 2} the evolution of the valence band of the bombarded sample towards an amorphous carbonlike configuration is reported. From the analysis of valence-band spectra we estimated the out-diffusion of hydrogen and showed that its electronic states remain well identified and stable until the hydrogen presence is about 35% with respect to the pristine sample. Finally, comparison with mass spectroscopy measurements on deuterated polystyrene has been performed to determine hydrogen evolution during the ion irradiation.

  20. Defect Accumulation and Its Effect on Photoluminescence in GaN Bombarded with Low-energy Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    ZhangChonghong; SongYin; DuanJinglai; SunYoumei; YaoCunfeng; MaHongji; NieRui; T.Shibayama; HongChen

    2003-01-01

    Gallium Nitride (GaN) is an important material for the development of novel short-wave-length photonicdevices or high-frequency, high-power electronic devices. Ion implantation/irradiation was proved to be an effective method to modify the physical properties of the material. In the present work, we studied the dependence of damage accumulation on irradiation dose and temperature and the corresponding effects on photolumines cence character of the material. Specimens of GaN (n-type doping, (0001) on axis) were irradiated with 56Fe+

  1. Thermo-mechanical design aspects of mercury bombardment ion thrusters.

    Science.gov (United States)

    Schnelker, D. E.; Kami, S.

    1972-01-01

    The mechanical design criteria are presented as background considerations for solving problems associated with the thermomechanical design of mercury ion bombardment thrusters. Various analytical procedures are used to aid in the development of thruster subassemblies and components in the fields of heat transfer, vibration, and stress analysis. Examples of these techniques which provide computer solutions to predict and control stress levels encountered during launch and operation of thruster systems are discussed. Computer models of specific examples are presented.

  2. Influence of ion beam bombardment on surface roughness of K9 glass substrate

    Science.gov (United States)

    Pan, Yongqiang; Huang, Guojun; Hang, Lingxia

    2010-10-01

    Ion beam bombardment optical substrate surface has become an important part of process of optical thin films deposition. In this work, the K9 optical glass is bombarded by the broad beam cold cathode ion source. The dependence of the K9 glass surface roughness on the ion beam bombardment time, the ion energy, the distance and incident angle are all investigated, respectively. Surface roughness of K9 glass is measured using Talysurf CCI. The experimental results show that when the ion energy is 800ev, the bombardment distance of 20cm, with the ion beam bombardment time increased, the K9 substrate surface roughness first increase and then decrease. When the ion beam bombardment distance is 20cm, bombardment time is 10min, with the bombardment energy increases, substrate surface roughness increase first and then decrease, especially in the ion energy greater than 1200ev, the optical substrate surface roughness rapidly increases. When the ion energy is 800 eV, bombardment time is 10min, with the bombardment distance increase, substrate surface roughness decrease gradually. Furthermore, the incident angle of ion beam plays an important role in improving the K9 glass surface roughness.

  3. The effect of working pressure on the chemical bond structure and hydrophobic properties of PET surface treated by N ion beams bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Ding Wanyu, E-mail: dwysd_2000@163.com [Engineering Research Center of Optoelectronic Materials and Devices Education Department of Liaoning Province, Dalian, 116028 (China) and School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028 (China) and Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian, 116024 (China); Ju Dongying, E-mail: dyju@sit.ac.jp [Department of Material Science and Engineering, Saitama Institute of Technology Fukaya, 369-0293 (Japan); Chai Weiping, E-mail: wpchai@djtu.edu.cn [Engineering Research Center of Optoelectronic Materials and Devices Education Department of Liaoning Province, Dalian, 116028 (China); School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, 116028 (China)

    2010-09-01

    Polyethylene terephthalate (PET) surface was bombarded by N ion beams at room temperature. Varying the working pressure of the ion beams, PET surfaces with different composition and properties were obtained. Characterization by X-ray photoelectron spectrometry showed that only on film surface, ester bonds, especially C-O bonds, were broken and N element chemical bonded with C. The influence depth was less than 5 nm because of the lower ion energy (about 10{sup 3} eV). Contact angle results revealed that with increasing the working pressure of ion beams, the contact angle of PET surface to pure water increased from 51 deg. to 130 deg.. With these results, one conclusion could be deduced that the hydrophilic and hydrophobic properties of PET surface could be influenced by N atom chemical bond with C, which in turn is controlled by the working pressure of N ion beams.

  4. Blistering and flaking of amorphous alloys bombarded with He ions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The blistering and flaking behavior of many kinds of amorphous al loys under helium ion bombardment at room temperature was investigated. Helium ions with energies of 40keV and 60keV were implanted within the fluence range (1.0~4.0)×1018ions/cm2. The surface topography of samples after irradiation was observed by using a scanning electron microscope. The diameter of blister and the thickness of exfoliated blister lids were measured. The results showed that many kinds of surface topography characteristics appeared for different fluences, energies and amorphous alloys, such as flaking, blistering, exfoliation, blister rupture, secondgeneration blistering and porous structure. The dependdence of surface damage modesand the critical fluence for the onset of blistering and flaking on the sort of materials and ion energy was discussed.

  5. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Evans, L; Kollmus, H; Küchler, D; Scrivens, R; Severin, D; Wengenroth, M; CERN. Geneva. ATS Department

    2011-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and goldcoated copper, were bombarded under perpendicular impact with 4.2 MeV/u Pb54+ ions. Partial pressure rises of H2, CH4, CO, and CO2 and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  6. Residual stress in nano-structured stainless steel (AISI 316L) prompted by Xe+ ion bombardment at different impinging angles

    Science.gov (United States)

    Cucatti, S.; Droppa, R.; Figueroa, C. A.; Klaus, M.; Genzel, Ch.; Alvarez, F.

    2016-10-01

    The effect of low energy (316L steel) is reported. The results take into account the influence of the ion incident angle maintaining constant all other bombarding parameters (i.e., ion energy and current density, temperature, and doses). The bombarded surface topography shows that ions prompt the formation of nanometric regular patterns on the surface crystalline grains and stressing the structure. The paper focalizes on the study of the surface residual stress state stemming from the ion bombardment studied by means of the "sin2 ψ" and "Universal Plot" methods. The analysis shows the absence of shear stress in the affected material region and the presence of compressive in-plane residual biaxial stress (˜200 MPa) expanding up to ˜1 μm depth for all the studied samples. Samples under oblique bombardment present higher compressive stress values in the direction of the projected ion beam on the bombarded surface. The absolute value of the biaxial surface stress difference (σ11-σ22) increases on ion impinging angles, a phenomenon associated with the momentum transfer by the ions. The highest stress level was measured for ion impinging angles of 45° ( σ 11 = -380 ± 10 MPa and σ 22 = -320 ± 10 MPa). The different stresses obtained in the studied samples do not affect significantly the formation of characteristic surface patterns.

  7. CEMS studies of structural modifications of metallic glasses by ion bombardment

    Science.gov (United States)

    Miglierini, M.; Lančok, A.; Pavlovič, M.

    2010-05-01

    Fe76Mo8Cu1B15 and Fe74Nb3Cu1Si16B6 amorphous metallic alloys were exposed to ion bombardment with nitrogen ions and protons to ensure different degree of radiation damage. The radiation damage profiles were calculated in the “full cascade” mode. Conversion electron Mössbauer spectrometry was employed to scan structural modifications in the surface regions of the irradiated alloys. In Fe76Mo8Cu1B15, the irradiation with 130 keV N+ has caused a significant increase of the hyperfine magnetic fields and isomer shift due to changes in topological and chemical short-range order (SRO), respectively. No appreciable effects were revealed after bombardment with 80 keV H+ ions. Fe74Nb3Cu1Si16B6 amorphous metallic alloy was irradiated by 110 keV N+ and 37 keV H+ and only changes in chemical SRO were revealed after bombardment with nitrogen ions. The observed alternations of the structure depend primarily on the total number of displacements of the resonant atoms which are closely related to the fluence as well as type and energy of the incident ions.

  8. Optical absorption enhancement of CdTe nanostructures by low-energy nitrogen ion bombardment

    Science.gov (United States)

    Akbarnejad, E.; Ghoranneviss, M.; Mohajerzadeh, S.; Hantehzadeh, M. R.; Asl Soleimani, E.

    2016-02-01

    In this paper we present the fabrication of cadmium telluride (CdTe) nanostructures by means of RF magnetron sputtering followed by low-energy ion implantation and post-thermal treatment. We have thoroughly studied the structural, optical, and morphological properties of these nanostructures. The effects of nitrogen ion bombardment on the structural parameters of CdTe nanostructures such as crystal size, microstrain, and dislocation density have been examined. From x-ray diffractometer (XRD) analysis it could be deduced that N+ ion fluence and annealing treatment helps to form (3 0 0) orientation in the crystalline structure of cadmium-telluride films. Fluctuations in optical properties like the optical band gap and absorption coefficient as a function of N+ ion fluences have been observed. The annealing of the sample irradiated by a dose of 1018 ions cm-2 has led to great enhancement in the optical absorption over a wide range of wavelengths with a thickness of 250 nm. The enhanced absorption is significantly higher than the observed value in the original CdTe layer with a thickness of 3 μm. Surface properties such as structure, grain size and roughness are noticeably affected by varying the nitrogen fluences. It is speculated that nitrogen bombardment and post-annealing treatment results in a smaller optical band gap, which in turn leads to higher absorption. Nitrogen bombardment is found to be a promising method to increase efficiency of thin film solar cells.

  9. Ion bombardment effects on nucleation of sputtered Mo nano-crystals in Mo/B4C/Si multilayers

    NARCIS (Netherlands)

    Patelli, A.; Rigato, V.; Salmaso, G.; Carvalho, N. J. M.; De Hosson, J. Th. M.; Bontempi, E.; Depero, L. E.

    2006-01-01

    Over recent years, the introduction of Mo/Si multilayers mirrors with different barrier layers for the interfaces has allowed increasing mirror reflectance, life and temperature stability. The effects of these very thin barrier layers on multilayer growth, such as interlayer formation and Mo crystal

  10. Sputtering of W-Mo alloy under ion bombardment

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The distribution of plasma density in the vicinity of the W-Mo alloy source in the process of dou ble-glow discharge plasma surface alloying was diagnosed using the moveable Langmuir probe. The sputtering law, surface composition and morphological variation of the W-Mo alloy source was studied. The experimental results show that there exists obvious preferential sputtering on the surface of the W-Mo alloy source under the argon ion bombardment; the stable period is reached after a transitional period, and the preferential sputtering occurs in a definite range of composition(mole fraction): 70 % ~ 75 % Mo, 22 % ~ 25 % W; there appears segregation on the surface of the W-Mo alloy source.

  11. The influence of primary ion bombardment conditions on the secondary ion emission behavior of polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, R.; Hagenhoff, B.; Pijpers, P.; Verlaek, R

    2003-01-15

    The secondary ion (SI) emission behavior of pure polymer systems is meanwhile well understood. However, common plastics not only consist of the polymer host material but also contain a variety of additives normally present in low concentrations only. In order to better understand the parameters governing the SI emission of these trace compounds we performed a systematic study on the influence of the analysis parameters (primary ion (PI) type, PI energy, electron bombardment for charge compensation, etc.) using model systems. Samples were prepared by spin coating (sub)monolayers of Irganox 1010 onto additive-free low density polyethylene (LDPE). The SI parameters yield, disappearance cross-section and efficiency (yield per damaged area) were determined for PI bombardment with Ga{sup +}, Cs{sup +}, and SF{sub 5}{sup +}. Furthermore the damaging influence of electron bombardment for charge compensation on the organic surface layers was investigated.

  12. The influence of primary ion bombardment conditions on the secondary ion emission behavior of polymer additives

    Science.gov (United States)

    Kersting, R.; Hagenhoff, B.; Pijpers, P.; Verlaek, R.

    2003-01-01

    The secondary ion (SI) emission behavior of pure polymer systems is meanwhile well understood. However, common plastics not only consist of the polymer host material but also contain a variety of additives normally present in low concentrations only. In order to better understand the parameters governing the SI emission of these trace compounds we performed a systematic study on the influence of the analysis parameters (primary ion (PI) type, PI energy, electron bombardment for charge compensation, etc.) using model systems. Samples were prepared by spin coating (sub)monolayers of Irganox 1010 onto additive-free low density polyethylene (LDPE). The SI parameters yield, disappearance cross-section and efficiency (yield per damaged area) were determined for PI bombardment with Ga +, Cs +, and SF 5+. Furthermore the damaging influence of electron bombardment for charge compensation on the organic surface layers was investigated.

  13. Particle-In-Cell/Monte Carlo Simulation of Ion Back Bombardment in Photoinjectors

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, Ji; Corlett, John; Staples, John

    2009-03-02

    In this paper, we report on studies of ion back bombardment in high average current dc and rf photoinjectors using a particle-in-cell/Monte Carlo method. Using H{sub 2} ion as an example, we observed that the ion density and energy deposition on the photocathode in rf guns are order of magnitude lower than that in a dc gun. A higher rf frequency helps mitigate the ion back bombardment of the cathode in rf guns.

  14. Amorphization of silicon by bombardment with oxygen ions of energy below 5 keV

    Energy Technology Data Exchange (ETDEWEB)

    Zhukovskii, P.V.; Stel' makh, V.F.; Tkachev, V.D.

    1977-04-01

    Silicon was bombarded with /sup 16/O/sup +/ ions of 1.0 and 3.0 keV energies at room temperature. This bombardment created point defects which joined up to form amorphous layers about 100 A thick. (AIP)

  15. Ionic bombardment of stainless steel by nitrogen and nickel ions immersion

    Institute of Scientific and Technical Information of China (English)

    XIONG Ling; HU Yong-jun; XU jian; MENG Ji-long

    2008-01-01

    A new nitriding process was used to carry out the ionic bombardment, in which nickel ion was introduced. The microstructure, composition and properties of the treated stainless steel were studied by means of scanning electron microscopy(SEM), micro-hardness test and electrochemistry method. The results show that the hardness of the stainless steel is greatly increased after ionic bombardment under nitrogen and nickel ions immersion. Vickers' hardness as high as Hv1268 is obtained. The bombarded stainless steel is of a little reduction in corrosion resistance, as compared with the original stainless steel. However, as compared with the traditional ion-nitriding stainless steel, the corrosion resistance is greatly improved.

  16. Mechanisms of ion-bombardment-induced DNA transfer into bacterial E. coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@thep-center.org [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Faculty of Science, Maejo University, Chiang Mai 50290 (Thailand); Phanchaisri, B. [Institute of Science and Technology Research, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thopan, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Singkarat, S. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S. [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion bombardment could induce DNA transfer into E. coli cells. • The DNA transfer induction depended on ion energy and fluence. • The mechanism was associated with the bacterial cell envelope structure. • A mechanism phase diagram was proposed to summarize the mechanism. - Abstract: As a useful ion beam biotechnology, ion-bombardment-induced DNA transfer into bacterial Escherichia coli (E. coli) cells has been successfully operated using argon ions. In the process ion bombardment of the bacterial cells modifies the cell envelope materials to favor the exogenous DNA molecules to pass through the envelope to enter the cell. The occurrence of the DNA transfer induction was found ion energy and fluence dependent in a complex manner. At ion energy of a few keV and a few tens of keV to moderate fluences the DNA transfer could be induced by ion bombardment of the bacterial cells, while at the same ion energy but to high fluences DNA transfer could not be induced. On the other hand, when the ion energy was medium, about 10–20 keV, the DNA transfer could not be induced by ion bombardment of the cells. The complexity of the experimental results indicated a complex mechanism which should be related to the complex structure of the bacterial E. coli cell envelope. A phase diagram was proposed to interpret different mechanisms involved as functions of the ion energy and fluence.

  17. Tailoring surface properties of polymeric blend material by ion beam bombardment

    Science.gov (United States)

    Ali, Z. I.; Abdul-Kader, A. M.; Rizk, R. A. M.; Ali, M.

    2013-10-01

    In this work, LDPE/SBR polymer blend samples were bombarded with 130 keV He and 320 keV Ar ions at different fluencies ranging from 1×1013 to 2×1016 ions cm-2. The changes in surface properties of the ion-bombarded polymers were investigated with ultraviolet-visible (UV-vis) spectroscopy, Photoluminescence (PL) and energy dispersive X-ray (EDX) techniques. The variations in the wettability, surface free energy and spreading coefficient of ion beam bombarded LDPE polymer blend samples have been studied. The UV-vis analysis revealed that the transmission spectra shifted towards lower energy region after bombardment with increasing ion fluence. This shift clearly reflects decrease in optical band gap. A remarkable decrease in the PL intensity with increasing ion beam fluence was observed. The EDX study indicates the oxygen uptake increases with increasing ion fluence. Contact angle measurements showed that wettability, surface free energy and spreading coefficient of LDPE blends samples have increased with increasing ion fluence. This increase in the wettability and surface free energy of the bombarded samples are attributed to formation of oxidized layer on the polymer surface, which apparently occurs after exposure of bombarded samples to the air.

  18. Influence of primary ion bombardment conditions on the emission of molecular secondary ions

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, R.; Hagenhoff, B.; Kollmer, F.; Moellers, R.; Niehuis, E

    2004-06-15

    In order to further our understanding of the secondary ion emission behavior from organic surfaces, we have performed a systematic study on the influence of the primary ion parameters. As model sample Irganox 1010 on low density polyethylene (LDPE) was used. Both monoatomic (Ga, Cs, Au) and polyatomic (Au{sub 2}, Au{sub 3}, SF{sub 5}, C{sub 60}) primary ions were used. Additionally, the primary ion energy was varied. The data were evaluated by calculating secondary ion yields, disappearance cross sections and ion formation efficiencies (yield/damage cross section). The results show that heavier monoatomic ions are more efficient than lighter ones and that polyatomic primary ions are more efficient than monoatomic ones. Highest efficiency values are found for C{sub 60} bombardment at 20 keV. Compared to Ga bombardment the efficiency gain in this case is more than 2000-fold. Additionally it can be shown that the higher efficiency is correlated with a softer ionization, i.e. less fragmentation. The results suggest a much more homogeneous energy distribution in the sample surface by polyatomic primary ions compared to monoatomic ones.

  19. Influence of primary ion bombardment conditions on the emission of molecular secondary ions

    Science.gov (United States)

    Kersting, R.; Hagenhoff, B.; Kollmer, F.; Möllers, R.; Niehuis, E.

    2004-06-01

    In order to further our understanding of the secondary ion emission behavior from organic surfaces, we have performed a systematic study on the influence of the primary ion parameters. As model sample Irganox 1010 on low density polyethylene (LDPE) was used. Both monoatomic (Ga, Cs, Au) and polyatomic (Au 2, Au 3, SF 5, C 60) primary ions were used. Additionally, the primary ion energy was varied. The data were evaluated by calculating secondary ion yields, disappearance cross sections and ion formation efficiencies (yield/damage cross section). The results show that heavier monoatomic ions are more efficient than lighter ones and that polyatomic primary ions are more efficient than monoatomic ones. Highest efficiency values are found for C 60 bombardment at 20 keV. Compared to Ga bombardment the efficiency gain in this case is more than 2000-fold. Additionally it can be shown that the higher efficiency is correlated with a softer ionization, i.e. less fragmentation. The results suggest a much more homogeneous energy distribution in the sample surface by polyatomic primary ions compared to monoatomic ones.

  20. Influence of the ion bombardment of O{sub 2} plasmas on low-k materials

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, Patrick, E-mail: verdonck@imec.be [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Samara, Vladimir [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Open University, Materials Engineering, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Goodyear, Alec [Open University, Materials Engineering, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Ferchichi, Abdelkarim; Van Besien, Els; Baklanov, Mikhail R. [IMEC, Kapeldreef 75, 3001 Leuven (Belgium); Braithwaite, Nicholas [Open University, Department of Physics and Astronomy, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2011-10-31

    In this study, special tests were devised in order to investigate the influence of ion bombardment on the damage induced in low-k dielectrics by oxygen plasmas. By placing a sample that suffered a lot of ion bombardment and one which suffered little ion bombardment simultaneously in the same plasma, it was possible to verify that ion bombardment in fact helped to protect the low-k film against oxygen plasma induced damage. Exhaustive analyses (ellipsometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, porosimetry, capacitance-voltage (C-V) measurements, water contact angle analysis) show that ion bombardment induced the formation of a denser top layer in the film, which then hampered further penetration of active oxygen species deeper into the bulk. This was further confirmed by other tests combining capacitively and inductively coupled plasmas. Therefore, it was possible to conclude that, at least for these plasmas, ion bombardment may help to reduce plasma induced damage to low-k materials.

  1. Molecular dynamic simulation of secondaryion ion emission from an Al sample bombarded with MeV heavy ions

    Institute of Scientific and Technical Information of China (English)

    薛建明; 今西信嗣

    2002-01-01

    Sputtering yields and kinetic energy distributions (KED) of Al atomic ions ejected from a pure aluminium sampleunder MeV silicon ion bombardment were simulated with the molecular dynamic method. Since the electronic energyloss Se is much higher than the nuclear energy loss Sn when the incident ion energy is as high as several MeV, the Seeffect was also taken into consideration in the simulation. It was found that the simulated sputtering yield fits well withthe experimental data and the electronic energy loss has a slight effect at incident ion energies higher than 4 MeV. Thesimulated secondary ion KED spectrum is a little lower in the peak energy and narrower in the peak width than thatin the experiment.

  2. Ion bombardment induced morphology modifications on self-organized semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, C. E-mail: christian.hofer@unileoben.ac.at; Abermann, S.; Teichert, C.; Bobek, T.; Kurz, H.; Lyutovich, K.; Kasper, E

    2004-02-01

    The successful generation of well ordered nanopatterns on III-V semiconductor surfaces by ion erosion initiated attempts to obtain similar effects on silicon surfaces. High resolution atomic-force microscopy (AFM) is used to quantify the morphological changes of self-organized silicon/germanium films on Si(0 0 1) during ion bombardment. A nanofaceted SiGe film exhibiting a checkerboard array of {l_brace}1 0 5{r_brace} faceted pyramids and pits was eroded by Ar{sup +} ions of 100-1000 eV under normal incidence. Two characteristic energy regimes have been found. For ion energies below 750 eV the pyramidal pits transform into shallow troughs before smaller craters form. At ion energies of 750 eV and above, a significant smoothening of the surface was observed, finally resulting in a vanishing of the pattern. The influence of the initial pattern and the ion energy on the morphological changes are compared for different SiGe-films. Since at low ion energies the checkerboard array of {l_brace}1 0 5{r_brace} pyramids and pits could be transferred into the silicon substrate this procedure illustrates an alternative way to nanostructure silicon surfaces by ion erosion.

  3. Enhanced End-Contacts by Helium Ion Bombardment to Improve Graphene-Metal Contacts

    Directory of Open Access Journals (Sweden)

    Kunpeng Jia

    2016-08-01

    Full Text Available Low contact resistance between graphene and metals is of paramount importance to fabricate high performance graphene-based devices. In this paper, the impact of both defects induced by helium ion (He+ bombardment and annealing on the contact resistance between graphene and various metals (Ag, Pd, and Pt were systematically explored. It is found that the contact resistances between all metals and graphene are remarkably reduced after annealing, indicating that not only chemically adsorbed metal (Pd but also physically adsorbed metals (Ag and Pt readily form end-contacts at intrinsic defect locations in graphene. In order to further improve the contact properties between Ag, Pd, and Pt metals and graphene, a novel method in which self-aligned He+ bombardment to induce exotic defects in graphene and subsequent thermal annealing to form end-contacts was proposed. By using this method, the contact resistance is reduced significantly by 15.1% and 40.1% for Ag/graphene and Pd/graphene contacts with He+ bombardment compared to their counterparts without He+ bombardment. For the Pt/graphene contact, the contact resistance is, however, not reduced as anticipated with He+ bombardment and this might be ascribed to either inappropriate He+ bombardment dose, or inapplicable method of He+ bombardment in reducing contact resistance for Pt/graphene contact. The joint efforts of as-formed end-contacts and excess created defects in graphene are discussed as the cause responsible for the reduction of contact resistance.

  4. Diffusion enhancement due to low-energy ion bombardment during sputter etching and deposition

    Science.gov (United States)

    Eltoukhy, A. H.; Greene, J. E.

    1980-08-01

    The effects of low-energy ion bombardment on enhancing elemental diffusion rates at both heterojunction interfaces during film deposition and over the compositionally altered layer created during sputter etching alloy targets have been considered. Depth dependent enhanced interdiffusion coefficients, expressed as D*(x)=D*(0) exp(-x/Ld), where D*(0) is more than five orders of magnitude greater than thermal diffusion values, were measured in InSb/GaSb multilayer structures deposited by multitarget bias sputering. D*(0) was determined from the amplitude u of the compositional modulation in the multilayered films (layer thicknesses between 20 and 45 Å) as measured by superlattice x-ray diffraction techniques. The value of D*(0) was found to increase from 3×10-17 to 1×10-16 cm2/sec as the applied substrate bias was increased from 0 to -75 V. However even at Va=0, the diffusion coefficient was enhanced owing to an induced substrate potential with respect to the positive space-charge region in the Ar discharge. The diffusion length of Ld of the ion bombardment created defects was ˜1000 Å. Enhanced diffusion also has a significiant effect on the altered layer thickness xe and the total sputtering time te (or ion dose) required to reach steady state during ion etching of multielement targets. The effects of using an exponentially depth dependent versus a constant value of the enhanced diffusion coefficient on calculated values of xe and te in single-phase binary alloys were considered. The results show that both xe and te are considerably larger using a depth dependent D*(x), when Ld

  5. On the origin of microcraters on the surface of ion beam bombarded plant cell walls

    Science.gov (United States)

    Salvadori, M. C.; Teixeira, F. S.; Brown, I. G.

    2006-01-01

    Ion bombardment of plant and bacterial cellular material has recently been used as a tool for the transfer of exogenous DNA macromolecules into the cell interior region. The precise mechanism that leads to the transfer of macromolecules through the cell envelope is not yet clear, however it has been observed that the ion bombardment is accompanied by the formation of "microcraters" on the cell wall, and it is possible that these features provide channels for the macromolecule transfer. Thus the nature and origin of the microcraters is of importance to understanding the DNA transfer phenomenon as well as being of fundamental interest. We report here on some scanning electron microscope observations we have made of onion skin cells that have been subjected to electron beam bombardment of sufficiently high power density to damage the cell wall. The damage seen is much less than and different from the microcraters formed subsequent to ion bombardment. We speculate that the microcraters may originate from the explosive release of gas generated in the biomaterial by ion bombardment.

  6. Alteration of the UV-visible reflectance spectra of H2O ice by ion bombardment

    Science.gov (United States)

    Sack, N. J.; Boring, J. W.; Johnson, R. E.; Baragiola, R. A.; Shi, M.

    1991-01-01

    Satellite in the Jovian and Saturnian system exhibit differences in reflectivity between their 'leading' and 'trailing' surfaces which can affect the local vapor pressure. Since these differences are thought to be due to differences in the flux of bombarding magnetospheric ions, the influence of ion impact on the UV-visible reflectance of water ice surfaces (20-90 K) by keV ion bombardment was studied. An observed decrease in reflectance in the UV is attributed to rearrangement processes that affect the physical microstructure and surface 'roughness'. The ratio in reflectance of bombarded to freshly deposited films is compared to the ratio of the reflectance of the leading and trailing hemispheres for Europa and Ganymede.

  7. Alteration of the UV-visible reflectance spectra of H2O ice by ion bombardment

    Science.gov (United States)

    Sack, N. J.; Boring, J. W.; Johnson, R. E.; Baragiola, R. A.; Shi, M.

    1991-01-01

    Satellite in the Jovian and Saturnian system exhibit differences in reflectivity between their 'leading' and 'trailing' surfaces which can affect the local vapor pressure. Since these differences are thought to be due to differences in the flux of bombarding magnetospheric ions, the influence of ion impact on the UV-visible reflectance of water ice surfaces (20-90 K) by keV ion bombardment was studied. An observed decrease in reflectance in the UV is attributed to rearrangement processes that affect the physical microstructure and surface 'roughness'. The ratio in reflectance of bombarded to freshly deposited films is compared to the ratio of the reflectance of the leading and trailing hemispheres for Europa and Ganymede.

  8. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2  MeV/u lead ions

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2011-05-01

    Full Text Available The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and gold-coated copper, were bombarded under perpendicular impact with 4.2  MeV/u Pb^{54+} ions. Partial pressure rises of H_{2}, CH_{4}, CO, and CO_{2} and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  9. Cosmic ion bombardment of the icy moons of Jupiter

    Energy Technology Data Exchange (ETDEWEB)

    Strazzulla, G., E-mail: gianni@oact.inaf.i [INAF-Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania (Italy)

    2011-05-01

    A large number of experiments have been performed in many laboratories in the world with the aim to investigate the physico-chemical effects induced by fast ions irradiating astrophysical relevant materials. The laboratory in Catania (Italy) has given a contribution to some experimental works. In this paper I review the results of two class of experiments performed by the Catania group, namely implantation of reactive (H{sup +}, C{sup +}, N{sup +}, O{sup +} and S{sup +}) ions in ices and the ion irradiation induced synthesis of molecules at the interface between water ice and carbonaceous or sulfurous solid materials. The results, discussed in the light of some questions concerning the surfaces of the Galilean moons, contribute to understand whether minor molecular species (CO{sub 2}, SO{sub 2}, H{sub 2}SO{sub 4}, etc.) observed on those objects are endogenic i.e. native from the satellite or are produced by exogenic processes, such as ion implantation. The results indicate that: - C-ion implantation is not the dominant formation mechanism of CO{sub 2} on Europa, Ganimede and Callisto. - Implantation of sulfur ions into water ice produces hydrated sulfuric acid with high efficiency such to give a very important contribution to the sulfur cycle on the surface of Europa and other satellites. - Implantation of protons into carbon dioxide produces some species containing the projectile (H{sub 2}CO{sub 3}, and O-H in poly-water). - Implantation of protons into sulfur dioxide produces SO{sub 3}, polymers, and O{sub 3} but not H-S bonds. - Water ice has been deposited on refractory carbonaceous materials: a general finding is the formation of a noteworthy quantity of CO{sub 2}. We suggest that this is the primary mechanism to explain the presence of carbon dioxide on the surfaces of the Galilean satellites. -Water ice has been deposited on refractory sulfurous materials originating from SO{sub 2} or H{sub 2}S irradiation. No evidence for an efficient synthesis of SO{sub 2

  10. The Effect of Diffusion Barrier and Bombardment on Adhesive Strength of CuCr Alloy Films

    Institute of Scientific and Technical Information of China (English)

    WANGJian-feng; SONGZhong-xiao; XUKe-wei; WANGYuan

    2004-01-01

    A novel co-sputtering method that combined magnetron sputtering (MS) with ion beam sputtering (IBS) was used to fabricate CuCr alloy films without breaking vacuum after depositing diffusion barrier with IBS. Different bombardment energies were used to improve the comprehensive properties of Cu alloy film. The results indicated that the effects of diffusion barriers and bombardment energy on adhesive strength could be evaluated by a rolling contact fatigue adhesion test. Diffusion barrier can enhance the adhesive strength, and the adhesion of CuCr/CrN was higher than that of CuCr/TiN. When bombarding energy was higher, the adhesive strength of CuCr/TiN films was higher due to the broader transition zone.

  11. An investigation of enhanced secondary ion emission under Au(n)+ (n = 1-7) bombardment.

    Science.gov (United States)

    Nagy, G; Gelb, L D; Walker, A V

    2005-05-01

    We investigate the mechanism of the nonlinear secondary ion yield enhancement using Au(n)+ (n = 1, 2, 3, 5, 7) primary ions bombarding thin films of Irganox 1010, DL-phenylalanine and polystyrene on Si, Al, and Ag substrates. The largest differences in secondary ion yields are found using Au+, Au2+, and Au3+ primary ion beams. A smaller increase in secondary ion yield is observed using Au5+ and Au7+ primary ions. The yield enhancement is found to be larger on Si than on Al, while the ion yield is smaller using an Au+ beam on Si than on Al. Using Au(n)+ ion structures obtained from Density Functional Theory, we demonstrate that the secondary yield enhancement is not simply due to an increase in energy per area deposited into the surface (energy deposition density). Instead, based on simple mechanical arguments and molecular dynamics results from Medvedeva et al, we suggest a mechanism for nonlinear secondary ion yield enhancement wherein the action of multiple concerted Au impacts leads to efficient energy transfer to substrate atoms in the near surface region and an increase in the number of secondary ions ejected from the surface. Such concerted impacts involve one, two, or three Au atoms, which explains well the large nonlinear yield enhancements observed going from Au+ to Au2+ to Au3+ primary ions. This model is also able to explain the observed substrate effect. For an Au+ ion passing through the more open Si surface, it contacts fewer substrate atoms than in the more dense Al surface. Less energy is deposited in the Si surface region by the Au+ primary ion and the secondary ion yield will be lower for adsorbates on Si than on Al. In the case of Au(n)+ the greater density of Al leads to earlier break-up of the primary ion and a consequent reduction in energy transfer to the near-surface region when compared with Si. This results in higher secondary ion yields and yield enhancements on silicon than aluminum substrates.

  12. Effect of ion bombardment on the structural and optical properties of TiO{sub 2} thin films deposited from oxygen/titanium tetraisopropoxide inductively coupled plasma

    Energy Technology Data Exchange (ETDEWEB)

    Li, D. [College of Mechanical Engineering, Yangzhou University, Yangzhou 225127 (China); Carette, M.; Granier, A.; Landesman, J.P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Goullet, A., E-mail: antoine.goullet@univ-nantes.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2015-08-31

    Titanium dioxide films were deposited on silicon substrates from oxygen/titanium tetraisopropoxide inductively coupled radiofrequency plasmas in a helicon reactor operated at low temperature (< 150 °C) and low pressure (0.4 Pa). The effect of the ion energy (E{sub i}), varied in the 15–175 eV range, on the morphology, microstructure and optical properties of the films is investigated. Scanning electron microscopy (SEM) shows that at low energy (E{sub i} = 15 eV), the film exhibits a columnar morphology consisting of a bottom dense layer, an intermediate gradient layer and a top roughness layer. Increasing the ion energy results in more homogeneous films along the growth direction as confirmed by the in-situ kinetic ellipsometry measurements and post deposition spectroscopic ellipsometry data analysis. In addition, the atomic force microscopy (AFM) measurements reveal that the film top surface becomes smoother as E{sub i} is increased. X-ray diffraction (XRD) diagrams show that only anatase is identified in the film deposited at 15 eV, whereas the complete phase transformation from anatase to rutile occurs at E{sub i} = 75 eV. These results are in good agreement with the Fourier transform infrared spectroscopy (FTIR) spectra which also show that the hydroxyl groups absorbed in the films deposited at 15 eV, are greatly decreased for E{sub i} ≥ 45 eV. Suitable structural models combined with the Tauc–Lorentz dispersion law have been found to accurately fit the spectroscopic ellipsometry experimental data. The results in good agreement with SEM and AFM measurements are also consistent with the structural properties evidenced by XRD and FTIR. The refractive index (n) can be increased significantly by increasing the ion energy from 15 eV to 75 eV, reaching a value of 2.49 at 1.96 eV. Upon increasing the ion energy above 75 eV n is shown to decrease due to micropores which are formed in the films. - Highlights: • TiO{sub 2} thin films deposited in inductively

  13. Thermal effects of impact bombardments on Noachian Mars

    Science.gov (United States)

    Abramov, Oleg; Mojzsis, Stephen J.

    2016-05-01

    Noachian (prior to ca. 3700 Ma) terranes are the oldest and most heavily cratered landscapes on Mars, with crater densities comparable to the ancient highlands of the Moon and Mercury. Intense early cratering affected Mars by melting and fracturing its crust, draping large areas in impact ejecta, generating regional-scale hydrothermal systems, and increasing atmospheric pressure (and thereby, temperature) to periodically re-start an otherwise moribund hydrological cycle. Post primary-accretionary bombardment scenarios that shaped early Mars can be imagined in two ways: either as a simple exponential decay with an approximately 100 Myr half-life, or as a "sawtooth" timeline characterized by both faster-than-exponential decay from primary accretion and relatively lower total delivered mass. Indications are that a late bombardment spike was superposed on an otherwise broadly monotonic decline subsequent to primary accretion, of which two types are investigated: a classical "Late Heavy Bombardment" (LHB) peak of impactors centered at ca. 3900 Ma that lasted 100 Myr, and a protracted bombardment typified by a sudden increase in impactor flux at ca. 4100-4200 Ma with a correspondingly longer decay time (≤400 Myr). Numerical models for each of the four bombardment scenarios cited above show that the martian crust mostly escaped exogenic melting from bombardment. We find that depending on the chosen scenario, other physical effects of impacts were more important than melt generation. Model output shows that between 10 and 100% of the Noachian surface was covered by impact craters and blanketed in resultant (hot) ejecta. If early Mars was generally arid and cold, impact-induced heating punctuated this surface state by intermittently destabilizing the near-subsurface cryosphere to generate regional-scale hydrothermal systems. Rather than being deleterious to the proclivity of Noachian Mars to host an emergent biosphere, this intense early impact environment instead

  14. Direct and Recoil-Induced Electron Emission from Ion-Bombarded Solids

    DEFF Research Database (Denmark)

    Holmen, G.; Svensson, B.; Schou, Jørgen;

    1979-01-01

    atoms. The direct contribution, which has been treated by several authors in previous studies, shows a behavior that is determined primarily by the electronic stopping power of the bombarding ion, while the indirect contribution is nonproportionally related to the nuclear stopping power. This latter...

  15. Effect of Ar bombardment on the electrical and optical properties of low-density polyethylene films

    Indian Academy of Sciences (India)

    2016-11-01

    The influence of low-energy Ar ion beam irradiation on both electrical and optical properties of low-density polyethylene (LDPE) films is presented. The polymer films were bombarded with 320 keV Ar ions with fuences up to $1 \\times 10^{15}$ cm$^{−2}$. Electrical properties of LDPE films were measured and the effect of ion bombardment on the DC conductivity, dielectric constant and loss was studied. Optically, the energy gap, the Urbach’s energy and the number of carbon atoms in a cluster were estimated for all polymer samples using theUV–Vis spectrophotometry technique. The obtained results showed slight enhancement in the conductivity and dielectric parameters due to the increase in ion fluence. Meanwhile, the energy gap and the Urbach’s energyvalues showed significant decrease by increasing the Ar ion fluence. It was found that the ion bombardment induced chain scission in the polymer chain causing some carbonization. An increase in the number of carbonatoms per cluster was also observed.

  16. ISS observations of aluminium surfaces under hydrogen ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, A.; Kamada, K.; Higashida, Y.

    1984-12-01

    The shadowing effect of ISS was applied to observe the surface behavior of H atoms implanted with 500 eV/atom on a high-purity Al sample. This study confirmed that this technique is powerful to observe the retention kinetics of H atoms especially on the topmost material surface with simultaneous analysis for surface contaminants such as oxygen during irradiation with hydrogen ions. The result obtained from the initially cleaned surface showed a remarkable increase in the H retention with increasing fluence of H/sub 2//sup +/ up to about 10/sup 18/ H/cm/sup 2/ at room temperature, depending on the fluence of predamage given by He/sup +/ ions, but showed no increase in the retention at the temperatures above 100/sup 0/C. Therefore, because Al is a metal well known to be passive for chemisorption of H/sub 2/ molecules and H atoms, it was concluded that the observed H retention originates from the traps produced by radiation damage. The activation energy for thermal desorption of the trapped H atoms was estimated to be 1.1 +- 0.4 eV by ISS measurements. The oxygen-covered surface showed a rapid increase in the retention at fluence of less than 10/sup 17/ H/cm/sup 2/. (orig.).

  17. Iss observations of aluminum surfaces under hydrogen ion bombardment

    Science.gov (United States)

    Sagara, A.; Kamada, K.; Higashida, Y.

    1984-12-01

    The shadowing effect of ISS was applied to observe the surface behavior of H atoms implanted with 500 eV/atom on a high-purity A1 sample. This study confirmed that this technique is powerful to observe the retention kinetics of H atoms especially on the topmost material surface with simultaneous analysis for surface contaminants such as oxygen during irradiation with hydrogen ions. The result obtained from the initially cleaned surface showed a remarkable increase in the H retention with increasing fluence of H2+ up to about 1018 H/cm2 at room temperature, depending on the fluence of predamage given by He+ ions, but showed no increase in the retention at the temperatures above 100 ° C. Therefore, because Al is a metal well known to be passive for chemisorption of H2 molecules and H atoms, it was concluded that the observed H retention originates from the traps produced by radiation damage. The activation energy for thermal desorption of the trapped H atoms was estimated to be 1.1±0.4 eV by ISS measurements. The oxygen-covered surface showed a rapid increase in the retention at fluence of less than 1017 H/cm2.

  18. ISS observations of aluminium surfaces under hydrogen ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Sagara, A.; Kamada, K. (Nagoya Univ. (Japan). Inst. of Plasma Physics); Higashida, Y. (Seiun Senior High School (Japan))

    1984-12-01

    The shadowing effect of ISS was applied to observe the surface behavior of H atoms implanted with 500 eV/atom on a high-purity Al sample. This study confirmed that this technique is powerful to observe the retention kinetics of H atoms especially on the topmost material surface with simultaneous analysis for surface contaminants such as oxygen during irradiation with hydrogen ions. The result obtained from the initially cleaned surface showed a remarkable increase in the H retention with increasing fluence of H/sub 2//sup +/ up to about 10/sup 18/ H/cm/sup 2/ at room temperature, depending on the fluence of predamage given by He/sup +/ ions, but showed no increase in the retention at the temperatures above 100/sup 0/C. Therefore, because Al is a metal well known to be passive for chemisorption of H/sub 2/ molecules and H atoms, it was concluded that the observed H retention originates from the traps produced by radiation damage. The activation energy for thermal desorption of the trapped H atoms was estimated to be 1.1 +- 0.4 eV by ISS measurements. The oxygen-covered surface showed a rapid increase in the retention at fluence of less than 10/sup 17/ H/cm/sup 2/.

  19. Characterization of CdZnTe after argon ion beam bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Bensalah, H., E-mail: hakima.bensalah@uam.es [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Hortelano, V. [GdS-Optronlab Group, Departamento Fisica Materia Condensada, Universidad de Valladolid, Edificio I-D, Paseo de Belen 1, 47011 Valladolid (Spain); Plaza, J.L. [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, O. [GdS-Optronlab Group, Departamento Fisica Materia Condensada, Universidad de Valladolid, Edificio I-D, Paseo de Belen 1, 47011 Valladolid (Spain); Crocco, J.; Zheng, Q.; Carcelen, V.; Dieguez, E. [Departamento de Fisica de Materiales, Laboratorio de Crecimiento de Cristales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer After argon irradiation using low fluence, the defects on surface were removed. Black-Right-Pointing-Pointer The PL intensity increases after irradiation. This increase should be related to the improved quality of the CdZnTe surfaces. Black-Right-Pointing-Pointer Irradiation process lead to an elimination of Te precipitates from the surfaces of the CdZnTe samples. - Abstract: The objective of this work is to analyze the effects of argon ion irradiation process on the structure and distribution of Te inclusions in Cd{sub 1-x}Zn{sub x}Te crystals. The samples were treated with different ion fluences ranging from 2 to 8 Multiplication-Sign 10{sup 17} cm{sup -2}. The state of the samples before and after irradiation were studied by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Cathodoluminescence, Photoluminescence, and micro-Raman spectroscopy. The effect of the irradiation on the surface of the samples was clearly observed by SEM or AFM. Even for small fluences a removal of polishing scratches on the sample surfaces was observed. Likely correlated to this effect, an important enhancement in the luminescence intensity of the irradiated samples was observed. An aggregation effect of the Te inclusions seems to occur due to the Ar bombardment, which are also eliminated from the surfaces for the highest ion fluences used.

  20. The effects of interfacial interactions between Fe–O and Fe–Si induced by ion-beam bombardment on the magnetic properties of Si-oxide/Fe bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, X. [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong); Lin, K.-W., E-mail: kwlin@dragon.nchu.edu.tw [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Liang, H.-T.; Hsu, H.-F. [Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Galkin, N.G. [Institute of Automation & Control Processes, FEB RAS, Radio Str. 5, 690041 Vladivostok (Russian Federation); Wroczynskyj, Y. [Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2 (Canada); Lierop, J. van, E-mail: johan@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2 (Canada); Pong, P.W.T., E-mail: ppong@eee.hku.hk [Department of Electrical and Electronic Engineering, The University of Hong Kong (Hong Kong)

    2015-12-15

    Highlights: • Si capping layer was deposited on Fe layer with O{sub 2}/Ar ion beam bombardment. • Structure deformation and grain re-orientation was observed after bombardment. • FeO, Fe{sub 2}O{sub 3}, SiO{sub 2}, and FeSi were formed in the interface, as proved by XPS. • The interface layer resulted in magnetic coercivity enhancement at low temperature. • Fe–O changed to antiferromagnetic at 10 K, establishing exchange coupling with Fe. - Abstract: Si/Fe and SiO{sub 2}/Fe thin-film heterostructures are commonly seen in magnetic multilayer devices, whose magnetic properties are strongly influenced by intermixing at the interfaces. In this paper, Si-oxide/Fe bilayers were formed by depositing Si on Fe with in situ O{sub 2}/Ar ion-beam bombardment during the Si deposition. The surface oxidation conditions were altered by applying different O{sub 2}/Ar ratios (0–41%) in the ion-beam. The surface and cross-sectional morphologies, and the crystalline structures were characterized by transmission electron microscopy. The formation of Fe–O, Fe–Si and Si–O bonds at the interface of the O{sub 2}/Ar ion-beam bombarded Si-oxide/Fe bilayers was evidenced by X-ray photoemission spectra. FeO, Fe{sub 3}O{sub 4} and Fe{sub 2}O{sub 3} at the interface resulted in a marked increase in the magnetic coercivity at low temperatures, as characterized by magnetometry.

  1. Comparison of Se and Te clusters produced by ion bombardment

    Directory of Open Access Journals (Sweden)

    Trzyna Małgorzata

    2017-01-01

    Full Text Available Nanostructures based on tellurium and selenium are materials used as components for the manufacturing topological insulators. Therefore it is crucial to precisely characterize these materials. In this work the emission of selenium and tellurium cluster ions, sputtered by Bi+ primary ion guns, was investigated by using Time-of-Flight Secondary Ion Mass Spectrometry (TOF SIMS. It has been found that BixTex and BixSex clusters appear in addition to Sex and Tex clusters in the mass range up to ~ 1300 m/z. Local maxima or minima (magic numbers are observed in the ion intensity versus a number of atoms per cluster for both positive and negative ions spectra for all types of clusters and primary ions used. These extrema can be attributed to different yield and stability of certain clusters but also to fragmentation of high-mass clusters.

  2. Modelling and simulation of surface morphology driven by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Yewande, E.O.

    2006-05-02

    Non-equilibrium surfaces, at nanometer length scales, externally driven via bombardment with energetic particles are known to exhibit well ordered patterns with a variety of applications in nano-technology. These patterns emerge at time scales on the order of minutes. Continuum theory has been quite successful in giving a general picture of the processes that interplay to give the observed patterns, as well as how such competition might determine the properties of the nanostructures. However, continuum theoretical descriptions are ideal only in the asymptotic limit. The only other theoretical alternative, which happens to be more suitable for the characteristic length-and time-scales of pattern formation, is Monte Carlo simulation. In this thesis, surface morphology is studied using discrete solid-on-solid Monte Carlo models of sputtering and surface diffusion. The simulations are performed in the context of the continuum theories and experiments. In agreement with the experiments, the ripples coarsen with time and the ripple velocity exhibits a power-law behaviour with the ripple wavelength, in addition, the exponent was found to depend on the simulation temperature, which suggests future experimental studies of flux dependence. Moreover, a detailed exploration of possible topographies, for different sputtering conditions, corresponding to different materials, was performed. And different surface topographies e.g. holes, ripples, and dots, were found at oblique incidence, without sample rotation. With sample rotation no new topography was found, its only role being to destroy any inherent anisotropy in the system. (orig.)

  3. Room-temperature deposition of transparent conductive Al-doped ZnO thin films using low energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Jin, C.G.; Yu, T.; Wang, F.; Wu, X.M. [Soochow University, Department of Physics, Soochow (China); Soochow University, The Key Laboratory of Thin Films of Jiangsu, Soochow (China); Wu, Z.F. [Yancheng Institute of Technology, Yancheng (China); Wu, M.Z. [Soochow University, Department of Physics, Soochow (China); Wang, Y.Y.; Yu, Y.M. [Wenzheng College of Soochow University, Soochow (China); Zhuge, L.J. [Soochow University, The Key Laboratory of Thin Films of Jiangsu, Soochow (China); Soochow University, Analysis and Testing Center, Soochow (China)

    2012-03-15

    Al-doped zinc oxide (AZO) films are prepared on quartz substrates by dual-ion-beam sputtering deposition at room temperature ({proportional_to}25 C). An assisting argon ion beam (ion energy E{sub i} =0-300 eV) directly bombards the substrate surface to modify the properties of AZO films. The effects of assisted-ion beam energy on the characteristics of AZO films were investigated in terms of X-ray diffraction, atomic force microscopy, Raman spectra, Hall measurement and optical transmittance. With increasing assisting-ion beam bombardment, AZO films have a strong improved crystalline quality and increased radiation damage such as oxygen vacancies and zinc interstitials. The lowest resistivity of 4.9 x 10 {sup -3}{omega} cm and highest transmittance of above 85% in the visible region were obtained under the assisting-ion beam energy 200 eV. It was found that the bandgap of AZO films increased from 3.37 to 3.59 eV when the assisting-ion beam energy increased from 0 to 300 eV. (orig.)

  4. Diffusion enhancement due to low-energy ion bombardment during sputter etching and deposition

    Energy Technology Data Exchange (ETDEWEB)

    Eltoukhy, A.H.; Greene, J.E.

    1980-08-01

    The effects of low-energy ion bombardment on enhancing elemental diffusion rates at both heterojunction interfaces during film deposition and over the compositionally altered layer created during sputter etching alloy targets have been considered. Depth dependent enhanced interdiffusion coefficients, expressed as D*(x)=D*(0) exp(-x/L/sub d/), where D*(0) is more than five orders of magnitude greater than thermal diffusion values, were measured in InSb/GaSb multilayer structures deposited by multitarget bias sputering. D*(0) was determined from the amplitude u of the compositional modulation in the multilayered films (layer thicknesses between 20 and 45 A) as measured by superlattice x-ray diffraction techniques. The value of D*(0) was found to increase from 3 x 10/sup -17/ to 1 x 10/sup -16/ cm/sup 2//sec as the applied substrate bias was increased from 0 to -75 V. However even at V/sub a/=0, the diffusion coefficient was enhanced owing to an induced substrate potential with respect to the positive space-charge region in the Ar discharge. The diffusion length of L/sub d/ of the ion bombardment created defects was approx.1000 A. Enhanced diffusion also has a significiant effect on the altered layer thickness x/sub e/ and the total sputtering time t/sub e/ (or ion dose) required to reach steady state during ion etching of multielement targets. The effects of using an exponentially depth dependent versus a constant value of the enhanced diffusion coefficient on calculated values of x/sub e/ and t/sub e/ in single-phase binary alloys were considered. The results show that both x/sub e/ and t/sub e/ are considerably larger using a depth dependent D*(x), when L/sub d/D*(0)/v, the usual case for most sputtering applications, the two solutions approach each other.

  5. Mechanisms of pattern formation in grazing-incidence ion bombardment of Pt(111)

    OpenAIRE

    Hansen, H; Redinger, A.; Messlinger, S.; Stoian, G.; Rosandi, Y.; Urbassek, H. M.; Linke, U.; Michely, T.

    2006-01-01

    Ripple patterns forming on Pt(111) due to 5 keV Ar+ grazing-incidence ion bombardment were investigated by scanning tunneling microscopy in a broad temperature range from 100 to 720 K and for ion fluences up to 3x10(20) ions/m(2). A detailed morphological analysis together with molecular dynamics simulations of single ion impacts allow us to develop atomic scale models for the formation of these patterns. The large difference in step edge versus terrace damage is shown to be crucial for rippl...

  6. Neutron dose equivalent rate for heavy ion bombardment

    Institute of Scientific and Technical Information of China (English)

    LiGui-Sheng; ZhangTian-Mei; 等

    1998-01-01

    The fluence rate distribution of neutrons in the reactionsof 50MeV/u 18O-ion on thick Be,Cu and Au targets have been measured with an activation method of threshold detectors andthe neutron dose equivalent rate distributions at 1m from the tqrgets in intermediate energy heavy ion target area are obtained by using the conversion factors from neutron fluence rate to neutron doseequivalent rate.

  7. Influence of substrate pre-treatments by Xe{sup +} ion bombardment and plasma nitriding on the behavior of TiN coatings deposited by plasma reactive sputtering on 100Cr6 steel

    Energy Technology Data Exchange (ETDEWEB)

    Vales, S., E-mail: sandra.vales@usp.br [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Brito, P., E-mail: ppbrito@gmail.com [Pontifícia Universidade Católica de Minas Gerais (PUC-MG), Av. Dom José Gaspar 500, 30535-901 Belo Horizonte, MG (Brazil); Pineda, F.A.G., E-mail: pipe8219@gmail.com [Universidade de São Paulo (USP), Escola de Engenharia de São Carlos, Av. Trabalhador São Carlense 400, São Carlos, SP CEP 13566-590 (Brazil); Ochoa, E.A., E-mail: abigail_ochoa@hotmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Droppa, R., E-mail: roosevelt.droppa@ufabc.edu.br [Universidade Federal do ABC (UFABC), Av. dos Estados, 5001, Santo André, SP CEP 09210-580 (Brazil); Garcia, J., E-mail: jose.garcia@sandvik.com [Sandvik Coromant R& D, Lerkrogsvägen 19, SE-12680, Stockholm (Sweden); Morales, M., E-mail: monieriz@gmail.com [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); Alvarez, F., E-mail: alvarez@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Campus Universitário Zeferino Vaz, Barão Geraldo, Campinas, SP CEP 13083-970 (Brazil); and others

    2016-07-01

    In this paper the influence of pre-treating a 100Cr6 steel surface by Xe{sup +} ion bombardment and plasma nitriding at low temperature (380 °C) on the roughness, wear resistance and residual stresses of thin TiN coatings deposited by reactive IBAD was investigated. The Xe{sup +} ion bombardment was carried out using a 1.0 keV kinetic energy by a broad ion beam assistance deposition (IBAD, Kaufman cell). The results showed that in the studied experimental conditions the ion bombardment intensifies nitrogen diffusion by creating lattice imperfections, stress, and increasing roughness. In case of the combined pre-treatment with Xe{sup +} ion bombardment and subsequent plasma nitriding, the samples evolved relatively high average roughness and the wear volume increased in comparison to the substrates exposed to only nitriding or ion bombardment. - Highlights: • Effect of Xe ion bombardment and plasma nitriding on TiN coatings was investigated. • Xe ion bombardment with 1.0 KeV increases nitrogen retention in plasma nitriding. • 1.0 KeV ion impact energy causes sputtering, thus increasing surface roughness. • TiN coating wear is minimum after plasma nitriding due to lowest roughness.

  8. Ion-bombardment induced morphology change of device related SiGe multilayer heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, C., E-mail: Christian.Hofer@unileoben.ac.at [Institute of Physics, Montanuniversitaet Leoben, Franz Josef Str. 18, A-8700 Leoben (Austria); Teichert, C., E-mail: Christian.Teichert@unileoben.ac.at [Institute of Physics, Montanuniversitaet Leoben, Franz Josef Str. 18, A-8700 Leoben (Austria); Oehme, M.; Werner, J.; Lyutovich, K.; Kasper, E. [Institut fuer Halbleitertechnik, Universitaet Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart (Germany)

    2009-10-15

    Ion assisted molecular beam epitaxy bears the potential to tune morphological and structural parameters of semiconductor heterolayers for opto- and nanoelectronic applications. The morphology evolution and the degree of relaxation are influenced by the ion beam parameters and the strain of the heteroepitaxial film. In this work, the morphology of silicon germanium (SiGe) layers due to Si{sup +}-ion beam treatment during growth is investigated by atomic force microscopy (AFM) as a function of ion energy and ion flux density. Ion energies range from 100 eV to 1000 eV. The AFM measurements are used to determine the roughness distribution across the wafers. A regular pattern of SiGe crystallites is found, where the damage due to low ion energy Si{sup +}-ion bombardment is medium and the degree of relaxation, determined by Raman spectroscopy, is below 25%.

  9. Freestanding single-crystalline magnetic structures fabricated by ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenherr, P.; Bischof, A.; Boehm, B.; Eib, P.; Grimm, S.; Gross, L.; Allenspach, R., E-mail: ral@zurich.ibm.com [IBM Research – Zurich, 8803 Rüschlikon (Switzerland); Alvarado, S. F. [Department of Materials, ETH Zürich, 8093 Zürich (Switzerland)

    2015-01-19

    Starting from an ultrathin Fe film grown epitaxially on top of a GaAs(001) substrate, we show that freestanding structures can be created by ion-beam treatment. These structures are single-crystalline blisters and only a few nanometers thick. Anisotropic stress in the rim of a blister induces magnetic domain states magnetized in the direction normal to the blister edge. Experimental evidence is provided that the lateral size can be confined by starting from a nanostructured template.

  10. Angular distribution of sputtered atoms induced by low-energy heavy ion bombardment

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lai; ZHANG Zhu-Lin

    2004-01-01

    The sputtering yield angular distributions have been calculated based on the ion energy dependence of total sputtering yields for Ni and Motargets bombarded by low-energy Hg+ ion. The calculated curves show excellent agreement with the corresponding Wehner's experimental results of sputtering yield angular distribution. The fact clearly demonstrated the intrinsic relation between the ion energy dependence of total sputtering yields and the sputtering yield angular distribution. This intrinsic relation had been ignored in Yamamura's papers (1981,1982) due to some obvious mistakes.

  11. Computer simulation of chemical erosion of graphite due to hydrogen ion bombardment

    CERN Document Server

    Liang, J H; Roth, J; Eckstein, W

    2003-01-01

    Chemical erosion of graphite due to hydrogen ion bombardment has been investigated theoretically by applying a model of chemical erosion to the TRIDYN code. The model involves the formation of methane at the end of the ion track as well as the kinetic emission of hydrocarbons from the target surface. Model calculations were performed for ion energies ranging from 10 to 1000 eV and at target temperatures ranging from 300 to 900 K. Good agreement between calculated and measured erosion yields is obtained.

  12. Electronic structure of nitinol surfaces oxidized by low-energy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M., E-mail: mpetravic@phy.uniri.hr; Varasanec, M.; Peter, R.; Kavre, I. [Department of Physics and Center for Micro and Nano Sciences and Technologies, University of Rijeka, 51000 Rijeka (Croatia); Metikos-Hukovic, M. [Department of Electrochemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb (Croatia); Yang, Y.-W. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)

    2014-06-28

    We have studied the electronic structure of nitinol exposed to low-energy oxygen-ion bombardment, using x-ray photoemission spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. XPS spectra reveal a gradual transformation of nitinol surfaces into TiO{sub 2} with increased dose of implanted oxygen. No oxidation of Ni atoms has been detected. NEXAFS spectra around O K-edge and Ti L{sub 2,3}-edge, reflecting the element-specific partial density of empty electronic states, exhibit features, which can be attributed to the creation of molecular orbitals, crystal field splitting, and the absence of long-range order, characteristic of the amorphous TiO{sub 2}. Based on these results, we discuss the oxidation kinetics of nitinol under low-energy oxygen-ion bombardment.

  13. Electronic structure of nitinol surfaces oxidized by low-energy ion bombardment

    Science.gov (United States)

    Petravic, M.; Varasanec, M.; Peter, R.; Kavre, I.; Metikos-Hukovic, M.; Yang, Y.-W.

    2014-06-01

    We have studied the electronic structure of nitinol exposed to low-energy oxygen-ion bombardment, using x-ray photoemission spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy. XPS spectra reveal a gradual transformation of nitinol surfaces into TiO2 with increased dose of implanted oxygen. No oxidation of Ni atoms has been detected. NEXAFS spectra around O K-edge and Ti L2,3-edge, reflecting the element-specific partial density of empty electronic states, exhibit features, which can be attributed to the creation of molecular orbitals, crystal field splitting, and the absence of long-range order, characteristic of the amorphous TiO2. Based on these results, we discuss the oxidation kinetics of nitinol under low-energy oxygen-ion bombardment.

  14. The influences of plasma ion bombarded on crystallization, electrical and mechanical properties of Zn-In-Sn-O films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.J. [Instrument Center, Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hung, F.Y., E-mail: fyhung@mail.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Chang, S.J. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Liao, J.D.; Weng, C.C. [Department of Materials Science and Engineering, Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan (China); Hu, Z.S. [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2011-11-15

    The quality of co-sputtering derived Zn-In-Sn-O (ZITO) film was adjusted by different gas (oxygen and argon) induced plasma ions bombarding (PIB) treatment. The result showed that the film conductivity could be improved after plasma bombardment. The increment of oxygen vacancies and plasma bombard-induced thermal energy were main reasons. Notably, the efficiency of Ar plasma bombarded for improved conductivity not only was better but also had a smoother surface morphology. Due to Ar ions will not react with metal atoms to form oxide and possessed a higher momentum. In addition, the O-rich layer on the ultra-surface not only was removed but also enhanced film reliability by plasma bombarded that could enhance the performance of optoelectronic devices.

  15. Erosion of thin carbon layer on metal surface by hydrogen ion bombardment at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Hirotaka, Morita, Kenji, Horino, Yuji, Itoh, Noriaki

    1985-10-01

    In this letter, we report experimental results on the erosion of thin carbon layers segregated on nickel surfaces caused by hydrogen ion bombardements at elevated temperatures. The erosion yield of the segregated carbon layers at temperatures of around 900 K was found to depend on their thickness and for the layers with a thicknes less than 20 A the yield near the 900 K was found to be nearly the same as the physical sputtering yield. (orig./RK).

  16. Irradiation damage simulation of Zircaloy-4 using argon ions bombardment

    Institute of Scientific and Technical Information of China (English)

    Dequan Peng; Xinde Bai; Feng Pan

    2008-01-01

    To simulate irradiation damage, argon ion was implanted in the Zircaloy-4 with the fluence ranging from 1×1016 to 1×1017 cm-2, using accelerating implanter at an extraction voltage of 190 kV and liquid nitrogen temperature. Then the influence of argon ion implantation on the aqueous corrosion behavior of Zircaloy-4 was studied. The valence states of elements in the surface layer of the samples wcrc analyzed using X-ray photoelectron spectroscopy (XPS). Transmission clcctron microscopy (TEM) was used to examine the microstructure of the argon-implanted samples. The potentiodynamic polarization technique was employed to evaluate the aqueous corrosion resistance of implanted Zircaloy-4 in 1 mol/L H2SO4 solution. It is found that there appear bubbles on the surface of the samples when the argon flucncc is 1×1016 cm-2. The microstructure of argon-implanted samples changes from amor-phous to partial amorphous, then to polycrystallinc, and again to amorphous. The corrosion resistance of implanted samples linearly declines with the increase of flucnce approximately, which is attributed to the linear increase of the irradiation damage.

  17. Analysis of cardiac tissue by gold cluster ion bombardment

    Science.gov (United States)

    Aranyosiova, M.; Chorvatova, A.; Chorvat, D.; Biro, Cs.; Velic, D.

    2006-07-01

    Specific molecules in cardiac tissue of spontaneously hypertensive rats are studied by using time-of-flight secondary ion mass spectrometry (TOF-SIMS). The investigation determines phospholipids, cholesterol, fatty acids and their fragments in the cardiac tissue, with special focus on cardiolipin. Cardiolipin is a unique phospholipid typical for cardiomyocyte mitochondrial membrane and its decrease is involved in pathologic conditions. In the positive polarity, the fragments of phosphatydilcholine are observed in the mass region of 700-850 u. Peaks over mass 1400 u correspond to intact and cationized molecules of cardiolipin. In animal tissue, cardiolipin contains of almost exclusively 18 carbon fatty acids, mostly linoleic acid. Linoleic acid at 279 u, other fatty acids, and phosphatidylglycerol fragments, as precursors of cardiolipin synthesis, are identified in the negative polarity. These data demonstrate that SIMS technique along with Au 3+ cluster primary ion beam is a good tool for detection of higher mass biomolecules providing approximately 10 times higher yield in comparison with Au +.

  18. Ion-bombardment-enhanced diffusion during the growth of sputtered superlattice thin films

    Energy Technology Data Exchange (ETDEWEB)

    Eltoukhy, A.H.; Greene, J.E.

    1978-08-15

    A technique is presented for determining the enhancement in solid-state diffusion caused by low-energy ion bombardment. In this technique, superlattice films are grown under varying conditions of ion bombardment and the amplitude of the resulting composition modulation wave is determined by analyzing x-ray diffraction satellite peaks surrounding the central Bragg peaks. The amplitude is in turn related to the enhanced diffusion coefficient D* (x) which may be expressed as D*/sub 0/ exp(-x/delta) where delta is a characteristic diffusion length of the ion-bombardment-produced defects. This approach was confirmed experimentally using InSb/GaSb superlattice structures grown by multitarget sputtering, each sample having equilayer thicknesses between 12 and 30 A. D* was found to increase as the sputtering pressure was decreased. Measured values of D* averaged over the enhanced diffusion region were on the order of 10/sup -17/ cm/sup 2//sec compared to a thermal interdiffusion coefficient of approximately 10/sup -22/ cm/sup 2//sec at the film growth temperature of 250 /sup 0/C.

  19. Effect of the ion-beam bombardment and annealing temperature on sol-gel derived yttrium aluminum oxide film as liquid crystal alignment layer

    Science.gov (United States)

    Jeong, Hae-Chang; Heo, Gi-Seok; Kim, Eun-Mi; Lee, Ju Hwan; Han, Jeong-Min; Seo, Dae-Shik

    2017-02-01

    We demonstrated a homogeneous liquid-crystal (LC) alignment state on yttrium aluminum oxide (YAlO) films, where the alignment was induced by ion-beam (IB) irradiation. Topographical analysis was performed by atomic force microscopy as a function of annealing temperature. Higher annealing temperatures yielded a smoother surface, accompanied by reduced light scattering. Transparency in the visible region increased on the surface fabricated at higher annealing temperatures. LC alignment mechanism was determined by X-ray diffraction (XRD) analysis. Moreover, IB-irradiated YAlO films annealed at temperatures greater than 200 °C exhibited good thermal stability and low capacitance-voltage hysteresis. The IB-irradiated YAlO films are suitable as alternative alignment layers in advanced LC display applications.

  20. Investigation of energy thresholds of atomic and cluster sputtering of some elements under ion bombardment

    CERN Document Server

    Atabaev, B G; Lifanova, L F

    2002-01-01

    Threshold energies of sputtering of negative cluster ions from the Si(111) surface were measured at bombardment by Cs sup + , Rb sup + , and Na sup + ions with energy of 0.1-3.0 keV. These results are compared with the calculations of the similar thresholds by Bohdansky etc. formulas (3) for clusters Si sub n sup - and Cu sub n sup - with n=(1-5) and also for B, C, Al, Si, Fe, Cu atoms. Threshold energies of sputtering for the above elements were also estimated using the data from (5). Satisfactory agreement between the experimental and theoretical results was obtained. (author)

  1. Surface Erosion of GaN Bombarded by Highly Charged 208Pbq+-Ions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Qing; ZHANG Chong-Hong; YANG Yi-Tao; YAO Cun-Feng; LI Bing-Sheng; JIN Yun-Fan; SUN You-Mei; SONG Shu-Jian

    2008-01-01

    Surface change of gallium nitride specimens after bombardment by highly charged Pbq+-ions (q=25, 35) at room temperature is studied by means of atomic force microscopy. The experimental results reveal that the surface of GaN specimens is significantly etched and erased. An unambiguous step-up is observed. The erosion depth not only strongly depends on the charge state of ions, but also is related to the incident angle of Pbq+ -ions and the ion dose. The erosion depth of the specimens in 60°incidence (tilted incidence) is significantly deeper than that of the normal incidence. The erosion behaviour of specimens has little dependence on the kinetic energy of ion (E,k=360, 700keV). On the other hand, surface roughness of the irradiated area is obviously decreased due to erosion compared with the un-irradiated area. A flat terrace is formed.

  2. Bombardment induced ion transport - part IV: ionic conductivity of ultra-thin polyelectrolyte multilayer films.

    Science.gov (United States)

    Wesp, Veronika; Hermann, Matthias; Schäfer, Martin; Hühn, Jonas; Parak, Wolfgang J; Weitzel, Karl-Michael

    2016-02-14

    The dependence of the ionic conductance of ultra-thin polyelectrolyte multilayer (PEM) films on the temperature and the number of bilayers has been investigated by the recently developed low energy bombardment induced ion transport (BIIT) method. To this end multilayers of alternating poly(sodium 4-styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) layers were deposited on a metal electrode and subsequently bombarded by a low energy potassium ion beam. Ions are transported through the film according to the laws of electro-diffusion towards a grounded backside electrode. They are neutralized at the interface between the polymer film and the metal electrode. The detected neutralization current scales linearly with the acceleration potential of the ion beam indicating Ohmic behavior for the (PAH/PSS)x multilayer, where x denotes the number of bilayers. The conductance exhibits a non-monotonic dependence on the number of bilayers, x. For 2 ≤ x ≤ 8 the conductance increases non-linearly with the number of bilayers. For x ≥ 8 the conductance decreases with increasing number of bilayers. The variation of the conductance is rationalized by a model accounting for the structure dependence of the conductivity. The thinnest sample for which the conductance has been measured is the single bilayer reflecting properties dominated by the interface. The activation energy for the ion transport is 0.49 eV.

  3. Emission of neutral molecules from ion-bombarded thiol self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Postawa, Z. E-mail: zp@castor.if.uj.edu.pl; Meserole, C.A.; Cyganik, P.; Szymonska, J.; Winograd, N

    2001-08-01

    We have investigated ion-stimulated desorption of neutral molecules emitted from 8 keV Ar{sup +} ion-bombarded self-assembled monolayers (SAMs) of phenethyl mercaptan (PEM) C{sub 6}H{sub 5}CH{sub 2}CH{sub 2}-SH and 2-(4{sup '}-methyl-biphenyl-4yl)-ethanethiol (BP2) CH{sub 3}C{sub 6}H{sub 4}C{sub 6}H{sub 4}CH{sub 2}CH{sub 2}-SH deposited on Au(1 1 1) substrate. Neutral molecules were detected by laser postionization mass spectrometry. Only molecular fragments were detected from ion-bombarded systems. The mass spectra obtained for sputtered and gas phase fragments indicate that molecules recorded during ion bombardment were indeed emitted from the surface and were not the result of photofragmentation induced by the ionizing laser beam. From experimentally obtained time-of-flight (TOF) distributions, it was determined that the majority of desorbed neutral molecules leave the surface with very low translational energies. As the sample temperature is reduced, the distributions become broader and shift to longer flight times. The shift is more pronounced for molecules from BP2 and increases with the mass of the recorded molecular fragment. We postulate that the emission of molecules is initiated by processes which gently break molecular bonds (e.g., chemical reactions, secondary electrons). The formed fragments are loosely bound to the surface and can be removed by evaporation. At the investigated temperature range (170-350 K), the observed emission delay is attributed to the time required for the molecule to evaporate from the surface and is not influenced by the bond breaking rate.

  4. Absorption of hydrogen in vanadium, enhanced by ion bombardment; Ionenbeschussunterstuetzte Absorption des Wasserstoffs in Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, H.; Lammers, M. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany); Mueller, K.H. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany)]|[Paderborn Univ. (Gesamthochschule), Soest (Germany). Fachbereich 16 - Elektrische Energietechnik; Kiss, G.; Kemeny, Z. [Technical Univ. Budapest (Hungary)

    1998-12-31

    Prior to hydrogen implantation into vanadium, the vanadium specimen usually is exposed to an activation process and is then heated at 1 atm hydrogen to temperatures between 500 and 600 C, subsequently cooled down in several steps. Within this temperature range, hydrogen solubility increases with declining temperature. A decisive factor determining hydrogen absorption is the fact that at temperatures above 250 C, oxygen desorbs from the material surface and thus no longer inhibits hydrogen absorption. Therefore a different approach was chosen for the experiments reported: Hydrogen absorption under UHV conditions at room temperature. After the usual activation process, the vanadium surface was cleaned by 5 keV Ar{sup +} ion bombardment. Thus oxygen absorption at the specimen surface (and new reactions with oxygen from the remaining gas) could be avoided, or removed. By means of thermal desorption mass spectrometry (TDMS), hydrogen absorption as a function of argon ion dose was analysed. TDMS measurements performed for specimens treated by ion bombardment prior to H{sup 2} exposure showed two H{sup 2} desorption peaks, in contrast to the profiles measured with specimens not exposed to ion bombardment. It is assumed that the ion bombardment disturbs the crystal structure so that further sites for hydrogen absorption are produced. (orig./CB) [Deutsch] Bei der Beladung von Vandium mit Wasserstoff wird ueblicherweise die Probe nach einer Aktivierungsprozedur bei 1 atm Wasserstoff auf Temperaturen im Bereich von 500 bis 600 C hochgeheizt und danach schrittweise abgekuehlt. In diesem Temperaturbereich nimmt die Wasserstoffloeslichkeit mit abnehmender Temperatur zu. Entscheidend fuer die Beladung ist aber auch die Tatsache, dass bei Temperaturen groesser 250 C Sauerstoff von der Oberflaeche desorbiert und dadurch die Absorption von Wasserstoff nicht mehr blockieren kann. Im Rahmen der hier beschriebenen Untersuchungen sollte die Wasserstoffbeladung unter UHV-Bedingungen bei

  5. Microstructure of titanium nitride thin films controlled by ion bombardment in a magnetron-sputtering device

    Energy Technology Data Exchange (ETDEWEB)

    Cerny, R. (Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni); Kuzel, R. Jr. (Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni); Valvoda, V. (Karlova Univ., Prague (Czech Republic). Fakulta Matematicko-Fyzikalni); Kadlec, S. (Czechoslovak Academy of Sciences, Prague (Czechoslovakia). Inst. of Physics); Musil, J. (Czechoslovak Academy of Sciences, Prague (Czechoslovakia). Inst. of Physics)

    1994-05-01

    The structure of titanium nitride thin films deposited by unbalanced magnetron sputtering on high chromium steel substrates was studied by X-ray diffraction. In order to characterize relations between the microstructure of sputtered TiN films and the deposition conditions, the parameter E[sub p] was introduced as the average energy transmitted from bombarding particles (ions, electrons, neutrals, photons) to one condensing particle of the film. A transition from a porous to a compact microstructure was found with increasing E[sub p]. The possible inhomogeneity of titanium nitride films is discussed. (orig.)

  6. Angular and energy dependence of ion bombardment of Mo/Si multilayers

    DEFF Research Database (Denmark)

    Voorma, H.J.; Louis, E.; Bijkerk, F.;

    1997-01-01

    The process of ion bombardment is investigated for the fabrication of Mo/Si multilayer x-ray mirrors using e-beam evaporation. The ion treatment is applied immediately after deposition of each of the Si layers to smoothen the layers by removing an additional thickness of the Si layer. In this study...... the parameters of Kr+ ion bombardment have been optimized within the energy range 300 eV-2 keV and an angular range between 20 degrees and 50 degrees. The optical performance of the Mo/Si multilayers is determined by absolute measurements of the near-normal-incidence reflectivity at 14.4 nm wavelength...... are found to be 2 keV at 50 degrees angle of incidence with respect to the surface. These settings result in 47% reflectivity at 85 degrees (lambda = 14.4 nm) for a 16-period Mo/Si multilayer mirror, corresponding to an interface roughness of 0.21 nm rms. Analysis shows that the interface roughness...

  7. A liquid-like model for the morphology evolution of ion bombarded thin films

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, L., E-mail: luca.repetto@unige.it [Department of Physics and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Lo Savio, R. [Department of Physics and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Šetina Batič, B. [Inštitut Za Kovinske Materiale in Tehnologije, Lepi pot 11, 1000 Ljubljana (Slovenia); Firpo, G.; Angeli, E.; Valbusa, U. [Department of Physics and Nanomed Labs, Università di Genova, Via Dodecaneso 33, 16146 Genova (Italy)

    2015-07-01

    Thin solid films exposed to ion irradiation exhibit a peculiar evolution that can differ substantially from what is observed for bulk samples. The phenomenology of the patterns that self-organize on the substrate is very rich, with morphologies that display several degrees of order upon the modification of initial film characteristics and irradiation parameters. This richness paves the way for the fabrication of novel functional surfaces, but it is also an indication of the complexity of the underlying driving mechanisms. A remarkable simplification for the comprehension of these phenomena can come from the noteworthy similarity of the obtained patterns with those showing up when liquids dewet from their substrates. Here, we analyze the possibility to apply a liquid-like model to explain the morphology evolution of ion bombarded thin films for the whole phenomenology showing up in experiments. In establishing this connection between liquids and ion bombarded thin films, we propose to use also for liquids the insight gained for our system with recent experiments that stress the importance of the substrate topography for the selection of the dewetting mechanism. If confirmed, this result would lead to a reconsideration of the importance of capillary waves in spinodal dewetting, and will help to understand the low reproducibility of the related experimental results.

  8. Binary collision model for neon Auger spectra from neon ion bombardment of the aluminum surface

    Science.gov (United States)

    Pepper, S. V.

    1986-01-01

    A model is developed to account for the angle-resolved Auger spectra from neon ion bombardment of the aluminum surface recently obtained by Pepper and Aron. The neon is assumed to be excited in a single asymmetric neon-aluminum-collision and scattered back into the vacuum where it emits an Auger electron. The velocity of the Auger electron acquires a Doppler shift by virtue of the emission from a moving source. The dependence of the Auger peak shape and energy on the incident ion energy, angle of incidence and on the angle of Auger electron emission with respect to the surface is presented. Satisfactory agreement with the angle resolved experimental observations is obtained. The dependence of the angle-integrated Auger yield on the incident ion energy and angle of incidence is also obtained and shown to be in satisfactory agreement with available experimental evidence.

  9. Blazed diffraction gratings produced by ion bombardment of pre-patterned solid surfaces

    Science.gov (United States)

    Harrison, Matt P.; Bradley, R. Mark

    2017-02-01

    We propose a method of producing high quality blazed gratings and carry out simulations of it. By combining the near perfect periodicity produced by conventional lithographic methods with the tendency of ion sputtering to produce terraced topographies, this fabrication procedure could produce highly ordered, faceted surfaces on amorphous materials. Our approach differs from previous uses of ion bombardment to fabricate blazed gratings, and has the unique advantage that it could be used as the initial step in the fabrication of high efficiency multilayer-coated blazed gratings. Our numerical investigations of the relevant equations of motion demonstrate that our method produces efficient blazed gratings for a broad range of parameter values. We also develop concrete predictions regarding the optimal implementation of our proposed procedure, and show that high quality blazed gratings can emerge even if additional linear or nonlinear terms are present in the equation of motion.

  10. Photon emission produced by Kr+ ions bombardment of Cr and Cr2O3 targets

    Science.gov (United States)

    Boujlaidi, A. El; Hammoum, K.; Jadoual, L.; Jourdani, R.; Ait El Fqih, M.; Aouchiche, H.; Kaddouri, A.

    2015-01-01

    The sputter induced photon spectroscopy technique was used to study the luminescence spectra of the species sputtered from chromium powder and its oxide Cr2O3, during 5 keV Kr+ ions bombardment in vacuum better than 10-7 torr. The optical spectra recorded between 350 and 470 nm exhibit discrete lines which are attributed to neutral excited atoms of chromium (Cr I lines). The experiments are also performed under 10-5 torr ultra pure oxygen partial pressure. The results demonstrate that the measured intensities of the emitted photons are always higher in the presence of oxygen and even higher than those obtained for Cr2O3 target. In the presence of oxygen vapor we assume that an oxide film is formed on the chromium surface which is responsible of the increase of photon emission. This variation in the intensities is correctly explained in the model of electron transfer processes between the excited sputtered atom and the bombarded surface. This model suggests that the structure formed on the Cr surface in the case of oxygenated chromium is closer to that of Cr2O3 oxide.

  11. AES, EELS and TRIM simulation method study of InP(100 subjected to Ar+, He+ and H+ ions bombardment.

    Directory of Open Access Journals (Sweden)

    Abidri B.

    2012-06-01

    Full Text Available Auger Electron Spectroscopy (AES and Electron Energy Loss Spectroscopy (EELS have been performed in order to investigate the InP(100 surface subjected to ions bombardment. The InP(100 surface is always contaminated by carbon and oxygen revealed by C-KLL and O-KLL AES spectra recorded just after introduction of the sample in the UHV spectrometer chamber. The usually cleaning process of the surface is the bombardment by argon ions. However, even at low energy of ions beam (300 eV indium clusters and phosphorus vacancies are usually formed on the surface. The aim of our study is to compare the behaviour of the surface when submitted to He+ or H+ ions bombardment. The helium ions accelerated at 500V voltage and for 45 mn allow removing contaminants but induces damaged and no stoichiometric surface. The proton ions were accelerated at low energy of 500 eV to bombard the InP surface at room temperature. The proton ions broke the In-P chemical bonds to induce the formation of In metal islands. Such a chemical reactivity between hydrogen and phosphorus led to form chemical species such as PH and PH3, which desorbed from the surface. The chemical susceptibly and the small size of H+ advantaged their diffusion into bulk. Since the experimental methods alone were not able to give us with accuracy the disturbed depth of the target by these ions. We associate to the AES and EELS spectroscopies, the TRIM (Transport and Range of Ions in Matter simulation method in order to show the mechanism of interaction between Ar+, He+ or H+ ions and InP and determine the disturbed depth of the target by argon, helium or proton ions.

  12. Electrostatic-Discharge-Induced Degradation Caused by Argon Ion Bombardment in Facet-Coating Process of GaInAsP/InP Laser Diode

    Science.gov (United States)

    Ichikawa, Hiroyuki; Ito, Masashi; Hamada, Kotaro; Yamaguchi, Akira; Nakabayashi, Takashi

    2008-10-01

    Electrostatic discharge (ESD)-induced degradation is one of the most important reliability issues of GaInAsP/InP laser diodes. We investigated the relation between ion irradiation in the facet-coating process and ESD-induced degradation. We used electron-beam evaporation with two types of argon ion irradiation for facet-coating. One type of irradiation is used for facet cleaning, in which argon ions bombard the facet directly. Although the ion energy was as low as 40 eV, a lack of phosphorus and enhanced oxidation were found on the ion-irradiated surface. Furthermore, an increase in the surface recombination current and the enhancement of ESD-induced degradation were observed by extending the ion irradiation time. The other type of irradiation is used to promote evaporation. Here, argon ions do not bombard the facet directly. Thus, it had little effect on ESD-induced degradation. From these results, we successfully confirmed that direct ion irradiation increases surface recombination and accelerates ESD-induced degradation even if the ion energy is as low as 40 eV.

  13. Molecular dynamics study on low-energy sputtering of carbon material by Xe ion bombardment

    Science.gov (United States)

    Muramoto, T.; Hyakutake, T.

    2013-05-01

    The low-energy sputtering of carbon material under Xe ion bombardment is studied through the molecular dynamics (MD) simulation. For the normal incidence of Xe, the MD result of sputtering yield almost agrees with the experimental result by Williams et al. (AIAA-2004-3788). However, the experimental result shows a less incident angle dependence than the MD result because the experiment performed on a rough surface. It is found that the sputtered particles have memory of the projectile because the sputtered particles by the low-energy projectile undergo only a few collisions before the ejection. Low density of an amorphous carbon surface brings the decrease of the sputtering yield and the increase of high-energy sputtered atoms.

  14. Possible wave formation and martensitic transformation of iron particles in copper single crystals during argon ion bombardment

    DEFF Research Database (Denmark)

    Thölén, Anders Ragnar; Li, Chang-Hai; Easterling, K.E.

    1983-01-01

    Thin single crystal copper specimens (thickness ~250 nm) containing coherent iron particles (diameter 40–50 nm) have been bombarded with argon ions (5, 80, and 330 keV). During this process some of the iron particles transform to martensite. The transformation was observed near the exposed surface...

  15. Modeling of metal nanocluster growth on patterned substrates and surface pattern formation under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, Satoshi

    2012-11-01

    This work addresses the metal nanocluster growth process on prepatterned substrates, the development of atomistic simulation method with respect to an acceleration of the atomistic transition states, and the continuum model of the ion-beam inducing semiconductor surface pattern formation mechanism. Experimentally, highly ordered Ag nanocluster structures have been grown on pre-patterned amorphous SiO{sub 2} surfaces by oblique angle physical vapor deposition at room temperature. Despite the small undulation of the rippled surface, the stripe-like Ag nanoclusters are very pronounced, reproducible and well-separated. The first topic is the investigation of this growth process with a continuum theoretical approach to the surface gas condensation as well as an atomistic cluster growth model. The atomistic simulation model is a lattice-based kinetic Monte-Carlo (KMC) method using a combination of a simplified inter-atomic potential and experimental transition barriers taken from the literature. An effective transition event classification method is introduced which allows a boost factor of several thousand compared to a traditional KMC approach, thus allowing experimental time scales to be modeled. The simulation predicts a low sticking probability for the arriving atoms, millisecond order lifetimes for single Ag monomers and {approx}1 nm square surface migration ranges of Ag monomers. The simulations give excellent reproduction of the experimentally observed nanocluster growth patterns. The second topic specifies the acceleration scheme utilized in the metallic cluster growth model. Concerning the atomistic movements, a classical harmonic transition state theory is considered and applied in discrete lattice cells with hierarchical transition levels. The model results in an effective reduction of KMC simulation steps by utilizing a classification scheme of transition levels for thermally activated atomistic diffusion processes. Thermally activated atomistic movements

  16. Preparation of clean surfaces and Se vacancy formation in Bi2Se3 by ion bombardment and annealing

    Science.gov (United States)

    Zhou, Weimin; Zhu, Haoshan; Valles, Connie M.; Yarmoff, Jory A.

    2017-08-01

    Bismuth Selenide (Bi2Se3) is a topological insulator (TI) with a structure consisting of stacked quintuple layers. Single crystal surfaces are commonly prepared by mechanical cleaving. This work explores the use of low energy Ar+ ion bombardment and annealing (IBA) as an alternative method to produce reproducible and stable Bi2Se3 surfaces under ultra-high vacuum (UHV). It is found that a clean and well-ordered surface can be prepared by a single cycle of 1 keV Ar+ ion bombardment and 30 min of annealing. Low energy electron diffraction (LEED) and detailed low energy ion scattering (LEIS) measurements show no differences between IBA-prepared surfaces and those prepared by in situ cleaving in UHV. Analysis of the LEED patterns shows that the optimal annealing temperature is 450 °C. Angular LEIS scans reveal the formation of surface Se vacancies when the annealing temperature exceeds 520 °C.

  17. On the validity of the electron transfer model in photon emission from ion bombarded vanadium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ait El Fqih, M.; El Boujlaidi, A.; Jourdani, R.; Kaddouri, A. [Equipe de Spectroscopie and Imagerie Atomiques des Materiaux, Universite Cadi Ayyad, Marrakech (Morocco); Ait El Fqih, M. [Faculte Polydisciplinaire, Universite Chouaib Doukkali, B.P. 2390 El Jadida (Morocco)

    2011-06-15

    The spectral structure of the radiation (250-500 nm) emitted during sputtering of clean and oxygen-covered polycrystalline vanadium and V{sub 2}O{sub 5} by 5 keV Kr{sup +} ions is presented. The optical spectra obtained by bombarding the vanadium target consist of series of sharp lines, which are attributed to neutral and ionic excited V. The same lines are observed in the spectra of V{sub 2}O{sub 5} and vanadium when oxygen is present. The absolute intensities of VI and VII lines are measured under similar conditions for all spectra. The difference in photon yield from the clean and oxide vanadium targets is discussed in terms of the electron-transfer processes between the excited sputtered and electronic levels of the two types of surfaces. We have examined the existing models of ionisation, excitation, neutralisation and de-excitation of atomic particles in the vicinity of solid surfaces. Continuum radiation was also observed and interpreted as a result of the emission of excited molecules of the metal-oxide. (authors)

  18. On the validity of the electron transfer model in photon emission from ion bombarded vanadium surfaces

    Science.gov (United States)

    El Fqih, M. Ait; El Boujlaïdi, A.; Jourdani, R.; Kaddouri, A.

    2011-06-01

    The spectral structure of the radiation (250-500 nm) emitted during sputtering of clean and oxygen-covered polycrystalline vanadium and V2O5 by 5 keV Kr+ ions is presented. The optical spectra obtained by bombarding the vanadium target consist of series of sharp lines, which are attributed to neutral and ionic excited V. The same lines are observed in the spectra of V2O5 and vanadium when oxygen is present. The absolute intensities of VI and VII lines are measured under similar conditions for all spectra. The difference in photon yield from the clean and oxide vanadium targets is discussed in terms of the electron-transfer processes between the excited sputtered and electronic levels of the two types of surfaces. We have examined the existing models of ionisation, excitation, neutralisation and de-excitation of atomic particles in the vicinity of solid surfaces. Continuum radiation was also observed and interpreted as a result of the emission of excited molecules of the metal-oxide.

  19. Ductile extension of a lenticular bubble under high-energy ion bombardment with relation to blistering and flaking

    Science.gov (United States)

    Kamada, K.; Higashida, Y.

    1981-09-01

    A theory is given which is based on a model of the ductile extension of a crack in a material and is capable of explaining the whole process of surface exfoliation phenomena under high-energy ion bombardment, including both blistering and flaking, on the same ground, starting from a very small nucleus of a lenticular bubbble. Further, the distinction between blistering and flaking is clarified, and the relation of the exfoliation phenomeon with local swelling due to bubble formation is presented.

  20. Diamond-like carbon layers modified by ion bombardment during growth and researched by Resonant Ultrasound Spectroscopy

    Science.gov (United States)

    Kocourek, Tomáš; Jelínek, Miroslav; Písařík, Petr; Remsa, Jan; Janovská, Michaela; Landa, Michal; Zemek, Josef; Havránek, Vladimír

    2017-09-01

    Biocompatible Diamond-Like Carbon (DLC) films were prepared by Pulsed Laser Deposition technique using the laser energy density of 10 J cm-2 on the graphite target. The surface of the grown film was modified during the deposition by bombardment with argon, xenon, nitrogen or oxygen ions. The ion energy (up to 150 eV) was changed by gun voltage and by ionic current. The films with high and low diamond/graphite content were prepared. Physical and mechanical properties of biocompatible DLC thin layers prepared by hybrid laser technology were studied. The composition of layers and the content trace elements were determined by the methods of Rutherford Backscattering Spectrometry and Particle Induced X-ray Emission. The content of sp2 and sp3 bonds was measured using X-ray Photoelectron Spectroscopy. For different energy of argon and oxygen ions the maximum of sp3 bonds content was found (83.63% of sp3 bonds for argon ions). All films were smooth, which was confirmed by profilometry and Atomic Force Microscopy measurements. Maximum roughness Ra and RMS was did not exceed 1 nm. The Younǵs and shear moduli were studied by Resonant Ultrasound Spectroscopy. The Young's Modulus attained the value of 601 GPa and the shear Modulus attained the value of 253 GPa at the energy of 30 eV of Ar ions. The influence of ion bombardment on DLC film properties is discussed.

  1. Plasma damage mechanisms in low k organosilicate glass and their inhibition by Ar ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Kazi, Haseeb; Kelber, Jeffry A., E-mail: kelber@unt.edu [Center for Electronic Materials Processing and Integration and Department of Chemistry, University of North Texas, Denton, Texas 76203 (United States)

    2014-03-15

    In-situ x-ray photoelectron spectroscopy and ex-situ Fourier transform infrared spectroscopy studies of vacuum ultraviolet (VUV) photons with or without O{sub 2}, and O radicals point to distinct mechanisms of carbon abstraction in nanoporous organosilicate glass (OSG) films. VUV alone in the absence of O{sub 2} results in Si-CH{sub 3} bond scission and recombination preferentially at silicon monomethyl sites, obeying diffusion kinetics. In contrast, the presence of O{sub 2} interferes with recombination, resulting in diffusion-dominated carbon loss kinetics, enhanced Si oxidation, and greatly accelerating the rate of carbon loss in both the near surface and bulk regions of the OSG, at both monomethyl and dimethyl sites. Carbon abstraction due to exposure to (O({sup 3}P)) does not follow diffusion kinetics, and such interactions yield a SiO{sub 2}-like surface layer inhibiting further O diffusion. Results indicate that diffusion-dominated carbon abstraction kinetics previously observed for OSG exposure to O{sub 2} plasma damage is primarily attributable to the diffusion of O{sub 2} down OSG nanopores, reacting at photoactivated sites, rather than the diffusion of O radicals. OSG pretreatment by 900 eV Ar{sup +} bombardment effectively inhibits both VUV + O{sub 2} and O damage mechanisms by formation of ∼1 nm thick SiO{sub 2}-like surface region that inhibits both O and O{sub 2} diffusion.

  2. Systematic analysis of neutron yields from thick targets bombarded by heavy ions and protons with moving source model

    CERN Document Server

    Kato, T; Nakamura, T

    2002-01-01

    A simple phenomenological analysis using the moving source model has been performed on the neutron energy spectra produced by bombarding thick targets with high energy heavy ions which have been systematically measured at the Heavy-Ion Medical Accelerator (HIMAC) facility (located in Chiba, Japan) of the National Institute of Radiological Sciences (NIRS). For the bombardment of both heavy ions and protons in the energy region of 100-500 MeV per nucleon, the moving source model incorporating the knock-on process could be generally successful in reproducing the measured neutron spectra within a factor of two margin of accuracy. This phenomenological analytical equation is expressed having several parameters as functions of atomic number Z sub p , mass number A sub p , energy per nucleon E sub p for projectile, and atomic number Z sub T , mass number A sub T for target. By inputting these basic data for projectile and target into this equation we can easily estimate the secondary neutron energy spectra at an emi...

  3. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J [Harvard School of Engineering and Applied Sciences, Cambridge MA 02138 (United States)

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  4. From crater functions to partial differential equations: a new approach to ion bombardment induced nonequilibrium pattern formation.

    Science.gov (United States)

    Norris, Scott A; Brenner, Michael P; Aziz, Michael J

    2009-06-03

    We develop a methodology for deriving continuum partial differential equations for the evolution of large-scale surface morphology directly from molecular dynamics simulations of the craters formed from individual ion impacts. Our formalism relies on the separation between the length scale of ion impact and the characteristic scale of pattern formation, and expresses the surface evolution in terms of the moments of the crater function. We demonstrate that the formalism reproduces the classical Bradley-Harper results, as well as ballistic atomic drift, under the appropriate simplifying assumptions. Given an actual set of converged molecular dynamics moments and their derivatives with respect to the incidence angle, our approach can be applied directly to predict the presence and absence of surface morphological instabilities. This analysis represents the first work systematically connecting molecular dynamics simulations of ion bombardment to partial differential equations that govern topographic pattern-forming instabilities.

  5. Sputtering of Ag under C{sub 60}{sup +} and Ga{sup +} projectile bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.; Szakal, C.; Smiley, E.J.; Postawa, Z.; Wucher, A.; Garrison, B.J.; Winograd, N

    2004-06-15

    Cluster ion bombardment often results in large secondary ion yield enhancements relative to atomic ion bombardment. The yields of neutral particles and secondary ions sputtered from a silver surface were investigated through experiments and molecular dynamics (MD) computer simulations. The results show that the neutral Ag yield produced by 15 keV C{sub 60}{sup +} bombardment is 5.6-fold higher than that found for 15 keV Ga{sup +} bombardment, which is in agreement with simulations. The enhancement effect is observed to be about the same for both neutral species and their corresponding secondary ions. Experimental results also indicate that the Ag neutral species produced by C{sub 60}{sup +} bombardment have emission velocity distributions that maximize at much lower values than those observed by Ga{sup +} bombardment, suggesting the presence of non-linear collision cascades.

  6. Defect production and annihilation in metals through electronic excitation by energetic heavy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Defect production, radiation annealing and defect recovery are studied in Ni and Cu irradiated with low-energy ({approx}1-MeV) and high-energy ({approx}100-MeV) ions. Irradiation of Ni with {approx}100-MeV ions causes an anomalous reduction, or even a complete disappearance of the stage-I recovery. This result shows that the energy transferred from excited electrons to lattice atoms through the electron-lattice interaction contributes to the annihilation of the stage-I interstitials. This effect is also observed in Ni as a large radiation annealing during 100-MeV heavy ion irradiation. On the other hand, in Cu thin foils, we find the defect production process strongly associated with electron excitation, where the defect production cross section is nearly proportional to S{sub e}{sup 2}. (author)

  7. Production of Oxidants by Ion Bombardment of Icy Moons in the Outer Solar System

    Directory of Open Access Journals (Sweden)

    Philippe Boduch

    2011-01-01

    Full Text Available Our groups in Brazil, France and Italy have been active, among others in the world, in performing experiments on physical-chemical effects induced by fast ions colliding with solids (frozen gases, carbonaceous and organic materials, silicates, etc. of astrophysical interest. The used ions span a very large range of energies, from a few keV to hundreds MeV. Here we present a summary of the results obtained so far on the formation of oxidants (hydrogen peroxide and ozone after ion irradiation of frozen water, carbon dioxide and their mixtures. Irradiation of pure water ice produces hydrogen peroxide whatever is the used ion and at different temperatures. Irradiation of carbon dioxide and water frozen mixtures result in the production of molecules among which hydrogen peroxide and ozone. The experimental results are discussed in the light of the relevance they have to support the presence of an energy source for biosphere on Europa and other icy moons in the outer Solar System.

  8. Measurement of ion species produced due to bombardment of 450 eV N{sub 2}{sup +} ions with hydrocarbons-covered surface of tungsten: Formation of tungsten nitride

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Bhatt, P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Kumar, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Singh, B.K.; Singh, B.; Prajapati, S. [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India); Shanker, R., E-mail: shankerorama@gmail.com [Atomic Physics Laboratory, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005 (India)

    2016-08-01

    A laboratory experiment has been performed to study the ions that are produced due to collisions of 450 eV N{sub 2}{sup +} ions with a hydrocarbons-covered surface of polycrystalline tungsten at room temperature. Using a TOF mass spectrometry technique, the product ions formed in these collisions have been detected, identified and analyzed. Different ion–surface reaction processes, namely, neutralization, reflection, surface induced dissociation, surface induced chemical reactions and desorption are observed and discussed. Apart from the presence of desorbed aliphatic hydrocarbon and other ions, the mass spectra obtained from the considered collisions show the formation and sputtering of tungsten nitride (WN). A layer of WN on tungsten surface is known to decrease the sputtering of bulk tungsten in fusion devices more effectively than when the tungsten is bombarded with other seeding gases (He, Ar). It is further noted that there is a negligible diffusion of N in the bulk tungsten at room temperature.

  9. Step formation on the ion-bombarded Ag(100) surface studied by LEED and Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Teichert, C. (Max-Planck-Inst. fuer Mikrostrukturphysik, Halle (Germany)); Ammer, C. (Max-Planck-Inst. fuer Mikrostrukturphysik, Halle (Germany)); Klaua, M. (Max-Planck-Inst. fuer Mikrostrukturphysik, Halle (Germany))

    1994-11-16

    The development of the morphology of an Ag(100) single-crystal surface bombarded with 600 eV Ar[sup +] ions at 170 K and at room temperature is studied by spot profile analysis of LEED. A temperature-dependent saturation of the step density is observed and a distinct smoothing of the surface after bombardment occurs already at room temperature. Under out-of-phase condition the LEED spots show a fourfold shape that differs in orientation at both temperatures. Monte Carlo simulations of the atom removal including thermal surface diffusion reveal at 170 K the formation of left angle 100 right angle and left angle 110 right angle step edges with equal probability, whereas at room temperature rearrangement processes at the steps lead to the preferential formation of the close-packed left angle 110 right angle edges. The intensity distribution under out-of-phase condition calculated from the Monte Carlo snap shots exhibits the same temperature dependence of the spot shapes as observed experimentally. The interlayer mass transport occurring during annealing at room temperature is found to be based on jumps running downward the left angle 100 right angle step edges. (orig.)

  10. Moessbauer of phase separation in FeNi multilayers under ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, L.; Paesano, A.; Brueckman, M.E. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica; Scorzelli, R.B.; Dominguez, A.B. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Shinjo, T.; Ono, T.; Hosoito, N. [Kyoto Univ. (Japan). Inst. for Chemical Research

    1997-01-01

    We investigated the effect of noble gas irradiation (He, Ne, Ar and Xe) on the Fe-Ni multilayers with a very thin modulation and nominal composition in the invar region Fe{sub 0.63} Ni{sub 0.37}. The evaluation of the formation/stability of the Fe-Ni phases formed under irradiation with different ions and doses was followed by conversion electron Moessbauer spectroscopy (CEMS). (author). 21 refs., 4 figs., 2 tabs.; e-mail: scorza at novell.cat.cbpf.br.

  11. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others

    1998-01-01

    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  12. Molecular dynamics simulation for the sputtering of an Al2O3 sample bombarded with MeV Si ions

    Institute of Scientific and Technical Information of China (English)

    薛建明; 今西信嗣

    2002-01-01

    Sputtering yield and kinetic energy distribution (KED) of Al particles from an Al2Oa sample bombarded with 1-5 MeV Si ions have been simulated using the molecular dynamics method. These have also been measured experimentally with a conventional time-of-flight facility. In the simulation, a new interatomic potential specific to the Al2O3 target was developed, and both the nuclear energy loss Sn and electronic energy loss Se were taken into consideration. By carefully adjusting the simulation parameters, the simulated sputtering yields fit well with the experimental results, and the simulated KED of Al particles also fits roughly with the experimental KED after being modified theoretically.

  13. Selective atomic-level etching using two heating procedures, infrared irradiation and ion bombardment, for next-generation semiconductor device manufacturing

    Science.gov (United States)

    Shinoda, K.; Miyoshi, N.; Kobayashi, H.; Miura, M.; Kurihara, M.; Maeda, K.; Negishi, N.; Sonoda, Y.; Tanaka, M.; Yasui, N.; Izawa, M.; Ishii, Y.; Okuma, K.; Saldana, T.; Manos, J.; Ishikawa, K.; Hori, M.

    2017-05-01

    The demand for precisely controlled etching is increasing as semiconductor device geometries continue to shrink. To fulfill this demand, cyclic atomic level/layer etching will become one of the key technologies in semiconductor device manufacturing at nanometer dimensions. This review describes recent trends in semiconductor devices and some of the latest results on cyclic atomic-level etching. In particular, it focuses on two types of cyclic etching that use different heating procedures: infrared irradiation for isotropic etching and Ar+ ion bombardment for anisotropic etching. It describes how an inductively-coupled-plasma down-flow etching apparatus with infrared lamps can be used for isotropic cyclic etching. The isotropic cyclic etching of SiN involves the formation and thermal desorption of ammonium hexafluorosilicate-based surface modified layers. This method features high selectivity with respect to SiO2, atomic-level control of the amount of SiN etching, and isotropic etched features. On the other hand, the anisotropic cyclic etching with Ar+ ion bombardment uses a microwave electron-cyclotron-resonance plasma etching apparatus. The anisotropic process for poly Si is composed of cyclic repetitions of chlorine adsorption and Ar+ ion bombardment. The anisotropic process for SiN is composed of cyclic repetitions involving an adsorption step using hydrofluorocarbon chemistry and a desorption step using Ar+ ion bombardment. Potential applications of these isotropic/anisotropic cyclic etching processes are described.

  14. Measurements of secondary neutrons producted from thick targets bombarded by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, T.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Nakao, N.; Shibata, T.; Uwamino, Y.; Nakanishi, N.; Fukumura, A.; Kumamoto, Y.

    1997-03-01

    We measured neutron angular and energy distributions from high energy heavy ions stopping in targets of carbon, aluminum, copper and lead at HIMAC. These spectra are much harder for the lighter target nucleus like carbon. This means that the momentum transfer in the forward direction from heavy ion beam to lighter nuclei is much higher than that to heavier nuclei. (author)

  15. Effects of xe post-bombardment on carbonitrides produced in a low-carbon nitrogen-implanted steel

    OpenAIRE

    Amaral, Livio; Ramos, Stella Maris Moura; Vasquez, Adalberto; Zawislak, Fernando Claudio; Behar, Moni

    1990-01-01

    The effects of Xe bombardment on carbonitrides produced by N implantation in a low-carbon steel are studied via conversion electron Mossbauer spectroscopy and nuclear reaction analysis. The results show two main features: dissolution and reprecipitation of the produced carbonitrides and modification of the thermal behavior of the precipitates. Recently we have performed similar experiments bombarding samples of the same steel with He and Ar. Comparison of the experiments shows that irradiatio...

  16. Microstructural and Tribological Characterization of Duplex Coatings with Additional Ion Bombardment

    Institute of Scientific and Technical Information of China (English)

    B.(S)kori(c); D.Kaka(s); M.Rakita

    2004-01-01

    A duplex surface treatment involves the sequential application of two surface technologies to produce a surface composition with combined properties. A typical duplex process involves plasma nitriding and the PVD coating treatment of steels. In the paper are presented characteristics of hard coatings, type TiN, produced by classic technology PVD (physical vapour deposition) and IBAD (ion beam assisted deposition). Subsequent ion implantation was provided with N5+ions. The dependence of friction coefficient was investigated by means of tribometer (pin-on-ring). The sliding pair was TiN thin coating on steel pin combined with steel ring without coating. The ring was produced from hardenable steel.

  17. Microstructural and Tribological Characterization of Duplex Coatings with Additional Ion Bombardment

    Institute of Scientific and Technical Information of China (English)

    B.Skorie; D.Kakas; M.akita

    2004-01-01

    A duplex surface treatment involves the sequential application of two surface technologies to produce a surface composition with combined properties. A typical duplex process involves plasma nitriding and the PVD coating treatment of steels. In the paper are presented characteristics of hard coatings, type TiN, produced by classic technology PVD (physical vapour deposition) and IBAD (ion beam assisted deposition). Subsequent ion implantation was provided with N5+ ions. The dependence of friction coefficient was investigated by means of tribometer (pin-on-ring). The sliding pair was TiN thin coating on steel pin combined with steel ring without coating. The ring was produced from hardenable steel.

  18. Uranium targets sandwiched between carbon layers for use on target wheels and on a Wobbler in heavy-ion bombardments

    Energy Technology Data Exchange (ETDEWEB)

    Folger, H.; Hartmann, W.; Klemm, J.; Thalheimer, W. (Gesellschaft fuer Schwerionenforschung m.b.H., Darmstadt (Germany, F.R.))

    1989-10-01

    Uranium layers of {approx equal} 0.4 mg/cm{sup 2} are evaporated by means of a 6 kW electron-beam gun onto 0.04 mg/cm{sup 2} thick carbon films in a high-vacuum process; a protecting layer of {approx equal} 0.01 mg/cm{sup 2} of carbon is added in the same vacuum cycle. The evaporation- and deposition yields are discussed and measurements of target characteristics are described. C/U/C sandwich targets in the shape of a sector of an annulus are prepared for use on rotating target wheels of 155 mm radius to be bombarded with a pulsed beam of heavy ions. One type of circular targets of 20 mm in diameter is mounted to a target wobbler. Both, wheel and wobbler, distribute the intensity of the heavy-ion beam to a larger area to reduce radiation damages. Examples of target applications will be mentioned. (orig.).

  19. Extended metastable Al solubility in cubic VAlN by metal-ion bombardment during pulsed magnetron sputtering: film stress vs subplantation

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Ruess, H.; Hans, M.; Lu, J.; Hultman, L.; Schneider, J. M.

    2017-07-01

    Dynamic ion-recoil mixing of near-film-surface atomic layers is commonly used to increase the metastable solubility limit xmax in otherwise immiscible thin film systems during physical vapor deposition. Recently, Al subplantation achieved by irradiating the film growth surface with Al+ metal-ion flux was shown to result in an unprecedented xmax for VAlN, far above values obtained with gas ion irradiation. However, it is reasonable to assume that ion irradiation necessary for subplantation also leads to a compressive stress σ buildup. In order to separate the effects of Al+ bombardment on σ and xmax, and realize low-stress high-xmax nitride alloys, we grow metastable cubic V1-xAlxN (0.17 ≤ x ≤ 0.74) films using reactive magnetron sputtering under different ion irradiation conditions. Al and V targets are operated in Ar/N2 discharges employing (i) conventional DC (Ar+, N2+), (ii) hybrid High-power pulsed magnetron sputtering (HIPIMS)/DC processing with one type of metal ion present (Al+ or V+/V2+), and (iii) HIPIMS with concurrent Al+ and V+/V2+ fluxes. Comparison to the ab initio calculated Al solubility limit reveals that xmax = 0.55 achieved with V+/V2+ irradiation is entirely accountable for by stress. In contrast, Al+ fluxes provide a substantial increase in xmax to 0.63, which is 12% higher than that expected based on the stress-induced increase in metastable solubility. Correlative stress and atom probe tomography data confirm that the metastable Al solubility enhancement is enabled by Al+ subplantation. The here proposed processing strategy allows for growth of single-phase cubic nitride alloys with significantly increased Al concentrations embodying tremendous promise for substantial improvements in high temperature oxidation resistance and mitigates the risk of stress-induced adhesive or cohesive coating failure.

  20. Pattern transition from nanohoneycomb to nanograss on germanium by gallium ion bombardment

    Science.gov (United States)

    Zheng Xiao-Hu郑, 晓虎; Zhang Miao张, 苗; Huang An-Ping黄, 安平; Xiao Zhi-Song肖, 志松; Paul, K. Chu朱 剑 豪; Wang Xi王, 曦; Di Zeng-Feng狄, 增峰

    2015-05-01

    During the irradiation of Ge surface with Ga+ ions up to 1017 ions·cm-2, various patterns from ordered honeycomb to nanograss structure appear to be decided by the ion beam energy. The resulting surface morphologies have been studied by scanning electron microscopy and atomic force microscopy. For high energy Ga+ irradiation (16-30 keV), by controlling the ion fluence, we have captured that the equilibrium nanograss morphology also originates from the ordered honeycomb structure. When honeycomb holes are formed by ion erosion, heterogeneous distribution of the deposited energy along the holes leads to viscous flow from the bottom to the plateau. Redistribution of target atoms results in the growth of protuberances on the plateau, and finally the pattern evolution from honeycomb to nanograss with an equilibrium condition. Project supported by the National Natural Science Funds for Excellent Young Scholar, China (Grant No. 51222211), the National Natural Science Foundation of China (Grant Nos. 61176001 and 61006088), the National Basic Research Program of China (Grant No. 2010CB832906), the Pujiang Talent Project of Shanghai, China (Grant No. 11PJ1411700), the Hong Kong Research Grants Council (RGC) General Research Funds (GRF), China (Grant No. 112212), the City University of Hong Kong of Hong Kong Applied Research Grant (ARG), China (Grant No. 9667066), and the International Collaboration and Innovation Program on High Mobility Materials Engineering of Chinese Academy of Sciences.

  1. Production of waveguides in LiF by MeV ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, J.A.M. [USP, Institute of Physics, CP 66318, 05315-970 Sao Paulo, SP (Brazil)]. E-mail: jamp@fge.if.usp.br; Cremona, M. [PUC-Rio, Physics Department, CP 38071, 22452-970 Rio de Janeiro, RJ (Brazil); Pelli, S. [Nello Carrara Institute of Applied Physics - CNR, Optoelectronics and Photonics Department, via Panciatichi 64, 50127 Firenze (Italy); Macchione, E.L.A. [USP, Institute of Physics, CP 66318, 05315-970 Sao Paulo, SP (Brazil); Koide, K. [USP, Institute of Physics, CP 66318, 05315-970 Sao Paulo, SP (Brazil); Vasconcelos, S.S. [USP, Institute of Physics, CP 66318, 05315-970 Sao Paulo, SP (Brazil); Righini, G.C. [Nello Carrara Institute of Applied Physics - CNR, Optoelectronics and Photonics Department, via Panciatichi 64, 50127 Florence (Italy)

    2005-10-15

    Alkali fluorides containing color centers are promising systems for applications in new integrated optical devices like active waveguides and color center lasers. In this work, we report the development of a simple method, based on high-energy ion beam irradiation, to create active waveguides in alkali halide materials. MeV carbon and helium beams at normal incidence were used to irradiate lithium fluoride crystals, with different ion doses varying from 10{sup 14} up to 10{sup 16} cm{sup -2}, producing thin colored strips. Irradiated waveguides were also characterized by means of optical absorption spectroscopy in order to obtain the distribution of the color centers induced by the ion beam. The results confirm the feasibility of integrated active devices based on color centers in LiF such as tunable light amplifiers, lasers and hybrid optoelectronic components.

  2. Level-energy-dependent mean velocities of excited tungsten atoms sputtered by krypton-ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota [Department of Physics, Toho University, Miyama, Funabashi, Chiba 274-8510 (Japan); Kato, Daiji; Murakami, Izumi [National Institute for Fusion Science, Toki, Gifu 509-5292, Japan and Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Sakaue, Hiroyuki A. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kenmotsu, Takahiro [Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Tatara-Miyakodani, Kyotanabe, Kyoto 610-0394 (Japan); Furuya, Kenji [Faculty of Arts and Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Motohashi, Kenji, E-mail: motohashi@toyo.jp [Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan and Bio-Nano Electronics Research Centre, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585 (Japan)

    2015-11-15

    Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.

  3. Neutron measurements around a beam dump bombarded by high energy protons and lead ions

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Foglio Para, A.; Silari, M.; Ulrici, L.

    2001-02-01

    Measurements of the spectral fluence and the ambient dose equivalent of secondary neutrons produced by 250 GeV/ c protons and 158 GeV/ c per nucleon lead ions were performed at CERN around a thick beam dump. The experimental results obtained with protons were compared with calculations performed with the FLUKA Monte Carlo code. As the available Monte Carlo codes do not transport particles with mass larger than one atomic mass unit, it is shown that for high energy heavy ions, estimates can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number.

  4. Energetic neutral atoms emitted from ice by ion bombardment under Ganymede surface conditions

    Science.gov (United States)

    Wieser, Martin; Barabash, Stas; Futaana, Yoshifumi; Wurz, Peter

    2013-04-01

    Magnetospheric or solar wind ions directly interacting with a planetary surface result in backscattering or sputtering of energetic neutral atoms. One example is the solar wind interaction with the surface of the Moon, where the produced energetic neutral atoms were observed by the Sub-keV Atom Reflecting Analyzer instrument (SARA) on Chandrayaan-1. At Jupiter, magnetospheric plasma interacts in a similar way with the surface of the Galilean moons. However, the emission of energetic neutral atoms from "dirty" ices as found e.g. on Ganymede's surface is poorly understood. We set up an experiment to study the ion to surface interaction under Ganymede surface environment conditions using the unique capabilities of the MEFISTO test facility at University of Bern. Ions of various species and energies up to 33 keV/q were impacted on a block of ice made from a mixture of water, NaCl and dry ice. The energetic neutral atoms produced by the interaction were detected with the prototype of the Jovian Neutrals Analyzer instrument (JNA.) JNA is proposed as part of the Particle Environment Package (PEP) for ESA's JUICE mission to Jupiter and instrument is based on the Energetic Energetic Neutral Atom instrument (ENA) built for the BepiColombo Magnetospheric Orbiter. We present energy spectra for different ion beam species and energetic neutral atom species combinations. The data show high yields for energetic neutral atoms up to the upper end of the instrument energy range of 3.3 keV. The energy spectra of the neutral atom flux emitted from the ice could only partially be fitted by the Sigmund-Thompson formula. In some cases, but not all, a Maxwellian distribution provides a reasonable description of the data.

  5. Enhanced Load Transfer in Carbon Nanotube Bundles via Carbon-Ion Bombardment

    Science.gov (United States)

    Carpena-Nunez, Jennifer; Hernandez, Jose A.; Siochi, Emilie J.; Kim, Jae-Woo; Fonseca, Luis F.

    2014-03-01

    Carbon Nanotubes (CNTs) are ideal candidates for structural composites due to their high modulus and strength, and low weight and density. However, achieving their exceptional mechanical performance at the macroscale is an ongoing challenge, as individual CNTs within bundles are held together by weak van der Waals forces. The current work aims to address issues related to crosslinking CNTs via carbon-ion irradiation to achieve the mechanical performance promised by CNTs. Samples irradiated with a carbon-ion dose of ~ 1013-1014 cm-2 and kinetic energies ranging from 9-25keV show partial amorphization at the outermost layer of the CNT bundle, as theoretically predicted. Mechanical data collected via in-situ Transmission Electron Microscopy-Atomic Force Microscopy (TEM-AFM) shows an increase in tensile and shear strength for irradiated CNT bundles of ~ 6.6GPa and ~ 100MPa, respectively. The adhesion energy between CNT bundles showed an increase from ~ 0.12-0.48 Jm-2 for pristine CNTs up to ~ 42 Jm-2 for carbon-ion irradiated bundles. In addition, enhanced shear interaction exceeding a strength value of ~ 1GPa was observed when exposed to additional amorphous carbon binding, providing a route for improved adhesion to polymer components used in structural composites. This work was supported by a NASA Space Technology Research Fellowship.

  6. Effect of ion-assisted deposition on optical properties of thin films

    Science.gov (United States)

    Tang, Xuefei; Fan, Zhengxiu

    1990-12-01

    Effects of ion assisted deposition on the propertes of Ti02, Zr02 and 5102 optical coatings were investigated. Substrates were bombarded with different ions--- oxygen ions , argon ions , and the mixture ions of oxygen-argon during deposition. The refractive indices, optical absorptions and laser-induced damage thresholds (LIDT) measurments of these films are reported.

  7. Formation of Amino Acid Precursors by Bombardment of Interstellar Ice Analogs with High Energy Heavy Ions

    Science.gov (United States)

    Kobayashi, Kensei; Mita, Hajime; Yoshida, Satoshi; Shibata, Hiromi; Enomoto, Shingo; Matsuda, Tomoyuki; Fukuda, Hitoshi; Kondo, Kotaro; Oguri, Yoshiyuki; Kebukawa, Yoko

    2016-07-01

    A wide variety of organic compounds have been detected in extraterrestrial bodies. It has been recognized that carbonaceous chondrites contain pristine amino acids [1]. There are several scenarios of the formation of such extraterrestrial amino acids or their precursors. Greenberg proposed a scenario that complex organic compounds were formed in interstellar ices in dense clouds, which were brought into solar system small bodies when the solar system was formed [2]. The ice mantles of interstellar dust particles (ISDs) in dense clouds are composed of H2O, CO, CH3OH, CH4, CO2, NH3, etc. In order to verify the scenario, a number of laboratory experiments have been conducted where interstellar ice analogs were irradiated with high-energy particles [3,4] or UV [5,6], and formation of complex organic compounds including amino acid precursors were detected in the products. Though ion-molecular reactions in gaseous phase and surface reactions on the ice mantles have been studied intensively, much less works on cosmic rays-induced reaction have been reported. In order to study possible formation of complex molecules in interstellar ices, frozen mixtures of water, methanol and ammonia with various mixing ratios were irradiated with high-energy heavy ions such as carbon ions (290 MeV/u) and neon ions (400 MeV/u) from HIMAC, NIRS, Japan. For comparison, gaseous mixtures of water, ammonia, carbon monoxide, carbon dioxide, and/or methane were irradiated with protons (2.5 MeV) from a Tandem accelerator, Tokyo Tech, Japan. Amino acids in the products were determined by cation exchange HPLC after acid hydrolysis. Products, both before and after acid hydrolysis, were also characterized by FT-IR and other techniques. Amino acids were detected in the hydrolyzed products after mixture of CH3OH, NH3 and H2O with various mixing ratios were irradiated with heavy ions, including when their mixing ratio was set close to the reported value of the interstellar ices (10:1:37). In the HIMAC

  8. The effects of energetic proton bombardment on polymeric materials: Experimental studies and degradation models

    Science.gov (United States)

    Coulter, D. R.; Gupta, A.; Smith, M. V.; Fornes, R. E.

    1986-01-01

    This report describes 3 MeV proton bombardment experiments on several polymeric materials of interest to NASA carried out on the Tandem Van De Graff Accelerator at the California Institute of Technology's Kellogg Radiation Laboratory. Model aromatic and aliphatic polymers such as poly(1-vinyl naphthalene) and poly(methyl methacrylate), as well as polymers for near term space applications such as Kapton, Epoxy and Polysulfone, have been included in this study. Chemical and physical characterization of the damage products have been carried out in order to develop a model of the interaction of these polymers with the incident proton beam. The proton bombardment methodology developed at the Jet Propulsion Laboratory and reported here is part of an ongoing study on the effects of space radiation on polymeric materials. The report is intended to provide an overview of the mechanistic, as well as the technical and experimental, issues involved in such work rather than to serve as an exhaustive description of all the results.

  9. Effect of straining graphene on nanopore creation using Si cluster bombardment: A reactive atomistic investigation

    Science.gov (United States)

    Berdiyorov, G. R.; Mortazavi, B.; Ahzi, S.; Peeters, F. M.; Khraisheh, M. K.

    2016-12-01

    Graphene nanosheets have recently received a revival of interest as a new class of ultrathin, high-flux, and energy-efficient sieving membranes because of their unique two-dimensional and atomically thin structure, good flexibility, and outstanding mechanical properties. However, for practical applications of graphene for advanced water purification and desalination technologies, the creation of well controlled, high-density, and subnanometer diameter pores becomes a key factor. Here, we conduct reactive force-field molecular dynamics simulations to study the effect of external strain on nanopore creation in the suspended graphene by bombardment with Si clusters. Depending on the size and energy of the clusters, different kinds of topography were observed in the graphene sheet. In all the considered conditions, tensile strain results in the creation of nanopores with regular shape and smooth edges. On the contrary, compressive strain increases the elastic response of graphene to irradiation that leads to the formation of net-like defective structures with predominantly carbon atom chains. Our findings show the possibility of creating controlled nanopores in strained graphene by bombardment with Si clusters.

  10. X-Ray Emission from Zr, Mo, In and Pb Targets Bombarded by Slow Highly Charged Arq+(q = 13, 14, 15, 16) Ions

    Institute of Scientific and Technical Information of China (English)

    CAI Xiao-Hong; SHAO Jian-Xiong; CUI Ying; XU Xu; CHEN Xi-Meng; YU De-Yang; LU Rong-Chun; SHAO Cao-Jie; LU Jun; RUAN Fang-Fang; YANG Zhi-Hu; DING Bao-Wei; ZHANG Hong-Qiang

    2005-01-01

    @@ We study the L x-ray emission from Zr, Mo and In targets and M x-ray emission from Pb target under bombardment of low energy Arq+ (q = 13, 14, 15, 16) ions. The relative x-ray yields were measured in the projectile kinetic energy range 210-360keV. It is found that the relative x-ray yields from Zr, Mo and Pb targets increase with the increasing projectile kinetic energy for Ar14+ and Ar16+ projectiles and depend on the potential energy of the projectile remarkably.

  11. INVESTIGATION OF AES AND XPS FOR THE ION BOMBARDED CARBON FILMS ON THE SURFACE OF TUNGSTEN ALLOY%离子束轰击钨合金表面碳膜的AES和XPS分析

    Institute of Scientific and Technical Information of China (English)

    李俊; 高剑; 张一云; 吴丽萍; 黄宁康; 赵纯培

    2000-01-01

    Tungsten alloy with special properties is a useful material in medical and weapon devices. Surface modification of ion technique is used to improve the surface hardness and wear resistance of tungsten alloy, where carbon films deposited with magnetron sputtering on the surface of tungsten alloy were bombarded by ion beam with different species AES and XPS analyses for these speciment show that tungsten carbide and tungsten nitride were formed due to N+ bombardment. Which is beneficial to the Surface hardness and wear resistance of tungsten alloy,but no carbide or no nitride as above with other ion species. Again,ion bombardness leads to mixing between the carbon and tungsten alloy hence improve the adhere of carbon film to the substrate.

  12. Formation mechanism and yield of molecules ejected from ZnS, CdS, and FeS{sub 2} during ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Nikzad, S.; Calaway, W.F.; Pellin, M.J.; Young, C.E.; Gruen, D.M. [Argonne National Lab., IL (United States); Tombrello, T.A. [California Inst. of Technology, Pasadena, CA (United States). Div. of Physics, Mathematics, and Astronomy

    1994-03-01

    Neutral species ejected from single crystals of ZnS, CdS, and FeS{sub 2} during ion bombardment by 3 keV Ar{sup +} were detected by laser post-ionization followed by time-of-flight mass spectrometry. While metal atoms (Fe, Zn, Cd) and S{sub 2} were the dominant species observed, substantial amounts of S, FeS, Zn{sub 2}, ZnS, Cd{sub 2}, and CdS were also detected. The experimental results demonstrate that molecules represent a larger fraction of the sputtered yield than was previously believed from secondary ion mass spectrometry experiments. In addition, the data suggest that the molecules are not necessarily formed from adjacent atoms in the solid and that a modified form of the recombination model could provide a mechanism for their formation.

  13. Structural Changes in Alloys of the Al-Cu-Mg System Under Ion Bombardment and Shock-Wave Loading

    Science.gov (United States)

    Ovchinnikov, V. V.; Gushchina, N. V.; Romanov, I. Yu.; Kaigorodova, L. I.; Grigor'ev, A. N.; Pavlenko, A. V.; Plokhoi, V. V.

    2017-02-01

    To confirm the hypothesis on the shock-wave nature of long-range effects upon corpuscular irradiation of condensed media presumably caused by emission and propagation of post-cascade shock waves, comparative experiments on ion beam modification and mechanical shock-wave loading of specimens of VD1 and D16 alloys of the Al-Cu-Mg system are performed. Direct analogy between the processes of microstructural change of cold-deformed VD1 and D16 alloys under mechanical shock loading and irradiation by beams of accelerated Ar+ ions (E = 20-40 keV) with low fluences (1015-1016 cm-2) is established. This demonstrates the important role of the dynamic long-range effects that have not yet been considered in classical radiation physics of solids.

  14. Photon emission produced by Kr{sup +} ions bombardment of Cr and Cr{sub 2}O{sub 3} targets

    Energy Technology Data Exchange (ETDEWEB)

    Boujlaidi, A. El, E-mail: a.elboujlaidi@uca.ma [Equipe de Spectroscopie and Imagerie Atomiques des Matériaux, Université Cadi Ayyad, Marrakech (Morocco); Hammoum, K. [Laboratoire de Mécanique, Structures et Energétique, Université Mouloud Mammeri de Tizi-Ouzou (Algeria); Jadoual, L.; Jourdani, R. [Equipe de Spectroscopie and Imagerie Atomiques des Matériaux, Université Cadi Ayyad, Marrakech (Morocco); Ait El Fqih, M. [Equipe de Spectroscopie and Imagerie Atomiques des Matériaux, Université Cadi Ayyad, Marrakech (Morocco); Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), Université Hassan II Mohammedia – Casablanca (Morocco); Aouchiche, H. [Laboratoire de Mécanique, Structures et Energétique, Université Mouloud Mammeri de Tizi-Ouzou (Algeria); Kaddouri, A. [Equipe de Spectroscopie and Imagerie Atomiques des Matériaux, Université Cadi Ayyad, Marrakech (Morocco)

    2015-01-15

    The sputter induced photon spectroscopy technique was used to study the luminescence spectra of the species sputtered from chromium powder and its oxide Cr{sub 2}O{sub 3}, during 5 keV Kr{sup +} ions bombardment in vacuum better than 10{sup −7} torr. The optical spectra recorded between 350 and 470 nm exhibit discrete lines which are attributed to neutral excited atoms of chromium (Cr I lines). The experiments are also performed under 10{sup −5} torr ultra pure oxygen partial pressure. The results demonstrate that the measured intensities of the emitted photons are always higher in the presence of oxygen and even higher than those obtained for Cr{sub 2}O{sub 3} target. In the presence of oxygen vapor we assume that an oxide film is formed on the chromium surface which is responsible of the increase of photon emission. This variation in the intensities is correctly explained in the model of electron transfer processes between the excited sputtered atom and the bombarded surface. This model suggests that the structure formed on the Cr surface in the case of oxygenated chromium is closer to that of Cr{sub 2}O{sub 3} oxide.

  15. Simulation of Carbon Nanotube Welding through Ar bombardment

    CERN Document Server

    Kucukkal, Mustafa U

    2014-01-01

    Single-walled carbon nanotubes show promise as nanoscale transistors, for nanocomputing applications. This use will require appropriate methods for creating electrical connections between distinct nanotubes, analogous to welding of metallic wires at larger length scales, but methods for performing nanoscale chemical welding are not yet sufficiently understood. This study examined the effect of Ar bombardment on the junction of two crossed single-walled carbon nanotubes, to understand the value and limitations of this method for generating connections between nanotubes. A geometric criterion was used to assess the quality of the junctions formed, with the goal of identifying the most productive conditions for experimental ion bombardment. In particular, the effects of nanotube chirality, Ar impact kinetic energy, impact particle flux and fluence, and annealing temperature were considered. The most productive bombardment conditions, leading to the most crosslinking of the tubes with the smallest loss of graphit...

  16. Damage effects of {ion}/{atom} beam milling on MNOS (Al/Si 3N 4/SiO 2/Si) capacitors

    Science.gov (United States)

    Bangert, U.; Belson, J.; Wilson, I. H.

    1984-02-01

    Low energy argon ion and atom beams produced by saddle field sources have been used to study changes in CVD Si 3N 4/SiO 2/Si structures after bombardment of the bare nitride at a particle energy of 2.9 keV. Interface state densities Nst and flatband voltages VFB were extracted from high frequency (1.3 MHz) and quasi-static C- V curves. Bombardment was found to induce an increase in Nst and positive and negative charge storage associated with the nitride (or the nitride/oxide interface). The effect was more pronounced under ion bombardment. On the supposition that displacement damage is similar for ion and atom bombardments the differences in charge storage are interpreted in terms of enhanced trapping under the field associated with ion bombardment.

  17. Ion bombardment measurements and simulations of a low temperature VHF PECVD SiH4-H2 discharge in the a-Si:H to μc-Si:H transition regime

    NARCIS (Netherlands)

    Landheer, K.; Goedheer, W. J.; Poulios, I.; Schropp, R. E. I.; Rath, J. K.

    2016-01-01

    We studied ion bombardment during amorphous silicon layer deposition for hydrogen dilutions 5 to 59 with mass resolved IED measurements and simulations. The trends in the peak position of H2+ and SiHy+ IEDs with increasing hydrogen dilution show good agreement between measurements and simulations. A

  18. Heavy-ion induced desorption yields of amorphous carbon films bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Küchler, D; Scrivens, R; Costa Pinto, P; Yin Vallgren, C; Bender, M

    2011-01-01

    During the past decade, intense experimental studies on the heavy-ion induced molecular desorption were performed in several particle accelerator laboratories worldwide in order to understand and overcome large dynamic pressure rises caused by lost beam ions. Different target materials and various coatings were studied for desorption and mitigation techniques were applied to heavy-ion accelerators. For the upgrade of the CERN injector complex, a coating of the Super Proton Synchrotron (SPS) vacuum system with a thin film of amorphous carbon is under study to mitigate the electron cloud effect observed during SPS operation with the nominal proton beam for the Large Hadron Collider (LHC). Since the SPS is also part of the heavy-ion injector chain for LHC, dynamic vacuum studies of amorphous carbon films are important to determine their ion induced desorption yields. At the CERN Heavy Ion Accelerator (LINAC 3), carbon-coated accelerator-type stainless steel vacuum chambers were tested for desorption using 4.2 Me...

  19. Two-dimensional numerical research on effects of titanium target bombarded by TEMP Ⅱ accelerator

    Institute of Scientific and Technical Information of China (English)

    Wu Di; Gong Ye; Liu Jin-Yuan; Wang Xiao-Gang; Liu Yue; Ma Teng-Cai

    2006-01-01

    Two-dimensional numerical research has been carried out on the ablation effects of titanium target irradiated by intense pulsed ion beam (IPIB) generated by TEMP Ⅱ accelerator. Temporal and spatial evolution of the ablation process of the target during a pulse time has been simulated. We have come to the conclusion that the melting and evaporating process begin from the surface and the target is ablated layer by layer when the target is irradiated by the IPIB. Meanwhile, we also obtained the result that the average ablation velocity in target central region is about 10 m/s, which is far less than the ejection velocity of the plume plasma formed by irradiation. Different effects have been compared to the different ratio of the ions and different energy density of IPIB while the target is irradiated by pulsed beams.

  20. Nanoscale patterns produced by self-sputtering of solid surfaces: The effect of ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R. Mark [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); Hofsäss, Hans [II. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-08-21

    A theory of the effect that ion implantation has on the patterns produced by ion bombardment of solid surfaces is introduced. For simplicity, the case of self-sputtering of an elemental material is studied. We find that implantation of self-ions has a destabilizing effect along the projected beam direction for angles of incidence θ that exceed a critical value. In the transverse direction, ion implantation has a stabilizing influence for all θ.

  1. In situ noise measurements on ion bombarded thin films: 1/f-noise as a fingerprint for amorphization

    Energy Technology Data Exchange (ETDEWEB)

    Noske, Matthias; Trautvetter, Moritz; Ziemann, Paul [Institut fuer Festkoerperphysik, Universitaet Ulm (Germany)

    2009-07-01

    As has been experimentally demonstrated, the crystalline binary alloy In{sub 2}Au can be transformed into an amorphous state by low temperature ion irradiation. This transformation can be followed by measuring the ion induced increase of the electrical resistance as a function of the ion fluence. While this increase can be attributed to the built-up of static disorder, fluctuating atomic configurations may be present as well leading to resistance fluctuation and, as a consequence, to 1/f noise. To test such a possibility, patterned AuIn{sub 2} films were irradiated with 350 keV Ar{sup +} ions of various fluences up to 10{sup 15}ions/cm{sup 2} at 85 K. During the stepwise amorphization noise density SR spectra of the 1/f noise were taken by applying a correlation measurement technique{sup 2} allowing detection of signals below the thermal noise. It could be shown that the spectral noise density is maximal at the percolation limit whereas the resistance approaches its final value.

  2. Surface morphological evolution and nanoneedle formation of 18Cr-ODS steel by focused ion beam bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Guang, E-mail: gran@xmu.edu.cn [College of Energy, Xiamen University, Xiamen City, Fujian Province 361102 (China); Chen, Nanjun; Qiang, Rui [College of Energy, Xiamen University, Xiamen City, Fujian Province 361102 (China); Wang, Lumin [College of Energy, Xiamen University, Xiamen City, Fujian Province 361102 (China); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Li, Ning [College of Energy, Xiamen University, Xiamen City, Fujian Province 361102 (China); Lian, Jie, E-mail: lianj@rpi.edu [Department of Mechanical, Aerospace & Nuclear Engineering, Rensselaer Polytechnic Institute, NY (United States)

    2015-08-01

    Highlights: • Morphological evolution of the 18Cr-ODS was studied under intense ion radiation. • The initial surface morphology of the steel significantly affects the nanoneedle formation, and the microstructure of the nanoneedle was characterized by TEM. • The formation mechanism of nano-needle structure of the 18Cr-ODS was discussed. • Surface defects enhance kinetics of surface roughening and pattern formation. - Abstract: Morphological evolution upon intense energetic particle–matter interactions is of fundamental importance for materials utilized in extreme radiation environment, and controlling surface morphology by radiation also provides a new pathway for exploring non-equilibrium process at surface. In this work, surface morphology and microstructural evolution upon low energy ion irradiation of 18Cr-ODS, a candidate structural material for cladding and first wall of future fission and fusion reactors, were investigated by in situ focused Ga{sup +} ion beam/scanning electron microscopy and ex situ transmission electron microscopy. A surface roughening through pore formation, coalescence and eventually nanoneedle formation was induced on 18Cr-ODS steel surface. Cross-section microstructure analysis indicates that the formation of nanoneedle was not a result of grain recrystallization or chemical composition change. Pre-irradiated materials by He{sup +} and Fe{sup +} ions displays enhanced kinetics for surface morphological evolution and lower fluences of focused Ga{sup +} are required for the nanoneedle formation. These results suggest that the surface roughening and morphological evolution of 18Cr-ODS under low energy ion irradiation is an interplay between a curvature-dependent sputtering and defect accumulation near the surface.

  3. Engineering the Activity and Lifetime of Heterogeneous Catalysts for Carbon Nanotube Growth via Substrate Ion Beam Bombardment (Postprint)

    Science.gov (United States)

    2014-07-31

    11,25 and chirality.19,20 CNTs are grown via heterogeneous catalysis using a thin film of catalyst on a wide variety of catalyst supports. Films of...another method in catalysis science to engineer supports to enhance both catalytic activity and lifetime with general implications for heterogeneous ...AFRL-RX-WP-JA-2014-0159 ENGINEERING THE ACTIVITY AND LIFETIME OF HETEROGENEOUS CATALYSTS FOR CARBON NANOTUBE GROWTH VIA SUBSTRATE ION BEAM

  4. Energy-resolved angular distributions and the population partition of excited state Rh atoms ejected from ion bombarded Rh [l brace]001[r brace

    Energy Technology Data Exchange (ETDEWEB)

    He, C.; Postawa, Z.; El-Maazawi, M.; Rosencrance, S.; Garrison, B.J.; Winograd, N. (Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States))

    1994-10-01

    The energy-resolved angular distributions of Rh atoms ejected from Rh [l brace]001[r brace] by bombardment with 5.0 keV Ar[sup +] ions have been measured for the ground state ([ital a] [sup 4][ital F][sub 9/2]) and the two lowest lying excited state ([ital a] [sup 4][ital F][sub 7/2],[ital a] [sup 4][ital F][sub 5/2]). Simultaneous measurements on these electronic states provide us an opportunity to examine the influence of electronic interactions on desorbed particles. The experimental results show that there is a sequential variation in the angular distributions as the excitation energy increases. These variations are attributed to the interaction between the substrate electrons and the excited state atom as it is being ejected from the surface. Since the measurements are performed using multiphoton ionization via a single intermediate state, the population partition among the three lowest states is obtained as well. The excitation probabilities of the [ital a] [sup 4][ital F][sub 7/2] and [ital a] [sup 4][ital F][sub 5/2] states are compared with those predicted from the expression exp([minus][ital A]/[ital av][sub [perpendicular

  5. EBIS-A facility for the studies of X-ray emission from solids bombarded by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Jabłoński, Ł. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Jagodziński, P. [Department of Physics, Kielce University of Technology, 25-314 Kielce (Poland); Kubala-Kukuś, A.; Sobota, D.; Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland)

    2015-07-01

    We report here on the progress in the X-ray spectroscopy program at the EBIS-A facility installed recently at the Institute of Physics of Jan Kochanowski University in Kielce. In this facility the beams of low-energy highly charged ions (HCI) produced by the Dresden EBIS-A ion source, after extraction and charge-state separation in the double focusing magnet, are directed to the experimental UHV chamber equipped with a 5-axis universal sample manipulator. The X-rays emitted in interaction of the highly charged ions with solids can be measured by an energy dispersive X-ray silicon drift detector (SDD) and/or a wavelength-dispersive X-ray spectrometer (WDS) mounted at the experimental chamber. The surface nanostructures formed by an impact of HCI will be studied by the grazing emission X-ray fluorescence (GEXRF) technique and using a multiprobe surface analysis system based on the X-ray photoelectron spectrometer (XPS) coupled to the UHV chamber of the EBIS-A facility. In this paper a brief description of the facility, X-ray instrumentation and the surface analysis system is given and the first results are presented.

  6. Production Yield of C-H Cluster From Carbon Material Bombarded by MeV Ions%MeV 离子轰击碳样品引起的碳氢团簇产额

    Institute of Scientific and Technical Information of China (English)

    刘坤; 郑涛; 郭猜; 杨江燕; 田继挺; 聂锐; 马宏骥; 丁富荣

    2014-01-01

    利用北京大学2×1.7 MV静电串列加速器产生的1.5 MeV Au2+和Si+束流轰击碳纳米管样品,用二次离子飞行时间质谱方法分析了二次离子成分,通过质量已知的样品的定标,确认了轰击产生的二次离子质量。分析束流轰击后的二次离子产额,发现在此能量下二次离子产额与离子在物质中射程的横向歧离表现出正相关。%Using the time-of-flight secondary ion mass spectrometry method , the production yield of C-H cluster from carbon material bombarded by MeV ions was investigated .In the experiment ,Si+ and Au2+ ions generated by the 2 × 1.7MV tandem accelerator of Peking University were chosen as the primary ion beams .The mass of the secondary ion was calibrated by the sample with known mass .By analyzing the mass spectrum of the secondary ion bombarded by different ions ,it is found that the yield is related to the lateral straggling of ions in the material at this energy region .

  7. Self-terminated etching of GaN with a high selectivity over AlGaN under inductively coupled Cl2/N2/O2 plasma with a low-energy ion bombardment

    Science.gov (United States)

    Zhong, Yaozong; Zhou, Yu; Gao, Hongwei; Dai, Shujun; He, Junlei; Feng, Meixin; Sun, Qian; Zhang, Jijun; Zhao, Yanfei; DingSun, An; Yang, Hui

    2017-10-01

    Etching of GaN/AlGaN heterostructure by O-containing inductively coupled Cl2/N2 plasma with a low-energy ion bombardment can be self-terminated at the surface of the AlGaN layer. The estimated etching rates of GaN and AlGaN were 42 and 0.6 nm/min, respectively, giving a selective etching ratio of 70:1. To study the mechanism of the etching self-termination, detailed characterization and analyses were carried out, including X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectroscopy (TOF-SIMS). It was found that in the presence of oxygen, the top surface of the AlGaN layer was converted into a thin film of (Al,Ga)Ox with a high bonding energy, which effectively prevented the underlying atoms from a further etching, resulting in a nearly self-terminated etching. This technique enables a uniform and reproducible fabrication process for enhancement-mode high electron mobility transistors with a p-GaN gate.

  8. Effects of supersonic fine particle bombarding on thermal cyclic failure lifetime of thermal barrier coating

    Institute of Scientific and Technical Information of China (English)

    CHEN Ya-jun; LIN Xiao-ping; WANG Zhi-ping; WANG Li-jun; JI Zhao-hui; DONG Yun

    2010-01-01

    Thermal barrier coating(TBC)consisting of a NiCoCrAlY bond coat(BC)and a ZrO2-8 wt.%Y2O3 topcoat(TC)was fabricated on the nickel-base supcralloy by air plasma spray(APS).The BC was trea-ted by supersonic fine particle bombarding(SFPB).Thermal cyclic failure and residual stress in thermally grown oxide(TGO)scale were studied by SEM with EDS and ruby fluorescence spectroscopy(RFS).As shown in the results,after treated by SFPB,thickening of TGO was relatively slow,which reduced the level of growth stress.The TBC with SFPB treatment was still remained well undergoing 350 times of thermal cycle.However,after thermal cycle with the same times,the separation of TC was observed in TBC without SFPB treatment.The residual stress analysis by RFS showed that the residual stress of SFPB-treated TBC increased with the increasing number of thermal cycle.The residual stress of conventional TBC reached a value of 650MPa at 350 times of cycle and that of SFPB-treated TBC only reached 532 MPa at 400 times of cycle.The BC with SFPB treatment after 400 times of cycle was analyzed by RFS,the high stress value was not observed in local thickened region of TGO.Thermal cycling resistance of TBC can be improved by the SFPB technology.

  9. Characterization of carbon contamination under ion and hot atom bombardment in a tin-plasma extreme ultraviolet light source

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A., E-mail: a.dolgov@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands); Lopaev, D. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation); Lee, C.J. [MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands); Zoethout, E. [Dutch Institute for Fundamental Energy Research (DIFFER), Nieuwegein (Netherlands); Medvedev, V. [MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands); Yakushev, O. [Institute for Spectroscopy Russian Academy of Sciences, Moscow (Russian Federation); Bijkerk, F. [MESA+ Institute for Nanotechnology, University of Twente, Enschede (Netherlands)

    2015-10-30

    Highlights: • Carbon film grown during exposure to EUV radiation and high energy ions was studied. • The carbon film is highly resistant to chemical and physical sputtering. • Surface contamination of plasma-facing components is similar to hydrogenated DLC. - Abstract: Molecular contamination of a grazing incidence collector for extreme ultraviolet (EUV) lithography was experimentally studied. A carbon film was found to have grown under irradiation from a pulsed tin plasma discharge. Our studies show that the film is chemically inert and has characteristics that are typical for a hydrogenated amorphous carbon film. It was experimentally observed that the film consists of carbon (∼70 at.%), oxygen (∼20 at.%) and hydrogen (bound to oxygen and carbon), along with a few at.% of tin. Most of the oxygen and hydrogen are most likely present as OH groups, chemically bound to carbon, indicating an important role for adsorbed water during the film formation process. It was observed that the film is predominantly sp{sup 3} hybridized carbon, as is typical for diamond-like carbon. The Raman spectra of the film, under 514 and 264 nm excitation, are typical for hydrogenated diamond-like carbon. Additionally, the lower etch rate and higher energy threshold in chemical ion sputtering in H{sub 2} plasma, compared to magnetron-sputtered carbon films, suggests that the film exhibits diamond-like carbon properties.

  10. Laser fluorescence spectroscopy of zinc neutrals originating from laser-irradiated and ion-bombarded zinc sulfide and zinc surfaces

    Science.gov (United States)

    Arlinghaus, H. F.; Calaway, W. F.; Young, C. E.; Pellin, M. J.; Gruen, D. M.; Chase, L. L.

    Time-of-flight (TOF) measurements, employing high-resolution laser-induced fluorescence spectroscopy (LFS) as a probe, have been used to measure the yield and velocity distribution of Zn atoms ejected from a ZnS single crystal under irradiation by 308 nm photons. By comparison with the known ion sputtering yield for pure zinc, the absolute yield was determined to be 10 to the 10th power atoms/pulse at a laser fluence of 30 mJ/sq cm. The velocity distribution of the Zn atoms could be fitted by a Maxwell-Boltzmann distribution, having characteristic temperature of approx 2300 K. In addition, Doppler-shift techniques have been combined with TOF measurements in order to separate prompt from delayed emission of ablated atoms, as well as to probe possible molecular or cluster fragmentation. The results obtained suggest the possibility of molecular or cluster emission from ZnS.

  11. Confirming the key role of Ar+ ion bombardment in growth feature of nanostructured carbon materials by PECVD.

    Science.gov (United States)

    Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, J; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong

    2017-09-20

    In order to confirm the key role of plasma etching in growth feature of nanostructured carbon materials (NCMs), here we reported a novel strategy to in-situ create different states of plasma etching conditions in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from substrate. Different plasma-related environments on either side of the catalyst film were created simultaneously for achieving multi-layered structural NCMs. Results showed that plasma etching is observed crucial and complex for the growth of NCMs. The effect of plasma etching has both positive and negative sides on carbon nanotubes (CNTs). On one hand, plasma etching can break up the structure of CNTs and thus thin CNTs cannot be obtained. On the other hand, plasma etching can remove the redundant carbon on surface of large catalyst particles, contributing to catalyzing thick CNTs. As a result, the diameter of CNTs depends on the state of plasma etching. For vertically oriented few-layer graphene (VFG), plasma etching is an essential asset and strong plasma etching can even change the CNTs into VFG. Therefore, specific multi-layered structural NCMs can be obtained by PECVD combining plasma etching with catalyst separation method, which is promising in many fields. © 2017 IOP Publishing Ltd.

  12. The fate of meteoric metals in ice particles: Effects of sublimation and energetic particle bombardment

    Science.gov (United States)

    Mangan, T. P.; Frankland, V. L.; Murray, B. J.; Plane, J. M. C.

    2017-08-01

    The uptake and potential reactivity of metal atoms on water ice can be an important process in planetary atmospheres and on icy bodies in the interplanetary and interstellar medium. For instance, metal atom uptake affects the gas-phase chemistry of the Earth's mesosphere, and has been proposed to influence the agglomeration of matter into planets in protoplanetary disks. In this study the fate of Mg and K atoms incorporated into water-ice films, prepared under ultra-high vacuum conditions at temperatures of 110-140 K, was investigated. Temperature-programmed desorption experiments reveal that Mg- and K-containing species do not co-desorb when the ice sublimates, demonstrating that uptake on ice particles causes irreversible removal of the metals from the gas phase. This implies that uptake on ice particles in terrestrial polar mesospheric clouds accelerates the formation of large meteoric smoke particles (≥1 nm radius above 80 km) following sublimation of the ice. Energetic sputtering of metal-dosed ice layers by 500 eV Ar+ and Kr+ ions shows that whereas K reacts on (or within) the ice surface to form KOH, adsorbed Mg atoms are chemically inert. These experimental results are consistent with electronic structure calculations of the metals bound to an ice surface, where theoretical adsorption energies on ice are calculated to be -68 kJ mol-1 for K, -91 kJ mol-1 for Mg, and -306 kJ mol-1 for Fe. K can also insert into a surface H2O to produce KOH and a dangling H atom, in a reaction that is slightly exothermic.

  13. Effects of particle size, helium gas pressure and microparticle dose on the plasma concentration of indomethacin after bombardment of indomethacin-loaded poly-L-lactic acid microspheres using a Helios gun system.

    Science.gov (United States)

    Uchida, Masaki; Natsume, Hideshi; Kobayashi, Daisuke; Sugibayashi, Kenji; Morimoto, Yasunori

    2002-05-01

    We investigated the effects of the particle size of indomethacin-loaded poly-L-lactic acid microspheres (IDM-loaded PLA MS), the helium pressure used to accelerate the particles, and the bombardment dose of PLA MS on the plasma concentration of IDM after bombarding with IDM-loaded PLA MS of different particle size ranges, 20-38, 44-53 and 75-100 microm, the abdomen of hairless rats using the Helios gene gun system (Helios gun system). Using larger particles and a higher helium pressure, produced an increase in the plasma IDM concentration and the area under the plasma concentration-time curve (AUC) and resultant F (relative bioavailability with respect to intracutaneous injection) of IDM increased by an amount depending on the particle size and helium pressure. Although a reduction in the bombardment dose led to a decrease in C(max) and AUC, F increased on decreasing the bombardment dose. In addition, a more efficient F was obtained after bombarding with IDM-loaded PLA MS of 75-100 microm in diameter at each low dose in different sites of the abdomen compared with that after bolus bombardment with a high dose (dose equivalent). These results suggest that the bombardment injection of drug-loaded microspheres by the Helios gun system is a very useful tool for delivering a variety of drugs in powder form into the skin and systemic circulation.

  14. Improvement of electron beam properties by reducing back-bombardment effects in a thermionic RF gun

    CERN Document Server

    Kii, Toshiteru; Ohgaki, Hideaki; Tometaka, Isao; Yamane, Koshiro; Yamazaki, Tetsuo; Yoshikawa, Kiyoshi

    2003-01-01

    In the Free Electron Laser (FEL) experiment, where a long beam macro- pulse is required, energy shift caused by an increase of current density at the cathode surface due to heating by back-streaming electrons is quite serious. It was numerically found that the low- energy component of the back-streaming electrons causes a serious effect. It was also found that the effect can be decreased by applying a transverse magnetic field by calculating time evolution of the cathode surface temperature with a one-dimensional thermal conduction model.

  15. Bombardment-induced segregation and redistribution

    Energy Technology Data Exchange (ETDEWEB)

    Lam, N.Q.; Wiedersich, H.

    1986-04-01

    During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilbrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed. 74 refs., 7 figs., 1 tab.

  16. Effect of inelastic and elastic energy losses of Xe ions on the evolution of hydrogen blisters in silicon

    Science.gov (United States)

    Reutov, V. F.; Dmitriev, S. N.; Sokhatskii, A. S.; Zaluzhnyi, A. G.

    2016-01-01

    We analyze the effect of irradiation by heavy ions on the formation of blisters on the silicon surface preliminarily ion-doped with hydrogen. An attempt is made at differentiating inelastic and elastic processes of interaction between ions and Si atoms using bombardment of the sample with high-energy charged particles through a bent absorbing filter by varying the radiation doses and the energy of bombarding Xe ions. It is found that irrespective of specific ionization energy losses of heavy ions, the blister formation is completely suppressed in the zone of the inelastic interaction during postradiation annealing. Conversely, stimulated development of hydrogen porosity takes place at the same time in the zone of elastic interaction, which is manifested in the form of blisters and flaking.

  17. Illusory Late Heavy Bombardments.

    Science.gov (United States)

    Boehnke, Patrick; Harrison, T Mark

    2016-09-27

    The Late Heavy Bombardment (LHB), a hypothesized impact spike at ∼3.9 Ga, is one of the major scientific concepts to emerge from Apollo-era lunar exploration. A significant portion of the evidence for the existence of the LHB comes from histograms of (40)Ar/(39)Ar "plateau" ages (i.e., regions selected on the basis of apparent isochroneity). However, due to lunar magmatism and overprinting from subsequent impact events, virtually all Apollo-era samples show evidence for (40)Ar/(39)Ar age spectrum disturbances, leaving open the possibility that partial (40)Ar* resetting could bias interpretation of bombardment histories due to plateaus yielding misleadingly young ages. We examine this possibility through a physical model of (40)Ar* diffusion in Apollo samples and test the uniqueness of the impact histories obtained by inverting plateau age histograms. Our results show that plateau histograms tend to yield age peaks, even in those cases where the input impact curve did not contain such a spike, in part due to the episodic nature of lunar crust or parent body formation. Restated, monotonically declining impact histories yield apparent age peaks that could be misinterpreted as LHB-type events. We further conclude that the assignment of apparent (40)Ar/(39)Ar plateau ages bears an undesirably high degree of subjectivity. When compounded by inappropriate interpretations of histograms constructed from plateau ages, interpretation of apparent, but illusory, impact spikes is likely.

  18. DLTS study of deep centers created by Ar-ion bombardment in n- and p-type MBE AlGaAs

    Science.gov (United States)

    Kaniewska, M.; Sadowski, J.; Guziewicz, M.

    2004-07-01

    The thermal emission rate of dominant traps in molecular beam epitaxial n- and p-type AlGaAs subjected to Ar-ion beam etching has been studied by deep level transient spectroscopy. Emission signatures were determined and compared with results obtained by other authors for irradiation induced and grown-in defects in GaAs and AlGaAs. The most significant result of this study is the observation that the process-induced defects in n- as well as p-type AlGaAs exhibit emission signatures, which are characteristic of native defects found in GaAs. The effect is discussed in terms of a compensation effect and related band bending.

  19. Electron bombardment of water adsorbed on Zr(0001) surfaces

    CERN Document Server

    Ankrah, S; Ramsier, R D

    2003-01-01

    A study of the effects of electron bombardment on water adsorbed on Zr(0001) is reported. Zirconium surfaces are dosed with isotopic water mixtures at 160 K followed by electron bombardment (485 eV). The system is then probed by low energy electron diffraction, temperature programmed desorption (TPD) and Auger electron spectroscopy (AES). No evidence is found that would indicate preferential mixing of hydrogen from the bulk with isotopic water dissociation products during TPD. However, electron bombardment results in the sharpening of a hydrogen/deuterium desorption peak near 320 K and the production of water near 730 K at low water exposures. In addition, although water does not oxidize Zr(0001) thermally, electron bombardment of adsorbed water induces a shift of about 2 eV in the Zr AES features indicating that the surface is partially oxidized by electron bombardment.

  20. Modification of thin oxide films on Be, Si, Al, Ti, Zr, and W under bombardment by He+ and Ar+ ion beams with a broad energy spectrum

    NARCIS (Netherlands)

    Volkov, N. V.

    2011-01-01

    Data on the distribution of Be, Al, Ti, Fe, Cu, Zr, Mo, and W atoms implanted in oxide film on metal substrates by ion mixing under the action of He+ and Ar+ ion beams with a broad energy spectrum, with average energy of 10 keV, and with radiation doses up to 1 x 10(21) ion/cm(2) are presented. It i

  1. Anomalous behavior in temporal evolution of ripple wavelength under medium energy Ar{sup +}-ion bombardment on Si: A case of initial wavelength selection

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Sandeep Kumar [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India); Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Cuerno, Rodolfo [Departamento de Matematicas and Grupo Interdisciplinar de Sistemas Complejos (GISC), Universidad Carlos III de Madrid, 28911 Leganes (Spain); Kanjilal, Dinakar [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Som, Tapobrata, E-mail: tsom@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005 (India)

    2016-06-14

    We have studied the early stage dynamics of ripple patterns on Si surfaces, in the fluence range of 1–3 × 10{sup 18} ions cm{sup −2}, as induced by medium energy Ar{sup +}-ion irradiation at room temperature. Under our experimental conditions, the ripple evolution is found to be in the linear regime, while a clear decreasing trend in the ripple wavelength is observed up to a certain time (fluence). Numerical simulations of a continuum model of ion-sputtered surfaces suggest that this anomalous behavior is due to the relaxation of the surface features of the experimental pristine surface during the initial stage of pattern formation. The observation of this hitherto unobserved behavior of the ripple wavelength seems to have been enabled by the use of medium energy ions, where the ripple wavelengths are found to be order(s) of magnitude larger than those at lower ion energies.

  2. Effects of evolving surface morphology on yield during focused ion beam milling of carbon

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.P. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States)]. E-mail: dpadams@sandia.gov; Mayer, T.M. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States); Vasile, M.J. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States); Archuleta, K. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States)

    2006-01-15

    We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10{sup 17}-10{sup 19} ions/cm{sup 2}) and incidence angles ({theta} = 0-80{sup o}). Carbon bombarded by 20 keV Ga{sup +} either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large {theta}, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at {theta} = 75{sup o}. Similar trends of decreasing yield are found for H{sub 2}O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

  3. Tribological properties of nc-TiC/a-C : H coatings prepared by magnetron sputtering at low and high ion bombardment of the growing film

    NARCIS (Netherlands)

    Souček, Pavel; Schmidtová, Tereza; Buršíková, Vilma; Vašina, Petr; Pei, Y.T.; Hosson, J.Th.M. De; Caha, Ondřej; Peřina, Vratislav; Mikšová, Romana; Malinský, Petr

    2014-01-01

    Two series of nc-TiC/a-C:H coatings were deposited by a hybrid PVD–PECVD process of titanium sputtering in argon/acetylene atmosphere at two configurations of magnetic field resulting in different impinging ion fluxes on the growing film. The composition of the coatings was varied by changing the

  4. Tribological properties of nc-TiC/a-C : H coatings prepared by magnetron sputtering at low and high ion bombardment of the growing film

    NARCIS (Netherlands)

    Souček, Pavel; Schmidtová, Tereza; Buršíková, Vilma; Vašina, Petr; Pei, Y.T.; Hosson, J.Th.M. De; Caha, Ondřej; Peřina, Vratislav; Mikšová, Romana; Malinský, Petr

    2014-01-01

    Two series of nc-TiC/a-C:H coatings were deposited by a hybrid PVD–PECVD process of titanium sputtering in argon/acetylene atmosphere at two configurations of magnetic field resulting in different impinging ion fluxes on the growing film. The composition of the coatings was varied by changing the ac

  5. State-selective energy and angular resolved detection of neutral species ejected from keV ion bombarded C{sub 6}H{sub 6}/Ag{l_brace}1 1 1{r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Vandeweert, E.; Meserole, C.A.; Sostarecz, A.; Dou, Y.; Winograd, N. E-mail: nxw@psu.edunxw@psuvm.psu.edu; Postawa, Z

    2000-04-01

    We investigated the desorption of neutral benzene (C{sub 6}H{sub 6}) molecules and silver atoms from C{sub 6}H{sub 6}/Ag{l_brace}1 1 1{r_brace} upon bombardment by 8 keV Ar{sup +} ions. Using state-selective resonant ionization spectroscopy, substrate atoms sputtered in the ground and a high-lying metastable state, and ground-state and vibrationally excited molecules could be probed separately. The silver atom yield, kinetic energy and polar angle distributions were found to be modified upon benzene dosing. From these results, it was inferred that a large fraction of the metastable silver atoms de-excite during collisions with adsorbates. Also the ejection of benzene molecules depends strongly both on the internal energy of the molecules and the degree of coverage of the Ag surface. Up to monolayer thickness, the benzene molecules are mainly ejected during collisions with departing substrate particles. Molecules with higher internal energy leave the surface with a distribution shifted towards higher kinetic energies. At multi-layer coverages, a slow desorption mechanism becomes dominant. It is suggested that only benzene molecules vibrationally excited near the benzene-vacuum interface can survive the ejection process without de-excitation.

  6. Determination of optical damage cross-sections and volumes surrounding ion bombardment tracks in GaAs using coherent acoustic phonon spectroscopy

    Science.gov (United States)

    Steigerwald, A.; Hmelo, A. B.; Varga, K.; Feldman, L. C.; Tolk, N.

    2012-07-01

    We report the results of coherent acoustic phonon spectroscopy analysis of band-edge optical modification of GaAs irradiated with 400 keV Ne++ for doses between 1011-1013 cm-2. We relate this optical modification to the structural damage density as predicted by simulation and verified by ion channeling analysis. Crystal damage is observed to cause optical modification that reduces the amplitude of the optoacoustic signal. The depth-dependent nature of the optoacoustic measurement allows us to determine optical damage cross-sections along the ion track, which are found to vary as a function of position along the track. Unexpectedly, we find that this optical modification is primarily dependent on the structural damage density and insensitive to the specific defect configuration along the ion track, suggesting that a simple model of defect density along the track is sufficient to characterize the observed optical changes. The extent of optical modification is strongly probe frequency-dependent as the frequency is detuned from the GaAs band edge. As determined from the experimental measurements, the spatial extent of optical modification exceeds the spatial extent of the structural disorder by an order of magnitude.

  7. Reactive magnetron sputtering of highly (001)-textured WS2-x films: Influence of Ne+, Ar+ and Xe+ ion bombardment on the film growth

    Science.gov (United States)

    Ellmer, K.; Seeger, S.; Sieber, I.; Bohne, W.; Röhrich, J.; Strub, E.; Mientus, R.

    2006-02-01

    Tungsten disulfide WS2 is a layer-type semi-conductor with an energy band gap and an absorption coefficient making it suitable as an absorber for thin film solar cells. In the article [1] WS2-x films were pre-pared by reactive magnetron sputtering from a metallic tungsten target in Ar-H2S atmospheres.The cover figure shows in situ energy-dispersive X-ray diffraction patterns for films deposited at different substrate potentials, i.e. for deposition conditions with ion assistance at different ion energies. These spectra and the corresponding SEM photographs of the film morphology show the strong influence of the ion energy on the film growth. The crystallographic struc-ture of WS2-x is shown between the two SEM pictures.The first author, Klaus Ellmer, is working at the Hahn-Meitner-Institut Berlin, Dept. of Solar Energy Research. His research fields are thin film deposition by reactive magnetron sputtering for solar cells, plasma characterization, in situ energy-dispersive X-ray diffraction and electronic transport in transpar-ent conductive oxides.

  8. Independent cross-sections of alkali isotopes produced in various targets bombarded by $^{12}C$ and $^{18}O$ ions up to 77 MeV/amu

    CERN Document Server

    De Saint-Simon, M; Coc, A; Epherre-Rey-Campagnolle, Marcelle; Guimbal, P; Haan, S; Langevin, M; Müller, A C; Thibault, C; Touchard, F

    1982-01-01

    The authors report on an online mass-spectrometric study of the isotopic distributions of nuclear reaction products. The two purposes of this experiment are the investigation of a particular aspect of reaction-mechanisms and the study of the possibility for exotic-nuclei production. The measurements have been carried out with the 86 MeV/amu /sup 12/C and /sup 18/O beams of the synchrocyclotron SC (CERN). By degradation in different sets of graphite slabs, three different energies: 13, 27 and 77 MeV/amu have been chosen. Due to the chemical selectivity for the alkali elements of the device, the isotopic distributions of Li, Na, K, Rb, Cs and Fr were measured in four targets: C, Nb, Ta and U. The independent yields obtained by direct ion counting are converted in cross-sections using a calibration of T. Lund et al.

  9. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...

  10. 用于等离子体离子辐照的新型阶梯型脉冲高压电路研制%Novel Circuit Producing Pulsed High Voltage with Discrete Steps for Ion Bombardment in Plasma Immersion

    Institute of Scientific and Technical Information of China (English)

    石经纬; 田修波; 巩春志; 杨士勤

    2011-01-01

    为满足等离子体离子辐照和复合表面改性处理技术的发展,提出了基于Marx发生器,通过调节驱动信号延时,实现放电IGBT开关不同时导通,从而获得阶梯型脉冲高压输出的电路设计思想,并验证了其可行性.试验结果显示,该电路可输出脉冲峰值电压10 kV,峰值电流30 A,脉冲宽度3~30μs,脉冲频率20~500 Hz,最大电压阶数10阶的高压脉冲.1个原边、10个副边结构的驱动高压隔离变压器及延时驱动电路结构紧凑,抗干扰能力强.IGBT驱动反向偏置脉冲电压能够满足IGBT快速关断和过流保护的要求.等离子体负载下电路特性测试结果表明,该电路能够适应实际的工作环境,为复合处理技术的发展提供技术支持.该电路结构通过Marx单元叠加可以拓展到更高的脉冲电压输出.%A novel circuit which is capable of producing pulsed high voltage with discrete steps based on Marx generator has been developed for ion bombardment in plasma immersion, and it is realized by means of each discharge IG-BT switching on at different time by adjusting the delay time of drive signals. A compact and robust circuit is designed, using a high-voltage isolation transformer with one primary winding and ten secondary windings for control signal and designed delay drive unit, to meet the requirements of rapidity of switch off and overcurrent protection of IGBT. A pulsed high voltage with amplitude of 10kV, peak current of 30A, pulse width of 3~30 μs, frequency of 20~500 Hz and voltage steps of 10 are achieved. The developed circuit with several kinds of output voltage waveforms is applied to the plasma load with high reliability, and possesses the practicability for ion bombardment or hy-. Brid surface modification in plasma immersion mode. The higher pulse voltage may be achieved using more Marx link with the same control mode for wide application.

  11. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2013-01-01

    Full Text Available Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% ( of worm reduction and 40.38–44.51% ( of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.

  12. The effect of ion implantation on cellular adhesion.

    Science.gov (United States)

    Howlett, C R; Evans, M D; Wildish, K L; Kelly, J C; Fisher, L R; Francis, G W; Best, D J

    1993-01-01

    As there are only a finite number of materials suitable for orthopaedic reconstruction, considerable effort has been devoted recently to investigating ways of altering the surface chemistry of prosthetic materials without altering their bulk properties. Ion beam implantation is one such technique which is appropriate for orthopaedic reconstructive materials. This paper investigates the early effect of ion beam modification on cellular attachment of bone derived cells using a prototype device which measures the strength of attachment of individual cells to a silicon substratum. The results point to several conclusions. (1) There is no evidence that ion beam implantation with nitrogen, phosphorus, manganese or magnesium produces increased adhesion of human bone derived cells. (2) Surface etching with hydrofluoric acid, electron bombardment and thermal oxidation increases the strength of attachment between cells and substrata. (3) There is a correlation between wettability and rate of cellular attachment to oxygen implanted substrata during the first 2 h after cellular seeding. However, the increase in cellular attachment cannot be entirely explained by the change in critical surface tension or via increased fibronectin attachment to the substrata.

  13. Development of a double plasma gun device for investigation of effects of vapor shielding on erosion of PFC materials under ELM-like pulsed plasma bombardment

    Science.gov (United States)

    Sakuma, I.; Iwamoto, D.; Kitagawa, Y.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2012-10-01

    It is considered that thermal transient events such as type I edge localized modes (ELMs) could limit the lifetime of plasma-facing components (PFCs) in ITER. We have investigated surface damage of tungsten (W) materials under transient heat and particle loads by using a magnetized coaxial plasma gun (MCPG) device at University of Hyogo. The capacitor bank energy for the plasma discharge is 144 kJ (2.88 mF, 10 kVmax). Surface melting of a W material was clearly observed at the energy density of ˜2 MJ/m2. It is known that surface melting and evaporation during a transient heat load could generate a vapor cloud layer in front of the target material [1]. Then, the subsequent erosion could be reduced by the vapor shielding effect. In this study, we introduce a new experiment using two MCPG devices (MCPG-1, 2) to understand vapor shielding effects of a W surface under ELM-like pulsed plasma bombardment. The capacitor bank energy of MCPG-2 is almost same as that of MCPG-1. The second plasmoid is applied with a variable delay time after the plasmoid produced by MCPG-1. Then, a vapor cloud layer could shield the second plasma load. To verify the vapor shielding effects, surface damage of a W material is investigated by changing the delay time. In the conference, the preliminary experimental results will be shown.[4pt] [1] A. Hassanein et al., J. Nucl. Mater. 390-391, pp. 777-780 (2009).

  14. Surface Modification by Oxygen Ion Bombardment and Wettibility Enhancement of Polythylene Terephthalate%氧离子束工作压强对PET表面化学键结构及润湿性能的影响

    Institute of Scientific and Technical Information of China (English)

    张立娜; 丁万昱; 巨东英; 柴卫平

    2013-01-01

    利用直流离子源产生氧离子束并在室温条件下与PET表面进行相互作用.通过X光电子能谱仪、接触角测试仪等表征技术,分析氧离子束工作压强对PET表面化学组分、化学键结构,以及对极性H2O分子液体的静态接触角等性能的影响.研究结果表明,当氧离子束与PET表面相互作用时,PET表面的C-O、C-H键首先被破坏,氧离子与C-垂悬键结合形成C-O或C=O极性键.随着氧离子束工作压强的增加,更多的氧离子与PET表面相互作用,导致处理后的PET表面含氧量增加,C=O/C-O比例增加,对极性H2O分子液体侵润性增强.当氧离子束工作压强增加至0.9Pa时,处理后的PET表面氧元素相对百分比含量由纯PET的28%增加至37%(原子比),C=O/C-O键比例由纯PET的1.13∶1增加至2.85:1,而极性H2O分子液体的静态接触角由纯PET的55.3°减低至7.0°,接近于完全润湿.上述结果表明,氧离子束是一种有效调节PET表面化学组分、化学键结构、及表面性质的简单而有效的方法.%The surfaces of polythylene terephthalate (PET) were modified by oxygen ion bombardment at room temperature to improve the surface wettibility.The surface modified PET was characterized with X-ray photoelectron spectroscopy.The impacts of the surface modification conditions,including the pressure,incident angle of oxygen ion beam,and substrate temperature,on the PET wettibility were evaluated.The results show that the pressure of the oxygen ion beam significantly affects the microstructures,bond breaking,contents and wettibility of the PET.For instance,as the pressure increased,the oxygen content and ratio of C =O/C-O on the PET surfaces increased,and the contact angle of polar liquid like water decreased possibly because an increased oxygen ions reacted with surfaces.At 0.9 Pa,the surface oxygen content increased from 28% to 37% (at) ; the ratio of C =O to C-O bonds increased from 1.13∶1 to 2.85 ∶ 1 ; and the water

  15. Nanostructuring of Ta{sub 2}O{sub 5} surfaces by low energy Ar{sup +} bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Benito, Noelia; Palacio, Carlos, E-mail: carlos.palacio@uam.es

    2015-10-01

    Graphical abstract: - Highlights: • Ar{sup +} bombardment of Ta{sub 2}O{sub 5} surfaces leads to the formation of an altered layer where the composition is different from that of the bulk. • Ar{sup +} bombardment of Ta{sub 2}O{sub 5} surfaces leads to the formation of short-range hexagonal order nanostructures. • The height of the nanostructures is equal to the thickness of the altered layer produced during bombardment. • There is a close relationship between the nanostructuring of the surface and the altered layer formed during bombardment. - Abstract: The surface modifications undergoing on a Ta{sub 2}O{sub 5} surface bombarded with Ar{sup +} have been studied using surface analysis techniques (XPS, ARXPS and AFM). It has been observed that ion bombardment produces an altered layer composed of Ta suboxides as a consequence of the preferential sputtering of oxygen atoms. ARXPS measurements carried out on the bombarded surfaces can be explained using a model in which the altered layer consist of suboxide islands, with coverage 85% and thickness 2.88 nm. Moreover, AFM measurements show that ion bombardment leads to the formation of short-range hexagonal order nanostructures with characteristic parameters fully consistent with those found in ARXPS for the island model, therefore indicating the close relationship between the nanostructuring of the surface and the altered layer formed during bombardment.

  16. Effects of metal nanoparticles on the secondary ion yields of a model alkane molecule upon atomic and polyatomic projectiles in secondary ion mass spectrometry.

    Science.gov (United States)

    Wehbe, Nimer; Heile, Andreas; Arlinghaus, Heinrich F; Bertrand, Patrick; Delcorte, Arnaud

    2008-08-15

    A model alkane molecule, triacontane, is used to assess the effects of condensed gold and silver nanoparticles on the molecular ion yields upon atomic (Ga(+) and In(+)) and polyatomic (C60(+) and Bi3(+)) ion bombardment in metal-assisted secondary ion mass spectrometry (MetA-SIMS). Molecular films spin-coated on silicon were metallized using a sputter-coater system, in order to deposit controlled quantities of gold and silver on the surface (from 0 to 15 nm equivalent thickness). The effects of gold and silver islets condensed on triacontane are also compared to the situation of thin triacontane overlayers on metallic substrates (gold and silver). The results focus primarily on the measured yields of quasi-molecular ions, such as (M - H)(+) and (2M - 2H)(+), and metal-cationized molecules, such as (M + Au)(+) and (M + Ag)(+), as a function of the quantity of metal on the surface. They confirm the absence of a simple rule to explain the secondary ion yield improvement in MetA-SIMS. The behavior is strongly dependent on the specific projectile/metal couple used for the experiment. Under atomic bombardment (Ga(+), In(+)), the characteristic ion yields an increase with the gold dose up to approximately 6 nm equivalent thickness. The yield enhancement factor between gold-metallized and pristine samples can be as large as approximately 70 (for (M - H)(+) under Ga(+) bombardment; 10 nm of Au). In contrast, with cluster projectiles such as Bi3(+) and C60(+), the presence of gold and silver leads to a dramatic molecular ion yield decrease. Cluster projectiles prove to be beneficial for triacontane overlayers spin-coated on silicon or metal substrates (Au, Ag) but not in the situation of MetA-SIMS. The fundamental difference of behavior between atomic and cluster primary ions is tentatively explained by arguments involving the different energy deposition mechanisms of these projectiles. Our results also show that Au and Ag nanoparticles do not induce the same behavior in Met

  17. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    Energy Technology Data Exchange (ETDEWEB)

    Mahadtanapuk, S. [Faculty of Agriculture and Natural Resources, University of Phayao, Maeka, Muang, Phayao 56000 (Thailand); Teraarusiri, W. [Central Laboratory, University of Phayao, Maeka, Muang, Phayao 56000 (Thailand); Nanakorn, W. [The Crown Property Bureau, 173 Nakhonratchasrima Road, Dusit, Bangkok 10300 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Thongkumkoon, P. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Anuntalabhochai, S., E-mail: soanu.1@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2014-05-01

    Highlights: • Ion beam bombardment induced mutation in bacterial B. licheniformis. • A mutant lost antifungal activity. • DNA fingerprint of the mutant was analyzed. • The lost gene was indentified to code for TrxR gene. • TrxR gene from B. licheniformis expressed the flower antagonism to fungi. - Abstract: This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  18. Substrate effects on the analysis of biomolecular layers using Au{sup +}, Au{sub 3}{sup +} and C{sub 60}{sup +} bombardments

    Energy Technology Data Exchange (ETDEWEB)

    Kordys, Jeanette [Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN (United Kingdom)], E-mail: Jeanette.Soerensen@postgrad.manchester.ac.uk; Fletcher, John S.; Lockyer, Nicholas P.; Vickerman, John C. [Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN (United Kingdom)

    2008-12-15

    Effects of platinum silicon, graphite and PET substrates on the secondary ion yield of sub-monolayer and multilayer samples of Cyclosporin A following 20 keV Au{sup +}, Au{sub 3}{sup +}and C{sub 60}{sup +} impacts have been investigated. The obtained results of sub-monolayer samples show that platinum enhances the yield of the pseudo-molecular ion following Au{sup +} and Au{sub 3}{sup +} impacts due to the high density of the substrate that enables the energy of the primary ions to be deposited near the surface. C{sub 60}{sup +} impacts on sub-monolayer samples are less effective, but there is an enhancement on PET substrates. Impacts of 20 keV Au{sup +} and Au{sub 3}{sup +} are not very efficient on multilayer samples. 20 keV C{sub 60}{sup +} impacts enhance the yields significantly, especially for the relatively high molecular weight [M+H]{sup +} ion.

  19. Damage analysis of benzene induced by keV fullerene bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Czerwinski, B. [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland)], E-mail: bartlomiej.czerwinski@uj.edu.pl; Rzeznik, L.; Paruch, R. [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland); Garrison, B.J. [Department of Chemistry, Pennsylvania State University, University Park, PA 16802 (United States); Postawa, Z. [Smoluchowski Institute of Physics, Jagiellonian University, ul. Reymonta 4, 30-059 Krakow (Poland)

    2009-05-01

    Molecular dynamics computer simulations have been used to investigate the damage of a benzene crystal induced by 5 keV C{sub 20}, C{sub 60}, C{sub 120} and C{sub 180} fullerene bombardment. The sputtering yield, the mass distributions, and the depth distributions of ejected organic molecules are analyzed as a function of the size of the projectile. The results indicate that all impinging clusters lead to the creation of almost hemispherical craters, and the process of crater formation only slightly depends on the size of the fullerene projectile. The total sputtering yield as well as the efficiency of molecular fragmentation are the largest for 5 keV C{sub 20}, and decrease with the size of the projectile. Most of the molecules damaged by the projectile impact are ejected into the vacuum during cluster irradiation. Similar behavior does not occur during atomic bombardment where a large portion of fragmented benzene molecules remain inside the crystal after projectile impact. This 'cleaning up' effect may explain why secondary ion mass spectrometry (SIMS) analysis of some organic samples with cluster projectiles can produce significantly less accumulated damage compared to analysis performed with atomic ion beams.

  20. Actinide production from xenon bombardments of curium-248

    Energy Technology Data Exchange (ETDEWEB)

    Welch, R.B.

    1985-01-01

    Production cross sections for many actinide nuclides formed in the reaction of /sup 129/Xe and /sup 132/Xe with /sup 248/Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a /sup 136/Xe + /sup 248/Cm reaction at a similar energy. When compared to the reaction with /sup 136/Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, /sup 129/Xe, /sup 132/Xe, and /sup 136/Xe with /sup 197/Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions.

  1. Effect of ion radiation on the electrical conductivity of zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Frangul' yan, T.; Pichugin, V.; Ryabchikov, A. [and others

    2001-07-01

    It is well-known that ion bombardment of the surface of a large number of dielectrics causes the surface the transfer to the conducting state. When the heating the specimens to high temperature in vacuum, oxygen is removed in the neutral state from the zirconia lattice, leaving a vacancy in the lattice and two electrons (non-stoichiometry of the second type). The formation of non-stoichiometry in this case takes place under thermodynamically equilibrium conditions. The deviation of stoichiometry is accompanied by changes of the electronic states in the lattice. The excess electrons are distributed between internal and impunity defects of the crystal lattice, filling the levels in the forbidden zone of the dielectrics. This is reflected in the change of the colour (darkening) of the specimens. In radiation treatment, the formation of non-stoichiometry with respect to the oxygen of the second type takes place on the background of the global structural rearrangement of the lattice, associated with the formation of radiation defects. In this work, we have attempted to analyse the effect of these types of non-stoichiometry on the formation of the conducting state in the dielectrics.

  2. Generation of ions in a pulsed ion source with an interface based on a polymer track membrane

    Science.gov (United States)

    Balakin, A. A.; Khidirov, S. G.; Buido, E. A.

    2016-10-01

    The time-of-flight spectra of ions generated during the extraction of negative ions from the KI solution in water-glycerin mixture by high-strength electric field pulses are studied using a source with an interface based on a polymer track membrane. It has been shown that the ions formed in secondary processes of bombardment of the membrane surface make a considerable contribution to the observed spectra. It has been found that the peaks of negative hydrogen ions have the highest intensity in the spectrum, indicating effective emission of these ions during the bombardment of polyethylene terephthalate by secondary ions with an energy of about 6 keV. The main trends in the modification of the membrane interface to reduce the fraction of secondary ions in the ion beam have been outlined.

  3. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Shahbaz; Bashir, Shazia, E-mail: shaziabashir@gcu.edu.pk; Ali, Nisar; Umm-i-Kalsoom,; Yousaf, Daniel; Faizan-ul-Haq,; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Highlights: • Brass targets were exposed to carbon ions of energy 2 MeV. • The effect of ion dose has been investigated. • The surface morphology is investigated by SEM analysis. • XRD analysis is performed to reveal structural modification. • Mechanical properties were investigated by tensile testing and microhardness testing. - Abstract: Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 10{sup 12} to 26 × 10{sup 13} ions/cm{sup 2}. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation

  4. In situ observation of surface morphology evolution in tungsten under focused Ga{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ran Guang, E-mail: gran@umich.edu [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Liu Xiang; Wu Jihong [Southwestern Institute of Physics, Chengdu, Sichuan 610041 (China); Li Ning [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Zu Xiaotao [Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054 (China); Wang Lumin, E-mail: lmwang@umich.edu [School of Energy Research, Xiamen University, Xiamen, Fujian 361005 (China); Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI 48109 (United States); Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109 (United States)

    2012-05-15

    The effects of energetic Ga ion bombardment on the surface morphology of mechanically polished polycrystalline tungsten are investigated by focused Ga{sup +} ion beam irradiation with in situ scanning electron microscopy, as well as ex situ atomic force microscopy. The amount of removed material from the tungsten surface increased with increasing of incident ion angle, and also increased with ion energy from 5 to 30 keV while keeping all other bombardment parameters constant. The nanoneedle-shaped morphology formed by self-assembly in the surface of tungsten under off-normal angle bombardment, the larger the incident angle, the easier for the needle formation. In contrast, only a net-like microstructure formed under normal incident angle. Moreover, more Ga{sup +} ion fluence was needed to form pores at normal incident angle comparing to that under 52 Degree-Sign incident angle.

  5. Use of the Ion-Plasma Treatment for Improving the Structural Strength of Items

    Directory of Open Access Journals (Sweden)

    I.S. Tatarkina

    2012-03-01

    Full Text Available The paper shows that the ion bombardment (IB by low-energy ions essentially influences the behavior of a specimen under tension testing changing strength and ductility of the item as a whole though the same properties of metal remain in its core. IB also increases fatigue strength and can be used for improving the ductility of sheet steels. This treatment is especially effective for items with technological stress concentrators and is recommended as a very effective and simple method of improving their structural strength. The phenomenon is explained by surface nanostructuring during ion bombardment.

  6. Efficient and rapid C. elegans transgenesis by bombardment and hygromycin B selection.

    Directory of Open Access Journals (Sweden)

    Inja Radman

    Full Text Available We report a simple, cost-effective, scalable and efficient method for creating transgenic Caenorhabditis elegans that requires minimal hands-on time. The method combines biolistic bombardment with selection for transgenics that bear a hygromycin B resistance gene on agar plates supplemented with hygromycin B, taking advantage of our observation that hygromycin B is sufficient to kill wild-type C. elegans at very low concentrations. Crucially, the method provides substantial improvements in the success of bombardments for isolating transmitting strains, the isolation of multiple independent strains, and the isolation of integrated strains: 100% of bombardments in a large data set yielded transgenics; 10 or more independent strains were isolated from 84% of bombardments, and up to 28 independent strains were isolated from a single bombardment; 82% of bombardments yielded stably transmitting integrated lines with most yielding multiple integrated lines. We anticipate that the selection will be widely adopted for C. elegans transgenesis via bombardment, and that hygromycin B resistance will be adopted as a marker in other approaches for manipulating, introducing or deleting DNA in C. elegans.

  7. Room temperature deposition of high figure of merit Al-doped zinc oxide by pulsed-direct current magnetron sputtering: Influence of energetic negative ion bombardment on film's optoelectronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Fumagalli, F., E-mail: francesco.fumagalli@iit.it; Martí-Rujas, J., E-mail: javier.rujas@iit.it; Di Fonzo, F., E-mail: fabio.difonzo@iit.it

    2014-10-31

    Aluminum-doped zinc oxide is regarded as a promising indium-free transparent conductive oxide for photovoltaic and transparent electronics. In this study high transmittance (up to 90,6%) and low resistivity (down to 8,4°1{sup −4} Ω cm) AZO films were fabricated at room temperature on thermoplastic and soda-lime glass substrates by means of pulsed-DC magnetron sputtering in argon gas. Morphological, optical and electrical film properties were characterized using scanning electron microscopy, UV–vis–nIR photo-spectrometer, X-ray spectroscopy and four probes method. Optimal deposition conditions were found to be strongly related to substrate position. The dependence of functional properties on substrate off-axis position was investigated and correlated to the angular distributions of negative ions fluxes emerging from the plasma discharge. Figure of merit as high as 2,15 ± 0,14 Ω{sup −1} were obtained outside the negative oxygen ions confinement region. Combination of high quality AZO films deposited on flexible polymers substrates by means of a solid and scalable fabrication technique is of interest for application in cost-effective optoelectrical devices, organic photovoltaics and polymer based electronics. - Highlights: • High figure of merit transparent conductive oxide's deposited at room temperature. • High transmittance and low resistivity obtained on thermoplastic substrates. • Competitive optoelectrical properties compared to high temperature deposition. • Negative ion fluxes confinement influence structural and optoelectrical properties. • Easily adaptable for scaled-up low temperature AZO film deposition installations.

  8. Using polyatomic primary ions to probe an amino acid and a nucleic base in water ice

    Energy Technology Data Exchange (ETDEWEB)

    Conlan, X.A. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)]. E-mail: x.conlan@postgrad.manchester.ac.uk; Biddulph, G.X. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)]. E-mail: G.Biddulph@postgrad.manchester.ac.uk; Lockyer, N.P. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom); Vickerman, J.C. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, P.O. Box 88, Manchester M60 1QD (United Kingdom)]. E-mail: John.Vickerman@manchester.ac.uk

    2006-07-30

    In this study on pure water ice, we show that protonated water species [H{sub 2}O] {sub n}H{sup +} are more prevalent than (H{sub 2}O) {sub n} {sup +} ions after bombardment by Au{sup +} monoatomic and Au{sub 3} {sup +} and C{sub 60} {sup +} polyatomic projectiles. This data also reveals significant differences in water cluster yields under bombardment by these three projectiles. The amino acid alanine and the nucleic base adenine in solution have been studied and have been shown to have an effect on the water cluster ion yields observed using an Au{sub 3} {sup +} ion beam.

  9. Geologic constraints on Rhea's bombardment mass

    Science.gov (United States)

    Leight, Clarissa; Rivera-Valentin, Edgard G.

    2016-10-01

    The mid-sized moons (MSMs) of Saturn display a peculiar set of properties that indicate the system may have been altered early in its history. The MSMs have a large spread in silicate content and diverse inferred thermal and physical histories that, unlike the Galilean satellites, do not demonstrate a trend with semi-major axis or size, which would indicate orbital evolution was a significant driver of their thermal histories. Rather, these features may indicate a significant role for impact-induced thermal and physical evolution. Geophysical properties along with measured crater counts can be used to constrain the bombardment history of the MSMs. Here we apply a fully three-dimensional Monte Carlo cratering model along with Rhea's measured cratering to provide constraints on the cumulative bombardment mass (Mb) experienced by the moon. The classic Nice model estimates Rhea's cumulative bombardment mass (MNice) to be 8.4x10^19 kg; our preliminary results suggest Rhea experienced a bombardment of 0.05 MNice < Mb < 0.06 MNice. Results agree well with similar constraints from Iapetus and provide further support to the Nice II model, which suggests a reduced bombardment for the outer solar system due to the planetesimals having higher kinetic energies. The inferred Mb and typical impact characteristics suggests Rhea may avoid runaway differentiation.

  10. The effects of ion implantation on the beaks of orthodontic pliers

    Energy Technology Data Exchange (ETDEWEB)

    Mizrahi, E.; Cleaton-Jones, P.E.; Luyckz, S.; Fatti, L.P. (University of the Witwatersrand (South Africa))

    1991-06-01

    The surface of stainless steel may be hardened by bombarding the material with a stream of nitrogen ions generated by a nuclear accelerator. In the present study this technique was used to determine the hardening effect of ion implantation on the beaks of stainless steel orthodontic pliers. Ten orthodontic pliers (Dentarum 003 094) were divided into two equal groups, designated control and experimental. The beaks of the experimental pliers were subjected to ion implantation, after which the tips of the beaks of all the pliers were stressed in an apparatus attached to an Instron testing machine. A cyclical load of 500 N was applied to the handles of the pliers, while a 0.9 mm (0.036 inch) round, stainless steel wire was held between the tips of the beaks. The effect of the stress was assessed by measurement with a traveling microscope of the gap produced between the tips of the beaks. Measurements were taken before loading and after 20, 40, 60, and 80 cycles. Statistical analysis of variance and the two-sample t tests indicated that there was a significant increase in the size of the gap as the pliers were stressed from 0 to 80 cycles (p less than 0.001). Furthermore, the mean gap was significantly greater in the control group than in the experimental group (p less than 0.001). This study suggests that ion implantation increases the hardness of the tips of the beaks of orthodontic pliers.

  11. Effects of Hydrogen Ion Implantation on TiC-C Coating of Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Rui-qian; LIU Yao-guang; HUANG Ning-kang

    2008-01-01

    Titanium carbide coatings are widely used as various wear-resistant material.The hydrogen erosion resistance of TiC-C films and the effect of hydrogen participation on TiC-C films were studied.Seventy-five percent TiC-C films are prepared on stainless steel surface by using ion mixing,where TiC-C films are deposited by rf magnetron sputtering followed by argon ion bombardment.The samples are then submitted to hydrogen ion implantation at 1.2×10-3 Pa.Characterization for the 75% TiC-C films was done with SIMS,XRD,AES,and XPS.Secondary ion mass spectroscopy (SIMS) was used to analyze hydrogen concentration variation with depth,X-Ray diffraction (XRD) was used to identify the phases,and Auger electron spectra (AES) as well as X-ray photoelectron spectra (XPS) were used to check the effects of hydrogen on shifts of chemical bonding states of C and Ti in the TiC-C films.It is found that TiC-C films on stainless steel surface can prevent hydrogen from entering stainless steel.

  12. The role of impact bombardment history in lunar evolution

    Science.gov (United States)

    Rolf, T.; Zhu, M.-H.; Wünnemann, K.; Werner, S. C.

    2017-04-01

    The lunar surface features diverse impact structures originating from its early bombardment; the largest among them are the lunar basins. Basin-forming impacts delivered large amounts of energy to the target and expelled lots of material that deposited as an insulating blanket in the vicinity of the impact. Here, we investigate how such processes may have altered the lunar evolution. We combine lunar basin chronologies with numerical models of basin formation and 3D thermochemical mantle convection and analyse the role of single generic impacts resulting in basins with varying diameter, formation time, location and ejecta properties. The direct effects of a single impact are enhanced melt generation as well as thermal and heat flux anomalies, but these are limited to ∼ 100 Myr following the impact. We use these insights in multi-impact scenarios more relevant for the Moon, which lead to a widespread ejecta blanket and make impact-induced effects more substantial. Lunar contraction history may be altered by the impact bombardment in favour of an early expansion phase as suggested by recent observations. Moreover, imprints of the early bombardment may be kept in the thermal and compositional state of the Moon's interior until modern times. These can be as large as those induced by uncertainties in bulk lunar heat content, if surface insulation due to ejecta is efficient. In this case, model-predicted present-day thermal profiles match independent constraints better if the bulk Moon is not significantly enriched in refractory elements compared to Earth.

  13. Separated effects of ions, metastables and photons on the properties of barrier layers on polymers

    Science.gov (United States)

    Biskup, Beatrix; Boeke, Marc; Benedikt, Jan; von Keudell, Achim

    2016-09-01

    Analyses of a-C:H /a-Si:H multilayers on polymer substrates indicated that prolonged ion bombardment influences negatively the properties of the barrier layer, while a short plasma pretreatment can improve the barrier effect. This work is motivated by these results and investigates the influence of different reactive plasma components, namely ions, metastables and VUV-photons, on the properties of the grown barrier layer. To separate the different species and their influence on plasma pretreatment and film growth, we build a grid system, which repels the ions from the substrate, so that only metastables and VUV-photons have an effect on the layer. An integral part of this investigation is, to measure the photon fluxes to the substrate by an intensity calibrated VUV monochromator. For that, a differentially pumped monochromator with a spectral range 30 - 300 nm is used, where the two most prominent argon lines at 104.9 and 106.8 nm can be measured. In this approach we are able to study the different effects of the plasma species and also possible synergy effects, to improve the properties of the barrier layer. This work is supported by the DFG within the SFB-TR 87.

  14. Silkworm eggs: An ideal model for studying the biological effects of low energy Ar{sup +} ion interaction in animals

    Energy Technology Data Exchange (ETDEWEB)

    Ling Lin; Liu Xuelan [School of Life Sciences, Anhui Agricultural University, Hefei 230031 (China); Xu Jiaping, E-mail: jiapingxu@163.com [School of Life Sciences, Anhui Agricultural University, Hefei 230031 (China); You Zhengying; Zhou Jingbo [School of Life Sciences, Anhui Agricultural University, Hefei 230031 (China)

    2011-09-15

    Highlights: {yields} Low energy Ar{sup +} ion beam interactions with silkworm eggs. {yields} Ion beam bombardment as a novel method for gene transfer in silkworm. {yields} Provide evidence for studying the mechanisms of ion beam interaction in animals. - Abstract: The object of the current work was to study low energy Ar{sup +} ion beam interactions with silkworm eggs and thus provide further understanding of the mechanisms involved in ion bombardment-induced direct gene transfer into silkworm eggs. In this paper, using low-energy Ar{sup +} ion beam bombardment combined with piggyBac transposon, we developed a novel method to induce gene transfer in silkworm. Using bombardment conditions optimized for egg-incubation (25 keV with ion fluences of 800 x 2.6 x 10{sup 15} ions/cm{sup 2} in dry state under vacuum), vector pBac{l_brace}3 x P3-EGFPaf{r_brace} and helper plasmid pHA3pig were successfully transferred into the silkworm eggs. Our results obtained from by PCR assay and genomic Southern blotting analysis of the G1 generations provide evidence that low-energy ion beam can generate some craters that play a role in acting as pathways of exogenous DNA molecules into silkworm eggs.

  15. Effect of Ar ion on the surface properties of low density polyethylene

    Science.gov (United States)

    Zaki, M. F.

    2016-04-01

    In this paper, low-density polyethylene (LDPE) was irradiated by argon ion with different fluences up to 1015ions/cm2. The optical, chemical and hardness properties have been investigated using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and micro-indentation tester, respectively. The results showed the ion beam bombardment induced decreases in the transmittance of the irradiated polymer samples. This change in transmittance can be attributed to the formation of conjugated bonds i.e. possible formation of defects and/or carbon clusters. The indirect optical band gap decreased from 3.0 eV for the pristine sample to 2.3 eV for that sample irradiated with the highest fluence of the Ar ion beam. Furthermore, the number of carbon atoms and clusters increased with increasing Ar ion fluences. FTIR spectra showed the formation of new bands of the bombarded polymer samples. Furthermore, polar groups were created on the surface of the irradiated samples which refer to the increase of the hydrophilic nature of the surface of the irradiated samples. The Vicker's hardness increased from 4.9 MPa for the pristine sample to 17.9 MPa for those bombarded at the highest fluence. This increase is attributed to the increase in the crosslinking and alterations of the bombarded surface into hydrogenated amorphous carbon, which improves the hardness of the irradiated samples. The bombarded LDPE surfaces may be used in special applications to the field of the micro-electronic devices and shock absorbers.

  16. Measurements of neutron effective doses and attenuation lengths for shielding materials at the heavy-ion medical accelerator in Chiba.

    Science.gov (United States)

    Kumamoto, Yoshikazu; Noda, Yutaka; Sato, Yukio; Kanai, Tatsuaki; Murakami, Takeshi

    2005-05-01

    The effective doses and attenuation lengths for concrete and iron were measured for the design of heavy ion facilities. Neutrons were produced through the reaction of copper, carbon, and lead bombarded by carbon ions at 230 and 400 MeV.A, neon ions at 400 and 600 MeV.A, and silicon ions at 600 and 800 MeV.A. The detectors used were a Linus and a Andersson-Braun-type rem counter and a detector based on the activation of a plastic scintillator. Representative effective dose rates (in units of 10(-8) microSv h(-1) pps(-1) at 1 m from the incident target surface, where pps means particles per second) and the attenuation lengths (in units of m) were 9.4 x 10(4), 0.46 for carbon ions at 230 MeV.A; 8.9 x 10(5), 0.48 for carbon ions at 400 MeV.A; 9.3 x 10(5), 0.48 for neon ions at 400 MeV.A; 3.8 x 10(6), 0.50 for neon ions at 600 MeV.A; 3.9 x 10(6), 0.50 for silicon ions at 600 MeV.A; and 1.1 x 10(7), 0.51 for silicon ions at 800 MeV.A. The attenuation provided by an iron plate approximately 20 cm thick (nearly equal to the attenuation length) corresponded to that of a 50-cm block of concrete in the present energy range. Miscellaneous results, such as the angular distributions of the neutron effective dose, narrow beam attenuation experiments, decay of gamma-ray doses after the bombardment of targets, doses around an irradiation room, order effects in the multi-layer (concrete and iron) shielding, the doses from different targets, the doses measured with a scintillator activation detector, the gamma-ray doses out of walls and the ratio of the response between the Andersson-Braun-type and the Linus rem counters are also reported.

  17. Effects of projectile track charging on the H - secondary ion velocity distribution

    Science.gov (United States)

    Iza, P.; Farenzena, L. S.; da Silveira, E. F.

    2007-03-01

    The bombardment of insulating targets by MeV projectiles produces a positive track delivering secondary electrons to the solid. These electrons are eventually captured by adsorbed hydrogen-containing molecules, inducing fragmentation and initiating the H- secondary ion emission. The dynamics of this process is very sensitive to the track electric field and depends on the emission site and on the H- initial velocity. In this work, a model, based on a time-depending track potential followed by secondary electron induced desorption - SEID, is employed to describe the production and dynamics of H- secondary ion emission. It is shown that depending on how fast the track neutralization occurs, the movement of H- ions may be accelerated, decelerated or even aborted. Trajectories, angular distributions and energy distributions are predicted and compared with experimental data obtained for water ice bombarded by 1.7 MeV nitrogen ions.

  18. Chronology and Sources of Lunar Impact Bombardment

    CERN Document Server

    Ćuk, Matija

    2011-01-01

    The Moon has suffered intense impact bombardment ending at 3.9 Gyr ago, and this bombardment probably affected all of the inner Solar System. Basin magnetization signatures and lunar crater size-distributions indicate that the last episode of bombardment at about 3.85 Gyr ago was less extensive than previously thought. We explore the contribution of the primordial Mars-crosser population to early lunar bombardment. We find that Mars-crosser population initially decays with a 80-Myr half-life, with the long tail of survivors clustering on temporarily non-Mars-crossing orbits between 1.8 and 2 AU. These survivors decay with half-life of about 600 Myr and are progenitors of the extant Hungaria asteroid group in the same region. We estimate the primordial Mars-crosser population contained about 0.01-0.02 Earth masses. Such initial population is consistent with no lunar basins forming after 3.8 Gya and the amount of mass in the Hungaria group. As they survive longer and in greater numbers than other primordial pop...

  19. Ion specific effects on charged interfaces

    OpenAIRE

    Medda, Luca

    2013-01-01

    The physico-chemical phenomena occurring at charged interfaces are specifically affected by the type and the concentration of electrolytes. This has implications both in living and in inorganic systems. The discovery of the ‘ion specific effects’ dates back to Hofmeister (1888), who observed the specific effect of salts in promoting egg white proteins precipitation. Nowadays we are aware that ion specific effects are ubiquitous in all fields of science and technology where electrolytes play a...

  20. 'Bubble chamber model' of fast atom bombardment induced processes.

    Science.gov (United States)

    Kosevich, Marina V; Shelkovsky, Vadim S; Boryak, Oleg A; Orlov, Vadim V

    2003-01-01

    A hypothesis concerning FAB mechanisms, referred to as a 'bubble chamber FAB model', is proposed. This model can provide an answer to the long-standing question as to how fragile biomolecules and weakly bound clusters can survive under high-energy particle impact on liquids. The basis of this model is a simple estimation of saturated vapour pressure over the surface of liquids, which shows that all liquids ever tested by fast atom bombardment (FAB) and liquid secondary ion mass spectrometry (SIMS) were in the superheated state under the experimental conditions applied. The result of the interaction of the energetic particles with superheated liquids is known to be qualitatively different from that with equilibrium liquids. It consists of initiation of local boiling, i.e., in formation of vapour bubbles along the track of the energetic particle. This phenomenon has been extensively studied in the framework of nuclear physics and provides the basis for construction of the well-known bubble chamber detectors. The possibility of occurrence of similar processes under FAB of superheated liquids substantiates a conceptual model of emission of secondary ions suggested by Vestal in 1983, which assumes formation of bubbles beneath the liquid surface, followed by their bursting accompanied by release of microdroplets and clusters as a necessary intermediate step for the creation of molecular ions. The main distinctive feature of the bubble chamber FAB model, proposed here, is that the bubbles are formed not in the space and time-restricted impact-excited zone, but in the nearby liquid as a 'normal' boiling event, which implies that the temperature both within the bubble and in the droplets emerging on its burst is practically the same as that of the bulk liquid sample. This concept can resolve the paradox of survival of intact biomolecules under FAB, since the part of the sample participating in the liquid-gas transition via the bubble mechanism has an ambient temperature

  1. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi [Nagaoka Univ. of Technology, Extreme Energy-Density Research Inst., Nagaoka, Niigata (Japan)

    2002-06-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  2. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Xu, Xue [Rice Research Institute, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei 230031 (China); Wu, Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China)

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N{sup +} and Ar{sup +} ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  3. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    Science.gov (United States)

    Zhang, Lili; Xu, Xue; Wu, Yuejin

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N+ and Ar+ ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  4. Bacterial spore survival after exposure to HZE particle bombardment -implication for the lithopanspermia hypothesis.

    Science.gov (United States)

    Moeller, Ralf; Berger, Thomas; Matthiä, Daniel; Okayasu, Ryuichi; Kitamura, H.; Reitz, Guenther

    Based on their unique resistance to various space parameters, bacterial spores (mainly spores of Bacillus subtilis) are one of the model systems used for astrobiological studies. More re-cently, spores of B. subtilis have been applied for experimental research on the likelihood of interplanetary transfer of life. Since its first postulation by Arrhenius in 1903, the pansper-mia hypothesis has been revisited many-times, e.g. after the discovery of several lunar and Martian meteorites on Earth [1,2]. These information provided intriguing evidence that rocks may naturally be transferred between the terrestrial planets. The scenario of panspermia, now termed "lithopanspermia" involves three basic hypothetical steps: (i) the escape process, i.e. removal to space of biological material, which has survived being lifted from the surface to high altitudes; (ii) interim state in space, i.e., survival of the biological material over time scales comparable with interplanetary or interstellar passage; (iii) the entry process, i.e. nondestruc-tive deposition of the biological material on another planet [2]. In our research, spores of B. subtilis were used to study the effects of galactic cosmic radiation on spore survival and induced mutations. On an interplanetary journey, outside a protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galac-tic sources and from the sun. Air-dried spore layers on three different host materials (i.e., non-porous igneous rocks (gabbro), quartz, and spacecraft analog material (aluminum)) were irradiated with accelerated heavy ions (Helium and Iron) with a LET (linear energy transfer) ˆ of 2 and 200 keV/Am, at the Heavy Ion Medical Accelerator (HIMAC) at the National In-stitute of Radiological Sciences, (NIRS), Chiba, Japan in the frame of the HIMAC research project 20B463 "Characterization of heavy ion-induced damage in Bacillus subtilis spores and their global

  5. Effect of Atmospheric Ions on Interfacial Water

    Directory of Open Access Journals (Sweden)

    Chien-Chang Kurt Kung

    2014-11-01

    Full Text Available The effect of atmospheric positivity on the electrical properties of interfacial water was explored. Interfacial, or exclusion zone (EZ water was created in the standard way, next to a sheet of Nafion placed horizontally at the bottom of a water-filled chamber. Positive atmospheric ions were created from a high voltage source placed above the chamber. Electrical potential distribution in the interfacial water was measured using microelectrodes. We found that beyond a threshold, the positive ions diminished the magnitude of the negative electrical potential in the interfacial water, sometimes even turning it to positive. Additionally, positive ions produced by an air conditioner were observed to generate similar effects; i.e., the electrical potential shifted in the positive direction but returned to negative when the air conditioner stopped blowing. Sometimes, the effect of the positive ions from the air conditioner was strong enough to destroy the structure of interfacial water by turning the potential decidedly positive. Thus, positive air ions can compromise interfacial water negativity and may explain the known negative impact of positive ions on health.

  6. Changes of Dust Grain Properties Under Particle Bombardment

    Science.gov (United States)

    Pavlů, J.; Richterová, I.; Fujita, D.; Šafránková, J.; Němeček, Z.

    2008-09-01

    The dust in space environments is exposed to particle bombardment. Under an impact of ions, electrons, and photons, the charge of a particular grain changes and, in some cases, the grain structure can be modified. The present study deals with spherical melamine formaldehyde resin grains that are frequently used in many dusty plasmas and microgravity experiments and it concentrates on the influence of the electron beam impact on a grain size. We have performed series of experiments based on the SEM technique. Our investigation has shown that the electron impact can cause a significant increase of the grain size. We discuss changes of material properties and consequences for its applications in laboratory and space experiments.

  7. Fast atom bombardment tandem mass spectrometry of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    van Breeman, R.B. [Univ. of Illinois, Chicago, IL (United States); Schmitz, H.H.; Schwartz, S.J. [North Carolina State Univ., Raleigh, NC (United States)

    1995-02-01

    Positive ion fast atom bombardment (FAB) tandem mass spectrometry (MS-MS) using a double-focusing mass spectrometer with linked scanning at constant B/E and high-energy collisionally activated dissociation (CAD) was used to differentiate 17 different cartenoids, including {beta}-apo-8{prime}- carotenal, astaxanthin, {alpha}-carotene, {beta}-carotene, {gamma}-carotene, {zeta}-carotene, canthaxanthin, {beta}-cryptoxanthin, isozeaxanthin bis (pelargonate), neoxanthin, neurosporene, nonaprene, lutein, lycopene, phytoene, phytofluene, and zeaxanthin. The carotenoids were either synthetic or isolated from plant tissues. The use of FAB ionization minimized degradation or rearrangement of the carotenoid structures due to the inherent thermal instability generally ascribed to these compounds. Instead of protonated molecules, both polar xanthophylls and nonpolar carotenes formed molecular ions, M{sup {center_dot}+}, during FAB ionization. Following collisionally activated dissociation, fragment ions of selected molecular ion precursors showed structural features indicative of the presence of hydroxyl groups, ring systems, ester groups, and aldehyde groups and the extent of aliphatic polyene conjugation. The fragmentation patterns observed in the mass spectra herein may be used as a reference for the structural determination of carotenoids isolated from plant and animal tissues. 18 refs., 4 figs.

  8. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  9. A novel ion-beam-mutation effect application in identification of gene involved in bacterial antagonism to fungal infection of ornamental crops

    Science.gov (United States)

    Mahadtanapuk, S.; Teraarusiri, W.; Nanakorn, W.; Yu, L. D.; Thongkumkoon, P.; Anuntalabhochai, S.

    2014-05-01

    This work is on a novel application of ion beam effect on biological mutation. Bacillus licheniformis (B. licheniformis) is a common soil bacterium with an antagonistic effect on Curcuma alismatifolia Gagnep. and Chrysanthemum indicum Linn. In an attempt to control fungal diseases of local crops by utilizing B. licheniformis, we carried out gene analysis of the bacterium to understand the bacterial antagonistic mechanism. The bacterial cells were bombarded to induce mutations using nitrogen ion beam. After ion bombardment, DNA analysis revealed that the modified polymorphism fragment present in the wild type was missing in a bacterial mutant which lost the antifungal activity. The fragments conserved in the wild type but lost in the mutant bacteria was identified to code for the thioredoxin reductase (TrxR) gene. The gene analysis showed that the TrxR gene from B. licheniformis had the expression of the antagonism to fungi in a synchronous time evolution with the fungus inhibition when the bacteria were co-cultivated with the fungi. The collective results indicate the TrxR gene responsible for the antagonism of bacteria B. licheniformis to fungal infection.

  10. Effects of heavy ion impact on power diodes; Effets de l'impact des ions lourds sur les diodes de puissance

    Energy Technology Data Exchange (ETDEWEB)

    Busatto, G. [Universita Degli Studi di Cassino, DAEIMI, Cassino (Italy); Lannuzzo, F. [Universita di Napoli, Dipt. di Ingegneria Elettronica e delle Telecommunicazioni, Napoli (Italy); Wyss, J. [European Center of Theoretical Nuclear Physics and Related Areas, ECT, Trento (Italy); Pantano, D.; Bisello, D. [Istituto Nazionale di Fisica Nucleare, INFN, Universita, Dipt. di Fisica, G. Galilei, Padova (Italy)

    1999-07-01

    At the sea level a significant amount of muons, pions, protons and neutrons coming from the outer space, can impact a semiconductor device with a significant probability. This impact may result in the production of a cascade of highly ionizing ions within the device, mainly silicon or aluminium, which is the main responsible of its single event burn-out (SEB). Many authors have, then, proposed to study the effects of cosmic rays on power devices, both at the sea level and into the space, by irradiating them with heavy ions reproducing this cascade. The aim of this paper is to present the experimental results of the bombardment with high-energy {sup 28}Si ions (108 MeV. 156 MeV) on 1700 V power diodes. In particular, it is shown that a multiplication mechanism enhances the charge generated during the ion impact by a large amount. This mechanism is strongly affected by the applied reverse voltage and the charge increases even, more than 10 times as the applied voltage rises from 50% to 65% of the device blocking voltage. For larger values the diode breaks-down (the destruction took place at only 1200 V during irradiation with 156 MeV ions). The paper presents a complete collection of the observed waveforms during the ion impact and shows that the multiplication mechanism causes an enormous increase of the peak current flowing through the device. Due to the very small area involved into the generation process, the local current density reaches so high values to trigger instabilities, like double injection, which can cause the device failure in a similar manner as during Second-Breakdown of power devices. The 15 MV Tandem of the Laboratori Nazionali di Legnaro was used for the experiment reported in this paper. (authors)

  11. Krypton ion implantation effect on selenium nanowires

    Science.gov (United States)

    Panchal, Suresh; Chauhan, R. P.

    2017-08-01

    Among the rapidly progressing interdisciplinary areas of physics, chemistry, material science etc. ion induced modifications of materials is one such evolving field. It has been realized in recent years that a material, in the form of an accelerated ion beam, embedded into a target specimen offers a most productive tool for transforming its properties in a controlled manner. In semiconductors particularly, where the transport behavior is determined by very small concentrations of certain impurities, implantation of ions may bring considerable changes. The present work is based on the study of the effect of krypton ion implantation on selenium nanowires. Selenium nanowires of diameter 80 nm were synthesized by template assisted electro deposition technique. Implantation of krypton ions was done at Inter University Accelerator Centre (IUAC), New Delhi, India. The effect of implantation on structural, electrical and optical properties of selenium nanowires was investigated. XRD analysis of pristine and implanted nanowires shows no shifting in the peak position but there is a variation in the relative intensity with fluence. UV-Visible spectroscopy shows the decrease in the optical band gap with fluence. PL spectra showed emission peak at higher wavelength. A substantial rise in the current was observed from I-V measurements, after implantation and with the increase in fluence. The increase in current conduction may be due to the increase in the current carriers.

  12. Study of ion beam induced depolymerization using positron annihilation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Puglisi, O. E-mail: opuglisi@dipchi.unict.it; Fragala, M.E.; Lynn, K.G.; Petkov, M.; Weber, M.; Somoza, A.; Dupasquier, A.; Quasso, F

    2001-04-01

    Ion beam induced depolymerization of polymers is a special class of ion beam induced chemical reaction which gives rise to catastrophic 'unzipping' of macromolecules with production of large amounts of the monomer, of the order of many hundreds monomer molecules per each macromolecule. The possible modification of the density at microscopic level prompted us to undertake a study of this effect utilizing positron annihilation techniques in Poly(methylmethacrylate) (PMMA) before and after bombardment with He{sup +} 300 keV ions at 200 deg. C. Preliminary results shown here indicate that before bombardment there is a reproducible dependence of nano-hole distribution on the sample history. Moreover at 200 deg. C we do not detect formation of new cavities as a consequence of the strong depolymerization that occurs under the ion beam. The possible correlation of these findings with transport properties of PMMA at temperature higher than the glass transition temperature will be discussed.

  13. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, F., E-mail: franco.nseng@gmail.com; Hellberg, M. A., E-mail: hellberg@ukzn.ac.za; Mace, R. L., E-mail: macer@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  14. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  15. Ion irradiation effects on metallic nanocrystals

    Science.gov (United States)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C. S.; Foran, G. J.; Cookson, D. J.; Byrne, A. P.; Ridgway, M. C.

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  16. Scanning electron microscopy of the surfaces of ion implanted SiC

    Energy Technology Data Exchange (ETDEWEB)

    Malherbe, Johan B., E-mail: johan.malherbe@up.ac.za [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Berg, N.G. van der; Kuhudzai, R.J.; Hlatshwayo, T.T.; Thabethe, T.T.; Odutemowo, O.S.; Theron, C.C.; Friedland, E. [Department of Physics, University of Pretoria, Pretoria 0002 (South Africa); Botha, A.J. [Laboratory for Microscopy & Microanalysis, University of Pretoria, Pretoria 0002 (South Africa); Wendler, E. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, 07743 Jena (Germany)

    2015-07-01

    This paper gives a brief review of radiation damage caused by particle (ions and neutrons) bombardment in SiC at different temperatures, and its annealing, with an expanded discussion on the effects occurring on the surface. The surface effects were observed using SEM (scanning electron microscopy) with an in-lens detector and EBSD (electron backscatter diffraction). Two substrates were used, viz. single crystalline 6H-SiC wafers and polycrystalline SiC, where the majority of the crystallites were 3C-SiC. The surface modification of the SiC samples by 360 keV ion bombardment was studied at temperatures below (i.e. room temperature), just at (i.e. 350 °C), or above (i.e. 600 °C) the critical temperature for amorphization of SiC. For bombardment at a temperature at about the critical temperature an extra step, viz. post-bombardment annealing, was needed to ascertain the microstructure of bombarded layer. Another aspect investigated was the effect of annealing of samples with an ion bombardment-induced amorphous layer on a 6H-SiC substrate. SEM could detect that this layer started to crystalize at 900 °C. The resulting topography exhibited a dependence on the ion species. EBSD showed that the crystallites forming in the amorphized layer were 3C-SiC and not 6H-SiC as the substrate. The investigations also pointed out the behaviour of the epitaxial regrowth of the amorphous layer from the 6H-SiC interface.

  17. On-line analysis of penicillin blood levels in the live rat by combined microdialysis/fast-atom bombardment mass spectrometry.

    OpenAIRE

    Caprioli, R.M.; Lin, S. N.

    1990-01-01

    The combination of microdialysis and fast-atom bombardment mass spectrometry has been used to follow the pharmacokinetics of penicillin G directly in the blood-stream of a live rat. After the intramuscular injection of the antibiotic, the blood dialysate was allowed to flow into the mass spectrometer via the continuous-flow/fast-atom bombardment interface. Tandem mass spectrometry provided the means for isolating and recording the ion fragments produced from the drug as the dialysate was expo...

  18. Evaluation of secondary ion yield enhancement from polymer material by using TOF-SIMS equipped with a gold cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aimoto, K. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)]. E-mail: dm053502@cc.seikei.ac.jp; Aoyagi, S. [Department of Regional Development, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504 (Japan); Kato, N. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan); Iida, N. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Yamamoto, A. [ULVAC-PHI, Inc., 370 Enzo, Chigasaki, Kanagawa 253-0084 (Japan); Kudo, M. [Department of Applied Physics, Faculty of Engineering, Seikei University, 3-3-1 Kichijioji-Kitamachi, Musashino-shi, Tokyo 180-8633 (Japan)

    2006-07-30

    We investigated the enhancement of the secondary ion intensity in the TOF-SIMS spectra obtained by Au{sup +} and Au{sub 3} {sup +} bombardment in comparison with Ga{sup +} excitation using polymer samples with different molecular weight distributions. Since the polymer samples used in this experiment have a wide molecular weight distribution, the advantages of the gold cluster primary ion source over monoatomic ion could accurately be evaluated. It was observed that the degree of fragmentation decreased by the usage of cluster primary ion beam compared with monoatomic ion beam, which was observed as a shift of the intensity distribution in the spectra. It was also found out that the mass effect of Au{sup +} and Ga{sup +} as monoatomic primary ion, resulted in about 10-60 times of enhancement for both samples with different molecular distributions. On the other hand, the Au{sub 3} {sup +} bombardment caused intensity enhancement about 100-2600 compared with Ga{sup +} bombardment, depending on the mass range of the detected secondary ion species. The cluster primary ion effect of Au{sub 3} {sup +}, compared with Au{sup +}, therefore, was estimated to be about 10-45.

  19. Sputtering of solid deuterium by He-ions

    DEFF Research Database (Denmark)

    Schou, Jørgen; Stenum, B.; Pedrys, R.

    2001-01-01

    Sputtering of solid deuterium by bombardment of 3He+ and 4He+ ions was studied. Some features are similar to hydrogen ion bombardment of solid deuterium, but for the He-ions a significant contribution of elastic processes to the total yield can be identified. The thin-film enhancement is more...... pronounced than that for hydrogen projectiles in the same energy range....

  20. Chemical Bonding States of TiC Films before and after Hydrogen Ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    TiC films deposited by rf magnetron sputtering followed by Ar+ ion bombardment were irradiated with a hydrogen ion beam. X-ray photoelectron spectroscopy (XPS) was used for characterization of the chemical bonding states of C and Ti elements of the TiC films before and after hydrogen ion irradiation, in order to understand the effect of hydrogen ion irradiation on the films and to study the mechanism of hydrogen resistance of TiC films. Conclusions can be drawn that ion bombardment at moderate energy can cause preferential physical sputtering of carbon atoms from the surface of low atomic number (Z) material. This means that ion beam bombardment leads to the formation of a non-stoichiometric composition of TiC on the surface.TiC films prepared by ion beam mixing have the more excellent characteristic of hydrogen resistance. One important cause, in addition to TiC itself, is that there are many vacant sites in TiC created by ion beam mixing.These defects can easily trap hydrogen and effectively enhance the effect of hydrogen resistance.

  1. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    Science.gov (United States)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  2. Ion emission in solids bombarded with Au{sub n}{sup +} (n = 1 - 9) clusters accelerated within the 0.15 - 1.25 MeV energy range; Emission ionique des solides a l'impact d'agregats Au{sub n}{sup +} (n=1-9) acceleres entre 0,15 et 1,25 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Wehbe, Nimer [Universite Claude Bernard Lyon-I, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex (France)

    2006-06-15

    This experimental work is devoted to the study of the ion emission in solids at the impact of gold clusters of energies within 0.15 to 1.25 MeV range. The physics of ion-solid collisions and the theoretical models of sputtering of solids under ion bombardment are presented in the first chapter. The chapter no. 2 deals with the description of the experimental setup. The study of a gold target allowed to evidence the role of the size and energy of the clusters in determining the emission intensity and the mass distribution of the ions. The 4. chapter gives results from the study of cesium iodide in which the intense emission of CsI clusters could be investigated quantitatively due to multiplicity measurements. Finally, the chapter no. 5 was devoted to the study of a biologic molecule, the phenylalanine, and of a pesticide molecule, chlorosulfuron. This work evidenced the importance of clusters for surface analyses by mass spectrometry.

  3. Surface layer evolution caused by the bombardment with ionized metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Döbeli, M., E-mail: doebeli@phys.ethz.ch [Ion Beam Physics, ETH Zurich, Schafmattstrasse 20, CH-8093 Zurich (Switzerland); Dommann, A.; Maeder, X.; Neels, A. [Centre Suisse d’Electronique et de Microtechnique CSEM SA, Rue Jaquet-Droz 1, CH-2002 Neuchâtel (Switzerland); Passerone, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Rudigier, H. [OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein); Scopece, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Widrig, B.; Ramm, J. [OC Oerlikon Balzers AG, Iramali 18, LI-9496 Balzers (Liechtenstein)

    2014-08-01

    The evolution of the composition of tungsten carbide and silicon surfaces initiated by the bombardment with Zr and Cr ions has been investigated as a function of the substrate bias voltage. Surface composition profiles were measured by Rutherford backscattering and have been compared with the results obtained by the TRIDYN simulation program. It is found that the general dependence of film thickness on substrate bias is satisfactorily reproduced by this model. Deviations between experiment and simulation are attributed to possible partial oxidation of the surface or uncertainties in the charge state distribution of metal ions. The results confirm that TRIDYN facilitates the predictability of the nucleation of metallic vapor at substrate surfaces.

  4. Ion beam radiation effects in monazite

    Energy Technology Data Exchange (ETDEWEB)

    Picot, V. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France); Deschanels, X. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France)], E-mail: xavier.deschanels@cea.fr; Peuget, S. [CEA Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Ceze (France); Glorieux, B. [Laboratoire des Procedes, Materiaux et Energie Solaire, UPR 8521, Rambla de la Thermodynamique, 66100 Perpignan (France); Seydoux-Guillaume, A.M. [Laboratoire des Mecanismes et Transferts en Geologie, CNRS, Universite Paul Sabatier, IRD, OMP, 14 Avenue Edouard Belin, 31400 Toulouse (France); Wirth, R. [GeoForschungsZentrum Potsdam, PB 4.1, Telegrafenberg, 14473 Potsdam (Germany)

    2008-11-15

    Monazite is a potential matrix for conditioning minor actinides arising from spent fuel reprocessing. The matrix behavior under irradiation must be investigated to ensure long-term containment performance. Monazite compounds were irradiated by gold and helium ions to simulate the consequences of alpha decay. This article describes the effects of such irradiation on the structural and macroscopic properties (density and hardness) of monazites LaPO{sub 4} and La{sub 0.73}Ce{sub 0.27}PO{sub 4}. Irradiation by gold ions results in major changes in the material properties. At a damage level of 6.7 dpa, monazite exhibits volume expansion of about 8.1%, a 59% drop in hardness, and structure amorphization, although Raman spectroscopy analysis shows that the phosphate-oxygen bond is unaffected. Conversely, no change in the properties of these compounds was observed after He ion implantation. These results indicate that ballistic effects predominate in the studied dose range.

  5. Corrigendum to "Crater functions for compound materials: A route to parameter estimation in coupled-PDE models of ion bombardment" [Nucl. Instr. Meth. Phys. Res. B 318B (2014) 245-252

    Science.gov (United States)

    Norris, Scott A.; Samela, Juha; Vestberg, Matias; Nordlund, Kai; Aziz, Michael J.

    2015-04-01

    Because Eq. (1) is independent of the details of the crater function Δh, updated formulae for { A, C,A‧,C‧ } that account for the curvature dependence are obtained simply by inserting Harrison and Bradley's expressions (2) into Eq. (1). As those authors show, at normal incidence the added terms are expected to have positive values, increasing estimates of C (which is a sum of SX,YZ, type terms), while producing a less noticable effect on the value of C‧ (which is a difference of SX,YZ, type terms). These modifications therefore do not alter the primary physical conclusions of our study, which are that for the GaSb system both C and (A‧ C -C‧ A) appear to be positive.

  6. Mutagenic effects of heavy ions in bacteria

    Science.gov (United States)

    Horneck, G.; Krasavin, E. A.; Kozubek, S.

    1994-10-01

    Various mutagenic effects by heavy ions were studied in bacteria, irradiated at accelerators in Dubna, Prague, Berkeley or Darmstadt. Endpoints investigated are histidine reversion (B. subtilis, S. typhimurium), azide resistance (B. subtilis), mutation in the lactose operon (E. coli), SOS chromotest (E. coli) and λ-prophage induction (E. coli). It was found that the cross sections of the different endpoints show a similar dependence on energy. For light ions (Z = 26) it increases with energy up to a maximum or saturation. The increment becomes steeper with increasing Z. This dependence on energy suggests a ``mutagenic belt'' inside the track that is restricted to an area where the density of departed energy is low enough not to kill the cell, but high enough to induce mutations.

  7. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  8. Bombarding Cancer: Biolistic Delivery of therapeutics using Porous Si Carriers

    Science.gov (United States)

    Zilony, Neta; Tzur-Balter, Adi; Segal, Ester; Shefi, Orit

    2013-08-01

    A new paradigm for an effective delivery of therapeutics into cancer cells is presented. Degradable porous silicon carriers, which are tailored to carry and release a model anti-cancer drug, are biolistically bombarded into in-vitro cancerous targets. We demonstrate the ability to launch these highly porous microparticles by a pneumatic capillary gene gun, which is conventionally used to deliver cargos by heavy metal carriers. By optimizing the gun parameters e.g., the accelerating gas pressure, we have successfully delivered the porous carriers, to reach deep targets and to cross a skin barrier in a highly spatial resolution. Our study reveals significant cytotoxicity towards the target human breast carcinoma cells following the delivery of drug-loaded carriers, while administrating empty particles results in no effect on cell viability. The unique combination of biolistics with the temporal control of payload release from porous carriers presents a powerful and non-conventional platform for designing new therapeutic strategies.

  9. Carbon cluster diagnostics-I: Direct Recoil Spectroscopy (DRS) of Ar+ and Kr+ bombarded graphite

    CERN Document Server

    Ahmad, Shoaib; Qayyum, A; Ahmad, B; Bahar, K; Arshed, W

    2016-01-01

    Measurements of the energy spectra of multiply charged positive and negative carbon ions recoiling from graphite surface under 100 and 150 keV argon and krypton ion bombardment are presented. With the energy spectrometer set at recoil angle of 79.5 degrees, direct recoil (DR) peaks have been observed with singly as well as multiply charged carbon ions , where n = 1 to 6. These monatomic and cluster ions have been observed recoiling with the characteristic recoil energy E(DR) . We have observed sharp DR peaks. A collimated projectile beam with small divergence is supplemented with a similar collimation before the energy analyzer to reduce the background of sputtered ions due to scattered projectiles.

  10. Ion Beam Assisted Deposition Of Optical Thin Films - Recent Results

    Science.gov (United States)

    McNally, J. J.; Al-Jumaily, G. A.; Wilson, S. R.; McNeil, J. R.

    1985-11-01

    We have examined the properties of dielectric (Ti02, Si02, -Al203, Ta205 and Hf02) films deposited using ion-assisted deposition (IAD). The films were characterized using an angularly resolved scatterometer, spectrophotometer and Raman spectroscopy. A reduction in optical scatter, especially that due to low spatial frequencies, is observed for films deposited with simultaneous ion bombardment. Higher values of refractive index are obtained for films deposited using IAD. Raman spectra indicate a crystalline phase change in TiO2 films is induced by bombardment of samples with 02 ions during deposition. Other experimental data and the effects of the induced phase transition on the optical properties of TiO2 will be discussed.

  11. Crystal effects in the neutralization of He+ ions in the low energy ion scattering regime.

    Science.gov (United States)

    Primetzhofer, D; Markin, S N; Juaristi, J I; Taglauer, E; Bauer, P

    2008-05-30

    Investigating possible crystal effects in ion scattering from elemental surfaces, measurements of the positive ion fraction P+ are reported for He+ ions scattered from single and polycrystalline Cu surfaces. In the Auger neutralization regime, the ion yield is determined by scattering from the outermost atomic layer. For Cu(110) P+ exceeds that for polycrystalline Cu by up to a factor of 2.5, thus exhibiting a strong crystal effect. It is much less pronounced at higher energies, i.e., in the reionization regime. However, there a completely different angular dependence of the ion yield is observed for poly- and single crystals, due to massive subsurface contributions in nonchanneling directions.

  12. Ion-mediated RNA structural collapse: effect of spatial confinement

    CERN Document Server

    Tan, Zhi-Jie

    2013-01-01

    RNAs are negatively charged molecules residing in macromolecular crowding cellular environments. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the confinement effect on the ion-mediated RNA structural collapse for a simple model system. We found that, for both Na$^+$ and Mg$^{2+}$, ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. Such an enhancement in the ion efficiency is attributed to the decreased electrostatic free energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.

  13. Effect of Hydrogen ion beam irradiation onto the FIR reflectivity of pulsed laser deposited mirror like Tungsten films

    Energy Technology Data Exchange (ETDEWEB)

    Mostako, A.T.T. [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Khare, Alika, E-mail: alika@iitg.ernet.in [Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039 (India); Rao, C.V.S.; Raole, Prakash M.; Vala, Sudhirsinh; Jakhar, Shrichand; Basu, T.K.; Abhangi, Mitul; Makwana, Rajinikant J. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

    2012-04-15

    Graphical abstract: The specular FIR reflectivity of the W{sub 1}, W{sub 2}, W{sub 3} and W{sub 4} mirrors before and after 8 keV Hydrogen ion beam irradiation. Highlights: Black-Right-Pointing-Pointer Mirror like W thin films were obtained via PLD. Black-Right-Pointing-Pointer The maximum thickness of the Tungsten thin film was {approx}324 nm. Black-Right-Pointing-Pointer Effect of H-ion beam irradiation on the quality of PLD W mirror is reported. Black-Right-Pointing-Pointer Post exposure reflectivity of Tungsten thin films was hardly changed by 2%. - Abstract: The optical quality of the First Mirrors (FMs) of a fusion device (burning plasma experiments, ITER) deteriorates due to the erosion by charge exchange neutrals, re-deposition of the eroded material and the lattice damage by the bombardment of the high energetic particles. This degradation of the optical quality of the plasma facing components in such a harsh environment is a serious concern for the reliability of the spectroscopic based optical diagnostics using FM of a fusion device. In this paper, the effect of 8 keV Hydrogen ion beam irradiation onto the FIR reflectivity of Tungsten thin film mirror is presented. The Tungsten thin films were prepared via Pulsed Laser Deposition (PLD) technique. The Tungsten mirrors were subjected to X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) for characterization. The specular reflectivities of the Tungsten mirrors before and after exposure to ion beam were recorded with Fourier Transform of Infra-Red (FTIR) technique. The ion penetration depth and straggle into Tungsten thin film and stainless steel (SS) substrate were estimated by Transport of Ions in Matter (TIRM) simulation code. The changes in post exposure IR reflectivity were interpreted in terms of these parameters.

  14. Silkworm eggs: An ideal model for studying the biological effects of low energy Ar + ion interaction in animals

    Science.gov (United States)

    Ling, Lin; Liu, Xuelan; Xu, Jiaping; You, Zhengying; Zhou, Jingbo

    2011-09-01

    The object of the current work was to study low energy Ar + ion beam interactions with silkworm eggs and thus provide further understanding of the mechanisms involved in ion bombardment-induced direct gene transfer into silkworm eggs. In this paper, using low-energy Ar + ion beam bombardment combined with piggyBac transposon, we developed a novel method to induce gene transfer in silkworm. Using bombardment conditions optimized for egg-incubation (25 keV with ion fluences of 800 × 2.6 × 10 15 ions/cm 2 in dry state under vacuum), vector pBac{3 × P3-EGFPaf} and helper plasmid pHA3pig were successfully transferred into the silkworm eggs. Our results obtained from by PCR assay and genomic Southern blotting analysis of the G1 generations provide evidence that low-energy ion beam can generate some craters that play a role in acting as pathways of exogenous DNA molecules into silkworm eggs.

  15. Ion irradiation induced direct damage to DNA

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2008-01-01

    Ion beams have been widely applied in a few biological research fields such as radioactive breeding, health protection, and tumor therapy. Up to now many interesting and impressive achievements in biology and agriculture have been made. Over the past several decades, scientists in biology, physics, and chemistry have pursued investigations focused on understanding the mechanisms of these radiobiological effects of ion beams. From the chemical point of view, these effects are due to the ion irradiation induced biomolecular damage, direct or indirect. In this review, we will present a chemical overview of the direct effects of ion irradiation upon DNA and its components, based on a review of literature combined with recent experimental results. It is suggested that, under ion bombardment, a DNA molecule undergoes a variety of processes, including radical formation, atomic displacement, intramolecular bond-scissions, emission of fragments, fragment recombination and molecular crosslink, which may lead to genetic...

  16. Sputtered neutral Si nC m clusters as a monitor for carbon implantation during C 60 bombardment of silicon

    Science.gov (United States)

    Wucher, A.; Kucher, A.; Winograd, N.; Briner, C. A.; Krantzman, K. D.

    2011-06-01

    The incorporation of carbon atoms into a silicon surface under bombardment with 40-keV C60+ ions is investigated using time-of-flight mass spectrometry of sputtered neutral and ionized Si nC m clusters. The neutral particles emitted from the surface are post-ionized by strong field infrared photoionization using a femtosecond laser system operated at a wavelength of 1400/1700 nm. From the comparison of secondary ion and neutral spectra, it is found that the secondary ion signals do not reflect the true partial sputter yields of the emitted clusters. The measured yield distribution is interpreted in terms of the accumulating carbon surface concentration with increasing C 60 fluence. The experimental results are compared with those from recent molecular dynamics simulations of C 60 bombardment of silicon.

  17. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  18. Theoretical simulations of atomic and polyatomic bombardment of an organic overlayer on a metallic substrate

    CERN Document Server

    Krantzman, K D; Delcorte, A; Garrison, B J

    2003-01-01

    Our previous molecular dynamics simulations on initial test systems have laid the foundation for understanding some of the effects of polyatomic bombardment. In this paper, we describe simulations of the bombardment of a more realistic model system, an overlayer of sec-butyl-terminated polystyrene tetramers on a Ag left brace 1 1 1 right brace substrate. We have used this model system to study the bombardment with Xe and SF sub 5 projectiles at kinetic energies ranging from 0.50 to 5.0 keV. SF sub 5 sputters more molecules than Xe, but a higher percentage of these are damaged rather than ejected intact when the bombarding energy is greater than 0.50 keV. Therefore, at energies comparable to experimental values, the efficiency, measured as the yield-to-damage ratio, is greater with Xe than SF sub 5. Stable and intact molecules are generally produced by upward moving substrate atoms, while fragments are produced by the upward and lateral motion of reflected projectile atoms and fragments from the target molecul...

  19. Modified morphology of graphene sheets by Argon-atom bombardment: molecular dynamics simulations.

    Science.gov (United States)

    Wei, Xiao-Lin; Zhang, Kai-Wang; Wang, Ru-Zhi; Liu, Wen-Liang; Zhong, Jian-Xin

    2011-12-01

    By a molecular dynamics method, we simulated the process of Argon-atom bombardment on a graphene sheet with 2720 carbon atoms. The results show that, the damage of the bombardment on the graphene sheet depends not only on the incident energy but also on the particle flux density of Argon atoms. To compare and analyze the effect of the incident energy and the particle flux density in the Argon-atom bombardment, we defined the impact factor on graphene sheet by calculating the broken-hole area. The results indicate that, there is an exponential accumulated-damage for the impact of both the incident energy and the particle flux density and there is a critical incident energy ranging from 20-30 eV/atom in Argon-atom bombardment. Different configurations, such as sieve-like and circle-like graphene can be formed by controlling of different particle flux density as the incident energy is more than the critical value. Our results supply a feasible method on fabrication of porous graphene-based materials for gas-storages and molecular sieves, and it also helps to understand the damage mechanism of graphene-based electronic devices under high particle radiation.

  20. Topographical characterization of Ar-bombarded Si(1 1 1) surfaces by atomic force microscopy

    CERN Document Server

    Niebieskikwiat, D G; Pregliasco, G R; Gayone, J E; Grizzi, O; Sanchez, E A

    2002-01-01

    We used atomic force microscopy to study the topographical changes induced on Si(1 1 1) surfaces by 10-22 keV Ar sup + bombardment. The irradiation was carried on normal to the surface with doses in the 1-60x10 sup 1 sup 6 ions/cm sup 2 range. We observed a first generation of blisters at a critical dose around 3x10 sup 1 sup 6 ions/cm sup 2 , which flakes off at 19x10 sup 1 sup 6 ions/cm sup 2 , and a second generation of smaller blisters between 35 and 45x10 sup 1 sup 6 ions/cm sup 2. Measurements of the mean surface height show that at low irradiation doses the surface inflates because of voids produced by Ar sup + implantation. For doses greater than 20x10 sup 1 sup 6 Ar sup + /cm sup 2 the height decreases linearly because of sputtering, with a slope corresponding to a sputtering yield of 1.4. Finally, we present electron spectra produced during grazing proton bombardment of samples whose topography has been modified by Ar irradiation.

  1. Physical effects of negative air ions in a wet sauna

    Science.gov (United States)

    Watanabe, I.; Noro, Hiroshi; Ohtsuka, Yoshinori; Mano, Yukio; Agishi, Yuko

    The physical effects of negative air ions on humans were determined in an experimental sauna room equipped with an ionizer. Thirteen healthy persons took a wet sauna bath (dry bulb temperature 42° C, relative humidity 100%, 10 min exposure) with or without negative air ions. The subjects were not told when they were being exposed to negative air ions. There were no differences in the moods of these persons or changes in their blood pressures between the two saunas. The surface temperatures of the foreheads, hands, and legs in the sauna with negative ions were significantly higher than those in the sauna without ions. The pulse rates and sweat produced in the sauna with ions were singificantly higher than those in the sauna without ions. The results suggest that negative ions may amplify the effects on humans of the sauna.

  2. Polycrystalline silicon ion sensitive field effect transistors

    Science.gov (United States)

    Yan, F.; Estrela, P.; Mo, Y.; Migliorato, P.; Maeda, H.; Inoue, S.; Shimoda, T.

    2005-01-01

    We report the operation of polycrystalline silicon ion sensitive field effect transistors. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with a Si3N4 sensing layer. Nearly ideal pH sensitivity (54mV /pH) and stable operation have been achieved. Temperature effects have been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The sensitivity to penicillin G is about 10mV/mM, in solutions with concentration lower than the saturation value, which is about 7 mM.

  3. Ion-ion correlation effects in opacities of ultra-dense and hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sauvan, P.; Minguez, E. [Instituto de Fusion Nuclear, E.T.S. de Ingenieros Industriales U.P.M., Jose Gutierrez Abascal, Madrid (Spain); Angelo, P.; Derfoul, H.; Ceccotti, T.; Poquerusse, A.; Gharbi, I.; Leboucher-Dalimier, E. [Ecole Polytechnique, Lab. pour l' Utilisation des Lasers Intenses, UMR 7605 CNRS, CEA, Ecole Polytechnique, Universite Paris 6, 91 - Palaiseau (France)

    2000-07-01

    The present work is devoted to the study of opacities for ultra-dense, hot, low Z (Z{<=}15) plasmas. The required photo-excitation and photo-ionisation cross sections are determined by the JIMENA code which allows the postprocessing of atomic data (dipole transition moments and line profiles) taking care of ion-ion correlations. These atomic data are computed with the radiative property code IDEFIX. The strong ion-ion correlation effects predicted by the simulations reinforce the impact of the experiment designed for this purpose. (authors)

  4. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...... with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix...

  5. The influence of energetic bombardment on the structure formation of sputtered zinc oxide films. Development of an atomistic growth model and its application to tailor thin film properties

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, Dominik

    2011-02-17

    The focus of this work is the investigation of the growth of zinc oxide (ZnO) thin films. It is demonstrated that with a modified, ion beam assisted sputtering (IBAS) process, zinc oxide films can be deposited which exhibit a markedly improved crystalline order. Furthermore, it is demonstrated that intense energetic oxygen ion bombardment can be utilized to change film texture from the typical (002)-self-texture to an a-axis texture where the (002)-planes are perpendicular to the substrate surface. An understanding of the underlying mechanisms is developed which also facilitates a more detailed understanding of the action of ion bombardment during zinc oxide film growth. It is shown that zinc oxide films are susceptible to the influence of ion bombardment particularly in the nucleation regime of growth and that this finding is generally true for all observed structural changes induced by ion bombardment with various species, energies and flux densities. It is demonstrated not only that the initial growth stage plays an important role in the formation of a preferred growth orientation but also that the action of texture forming mechanisms in subsequent growth stages is comparatively weak. (orig.)

  6. Computer simulation of the bombardment of a copper film on graphene with argon clusters

    Institute of Scientific and Technical Information of China (English)

    A. Y. Galashev; O.R. Rakhmanova

    2015-01-01

    The process of graphene clean of copper film by bombarding of Ar13 clusters is investigated by the method of molec-ular dynamics. The kinetic energies of clusters are 5, 10, 20, and 30 eV and incident angles areθ=90◦, 75◦, 60◦, 45◦, and 0◦. It is obtained that the cluster energy should be in the interval 20 eV–30 eV for effective graphene cleaning. There is no cleaning effect at vertical incidence (θ =0◦) of Ar13 clusters. The bombardments at 45◦ and 90◦ incident angles are the most effective ones at a moderate and large amount of deposited copper respectively.

  7. Effect of ion irradiation on the surface, structural and mechanical properties of brass

    Science.gov (United States)

    Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.

    2014-04-01

    Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.

  8. Effects of metal ions on recombinant calcineurin A subunit

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Effects of metal ions on activities and solution conformations of calcineurin A subunit have been examined.The ability of several metal ions to activate calcineurin A has been tested with Ni2+>Mn2+>Mg2+/Ca2+.The corresponding CD spectra and intrinsic fluorescent emission spectra show that calcineurin A exists in different metal ion-dependent conformation states.Effects of the different concentritions of Ni2+ on activities and solution conformations of calcineurin A have been tested too.Results indicate that effects of these metal ions to activate calcineurin are due to their conformational changes.

  9. EFFECT OF METAL IONS ON THE LACCASE ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    XiwenWang; HuaiyuZhan; WeiHe

    2004-01-01

    The effects of five metal ions(Fe-'~,Ca-~*,Mg2*,Mn-'-"Cu2") on ABTS oxidation catalyzed by laccase werestudied under condition of pH=4.5 byspectrophotometer. The results show that Fe2+ ionhas obvious effect on the activity and the nature ofinhibition is competitive type. It is found that theinhibition is realized through the reduction ofABTS.by Fe2+ ion. Other metal ions have slight influence onlaccase activity.

  10. Study and optimisation of SIMS performed with He{sup +} and Ne{sup +} bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Pillatsch, L.; Vanhove, N.; Dowsett, D. [Department “Science and Analysis of Materials” (SAM), Centre de Recherche Public – Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg); Sijbrandij, S.; Notte, J. [Carl Zeiss Microscopy LLC, One Corporation Way, Peabody, MA 01960 (United States); Wirtz, T., E-mail: wirtz@lippmann.lu [Department “Science and Analysis of Materials” (SAM), Centre de Recherche Public – Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux (Luxembourg)

    2013-10-01

    The combination of the high-brightness He{sup +}/Ne{sup +} atomic level ion source with the detection capabilities of secondary ion mass spectrometry (SIMS) opens up the prospect of obtaining chemical information with high lateral resolution and high sensitivity on the Zeiss ORION helium ion microscope (HIM). A feasibility study with He{sup +} and Ne{sup +} ion bombardment is presented in order to determine the performance of SIMS analyses using the HIM. Therefore, the sputtering yields, useful yields and detection limits obtained for metallic (Al, Ni and W) as well as semiconductor samples (Si, Ge, GaAs and InP) were investigated. All the experiments were performed on a Cameca IMS4f SIMS instrument which was equipped with a caesium evaporator and oxygen flooding system. For most of the elements, useful yields in the range of 10{sup −4} to 3 × 10{sup −2} were measured with either O{sub 2} or Cs flooding. SIMS experiments performed directly on the ORION with a prototype secondary ion extraction and detection system lead to results that are consistent with those obtained on the IMS4f. Taking into account the obtained useful yields and the analytical conditions, such as the ion current and typical dwell time on the ORION HIM, detection limits in the at% range and better can be obtained during SIMS imaging at 10 nm lateral resolution with Ne{sup +} bombardment and down to the ppm level when a lateral resolution of 100 nm is chosen. Performing SIMS on the HIM with a good detection limit while maintaining an excellent lateral resolution (<50 nm) is therefore very promising.

  11. Scanning-electron-microscopy observations and mechanical characteristics of ion-beam-sputtered surgical implant alloys

    Science.gov (United States)

    Weigand, A. J.; Meyer, M. L.; Ling, J. S.

    1977-01-01

    An electron bombardment ion thruster was used as an ion source to sputter the surfaces of orthopedic prosthetic metals. Scanning electron microscopy photomicrographs were made of each ion beam textured surface. The effect of ion texturing an implant surface on its bond to bone cement was investigated. A Co-Cr-W alloy and surgical stainless steel were used as representative hard tissue implant materials to determine effects of ion texturing on bulk mechanical properties. Work was done to determine the effect of substrate temperature on the development of an ion textured surface microstructure. Results indicate that the ultimate strength of the bulk materials is unchanged by ion texturing and that the microstructure will develop more rapidly if the substrate is heated prior to ion texturing.

  12. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.

    Science.gov (United States)

    Parsons, Drew F; Boström, Mathias; Lo Nostro, Pierandrea; Ninham, Barry W

    2011-07-21

    The classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloids, and corresponding theories of electrolytes, are unable to explain ion specific forces between colloidal particles quantitatively. The same is true generally, for surfactant aggregates, lipids, proteins, for zeta and membrane potentials and in adsorption phenomena. Even with fitting parameters the theory is not predictive. The classical theories of interactions begin with continuum solvent electrostatic (double layer) forces. Extensions to include surface hydration are taken care of with concepts like inner and outer Helmholtz planes, and "dressed" ion sizes. The opposing quantum mechanical attractive forces (variously termed van der Waals, Hamaker, Lifshitz, dispersion, nonelectrostatic forces) are treated separately from electrostatic forces. The ansatz that separates electrostatic and quantum forces can be shown to be thermodynamically inconsistent. Hofmeister or specific ion effects usually show up above ≈10(-2) molar salt. Parameters to accommodate these in terms of hydration and ion size had to be invoked, specific to each case. Ionic dispersion forces, between ions and solvent, for ion-ion and ion-surface interactions are not explicit in classical theories that use "effective" potentials. It can be shown that the missing ionic quantum fluctuation forces have a large role to play in specific ion effects, and in hydration. In a consistent predictive theory they have to be included at the same level as the nonlinear electrostatic forces that form the skeletal framework of standard theory. This poses a challenge. The challenges go further than academic theory and have implications for the interpretation and meaning of concepts like pH, buffers and membrane potentials, and for their experimental interpretation. In this article we overview recent quantitative developments in our evolving understanding of the theoretical origins of specific ion, or Hofmeister effects. These are demonstrated

  13. Fabrication of nano ion–electron sources and nano-probes by local electron bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Rezeq, Moh’d, E-mail: mohd.rezeq@kustar.ac.ae [Department of Applied Mathematics and Sciences, Khalifa University of Science, Technology and Research (KUSTAR), P.O.B. 127788, Abu Dhabi (United Arab Emirates); Department of Electrical and Computer Engineering, Khalifa University of Science, Technology and Research (KUSTAR), P.O.B. 127788, Abu Dhabi (United Arab Emirates); Ali, Ahmed; Barada, Hassan [Department of Electrical and Computer Engineering, Khalifa University of Science, Technology and Research (KUSTAR), P.O.B. 127788, Abu Dhabi (United Arab Emirates)

    2015-04-01

    Highlights: • A new method for fabricating nanotips with an apex radius around 1 nm is introduced. • This clean process depends only on the physical electron bombardment mechanism. • This method can be applied to any metal or heavily doped semiconductor materials. • The produced single atom nanotips are ideal as sources of electron and ion beams. • These nanotips are advantageous for nano lithography and scanning probe microscopy. - Abstract: A new method for fabricating nano ion–electron sources and nano probes with an apex in the range of 1 nm is introduced. The method is based on bombarding a regular tip apex with electrons extracted and accelerated from a nearby source by the electric field. This can be achieved by placing a metal ring around a precursor metal tip at a level below the tip apex in a field ion microscope (FIM). The metal ring is then heated, by a grounded DC power source, to a temperature below the thermionic emission value. The electric field between the tip and the hot ring is high enough to cause electrons to be extracted from the metal ring, i.e. Schottky field emission, and then accelerated to the shank with energy sufficient to dislodge atoms from the shank. An atomic scale apex with a single atom end can be obtained by monitoring the evolution of the tip apex due to the movement of mobile atoms while adjusting the tip electric field and the temperature of the metal ring. As this method depends only on the electron bombardment mechanism, this makes it a clean process that can be applied to any metal or heavily doped semiconductor materials appropriate for generating a high electric field for FIM applications.

  14. Ion charge neutralization effects in scanning electron microscopes.

    Science.gov (United States)

    Crawford, C K

    1980-01-01

    The use of low energy ion charge neutralization to stabilize surface potentials in scanning microscopes leads to the observation of new effects. Among the most important of these, are effects which result from the primary beam being scanned in a raster. A new theory which describes raster charge-up for highly insulating specimens is presented. It is shown that the required neutralizing ion current is a surprisingly strong function of the primary electron current, the raster parameters, specimen parameters, and magnification. Contrary to intuition, the required ion current is not linearly related to the primary electron current. Methods of adjusting parameters to achieve better ion charge neutralization are discussed.

  15. ION EFFECTS IN THE APS PARTICLE ACCUMULATOR RING

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.; Harkay, K.; Yao, CY.

    2017-06-25

    Trapped ions in the APS Particle Accumulator Ring (PAR) lead to a positive coherent tune shift in both planes, which increases along the PAR cycle as more ions accumulate. This effect has been studied using an ion simulation code developed at SLAC. After modifying the code to include a realistic vacuum profile, multiple ionization, and the effect of shaking the beam to measure the tune, the simulation agrees well with our measurements. This code has also been used to evaluate the possibility of ion instabilities at the high bunch charge needed for the APS-Upgrade.

  16. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  17. EFFECT OF METAL IONS ON THE LACCASE ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    Xiwen Wang; Huaiyu Zhan; Wei He

    2004-01-01

    The effects of five metal ions(Fe2+、Ca2+、Mg2+、Mn2+、Cu2+) on ABTS oxidation catalyzed by laccase were studied under condition of pH=4.5 by spectrophotometer. The results show that Fe2+ ion has obvious effect on the activity and the nature of inhibition is competitive type. It is found that the inhibition is realized through the reduction ofABTS.by Fe2+ ion. Other metal ions have slight influence on laccase activity.

  18. Directional emission of nonthermal halogen atoms by electron bombardment of alkali halides

    Energy Technology Data Exchange (ETDEWEB)

    Postawa, Z.; Szymonski, M.

    1989-06-15

    We present the first experimental results on angle-resolved kinetic-energydistributions of halogen atoms desorbed from single crystals of alkali halidesbecause of electron bombardment. We found that the ejection of nonthermal Bratoms from the (100) surface of KBr is strongly forward peaked along thenormal. We suggest that this effect is caused by a thin damaged layer on thesurface due to a strong nonstoichiometry of the erosion process itself.

  19. Surface modification of RuO2 electrodes by laser irradiation and ion implantation: Evidence of electrocatalytic effects

    Indian Academy of Sciences (India)

    E Guerrini; A Colombo; S Trasatti

    2009-09-01

    RuO2 thin layers were deposited on Ti supports by thermal decomposition of RuCl3 at 400°C. Some of the samples were subjected to laser irradiation between 0.5 and 1.5 J cm-2. Some others to Kr bombardment with doses between 1015 and 1016 cm-2. Modifications introduced by the surface treatments were monitored by cyclic voltammetry and O2 evolution in H2SO4 solution. The voltammetric charge increased with surface treatment almost to the same extent for irradiation and bombardment. The electrocatalytic activity turned out much higher for Kr bombarded samples. Raw experimental data were scrutinized in an attempt to separate geometric from electronic factors. True electrocatalytic effects are clearly seen to prevail over purely surface area effects.

  20. Predicting Molecular Crowding Effects in Ion-RNA Interactions.

    Science.gov (United States)

    Yu, Tao; Zhu, Yuhong; He, Zhaojian; Chen, Shi-Jie

    2016-09-01

    We develop a new statistical mechanical model to predict the molecular crowding effects in ion-RNA interactions. By considering discrete distributions of the crowders, the model can treat the main crowder-induced effects, such as the competition with ions for RNA binding, changes of electrostatic interaction due to crowder-induced changes in the dielectric environment, and changes in the nonpolar hydration state of the crowder-RNA system. To enhance the computational efficiency, we sample the crowder distribution using a hybrid approach: For crowders in the close vicinity of RNA surface, we sample their discrete distributions; for crowders in the bulk solvent away from the RNA surface, we use a continuous mean-field distribution for the crowders. Moreover, using the tightly bound ion (TBI) model, we account for ion fluctuation and correlation effects in the calculation for ion-RNA interactions. Applications of the model to a variety of simple RNA structures such as RNA helices show a crowder-induced increase in free energy and decrease in ion binding. Such crowding effects tend to contribute to the destabilization of RNA structure. Further analysis indicates that these effects are associated with the crowder-ion competition in RNA binding and the effective decrease in the dielectric constant. This simple ion effect model may serve as a useful framework for modeling more realistic crowders with larger, more complex RNA structures.

  1. Microanalysis of Ar and He bombarded biomedical polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Manso Silvan, M. [Departamento de Fisica Aplicada C-XII, Universidad Autonoma de Madrid, 28049 Madrid (Spain)]. E-mail: miguel.manso@uam.es; Gago, R. [Departamento de Fisica Aplicada C-XII, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Valsesia, A. [European Commission, Institute for Health and Consumer Protection, Via Enrico Fermi, 21020 Ispra (Italy); Climent Font, A. [Departamento de Fisica Aplicada C-XII, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Duart, J.M. Martinez [Departamento de Fisica Aplicada C-XII, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Rossi, F. [European Commission, Institute for Health and Consumer Protection, Via Enrico Fermi, 21020 Ispra (Italy)

    2007-04-15

    Implantations onto polyethyleneglycol, polycaprolactone and polymethylmethacrylate, carried out with Ar and He ions at 25 and 100 KeV with fluences of 5 x 10{sup 13} cm{sup -2}, have been made with identical ion currents (20 {mu}A) but different sweep areas in order to take into account the effect of the ion flux on the composition and structure of these biopolymers. Vibrational (Fourier transformed infrared spectroscopy), microanalytical (Rutherford backscattering and energy recoil detection) and microscopic techniques (atomic force microscopy) confirm that, even in this low fluence regime, the ion flux effect is responsible of scaled modifications. More interestingly, these techniques indicate that the damage seems to be higher for He. All these factors suggest that He could be preferentially used to engineer biomedical polymers exploiting the tailoring opportunities offered by ion flux effects.

  2. On Universality in Sputtering Yields Due to Cluster Bombardment.

    Science.gov (United States)

    Paruch, Robert J; Garrison, Barbara J; Mlynek, Maksymilian; Postawa, Zbigniew

    2014-09-18

    Molecular dynamics simulations, in which atomic and molecular solids are bombarded by Arn (n = 60-2953) clusters, are used to explain the physics that underlie the "universal relation" of the sputtering yield Y per cluster atom versus incident energy E per cluster atom (Y/n vs E/n). We show that a better representation to unify the results is Y/(E/U0) versus (E/U0)/n, where U0 is the sample cohesive energy per atom or molecular equivalent, and the yield Y is given in the units of atoms or molecular equivalents for atomistic and molecular solids, respectively. In addition, we identified a synergistic cluster effect. Specifically, for a given (E/U0)/n value, larger clusters produce larger yields than the yields that are only proportional to the cluster size n or equivalently to the scaled energy E/U0. This synergistic effect can be described in the high (E/U0)/n regime as scaling of Y with (E/U0)(α), where α > 1.

  3. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Energy Technology Data Exchange (ETDEWEB)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, L.D., E-mail: yuld@thep-center.org [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2015-12-15

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  4. Measurement of ultra-low ion energy of decelerated ion beam using a deflecting electric field

    Science.gov (United States)

    Thopan, P.; Suwannakachorn, D.; Tippawan, U.; Yu, L. D.

    2015-12-01

    In investigation on ultra-low-energy ion bombardment effect on DNA, an ion beam deceleration lens was developed for high-quality ultra-low-energy ion beam. Measurement of the ion energy after deceleration was necessary to confirm the ion beam really decelerated as theoretically predicted. In contrast to conventional methods, this work used a simple deflecting electrostatic field after the deceleration lens to bend the ion beam. The beam bending distance depended on the ion energy and was described and simulated. A system for the measurement of the ion beam energy was constructed. It consisted of a pair of parallel electrode plates to generate the deflecting electrical field, a copper rod measurement piece to detect ion beam current, a vernier caliper to mark the beam position, a stepping motor to translate the measurement rod, and a webcam-camera to read the beam bending distance. The entire system was installed after the ion-beam deceleration lens inside the large chamber of the bioengineering vertical ion beam line. Moving the measurement rod across the decelerated ion beam enabled to obtain beam profiles, from which the beam bending distance could be known and the ion beam energy could be calculated. The measurement results were in good agreement with theoretical and simulated results.

  5. Effects of Irradiation with Ions and Photons in Ultraviolet-Vacuum Ultraviolet Regions on Nano-Surface Properties of Polymers Exposed to Plasmas

    Science.gov (United States)

    Cho, Ken; Takenaka, Kosuke; Setsuhara, Yuichi; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2012-01-01

    The interactions of ions and photons in ultraviolet (UV) and vacuum ultraviolet (VUV) regions from argon plasmas with polymer surfaces were investigated by of depth analysis of chemical bonding states in the nano-surface layer of poly(ethylene terephthalate) (PET) films via conventional X-ray photoelectron spectroscopy (XPS) and hard X-ray photoelectron spectroscopy (HXPES). The PET films were exposed to argon plasmas by covering the PET films with MgF2 and quartz windows as optical filters to compare the irradiation effects with ions and photons. The conventional XPS results indicated that oxygen functionalities (the C-O bond and the O=C-O bond) were degraded by ion bombardment in the shallower region up to about 10 nm from the surface, whereas the effect of photoirradiation in the UV and VUV regions was insignificant. The HXPES analysis showed that irradiation with ions and photons did not cause serious damage in chemical bonding states in the deeper region up to about 50 nm from the surface.

  6. Isotope effects in a multicusp tandem ion source

    Energy Technology Data Exchange (ETDEWEB)

    Graham, W.G. (Department of Pure and Applied Physics, Queen' s University, Belfast BT7 1NN (Northern Ireland))

    1992-10-05

    Measurements of plasma parameters, including electron density, electron energy distribution function (eedf), and negative ion density, have been made in the driver and extractor regions of a multicusp tandem ion source. Here results which focus on comparing operation in hydrogen and deuterium are presented. Several isotope effects are evident. In particular, for the same operating conditions, the electron density is found to be higher in deuterium than in hydrogen while the negative ion density is consistently lower.

  7. Ion irradiation induced effects in polyamidoimide

    Energy Technology Data Exchange (ETDEWEB)

    Merhari, L.; Belorgeot, C.; Moliton, J.P. (Laboratoire d' Electronique des Polymeres sous Faisceaux Ioniques 123, avenue Albert Thomas, 87060 Limoges Cedex (France))

    1991-09-01

    The interaction between ion beam and polyamidoimide (PAI) is studied by means of low-temperature infrared spectroscopy. 200 keV Ar{sup +} and 250 keV He{sup +} beams with fluences ranging from 10{sup 13} ions cm{sup {minus}2} to 5{times}10{sup 16} ions cm{sup {minus}2} are found to induce atomic bond breaks leading to absorption bands at 2344, 2261, and 2125 cm{sup {minus}1} corresponding respectively to CO{sub 2}, C=N=N and C=N--R vibrations. Shrinkage of the polymer along with a drastic decrease of the resistivity during Ar{sup +} and He{sup +} irradiation are observed. Speculations on the respective role of electronic processes and atomic collisions in the evolution of the polymer are made. No evidence of PAI modification through knock-on mechanism for fluences lower than 5{times}10{sup 15} ions cm{sup {minus}2} is noticed. In fact, our results would suggest a predominant role of the electronic processes for the low fluences (up to 5{times}10{sup 15} ions cm{sup {minus}2} ), whereas a degradation mechanism based on atomic collisions is more likely to take place for higher fluences. A theoretical mechanism of reactions based upon our Fourier transform infrared (FTIR) and secondary ion mass spectroscopies (SIMS) results, describing the chemical changes occurring in the PAI, is presented and briefly discussed.

  8. Dimension effects in plasma immersion ion implantation of cylindrical bore

    CERN Document Server

    Tian Xiu Bo; Tong Hong Hui; Chu, P K

    2002-01-01

    Plasma immersion ion implantation is a new technique pertaining to ion implantation. Different from the case of exterior surface treatment, plasma immersion ion implantation of interior surface possesses dimension effects. Consequently it is a challenge to implant the inner wall of a cylindrical bore due to this finite dimension.The ion energy cannot be linearly changed with applied voltage and there exists a saturation value due to overlap effect of plasma sheath. The plasma in the bore may rapidly be depleted, which is attributed to finite plasma volume and plasma-sheath con-flowing effect. For instance the plasma depletion time is about 0.55 mu s when a bore with a diameter of 20 cm is treated under conditions of applied voltage of 30 kV and plasma density of 2 x 10 sup 1 sup 5 ions/cm sup 3. Interior plasma-source hardware may be an effective solution

  9. Antimicrobial Effect of Metal Ions Substitution to HAp, Zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. J.; Kim, S. B.; Cho, S. B; Cho, K. J.; Lee, T. H. [Pai Chai University, Taejeon (Korea); Kim, T. N. [Korea Institute of Geoscience and Mineral Resources, Taejeon (Korea)

    2001-02-01

    Generally, hydroxyapatite(HAp), zeolite, carbon molecular sieve, activated carbon and alumina are used as heavy metal ions adsorption materials. Among those adsorption materials, HAp which has good positive ion-exchange ability with metal ion, and zeolite are utilized in wastewater treatment. Most of water pollutions are caused by hazardous heavy metals ions as well as bacteria in waste water. In this study, a adsorption materials (HAp and zeolite) are ion-exchanged with a well known antimicrobial metal ions, such as Ag{sup +}, Cu{sup 2+}, and Zn{sup 2+}, in order to give a adsorption of heavy metal ions and a killing effects of bacteria. The antimicrobial effects of adsorption materials are observed using by E. Coli. The results show that there is a complete antimicrobial effect in the adsorption materials with Ag{sup +} at the concentration of 1x10{sup -4}cell/ml of E. Coli until 24 hours. However, there is not good antimicrobial effects in the adsorption materials with Cu{sup 2+} and Zn{sup 2+} substitution. Feng et. al. showed the denaturation effects of silver ions which induces the condensed DNA molecules and losing their replication abilities. (author). 13 refs., 6 figs., 2 tabs.

  10. Biological Effects on Fruit Fly by N+ ion Beam Implantation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mutation induced by low energy ion beam implantation has beenapplied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm. In this study, Pupae of fruit fly were irradiated with different dosage N+ ions at energy 20 KeV to study the biological effect of ion beam on animal. The results showed a saddle-like curve exists between incubate rate and dosage. Damage of pupae by ion beam implantation was observed using scanning electron microscope. Some individuals with incomplete wing were obtained after implantation but no similar character was observed in their offspring. Furthermore, about 5.47% mutants with wide variation appeared in M1 generation. Therefore, ion beam implantation could be widely used for mutation breeding.

  11. Effect of additional sample bias in Meshed Plasma Immersion Ion Deposition (MPIID) on microstructural, surface and mechanical properties of Si-DLC films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Mingzhong [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); School of Materials Science & Engineering, Jiamusi University, Jiamusi 154007 (China); Tian, Xiubo, E-mail: xiubotian@163.com [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); Li, Muqin [School of Materials Science & Engineering, Jiamusi University, Jiamusi 154007 (China); Gong, Chunzhi [State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Harbin 150001 (China); Wei, Ronghua [Southwest Research Institute, San Antonio, TX 78238 (United States)

    2016-07-15

    Highlights: • A novel Meshed Plasma Immersion Ion Deposition is proposed. • The deposited Si-DLC films possess denser structures and high deposition rate. • It is attributed to ion bombardment of the deposited films. • The ion energy can be independently controlled by an additional bias (novel set up). - Abstract: Meshed Plasma Immersion Ion Deposition (MPIID) using cage-like hollow cathode discharge is a modified process of conventional PIID, but it allows the deposition of thick diamond-like carbon (DLC) films (up to 50 μm) at a high deposition rate (up to 6.5 μm/h). To further improve the DLC film properties, a new approach to the MPIID process is proposed, in which the energy of ions incident to the sample surface can be independently controlled by an additional voltage applied between the samples and the metal meshed cage. In this study, the meshed cage was biased with a pulsed DC power supply at −1350 V peak voltage for the plasma generation, while the samples inside the cage were biased with a DC voltage from 0 V to −500 V with respect to the cage to study its effect. Si-DLC films were synthesized with a mixture of Ar, C{sub 2}H{sub 2} and tetramethylsilane (TMS). After the depositions, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectrons spectroscopy (XPS), Raman spectroscopy and nanoindentation were used to study the morphology, surface roughness, chemical bonding and structure, and the surface hardness as well as the modulus of elasticity of the Si-DLC films. It was observed that the intense ion bombardment significantly densified the films, reduced the surface roughness, reduced the H and Si contents, and increased the nanohardness (H) and modulus of elasticity (E), whereas the deposition rate decreased slightly. Using the H and E data, high values of H{sup 3}/E{sup 2} and H/E were obtained on the biased films, indicating the potential excellent mechanical and tribological properties of the films. In this

  12. Sputtering and surface structure modification of gold thin films deposited onto silicon substrates under the impact of 20–160 keV Ar{sup +} ions

    Energy Technology Data Exchange (ETDEWEB)

    Mammeri, S., E-mail: smammeri@yahoo.fr [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria); Ouichaoui, S. [Université des Sciences et de la Technologie H. Boumediene (USTHB), Faculté de Physique, Laboratoire SNIRM, B.P. 32, El-Alia, 16111 Bab Ezzouar, Algiers (Algeria); Ammi, H.; Dib, A. [Centre de Recherche Nucléaire d’Alger, B.P. 399, 02 Bd. Frantz Fanon, Alger-Gare, Algiers (Algeria)

    2014-10-15

    Highlights: •Sputter yields were measured for gold thin films under keV Ar{sup +} ion bombardment. •RBS analysis was used to derive energy dependence of sputtering yield. •Surface effects under Ar{sup +} ion irradiation were studied by SEM and XRD analyses. -- Abstract: The induced sputtering and surface state modification of Au thin films bombarded by swift Ar{sup +} ions under normal incident angle have been studied over an energy range of (20–160) keV using three complementary techniques: Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The sputtering yields determined by RBS measurements using a 2 MeV {sup 4}He{sup +} ion beam were found to be consistent with previous data measured within the Ar{sup +} ion energy region E ⩽ 50 keV, which are thus extended to higher bombarding energies. Besides, the SEM and XRD measurements clearly point out that the irradiated Au film surfaces undergo drastic modifications with increasing the Ar{sup +} ion energy, giving rise to the formation of increasingly sized grains of preferred (1 1 1) crystalline orientations. The relevance of different sputtering yield models for describing experimental data is discussed with invoking the observed surface effects induced by the Ar{sup +} ion irradiation.

  13. The Temperature Effects on the Ion Trap Quantum Computer

    Institute of Scientific and Technical Information of China (English)

    Hongmin; JiatiLIN

    2001-01-01

    We consider one source of decoherence for a quantum computer composed of many trapped ions due to the thermal effects of the system in the presence of laser-ion interaction.The upper limit of the temperature at which the logical gate operations could be carried out reliably is given,and our result is agreement with the experiment.

  14. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  15. Back bombardment for dispenser and lanthanum hexaboride cathodes

    Directory of Open Access Journals (Sweden)

    Mahmoud Bakr

    2011-06-01

    Full Text Available The back bombardment (BB effect limits wide usage of thermionic rf guns. The BB effect induces not only ramping-up of a cathode’s temperature and beam current, but also degradation of cavity voltage and beam energy during a macropulse. This paper presents a comparison of the BB effect for the case of dispenser tungsten-base (DC and lanthanum hexaboride (LaB_{6} thermionic rf gun cathodes. For each, particle simulation codes are used to simulate the BB effect and electron beam dynamics in a thermionic rf gun cathode. A semiempirical equation is also used to investigate the stopping range and deposited heat power of BB electrons in the cathode material. A numerical simulation method is used to calculate the change of the cathode temperature and current density during a single macropulse. This is done by solving two differential equations for the rf gun cavity equivalent circuit and one-dimensional thermal diffusion equation. High electron emission and small beam size are required for generation of a high-brightness electron beam, and so in this work the emission properties of the cathode are taken into account. Simulations of the BB effect show that, for a pulse of 6  μs duration, the DC cathode experiences a large change in the temperature compared with LaB_{6}, and a change in current density 6 times higher. Validation of the simulation results is performed using experimental data for beam current beyond the gun exit. The experimental data is well reproduced using the simulation method.

  16. Instability of some divalent rare earth ions and photochromic effect

    Science.gov (United States)

    Egranov, A. V.; Sizova, T. Yu.; Shendrik, R. Yu.; Smirnova, N. A.

    2016-03-01

    It was shown that the divalent rare earth ions (La, Ce, Gd, Tb, Lu, and Y) in cubic sites in alkaline earth fluorides are unstable with respect to electron autodetachment since its d1(eg) ground state is located in the conduction band which is consistent with the general tendency of these ions in various compounds. The localization of doubly degenerate d1(eg) level in the conduction band creates a configuration instability around the divalent rare earth ion that leading to the formation of anion vacancy in the nearest neighborhood, as was reported in the previous paper [A. Egranov, T. Sizova, Configurational instability at the excited impurity ions in alkaline earth fluorites, J. Phys. Chem. Solids 74 (2013) 530-534]. Thus, the formation of the stable divalent ions as La, Ce, Gd, Tb, Lu, and Y (PC+ centers) in CaF2 and SrF2 crystals during x-ray irradiation occurs via the formation of charged anion vacancies near divalent ions (Re2+va), which lower the ground state of the divalent ion relative to the conductivity band. Photochromic effect occurs under thermally or optically stimulated electron transition from the divalent rare earth ion to the neighboring anion vacancy and reverse under ultraviolet light irradiation. It is shown that the optical absorption of the PC+ centers due to d → d and d → f transitions of the divalent rare-earth ion.

  17. Actinide production in /sup 136/Xe bombardments of /sup 249/Cf

    Energy Technology Data Exchange (ETDEWEB)

    Gregorich, K.E.

    1985-08-01

    The production cross sections for the actinide products from /sup 136/Xe bombardments of /sup 249/Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these /sup 136/Xe + /sup 249/Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the /sup 136/Xe + /sup 248/Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs.

  18. Desorption of silver atoms from benzene-covered Ag(1 1 1) by energetic Ar{sup +} bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Meserole, C.A. E-mail: cam30@psu.edu; Vandeweert, E.; Postawa, Z.; Dou, Y.; Garrison, B.J.; Winograd, N

    2001-06-01

    Experiments have been conducted to gain insight into the processes of desorption of neutral species from surfaces covered with organic molecules due to bombardment with keV particles. The system is comprised of benzene molecules adsorbed onto Ag(1 1 1) and bombarded with 8 keV Ar{sup +} ions. Molecular dynamics (MD) simulations of the same system have been performed. Results show that the presence of the benzene alters the yield, the kinetic energy distributions, and the angular distributions of the silver atoms. These changes of the desorption characteristics are the result of collisions between the Ag atoms and the benzene molecules adsorbed to the surface. As more benzene is adsorbed to the surface, the changes to the Ag atom desorption characteristics become more pronounced. The simulations reproduce the modifications to the Ag atom energy and angle distributions.

  19. Effect of magnesium ion on human osteoblast activity

    Directory of Open Access Journals (Sweden)

    L.Y. He

    2016-01-01

    Full Text Available Magnesium, a promising biodegradable metal, has been reported in several studies to increase bone formation. Although there is some information regarding the concentrations of magnesium ions that affect bone remodeling at a cellular level, little is known about the effect of magnesium ions on cell gap junctions. Therefore, this study aimed to systematically investigate the effects of different concentrations of magnesium on bone cells, and further evaluate its effect on gap junctions of osteoblasts. Cultures of normal human osteoblasts were treated with magnesium ions at concentrations of 1, 2 and 3 mM, for 24, 48 and 72 h. The effects of magnesium ions on viability and function of normal human osteoblasts and on gap junction intercellular communication (GJIC in osteoblasts were investigated. Magnesium ions induced significant (P<0.05 increases in cell viability, alkaline phosphate activity and osteocalcin levels of human osteoblasts. These stimulatory actions were positively associated with the concentration of magnesium and the time of exposure. Furthermore, the GJIC of osteoblasts was significantly promoted by magnesium ions. In conclusion, this study demonstrated that magnesium ions induced the activity of osteoblasts by enhancing GJIC between cells, and influenced bone formation. These findings may contribute to a better understanding of the influence of magnesium on bone remodeling and to the advance of its application in clinical practice.

  20. Effect of ion interactions on the IR spectrum of benzenesulfonate ion. Restoration of sulfonate ion symmetry in sodium benzenesulfonate dimer

    Science.gov (United States)

    Shishlov, N. M.; Khursan, S. L.

    2016-11-01

    Literature data concerning the assignment of IR spectra of benzenesulfonate salts that serve as model compounds for aromatic sulfonate-containing ionomers and polyelectrolytes have been analyzed. The structures and IR spectra of free benzenesulfonate ion and its potassium and sodium salts have been calculated in B3LYP/6-311G(d,p) approximation. The bidentate coordination of counter-ions is energetically favorable for isolated ion pairs. In this coordination, the symmetry of sulfonate ion changes noticeably, which manifests itself as strong splitting of calculated vibrational modes of asymmetric stretching vibrations of Ssbnd O bonds, Δνas(SO3) = 154 cm-1 (K) and 180 cm-1 (Na). For sodium benzenesulfonate it is thermodynamically favorable to form a dimer (ΔG° = -37.6 kcal/mol) in which the joint effects of monodentate and bidentate coordinated Na cations result in equalization of Ssbnd O bond lengths and thus a considerable restoration of C3V symmetry of the sulfonate ion. The IR spectrum of the dimer in which Δνas(SO3) splitting is considerably smaller much better matches the experimental spectrum than the spectrum of an isolated ion pair. The major absorption bands in the IR spectrum of sodium benzenesulfonate have been assigned to theoretical vibrational modes of the dimer and, based on visualization of modes, to vibrations of certain bonds in the anion. In particular, the bands at 1200 and 1186 cm-1 have been assigned to νas(SO3), that at 1049 cm-1 to νs(SO3), and those at 628 and 572 cm-1 to δ(oop)s(SO3), and δ(ip)as(SO3), respectively. The strong effect of sulfonate ion environment on the positions of the absorption bands of stretching vibrations of Ssbnd O bonds makes it necessary to obtain data on exact structures of ion clusters for reliable assignment of absorption bands in experimental IR spectra of real sulfonate-containing systems.

  1. Aspects of Metal Surface Glowing Mechanisms with Intensive Electron Beam Bombardment

    Directory of Open Access Journals (Sweden)

    I.V. Barsuk

    2012-06-01

    Full Text Available The paper gives a brief description and analysis of the main physical processes which can have an effect on the glowing nature of metal element surfaces in different electric vacuum devices when they are bombarded by electron beams. It has been found that the electron glowing effects on metal surfaces according to the electron energy can be explained with the help of the transition scattering on plasma waves or just with the classical transition radiation effect. This fact is rather important in terms of classical physics interpretation of the observed glowing effects on metal surface elements and techniques optimization of metal and electron beams diagnostics as well.

  2. Asteroid 4 Vesta: Dynamical and collisional evolution during the Late Heavy Bombardment

    Science.gov (United States)

    Pirani, S.; Turrini, D.

    2016-06-01

    Asteroid 4 Vesta is the only currently identified asteroid for which we possess samples in the form of meteorites. These meteorites revealed us that Vesta is a differentiated body and that its differentiation produced a relatively thin basaltic crust that survived intact over its entire collisional history. The survival of the vestan basaltic crust has long been identified as a pivotal constraint in the study of the evolution of the asteroid belt and the Solar System but, while we possess a reasonably good picture of the effects of the last 4 Ga on such a crust, little is known about the effects of earlier events like the Late Heavy Bombardment. In this work we address this gap in our knowledge by simulating the Late Heavy Bombardment on Vesta in the different dynamical scenarios proposed for the migration of the giant planets in the broad framework of the Nice Model. The results of the simulations allowed us to assess the collisional history of the asteroid during the Late Heavy Bombardment in terms of produced crater population, surface saturation, mass loss and mass gain of Vesta and number of energetic or catastrophic impacts. Our results reveal that planet-planet scattering is a dynamically favorable migration mechanism for the survival of Vesta and its crust. The number of impacts of asteroids larger than about 1 km in diameter estimated as due to the LHB is 31 ± 5, i.e. about 5 times larger than the number of impacts that would have occurred in an unperturbed main belt in the same time interval. The contribution of a possible extended belt to the collisional evolution of Vesta during the LHB is quite limited and can be quantified in 2 ± 1 impacts of asteroids with diameter greater than or equal to 1 km. The chance of energetic and catastrophic impacts is less than 10% and is compatible with the absence of giant craters dated back to 4 Ga ago and with the survival of the asteroid during the Late Heavy Bombardment. The mass loss caused by the bombardment

  3. Size Effects in Heavy Ions Fragmentation

    CERN Document Server

    Barrañon, A; Dorso, C O

    2003-01-01

    Rise-Plateau Caloric curves for different Heavy Ion collisions have been obtained, in the range of experimental observations. Limit temperature decreases when the residual size is increased, in agreement with recent theoretical analysis of experimental results reported by other Collaborations. Besides, promptly emitted particles influence on temperature plateau is shown. LATINO binary interaction semiclassical model is used to reproduce the inter-nucleonic forces via Pandharipande Potential and fragments are detected with an Early Cluster Recognition Algorithm.

  4. Protons from the alpha-particle bombardment of 23Na

    NARCIS (Netherlands)

    Kuperus, J.

    1964-01-01

    Resonances in the yield of ground-state protons from alpha-particle bombardment of 23Na were investigated in the energy range Eα = 1.0 – 3.3 MeV. At least thirty-eight resonances were observed. Resonance energies and strengths are presented. At nine resonances angular distribution measurements lead

  5. Stable transformation of the oomycete, Phytophthora infestans, using microprojectile bombardment

    DEFF Research Database (Denmark)

    Cvitanich, Cristina; Judelson, Howard S.

    2003-01-01

    Germinated asexual sporangia, zoospores, and mycelia of Phytophthora infestans were transformed to G418-resistance by microprojectile bombardment. After optimization, an average of 14 transformants/shot were obtained, using 10(6) germinated sporangia and gold particles coated with 1 microg...

  6. Effect of electrode materials on a negative ion production in a cesium seeded negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi; Morishita, Takutoshi; Kashiwagi, Mieko; Hanada, Masaya; Iga, Takashi; Inoue, Takashi; Watanabe, Kazuhiro; Imai, Tsuyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Wada, Motoi [Doshisha Univ., Kyoto (Japan)

    2003-03-01

    Effects of plasma grid materials on the negative ion production efficiency in a cesium seeded ion source have been experimentally studied. Grid materials of Au, Ag, Cu, Ni, and Mo were examined. A 2.45 GHz microwave ion source was utilized in the experiment to avoid contamination of tungsten from filament cathode. Relations between the negative ion currents and work functions of the grid were measured for these materials. Influence of the contamination by tungsten on the grid was also investigated. If was clarified that the negative ion production efficiency was determined only by the work function of the grid. The efficiency did not depend on the material itself. The lowest work function of 1.42 eV was obtained for Au grid with Cs, and a high H{sup -} production efficiency of 20.7 mA/kW was measured. This efficiency is about 1.3 times larger than that of Cs/Mo and Cs/Cu. Further improvement of the production efficiency was observed by covering the plasma grid with tungsten and cesium simultaneously. Such co-deposition of W and Cs on the plasma grid produced the negative ion production efficiency of 1.7 times higher than that from the tungsten grid simply covered with Cs. (author)

  7. Diamond single crystal-surface modification under high- fluence ion irradiation

    Science.gov (United States)

    Anikin, V. A.; Borisov, A. M.; Kazakov, V. A.; Mashkova, E. S.; Palyanov, Yu N.; Popov, V. P.; Shmytkova, E. A.; Sigalaev, S. K.

    2016-09-01

    The modification of (111) face of synthetic diamond has been studied experimentally for high-fluence 30 keV argon bombardment. It has been found that ion irradiation leads to the electrically conductive layer formation the sheet resistance of which decreases more than 100 times while changing the temperature of the irradiated diamond from 70 to 400 oC. This effect, as well as significant changes of optical transmittance after ion irradiation are associated with ion-induced structural changes of irradiated diamond obtained by the methods of Raman spectroscopy.

  8. Modeling the reduction of gross lithium erosion observed under high-flux deuterium bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R.; Nichols, J.H.; Stotler, D.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); De Temmerman, G.; Berg, M.A. van den; Meiden, H.J. van der; Morgan, T.W. [FOM Institute DIFFER – Dutch Institute for Fundamental Energy Research, Trilateral Euregio Cluster, Associate EURATOM-FOM, BL-3430 BE Nieuwegein (Netherlands)

    2015-08-15

    Both thin (<1 μm) and thick (∼500 μm) lithium films under high-flux deuterium and neon plasma bombardment were studied in the linear plasma device Magnum-PSI at ion fluxes >10{sup 24} m{sup −2} s{sup −1} and surface temperatures <700 °C. During Ne plasma exposures, Li erosion rates inferred from measurements of Li–I radiation exceed Langmuir Law evaporation, but no previous results exist to benchmark the binary collision approximation (BCA) and thermal sputtering measurements. Measured Li erosion rates during D plasma bombardment were compared to the adatom-evaporation model of thermal sputtering with an additional reduction term to account for the relative D/Li composition of the Li film. This model captures the qualitative evolution of the Li erosion yield but still overestimates the measured erosion by a factor of 5–10. This suggests that additional refinements to the mixed-material model are needed.

  9. Ion-induced stress relaxation during the growth of cubic boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abendroth, B.E.

    2004-08-01

    in this thesis the deposition of cubic boron nitride films by magnetron sputtering is described. The deposition process is analyzed by Langmuir-probe measurement and energy resolved mass spectroscopy. the films are studied by stress measurement, spectroscopic ellipsometry, infrared spectroscopy, elastic recoil detection analysis, Rutherford backscattering spectroscopy, X-ray absorption near edge spectroscopy, X-ray diffraction, and transmission electron microscopy. Discussed are the stress relaxation and the microstructure and bonding characteristics together with the effects of ion bombardement. (HSI)

  10. Effects of Ions Charge-Mass Ratio on Energy and Energy Spread of Accelerated Ions in Laser Driven Plasma

    Institute of Scientific and Technical Information of China (English)

    SANG Hai-Bo; DENG Shi-Qiang; XIE Bai-Song

    2013-01-01

    Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser.The radiation pressure acceleration mechanism plays an important role on the studied problem.For the ions near the plasma mirror,i.e.electrons layer,the dependence of ions energy on their charge-mass ratio is derived theoretically.It is found that the larger the charge-mass ratio is,the higher the accelerated ions energy gets.For those ions far away from the layer,the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance.It exhibits that,as ions charge-mass ratio increases,not only the accelerated ions energy but also the energy spread will become large.

  11. Comparative study of depth and lateral distributions of electron excitation between scanning ion and scanning electron microscopes.

    Science.gov (United States)

    Ohya, Kaoru; Ishitani, Tohru

    2003-01-01

    In order to study the contrast difference between scanning ion microscopes (SIM) and scanning electron microscopes (SEM), the depth and lateral distributions of secondary electrons escaped from surfaces of 17 metals with atomic numbers, Z2, of 4-79 were calculated for bombardment with 30 keV Ga ions and for 10 keV electrons. For both projectiles, the excitation depth generally decreased with increasing Z2, while showing the same periodic change as the secondary-electron yield. However, an opposite trend in Z2 dependence between the Ga ion and electron bombardments was calculated with the lateral distribution of secondary electrons escaped from the surface. Except for low Z2 metals, the lateral distribution, which is much narrower for 30 keV Ga ions than for 10 keV electrons, indicates that the spatial resolution of the secondary-electron images is better for SIM than for SEM, if zero-sized probe beams are assumed. Furthermore, the present calculation reveals important effects of electron excitation by recoiled material atoms and reflected electrons on the lateral distribution, as well as the secondary-electron yield, for the Ga ion and electron bombardments, respectively.

  12. Effective SERS-active substrates composed of hierarchical micro/nanostructured arrays based on reactive ion etching and colloidal masks

    Science.gov (United States)

    Zhang, Honghua; Liu, Dilong; Hang, Lifeng; Li, Xinyang; Liu, Guangqiang; Cai, Weiping; Li, Yue

    2016-09-01

    A facile route has been proposed for the fabrication of morphology-controlled periodic SiO2 hierarchical micro/nanostructured arrays by reactive ion etching (RIE) using monolayer colloidal crystals as masks. By effectively controlling the experimental conditions of RIE, the morphology of a periodic SiO2 hierarchical micro/nanostructured array could be tuned from a dome-shaped one to a circular truncated cone, and finally to a circular cone. After coating a silver thin layer, these periodic micro/nanostructured arrays were used as surface-enhanced Raman scattering (SERS)-active substrates and demonstrated obvious SERS signals of 4-Aminothiophenol (4-ATP). In addition, the circular cone arrays displayed better SERS enhancement than those of the dome-shaped and circular truncated cone arrays due to the rougher surface caused by physical bombardment. After optimization of the circular cone arrays with different periodicities, an array with the periodicity of 350 nm exhibits much stronger SERS enhancement and possesses a low detection limit of 10-10 M 4-ATP. This offers a practical platform to conveniently prepare SERS-active substrates.

  13. Effect of Cu2+ ions on bioleaching of marmatite

    Institute of Scientific and Technical Information of China (English)

    CHEN Song; QIN Wen-qing; QIU Guan-zhou

    2008-01-01

    The effect of Cu2+ ions on bioleaching of marmatite was investigated through shake leaching experiments.The bacteria inoculated are a mixed culture of Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans and Lepthospirillum ferrooxidans.The results show that zinc is selectively leached,and the addition of appropriate content of Cu2+ ions has positive effect on the bioleaching of marmatite.SEM and EDX analyses of the leaching residue reveal that a product layer composed of iron sulfide,elemental sulfur and jarosite forms on the mineral surface.The biooxidation of elemental sulfur is catalyzed by the Cu2+ ions,which eliminate the barrier to bioleaching of marmatite and keep low pH value.With the addition of 0.5 g/L Cu2+ ions,the maximum zinc extraction rate reaches 73% after 23 d at the temperature of 30 ℃ with the pulp density of 10%,while that of iron is only about 10%.

  14. Effects of Lanthanide Ions on Electrooxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-tao; YIN Yu-chun; GAO Shu-juan

    2008-01-01

    Four kinds of lanthanide ions(Sm3+,Yb3+,Eu3+,La3+) as an additive were added into the aqueous solution containing methanol,respectively,and their effects on methanol elecotrooxidation in aqueous solutions were studied with cyclic voltammetry.The results show that the four kinds of ions have promotion action upon the electrooxidation of methanol to different degrees.The best additive,Sm3+,can increase the anodic oxidation current of methanol by 80% and the peak potential shifted negatively about 50 mV.The promotion effects of the lanthanide ions were considered to be related to the extranuclear electron distribution of these ions and their adsorption on the Pt electrode surface.

  15. Effects of ion/ion proton transfer reactions on conformation of gas-phase cytochrome c ions.

    Science.gov (United States)

    Zhao, Qin; Schieffer, Gregg M; Soyk, Matthew W; Anderson, Timothy J; Houk, R S; Badman, Ethan R

    2010-07-01

    Positive ions from cytochrome c are studied in a 3-D ion trap/ion mobility (IM)/quadrupole-time-of-flight (TOF) instrument with three independent ion sources. The IM separation allows measurement of the cross section of the ions. Ion/ion reactions in the 3-D ion trap that remove protons cause the cytochrome c ions to refold gently without other degradation of protein structure, i.e., fragmentation or loss of heme group or metal ion. The conformation(s) of the product ions generated by ion/ion reactions in a given charge state are similar regardless of whether the cytochrome c ions are originally in +8 or +9 charge states. In the lower charge states (+1 to +5) cytochrome c ions made by the ion/ion reaction yield a single IM peak with cross section of approximately 1110 to 1180 A(2), even if the original +8 ion started with multiple conformations. The conformation expands slightly when the charge state is reduced from +5 to +1. For product ions in the +6 to +8 charge states, ions created from higher charge states (+9 to +16) by ion/ion reaction produce more compact conformation(s) in somewhat higher abundances compared with those produced directly by the electrospray ionization (ESI) source. For ions in intermediate charge states that have a variety of resolvable conformers, the voltage used to inject the ions into the drift tube, and the voltage and duration of the pulse that extracts ions from the ion trap, can affect the observed abundances of various conformers.

  16. Formation of oxides and segregation of mobile atoms during SIMS profiling of Si with oxygen ions

    Energy Technology Data Exchange (ETDEWEB)

    Petravic, M.; Williams, J.S.; Svensson, B.G.; Conway, M. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1993-12-31

    An oxygen beam is commonly used in secondary ion mass spectroscopy (SIMS) analysis to enhance the ionization probability for positive secondary ions. It has been observed, however, that this technique produces in some cases a great degradation of depth resolution. The most pronounced effects have been found for impurities in silicon under oxygen bombardment at angles of incidence smaller than {approx} 30 deg from the surface normal. A new approach is described which involved broadening of SIMS profiles for some mobile atoms, such as Cu, Ni and Au, implanted into silicon. The anomalously large broadening is explained in terms of segregation at a SiO{sub 2}/Si interface formed during bombardment with oxygen at impact angles less than 30 deg. 2 refs., 1 tab., 4 figs.

  17. Effect of Energetic Ion on Spatial Distribution of Recombining Plasma

    Science.gov (United States)

    Okamoto, A.; Daibo, A.; Kitajima, S.; Kumagai, T.; Takahashi, H.; Takahashi, T.; Tsubota, S.

    Spatial distribution of electron density is considered. By using a one-dimensional recombining plasma model, effects of transient energetic ion flux are investigated. The time response of the system against the transient flux is dominated by the recombination frequency. The magnitude of modification of the spatial distribution is determined by the ratio between the ionization due to the energetic ion and the recombination of the bulk plasma.

  18. Time fractional effect on ion acoustic shock waves in ion-pair plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@hotmail.com [Prince Sattam Bin Abdulaziz University, College of Science and Humanitarian Studies, Physics Department (Saudi Arabia); El-Shewy, E. K.; Mahmoud, A. A. [Faculty of Science, Mansoura University, Theoretical Physics Group, Physics Department (Egypt)

    2016-06-15

    The nonlinear properties of ion acoustic shock waves are studied. The Burgers equation is derived and converted into the time fractional Burgers equation by Agrawal’s method. Using the Adomian decomposition method, shock wave solutions of the time fractional Burgers equation are constructed. The effect of the time fractional parameter on the shock wave properties in ion-pair plasma is investigated. The results obtained may be important in investigating the broadband electrostatic shock noise in D- and F-regions of Earth’s ionosphere.

  19. Effect of viscosity on dust–ion acoustic shock wave in dusty plasma with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Nirab C., E-mail: nirab_iasst@yahoo.co.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India)

    2012-03-26

    The properties of dust–ion acoustic (DIA) shock wave in a dusty plasma containing positive and negative ions is investigated. The reductive perturbation method has been used to derive the Korteweg–de Vries–Burgers equation for dust acoustic shock waves in a homogeneous, unmagnetized and collisionless plasma whose constituents are Boltzmann distributed electrons, singly charged positive ions, singly charged negative ions and cold static dust particles. The KdV–Burgers equation is derived and its stationary analytical solution is numerically analyzed where the effect of viscosity on the DIA shock wave propagation is taken into account. It is found that the viscosity in the dusty plasma plays as a key role in dissipation for the propagation of DIA shock. -- Highlights: ► Dust–ion acoustic shock wave propagation is studied in multi-component dusty plasma. ► KdV–Burgers equation is derived and its stationary solution is numerically analyzed. ► Viscosity in dusty plasma plays as a key role in dissipation of DIA shock wave.

  20. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  1. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  2. Erosion of lithium coatings on TZM molybdenum and graphite during high-flux plasma bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, T., E-mail: tabrams@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); Jaworski, M.A.; Kaita, R.; Stotler, D.P. [Princeton Plasma Physics Laboratory, Princeton, NJ 08543 (United States); De Temmerman, G.; Morgan, T.W.; Berg, M.A. van den; Meiden, H.J. van der [FOM Institute DIFFER – Dutch Institute For Fundamental Energy Research, Trilateral Euregio Cluster, Associate EURATOM-FOM, BL-3430 BE Nieuwegein (Netherlands)

    2014-12-15

    Highlights: • A formula for temperature-dependent lithium sputtering and evaporation is proposed. • This formula was tested using the Magnum-PSI linear plasma device. • Lithium-coated TZM molybdenum and graphite samples were exposed to plasmas. • Measured Li erosion rates are significantly lower than the formula predicts. • Evidence of lithium diffusion into graphite substrates was also observed. - Abstract: The rate at which Li films will erode under plasma bombardment in the NSTX-U divertor is currently unknown. It is important to characterize this erosion rate so that the coatings can be replenished before they are completely depleted. An empirical formula for the Li erosion rate as a function of deuterium ion flux, incident ion energy, and Li temperature was developed based on existing theoretical and experimental work. These predictions were tested on the Magnum-PSI linear plasma device capable of ion fluxes >10{sup 24} m{sup −2} s{sup −1}, ion energies of 20 eV and Li temperatures >800 °C. Li-coated graphite and TZM molybdenum samples were exposed to a series of plasma pulses during which neutral Li radiation was measured with a fast camera. The total Li erosion rate was inferred from measurements of Li-I emission. The measured erosion rates are significantly lower than the predictions of the empirical formula. Strong evidence of fast Li diffusion into graphite substrates was also observed.

  3. Jovian Early Bombardment: planetesimal erosion in the inner asteroid belt

    CERN Document Server

    Turrini, Diego; Magni, Gianfranco

    2012-01-01

    The asteroid belt is an open window on the history of the Solar System, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to the giant planets. The actual process producing the first generation of asteroids is uncertain, strongly depending on the physical characteristics of the Solar Nebula, and the different scenarios produce very diverse initial size-frequency distributions. In this work we investigate the implications of the formation of Jupiter, plausibly the first giant planet to form, on the evolution of the primordial asteroid belt. The formation of Jupiter triggered a short but intense period of primordial bombardment, previously unaccounted for, which caused an early phase of enhanced collisional evolution in the asteroid belt. Our results indicate that this Jovian Early Bombardment caused the erosion or the disruption of bodies smaller than a threshold size, which strongly depen...

  4. Irradiation of graphene field effect transistors with highly charged ions

    Science.gov (United States)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M.

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm2, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  5. Chiral recognition detected by fast atom bombardment mass spectrometry.

    Science.gov (United States)

    Sawada, M

    1997-01-01

    Detection of chiral recognition in various intermolecular interaction systems using mass spectrometry has become important for the modern fields of analytical chemistry, organic chemistry, and biochemistry due to the characteristic nature of the rapid method and the trace amount needed. This review presents the various methods for detecting and evaluating chiral recognition used primarily in fast atom bombardment mass spectrometry. Emphasis is put on fundamentals and applications of these methods for variously existing enantioselective intermolecular interaction systems.

  6. Focused Ion Beam Induced Effects on MOS Transistor Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R.; Soden, Jerry M.; Swanson, Scot E.; Tangyunyong, Paiboon; Vanderlinde, William E.

    1999-07-28

    We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

  7. Transformation of Dendrobium orchid using particle bombardment of protocorms.

    Science.gov (United States)

    Kuehnle, A R; Sugii, N

    1992-08-01

    Transformed dendrobium orchids (Dendrobium x Jaquelyn Thomas hybrids) were recovered from protocorms bombarded by particles coated with the plasmid pGA482GG/cpPRV4, which contains the plant expressible Nos-NPT II and papaya ringspot virus (PRV) coat protein (CP) genes. Approximately 280 protocorms from four crosses were bombarded and potentially transformed tissues were identified by growth and green color on half-strength Murashige and Skoog medium supplemented with 2% sucrose and 50-100 mg 1(-1) kanamycin sulfate. Kanamycin concentrations that prevented growth of nontransformed tissues could not be used for long-term selection because such levels suppressed the regeneration of potentially transformed tissues. PCR and restriction analysis 21 months after treatment found 13 of 13 plants from two crosses, which appeared kanamycin-tolerant, to contain the Nos-NPT II gene, while only one of these plants carried the vector-linked PRV CP-gene. These results support use of particle bombardment for transformation of this important ornamental monocot.

  8. Genetic transformation of Pinus taeda by particle bombardment

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A protocol is presented for genetically engineering loblolly pine (Pinus taeda L.) using particle bombardment. This protocol enabled the routine transformation of loblolly pine plants that were previously difficult to transform. Mature zygotic embryos were used to be bombarded and to generate organogenic callus and transgenic regenerated plants. Plasmid pB48.215 DNA contained a synthetic Bacillus thuringiensis (B.t.) cryIAc coding sequence flanked by the double cauliflower mosaic virus (CaMV) 35S promoter and nopaline synthase (Nos) terminator sequences, and the selectable marker gene, neomycin phosphotransferase II (nptII) controlled by the promoter of the nopaline synthase gene was introduced into loblolly pine tissues by particle bombardment. The transformed tissues were proliferated and selected by kanamycin resistance conferred by the introduced NPTII gene. Shoot regeneration was induced from the kanamycin-resistant callus, and transgenic plantlets were then produced. The presence of the introduced genes in the transgenic loblolly pine plants was confirmed by polymerase chain reactions (PCR) analysis, by Southern blot analysis, and insect feeding assays. The recovered transgenic plants were acclimatized and then established in soil.

  9. 200 keV Xe+ ions irradiation effects on Zr-Ti binary films

    Science.gov (United States)

    Wang, Weipeng; Chai, Maosheng; Feng, Wei; Li, Zhengcao; Zhang, Zhengjun

    2015-05-01

    200 keV Xenon irradiation experiments were performed on magnetron sputtered Zr-Ti films under different doses up to 9 * 1015 ions/cm2. XRD, FE-SEM, AFM, HRTEM, nano-indentation and white light interferometer characterizations were applied to study the structural and mechanical properties modification introduced by the bombardment. Upon Xenon irradiation, structure of film matrix kept stable while the crystallinity of the top surface degraded significantly. Meanwhile, properties of irradiated films such as hardness, modulus and sheet resistance evolved with the same tendency, i.e. increased firstly and decrease with further increasing the irradiation dose. By selective area irradiation, competition between the surface sputtering and swelling was revealed, by which surface defects evolution was highlighted. The micro-defects evolution during Xenon irradiation was believed to be responsible for the macro-properties' modification.

  10. 200 keV Xe{sup +} ions irradiation effects on Zr–Ti binary films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weipeng; Chai, Maosheng [Key laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Wei [Division of CEFR Project, China Institute of Atomic Energy, Beijing 102413 (China); Li, Zhengcao [Key laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, Zhengjun, E-mail: zjzhang@tsinghua.edu.cn [Key laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-05-01

    200 keV Xenon irradiation experiments were performed on magnetron sputtered Zr–Ti films under different doses up to 9 * 10{sup 15} ions/cm{sup 2}. XRD, FE-SEM, AFM, HRTEM, nano-indentation and white light interferometer characterizations were applied to study the structural and mechanical properties modification introduced by the bombardment. Upon Xenon irradiation, structure of film matrix kept stable while the crystallinity of the top surface degraded significantly. Meanwhile, properties of irradiated films such as hardness, modulus and sheet resistance evolved with the same tendency, i.e. increased firstly and decrease with further increasing the irradiation dose. By selective area irradiation, competition between the surface sputtering and swelling was revealed, by which surface defects evolution was highlighted. The micro-defects evolution during Xenon irradiation was believed to be responsible for the macro-properties’ modification.

  11. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    Science.gov (United States)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  12. Probing ion-specific effects on aqueous acetate solutions: Ion pairing versus water structure modifications

    Directory of Open Access Journals (Sweden)

    Tristan Petit

    2014-05-01

    Full Text Available The effect of monovalent cations (Li+, K+, NH4+, Na+ on the water structure in aqueous chloride and acetate solutions was characterized by oxygen K-edge X-ray absorption spectroscopy (XAS, X-ray emission spectroscopy, and resonant inelastic X-ray scattering (RIXS of a liquid microjet. We show ion- and counterion dependent effects on the emission spectra of the oxygen K-edge, which we attribute to modifications of the hydrogen bond network of water. For acetates, ion pairing with carboxylates was also probed selectively by XAS and RIXS. We correlate our experimental results to speciation data and to the salting-out properties of the cations.

  13. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  14. Crystallographic analysis of amorphization caused by ion irradiation

    CERN Document Server

    Nakagawa, S T; Ono, T; Hada, Y; Betz, G

    2003-01-01

    Ion irradiation often causes amorphization in a crystal. We have presented a new crystallographic analysis that defines a new type of order parameter, which we call pixel mapping (PM). PM can describe algebraically to what extent and how the crystallinity has changed under ion bombardment. In other words, PM describes the long-range-order (LRO) interactions, based on the crystallography. PM can be effectively used, when it is incorporated in a classical molecular dynamics (MD) calculation. In the case of B ions implanted into a Si crystal, we observed crystal to amorphous (CA) transitions under energetic ion bombardment at low temperature. The PM profiling was more effective to reveal the CA transition than other atomistic methods of analyses as radial distribution function g(r) or vacancy mapping N sub v. PM could distinguish between perfect crystalline states, transition states, and random states. Moreover, PM revealed that the lattice reaction was cooperative even in a mesoscopic volume, e.g. in a cube of ...

  15. Mutagenic effects of heavy ion radiation in plants

    Science.gov (United States)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  16. Proximity effect in ion-beam-induced deposition of nanopillars

    NARCIS (Netherlands)

    Chen, P.; Salemink, H.W.M.; Alkemade, P.F.A.

    2009-01-01

    Ion-beam-induced deposition (IBID) is a powerful technique for prototyping three-dimensional nanostructures. To study its capability for this purpose, the authors investigate the proximity effect in IBID of nanopillars. In particular, the changes in shape and dimension of pillars are studied when a

  17. Effect of fluoride ion on the stability of DNA hairpin

    Science.gov (United States)

    Liu, Chao; Zhai, Weili; Gong, Hongling; Liu, Yanhui; Chen, Hu

    2017-06-01

    Fluoride prevents tooth decay as an additive in oral hygiene products, while high dose intake of fluoride from contaminated drinking water leads to fluorosis. Here we studied the effect of fluoride ion on the stability of DNA double helix using magnetic tweezers. The equilibrium critical force decreases with increasing concentration of fluoride in the range from 1 mM to 100 mM. Our results give the first quantitative measurement of DNA stability in the presence of fluoride ion, which might disturb DNA-related biological processes to cause fluorosis.

  18. Effect of advection on transient ion concentration-polarization phenomenon

    Science.gov (United States)

    Rosentsvit, Leon; Park, Sinwook; Yossifon, Gilad

    2017-08-01

    Here, we studied the effect of advection on the transient ion concentration-polarization phenomenon in microchannel-membrane systems. Specifically, the temporal evolution of the depletion layer in a system that supports net flow rates with varying Péclet values was examined. Experiments complemented with simplified analytical one-dimensional semi-infinite modeling and numerical simulations demonstrated either suppression or enhancement of the depletion layer propagation against or with the direction of the net flow, respectively. Of particular interest was the third-species fluorescent dye ion concentration-polarization dynamics which was further explained using two-dimensional numerical simulations that accounted for the device complex geometry.

  19. Calcium Ion Detection Using Miniaturized InN-based Ion Sensitive Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Kun-Wei Kao

    2012-03-01

    Full Text Available An Ultrathin (~10 nm InN ion sensitive field effect transistor (ISFET with gate regions functionalized with phosphotyrosine (p-Tyr is proposed to detect calcium ions (Ca2+ in aqueous solution. The ISFET was miniaturized to a chip size of 1.1 mm by 1.5 mm and integrated at the tip of a hypodermic injection needle (18 G for real-time and continuous monitoring. The sensor shows a current variation ratio of 1.11% with per decade change of Ca2+ and a detection limit of 10-6 M. The response time of 5 sec. reveals its great potential for accomplishing fast detection in chemical and physiological sensing applications. The sensor would be applied in medical diagnosis and used to monitor continuous and real-time variations of Ca2+ levels in human blood in the near future.

  20. Mutagenic effects of heavy ion irradiation on rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xue [School of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 (China); Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Liu Binmei; Zhang Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Wu Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China)

    2012-11-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M{sub 2} plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29-spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  1. Ion-Trapping Effect in UVSOR Storage Ring

    Science.gov (United States)

    Kasuga, Toshio; Yonehara, Hiroto; Kinoshita, Toshio; Hasumoto, Masami

    1985-09-01

    UVSOR is an electron-stage ring dedicated to vacuum ultraviolet synchrotron radiation research. The first beam was stored in the ring in November 1983, and from that time on, efforts have been devoted to improving the performance of the ring. Some inconvenient phenomena have been found during the accelerator studies. One of the most serious problems is the growth of the vertical size of the electron beam. This phenomenon is explained by the ion-trapping effect, in which the ions trapped in the electron beam change the operating point of the storage ring and enhance the coupling between horizontal and vertical oscillations, resulting in a considerable increase in the vertical beam size. This ion trapping was successfully cured by the RF knockout method, which excited the betatron oscillation.

  2. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  3. Isotope Effects in Low Energy Ion-Atom Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Havener, Charles C [ORNL; Seely, D. G. [Albion College; Thomas, J. D. [University of Toledo, Toledo, OH; Kvale, Thomas Jay [University of Toledo, Toledo, OH

    2009-01-01

    Isotope effects for charge transfer processes have recently received increased attention. The ion-atom merged-beams apparatus at Oak Ridge National Laboratory is used to measure charge transfer for low energy collisions of multi-charged ions with H and D and is therefore well suited to investigate isotope effects. The apparatus has been relocated and upgraded to accept high velocity beams from the 250 kV High Voltage Platform at the Multi-Charged Ion Research Facility. The intense higher velocity multi-charged ion beams allow, for the first time, measurements with both H and D from keV/u down to meV/u collision energies in the center-of-mass frame. When charge transfer occurs at relatively large inter-nuclear distances (via radial couplings) the ion-induced dipole attraction can lead to trajectory effects, causing differences in the charge transfer cross sections for H and D. A strong isotope effect (nearly a factor of two) has been observed in the cross section for Si4+ + H(D) below 0.1 eV/u. However, little or no difference is observed for N2+ + H(D). Recently, strong effects have been predicted for the fundamental system He2+ + H(D,T) at collision energies below 200 eV/u where charge transfer occurs primarily through united-atom rotational coupling. We are currently exploring systems where rotational coupling is important and isotopic differences in the cross section can be observed.

  4. Formation of multi-charged ion beams by focusing effect of mid-electrode on electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Youta, E-mail: imai@nf.eie.eng.osaka-u.ac.jp; Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance ion source (ECRIS) and a beam line for extracting ion beams. The ion beam is extracted from the second stage by an accel-decel extraction system with a single-hole and the ion beam current on each electrode is measured. The total ion beam current is measured by a faraday cup downstream the extraction electrodes. We measure these currents as a function of the mid-electrode potential. We also change the gap length between electrodes and perform similar measurement. The behaviors of these currents obtained experimentally against the mid-electrode potential show qualitatively good agreement with a simple theoretical consideration including sheath potential effects. The effect of mid-electrode potential is very useful for decreasing the beam loss for enhancing ion beam current extracted from ECRIS.

  5. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  6. Emission properties and back-bombardment for CeB{sub 6} compared to LaB{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Bakr, Mahmoud, E-mail: m-a-bakr@iae.kyoto-u.ac.jp [Physics Department, Faculty of Science, Assiut University, Assiut, 71516 (Egypt); Kawai, M. [LNS, Graduate School of Science, Tohoku University, Sendai 982-0826 (Japan); Kii, T.; Zen, H.; Masuda, K.; Ohgaki, H. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2015-02-14

    The emission properties of CeB{sub 6} compared to LaB{sub 6} thermionic cathodes have been measured using an electrostatic DC gun. Obtaining knowledge of the emission properties is the first step in understanding the back-bombardment effect that limits wide usage of thermionic radio-frequency electron guns. The effect of back-bombardment electrons on CeB{sub 6} compared to LaB{sub 6} was studied using a numerical simulation model. The results show that for 6 μs pulse duration with input radio-frequency power of 8 MW, CeB{sub 6} should experience 14% lower temperature increase and 21% lower current density rise compared to LaB{sub 6}. We conclude that CeB{sub 6} has the potential to become the future replacement for LaB{sub 6} thermionic cathodes in radio-frequency electron guns.

  7. Stress, microstructure and evolution under ion irradiation in thin films grown by ion beam sputtering: modelling and application to interfacial effects in metallic multilayers; Contraintes, microstructure et sollicitation sous irradiation aux ions de films minces elabores par pulverisation ionique: modelisation et application a l'etude des effets interfaciaux dans des multicouches metalliques

    Energy Technology Data Exchange (ETDEWEB)

    Debelle, A

    2006-09-15

    We have investigated the formation of the interfacial chemical mixing in Mo/Ni multilayers, and particularly the influence of ballistic effects during the growth. For this purpose, hetero-epitaxial b.c.c./f.c.c. Mo(110)/Ni(111) multilayers were grown by two deposition methods: thermal evaporation and direct ion beam sputtering. As a preliminary, an accurate description of the stress state in pure sputtered Mo thin films was required. Microstructural and stress state analyses were essentially carried out by X-ray diffraction, and ion irradiation was used as a powerful tool to control the stress level. We showed that thermal evaporated thin films exhibit a weak tensile growth stress ({approx} 0.6 GPa) that can be accounted for by the grain boundary relaxation model, whereas sputtered thin films develop large compressive growth stress (- 2 to - 4 GPa). This latter results from the bombardment of the growing film by the energetic particles involved during the sputtering process (atomic peening phenomenon), which induces the formation of defects in the layers, generating volume distortions. We thus developed a stress model that includes a hydrostatic stress component to account for these volume strains. This model allowed us to determine the 'unstressed and free of defects lattice parameter' a{sub 0}, solely linked to chemical effects. For epitaxial Mo layers, it was possible to separate coherency stress from growth stress due to their distinct kinetic evolution during ion irradiation. Therefore, the stress analysis enabled us to determine the a{sub 0} values in Mo sub-layers of Mo/Ni superlattices. A tendency to the formation of an interfacial alloy is observed independently of the growth conditions, which suggests that thermodynamic forces favour the exchange mechanism. However, the extent of the intermixing effect is clearly enhanced by ballistic effects. (author)

  8. Studies on Ions and Neutrals Desorbed from Solid Surfaces by Ion and Electron Bombardment

    Science.gov (United States)

    1989-03-24

    Since 1984 Acknowledging AFOSR Support 1. N. Winograd, "Thin Film Electrodes", in Laboratory Techniques in Electroanalytical Chemistry , P. T. Kissinger...Acknowledging AFOSR Support 1. N. Winograd, "Thin Film Electrodes", in Laboratory Techniques in Electroanalytical Chemistry , P. T. Kissinger, Ed., Marcel

  9. TBI server: a web server for predicting ion effects in RNA folding.

    Directory of Open Access Journals (Sweden)

    Yuhong Zhu

    Full Text Available Metal ions play a critical role in the stabilization of RNA structures. Therefore, accurate prediction of the ion effects in RNA folding can have a far-reaching impact on our understanding of RNA structure and function. Multivalent ions, especially Mg²⁺, are essential for RNA tertiary structure formation. These ions can possibly become strongly correlated in the close vicinity of RNA surface. Most of the currently available software packages, which have widespread success in predicting ion effects in biomolecular systems, however, do not explicitly account for the ion correlation effect. Therefore, it is important to develop a software package/web server for the prediction of ion electrostatics in RNA folding by including ion correlation effects.The TBI web server http://rna.physics.missouri.edu/tbi_index.html provides predictions for the total electrostatic free energy, the different free energy components, and the mean number and the most probable distributions of the bound ions. A novel feature of the TBI server is its ability to account for ion correlation and ion distribution fluctuation effects.By accounting for the ion correlation and fluctuation effects, the TBI server is a unique online tool for computing ion-mediated electrostatic properties for given RNA structures. The results can provide important data for in-depth analysis for ion effects in RNA folding including the ion-dependence of folding stability, ion uptake in the folding process, and the interplay between the different energetic components.

  10. QED Effects in Heavy Few-Electron Ions

    CERN Document Server

    Shabaev, V M; Artemiev, A N; Baturin, S S; Elizarov, A A; Kozhedub, Y S; Oreshkina, N S; Tupitsyn, I I; Yerokhin, V A; Zherebtsov, O M

    2006-01-01

    Accurate calculations of the binding energies, the hyperfine splitting, the bound-electron g-factor, and the parity nonconservation effects in heavy few-electron ions are considered. The calculations include the relativistic, quantum electrodynamic (QED), electron-correlation, and nuclear effects. The theoretical results are compared with available experimental data. A special attention is focused on tests of QED in a strong Coulomb field.

  11. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    Science.gov (United States)

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  12. On singlet metastable states, ion flux and ion energy in single and dual frequency capacitively coupled oxygen discharges

    Science.gov (United States)

    Hannesdottir, H.; Gudmundsson, J. T.

    2017-05-01

    We apply particle-in-cell simulations with Monte Carlo collisions to study the influence of the singlet metastable states on the ion energy distribution in single and dual frequency capacitively coupled oxygen discharges. For this purpose, the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 is used, in which the discharge model includes the following nine species: electrons, the neutrals O(3P) and O{{}2}≤ft({{\\text{X}}3} Σ g-\\right. ), the negative ions O-, the positive ions O+ and O2+ , and the metastables O(1D), O{{}2}≤ft({{\\text{a}}1}{{ Δ }g}\\right) and O2(b{{}1} Σ g+ ). Earlier, we have explored the effects of adding the species O{{}2}≤ft({{\\text{a}}1}{{ Δ }g}\\right. ) and O2(b{{}1} Σ g+ ), and an energy-dependent secondary electron emission yield for oxygen ions and neutrals, to the discharge model. We found that including the two molecular singlet metastable states decreases the ohmic heating and the effective electron temperature in the bulk region (the electronegative core). Here we explore how these metastable states influence dual frequency discharges consisting of a fundamental frequency and the lowest even harmonics. Including or excluding the detachment reactions of the metastables O{{}2}≤ft({{\\text{a}}1}{{ Δ }g}\\right. ) and O2(b{{}1} Σ g+ ) can shift the peak electron temperature from the grounded to the powered electrode or vice versa, depending on the phase difference of the two applied frequencies. These metastable states can furthermore significantly influence the peak of the ion energy distribution for O2+ -ions bombarding the powered electrode, and hence the average ion energy upon bombardment of the electrode, and lower the ion flux.

  13. Optical, mass, and auger spectra from e-bombarded KBr

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, E.T.; Kamada, M.

    1988-01-01

    We have measured the mass spectrum and optical emission lines of neutral potassium atoms ejected from KBr at T = 300/degree/K and 443/degree/K bombarded by 2-keV electrons. The room-temperature data may be complicated by the nonstoichiometry of the alkali-enriched sample surface and seem difficult to interpret. The high-temperature sample, which maintains the proper stoichiometry, produces data in support of gas-phase excitation of alkali atoms desorbed from the surface. 15 refs., 4 figs.

  14. a Bombardment Heated Lanthanum-Hexaboride Thermionic Cathode Electron Gun.

    Science.gov (United States)

    Herniter, Marc Efrem

    This dissertation concerns the development and operation of a high current density Pierce-type electron gun with a 0.75-inch-diameter lanthanum hexaboride (LaB _6) thermionic cathode. The objective of this research is to achieve as high a current density as possible from the lanthanum hexaboride cathode. The topics which are addressed are the cathode heating and control system, the Pierce-type electron gun design, and the high voltage pulsing and isolation system. Lanthanum hexaboride is used as a cathode material in applications where high current density and resistance to chemical poisoning are important. Applications include free electron lasers and high power microwave generation. A four stage Marx generator capable of producing 140-kV-peak pulses with a 16 mus decay time constant is used to pulse the electron gun. The cathode is heated to temperatures greater than 1800 ^circ C by electron bombardment from a tungsten filament. Both temperature-limited and space -charge-limited bombardment methods have been investigated. The temperature-limited method is open-loop unstable. Analog and digital control circuits have been developed to control this instability. A simple heating model has been developed and criteria for constructing a controllable system have been established. An instability in the heating system which is caused by evaporation of lanthanum hexaboride from the cathode is discussed. This evaporation reduces the work function of the bombarding filament and makes the temperature -limited bombardment system uncontrollable. The gun has been operated up to voltages of 115 kV achieving beam current densities of 30 A/cm ^2. The electron gun operated dependably up to voltages of 90 kV achieving temperature-limited currents of 50 A. Due to the high fields at the tip of the Pierce -focusing electrode the gun would usually arc at voltages greater than 90 kV. Electron gun operation has been observed in the temperature-limited and space-charge-limited regimes. The

  15. Ion Effects in the DARHT-II Downstream Transport

    CERN Document Server

    Chan, Kwok-Chi D; Ekdahl, Carl; Genoni, Thomas C; Hughes, Thomas P; Schulze, Martin E

    2005-01-01

    The DARHT-II accelerator produces an 18-MeV, 2-kA, 2-μs electron beam pulse. After the accelerator, the pulse is delivered to the final focus on an x-ray producing target via a beam transport section called the Downstream Transport. Ions produced due to beam ionization of residual gases in the Downstream Transport can affect the beam dynamics. Ions generated by the head of the pulse will cause modification of space-charge forces at the tail of the pulse so that the beam head and tail will have different beam envelopes. They may also induce ion-hose instability at the tail of the pulse. If these effects are significant, the focusing requirements of beam head and tail at the final focus will become very different. The focusing of the complete beam pulse will be time dependent and difficult to achieve, leading to less efficient x-ray production. In this paper, we will describe the results of our calculations of these ion effects at different residual-gas pressure levels. Our goal is to determine the ma...

  16. The Characteristics Of The Direct Metal Ion Beam Source And Its Applications (indium Tin Oxide)

    CERN Document Server

    Kim, D

    2001-01-01

    It is well known that thin film properties depends on its microstructures and the surface mobility is most important parameters to consider microstructures and to obtain high quality thin films. Thus, currently ion beam based deposition which can control surface mobility with kinetic energy of auxiliary gas ion investigated intensively. Recently we developed the DMIBD system which can control ion beam energy precisely under 500Ev and also ion beam flux, independently. In this work, the optimum process parameters of DMIBD such as secondary ion yields, ion/atom arrival ratios, ion energy spread, and deposition rates for various metal targets were measured as functions of Cs+ ion bombarding energy, Cs+ ion dose, and secondary ion beam energy, respectively. From the results, the secondary ion yields for C,Al,Si,Cu,Ta, and W were about 20% and the ion energy spread also less than 10% regardless of the ion beam energy. In order to investigated the effect of secondary ion beam energy on the thin film properties such...

  17. Advanced analysis tool for X-ray photoelectron spectroscopy profiling: Cleaning of perovskite SrTiO{sub 3} oxide surface using argon cluster ion source

    Energy Technology Data Exchange (ETDEWEB)

    Aureau, D., E-mail: damien.aureau@uvsq.fr [Institut Lavoisier de Versailles, (UMR 8180) Université de Versailles-Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Ridier, K. [Institut Lavoisier de Versailles, (UMR 8180) Université de Versailles-Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Groupe d' Étude de la Matière Condensée (UMR 8635) Université de Versailles Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Bérini, B.; Dumont, Y.; Keller, N. [Groupe d' Étude de la Matière Condensée (UMR 8635) Université de Versailles Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Vigneron, J.; Bouttemy, M.; Etcheberry, A. [Institut Lavoisier de Versailles, (UMR 8180) Université de Versailles-Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France); Fouchet, A. [Groupe d' Étude de la Matière Condensée (UMR 8635) Université de Versailles Saint-Quentin-en-Yvelines–CNRS, 45 Av. des États-Unis, 78035 Versailles (France)

    2016-02-29

    This article shows the comparison between three different ionic bombardments during X-ray photoelectron spectroscopy (XPS) studies of single crystalline SrTiO{sub 3} (STO) substrates. The abrasion using a “cluster argon ion source” is compared with the standard “monoatomic Ar”. The influence of the energy of the monoatomic ions used is clearly demonstrated. While the chemically adsorbed species on the STO surface are removed, such bombardment strongly modifies the surface. A reduction of part of the titanium atoms and the appearance of a different chemical environment for surface strontium atoms are observed. Implantation of argon ions is also detected. Cluster ion etching is used on oxide surface and, in this case only, due to a much lower kinetic energy per atom compared to monoatomic ions, the possibility to remove surface contaminants at the surface without modification of the XP spectra is clearly demonstrated, ensuring that the stoichiometry of the surface is preserved. Such result is crucial for everybody working with oxide surfaces to obtain a non-modified XPS analysis. The progressive effect of this powerful tool allows the monitoring of the removal of surface contamination in the first steps of the bombardment which was not achievable with usual guns. - Highlights: • The effects of three argon etchings are studied as a function of time on SrTiO3 oxide. • A method for obtaining non-modified chemical analysis of oxides is presented. • The soft removal of adsorbed species thanks to argon cluster is demonstrated. • The damages induced on SrTiO3 surface by ionic bombardment are shown. • The influence of the kinetic energy of incoming Ar atoms is examined.

  18. Side-effects of protein kinase inhibitors on ion channels

    Indian Academy of Sciences (India)

    Youn Kyoung Son; Hongzoo Park; Amy L Firth; Won Sun Park

    2013-12-01

    Protein kinases are one of the largest gene families and have regulatory roles in all aspects of eukaryotic cell function. Modulation of protein kinase activity is a desirable therapeutic approach for a number of human diseases associated with aberrant kinase activity, including cancers, arthritis and cardiovascular disorders. Several strategies have been used to develop specific and selective protein kinase modulators, primarily via inhibition of phosphorylation and down-regulation of kinase gene expression. These strategies are effective at regulating intracellular signalling pathways, but are unfortunately associated with several undesirable effects, particularly those that modulate ion channel function. In fact, the side-effects have precluded these inhibitors from being both useful experimental tools and therapeutically viable. This review focuses on the ion channel side-effects of several protein kinase inhibitors and specifically on those modulating K+, Na+ and Ca2+ ion channels. It is hoped that the information provided with a detailed summary in this review will assist the future development of novel specific and selective compounds targeting protein kinases both for experimental tools and for therapeutic approaches.

  19. Effect of Implantation Machine Parameters on N+ ion Implantation for Upland Cotton (Gossypium hirsutum L.) Pollen

    Institute of Scientific and Technical Information of China (English)

    YUE Jieyu; YU Lixiang; WU Yuejin; TANG Canming

    2008-01-01

    Effect of parameters of ion implantation machine,including ion energy,total dose,dose rate,impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied.The best parameters were screened out.The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.

  20. Negative ion formation in lanthanide atoms: Many-body effects

    CERN Document Server

    Felfli, Z; Sokolovski, D

    2016-01-01

    Investigations of low-energy electron-scattering of the lanthanide atoms Eu, Nd, Tb, Tm demonstrate that electron-correlation effects and core polarization are the dominant fundamental many-body effects responsible for the formation of metastable states of negative ions. Ramsauer Townsend minima, shape resonances and binding energies of the resultant anions are identified and extracted from the elastic total cross sections calculated using the complex angular momentum method. The large discrepancy between the recently measured electron affinity of 0.116 and the previously measured value of 1.053 eV for Eu is resolved. Also, the previously measured electron affinities for Nd, Tb and Tm are reconciled and new values are extracted from the calculated total cross sections. The large electron affinities found here for these atoms, should be useful in negative ion nanocatalysis, including methane conversion to methanol without CO2 emission, with significant environmental impact.. The powerful complex angular moment...

  1. Ranges, Reflection and Secondary Electron Emission for keV Hydrogen Ions Incident on Solid N2

    DEFF Research Database (Denmark)

    Børgesen, P.; Sørensen, H.; Hao-Ming, Chen

    1983-01-01

    Ranges were measured for 0.67–3.3 keV/amu hydrogen and deuterium ions in solid N2. Comparisons with similar results for N2-gas confirm the previously observed large phase effect in the stopping cross section. Measurements of the secondary electron emission coefficient for bulk solid N2 bombarded...... by 0.67–9 keV/amu ions also seem to support such a phase effect. It is argued that we may also extract information about the charge state of reflected projectiles....

  2. Applications of heavy ion microprobe for single event effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Robert A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States)]. E-mail: robert.reed@vanderbilt.edu; Vizkelethy, Gyorgy [Sandia National Laboratory, Albuquerque, NM 87185 (United States); Pellish, Jonathan A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Sierawski, Brian [Institute for Space and Defense Electronics, Vanderbilt University, Box 351821 Station B, Nashville, TN 37235 (United States); Warren, Kevin M. [Institute for Space and Defense Electronics, Vanderbilt University, Box 351821 Station B, Nashville, TN 37235 (United States); Porter, Mark [Medtronic Microelectronics Center, 2343 W. Medtronic Way, Tempe, AZ 85281 (United States); Wilkinson, Jeff [Medtronic, CRDM Device Technology, 7000 Central Avenue NE, Minneapolis, MN 55432 (United States); Marshall, Paul W. [NASA consultant, Brookneal, VA 24528 (United States); Niu, Guofu [Auburn University, Auburn, AL 36894 (United States); Cressler, John D. [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Schrimpf, Ronald D. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Tipton, Alan [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Weller, Robert A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States)

    2007-08-15

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches.

  3. Physico-chemical and mechanical modifications of polyethylene and polypropylene by ion implantation, micro-wave plasma, electron beam radiation and gamma ray irradiation; Modifications physico-chimiques et mecaniques du polyethylene et du polypropylene par implantation ionique, plasma micro-ondes, bombardement d`electrons et irradiation gamma

    Energy Technology Data Exchange (ETDEWEB)

    Liao, J.D.

    1995-03-29

    A polyolefin surface becomes wettable when treated by micro-wave plasma or low-dose nitrogen ion implantation. A short time argon plasma treatment is sufficient to obtain polarizable peroxides on a polyolefin. X-ray photoelectron spectroscopy analyses, paramagnetic electronic resonance analyses, peroxides decomposition, wettability measurements and infrared active spectra analyses have shown that oxidized structures obtained from different treatment techniques play an important role in the interpretation of surface chemical properties of the polymer. Micro-wave plasma treatment, and in particular argon plasma treatment, yields more polarizable groups than ion implantation and is interesting for grafting. Hardness and elasticity modulus, measured by nano-indentation on a polyolefin, increase with an appropriate ion implantation dose. A 1.4 x 10{sup 17} ions.cm{sup -2} dose can multiply by 15 the hardness of high molecular weight polyethylene, and by 7 the elasticity modulus for a 30 nm depth. The viscous-plastic to quasi-elastic transition is shown. The thickness of the modified layer is over 300 nm. The study of friction between a metal sphere and a polyethylene cupula shows that ion implantation in the polymer creates a reticulated hard and elastic layer which improves its mechanical properties and reduces the erosion rate. Surface treatments on polymers used as biomaterials allow to adapt the surface properties to specific applications. 107 refs., 66 figs., 19 tabs., 4 annexes.

  4. Electrical properties of oxygen ion-implanted InP

    Science.gov (United States)

    He, L.; Anderson, W. A.

    1992-10-01

    The effect of oxygen ion implantation on defect levels and the electrical properties of undoped InP ( n-type) and Sn-doped InP have been investigated as a function of postimplant annealing at temperatures of 300 and 400° C. The surface interruption by ion bombardment was studied by a non-invasive optical technique—photoreflectance (PR) spectroscopy. Current-voltage (I-V) characterization and deep level transient spectros-copy (DLTS) were carried out. The free carrier compensation mechanism was studied from the microstructure behavior of defect levels associated with O+ implantation. Free carriers may be trapped in both residual and ion-bombardment-induced defect sites. Rapid thermal annealing (RTA) performed at different temperatures showed that if residual traps were removed by annealing, the compensation efficiency will be enhanced. Post-implant RTA treatment showed that at the higher temperature (400°C), trapped carriers may be re-excited, resulting in a weakened compensation. Comparing the results of undoped and Sn-doped InP indicated that the carrier compensation effect is substrate doping dependent.

  5. Breit interaction effect on dielectronic recombination of heavy ions

    Science.gov (United States)

    Nakamura, Nobuyuki

    2016-11-01

    Interaction of highly charged heavy ions with electrons is one of the most important atomic processes in high temperature plasmas, including astrophysical plasmas such as solar corona and artificial plasmas such as fusion reactor plasmas. Therefore it has been well studied to date, both theoretically and experimentally, to accumulate the atomic data required for understanding or controlling such plasmas. However, there still remains interesting subjects that receive remarkable attention from the atomic physics point of view. One of them, which is the subject of this review, is substantially large Breit interaction effects on the resonance recombination process called dielectronic recombination. The Breit interaction is a relativistic effect in the electron-electron interaction potential; it is thus generally important for highly charged heavy ions. However, in the calculation of the energy levels for heavy ions, the Breit interaction is still a small perturbation compared with the main Coulomb term. On the other hand for the dielectronic recombination, it was found that the Breit interaction can enhance the cross sections significantly. It was also found that the Breit interaction can play not only an important, but even a dominant role in determining the angular distribution of x-rays emitted in the recombination processes. This topical review introduces the recent experimental and theoretical activities to clarify the essential origin of the strong effects.

  6. Na+ Cl- ion pair association in water-DMSO mixtures: Effect of ion pair model potentials

    Indian Academy of Sciences (India)

    ATANU SARKAR; ANUPAM CHATTERJEE; S C TIWARI; B L TEMBE

    2016-06-01

    Potentials of Mean Force (PMF) for the Na+ Cl- ion pair in water–dimethyl sulfoxide (DMSO)mixtures for three DMSO mole fractions have been computed using constrained Molecular Dynamics (MD)simulations and confirmed by dynamical trajectories and residence times of the ion pair at various inter-ionicseparations. The three ion-ion direct potentials used are 12-6-1, exp-6-1 and exp-8-6-1. The physical picturethat emerges is that there is a strong contact ion pair (CIP) and strong to moderate solvent separated ion pair(SSIP) in these solutions. Analysis of local ion clusters shows that ions are dominantly solvated by watermolecules. The 12-6-1 potential model predicts running coordination numbers closest to experimental data.

  7. Ordered SrTiO3 Nanoripples Induced by Fo cused Ion Beam

    Institute of Scientific and Technical Information of China (English)

    Jiang Wu; Gang Chen; Zhaoquan Zeng; Shibin Li; Xingliang Xu; Zhiming M Wang; Gregory J Salamo

    2012-01-01

    Ordered nanoripples on the niobium-doped SrTiO3 surfaces were fabricated through focused ion beam bombardment. The surface morphology of the SrTiO3 nanoripples was characterized using in situ focused ion beam/scanning electron microscopy. The well-aligned SrTiO3 nanostructures were obtained under optimized ion irradiation conditions. The characteristic wavelength was measured as about 210 nm for different ion beam currents. The relationship between the ion irradiation time and current and SrTiO3 surface morphology was analyzed. The presented method will be an effective supplement for fabrication of SrTiO3 nanostructures that can be used for ferroelectric and electronic applications.

  8. Molecular dynamics simulations of ion irradiation of a surface under an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Parviainen, S., E-mail: stefan.parviainen@iki.fi; Djurabekova, F.

    2014-11-15

    The presence of high electric fields may affect significantly the process of sputtering of metal surfaces by energetic ions, especially in the vicinity of rough surface features. The effect can be significant if the energy of ions is fairly low. Moreover, the nanosized rough surface features – invisible to a naked eye, both intrinsic ones due to technological processing of surfaces and those forming because of sputtering – may affect the topology of surface erosion under ion bombardment. In this work we study by means of concurrent electrodynamics–molecular dynamics the sputtering yield of Cu{sup +} ions hitting a flat Cu surface or a nanosized Cu protrusion as a function of both ion energy and electric field strength. The results show that the sputtering yield is significantly enhanced in the presence of an electric field in both cases.

  9. Effect of additional sample bias in Meshed Plasma Immersion Ion Deposition (MPIID) on microstructural, surface and mechanical properties of Si-DLC films

    Science.gov (United States)

    Wu, Mingzhong; Tian, Xiubo; Li, Muqin; Gong, Chunzhi; Wei, Ronghua

    2016-07-01

    Meshed Plasma Immersion Ion Deposition (MPIID) using cage-like hollow cathode discharge is a modified process of conventional PIID, but it allows the deposition of thick diamond-like carbon (DLC) films (up to 50 μm) at a high deposition rate (up to 6.5 μm/h). To further improve the DLC film properties, a new approach to the MPIID process is proposed, in which the energy of ions incident to the sample surface can be independently controlled by an additional voltage applied between the samples and the metal meshed cage. In this study, the meshed cage was biased with a pulsed DC power supply at -1350 V peak voltage for the plasma generation, while the samples inside the cage were biased with a DC voltage from 0 V to -500 V with respect to the cage to study its effect. Si-DLC films were synthesized with a mixture of Ar, C2H2 and tetramethylsilane (TMS). After the depositions, scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectrons spectroscopy (XPS), Raman spectroscopy and nanoindentation were used to study the morphology, surface roughness, chemical bonding and structure, and the surface hardness as well as the modulus of elasticity of the Si-DLC films. It was observed that the intense ion bombardment significantly densified the films, reduced the surface roughness, reduced the H and Si contents, and increased the nanohardness (H) and modulus of elasticity (E), whereas the deposition rate decreased slightly. Using the H and E data, high values of H3/E2 and H/E were obtained on the biased films, indicating the potential excellent mechanical and tribological properties of the films. In this paper, the effects of the sample bias voltage on the film properties are discussed in detail and the optimal bias voltage is presented.

  10. Matrix-assisted laser desorption ion trap mass spectrometry: efficient isolation and effective fragmentation of peptide ions.

    Science.gov (United States)

    Qin, J; Chait, B T

    1996-07-01

    Effective analysis of the sequence of peptides using matrix-assisted laser desorption/ionization (MALDI) tandem ion trap mass spectrometry requires efficient mass isolation and the ability to induce extensive sequence-specific fragmentation. The present paper describes a new excitation scheme, which we term red-shifted off-resonance large-amplitude excitation (RSORLAE), that can deposit higher amounts of internal energy in ions than is feasible with conventional resonant excitation. The new method provides an effective means for inducing fragmentation of MALDI-produced peptide ions with m/z values up to 3500. Prior to excitation, it is necessary to isolate ions of interest with high efficiency. We demonstrate that isolation efficiencies of > 95% can be achieved by careful design of the rf scan functions used during ion isolation. In particular, sudden transitions in the amplitude of the rf field (from low to high amplitudes) must be avoided. The combined improvements in the efficiency for ion isolation and the efficacy of ion activation make MALDI tandem ion trap mass spectrometry a practical tool for the characterization of proteins with high sensitivity.

  11. Photon counting imaging with an electron-bombarded CCD: Towards a parallel-processing photoelectronic time-to-amplitude converter

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, Liisa M.; Jiggins, Stephen; Sergent, Nicolas; Zanda, Gianmarco; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk [Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom)

    2014-12-15

    We have used an electron-bombarded CCD for optical photon counting imaging. The photon event pulse height distribution was found to be linearly dependent on the gain voltage. We propose on this basis that a gain voltage sweep during exposure in an electron-bombarded sensor would allow photon arrival time determination with sub-frame exposure time resolution. This effectively uses an electron-bombarded sensor as a parallel-processing photoelectronic time-to-amplitude converter, or a two-dimensional photon counting streak camera. Several applications that require timing of photon arrival, including Fluorescence Lifetime Imaging Microscopy, may benefit from such an approach. A simulation of a voltage sweep performed with experimental data collected with different acceleration voltages validates the principle of this approach. Moreover, photon event centroiding was performed and a hybrid 50% Gaussian/Centre of Gravity + 50% Hyperbolic cosine centroiding algorithm was found to yield the lowest fixed pattern noise. Finally, the camera was mounted on a fluorescence microscope to image F-actin filaments stained with the fluorescent dye Alexa 488 in fixed cells.

  12. Effects of trapped electrons on the oblique propagation of ion acoustic solitary waves in electron-positron-ion plasmas

    Science.gov (United States)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-08-01

    The characteristics of the nonlinear oblique propagation of ion acoustic solitary waves in unmagnetized plasmas consisting of Boltzmann positrons, trapped electrons and ions are investigated. The modified Kadomtsev-Petviashivili ( m K P ) equation is derived employing the reductive perturbation technique. The parametric effects on phase velocity, Sagdeev potential, amplitude and width of solitons, and electrostatic ion acoustic solitary structures are graphically presented with the relevant physical explanations. This study may be useful for the better understanding of physical phenomena concerned in plasmas in which the effects of trapped electrons control the dynamics of wave.

  13. Ion size effect on colloidal forces within the primitive model

    Directory of Open Access Journals (Sweden)

    J.Wu

    2005-01-01

    Full Text Available The effect of ion size on the mean force between a pair of isolated charged particles in an electrolyte solution is investigated using Monte Carlo simulations within the framework of the primitive model where both colloidal particles and small ions are represented by charged hard spheres and the solvent is treated as a dielectric continuum. It is found that the short-ranged attraction between like-charged macroions diminishes as the diameter of the intermediating divalent counterions and coions increases and the maximum attractive force is approximately a linear function of the counterion diameter. This size effect contradicts the prediction of the Asakura-Oosawa theory suggesting that an increase in the excluded volume of small ions would lead to a stronger depletion between colloidal particles. Interestingly, the simulation results indicate that both the hard-sphere collision and the electrostatic contributions to the mean force are insensitive to the size disparity of colloidal particles with the same average diameter.

  14. Effects of ionizing radiation on modern ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  15. Ion irradiation and biomolecular radiation damage II. Indirect effect

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2010-01-01

    It has been reported that damage of genome in a living cell by ionizing radiation is about one-third direct and two-thirds indirect. The former which has been introduced in our last paper, concerns direct energy deposition and ionizing reactions in the biomolecules; the latter results from radiation induced reactive species (mainly radicals) in the medium (mainly water) surrounding the biomolecules. In this review, a short description of ion implantation induced radical formation in water is presented. Then we summarize the aqueous radical reaction chemistry of DNA, protein and their components, followed by a brief introduction of biomolecular damage induced by secondary particles (ions and electron). Some downstream biological effects are also discussed.

  16. Toxic effect of terbium ion on horseradish cell.

    Science.gov (United States)

    Jiang, Na; Wang, Lihong; Lu, Tianhong; Huang, Xiaohua

    2011-12-01

    The toxic effect of terbium (III) ion on the horseradish cell was investigated by scanning electron microscopy, gas chromatography, and standard biochemical methods. It was found that the activity of horseradish peroxidase in the horseradish treated with 0.2 mM terbium (III) ion decreased and led to the excessive accumulation of free radicals compared with that in the control horseradish. The excessive free radicals could oxidize unsaturated fatty acids in the horseradish cell and then increase the cell membrane lipid peroxidation of horseradish. The increase in the lipid peroxidation could lead to the destruction of the structure and function of the cell membrane and then damage of the horseradish cell. We propose that this is a possible mechanism for the toxic action of terbium in the biological systems.

  17. Probing isotope effects in chemical reactions using single ions

    CERN Document Server

    Staanum, Peter F; Wester, Roland; Drewsen, Michael

    2008-01-01

    Isotope effects in reactions between Mg+ in the 3p 2P3/2 excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only ~250 reactions with HD, the branching ratio between formation of MgD+ and MgH+ is found to be larger than 5. From additional 65 reactions with H2 and D2 we find that the overall decay probability of the intermediate MgH2+, MgHD+ or MgD2+ complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well-suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  18. Effects of chloride and silver ions on gold nanorod formation

    Science.gov (United States)

    Ock Park, Jin; Cho, So-Hye; Jeong, Dae-Yong; Kong, Young-Min; Lee, Seung Yong

    2015-01-01

    The ability to tune the longitudinal localized surface plasmon resonance of gold nanorods (AuNRs) via simple modification of their aspect ratio is a large contributing factor to their widespread use across multiple fields. An understanding of the synthesis conditions that affect the aspect ratio and yield of AuNRs is therefore of utmost importance. From this perspective, we take a systematic approach in investigating the effect of the following conditions on the seed-mediated formation of AuNRs: the addition of chloride or silver ions, and the use of a hexadecyltrimethylammonium bromide (CTAB) source with different levels of effectiveness on controlling the shape of growing AuNRs.

  19. Evidence Supporting an Early as Well as Late Heavy Bombardment on the Moon

    Science.gov (United States)

    Frey, Herbert

    2015-01-01

    Evidence supporting an intense early bombardment on the Moon in addition to the traditional Late Heavy Bombardment at approx. 4 BY ago include the distribution of N(50) Crater Retention Ages (CRAs) for candidate basins, a variety of absolute age scenarios for both a "young" and an "old" Nectaris age, and the decreasing contrasts in both topographic relief and Bouguer gravity with increasing CRA.

  20. 33 CFR 334.950 - Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas.

    Science.gov (United States)

    2010-07-01

    ... Island, California; Navy shore bombardment areas. 334.950 Section 334.950 Navigation and Navigable Waters... REGULATIONS § 334.950 Pacific Ocean at San Clemente Island, California; Navy shore bombardment areas. (a) The... degrees true, 5.35 nautical miles; thence 040.4 degrees true to the beach. (3) The waters of the...

  1. Atomic-scale thermocapillary flow in focused ion beam milling

    Energy Technology Data Exchange (ETDEWEB)

    Das, K.; Johnson, H. T.; Freund, J. B., E-mail: jbfreund@illinois.edu [Mechanical Science and Engineering and Aerospace Engineering, University of Illinois at Urbana–Champaign, 1206 West Green Street MC-244, Urbana, Illinois 61801 (United States)

    2015-05-15

    Focused ion beams provide a means of nanometer-scale manufacturing and material processing, which is used for applications such as forming nanometer-scale pores in thin films for DNA sequencing. We investigate such a configuration with Ga{sup +} bombardment of a Si thin-film target using molecular dynamics simulation. For a range of ion intensities in a realistic configuration, a recirculating melt region develops, which is seen to flow with a symmetrical pattern, counter to how it would flow were it driven by the ion momentum flux. Such flow is potentially important for the shape and composition of the formed structures. Relevant stress scales and estimated physical properties of silicon under these extreme conditions support the importance thermocapillary effects. A flow model with Marangoni forcing, based upon the temperature gradient and geometry from the atomistic simulation, indeed reproduces the flow and thus could be used to anticipate such flows and their influence in applications.

  2. Analysis of LED degradation; proton-bombarded GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Hooft, G.W. ' t; Opdorp, C. van (Philips Gloeilampenfabrieken N.V., Eindhoven (Netherlands). Forschungslaboratorium)

    1984-03-01

    An analysis is given of the degradation of light-emitting, Zn-diffused GaAs diodes after proton bombardment. Use is made of a generally applicable method by which the external bulk quantum efficiency and the injection efficiency of an LED can be determined separately. Owing to the increase of non-radiative recombination being larger in the bulk than in the space-charge region, the injection efficiency at constant current first starts to increase and then decreases as a function of irradiation fluence. Furthermore, it is shown that the apparent bulk quantum efficiency decreases superlinearly with the irradiation fluence. This is consistent with the theory for a linear-graded pn junction and the assumption that the concentration of additional killer centres is directly proportional to the irradiation fluence.

  3. Compact electron gun based on secondary emission through ionic bombardment.

    Science.gov (United States)

    Diop, Babacar; Bonnet, Jean; Schmid, Thomas; Mohamed, Ajmal

    2011-01-01

    We present a new compact electron gun based on the secondary emission through ionic bombardment principle. The driving parameters to develop such a gun are to obtain a quite small electron gun for an in-flight instrument performing Electron Beam Fluorescence measurements (EBF) on board of a reentry vehicle in the upper atmosphere. These measurements are useful to characterize the gas flow around the vehicle in terms of gas chemical composition, temperatures and velocity of the flow which usually presents thermo-chemical non-equilibrium. Such an instrument can also be employed to characterize the upper atmosphere if placed on another carrier like a balloon. In ground facilities, it appears as a more practical tool to characterize flows in wind tunnel studies or as an alternative to complex electron guns in industrial processes requiring an electron beam. We describe in this paper the gun which has been developed as well as its different features which have been characterized in the laboratory.

  4. Effect of conical nanopore diameter on ion current rectification.

    Science.gov (United States)

    Kovarik, Michelle L; Zhou, Kaimeng; Jacobson, Stephen C

    2009-12-10

    Asymmetric nanoscale conduits, such as conical track-etch pores, rectify ion current due to surface charge effects. To date, most data concerning this phenomenon have been obtained for small nanopores with diameters comparable to the electrical double layer thickness. Here, we systematically evaluate rectification for nanopores in poly(ethylene terephthalate) membranes with tip diameters of 10, 35, 85, and 380 nm. Current-voltage behavior is determined for buffer concentrations from 1 mM to 1 M and pHs 3.4 and 6.7. In general, ion current rectification increases with decreasing tip diameter, with decreasing ionic strength, and at higher pH. Surface charge contributes to increased pore conductivities compared to bulk buffer conductivities, though double layer overlap is not necessary for rectification to occur. Interestingly, the 35 nm pore exhibits a maximum rectification ratio for the 0.01 M buffer at pH 6.7, and the 380 nm pores exhibit nearly diodelike current-voltage curves when initially etched and strong rectification after the ion current has stabilized.

  5. Ion-specific effects influencing the dissolution of tricalcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Nicoleau, L. [BASF Research Construction Materials and Systems, BASF Construction Chemicals GmbH, 83308 Trostberg (Germany); Schreiner, E., E-mail: eduard.schreiner@basf.com [BASF Materials and Systems, BASF SE, 67056 Ludwigshafen (Germany); Nonat, A., E-mail: andre.nonat@u-bourgogne.fr [Institut Carnot de Bourgogne, UMR6303 CNRS, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2014-05-01

    It has been recently demonstrated that the dissolution kinetics of tricalcium silicate (C{sub 3}S) is driven by the deviation from its solubility equilibrium. In this article, special attention is paid to ions relevant in cement chemistry likely to interact with C{sub 3}S. In order to determine whether specific effects occur at the interface C{sub 3}S–water, particular efforts have been made to model ion activities using Pitzer's model. It has been found that monovalent cations and monovalent anions interact very little with the surface of C{sub 3}S. On the other side, divalent anions like sulfate slow down the dissolution more strongly by modifying the surface charging of C{sub 3}S. Third, aluminate ions covalently bind to surface silicate monomers and inhibit the dissolution in mildly alkaline conditions. The formation and the breaking of these bonds depend on pH and on [Ca{sup 2+}]. Thermodynamic calculations performed using DFT combined with the COSMO-RS solvation method support the experimental findings.

  6. Effects of heavy ion radiation on digital micromirror device performance

    Science.gov (United States)

    Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan D.; Pellish, Jonny; Robberto, Massimo; Heap, Sara

    2016-09-01

    There is a pressing need in the astronomical community for space-suitable multiobject spectrometers (MOSs). Several digital micromirror device (DMD)-based prototype MOSs have been developed for ground-based observatories; however, their main use will come with deployment on a space-based mission. Therefore, the performance of DMDs under exoatmospheric radiation needs to be evaluated. DMDs were rewindowed with 2-μm thick pellicle and tested under accelerated heavy-ion radiation (control electronics shielded from radiation), with a focus on the detection of single-event effects (SEEs) including latch-up events. Testing showed that while DMDs are sensitive to nondestructive ion-induced state changes, all SEEs are cleared with a soft reset (i.e., sending a pattern to the device). The DMDs did not experience single-event induced permanent damage or functional changes that required a hard reset (power cycle), even at high ion fluences. This suggests that the SSE rate burden will be manageable for a DMD-based instrument when exposed to solar particle fluxes and cosmic rays in orbit.

  7. Effect of Pb2+ ions on photosynthetic apparatus.

    Science.gov (United States)

    Sersen, Frantisek; Kralova, Katarina; Pesko, Matus; Cigan, Marek

    2014-01-01

    Using model lead compounds Pb(NO3)2 and Pb(CH3CHOO)2, the mechanism and the site of action of Pb2+ ions in the photosynthetic apparatus of spinach chloroplasts were studied. Both compounds inhibited photosynthetic electron transport (PET) through photosystem 1 (PS1) and photosystem 2 (PS2), while Pb(NO3)2 was found to be more effective PET inhibitor. Using EPR spectroscopy the following sites of Pb2+ action in the photosynthetic apparatus were determined: the water-splitting complex and the Z•/D• intermediates on the donor side of PS2 and probably also the ferredoxin on the acceptor side of PS1, because cyclic electron flow in chloroplasts was impaired by treatment with Pb2+ ions. Study of chlorophyll fluorescence in suspension of spinach chloroplasts in the presence of Pb2+ ions confirmed their site of action in PS2. Using fluorescence spectroscopy also formation of complexes between Pb2+ and amino acid residues in photosynthetic proteins was confirmed and constants of complex formation among Pb2+ and aromatic amino acids were calculated for both studied lead compounds.

  8. Effects of Magnetic Shear on Ion-Cyclotron Modes.

    Science.gov (United States)

    Ganguli, Gurudas

    Effects of Magnetic Shear on electrostatic Ion -Bernstein Modes (IBM) are examined. Shear affects the mode structure in 3 principal ways: (i) Local effect, (ii) Global effect and (iii) Orbital effect. The role of shear at the above three levels is investigated for IBM in general and in the context of parametric instability of two Ion-Bernstein modes by a magnetosonic wave in a multispecies plasma in particular. An improved marginal stability criterion is presented at Local and Global levels and the region where the Orbital effects are influential is defined and discussed. An electron drift relative to the ions is introduced parallel to the external magnetic field giving rise to Current Driven Ion Cyclotron Instability (CDICI). An improved theory of CDICI in a sheared magnetic field is given. For temperature ratios (tau) = T(,i)/T(,e) > .25, the imaginary part of the local dispersion relation, (as a function of k(,(PARLL)) (('x)), the local parallel wavevector), can be approximated by a parabola, while for weaker (tau) it can be approximated by a pair of straight lines; in each case a second order differential equation is solved for complex roots, (omega). Growth rates ((gamma)/(OMEGA)), are plotted against the square of the normalized pependicular wavevector ((TURN)b) for various values of shear, temperature ratios and electron drift strengths. The main effect of shear is to localize this instability in x-space around some x(,0) such that k(,(PARLL))('0) = ('s)k(,y)x(,0), (('s) being inverse shear length), corresponds to the ((gamma)/(OMEGA))(,max) in the absence of shear. Shear also reduces the growth rate in general: however, ((gamma)/(OMEGA)) for the b values away from the value corresponding to the maximum growth rate are affected more than those which are closer, thereby making the instability more coherent in b. Operator methods employing the Vlasov operator to obtain orbits and velocities in external magnetic fields are studied. Particle orbits and

  9. Simulation of an anion in water: effect of ion polarizability

    Science.gov (United States)

    Karim, Omar A.

    1991-10-01

    A polarizable-polar water model is used to study the structure of wate near a chloride ion. A semi-classical description of ion polarizability is included. Significant changes in the solute-solvent distribution functions are observed. When compared with a simulation without ion polarizability, it is found that the hydration number is further decreased when ion polarizability is present.

  10. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  11. Effects of magnesium ions on ribosomes: a fluorescence study.

    Science.gov (United States)

    Bonincontro, A; Briganti, G; Giansanti, A; Pedone, F; Risuleo, G

    1993-07-18

    Fluorescence intensity measurements of ethidium bromide (EB) bound to ribosomal RNA (rRNA) in suspensions of 30S and 50S subunits, of 70S ribosomal particles and of protein-free extracted rRNA are presented. Changes in the intercalation of EB reflect changes in conformation and degree of exposure of rRNA. The effect of removal of magnesium ions on the binding of EB is compared in protein-free rRNA and in ribosomal particles by a Scatchard plot analysis. In free ribosomal RNA the number of bound EBs do not depend on magnesium content, only the association constant is affected. In intact 70S particles and both in the separated 50S and 30S subunits the presence of magnesium greatly reduces binding of EB and no saturation of the fluorescence intensity with rRNA concentration is observed, preventing a Scatchard plot analysis. Removal of magnesium restores a strong EB intercalation. Then magnesium ions induce a conformational change in the 70S particles as well as in the separated subunits. The different behavior of the free-rRNA and of the ribosomal particles indicates that ribosomal proteins are relevant to the structural changes induced by magnesium ions. The comparison of the number of excluded sites and of the association constant in the 30S, 50S subunits and in the 70S particles indicates that even without Mg2+ ions the two subunits still interact, at variance with the commonly shared opinion that subunits dissociation takes place at low magnesium concentration.

  12. Reactive ion beam etching studies of tungsten with CF sub 4 /argon mixtures using ion scattering spectroscopy and SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Cox, T.I.; Deshmukh, V.G.I. (Royal Signals and Radar Establishment, Malvern (UK)); Armour, D.G. (Salford Univ. (UK). Dept. of Electrical Engineering)

    1989-01-01

    Tungsten foil was bombarded at 550 eV with ion beams generated from CF{sub 4}/Ar gas mixtures. The chemical compositions of the bombarded surface and etch products were determined using Ion Scattering Spectroscopy and Secondary Ion Mass Spectrometry respectively. As the ratio CF{sub 4}/Ar was increased, the tungsten surface became covered with fluorine atoms. The products observed were positive ions of W, WF, and WF{sub 2}, with WF{sub 2} being only formed above a threshold concentration of CF{sub 4} in the gas mixture. (author).

  13. Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode

    Energy Technology Data Exchange (ETDEWEB)

    Corbella, C; Rubio-Roy, M; Bertran, E; Portal, S; Pascual, E; Polo, M C; Andujar, J L, E-mail: corbella@ub.edu [FEMAN Group, IN2UB, Departament de Fisica Aplicada i Optica, Universitat de Barcelona, c/ MartI i Franques 1, 08028 Barcelona (Spain)

    2011-02-15

    The ion fluxes and ion energy distributions (IED) corresponding to discharges in methane (CH{sub 4}) were measured in time-averaged mode with a compact retarding field energy analyser (RFEA). The RFEA was placed on a biased electrode at room temperature, which was powered by either radiofrequency (13.56 MHz) or asymmetric bipolar pulsed-dc (250 kHz) signals. The shape of the resulting IED showed the relevant populations of ions bombarding the cathode at discharge parameters typical in the material processing technology: working pressures ranging from 1 to 10 Pa and cathode bias voltages between 100 and 200 V. High-energy peaks in the IED were detected at low pressures, whereas low-energy populations became progressively dominant at higher pressures. This effect is attributed to the transition from collisionless to collisional regimes of the cathode sheath as the pressure increases. On the other hand, pulsed-dc plasmas showed broader IED than RF discharges. This fact is connected to the different working frequencies and the intense peak voltages (up to 450 V) driven by the pulsed power supply. This work improves our understanding in plasma processes at the cathode level, which are of crucial importance for the growth and processing of materials requiring controlled ion bombardment. Examples of industrial applications with these requirements are plasma cleaning, ion etching processes during fabrication of microelectronic devices and plasma-enhanced chemical vapour deposition of hard coatings (diamond-like carbon, carbides and nitrides).

  14. Fe embedded in ice: The impacts of sublimation and energetic particle bombardment

    Science.gov (United States)

    Frankland, Victoria L.; Plane, John M. C.

    2015-05-01

    Icy particles containing a variety of Fe compounds are present in the upper atmospheres of planets such as the Earth and Saturn. In order to explore the role of ice sublimation and energetic ion bombardment in releasing Fe species into the gas phase, Fe-dosed ice films were prepared under UHV conditions in the laboratory. Temperature-programmed desorption studies of Fe/H2O films revealed that no Fe atoms or Fe-containing species co-desorbed along with the H2O molecules. This implies that when noctilucent ice cloud particles sublimate in the terrestrial mesosphere, the metallic species embedded in them will coalesce to form residual particles. Sputtering of the Fe-ice films by energetic Ar+ ions was shown to be an efficient mechanism for releasing Fe into the gas phase, with a yield of 0.08 (Ar+ energy=600 eV). Extrapolating with a semi-empirical sputtering model to the conditions of a proton aurora indicates that sputtering by energetic protons (>100 keV) should also be efficient. However, the proton flux in even an intense aurora will be too low for the resulting injection of Fe species into the gas phase to compete with that from meteoric ablation. In contrast, sputtering of the icy particles in the main rings of Saturn by energetic O+ ions may be the source of recently observed Fe+ in the Saturnian magnetosphere. Electron sputtering (9.5 keV) produced no detectable Fe atoms or Fe-containing species. Finally, it was observed that Fe(OH)2 was produced when Fe was dosed onto an ice film at 140 K (but not at 95 K). Electronic structure theory shows that the reaction which forms this hydroxide from adsorbed Fe has a large barrier of about 0.7 eV, from which we conclude that the reaction requires both translationally hot Fe atoms and mobile H2O molecules on the ice surface.

  15. Composition demixing effect on cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The composition demixing effect has been found often in alloy coatings deposited by cathodic arc ion plating using various alloy cathode targets.The characteristics of composition demixing phenomena were summarized.Beginning with the ionization zone near the surface of the cathode target, a physical model in terms of the ions generated in the ionization zone and their movement in the plating room modified by bias electric field was proposed.Based on the concept of electric charge state, the simulation calculation of the composition demixing effect was carried out.The percentage of atoms of an element in coating and from the alloy target was demonstrated by direct comparison.The influences of the composition change of the alloy target and the bias electric field on the composition demixing effect were discussed in detail.It is also proposed that the average charge states of the elements may be used to calculate the composition demixing effect and to design the composition of the alloy target.

  16. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  17. Promoter Effects of Rare Earth Ions on Electrocatalytic Oxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The promoter effects of rare earth ions on the electrocatalytic oxidation of methanol at the Pt electrode were studied using the cyclic voltammetry and stable polarization techniques. It was found for the first time that Eu、Ho、Dy ions could accelerate the electrocatalytic oxidation of methanol at the Pt electrode, while Lu、Pr、Yb、Sm ions showed inhibitor effects.

  18. L X-ray emission induced by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Pajek, M. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Banaś, D., E-mail: d.banas@ujk.edu.pl [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Braziewicz, J.; Majewska, U.; Semaniak, J. [Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Fijał-Kirejczyk, I. [The Institute of Atomic Energy, 05-400 Otwock-Świerk (Poland); Jaskóła, M.; Czarnacki, W.; Korman, A. [The National Centre for Nuclear Research, 05-400 Otwock-Świerk (Poland); Kretschmer, W. [Physikalisches Institut, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany); Mukoyama, T. [Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), H-4026 Debrecen (Hungary); Trautmann, D. [Institut für Physik, Universität Basel, Basel (Switzerland)

    2015-11-15

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster–Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L{sub 2}-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  19. L X-ray emission induced by heavy ions

    Science.gov (United States)

    Pajek, M.; Banaś, D.; Braziewicz, J.; Majewska, U.; Semaniak, J.; Fijał-Kirejczyk, I.; Jaskóła, M.; Czarnacki, W.; Korman, A.; Kretschmer, W.; Mukoyama, T.; Trautmann, D.

    2015-11-01

    Particle-induced X-ray emission (PIXE) technique is usually applied using typically 1 MeV to 3 MeV protons or helium ions, for which the ion-atom interaction is dominated by the single ionization process. For heavier ions the multiple ionization plays an increasingly important role and this process can influence substantially both the X-ray spectra and atomic decay rates. Additionally, the subshell coupling effects are important for the L- and M-shells ionized by heavy ions. Here we discuss the main features of the X-ray emission induced by heavy ions which are important for PIXE applications, namely, the effects of X-ray line shifts and broadening, vacancy rearrangement and change of the fluorescence and Coster-Kronig yields in multiple ionized atoms. These effects are illustrated here by the results of the measurements of L X-ray emission from heavy atoms bombarded by 6 MeV to 36 MeV Si ions, which were reported earlier. The strong L-subshell coupling effects are observed, in particular L2-subshell, which can be accounted for within the coupling subshell model (CSM) developed within the semiclassical approximation. Finally, the prospects to use heavy ions in PIXE analysis are discussed.

  20. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  1. Nonplanar ion-acoustic shocks in electron–positron–ion plasmas: Effect of superthermal electrons

    Indian Academy of Sciences (India)

    Deb Kumar Ghosh; Prasantha Chatterjee; Pankaj Kumar Mandal; Biswajit Sahu

    2013-09-01

    Ion-acoustic shock waves (IASWs) in a homogeneous unmagnetized plasma, comprising superthermal electrons, positrons, and singly charged adiabatically hot positive ions are investigated via two-dimensional nonplanar Kadomstev–Petviashvili–Burgers (KPB) equation. It is found that the profiles of the nonlinear shock structures depend on the superthermality of electrons. The influence of other plasma parameters such as, ion kinematic viscosity and ion temperature, is discussed in the presence of superthermal electrons in nonplanar geometry. It is also seen that the IASWs propagating in cylindrical/spherical geometry with transverse perturbation will be deformed as time goes on.

  2. Secondary ion emission from CO2-H2O ice irradiated by energetic heavy ions: Part I. Measurement of the mass spectra

    Science.gov (United States)

    Farenzena, L. S.; Collado, V. M.; Ponciano, C. R.; da Silveira, E. F.; Wien, K.

    2005-05-01

    Secondary ion mass spectrometry is used to investigate ion emission from a frozen-gas mixture (T = 80-90 K) of CO2 and H2O bombarded by MeV nitrogen ions and by 252Cf fission fragments (FF). The aim of the experiments is to produce organic molecules in the highly excited material around the nuclear track and to detect them in the flux of sputtered particles. Such sputter processes are known to occur at the icy surfaces of planetary or interstellar objects. Time-of-flight (TOF) mass spectrometry is employed to identify the desorbed ions. Mass spectra of positive and negative ions were taken for several molecular H2O/CO2 ratios. In special, positive ions induced by MeV nitrogen beam were analyzed for 9 and 18% H2O concentrations of the CO2-H2O ice and negative ions for ~5% H2O. The ion peaks are separated to generate exclusive the spectra of CO2 specific ions, H2O specific ions and hybrid molecular ions, the latter ones corresponding to ions that contain mostly H and C atoms. In the mass range from 10 to 320 u, the latter exhibits 35 positive and 58 negative ions. The total yield of the positive ions is 0.35 and 0.57 ions/impact, respectively, and of negative ions 0.066 ions/impact. Unexpected effects of secondary ion sputtering yields on H2O/CO2 ratio are attributed to the influence of water molecules concentration on the ionization process.

  3. Effects of cobalt and chromium ions on lymphocyte migration.

    Science.gov (United States)

    Baskey, Stephen J; Lehoux, Eric A; Catelas, Isabelle

    2017-04-01

    A T cell-mediated hypersensitivity reaction has been reported in some patients with CoCrMo-based implants. However, the role of cobalt and chromium ions in this reaction remains unclear. The objective of the present study was to analyze the effects of Co(2+) and Cr(3+) in culture medium, as well as the effects of culture supernatants of macrophages exposed to Co(2+) or Cr(3+) , on the migration of lymphocytes. The release of cytokines/chemokines by macrophages exposed to Co(2+) and Cr(3+) was also analyzed. The migration of murine lymphocytes was quantified using the Boyden chamber assay and flow cytometry, while cytokine/chemokine release by J774A.1 macrophages was measured by ELISA. Results showed an ion concentration-dependent increase in TNF-α and MIP-1α release and a decrease in MCP-1 and RANTES release. Migration analysis showed that the presence of Co(2+) (8 ppm) and Cr(3+) (100 ppm) in culture medium increased the migration of T lymphocytes, while it had little or no effect on the migration of B lymphocytes, suggesting that Co(2+) and Cr(3+) can stimulate the migration of T but not B lymphocytes. Levels of T lymphocyte migration in culture medium containing Co(2+) or Cr(3+) were not statistically different from those in culture supernatants of macrophages exposed to Co(2+) or Cr(3+) , suggesting that the effects of the ions and chemokines were not additive, possibly because of ion interference with the chemokines and/or their cognate receptors. Overall, results suggest that Co(2+) and Cr(3+) are capable of stimulating the migration of T (but not B) lymphocytes in the absence of cytokines/chemokines, and could thereby contribute to the accumulation of more T than B lymphocytes in periprosthetic tissues of some patients with CoCrMo-based implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:916-924, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  4. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  5. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    Science.gov (United States)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  6. Ion implantation method for preparing polymers having oxygen erosion resistant surfaces

    Science.gov (United States)

    Lee, Eal H.; Mansur, Louis K.; Heatherly, Jr., Lee

    1995-01-01

    Hard surfaced polymers and the method for making them are generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface, improved wear resistance, and improved oxygen erosion resistance.

  7. Influence of particle bombardment on microstructure and internal stresses of refractory metal suicides on silicon

    Science.gov (United States)

    Hardtke, Ch.; Schilling, W.; Ullmaier, H.

    1991-07-01

    First results on microstructural changes and stress relaxation in thin refractory metal suicide films (TaSi 2 and MoSi 2) caused by particle bombardment are reported. The polycrystalline films had initial tensile stresses of some 10 9 Pa. Exposed to irradiation with Ge ions of 400 keV, both suicides showed a similar stress relaxation behaviour as a function of dose. During room-temperature implantation the initial tensile stress rapidly decreased and turned into compressive stress. Continuous irradiation partly relaxed the compressive stress and resulted in a saturation value of some -10 8 Pa. With increasing implantation temperature, the buildup of compressive stress gradually vanished, leaving only the initial decrease of tensile stress which finally approached zero. Based on microstructural investigations (TEM and X-ray diffraction) it is proposed to explain this behaviour by the combined action of two processes: relaxation of tensile stress by a volume increase due to irradiation-induced amorphization, and Frenkel defect production and relaxation of compressive stress by irradiation-induced densification of amorphous regions and/or Frenkel defect elimination.

  8. Electron-bombarded 〈110〉-oriented tungsten tips for stable tunneling electron emission

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, T. K.; Abe, T.; Nazriq, N. M. K.; Irisawa, T. [Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan)

    2016-03-15

    A clean tungsten (W) tip apex with a robust atomic plane is required for producing a stable tunneling electron emission under strong electric fields. Because a tip apex fabricated from a wire by aqueous chemical etching is covered by impurity layers, heating treatment in ultra-high vacuum is experimentally known to be necessary. However, strong heating frequently melts the tip apex and causes unstable electron emissions. We investigated quantitatively the tip apex and found a useful method to prepare a tip with stable tunneling electron emissions by controlling electron-bombardment heating power. Careful characterizations of the tip structures were performed with combinations of using field emission I–V curves, scanning electron microscopy, X-ray diffraction (transmitted Debye-Scherrer and Laue) with micro-parabola capillary, field ion microscopy, and field emission microscopy. Tips were chemically etched from (1) polycrystalline W wires (grain size ∼1000 nm) and (2) long-time heated W wires (grain size larger than 1 mm). Heating by 10-40 W (10 s) was found to be good enough to remove oxide layers and produced stable electron emission; however, around 60 W (10 s) heating was threshold power to increase the tip radius, typically +10 ± 5 nm (onset of melting). Further, the grain size of ∼1000 nm was necessary to obtain a conical shape tip apex.

  9. Knowledge Representation of Ion-Sensitive Field-Effect Transistor Voltage Response for Potassium Ion Concentration Detection in Mixed Potassium/Ammonium Ion Solutions

    Directory of Open Access Journals (Sweden)

    Wan F.H. Abdullah

    2010-01-01

    Full Text Available Problem statement: The Ion-Sensitive Field-Effect Transistor (ISFET is a metal-oxide field-effect transistor-based sensor that reacts to ionic activity at the electrolye/membrane/gate interface. The ionic sensor faces issue of selectivity from interfering ions that contribute to the sensor electrical response in mixed solutions. Approach: We present the training data collection of ISFET voltage response for the purpose of post-processing stage neural network supervised learning. The role of the neural network is to estimate the main ionic activity from the interfering ion contribution in mixed solutions given time-independent input voltages. In this work, potassium ion (K+ and ammonium ion (NH4+ ISFET response data are collected with readout interface circuit that maintains constant voltage and current bias levels to the ISFET drain-source terminals. Sample solutions are prepared by keeping the main ion concentration fixed while the activity of an interfering ion varied based on the fixed interference method. Results: Sensor demonstrates linear relationship to the ion concentration within detection limit but has low repeatability of 0.52 regression factor and 0.16 mean squared error between similarly repeated measurements. We find that referencing the voltage response to the sensor response in DIW prior to measurement significantly improves the repeatability by 15.5% for correlation and 98.3% for MSE. Demonstration of multilayer perceptron feed-forward neural network estimation of ionic concentration from the data collection shows a recognition of >0.8 regression factor. Conclusion: Time-independent DC voltage response of ISFET of the proposed setup can be used as training data for neural network supervised learning for the estimation of K+ in mixed K+/NH4+ solutions.

  10. Electric field effects on resonance structures in negative ion photodetachment

    Science.gov (United States)

    Slonim, V. Z.; Greene, C. H.

    1991-12-01

    The photodetachment of negative ions in a static electric field exhibits some new characteristic features and has beer considered in various theortical approaches.1 Most of them, however, neglect the short-range interaction between the escaping electron and the atomic core, and must be modified to describe various resonant effects. Experiments2 have shown very rich resonant structure in a dc-field, which can be attributed to the mixing of different excited states in the negative ion, to competition between elastic and inelastic decay channels, and to tunneling effects induced by the field. It is known that various resonant structures in Photoprocesses can be successfully described within standard multichannel quantum defect theory (MQDT). We present a modified MQDT frame transformation approach to extend the standard method to long-range potentials with nonspherical symmetry. In our treatment both the electron-field and electron-atom interactions are treated nonperturbatively and on an equal footing. The resulting theoretical calculations are compared with experimental data on field-modified H? photodetachment in the vicinity of the n = 2 resonances.

  11. Effect of Energetic-Ion-Driven MHD Instabilities on Energetic-Ion-Transport in Compact Helical System and Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M. [National Institute for Fusion Science, Toki, Japan; Ogawa, K. [Nagoya University, Japan; Toi, K. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Nagaoka, K. [National Institute for Fusion Science, Toki, Japan; Shimizu, A. [National Institute for Fusion Science, Toki, Japan; Spong, Donald A [ORNL; Okumura, S. [National Institute for Fusion Science, Toki, Japan

    2010-01-01

    This paper describes 1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and 2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma.

  12. Effect of energetic-ion-driven MHD instabilities on energetic-ion-transport in compact helical system and large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M.; Toi, K.; Osakabe, M.; Nagaoka, K.; Shimizu, A.; Okamura, S. [National Institute for Fusion Science, Toki (Japan); Ogawa, K. [Department of Energy Science and Engineering, Nagoya University, Nagoya (Japan); Spong, D.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2010-08-15

    This paper describes (1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and (2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Effects of electrolytes on ion transport in Chitosan membranes

    Science.gov (United States)

    Rupiasih, N. N.

    2016-11-01

    Recently, charged polymer membranes are widely used for water purification applications involving control of water and ion transport, such as reverse osmosis and electrodialysis. In this study, we have explored the effects of electrolyte solutions on ion transport properties of chitosan synthetic membranes via concentration gradient driven transport. Also, the water uptake of those membranes, before (control) as well used membranes have studied. The membrane used was chitosan membrane 2%. The electrolyte solutions used were HCl, KCl, CaCl2, MgCl2 and AlCl3, with various concentrations of 0.1 mM, 1 mM, 10 mM, 100 mM and 1000 mM. Ion transport experiments were carried out in a cell membrane model which composed of two compartments and the potential difference of membrane was measured using Ag/AgCl calomel electrodes. Those measurements were conducted at ambient temperature 28.8 °C. The results showed that the current density (J) increased with increased in concentration gradient of solution. The current density was higher in electrolyte solution which has higher molar conductivity than those of a solution with a small molar conductivity. Meanwhile the current density was smaller in electrolyte solution which has larger Stokes radii than those of a solution with small Stokes radii. Except membrane which has been used in HCl solution, the water uptakes of the used membranes were greater than the control membrane. These results can develop and validate a common framework to interpret data of concentration gradient driven transport in chitosan synthetic membranes and to use it to design of membranes with improved performance.

  14. EFFECTS OF METAL IONS ON THE CONFORMATIONAL CHANGES OF DNA

    Institute of Scientific and Technical Information of China (English)

    G. Q. Liu; Y.Y. Meng; S.H. Liu; Y.H. Hu

    2005-01-01

    DNA takes on multi-different conformations such as A-, B-, C-, D- and Z-form. These conformations can transit to one another when DNA deposited in some metal ions solutions or when changing the concentrations of the same metal ions. Here, several major conformational transitions of DNA induced by metal ions under different environment were introduced and the mechanism of the interaction of metal ions with DNA was discuss in detail.

  15. Optimization of Energy Scope for Titanium Nitride Films Grown by Ion Beam-Assisted Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Wei; MA Zhong-Quan; WANG Ye; WANG De-Ming

    2006-01-01

    The deposited energy during film growth with ion bombardment, correlated to the atomic displacement on the surface monolayer and the underlying bulk, has been calculated by a simplified ion-solid interaction model under binary collision approximation. The separated damage energies caused by Ar ion, different for the surface and the bulk, have been determined under the standard collision cross section and a well-defined surface and bulk atom displacement threshold energy of titanium nitride (TiN). The optimum energy scope shows that the incident energy of Ar+ around 110eV for TiN (111) and 80eV for TiN (200) effectively enhances the mobility of adatom on surface but excludes the damage in underlying bulk. The theoretical prediction and the experimental result are in good agreement in low energy ion beam-assisted deposition.

  16. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  17. Mutagenic effect of accelerated heavy ions on bacterial cells

    Science.gov (United States)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  18. Effect of correlation on cumulants in heavy-ion collisions

    CERN Document Server

    Mishra, D K; Netrakanti, P K

    2015-01-01

    We study the effects of correlation on cumulants and their ratios of net-proton multiplicity distribution which have been measured for central (0-5\\%) Au+Au collisions at Relativistic Heavy Ion Collider (RHIC). This effect has been studied assuming individual proton and anti-proton distributions as Poisson or Negative Binomial Distribution (NBD). In-spite of significantly correlated production due to baryon number, electric charge conservation and kinematical correlations of protons and anti-protons, the measured cumulants of net-proton distribution follow the independent production model. In the present work we demonstrate how the introduction of correlations will affect the cumulants and their ratios for the difference distributions. We have also demonstrated this study using the proton and anti-proton distributions obtained from HIJING event generator.

  19. Effects of ion-fluid temperature on dust-ion-acoustic solitons

    Indian Academy of Sciences (India)

    Fatema Sayed; A A Mamun

    2008-03-01

    The properties of dust-ion-acoustic (DIA) solitons in an unmagnetized dusty plasma, whose constituents are adiabatic ion-fluid, Boltzmann electrons, and static dust particles, are investigated by employing the reductive perturbation method. The Korteweg-de Vries equation is derived and its stationary solution is numerically analyzed. The parametric regimes for the existence of positive and negative solitons are found. It has been shown that ion-fluid temperature not only significantly modifies the basic features (width and amplitude) of DIA solitons, but also introduces some new features of DIA solitons.

  20. Effect of Mo ion-implantation on the adhesion of diamond coatings

    CERN Document Server

    Yang Shie; Wang Xiao Ping; Li Hui; Ma Bing Xian; Qin Guang Yong; Zhang Bing Lin

    2002-01-01

    Diamond coatings were deposited on the cobalt-cemented tungsten carbide (YG6) substrates, which have been implanted with Mo ions, by microwave plasma CVD (MPCVD) method. The effect of ion-implantation on the adhesion of diamond coatings was studied. The results showed that the chemical compositions of cemented carbide substrate surfaces change obviously after Mo ion-implantation; and the adhesion strength between the CVD diamond coatings and the substrates implanted with Mo ions in proper concentration is improved remarkably

  1. Nano-textured high sensitivity ion sensitive field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.; Shahsafi, A.; Mohajerzadeh, S., E-mail: mohajer@ut.ac.ir [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of)

    2016-02-07

    Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict the extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.

  2. Bambusurils as effective ion caging agents: Does desolvation guide conformation?

    Science.gov (United States)

    Cova, Tânia F. G. G.; Nunes, Sandra C. C.; Pinho e Melo, Teresa M. V. D.; Pais, Alberto A. C. C.

    2017-03-01

    Water soluble bambusurils can bind and isolate inorganic anions in the center of the hydrophobic cavity, with high affinity and selectivity. This makes them appealing anion carriers and ion transporters for a wide range of biomedical applications, including in ion-channel diseases of the muscles, bones and brain. For understanding the bambusuril ion caging ability in aqueous media, molecular dynamics simulations, including free energy calculations are used. It is seen that the ion is hermetically sealed inside the cavity, as a result of a concerted action involving conformation and desolvation of both ion and bambusuril cavity.

  3. Effect of Nitrite Ions on Steel Corrosion Induced by Chloride or Sulfate Ions

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2013-01-01

    Full Text Available The influence of nitrite concentration on the corrosion of steel immersed in three simulated pH environments containing chloride ions or sulfate ions has been investigated by comparing and analyzing the change of half-cell potential, the change of threshold level of Cl- or SO42-, the change of threshold level of NO2-/Cl- or NO2-/SO42- mole ratio, and the changes of anodic/cathodic polarization curves and Stern-Geary constant B. The corrosivity of chloride ions against sulfate ions also has been discussed in pH 12.6, pH 10.3, and pH 8.1 environments containing 0, 0.053, and 0.2 mol/L NO2, respectively.

  4. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ovanesyan, Zaven; Marucho, Marcelo, E-mail: marcelo.marucho@utsa.edu [Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003 (United States); Medasani, Bharat [Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003 (United States); Computational Research Division, Lawrence Berkeley National Lab, Berkeley, California 94700 (United States); Fenley, Marcia O. [Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306 (United States); Guerrero-García, Guillermo Iván [Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Olvera de la Cruz, Mónica [Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-12-14

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models.

  5. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla;

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  6. The ballistic performance of the bombard Mons Meg

    Directory of Open Access Journals (Sweden)

    Ian Lewtas

    2016-04-01

    Full Text Available The bombard Mons Meg, located in Edinburgh Castle, with a diameter of 19 inches (48 cm, was one of the largest calibre cannons ever built. Constructed in 1449 and presented to King James II of Scotland in 1454, Mons Meg was used in both military and ceremonial roles in Scotland until its barrel burst in 1680. This paper examines the history, internal, external and terminal ballistics of the cannon and its shot. The likely muzzle velocity was estimated by varying the propellant type and the cannon profile was investigated to identify weak spots in the design that may have led to its failure. Using the muzzle velocity calculated from the internal ballistics, simulations were performed with granite and sandstone shot for varying launch angle and ground temperature. The likely trajectory and range of the cannonballs are described. The internal and external ballistics informed the initial conditions of the terminal ballistic impact scenarios. The performance of the cannonball against both period and modern targets, in the form of a pseudo-castle wall and a monolithic concrete target, respectively, were simulated and are presented and discussed.

  7. The ballistic performance of the bombard Mons Meg

    Institute of Scientific and Technical Information of China (English)

    Ian LEWTAS; Rachael MCALISTER; Adam WALLIS; Clive WOODLEY; Ian CULLIS

    2016-01-01

    The bombard Mons Meg, located in Edinburgh Castle, with a diameter of 19 inches (48 cm), was one of the largest calibre cannons ever built. Constructed in 1449 and presented to King James II of Scotland in 1454, Mons Meg was used in both military and ceremonial roles in Scotland until its barrel burst in 1680. This paper examines the history, internal, external and terminal ballistics of the cannon and its shot. The likely muzzle velocity was estimated by varying the propellant type and the cannon profile was investigated to identify weak spots in the design that may have led to its failure. Using the muzzle velocity calculated from the internal ballistics, simulations were performed with granite and sandstone shot for varying launch angle and ground temperature. The likely trajectory and range of the cannonballs are described. The internal and external ballistics informed the initial conditions of the terminal ballistic impact scenarios. The performance of the cannonball against both period and modern targets, in the form of a pseudo-castle wall and a monolithic concrete target, respectively, were simulated and are presented and discussed.

  8. Did Saturn's rings form during the Late Heavy Bombardment ?

    CERN Document Server

    Charnoz, Sebastien; Dones, Luke H; Salmon, Julien

    2008-01-01

    The origin of Saturn\\' s massive ring system is still unknown. Two popular scenarios - the tidal splitting of passing comets and the collisional destruction of a satellite - rely on a high cometary flux in the past. In the present paper we attempt to quantify the cometary flux during the Late Heavy Bombardment (LHB) to assess the likelihood of both scenarios. Our analysis relies on the so-called Nice model of the origin of the LHB (Tsiganis et al., 2005; Morbidelli et al., 2005; Gomes et al., 2005) and on the size distribution of the primordial trans-Neptunian planetesimals constrained in Charnoz & Morbidelli (2007). We find that the cometary flux on Saturn during the LHB was so high that both scenarios for the formation of Saturn rings are viable in principle. However, a more detailed study shows that the comet tidal disruption scenario implies that all four giant planets should have comparable ring systems whereas the destroyed satellite scenario would work only for Saturn, and perhaps Jupiter. This is ...

  9. The effect of copper ions, aluminium ions and their mixtures on separation of pectin from the sugar beet juice

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2013-01-01

    Full Text Available In sugar industry there is a problem of the presence of undesirable macromolecules compounds such as pectin in sugar beet juice. The affinity of calcium ions commonly used in the sugar industry for the removal of pectin from the sugar beet juice is relatively small. Coagulation and precipitation of pectin can be performed by process of discharging that is chemically induced. Compounds with di- and trivalent cations such as pure CuSO4, Al2(SO43 or their mixtures can be applied for clarification of pectin colloidal systems. According to data from the order of pectin selectivity to divalent metal ions, Cu2+ ions are the first order of ion binding. Also, aluminum sulfate is commonly used in the waste water treatment. Two model solutions of pectin whose concentration corresponds to the concentration of these macromolecules in sugar beet juice (0.1% w/w are investigated. Using a method of measuring zeta potential, it was proven for both investigated pectin that fewer quantities of Cu2+ ions compared to the values of Al3+ ions are needed to reach zero zeta potential. In all the investigated coagulants and their mixtures, zeta potential has changed the sign. In experiments with mixtures has been shown that pure salts showed better coagulation properties. The reduced strength of binding of cations in the case of most of the applied mixture of Cu2+ and Al3+ ions, can be explained by the mutual competition of these ions for the adsorption site (COO- groups on the surface of macromolecules. Mixture with approximately equal shares of ions Cu2+ and Al3+ had the most unfavorable coagulation ability (ion antagonism. Mechanism of discharge as well as the model of double electric layer surrounding pectin macromolecules in the presence of mixtures of Cu2+ and Al3+ ions are suggested. However, due to possible undesirable effects of CuSO4 on food processing, Al2(SO43 is proposed instead of traditional coagulant CaO, not only because of lower consumptions of

  10. Measurement of L-Shell X-ray Production Cross Section of Pb by Fluorine Ion Bombardment%氟离子碰撞引起铅原子L壳层X射线产生截面的实验测量

    Institute of Scientific and Technical Information of China (English)

    吕牛; 常宏伟; 张艳萍; 徐进章; 杜树斌

    2011-01-01

    实验测量了20-50 MeV的F离子碰撞Pb原子产生的L壳层X射线,研究了Pb的L各支壳层X射线产生截面δ(L1),6(Lα), (Lβ),δ(Lγ)和δ(Ltot)与入射离子能量的关系.结果显示:在本能区范围内,Pb原子发射L壳层X射线产生截面随人射离子能量的增加而增加.利用L壳层的辐射跃迁几率、Coster-Kronig跃迁率和L亚壳层的荧光产额将平面波波恩近似(PWBA)和ECPSSR理论计算的电离截面转换为L层X射线产生截面,并与实验结果相比较.结果表明,δ(L1),δ(Lα),δ(Lβ),δ(Lγ)和δ(Ltot)实验测量值与PWBA理论计算值差别很大,ECPSSR理论计算值与δ(L0)实验值符合很好,与δ(L1),δ(Lβ)的实验值差别较小,但与δ(Lγ)的实验值差别较大.%Production cross section of Pb L-shell X-ray induced by 20-50 MeV F5+ ion was measured, and the relationship of X-ray production cross section and impact ion energy was represented.At the same time, inner-shell ionization cross sections given by plane-wave Born approximation (PWBA) theory and the ECPSSR theory were transformed to L-subshell X-ray production cross section by using radiative transition probability, Coster-Kronig transition probability and fluorescence yield.The results were compared with the experimental results.It shows that reasonable agreement between theory and experiment is observed, and the ECPSSR theory is closer to the experiment.

  11. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Science.gov (United States)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  12. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, L.D., E-mail: yuld@fnrf.science.cmu.ac.th [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wongkham, W. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Prakrajang, K. [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sangwijit, K.; Inthanon, K. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongkumkoon, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wanichapichart, P. [Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand); Membrane Science and Technology Research Center, Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90112 (Thailand); Anuntalabhochai, S. [Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-06-15

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  13. Comparison between Free and Immobilized Ion Effects on Hydrophobic Interactions: A Molecular Dynamics Study

    CERN Document Server

    Huang, Kai; Ma, C Derek; Abbott, Nicholas L; Szlufarska, Izabela

    2016-01-01

    Fundamental studies of the effect of specific ions on hydrophobic interactions are driven by the need to understand phenomena such as hydrophobically driven self-assembly or protein folding. Using beta-peptide-inspired nano-rods, we investigate the effects of both free ions (dissolved salts) and proximally immobilized ions on hydrophobic interactions. We find that the free ion effect is correlated with the water density fluctuation near a non-polar molecular surface, showing that such fluctuation can be an indicator of hydrophobic interactions in the case of solution additives. In the case of immobilized ion, our results demonstrate that hydrophobic interactions can be switched on and off by choosing different spatial arrangements of proximal ions on a nano-rod. For globally amphiphilic nano-rods, we find that the magnitude of the interaction can be further tuned using proximal ions with varying ionic sizes. In general, univalent proximal anions are found to weaken hydrophobic interactions. This is in contras...

  14. Effects of irradiation of energetic heavy ions on digital pulse shape analysis with silicon detectors

    Science.gov (United States)

    Barlini, S.; Carboni, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Piantelli, S.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Fazia Collaboration

    2013-04-01

    The next generation of 4π detector arrays for heavy ion studies will largely use Pulse Shape Analysis to push the performance of silicon detectors with respect to ion identification. Energy resolution and pulse shape identification capabilities of silicon detectors under prolonged irradiation by energetic heavy ions have thus become a major issue. In this framework, we have studied the effects of irradiation by energetic heavy ions on the response of neutron transmutation doped (nTD) silicon detectors. Sizeable effects on the amplitude and the risetime of the charge signal have been found for detectors irradiated with large fluences of stopped heavy ions, while much weaker effects were observed by punching-through ions. The robustness of ion identification based on digital pulse shape techniques has been evaluated.

  15. Quantitative evaluation of charge-reduction effect in cluster constituent ions passing through a foil

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, A., E-mail: chiba.atsuya@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Saitoh, Y.; Narumi, K.; Yamada, K. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Kaneko, T. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, kita-ku, Okayama-shi, Okayama 700-0005 (Japan)

    2013-11-15

    Swift cluster ions, which cause characteristic irradiation effects on a solid surface, have a possibility of establishing a new ion irradiation technique for high-sensitivity surface analysis and innovative surface modification. However, the mechanism of cluster irradiation effects has not been understood completely. We have focused on the charge reduction effect in some physical phenomena and performed a quantitative evaluation of the relationship between the charge state and the interatomic distance of the constituent ions moving in the solid. This technique is based on the refined analysis of the divergence angle of the constituent ions resulting from the foil-induced dissociation of the two-atomic molecular ion. The results derived from this analytical approach clearly showed the correlation between the average charge and the interatomic distance of the constituent ions and implied that the average charge of the constituent ions emerging from the foil varies according to the interatomic distance at the instant of cluster dissociation.

  16. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations.

    Science.gov (United States)

    Robbins, Timothy J; Wang, Yongmei

    2013-01-01

    Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.

  17. Effect of silver ions on the energy transfer from host defects to Tb ions in sol–gel silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbass, Abd Ellateef [Department of Physics, University of the Free State, Bloemfontein (South Africa); Department of Physics, Sudan University of Science and Technology (Sudan); Swart, H.C. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa)

    2015-04-15

    Plasmonic metal structures have been suggested to enhance the luminescence from rare-earth (RE) ions, but this enhancement is not yet well understood or applied to phosphor materials. Although some reports using Ag nanoparticles (NPs) in glass have attributed enhancement of RE emission to the strong electric fields associated with Ag NPs, it has also been proposed that the enhancement is instead due to energy transfer from Ag ions to RE ions. Our work using sol–gel silica shows a third possibility, namely that enhancement of the RE (e.g. Tb) emission is due to energy transfer from defects of the host material to the Tb ions, where the addition of Ag influences the silica host defects. The oxidation state of Ag as a function of annealing temperature was investigated by x-ray diffraction, transmission electron microscopy, UV–vis measurements and x-ray photoelectron spectroscopy, while optical properties were investigated using a Cary Eclipse fluorescence spectrophotometer or by exciting samples with a 325 nm He–Cd laser. The results showed that Ag ions have a significant effect on the silica host defects, which resulted in enhancement of the green Tb emission at 544 nm for non-resonant excitation using a wavelength of 325 nm. - Highlights: • Conversion of Ag ions to metallic nanoparticles after annealing of sol–gel silica. • Addition of Ag resulted in enhanced green luminescence from Tb ions in silica. • Enhancement is attributed to the effect of added Ag on the host defects of silica.

  18. Effect of polyamine reagents on exchange capacity in ion exchangers

    Science.gov (United States)

    Petrova, T. I.; Dyachenko, F. V.; Bogatyreva, Yu. V.; Borodastov, A. K.; Ershova, I. S.

    2016-05-01

    Effect of compounds involved in complex reagents is described using Helamin 906H reagent as an example. The working exchange capacity of KU-2-8chs cation exchanger in hydrogen form and Amberlite IRA 900Cl anion exchanger in OH form remained almost unchanged when they were used repeatedly to purify water that contained Helamin 906H reagent; in addition, this capacity was the same upon filtration of water that did not contain this reagent. Leakage of total organic carbon was observed earlier than that of calcium ions upon filtration of the solution through the cation exchanger layer. The test results obtained in industrial conditions indicated that using H-OH filters to purify turbine condensate enables the decrease of the concentration of organic and other impurities therein.

  19. Atomic Oxygen (ATOX) simulation of Teflon FEP and Kapton H surfaces using a high intensity, low energy, mass selected, ion beam facility

    Science.gov (United States)

    Vered, R.; Grossman, E.; Lempert, G. D.; Lifshitz, Y.

    1994-01-01

    A high intensity (greater than 10(exp 15) ions/sq cm) low energy (down to 5 eV) mass selected ion beam (MSIB) facility was used to study the effects of ATOX on two polymers commonly used for space applications (Kapton H and Teflon FEP). The polymers were exposed to O(+) and Ne(+) fluences on 10(exp 15) - 10(exp 19) ions/sq cm, using 30eV ions. A variety of analytical methods were used to analyze the eroded surfaces including: (1) atomic force microscopy (AFM) for morphology measurements; (2) total mass loss measurements using a microbalance; (3) surface chemical composition using x-ray photoelectron spectroscopy (XPS), and (4) residual gas analysis (RGA) of the released gases during bombardment. The relative significance of the collisional and chemical degradation processes was evaluated by comparing the effects of Ne(+) and O(+) bombardment. For 30 eV ions it was found that the Kapton is eroded via chemical mechanisms while Teflon FEP is eroded via collisional mechanisms. AFM analysis was found very powerful in revealing the evolution of the damage from its initial atomic scale (roughness of approx. 1 nm) to its final microscopic scale (roughness greater than 1 micron). Both the surface morphology and the average roughness of the bombarded surfaces (averaged over 1 micron x 1 micron images by the system's computer) were determined for each sample. For 30 eV a non linear increase of the Kapton roughness with the O(+) fluence was discovered (a slow increase rate for fluences phi less than 5 x 10(exp 17) O(+)/sq cm, and a rapid increase rate for phi greater than 5 x 10(exp 17) O(+)/sq cm). Comparative studies on the same materials exposed to RF and DC oxygen plasmas indicate that the specific details of the erosion depend on the simulation facility emphasizing the advantages of the ion beam facility.

  20. Particles inside electrolytes with ion-specific interactions, their effective charge distributions, and effective interactions

    Science.gov (United States)

    Ding, Mingnan; Liang, Yihao; Xing, Xiangjun

    2016-10-01

    In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

  1. Irradiation effects of swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Orkhan

    2011-12-22

    In the this thesis irradiation effects of swift heavy ions in matter are studied. The focus lies on the projectiles charge exchange and energy loss processes. A commonly used computer code which employs rate equations is the so called ETACHA code. This computer code is capable to also calculate the required input cross-sections. Within this thesis a new model to compute the charge state of swift heavy ions is explored. This model, the so called matrix method, takes the form of a simple algebraic expression, which also requires cross-sections as input. In the present implementation of the matrix method, cross-sections are taken from the ETACHA code, while excitation and deexcitation processes are neglected. Charge fractions for selected ion/target combinations, computed by the ETACHA code and the matrix method are compared. It is shown, that for sufficient large ion energies, both methods agree very well with each other. However, for lower energies pronounced differences are observed. These differences are believed to stem from the fact, that no excited states as well as the decay of theses excited states are included in the present implementation of the matrix method. Both methods are then compared with experimental measurements, where significant deviations are observed for both methods. While the predicted equilibrium charge state by both methods is in good agreement with the experiments, the matrix method predicts a much too large equilibrium thickness compared to both the ETACHA calculation as well as the experiment. Again, these deviations are believed to stem from the fact, that excitation and the decay of excited states are not included in the matrix method. A possible way to include decay processes into the matrix method is presented, while the accuracy of the applied capture cross-sections is tested by comparison with scaling rules. Swift heavy ions penetrating a dielectric are known to induced structural modifications both on the surface and in the bulk

  2. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  3. Plasma-Based Ion Beam Sources

    Energy Technology Data Exchange (ETDEWEB)

    Loeb, H. W.

    2005-07-01

    Ion beam sources cover a broad spectrum of scientific and technical applications delivering ion currents between less than 1 mA and about 100 A at acceleration voltages between 100 V and 100 kV. The ions are mostly generated by electron collisions in a gas discharge and then extracted from the discharge plasma, focused and post-accelerated by single- or multi-aperture electrode systems. Some important applications require the neutralization of the exhausted beam either by charge exchange or by admixture of electrons. In the first part of the paper, the theory of ionization by electron impact, the energy and carrier balances in the plasma, and the extraction and focusing mechanisms will be outlined. The principles of the preferred gas discharges and of the ion beam sources based on them are discussed; i.e. of the Penning, bombardment, arc, duoplasmatron, radio frequency, and microwave types. In the second part of the paper, the special requirements of the different applications are described together with the related source hardware. One distinguishes: 1. Single-aperture ion sources producing protons, heavy ions, isotope ions, etc. for particle accelerators, ion microprobes, mass spectrometers, isotope separators, etc.; quality determinative quantities are brightness, emittance, energy width, etc. 2. Broad-beam multi-aperture injector sources for fusion machines with positive or negative deuterium ions; very high beam densities, small portions of molecular ions, flat beam profiles with small divergence angles, etc. are required. 3. Broad-beam multi-aperture ion thrusters for space propulsion operated with singly charged xenon ions; high efficiencies, reliable operation, and long lifetimes are most important. Spin-offs are applied in industry for material processing. Referring to these applications, the following sources will be described in some detail: 1. Cold cathode and filament driven sources, capillary arc and plasmatron types, microwave and ECR-sources. 2

  4. Effect of Background Ions on the Selection of the Discharge Path

    Institute of Scientific and Technical Information of China (English)

    HE Zheng-Hao; LI Jin

    2001-01-01

    The effects of the background ions on the selection of the discharge path in an air gap have been studied with two different methods. The lightning impulse air discharge experiment is conducted using an independent ion generator, while the air discharge experiment uses a lightning impulse superimposed on a dc high voltage used to produce background ions. The influence of different background ions on the leader development, and thus on the discharge path, is observed. Consistent results have been obtained with the two methods. The probability for the discharge path passing through the negative ion space is much higher than that for the passing through the positive ion space. The mechanism of the effects of background ions is analysed based on the eleetron avalanche and the electric field.

  5. Non-thermodynamic approach to including bombardment-induced post-cascade redistribution of point defects in dynamic Monte Carlo code

    Energy Technology Data Exchange (ETDEWEB)

    Ignatova, V.A. E-mail: velislav@uia.ua.ac.be; Chakarov, I.R.; Katardjiev, I.V

    2003-04-01

    The redistribution of the elements as a result of atomic relocations produced by the ions and the recoils due to the ballistic and transport processes is investigated by making use of a dynamic Monte Carlo code. Phenomena, such as radiation-enhanced diffusion (RED) and bombardment-induced segregation (BIS) triggered by the ion bombardment may also contribute to the migration of atoms within the target. In order to include both RED and BIS in the code, we suggest an approach which is considered as an extension of the binary collision approximation, i.e. it takes place 'simultaneously' with the cascade and acts as a correction to the particle redistribution for low energies. Both RED and BIS models are based on the common approach to treat the transport processes as a result of a random migration of point defects (vacancies and interstitials) according to a probability given by a pre-defined Gaussian. The models are tested and the influence of the diffusion and segregation is illustrated in the cases of 12 keV {sup 121}Sb{sup +} implantation at low fluence in SiO{sub 2}/Si substrate and of self-sputtering of Ga{sup +} ions during profiling of SiO{sub 2}/Si interfaces.

  6. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Beltran, Francisco [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C.I. [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Poncin-Epaillard, Fabienne, E-mail: epaill@univ-lemans.fr [Institute for Molecules and Materials, UMR CNRS 6283, Av. O. Messiaen, Universitè du Maine, Le Mans 72085 (France); Luna-Barcenas, Gabriel, E-mail: gluna@qro.cinvestav.mx [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico)

    2015-11-01

    Highlights: • Kelvin-probe-force microscopy helps study of PET surface treated by Ar ion beam. • Ar ion beam surface treatment promotes chain scission and N insertion. • Surface roughness and work function increases as intensity of ion energy increases. • Adhesive force of PET decrease due to the surface changes by ion bombardment. - Abstract: The effect of argon (Ar{sup +}) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar{sup +} ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φ{sub e}) from 5.1 V (untreated) to 5.2 V (treated). Ar{sup +} ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  7. New Ion Beam Materials Laboratory for Materials Modification and Irradiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [ORNL; Crespillo, Miguel L [University of Tennessee (UT); Xue, Haizhou [University of Tennessee, Knoxville (UTK); Jin, Ke [University of Tennessee, Knoxville (UTK); Chen, Chien-Hung [University of Tennessee, Knoxville (UTK); Fontana, Cristiano L [ORNL; Graham, Dr. Joseph T. [The University of Tennessee; Weber, William J [ORNL

    2014-11-01

    A new multifunctional ion beam materials laboratory (IBML) has been established at the University of Tennessee, in partnership with Oak Ridge National Laboratory. The IBML is currently equipped with two ion sources, a 3 MV tandem accelerator, three beamlines and three endstations. The IBML is primarily dedicated to fundamental research on ion-solid interaction, ion beam analysis, ion beam modification, and other basic and applied research on irradiation effects in a wide range of materials. An overview of the IBML facility is provided, and experimental results are reported to demonstrate the specific capabilities.

  8. Time resolved measurements of the biased disk effect at an Electron Cyclotron Resonance Ion Source

    Directory of Open Access Journals (Sweden)

    K. E. Stiebing

    1999-12-01

    Full Text Available First results are reported from time resolved measurements of ion currents extracted from the Frankfurt 14 GHz Electron Cyclotron Resonance Ion Source with pulsed biased-disk voltage. It was found that the ion currents react promptly to changes of the bias. From the experimental results it is concluded that the biased disk effect is mainly due to improvements of the extraction conditions for the source and/or an enhanced transport of ions into the extraction area. By pulsing the disk voltage, short current pulses of highly charged ions can be generated with amplitudes significantly higher than the currents obtained in continuous mode.

  9. Calculation of the ionization differential effective cross sections in fast ion-atom collisions

    CERN Document Server

    Kaminskij, A K

    2002-01-01

    The method of the calculations of the ionization effective cross sections d sigma/d OMEGA differential in the incident ion scattering angle is described in fast collisions of light ions and atoms. The calculated values of angular distributions of the ions Al, Mg (for the different values of charge and energy of ions) after their collisions with the Ne, Mg atoms being ionized are reported. The dependence of such angular distributions on the incident ion charge and energy and the initial state of ejected electron is investigated

  10. The effect of biasing the plasma electrode on hydrogen ion formations in a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ego, Hiroyasu; Iwashita, Yoshihisa (Kyoto Univ., Uji (Japan). Inst. for Chemical Research); Takekoshi, Hidekuni

    1992-03-01

    The plasma electrode covered with magnetic cusp fields acting as a magnetic filter was installed in a multicusp ion source. The formation processes of the negative and positive hydrogen ions in this source have been investigated when an electrostatic positive bias is applied to the plasma electrode with respect to the anode chamber. The dominant H[sup -] volume-production process is the recombinational attachment rather than the dissociative attachment when the bias voltage is more than +3V. This recombinational attachment improves the H[sup +] ratio in the extracted positive beam, keeping its current value. (author) 52 refs.

  11. Study on structural recovery of graphite irradiated with swift heavy ions at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pellemoine, F., E-mail: pellemoi@frib.msu.edu [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Avilov, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Bender, M. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Ewing, R.C. [Dept. of Geological Sciences, Stanford University, Stanford, CA 94305-2115 (United States); Fernandes, S. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Lang, M. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996-2300 (United States); Li, W.X. [Dept. of Geological Sciences, Stanford University, Stanford, CA 94305-2115 (United States); Mittig, W. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Schein, M. [Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 (United States); Severin, D. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Tomut, M. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Laboratory of Magnetism and Superconductivity, National Institute for Materials Physics NIMP, Bucharest (Romania); Trautmann, C. [Dept. of Materials Research, GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, Darmstadt 64291 (Germany); Dept. of Materials Science, Technische Universität Darmstadt, Darmstadt (Germany); and others

    2015-12-15

    Thin graphite foils bombarded with an intense high-energy (8.6 MeV/u) gold beam reaching fluences up to 1 × 10{sup 15} ions/cm{sup 2} lead to swelling and electrical resistivity changes. As shown earlier, these effects are diminished with increasing irradiation temperature. The work reported here extends the investigation of beam induced changes of these samples by structural analysis using synchrotron X-ray diffraction and transmission electron microscope. A nearly complete recovery from swelling at irradiation temperatures above about 1500 °C is identified.

  12. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    CERN Document Server

    Lu, Ding; Xie, Bai-Song

    2013-01-01

    Effects of ion mobility and positron fraction on solitary waves of envelop of laser field and potential of electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and the reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of approximate perturbation analytical method are consistent well with that by exact numerical calculations. However as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. Implication of our results to the particle acceleration is also discussed briefly.

  13. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    Science.gov (United States)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2013-09-01

    The effects of ion mobility and positron fraction on the solitary waves of the laser field envelope and the potential of the electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and a reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of the approximate perturbation analytical method are very consistent with those by exact numerical calculations. However, as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. The implications of our results to particle acceleration are also discussed briefly.

  14. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the elect...

  15. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions

    Science.gov (United States)

    Zhang, Jian-Wei; Miao, Kai; Wang, Li-Jun

    2015-01-01

    The Dick effect is one of the main limits to the frequency stability of a passive frequency standard, especially for the fountain clock and ion clock operated in pulsed mode which require unavoidable dead time during interrogation. Here we measure the phase noise of the interrogation oscillator applied in the microwave frequency standard based on laser-cooled 113Cd+ ions, and analyze the Allan deviation limited by the Dick effect. The results indicate that the Dick effect is one of the key issues for the cadmium ion clock to reach expected frequency stability. This problem can be resolved by interrogating the local oscillator continuously with two ion traps.

  16. Ion-sensitive field effect transistors for pH and potassium ion concentration sensing: towards detection of myocardial ischemia

    Science.gov (United States)

    Rai, Pratyush; Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2008-03-01

    Ion Sensitive Field Effect Transistors (ISFETs) for sensing change in ionic concentration in biological systems can be used for detecting critical conditions like Myocardial Ischemia. Having the ability to yield steady signal characteristics can be used to observe the ionic concentration gradients which mark the onset of ischemia. Two ionic concentrations, pH and [K +], have been considered as the indicator for Myocardial Ischemia in this study. The ISFETs in this study have an organic semi-conductor film as the electronically active component. Poly-3 hexylthiophene was chosen for its compatibility to the solution processing, which is a simple and economical method of thin film fabrication. The gate electrode, which regulates the current in the active layer, has been employed as the sensor element. The devices under study here were fabricated on a flexible substrate PEN. The pH sensor was designed with the Tantalum Oxide gate dielectric as the ion selective component. The charge accumulated on the surface of the metal oxide acts as the source of the effecter electric field. The device was tested for pH values between 6.5 and 7.5, which comprises the variation observed during ischemic attack. The potassium ion sensor has got a floating gate electrode which is functionalized to be selective to potassium ion. The device was tested for potassium ion concentration between 5 and 25 mM, which constitutes the variation in extra cellular potassium ion concentration during ischemic attack. The device incorporated a monolayer of Valinomycin, a potassium specific ionophore, on top of the gate electrode.

  17. Effect of ion velocity on SHI-induced mixing in Ti/Bi system

    Science.gov (United States)

    Bansal, Nisha; Kumar, Sarvesh; Khan, Saif Ahmad; Chauhan, R. S.

    2016-03-01

    Energetic ion beams are proving to be versatile tools for modification and depth profiling of materials. The energy and ion species are the deciding factor in the ion-beam-induced materials modification. Among the various parameters such as electronic energy loss, fluence and heat of mixing, velocity of the ions used for irradiation plays an important role in mixing at the interface. The present study is carried out to find the effect of the velocity of swift heavy ions on interface mixing of a Ti/Bi bilayer system. Ti/Bi/C was deposited on Si substrate at room temperature by an electron gun in a high-vacuum deposition system. Carbon layer is deposited on top to avoid oxidation of the samples. Eighty mega electron volts Au ions and 100 MeV Ag ions with same value of Se for Ti are used for the irradiation of samples at the fluences 1 × 1013-1 × 1014 ions/cm2. Different techniques like Rutherford backscattering spectroscopy, atomic force microscopy and grazing incidence X-ray diffraction were used to characterize the pristine and irradiated samples. The mixing effect is explained in the framework of the thermal spike model. It has been found that the mixing rate is higher for low-velocity Au ions in comparison to high-velocity Ag ions. The result could be explained as due to less energy deposition in thermal spike by high-velocity ions.

  18. An ion species model for positive ion sources - part II analysis of hydrogen isotope effects

    CERN Document Server

    Surrey, E

    2014-01-01

    A one dimensional model of the magnetic multipole volume plasma source has been developed for application to intense ion/neutral atom beam injectors. The model uses plasma transport coefficients for particle and energy flow to create a detailed description of the plasma parameters along an axis parallel to that of the extracted beam. In this paper the isotopic modelling of positive hydrogenic ions is considered and compared with experimental data from the neutral beam injectors of the Joint European Torus. The use of the code to gain insights into the processes contributing to the ratios of the ionic species is demonstrated and the conclusion is drawn that 75% of the atomic ion species arises from ionization of dissociated molecules and 25% from dissociation of the molecular ions. However whilst the former process is independent of the filter field, the latter is sensitive to the change in distribution of fast and thermal electrons produced by the magnetic filter field and an optimum combination of field stre...

  19. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure ...

  20. Making junctions between carbon nanotubes using an ion beam

    CERN Document Server

    Krasheninnikov, A V; Keinonen, J; Banhart, F

    2003-01-01

    Making use of empirical potential molecular dynamics, we study ion bombardment of crossed single-walled carbon nanotubes as a tool to join the nanotubes. We demonstrate that ion irradiation should result in welding of crossed nanotubes, both suspended and deposited on substrates. We further predict optimum ion doses and energies for ion-mediated nanotube welding which may potentially be used for developing complicated networks of joined nanotubes.

  1. Mutagenic effects of carbon ions near the range end in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@jaea.go.jp [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Ryouhei; Nozawa, Shigeki; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-03-01

    To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425 keV/{mu}m) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113 keV/{mu}m). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113 keV/{mu}m carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>{approx}30 kb) were six times more frequently induced by carbon ions near the range end. When 352 keV/{mu}m neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113 keV/{mu}m carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.

  2. Effects of potassium ion supplementation on survival and ion regulation in Gulf killifish Fundulus grandis larvae reared in ion deficient saline waters.

    Science.gov (United States)

    Fisher, Calvin; Bodinier, Charlotte; Kuhl, Adam; Green, Christopher

    2013-04-01

    Teleost fish often live in an environment in which osmoregulatory mechanisms are critical for survival and largely unknown in larval fish. The effects of a single important marine ion (K(+)) on survival and ion regulation of larval Gulf killifish, an estuarine, euryhaline teleost, were determined. A four-week study was completed in four separate recirculating systems with newly hatched larvae. Salinity in all four systems was maintained between 9.5 and 10‰. Two systems were maintained using crystal salt (99.6% NaCl) with K(+) supplementation (1.31±0.04mmol/L and 2.06±0.04mmol/L K(+); mean±SEM), one was maintained with crystal salt and no K(+) supplementation (0.33±0.05mmol/L K(+)), the fourth system was maintained using a standard marine mix salt (2.96±0.04mmol/L K(+)), the salt mix also included standard ranges of other ions such as calcium and magnesium. Larvae were sampled throughout the experiment for dry mass, Na(+)/K(+)-ATPase (NKA) activity, whole body ion composition, relative gene expression (NKA, Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR)), and immunocytochemistry staining for NKA, NKCC, and CFTR. Larvae stocked into water with no K(+) supplementation resulted in 100% mortality within 24h. Mortality and dry mass were significantly influenced by K(+) concentration (P≤0.05). No differences were observed among treatment groups for NKA activity. At 1dph NKA mRNA expression was higher in the 0.3mmol [K(+)] group than in other treatment groups and at 7dph differences in intestinal NKA and CFTR staining were observed. These data indicate that the rearing of larval Gulf killifish may be possible in ion deficient water utilizing specific ion supplementation.

  3. Swift Heavy Ion Irradiation Effects on NPN rf Power Transistors

    Science.gov (United States)

    Pushpa, N.; Prakash, A. P. Gnana; Gupta, S. K.; Revannasiddaiah, D.

    2011-07-01

    The dc characteristics of NPN rf power transistors were studied systematically before and after irradiation by 50 MeV Li3+ ions, 100 MeV F8+ ions and 140 MeV Si10+ ions in the dose range of 100 krad to 100 Mrad. The transistor parameters such as excess base current (ΔIB = IBpost-IBpre), dc current gain (hFE), and collector-saturation current (ICSat) were determined before and after irradiation. The base current (IB) was found to increase significantly after ion irradiation and this in turn decreases the hFE of the transistors. Further, the output characteristics of the irradiated devices exhibit the decrease in the collector current at the saturation region (ICSat) with increase of ion dose.

  4. Effective doping of low energy ions into superfluid helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.

  5. Destruction and Re-Accretion of Mid-Size Moons During an Outer Solar System Late Heavy Bombardment

    Science.gov (United States)

    Movshovitz, N.; Nimmo, F.; Korycansky, D. G.; Asphaug, E. I.; Owen, M.

    2014-12-01

    To explain the lunar Late Heavy Bombardment the Nice Model (Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. 2005, Nature, 435, 459; Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. 2005, Nature, 435, 459) invokes a period of dynamical instability, occurring long after planet formation, that destabilizes both the main asteroid belt and a remnant exterior planetesimal disk. As a side effect of explaining the lunar LHB, this model also predicts an LHB-like period in the outer Solar System. With higher collision probabilities and impact energies due to gravitational focusing by the giant planets the inner satellites of Jupiter, Saturn, and Uranus would have experienced a bombardment much more severe than the one supposedly responsible for the lunar basins. The concern is that such bombardment should have resulted in significant, even catastrophic modification of the mid-size satellites. Here we look at the problem of satellite survival during a hypothetical outer Solar System LHB. Using a Monte-Carlo approach we calculate, for 10 satellites of Saturn and Uranus, the probability of having experienced at least one catastrophic collision during an LHB. We use a scaling law for the energy required to disrupt a target in a gravity-dominated collision derived from new SPH simulations. These simulations extend the scaling law previously obtained by Benz & Asphaug (1999, Icarus, 142, 5) to larger targets. We then simulate randomized LHB impacts by drawing from appropriate size and velocity distributions, with the total delivered mass as a controlled parameter. We find that Mimas, Enceladus, Tethys, Hyperion, and Miranda experience at least one catastrophic impact in every simulation. In most simulations, Mimas, Enceladus, and Tethys experience multiple catastrophic impacts, including impacts with energies several times that required to completely disrupt the target. The implication is that these close-in, mid-size satellites could not have survived a Late Heavy

  6. Internal target effects in ion storage rings with beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gostishchev, Vitaly

    2008-06-15

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  7. Modulation Effects of Curcumin on Erythrocyte Ion-Transporter Activity

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2015-01-01

    Full Text Available Curcumin ((1E,6E-1,7-Bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, the yellow biphenolic pigment isolated from turmeric (Curcuma longa, has various medicinal benefits through antioxidation, anti-inflammation, cardiovascular protection, immunomodulation, enhancing of the apoptotic process, and antiangiogenic property. We explored the effects of curcumin in vitro (10−5 M to 10−8 M and in vivo (340 and 170 mg/kg b.w., oral on Na+/K+ ATPase (NKA, Na+/H+ exchanger (NHE activity, and membrane lipid hydroperoxides (ROOH in control and experimental oxidative stress erythrocytes of Wistar rats. As a result, we found that curcumin potently modulated the membrane transporters activity with protecting membrane lipids against hydro-peroxidation in control as well as oxidatively challenged erythrocytes evidenced by stimulation of NKA, downregulation of NHE, and reduction of ROOH in the membrane. The observed results corroborate membrane transporters activity with susceptibility of erythrocyte membrane towards oxidative damage. Results explain the protective mechanism of curcumin against oxidative stress mediated impairment in ions-transporters activity and health beneficial effects.

  8. The influence of projectile ion induced chemistry on surface pattern formation

    Science.gov (United States)

    Karmakar, Prasanta; Satpati, Biswarup

    2016-07-01

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  9. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X.; Brown, I.G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1993-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  10. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  11. Inhibitory effects of berberine on ion channels of rat hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Hong-Yi Zhou; Gang Zhao; Li-Ying Fu; Lan Cheng; Jian-Guo Chen; Wei-Xing Yao

    2004-01-01

    AIM: To examine the effects of berberine, an isoquinoline alkaloid with a long history used as a tonic remedy for liver and heart, on ion channels of isolated rat hepatocytes.METHODS: Tight-seal whole-cell patch-clamp techniques were performed to investigate the effects of berberine on the delayed outward potassium currents (IK), inward rectifier potassium currents (IK1) and Ca2+ release-activated Ca2+currents (ICRAC) in enzymatically isolated rat hepatocytes.RESULTS: Berberine 1-300 nmol/L reduced IK in a concentration dependent manner with EC50 of 38.86±5.37 μmol/L and nH of 0.82±0.05 (n = 8). When the bath solution was changed to tetraethylammonium (TEA) 8 mmol/L, IK was inhibited.Berberine 30 μmol/L reduced IK at all examined membrane potentials, especially at potentials positive to +60 mV (n = 8,P<0.05 or P<0.01 vs control). Berberine had mild inhibitory effects on IK1 in rat hepatocytes. Berberine 1-300 μmol/L also inhibited ICRAC in a concentration-dependent fashion.The fitting parameters were EC50 = 47.20±10.86 μmol/L,nH = 0.71±0.09 (n = 8). The peak value of ICRAC in the Ⅰ-Ⅴrelationship was decreased by berberine 30 μmol/L at potential negative to -80 mV (n = 8, P<0.05 vscontrol). But the reverse potential of ICRAC occurred at voltage 0 mV in all cells.CONCLUSION: Berberine has inhibitory effects on potassium and calcium currents in isolated rat hepatocytes, which may be involved in hepatoprotection.

  12. Erosion Processes of Carbon Materials under Hydrogen Bombardment and their Mitigation by Doping

    Energy Technology Data Exchange (ETDEWEB)

    Juan Pardo, E. de; Balden, M.B.; Cieciwa, B.; Roth, J. [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany); Garcia-Rosales, C. [Univ. de Navarra, San Sebastian (Spain). Campus Tecnologico

    2004-08-01

    Two regimes of the chemical erosion of carbon materials under hydrogen bombardment have been separated: (i) the thermally activated regime, Y{sub therm}; with the maximal erosion yield in the temperature range between 550 and 850 K, and (ii) the so-called 'surface' regime, Y{sub surf} ; at low temperatures ({approx} 300K) and low impact energies (< 100 eV). Doping carbon materials largely reduces their chemical reactivity with hydrogen and their chemical erosion. In addition, dopant enrichment at the surface due to preferential sputtering of carbon contributes to a reduction of the erosion yield. Erosion measurements with 30 eV and 1 keV D for various doped carbon materials with dopant concentration between 0.25 and 13 at.% were performed at temperatures between 77 and 1100 K. For Y{sub surf} at high ion fluences (>10{sup 25} D/m{sup 2}); a reduction of the erosion yield by one order of magnitude is observed for fine-grain carbide-doped graphites. Scanning electron microscopy (SEM) allows to associate these fluence dependencies with the evolution of a rough surface morphology of several mm in the erosion area. For Y{sub therm} an almost complete suppression of the CD{sub 4}-production yield is observed for Tidoped C layers. This reduction due to the doping on atomic scale exceeds all previously observed reductions of materials with a coarser dopant distribution. For all investigated carbon materials, the yield below RT does not depend on temperature.

  13. Recent studies in heavy ion induced fission reactions

    Science.gov (United States)

    Choudhury, R. K.

    2001-08-01

    rigid rotation of the nascent fragments at scission and (ii) due to statistical excitation of the spin bearing collective modes in the fissioning nucleus. One of the collective modes -- the tilting mode depends on the K quantum number and is responsible for the emission angle dependence of fragment spin. In our studies, we have shown conclusively that the collective statistical spin modes get strongly suppressed for high K values corresponding to large rotational frequencies along the fission axis. These results bring out the importance of the dynamical effects in the heavy ion induced fusion-fission reactions. The present article will review the work carried out on the above aspects in heavy ion fission reactions as well as on the fission time scales, and some of the recent studies on the mass-energy correlations of fission fragments at near-barrier bombarding energies.

  14. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor

    Science.gov (United States)

    Marcak, Adrian; Corbella, Carles; de los Arcos, Teresa; von Keudell, Achim

    2015-10-01

    The secondary electron emission of metals induced by slow ions is characterized in a beam chamber by means of two coaxial semi-cylindrical electrodes with different apertures. The voltages of the outer electrode (screening), inner electrode (collector), and sample holder (target) were set independently in order to measure the effective yield of potential and kinetic electron emissions during ion bombardment. Aluminum samples were exposed to quantified beams of argon ions up to 2000 eV and to oxygen atoms and molecules in order to mimic the plasma-surface interactions on metallic targets during reactive sputtering. The variation of electron emission yield was correlated to the ion energy and to the oxidation state of Al surfaces. This system provides reliable measurements of the electron yields in real time and is of great utility to explore the fundamental surface processes during target poisoning occurring in reactive magnetron sputtering applications.

  15. Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marcak, Adrian; Corbella, Carles, E-mail: carles.corbella@rub.de; Keudell, Achim von [Research Group Reactive Plasmas, Ruhr-University Bochum, 44801 Bochum (Germany); Arcos, Teresa de los [Technical and Macromolecular Chemistry, Paderborn University, 33098 Paderborn (Germany)

    2015-10-15

    The secondary electron emission of metals induced by slow ions is characterized in a beam chamber by means of two coaxial semi-cylindrical electrodes with different apertures. The voltages of the outer electrode (screening), inner electrode (collector), and sample holder (target) were set independently in order to measure the effective yield of potential and kinetic electron emissions during ion bombardment. Aluminum samples were exposed to quantified beams of argon ions up to 2000 eV and to oxygen atoms and molecules in order to mimic the plasma-surface interactions on metallic targets during reactive sputtering. The variation of electron emission yield was correlated to the ion energy and to the oxidation state of Al surfaces. This system provides reliable measurements of the electron yields in real time and is of great utility to explore the fundamental surface processes during target poisoning occurring in reactive magnetron sputtering applications.

  16. Excavation and Melting of the Hadean Continental Crust by Late Heavy Bombardment

    CERN Document Server

    Shibaike, Yuhito; Ida, Shigeru

    2015-01-01

    No Hadean rocks have ever been found on Earth's surface except for zircons---evidence of continental crust, suggesting that Hadean continental crust existed but later disappeared. One hypothesis for the disappearance of the continental crust is excavation/melting by the Late Heavy Bombardment (LHB), a concentration of impacts in the last phase of the Hadean eon. In this paper, we calculate the effects of LHB on Hadean continental crust in order to investigate this hypothesis. Approximating the size-frequency distribution of the impacts by a power-law scaling with an exponent {\\alpha} as a parameter, we have derived semi-analytical expressions for the effects of LHB impacts. We calculated the total excavation/melting volume and area affected by the LHB from two constraints of LHB on the moon, the size of the largest basin during LHB, and the density of craters larger than 20 km. We also investigated the effects of the value of {\\alpha}. Our results show that LHB does not excavate/melt all of Hadean continental...

  17. Particle Simulations of a Thermionic RF Gun with Gridded Triode Structure for Reduction of Back-Bombardment

    CERN Document Server

    Kusukame, K; Kii, T; Masuda, K; Nakai, Y; Ohgaki, H; Yamazaki, T; Yoshikawa, K; Zen, H

    2005-01-01

    Thermionic RF guns show advantageous features compared with photocathode ones such as easy operation and much higher repetition rate of micropulses, both of which are suitable for their application to high average power FELs. They however suffer from the back-bombardment effect [1], i.e., in conventional RF guns, electrons are extracted from cathode also in the latter half of accelerating phase and tend to back-stream to hit the cathode, and as a result the macropulse duration is limited down to severalμsec Against this adverse effect in thermionic RF guns, introduction of the triode structure has been proposed [2], where the accelerating phase and amplitude nearby the cathode can be controlled regardless of the phase of the first accelerating cell in the conventional RF gun. Our one-dimensional particle simulation results predict that the back-bombardment power can be reduced by 99 % only with 30-40 kW RF power fed to the grid in the present triode structure with an optimal phase difference from th...

  18. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Science.gov (United States)

    Hayat, T.; Shafique, Maryam; Tanveer, A.; Alsaedi, A.

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects.

  19. Instability of some divalent rare earth ions and photochromic effect

    OpenAIRE

    Egranov, A. V.; Sizova, T. Yu.; Shendrik, R. Yu.; Smirnova, N. A.

    2015-01-01

    It was shown that the divalent rare earth ions (La, Ce, Gd, Tb, Lu, and Y) in cubic sites in alkaline earth fluorides are unstable with respect to electron autodetachment since its d1(eg) ground state is located in the conduction band which is consistent with the general tendency of these ions in various compounds. The localization of doubly degenerate d1(eg) level in the conduction band creates a configuration instability around the divalent rare earth ion that leading to the formation of an...

  20. Effect of Calendering on Electrode Wettability in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yangping eSheng

    2014-12-01

    Full Text Available Controlling the wettability between the porous electrode and the electrolyte in lithium ion batteries can improve both the manufacturing process and the electrochemical performance of the cell. The wetting rate, which is the electrolyte transport rate in the porous electrode, can be quantified using the wetting balance. The effect of the calendering process on the wettability of anode electrodes was investigated. A graphite anode film with an as-coated thickness of 59 μm was used as baseline electrode film and was calendered to produce films with thickness ranging from 55 to 41 µm. Results show that wettability is improved by light calendering from an initial thickness of 59 μm to a calendered thickness of 53 μm where the wetting rate increased from 0.375 to 0.589 mm/s0.5. Further calendering below 53 µm resulted in a decrease in wetting rates to a minimum observed value of 0.206 mm/s0.5 at a calendered thickness of 41 μm. Under the same electrolyte, wettability of the electrode is controlled to a great extent by the pore structure in the electrode film which includes parameters such as porosity, pore size distribution, pore geometry and topology. Relations between the wetting behavior and the pore structure as characterized by mercury intrusion and electron microscopy exist and can be used to manipulate the wetting behavior of electrodes.

  1. Harmonics Effect on Ion-Bulk Waves in CH Plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Cao, L H; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    The harmonics effect on ion-bulk (IBk) waves has been researched by Vlasov simulation. The condition of excitation of a large-amplitude IBk waves is given to explain the phenomenon of strong short-wavelength electrostatic activity in solar wind. When $k$ is much lower than $k_{lor}/2$ ($k_{lor}$ is the wave number at loss-of-resonance point), the IBk waves will not be excited to a large amplitude, because a large part of energy will be spread to harmonics. The nature of nonlinear IBk waves in the condition of $k

  2. Effects of Photon Absorption in High Energy Heavy Ion Collisions

    Science.gov (United States)

    Winchell, Joshua; Somanathan, Sidharth; Fries, Ranier

    2014-09-01

    Photons are an important probe of the hot and dense nuclear matter created in high-energy collisions of nuclei at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Since the mean free path of photons is larger than the size of the fireball of nuclear matter, final state interactions of photons are usually neglected. In light of recent tension between theoretical calculations and data from RHIC and LHC, we study the effect of reabsorption of photons on elliptic flow v2 and on the nuclear modification factor RAA. We consider photons emitted in primary hard collisions and thermal photons from quark-gluon plasma and hot hadron gas. We use the jet-quenching code PPM to simulate the propagation of those photons in a fireball of quark-gluon plasma and hot hadron gas created by collisions of heavy nuclei. For the absorption cross-sections we consider three different approaches: (a) Compton and pair production processes calculated by us in a static approximation, (b) the photon damping rates calculated by Thoma (1995), and (c) absorption rates derived from a recent photon calculation by van Hees et al.

  3. Effects of Longitudinal Fluctuations in Heavy-Ion Collisions

    CERN Document Server

    Raniwala, Rashmi; Loizides, Constantin

    2016-01-01

    In collisions of identical nuclei at a given impact parameter, the number of nucleons participating in the overlap region of each nucleus can be unequal due to nuclear density fluctuations. The asymmetry due to the unequal number of participating nucleons, which may be experimentally accessible by measuring either the energy in ZDC or the number of spectator nucleons, causes a shift of the center of mass rapidity of the participant zone. In a Monte Carlo Glauber model the average rapidity-shift is found to be almost linearly related to the asymmetry. Using Monte Carlo data for Pb-Pb collisions at 2.76 TeV generated with the HIJING model, we demonstrate that the rapidity distribution of produced particles is affected by the asymmetry, and that the effect can be quantitatively related to the average rapidity-shift via a third-order polynomial with a dominantly linear term. Experimental estimates of the spectator asymmetry may be used to further constrain the initial conditions in ultra-relativistic heavy ion co...

  4. Effects of heavy-ion irradiation on FeSe

    Science.gov (United States)

    Sun, Yue; Park, Akiyoshi; Pyon, Sunseng; Tamegai, Tsuyoshi; Kambara, Tadashi; Ichinose, Ataru

    2017-03-01

    We report the effects of heavy-ion irradiation on FeSe single crystals by irradiating uranium up to a dose-equivalent matching field of Bϕ=16 T. Almost continuous columnar defects along the c axis with a diameter of ˜10 nm are confirmed by high-resolution transmission electron microscopy. Tc is found to be suppressed by introducing columnar defects at a rate of d Tc/d Bϕ˜-0.29 K/T, which is much larger than those observed in iron pnictides. This unexpected large suppression of Tc in FeSe is discussed in relation to the large diameter of the columnar defects as well as its unique band structure with a remarkably small Fermi energy. The critical current density is first dramatically enhanced with irradiation reaching a value over ˜2 ×105A /cm2 (˜5 times larger than that of the pristine sample) at 2 K (self-field) with Bϕ=2 T, then gradually suppressed with increasing Bϕ. The δ l pinning associated with charge-carrier mean-free-path fluctuations and the δ Tc pinning associated with spatial fluctuations of the transition temperature are found to coexist in the pristine FeSe, while the irradiation increases the contribution from δ l pinning and makes it dominant over Bϕ=4 T.

  5. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2014-12-15

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  6. The effect of plasma shear flow on drift Alfven instabilities of a finite beta plasma and on anomalous heating of ions by ion cyclotron turbulence

    Science.gov (United States)

    Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.

    2016-01-01

    It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.

  7. Collisional Effects on Nonlinear Ion Drag Force for Small Grains

    CERN Document Server

    Hutchinson, I H

    2013-01-01

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  8. Silicon etch with chromium ions generated by a filtered or non-filtered cathodic arc discharge.

    Science.gov (United States)

    Scopece, Daniele; Döbeli, Max; Passerone, Daniele; Maeder, Xavier; Neels, Antonia; Widrig, Beno; Dommann, Alex; Müller, Ulrich; Ramm, Jürgen

    2016-01-01

    The pre-treatment of substrate surfaces prior to deposition is important for the adhesion of physical vapour deposition coatings. This work investigates Si surfaces after the bombardment by energetic Cr ions which are created in cathodic arc discharges. The effect of the pre-treatment is analysed by X-ray diffraction, Rutherford backscattering spectroscopy, scanning electron microscopy and in-depth X-ray photoemission spectroscopy and compared for Cr vapour produced from a filtered and non-filtered cathodic arc discharge. Cr coverage as a function of ion energy was also predicted by TRIDYN Monte Carlo calculations. Discrepancies between measured and simulated values in the transition regime between layer growth and surface removal can be explained by the chemical reactions between Cr ions and the Si substrate or between the substrate surface and the residual gases. Simulations help to find optimum and more stable parameters for specific film and substrate combinations faster than trial-and-error procedure.

  9. MAGNETIC FIELD GRADIENT EFFECTS ON ION FLUX BEHAVIORS IN ECR PLASMA SOURCES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The available electron cyclotron resonance plasma source has been simulated in two-dimensional configuration space (z, r) and three-dimensional velocity space (Vz, Vr Vθ). The simulation is focused on the magnetic field gradient effects on ion flux behaviors in electron cyclotron resonance plasma sources. The simulation results show that, when the magnetic field gradients increase, electron temperature, plasma density, ionization rate, and ion flux in Zdirection would decrease, while ion energy and plasma potential would increase.

  10. Effect of resonant microwave power on a PIG ion source. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 32 refs., 2 figs.

  11. Effect of resonant microwave power on a PIG ion source. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 32 refs., 2 figs.

  12. Study of Mutagenic Effects of M1 Generation of Maize Seeds Irradiated by Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    LUOHong-bing; ZHAOKui; GUOJi-yu; SUILi; NIMei-nan; MEIJun-ping; LUXiu-qin; ZHOUPing; KONGFu-quan; ZHANGGen-fa

    2003-01-01

    In order to study M1 biological effects induced by heavy ion irradiation on maize seeds, the embryos of dry maize seeds are irradiated with 7Li and 12C ions. The experiment is performed at the heavy ion scanning tube of the HI-13 tandem accelerator. The beam goes through a thickness of 25μm. Then the maize seeds are irradiated in the air uniformly.

  13. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    Science.gov (United States)

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  14. Ion-beam-assisted hexagonal diamond formation from C sub 6 sub 0 fullerene

    CERN Document Server

    Zhu, X D; Naramoto, H; Narumi, K; Miyashita, A; Miyashita, K

    2003-01-01

    Ions are commonly believed to be detrimental to diamond growth because of the high degree of lattice disorder induced by ion bombardments. In this paper, we examine the possibility of preparing diamond using thermally evaporated C sub 6 sub 0 and simultaneous bombardment with Ne sup + ions. It is found that the diamonds can be grown on Si wafers in the appropriate substrate temperature and ion energy ranges. Micro-Raman spectroscopy, x-ray diffractometry, and scanning electronic microscopy were employed to characterize the deposited specimen. These measurements provide definite evidence of the structure of nanosized hexagonal diamond. The mechanism responsible for the diamond formation is discussed.

  15. Field-effect ion-transport devices with carbon nanotube channels: schematics and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Yul; Kang, Jeong Won; Byun, Ki Ryang; Kang, Eu Seok; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Joo [Sangmyung University, Chonan (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Kim, Young Min [Chung-Cheong University, Cheongwon (Korea, Republic of)

    2004-08-15

    We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  16. Studies of Improving the Frequency of Indica Rice Transformation by Biolistic Bombardment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to improve the frequency of indica rice transformation by biolistic bombardment, suitable culture conditions for embryonic calli,an optimal selection scheme for resistant calli and seedlings, and optimum bombardment parameters a investigated by using 14 commercially important indica rice cultivars. The main results show that the CC medium with 36g/L mannitol is a scheme subculture medium in which the browning of indica rice calli can be mitigated significantly; The concentration of 30~40mg/L Hyg or 150~200mg/L G418 or 10~20 mg/L Basta is suitable for selection of resistant calli; The transformation parameters of 100μg gold powder absorbing 0.2μg DNA per shot and 900 psi helium pressure and 6 cm bombardment distance and bombarded twice for each plate give the best result; Keeping the target calli on osmotic medium containing 60g/L mannitol from 12 ~24h before bombardment to 24~48h after it can increase the efficiencies of transformation . Furthermore, some transgenic indica rice plants are obtained using this optimized transformation system.