WorldWideScience

Sample records for ions activate trpm2

  1. Activation of a Ca2+-dependent cation conductance with properties of TRPM2 by reactive oxygen species in lens epithelial cells.

    Science.gov (United States)

    Keckeis, Susanne; Wernecke, Laura; Salchow, Daniel J; Reichhart, Nadine; Strauß, Olaf

    2017-08-01

    Ion channels are crucial for maintenance of ion homeostasis and transparency of the lens. The lens epithelium is the metabolically and electrophysiologically active cell type providing nutrients, ions and water to the lens fiber cells. Ca 2+ -dependent non-selective ion channels seem to play an important role for ion homeostasis. The aim of the study was to identify and characterize Ca 2+ - and reactive oxygen species (ROS)-dependent non-selective cation channels in human lens epithelial cells. RT-PCR revealed gene expression of the Ca 2+ -activated non-selective cation channels TRPC3, TRPM2, TRPM4 and Ano6 in both primary lens epithelial cells and the cell line HLE-B3, whereas TRPM5 mRNA was only found in HLE-B3 cells. Using whole-cell patch-clamp technique, ionomycin evoked non-selective cation currents with linear current-voltage relationship in both cell types. The current was decreased by flufenamic acid (FFA), 2-APB, 9-phenanthrol and miconazole, but insensitive to DIDS, ruthenium red, and intracellularly applied spermine. H 2 O 2 evoked a comparable current, abolished by FFA. TRPM2 protein expression in HLE-B3 cells was confirmed by means of immunocytochemistry and western blot. In summary, we conclude that lens epithelial cells functionally express Ca 2+ - and H 2 O 2 -activated non-selective cation channels with properties of TRPM2. Copyright © 2017. Published by Elsevier Ltd.

  2. The TRPM6 Kinase Domain Determines the Mg·ATP Sensitivity of TRPM7/M6 Heteromeric Ion Channels*

    Science.gov (United States)

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-01-01

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg2+) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg2+ and therefore unlikely to be active at physiological levels of [Mg2+]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex. PMID:24385424

  3. The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels.

    Science.gov (United States)

    Zhang, Zheng; Yu, Haijie; Huang, Junhao; Faouzi, Malika; Schmitz, Carsten; Penner, Reinhold; Fleig, Andrea

    2014-02-21

    The transient receptor potential melastatin member 7 (TRPM7) and member 6 (TRPM6) are divalent cation channel kinases essential for magnesium (Mg(2+)) homeostasis in vertebrates. It remains unclear how TRPM6 affects divalent cation transport and whether this involves functional homomeric TRPM6 plasma membrane channels or heteromeric channel assemblies with TRPM7. We show that homomeric TRPM6 is highly sensitive to intracellular free Mg(2+) and therefore unlikely to be active at physiological levels of [Mg(2+)]i. Co-expression of TRPM7 and TRPM6 produces heteromeric TRPM7/M6 channels with altered pharmacology and sensitivity to intracellular Mg·ATP compared with homomeric TRPM7. Strikingly, the activity of heteromeric TRPM7/M6 channels is independent of intracellular Mg·ATP concentrations, essentially uncoupling channel activity from cellular energy status. Disruption of TRPM6 kinase phosphorylation activity re-introduces Mg·ATP sensitivity to the heteromeric channel similar to that of TRPM7. Thus, TRPM6 modulates the functionality of TRPM7, and the TRPM6 kinase plays a critical role in tuning the phenotype of the TRPM7·M6 channel complex.

  4. TRPM7 and TRPM8 Ion Channels in Pancreatic Adenocarcinoma: Potential Roles as Cancer Biomarkers and Targets

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2012-01-01

    Full Text Available Transient receptor potential (TRP ion channels are essential for normal functions and health by acting as molecular sensors and transducing various stimuli into cellular and physiological responses. Growing evidence has revealed that TRP ion channels play important roles in a wide range of human diseases, including malignancies. In light of recent discoveries, it has been found that TRP melastatin-subfamily members, TRPM7 and TRPM8, are required for normal and cancerous development of exocrine pancreas. We are currently investigating the mechanisms which mediate the functional roles of TRPM7 and TRPM8 and attempting to develop these ion channels as clinical biomarkers and therapeutic targets for achieving the goal of personalized therapy in pancreatic cancer.

  5. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    Directory of Open Access Journals (Sweden)

    E. Kheradpezhouh

    2016-04-01

    Full Text Available Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2 channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E-1,7-bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  6. Targeting TRPM2 in ROS-Coupled Diseases

    Directory of Open Access Journals (Sweden)

    Shinichiro Yamamoto

    2016-09-01

    Full Text Available Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP melastatin subfamily, TRPM2, is a Ca2+-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca2+ signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca2+ through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca2+ signaling in ROS-coupled diseases.

  7. Targeting TRPM2 in ROS-Coupled Diseases.

    Science.gov (United States)

    Yamamoto, Shinichiro; Shimizu, Shunichi

    2016-09-07

    Under pathological conditions such as inflammation and ischemia-reperfusion injury large amounts of reactive oxygen species (ROS) are generated which, in return, contribute to the development and exacerbation of disease. The second member of the transient receptor potential (TRP) melastatin subfamily, TRPM2, is a Ca(2+)-permeable non-selective cation channel, activated by ROS in an ADP-ribose mediated fashion. In other words, TRPM2 functions as a transducer that converts oxidative stress into Ca(2+) signaling. There is good evidence that TRPM2 plays an important role in ROS-coupled diseases. For example, in monocytes the influx of Ca(2+) through TRPM2 activated by ROS contributes to the aggravation of inflammation via chemokine production. In this review, the focus is on TRPM2 as a molecular linker between ROS and Ca(2+) signaling in ROS-coupled diseases.

  8. Roles of TRPM8 Ion Channels in Cancer: Proliferation, Survival, and Invasion

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-10-01

    Full Text Available The goal of this article is to provide a critical review of the transient receptor potential melastatin-subfamily member 8 (TRPM8 in cancers, with an emphasis on its roles in cellular proliferation, survival, and invasion. The TRPM8 ion channels regulate Ca²⁺ homeostasis and function as a cellular sensor and transducer of cold temperature. Accumulating evidence has demonstrated that TRPM8 is aberrantly expressed in a variety of malignant solid tumors. Clinicopathological analysis has shown that over-expression of TRPM8 correlates with tumor progression. Experimental data have revealed important roles of TRPM8 channels in cancer cells proliferation, survival, and invasion, which appear to be dependent on the cancer type. Recent reports have begun to reveal the signaling mechanisms that mediate the biological roles of TRPM8 in tumor growth and metastasis. Determining the mechanistic roles of TRPM8 in cancer is expected to elucidate the impact of thermal and chemical stimuli on the formation and progression of neoplasms. Translational research and clinical investigation of TRPM8 in malignant diseases will help exploit these ion channels as molecular biomarkers and therapeutic targets for developing precision cancer medicine.

  9. Oxidative stress activates the TRPM2-Ca2+-CaMKII-ROS signaling loop to induce cell death in cancer cells.

    Science.gov (United States)

    Wang, Qian; Huang, Lihong; Yue, Jianbo

    2017-06-01

    High intracellular levels of reactive oxygen species (ROS) cause oxidative stress that results in numerous pathologies, including cell death. Transient potential receptor melastatin-2 (TRPM2), a Ca 2+ -permeable cation channel, is mainly activated by intracellular adenosine diphosphate ribose (ADPR) in response to oxidative stress. Here we studied the role and mechanisms of TRPM2-mediated Ca 2+ influx on oxidative stress-induced cell death in cancer cells. We found that oxidative stress activated the TRPM2-Ca 2+ -CaMKII cascade to inhibit early autophagy induction, which ultimately led to cell death in TRPM2 expressing cancer cells. On the other hand, TRPM2 knockdown switched cells from cell death to autophagy for survival in response to oxidative stress. Moreover, we found that oxidative stress activated the TRPM2-CaMKII cascade to further induce intracellular ROS production, which led to mitochondria fragmentation and loss of mitochondrial membrane potential. In summary, our data demonstrated that oxidative stress activates the TRPM2-Ca 2+ -CaMKII-ROS signal loop to inhibit autophagy and induce cell death. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Activation of TRPM7 channels by small molecules under physiological conditions.

    Science.gov (United States)

    Hofmann, T; Schäfer, S; Linseisen, M; Sytik, L; Gudermann, T; Chubanov, V

    2014-12-01

    Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a cation channel covalently linked to a protein kinase domain. TRPM7 is ubiquitously expressed and regulates key cellular processes such as Mg(2+) homeostasis, motility, and proliferation. TRPM7 is involved in anoxic neuronal death, cardiac fibrosis, and tumor growth. The goal of this work was to identify small molecule activators of the TRPM7 channel and investigate their mechanism of action. We used an aequorin bioluminescence-based assay to screen for activators of the TRPM7 channel. Valid candidates were further characterized using patch clamp electrophysiology. We identified 20 drug-like compounds with various structural backbones that can activate the TRPM7 channel. Among them, the δ opioid antagonist naltriben was studied in greater detail. Naltriben's action was selective among the TRP channels tested. Naltriben activates TRPM7 currents without prior depletion of intracellular Mg(2+) even under conditions of low PIP2. Moreover, naltriben interfered with the effect of the TRPM7 inhibitor NS8593. Finally, our experiments with TRPM7 variants carrying mutations in the pore, TRP, and kinase domains indicate that the site of TRPM7 activation by this small-molecule ligand is most likely located in or near the TRP domain. In conclusion, we identified the first organic small-molecule activators of TRPM7 channels, thus providing new experimental tools to study TRPM7 function in native cellular environments.

  11. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel.

    Science.gov (United States)

    Held, Katharina; Gruss, Fabian; Aloi, Vincenzo Davide; Janssens, Annelies; Ulens, Chris; Voets, Thomas; Vriens, Joris

    2018-03-31

    Mutagenesis at positively charged amino acids (arginines and lysines) (R1-R4) in the voltage-sensor domain (transmembrane segment (S) 4) of voltage-gated Na + , K + and Ca 2+ channels can lead to an alternative ion permeation pathway distinct from the central pore. Recently, a non-canonical ion permeation pathway was described in TRPM3, a member of the transient receptor potential (TRP) superfamily. The non-canonical pore exists in the native TRPM3 channel and can be activated by co-stimulation of the endogenous agonist pregnenolone sulphate and the antifungal drug clotrimazole or by stimulation of the synthetic agonist CIM0216. Alignment of the voltage sensor of Shaker K + channels with the entire TRPM3 sequence revealed the highest degree of similarity in the putative S4 region of TRPM3, and suggested that only one single gating charge arginine (R2) in the putative S4 region is conserved. Mutagenesis studies in the voltage-sensing domain of TRPM3 revealed several residues in the voltage sensor (S4) as well as in S1 and S3 that are crucial for the occurrence of the non-canonical inward currents. In conclusion, this study provides evidence for the involvement of the voltage-sensing domain of TRPM3 in the formation of an alternative ion permeation pathway. Transient receptor potential (TRP) channels are cationic channels involved in a broad array of functions, including homeostasis, motility and sensory functions. TRP channel subunits consist of six transmembrane segments (S1-S6), and form tetrameric channels with a central pore formed by the region encompassing S5 and S6. Recently, evidence was provided for the existence of an alternative ion permeation pathway in TRPM3, which allows large inward currents upon hyperpolarization independently of the central pore. However, very little knowledge is available concerning the localization of this alternative pathway in the native TRPM3 channel protein. Guided by sequence homology with Shaker K + channels, in which

  12. Involvement of TRPV3 and TRPM8 ion channel proteins in induction of mammalian cold-inducible proteins.

    Science.gov (United States)

    Fujita, Takanori; Liu, Yu; Higashitsuji, Hiroaki; Itoh, Katsuhiko; Shibasaki, Koji; Fujita, Jun; Nishiyama, Hiroyuki

    2018-01-01

    Cold-inducible RNA-binding protein (CIRP), RNA-binding motif protein 3 (RBM3) and serine and arginine rich splicing factor 5 (SRSF5) are RNA-binding proteins that are transcriptionally upregulated in response to moderately low temperatures and a variety of cellular stresses in mammalian cells. Induction of these cold-inducible proteins (CIPs) is dependent on transient receptor potential (TRP) V4 channel protein, but seems independent of its ion channel activity. We herein report that in addition to TRPV4, TRPV3 and TRPM8 are necessary for the induction of CIPs. We established cell lines from the lung of TRPV4-knockout (KO) mouse, and observed induction of CIPs in them by western blot analysis. A TRPV4 antagonist RN1734 suppressed the induction in wild-type mouse cells, but not in TRPV4-KO cells. A TRPV3 channel blocker S408271 and a TRPM8 channel blocker AMTB as well as siRNAs against TRPV3 and TRPM8 suppressed the CIP induction in mouse TRPV4-KO cells and human U-2 OS cells. A TRPV3 channel agonist 2-APB induced CIP expression, but camphor did not. Neither did a TRPM8 channel agonist WS-12. These results suggest that TRPV4, TRPV3 and TRPM8 proteins, but not their ion channel activities are necessary for the induction of CIPs at 32 °C. Identification of proteins that differentially interact with these TRP channels at 37 °C and 32 °C would help elucidate the underlying mechanisms of CIP induction by hypothermia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Tyrphostin AG-related compounds attenuate H2O2-induced TRPM2-dependent and -independent cellular responses.

    Science.gov (United States)

    Yamamoto, Shinichiro; Toda, Takahiro; Yonezawa, Ryo; Negoro, Takaharu; Shimizu, Shunichi

    2017-05-01

    TRPM2 is a Ca 2+ -permeable channel that is activated by H 2 O 2 . TRPM2-mediated Ca 2+ signaling has been implicated in the aggravation of inflammatory diseases. Therefore, the development of TRPM2 inhibitors to prevent the aggravation of these diseases is expected. We recently reported that some Tyrphostin AG-related compounds inhibited the H 2 O 2 -induced activation of TRPM2 by scavenging the intracellular hydroxyl radical. In the present study, we examined the effects of AG-related compounds on H 2 O 2 -induced cellular responses in human monocytic U937 cells, which functionally express TRPM2. The effects of AG-related compounds on H 2 O 2 -induced changes in intracellular Ca 2+ concentrations, extracellular signal-regulated kinase (ERK) activation, and CXCL8 secretion were assessed using U937 cells. Ca 2+ influxes via TRPM2 in response to H 2 O 2 were blocked by AG-related compounds. AG-related compounds also inhibited the H 2 O 2 -induced activation of ERK, and subsequent secretion of CXCL8 mediated by TRPM2-dependent and -independent mechanisms. Our results show that AG-related compounds inhibit H 2 O 2 -induced CXCL8 secretion following ERK activation, which is mediated by TRPM2-dependent and -independent mechanisms in U937 cells. We previously reported that AG-related compounds blocked H 2 O 2 -induced TRPM2 activation by scavenging the hydroxyl radical. The inhibitory effects of AG-related compounds on TRPM2-independent responses may be due to scavenging of the hydroxyl radical. Copyright © 2017 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  14. Assessment of TRPM7 functions by drug-like small molecules.

    Science.gov (United States)

    Chubanov, Vladimir; Ferioli, Silvia; Gudermann, Thomas

    2017-11-01

    Transient receptor potential cation channel subfamily M member 7 (TRPM7) is a plasma membrane ion channel linked to a cytosolic protein kinase domain. Genetic inactivation of this bi-functional protein revealed its crucial role in Ca 2+ signalling, Mg 2+ metabolism, immune responses, cell motility, proliferation and differentiation. Malfunctions of TRPM7 are associated with anoxic neuronal death, cardiac fibrosis, tumour progression and macrothrombocytopenia. Recently, several groups have identified small organic compounds acting as inhibitors or activators of the TRPM7 channel. In follow-up studies, the identified TRPM7 modulators were successfully used to uncover new cellular functions of TRPM7 in situ including a crucial role of TRPM7 in Ca 2+ signaling and Ca 2+ dependent cellular processes. Hence, TRPM7 has been defined as a promising drug target. Here, we summarize the progress in this quickly developing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ion channel profile of TRPM8 cold receptors reveals a novel role of TASK-3 potassium channels in thermosensation

    Science.gov (United States)

    Morenilla-Palao, Cruz; Luis, Enoch; Fernández-Peña, Carlos; Quintero, Eva; Weaver, Janelle L.; Bayliss, Douglas A.; Viana, Félix

    2017-01-01

    Summary Animals sense cold ambient temperatures through the activation of peripheral thermoreceptors that express TRPM8, a cold- and menthol-activated ion channel. These receptors can discriminate a very wide range of temperatures from innocuous to noxious. The molecular mechanism responsible for the variable sensitivity of individual cold receptors to temperature is unclear. To address this question, we performed a detailed ion channel expression analysis of cold sensitive neurons, combining BAC transgenesis with a molecular profiling approach in FACS purified TRPM8 neurons. We found that TASK-3 leak potassium channels are highly enriched in a subpopulation of these sensory neurons. The thermal threshold of TRPM8 cold neurons is decreased during TASK-3 blockade and in mice lacking TASK-3 and, most importantly, these mice display hypersensitivity to cold. Our results demonstrate a novel role of TASK-3 channels in thermosensation, showing that a channel-based combinatorial strategy in TRPM8 cold thermoreceptors leads to molecular specialization and functional diversity. PMID:25199828

  16. Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Hsiang-Chin Chen

    2010-06-01

    Full Text Available TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein's expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE, the product of 5-lipoxygenase, or 5-HPETE's downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of

  17. Effects of antagonists and heat on TRPM8 channel currents in dorsal root ganglion neuron activated by nociceptive cold stress and menthol.

    Science.gov (United States)

    Naziroğlu, Mustafa; Ozgül, Cemil

    2012-02-01

    Transient receptor potential ion channel melastatin subtype 8 (TRPM8) is activated by cold temperature and cooling agents, such as menthol and icilin. Compounds containing peppermint are reported to reduce symptoms of environmental cold stress such as cold allodynia in dorsal root ganglion (DRG) neuron; however, the underlying mechanisms of action are unclear. We tested the effects of physiological heat (37°C), anthralic acid (ACA and 0.025 mM), 2-aminoethyl diphenylborinate (2-APB and 0.05) on noxious cold (10°C) and menthol (0.1 mM)-induced TRPM8 cation channel currents in the DRG neurons of rats. DRG neurons were freshly isolated from rats. In whole-cell patch clamp experiments, TRPM8 currents were consistently induced by noxious cold or menthol. TRPM8 channels current densities of the neurons were higher in cold and menthol groups than in control. When the physiological heat is introduced by chamber TRPM8 channel currents were inhibited by the heat. Noxious cold-induced Ca(2+) gates were blocked by the ACA although menthol-induced TRPM8 currents were not blocked by ACA and 2-APB. In conclusion, the results suggested that activation of TRPM8 either by menthol or nociceptive cold can activate TRPM8 channels although we observed the protective role of heat, ACA and 2-APB through a TRPM8 channel in nociceptive cold-activated DRG neurons. Since cold allodynia is a common feature of neuropathic pain and diseases of sensory neuron, our findings are relevant to the etiology of neuropathology in DRG neurons.

  18. Phosphoinositide-interacting regulator of TRP (PIRT) has opposing effects on human and mouse TRPM8 ion channels.

    Science.gov (United States)

    Hilton, Jacob K; Salehpour, Taraneh; Sisco, Nicholas J; Rath, Parthasarathi; Van Horn, Wade D

    2018-05-03

    Transient receptor potential melastatin 8 (TRPM8) is a cold-sensitive ion channel with diverse physiological roles. TRPM8 activity is modulated by many mechanisms, including an interaction with the small membrane protein phosphoinositide-interacting regulator of TRP (PIRT). Here, using comparative electrophysiology experiments, we identified species-dependent differences between the human and mouse TRPM8-PIRT complexes. We found that human PIRT attenuated human TPRM8 conductance, unlike mouse PIRT, which enhanced mouse TRPM8 conductance. Quantitative western blot analysis demonstrates that this effect does not arise from decreased trafficking of TRPM8 to the plasma membrane. Chimeric human/mouse TRPM8 channels were generated to probe the molecular basis of the PIRT modulation, and the effect was recapitulated in a pore domain chimera, demonstrating the importance of this region for PIRT-mediated regulation of TRPM8. Moreover, recombinantly expressed and purified human TRPM8 S1-S4 domain (comprising transmembrane helices S1-S4, also known as the sensing domain, ligand-sensing domain, or voltage sensing-like domain) and full-length human PIRT were used to investigate binding between the proteins. NMR experiments, supported by a pulldown assay, indicated that PIRT binds directly and specifically to the TRPM8 S1-S4 domain. Binding became saturated as the S1-S4:PIRT mole ratio approached 1. Our results have uncovered species-specific TRPM8 modulation by PIRT. They provide evidence for a direct interaction between PIRT and the TRPM8 S1-S4 domain with a 1:1 binding stoichiometry, suggesting that a functional tetrameric TRPM8 channel has four PIRT-binding sites. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The role of TRPM8 in the Guinea-pig bladder-cooling reflex investigated using a novel TRPM8 antagonist.

    Science.gov (United States)

    Gardiner, Jennifer C; Kirkup, Anthony J; Curry, John; Humphreys, Sian; O'Regan, Paul; Postlethwaite, Michael; Young, Kimberley C; Kitching, Linda; Ethell, Brian T; Winpenny, David; McMurray, Gordon

    2014-10-05

    Patients with overactive bladder often exhibit abnormal bladder contractions in response to intravesical cold saline (positive ice-water test). The molecular entity involved in cold sensation within the urinary bladder is unknown, but a potential candidate is the ion channel, transient receptor potential (melastatin)-8 (TRPM8). The objective of the present study was to investigate the role of TRPM8 in a bladder-cooling reflex evoked in anaesthetised guinea-pigs that is comparable to the positive ice-water test seen in patients. Guinea-pig TRPM8 was cloned from L6 dorsal root ganglia (DRG) and expressed in HEK293 cells. Functional agonist- and cold-induced Ca2+ influx and electrophysiology assays were performed in these cells, and for comparison in HEK293 cells expressing human TRPM8, using a novel TRPM8 antagonist, the S-enantiomer of 1-phenylethyl 4-(benzyloxy)-3-methoxybenzyl (2-aminoethyl) carbamate hydrochloride (PBMC). Potency data from these assays was used to calculate intravenous infusion protocols for targeted plasma concentrations of PBMC in studies on micturition reflexes evoked by intravesical infusion of menthol or cold saline in anaesthetised guinea-pigs. Tissue expression of TRPM8 in guinea-pig bladder, urethra and in dorsal root ganglia neurones traced from the bladder was also investigated. TRPM8 mRNA and protein were detected in L6 dorsal root ganglia, bladder urothelium and smooth muscle. PBMC antagonised in vitro activation of human and guinea-pig TRPM8 and reversed menthol and cold-induced facilitation of the micturition reflex at plasma concentrations consistent with in vitro potencies. The present data suggest that the bladder-cooling reflex in the guinea-pig involves TRPM8. The potential significance of TRPM8 in bladder disease states deserves future investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Antibodies to the extracellular pore loop of TRPM8 act as antagonists of channel activation.

    Directory of Open Access Journals (Sweden)

    Silke Miller

    Full Text Available The mammalian transient receptor potential melastatin channel 8 (TRPM8 is highly expressed in trigeminal and dorsal root ganglia. TRPM8 is activated by cold temperature or compounds that cause a cooling sensation, such as menthol or icilin. TRPM8 may play a role in cold hypersensitivity and hyperalgesia in various pain syndromes. Therefore, TRPM8 antagonists are pursued as therapeutics. In this study we explored the feasibility of blocking TRPM8 activation with antibodies. We report the functional characterization of a rabbit polyclonal antibody, ACC-049, directed against the third extracellular loop near the pore region of the human TRPM8 channel. ACC-049 acted as a full antagonist at recombinantly expressed human and rodent TRPM8 channels in cell based agonist-induced 45Ca2+ uptake assays. Further, several poly-and monoclonal antibodies that recognize the same region also blocked icilin activation of not only recombinantly expressed TRPM8, but also endogenous TRPM8 expressed in rat dorsal root ganglion neurons revealing the feasibility of generating monoclonal antibody antagonists. We conclude that antagonist antibodies are valuable tools to investigate TRPM8 function and may ultimately pave the way for development of therapeutic antibodies.

  1. TRPM8 mediates cold and menthol allergies associated with mast cell activation.

    Science.gov (United States)

    Cho, Yeongyo; Jang, Yongwoo; Yang, Young Duk; Lee, Chang-Hun; Lee, Yunjong; Oh, Uhtaek

    2010-10-01

    Exposure to low temperatures often causes allergic responses or urticaria. Similarly, menthol, a common food additive is also known to cause urticaria, asthma, and rhinitis. However, despite the obvious clinical implications, the molecular mechanisms responsible for inducing allergic responses to low temperatures and menthol have not been determined. Because a non-selective cation channel, transient receptor potential subtype M8 (TRPM8) is activated by cold and menthol, we hypothesized that this channel mediates cold- and menthol-induced histamine release in mast cells. Here, we report that TRPM8 is expressed in the basophilic leukemia mast cell line, RBL-2H3, and that exposure to menthol or low temperatures induced Ca(2+) influx in RBL-2H3 cells, which was reversed by a TRPM8 blocker. Furthermore, menthol, a TRPM8 agonist, induced the dose-dependent release of histamine from RBL-2H3 cells. When TRPM8 transcripts were reduced by siRNA (small interfering RNA), menthol- and cold-induced Ca(2+) influx and histamine release were significantly reduced. In addition, subcutaneous injection of menthol evoked scratching, a typical histamine-induced response which was reversed by a TRPM8 blocker. Thus, our findings indicate that TRPM8 mediates the menthol- and cold-induced allergic responses of mast cells, and suggest that TRPM8 antagonists be viewed as potential treatments for cold- and menthol-induced allergies. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. TRPM2 Channel Aggravates CNS Inflammation and Cognitive Impairment via Activation of Microglia in Chronic Cerebral Hypoperfusion.

    Science.gov (United States)

    Miyanohara, Jun; Kakae, Masashi; Nagayasu, Kazuki; Nakagawa, Takayuki; Mori, Yasuo; Arai, Ken; Shirakawa, Hisashi; Kaneko, Shuji

    2018-04-04

    Chronic cerebral hypoperfusion is a characteristic seen in widespread CNS diseases, including neurodegenerative and mental disorders, and is commonly accompanied by cognitive impairment. Recently, several studies demonstrated that chronic cerebral hypoperfusion can induce the excessive inflammatory responses that precede neuronal dysfunction; however, the precise mechanism of cognitive impairment due to chronic cerebral hypoperfusion remains unknown. Transient receptor potential melastatin 2 (TRPM2) is a Ca 2+ -permeable channel that is abundantly expressed in immune cells and is involved in aggravation of inflammatory responses. Therefore, we investigated the pathophysiological role of TRPM2 in a mouse chronic cerebral hypoperfusion model with bilateral common carotid artery stenosis (BCAS). When male mice were subjected to BCAS, cognitive dysfunction and white matter injury at day 28 were significantly improved in TRPM2 knock-out (TRPM2-KO) mice compared with wild-type (WT) mice, whereas hippocampal damage was not observed. There were no differences in blood-brain barrier breakdown and H 2 O 2 production between the two genotypes at 14 and 28 d after BCAS. Cytokine production was significantly suppressed in BCAS-operated TRPM2-KO mice compared with WT mice at day 28. In addition, the number of Iba1-positive cells gradually decreased from day 14. Moreover, daily treatment with minocycline significantly improved cognitive perturbation. Surgical techniques using bone marrow chimeric mice revealed that activated Iba1-positive cells in white matter could be brain-resident microglia, not peripheral macrophages. Together, these findings suggest that microglia contribute to the aggravation of cognitive impairment by chronic cerebral hypoperfusion, and that TRPM2 may be a potential target for chronic cerebral hypoperfusion-related disorders. SIGNIFICANCE STATEMENT Chronic cerebral hypoperfusion is manifested in a wide variety of CNS diseases, including neurodegenerative

  3. Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2011-03-01

    Genetic analysis of pancreatic development has provided new insights into the mechanisms underlying the formation of exocrine pancreatic neoplasia. Zebrafish sweetbread (swd mutants develop hypoplastic acini and dysmorphic ducts in the exocrine pancreas, with impeded progression of cell division cycle and of epithelial growth. Positional cloning and allelic complementation have revealed that the swd mutations affect the transient receptor potential melastatin-subfamily member 7 (trpm7 gene, which encodes a divalent cation-permeable channel with kinase activity. Supplementary Mg2+ partially rescued the exocrine pancreatic defects of the trpm7 mutants by improving cell-cycle progression and growth and repressing the suppressor of cytokine signaling 3a (socs3a gene. The role of Socs3a in Trpm7-mediated signaling is supported by the findings that socs3a mRNA level is elevated in the trpm7 mutants, and antisense inhibition of socs3a expression improved their exocrine pancreatic growth. TRPM7 is generally overexpressed in human pancreatic adenocarcinoma. TRPM7-deficient cells are impaired in proliferation and arrested in the G0-G1 phases of the cell division cycle. Supplementary Mg2+ rescued the proliferative defect of the TRPM7-deficient cells. Results of this study indicate that Trpm7 regulates exocrine pancreatic development via the Mg2+-sensitive Socs3a pathway, and suggest that aberrant TRPM7-mediated signaling contributes to pancreatic carcinogenesis.

  4. TRPM2, calcium and neurodegenerative diseases

    Science.gov (United States)

    Xie, Yu-Feng; MacDonald, John F; Jackson, Michael F

    2010-01-01

    NMDA receptor overactivation triggers intracellular Ca2+ dysregulation, which has long been thought to be critical for initiating excitotoxic cell death cascades associated with stroke and neurodegenerative disease. The inability of NMDA receptor antagonists to afford neuroprotection in clinical stroke trials has led to a re-evaluation of excitotoxic models of cell death and has focused research efforts towards identifying additional Ca2+ influx pathways. Recent studies indicate that TRPM2, a member of the TRPM subfamily of Ca2+-permeant, non-selective cation channel, plays an important role in mediating cellular responses to a wide range of stimuli that, under certain situations, can induce cell death. These include reactive oxygen and nitrogen species, tumour necrosis factor as well as soluble oli-gomers of amyloid beta. However, the molecular basis of TRPM2 channel involvement in these processes is not fully understood. In this review, we summarize recent studies about the regulation of TRPM2, its interaction with calcium and the possible implications for neurodegenerative diseases. PMID:21383889

  5. Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy

    Science.gov (United States)

    Nair, Anil V.; Hocher, Berthold; Verkaart, Sjoerd; van Zeeland, Femke; Pfab, Thiemo; Slowinski, Torsten; Chen, You-Peng; Schlingmann, Karl Peter; Schaller, André; Gallati, Sabina; Bindels, René J.; Konrad, Martin; Hoenderop, Joost G.

    2012-01-01

    Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 (V1393I, K1584E) were predicted to confer susceptibility for DM2. Here, we show using patch clamp analysis and total internal reflection fluorescence microscopy, that insulin stimulates TRPM6 activity via a phosphoinositide 3-kinase and Rac1-mediated elevation of cell surface expression of TRPM6. Interestingly, insulin failed to activate the genetic variants TRPM6(V1393I) and TRPM6(K1584E), which is likely due to the inability of the insulin signaling pathway to phosphorylate TRPM6(T1391) and TRPM6(S1583). Moreover, by measuring total glycosylated hemoglobin (TGH) in 997 pregnant women as a measure of glucose control, we demonstrate that TRPM6(V1393I) and TRPM6(K1584E) are associated with higher TGH and confer a higher likelihood of developing GDM. The impaired response of TRPM6(V1393I) and TRPM6(K1584E) to insulin represents a unique molecular pathway leading to GDM where the defect is located in TRPM6. PMID:22733750

  6. Different Principles of ADP-Ribose-Mediated Activation and Opposite Roles of the NUDT9 Homology Domain in the TRPM2 Orthologs of Man and Sea Anemone

    Directory of Open Access Journals (Sweden)

    Frank Kühn

    2017-10-01

    Full Text Available A decisive element in the human cation channel TRPM2 is a region in its cytosolic C-terminus named NUDT9H because of its homology to the NUDT9 enzyme, a pyrophosphatase degrading ADP-ribose (ADPR. In hTRPM2, however, the NUDT9H domain has lost its enzymatic activity but serves as a binding domain for ADPR. As consequence of binding, gating of the channel is initiated. Since ADPR is produced after oxidative DNA damage, hTRPM2 mediates Ca2+ influx in response to oxidative stress which may lead to cell death. In the genome of the sea anemone Nematostella vectensis (nv, a preferred model organism for the evolution of key bilaterian features, a TRPM2 ortholog has been identified that contains a NUDT9H domain as well. Heterologous expression of nvTRPM2 in HEK-293 cells reveals a cation channel with many close similarities to the human counterpart. Most notably, nvTRPM2 is activated by ADPR, and Ca2+ is a co-agonist. However, the intramolecular mechanisms of ADPR gating as well as the role of NUDT9H are strikingly different in the two species. Whereas already subtle changes of NUDT9H abolish ADPR gating in hTRPM2, the region can be completely removed from nvTRPM2 without loss of responses to ADPR. An alternative ADPR binding site seems to be present but has not yet been characterized. The ADP-ribose pyrophosphatase (ADPRase function of nvNUDT9H has been preserved but can be abolished by numerous genetic manipulations. All these manipulations create channels that are sensitive to hydrogen peroxide which fails to induce channel activity in wild-type nvTRPM2. Therefore, the function of NUDT9H in nvTRPM2 is the degradation of ADPR, thereby reducing agonist concentration in the presence of oxidative stress. Thus, the two TRPM2 orthologs have evolved divergently but nevertheless gained analogous functional properties, i.e., gating by ADPR with Ca2+ as co-factor. Opposite roles are played by the respective NUDT9H domains, either binding of ADPR and mediating

  7. Near-membrane dynamics and capture of TRPM8 channels within transient confinement domains.

    Directory of Open Access Journals (Sweden)

    Luis A Veliz

    Full Text Available BACKGROUND: The cold and menthol receptor, TRPM8, is a non-selective cation channel expressed in a subset of peripheral neurons that is responsible for neuronal detection of environmental cold stimuli. It was previously shown that members of the transient receptor potential (TRP family of ion channels are translocated toward the plasma membrane (PM in response to agonist stimulation. Because the spatial and temporal dynamics of cold receptor cell-surface residence may determine neuronal activity, we hypothesized that the movement of TRPM8 to and from the PM might be a regulated process. Single particle tracking (SPT is a useful tool for probing the organization and dynamics of protein constituents in the plasma membrane. METHODOLOGY/PRINCIPAL FINDINGS: We used SPT to study the receptor dynamics and describe membrane/near-membrane behavior of particles containing TRPM8-EGFP in transfected HEK-293T and F-11 cells. Cells were imaged using total internal reflection fluorescence (TIRF microscopy and the 2D and 3D trajectories of TRPM8 molecules were calculated by analyzing mean-square particle displacement against time. Four characteristic types of motion were observed: stationary mode, simple Brownian diffusion, directed motion, and confined diffusion. In the absence of cold or menthol to activate the channel, most TRPM8 particles move in network covering the PM, periodically lingering for 2-8 s in confined microdomains of about 800 nm radius. Removing cholesterol with methyl-beta-cyclodextrin (MβCD stabilizes TRPM8 motion in the PM and is correlated with larger TRPM8 current amplitude that results from an increase in the number of available channels without a change in open probability. CONCLUSIONS/SIGNIFICANCE: These results reveal a novel mechanism for regulating TRPM8 channel activity, and suggest that PM dynamics may play an important role in controlling electrical activity in cold-sensitive neurons.

  8. Evaluation of the TRPM2 channel as a biomarker in breast cancer using public databases analysis.

    Science.gov (United States)

    Sumoza-Toledo, Adriana; Espinoza-Gabriel, Mario Iván; Montiel-Condado, Dvorak

    Breast cancer is one of the most common malignancies affecting women. Recent investigations have revealed a major role of ion channels in cancer. The transient receptor potential melastatin-2 (TRPM2) is a plasma membrane and lysosomal channel with important roles in cell migration and cell death in immune cells and tumor cells. In this study, we investigated the prognostic value of TRPM2 channel in breast cancer, analyzing public databases compiled in Oncomine™ (Thermo Fisher, Ann Arbor, MI) and online Kaplan-Meier Plotter platforms. The results revealed that TRPM2 mRNA overexpression is significant in situ and invasive breast carcinoma compared to normal breast tissue. Furthermore, multi-gene validation using Oncomine™ showed that this channel is coexpressed with proteins related to cellular migration, transformation, and apoptosis. On the other hand, Kaplan-Meier analysis exhibited that low expression of TRPM2 could be used to predict poor outcome in ER- and HER2+ breast carcinoma patients. TRPM2 is a promising biomarker for aggressiveness of breast cancer, and a potential target for the development of new therapies. Copyright © 2016 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  9. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity

    Directory of Open Access Journals (Sweden)

    Yuhuan Luo

    2018-06-01

    Full Text Available As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2 channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

  10. Expression of temperature-sensitive ion channel TRPM8 in sperm cells correlates with vertebrate evolution

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Majhi

    2015-10-01

    Full Text Available Transient Receptor Potential cation channel, subfamily Melastatin, member 8 (TRPM8 is involved in detection of cold temperature, different noxious compounds and in execution of thermo- as well as chemo-sensitive responses at cellular levels. Here we explored the molecular evolution of TRPM8 by analyzing sequences from various species. We elucidate that several regions of TRPM8 had different levels of selection pressure but the 4th–5th transmembrane regions remain highly conserved. Analysis of synteny suggests that since vertebrate origin, TRPM8 gene is linked with SPP2, a bone morphogen. TRPM8, especially the N-terminal region of it, seems to be highly variable in human population. We found 16,656 TRPM8 variants in 1092 human genomes with top variations being SNPs, insertions and deletions. A total of 692 missense mutations are also mapped to human TRPM8 protein of which 509 seem to be delateroiours in nature as supported by Polyphen V2, SIFT and Grantham deviation score. Using a highly specific antibody, we demonstrate that TRPM8 is expressed endogenously in the testis of rat and sperm cells of different vertebrates ranging from fish to higher mammals. We hypothesize that TRPM8 had emerged during vertebrate evolution (ca 450 MYA. We propose that expression of TRPM8 in sperm cell and its role in regulating sperm function are important factors that have guided its molecular evolution, and that these understandings may have medical importance.

  11. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors

    Science.gov (United States)

    Low, Sean E.; Amburgey, Kimberly; Horstick, Eric; Linsley, Jeremy; Sprague, Shawn M.; Cui, Wilson W.; Zhou, Weibin; Hirata, Hiromi; Saint-Amant, Louis; Hume, Richard I.; Kuwada, John Y.

    2011-01-01

    Mutations in the gene encoding TRPM7 (trpm7), a member of the TRP superfamily of cation channels that possesses an enzymatically active kinase at its carboxyl terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations which abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons we found that TRPM7’s kinase activity, and selectivity for divalent cations over monovalent cations, were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses. PMID:21832193

  12. Two different avian cold-sensitive sensory neurons: Transient receptor potential melastatin 8 (TRPM8)-dependent and -independent activation mechanisms.

    Science.gov (United States)

    Yamamoto, A; Takahashi, K; Saito, S; Tominaga, M; Ohta, T

    2016-12-01

    Sensing the ambient temperature is an important function for survival in animals. Some TRP channels play important roles as detectors of temperature and irritating chemicals. There are functional differences of TRP channels among species. TRPM8 in mammals is activated by cooling compounds and cold temperature, but less information is available on the functional role of TRPM8 in avian species. Here we investigated the pharmacological properties and thermal sensitivities of chicken TRPM8 (cTRPM8) and cold-sensitive mechanisms in avian sensory neurons. In heterologously expressed cTRPM8, menthol and its derivative, WS-12 elicited [Ca 2+ ] i increases, but icilin did not. In chicken sensory neurons, icilin increased [Ca 2+ ] i, in a TRPA1-dependent manner. Icilin selectively stimulated heterologously expressed chicken TRPA1 (cTRPA1). Similar to mammalian orthologue, cTRPM8 was activated by cold. Both heterologous and endogenous expressed cTRPM8 were sensitive to mammalian TRPM8 antagonists. There are two types of cold-sensitive cells regarding menthol sensitivity in chicken sensory neurons. The temperature threshold of menthol-insensitive neurons was significantly lower than that of menthol-sensitive ones. The population of menthol-insensitive neurons was large in chicken but almost little in mammals. The cold-induced [Ca 2+ ] i increases were not abolished by the external Ca 2+ removal or by blockades of PLC-IP 3 pathways and ryanodine channels. The cold stimulation failed to evoke [Ca 2+ ] i increases after intracellular Ca 2+ store-depletion. These results indicate that cTRPM8 acts as a cold-sensor similar to mammals. It is noteworthy that TRPM8-independent cold-sensitive neurons are abundant in chicken sensory neurons. Our results suggest that most of the cold-induced [Ca 2+ ] i increases are mediated via Ca 2+ release from intracellular stores and that these mechanisms may be specific to avian species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Structure of the cold- and menthol-sensing ion channel TRPM8.

    Science.gov (United States)

    Yin, Ying; Wu, Mengyu; Zubcevic, Lejla; Borschel, William F; Lander, Gabriel C; Lee, Seok-Yong

    2018-01-12

    Transient receptor potential melastatin (TRPM) cation channels are polymodal sensors that are involved in a variety of physiological processes. Within the TRPM family, member 8 (TRPM8) is the primary cold and menthol sensor in humans. We determined the cryo-electron microscopy structure of the full-length TRPM8 from the collared flycatcher at an overall resolution of ~4.1 ångstroms. Our TRPM8 structure reveals a three-layered architecture. The amino-terminal domain with a fold distinct among known TRP structures, together with the carboxyl-terminal region, forms a large two-layered cytosolic ring that extensively interacts with the transmembrane channel layer. The structure suggests that the menthol-binding site is located within the voltage-sensor-like domain and thus provides a structural glimpse of the design principle of the molecular transducer for cold and menthol sensation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  14. Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2015-03-01

    Full Text Available Our previous studies in zebrafish development have led to identification of the novel roles of the transient receptor potential melastatin-subfamily member 7 (TRPM7 ion channels in human pancreatic cancer. However, the biological significance of TRPM7 channels in pancreatic neoplasms was mostly unexplored. In this study, we determined the expression levels of TRPM7 in pancreatic tissue microarrays and correlated these measurements in pancreatic adenocarcinoma with the clinicopathological features. We also investigated the role of TRPM7 channels in pancreatic cancer cell invasion using the MatrigelTM-coated transwell assay. In normal pancreas, TRPM7 is expressed at a discernable level in the ductal cells and centroacinar cells and at a relatively high level in the islet endocrine cells. In chronic pancreatitis, pre-malignant tissues, and malignant neoplasms, there is variable expression of TRPM7. In the majority of pancreatic adenocarcinoma specimens examined, TRPM7 is expressed at either moderate-level or high-level. Anti-TRPM7 immunoreactivity in pancreatic adenocarcinoma significantly correlates with the size and stages of tumors. In human pancreatic adenocarcinoma cells in which TRPM7 is highly expressed, short hairpin RNA-mediated suppression of TRPM7 impairs cell invasion. The results demonstrate that TRPM7 channels are over-expressed in a proportion of the pre-malignant lesions and malignant tumors of the pancreas, and they are necessary for invasion by pancreatic cancer cells. We propose that TRPM7 channels play important roles in development and progression of pancreatic neoplasm, and they may be explored as clinical biomarkers and targets for its prevention and treatment.

  15. Francisella tularensis Catalase Restricts Immune Function by Impairing TRPM2 Channel Activity.

    Science.gov (United States)

    Shakerley, Nicole L; Chandrasekaran, Akshaya; Trebak, Mohamed; Miller, Barbara A; Melendez, J Andrés

    2016-02-19

    As an innate defense mechanism, macrophages produce reactive oxygen species that weaken pathogens and serve as secondary messengers involved in immune function. The Gram-negative bacterium Francisella tularensis utilizes its antioxidant armature to limit the host immune response, but the mechanism behind this suppression is not defined. Here we establish that F. tularensis limits Ca(2+) entry in macrophages, thereby limiting actin reorganization and IL-6 production in a redox-dependent fashion. Wild type (live vaccine strain) or catalase-deficient F. tularensis (ΔkatG) show distinct profiles in their H2O2 scavenging rates, 1 and 0.015 pm/s, respectively. Murine alveolar macrophages infected with ΔkatG display abnormally high basal intracellular Ca(2+) concentration that did not increase further in response to H2O2. Additionally, ΔkatG-infected macrophages displayed limited Ca(2+) influx in response to ionomycin, as a result of ionophore H2O2 sensitivity. Exogenously added H2O2 or H2O2 generated by ΔkatG likely oxidizes ionomycin and alters its ability to transport Ca(2+). Basal increases in cytosolic Ca(2+) and insensitivity to H2O2-mediated Ca(2+) entry in ΔkatG-infected cells are reversed by the Ca(2+) channel inhibitors 2-aminoethyl diphenylborinate and SKF-96365. 2-Aminoethyl diphenylborinate but not SKF-96365 abrogated ΔkatG-dependent increases in macrophage actin remodeling and IL-6 secretion, suggesting a role for H2O2-mediated Ca(2+) entry through the transient receptor potential melastatin 2 (TRPM2) channel in macrophages. Indeed, increases in basal Ca(2+), actin polymerization, and IL-6 production are reversed in TRPM2-null macrophages infected with ΔkatG. Together, our findings provide compelling evidence that F. tularensis catalase restricts reactive oxygen species to temper macrophage TRPM2-mediated Ca(2+) signaling and limit host immune function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors.

    Science.gov (United States)

    Mälkiä, Annika; Madrid, Rodolfo; Meseguer, Victor; de la Peña, Elvira; Valero, María; Belmonte, Carlos; Viana, Félix

    2007-05-15

    TRPM8, a member of the melastatin subfamily of transient receptor potential (TRP) cation channels, is activated by voltage, low temperatures and cooling compounds. These properties and its restricted expression to small sensory neurons have made it the ion channel with the most advocated role in cold transduction. Recent work suggests that activation of TRPM8 by cold and menthol takes place through shifts in its voltage-activation curve, which cause the channel to open at physiological membrane potentials. By contrast, little is known about the actions of inhibitors on the function of TRPM8. We investigated the chemical and thermal modulation of TRPM8 in transfected HEK293 cells and in cold-sensitive primary sensory neurons. We show that cold-evoked TRPM8 responses are effectively suppressed by inhibitor compounds SKF96365, 4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide (BCTC) and 1,10-phenanthroline. These antagonists exert their effect by shifting the voltage dependence of TRPM8 activation towards more positive potentials. An opposite shift towards more negative potentials is achieved by the agonist menthol. Functionally, the bidirectional shift in channel gating translates into a change in the apparent temperature threshold of TRPM8-expressing cells. Accordingly, in the presence of the antagonist compounds, the apparent response-threshold temperature of TRPM8 is displaced towards colder temperatures, whereas menthol sensitizes the response, shifting the threshold in the opposite direction. Co-application of agonists and antagonists produces predictable cancellation of these effects, suggesting the convergence on a common molecular process. The potential for half maximal activation of TRPM8 activation by cold was approximately 140 mV more negative in native channels compared to recombinant channels, with a much higher open probability at negative membrane potentials in the former. In functional terms, this difference translates

  17. Involvement of TRPM2 in a wide range of inflammatory and neuropathic pain mouse models

    Directory of Open Access Journals (Sweden)

    Kanako So

    2015-03-01

    Full Text Available Recent evidence suggests a role of transient receptor potential melastatin 2 (TRPM2 in immune and inflammatory responses. We previously reported that TRPM2 deficiency attenuated inflammatory and neuropathic pain in some pain mouse models, including formalin- or carrageenan-induced inflammatory pain, and peripheral nerve injury-induced neuropathic pain models, while it had no effect on the basal mechanical and thermal nociceptive sensitivities. In this study, we further explored the involvement of TRPM2 in various pain models using TRPM2-knockout mice. There were no differences in the chemonociceptive behaviors evoked by intraplantar injection of capsaicin or hydrogen peroxide between wildtype and TRPM2-knockout mice, while acetic acid-induced writhing behavior was significantly attenuated in TRPM2-knockout mice. In the postoperative incisional pain model, no difference in mechanical allodynia was observed between the two genotypes. By contrast, mechanical allodynia in the monosodium iodoacetate-induced osteoarthritis pain model and the experimental autoimmune encephalomyelitis model were significantly attenuated in TRPM2-knockout mice. Furthermore, mechanical allodynia in paclitaxel-induced peripheral neuropathy and streptozotocin-induced painful diabetic neuropathy models were significantly attenuated in TRPM2-knockout mice. Taken together, these results suggest that TRPM2 plays roles in a wide range of pathological pain models based on peripheral and central neuroinflammation, rather than physiological nociceptive pain.

  18. Trpm4 gene invalidation leads to cardiac hypertrophy and electrophysiological alterations.

    Directory of Open Access Journals (Sweden)

    Marie Demion

    Full Text Available RATIONALE: TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. OBJECTIVES: We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/- model. METHODS AND RESULTS: Morpho-functional analysis revealed left ventricular (LV eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. CONCLUSIONS: TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular

  19. Involvement of TRPM2 in peripheral nerve injury-induced infiltration of peripheral immune cells into the spinal cord in mouse neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Kouichi Isami

    Full Text Available Recent evidence suggests that transient receptor potential melastatin 2 (TRPM2 expressed in immune cells plays an important role in immune and inflammatory responses. We recently reported that TRPM2 expressed in macrophages and spinal microglia contributes to the pathogenesis of inflammatory and neuropathic pain aggravating peripheral and central pronociceptive inflammatory responses in mice. To further elucidate the contribution of TRPM2 expressed by peripheral immune cells to neuropathic pain, we examined the development of peripheral nerve injury-induced neuropathic pain and the infiltration of immune cells (particularly macrophages into the injured nerve and spinal cord by using bone marrow (BM chimeric mice by crossing wildtype (WT and TRPM2-knockout (TRPM2-KO mice. Four types of BM chimeric mice were prepared, in which irradiated WT or TRPM2-KO recipient mice were transplanted with either WT-or TRPM2-KO donor mouse-derived green fluorescence protein-positive (GFP(+ BM cells (TRPM2(BM+/Rec+, TRPM2(BM-/Rec+, TRPM2(BM+/Rec-, and TRPM2(BM-/Rec- mice. Mechanical allodynia induced by partial sciatic nerve ligation observed in TRPM2(BM+/Rec+ mice was attenuated in TRPM2(BM-/Rec+, TRPM2(BM+/Rec-, and TRPM2(BM-/Rec- mice. The numbers of GFP(+ BM-derived cells and Iba1/GFP double-positive macrophages in the injured sciatic nerve did not differ among chimeric mice 14 days after the nerve injury. In the spinal cord, the number of GFP(+ BM-derived cells, particularly GFP/Iba1 double-positive macrophages, was significantly decreased in the three TRPM2-KO chimeric mouse groups compared with TRPM2(BM+/Rec+ mice. However, the numbers of GFP(-/Iba1(+ resident microglia did not differ among chimeric mice. These results suggest that TRPM2 plays an important role in the infiltration of peripheral immune cells, particularly macrophages, into the spinal cord, rather than the infiltration of peripheral immune cells into the injured nerves and activation of spinal

  20. Estrogen regulation of TRPM8 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Chodon, Dechen; Guilbert, Arnaud; Dhennin-Duthille, Isabelle; Gautier, Mathieu; Telliez, Marie-Sophie; Sevestre, Henri; Ouadid-Ahidouch, Halima

    2010-01-01

    The calcium-permeable cation channel TRPM8 (melastatin-related transient receptor potential member 8) is over-expressed in several cancers. The present study aimed at investigating the expression, function and potential regulation of TRPM8 channels by ER alpha (estrogen receptor alpha) in breast cancer. RT-PCR, Western blot, immuno-histochemical, and siRNA techniques were used to investigate TRPM8 expression, its regulation by estrogen receptors, and its expression in breast tissue. To investigate the channel activity in MCF-7 cells, we used the whole cell patch clamp and the calcium imaging techniques. TRPM8 channels are expressed at both mRNA and protein levels in the breast cancer cell line MCF-7. Bath application of the potent TRPM8 agonist Icilin (20 μM) induced a strong outwardly rectifying current at depolarizing potentials, which is associated with an elevation of cytosolic calcium concentration, consistent with established TRPM8 channel properties. RT-PCR experiments revealed a decrease in TRPM8 mRNA expression following steroid deprivation for 48 and 72 hours. In steroid deprived medium, addition of 17-beta-estradiol (E 2 , 10 nM) increased both TRPM8 mRNA expression and the number of cells which respond to Icilin, but failed to affect the Ca 2+ entry amplitude. Moreover, silencing ERα mRNA expression with small interfering RNA reduced the expression of TRPM8. Immuno-histochemical examination of the expression of TRPM8 channels in human breast tissues revealed an over-expression of TRPM8 in breast adenocarcinomas, which is correlated with estrogen receptor positive (ER + ) status of the tumours. Taken together, these results show that TRPM8 channels are expressed and functional in breast cancer and that their expression is regulated by ER alpha

  1. Borneol Is a TRPM8 Agonist that Increases Ocular Surface Wetness.

    Directory of Open Access Journals (Sweden)

    Gui-Lan Chen

    Full Text Available Borneol is a compound widely used in ophthalmic preparations in China. Little is known about its exact role in treating eye diseases. Here we report that transient receptor potential melastatin 8 (TRPM8 channel is a pharmacological target of borneol and mediates its therapeutic effect in the eyes. Ca2+ measurement and electrophysiological recordings revealed that borneol activated TRPM8 channel in a temperature- and dose-dependent manner, which was similar to but less effective than the action of menthol, an established TRPM8 agonist. Borneol significantly increased tear production in guinea pigs without evoking nociceptive responses at 25°C, but failed to induce tear secretion at 35°C. In contrast, menthol evoked tearing response at both 25 and 35°C. TRPM8 channel blockers N-(3-Aminopropyl-2-[(3-methylphenylmethoxy]-N-(2-thienylmethylbenzamide hydrochloride (AMTB and N-(4-tert-butylphenyl-4-(3-chloropyridin-2-ylpiperazine-1-carboxamide (BCTC abolished borneol- and menthol-induced tear secretion. Borneol at micromolar concentrations did not affect the viability of human corneal epithelial cells. We conclude that borneol can activate the cold-sensing TRPM8 channel and modestly increase ocular surface wetness, which suggests it is an active compound in ophthalmic preparations and particularly useful in treating dry eye syndrome.

  2. Exploring 2D and 3D QSARs of benzimidazole derivatives as transient receptor potential melastatin 8 (TRPM8 antagonists using MLR and kNN-MFA methodology

    Directory of Open Access Journals (Sweden)

    Kamlendra Singh Bhadoriya

    2016-09-01

    Full Text Available TRPM8 is now best known as a cold- and menthol-activated channel implicated in thermosensation. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neuron. TRPM8 plays a major role in the sensation of cold and cooling substances. TRPM8 is a potential new target for the treatment of painful conditions. Thus, TRPM8 antagonists represent a new, novel and potentially useful treatment strategy to treat various disease states such as urological disorders, asthma, COPD, prostate and colon cancers, and painful conditions related to cold, such as cold allodynia and cold hyperalgesia. Better tools such as potent and specific TRPM8 antagonists are mandatory as high unmet medical need for such progress. To achieve this objective quantitative structure–activity relationship (QSAR studies were carried out on a series of 25 benzimidazole-containing TRPM8 antagonists to investigate the structural requirements of their inhibitory activity against cTRPM8. The statistically significant best 2D-QSAR model having correlation coefficient r2 = 0.88 and cross-validated squared correlation coefficient q2 = 0.64 with external predictive ability of pred_r2 = 0.69 was developed by SW-MLR. The physico-chemical descriptors such as polarizabilityAHP, kappa2, XcompDipole, +vePotentialSurfaceArea, XKMostHydrophilic were found to show a significant correlation with biological activity in benzimidazole derivatives. Molecular field analysis was used to construct the best 3D-QSAR model using SW-kNN method, showing good correlative and predictive capabilities in terms of q2 = 0.81 and pred_r2 = 0.55. Developed kNN-MFA model highlighted the importance of shape of the molecules, i.e., steric & electrostatic descriptors at the grid points S_774 & E_1024 for TRPM8 receptor binding. These models (2D & 3D were found to yield reliable clues for further optimization of benzimidazole derivatives in the data set. The information rendered by 2D- and 3D

  3. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    International Nuclear Information System (INIS)

    Fang, Ling; Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian; Zhan, Shuxiang; Li, Jun

    2014-01-01

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  4. TGF-β1-elevated TRPM7 channel regulates collagen expression in hepatic stellate cells via TGF-β1/Smad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Ling, E-mail: fangling_1984@126.com [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Huang, Cheng; Meng, Xiaoming; Wu, Baoming; Ma, Taotao; Liu, Xuejiao; Zhu, Qian [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); Zhan, Shuxiang [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China); The First Affiliated Hospital of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Li, Jun, E-mail: lj@ahmu.edu.cn [School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Institute for Liver Diseases of Anhui Medical University, Mei Shan Road, Hefei, Anhui Province 230032 (China); Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Ministry of Education, Mei Shan Road, Hefei, Anhui Province 230032 (China)

    2014-10-15

    Transdifferentiation of hepatic stellate cells (HSCs) into myofibroblasts plays a critical role in the development of liver fibrosis, since myofibroblasts are the key cells responsible for excessive deposition of ECM proteins. Transient receptor potential melastatin 7 (TRPM7), a non-selective cation channel with protein serine/threonine kinase activity, has been demonstrated to function in the proliferation of activated HSCs. Here, we investigated the functional role of TRPM7 in collagen deposition in activated HSC-T6 cells (a rat hepatic stellate cell line). TRPM7 mRNA and protein were measured by Real-time PCR and Western blot in TGF-β1-activated HSC-T6 cells in vitro. Results demonstrated that TRPM7 protein was dramatically increased in fibrotic human livers. Stimulation of HSC-T6 cells with TGF-β1 increased TRPM7 mRNA and protein level in a time-dependent manner. Nevertheless, TGF-β1-elicited upregulation of TRPM7 in HSC-T6 cells was abrogated by SB431542 (TGF-β1 receptor blocker) or SIS3 (inhibitor of Smad3 phosphorylation). Additionally, blockade of TRPM7 channels with non-specific TRPM7 blocker 2-APB or synthetic siRNA targeting TRPM7 attenuated TGF-β1-induced expression of myofibroblast markers, as measured by the induction of α-SMA and Col1α1. Silencing TRPM7 also increased the ratio of MMPs/TIMPs by increasing MMP-13 expression and decreasing TIMP-1 and TIMP-2 levels. Strikingly, phosphorylation of p-Smad2 and p-Smad3, associated with collagen production, was decreased in TRPM7 deficient HSC-T6 cells. These observations suggested that TGF-β1 elevates TRPM7 expression in HSCs via Smad3-dependant mechanisms, which in turn contributes Smad protein phosphorylation, and subsequently increases fibrous collagen expression. Therefore, TRPM7 may constitute a useful target for the treatment of liver fibrosis. - Highlights: • Upregulation of TRPM7 protein in human fibrotic livers • Upregulation of TRPM7 by TGF-β1 elicited Smad signaling in HSC-T6 cells

  5. Role of TRPM8 in dorsal root ganglion in nerve injury-induced chronic pain

    Directory of Open Access Journals (Sweden)

    Su Lin

    2011-11-01

    Full Text Available Abstract Background Chronic neuropathic pain is an intractable pain with few effective treatments. Moderate cold stimulation can relieve pain, and this may be a novel train of thought for exploring new methods of analgesia. Transient receptor potential melastatin 8 (TRPM8 ion channel has been proposed to be an important molecular sensor for cold. Here we investigate the role of TRPM8 in the mechanism of chronic neuropathic pain using a rat model of chronic constriction injury (CCI to the sciatic nerve. Results Mechanical allodynia, cold and thermal hyperalgesia of CCI rats began on the 4th day following surgery and maintained at the peak during the period from the 10th to 14th day after operation. The level of TRPM8 protein in L5 dorsal root ganglion (DRG ipsilateral to nerve injury was significantly increased on the 4th day after CCI, and reached the peak on the 10th day, and remained elevated on the 14th day following CCI. This time course of the alteration of TRPM8 expression was consistent with that of CCI-induced hyperalgesic response of the operated hind paw. Besides, activation of cold receptor TRPM8 of CCI rats by intrathecal application of menthol resulted in the inhibition of mechanical allodynia and thermal hyperalgesia and the enhancement of cold hyperalgesia. In contrast, downregulation of TRPM8 protein in ipsilateral L5 DRG of CCI rats by intrathecal TRPM8 antisense oligonucleotide attenuated cold hyperalgesia, but it had no effect on CCI-induced mechanical allodynia and thermal hyperalgesia. Conclusions TRPM8 may play different roles in mechanical allodynia, cold and thermal hyperalgesia that develop after nerve injury, and it is a very promising research direction for the development of new therapies for chronic neuroapthic pain.

  6. TRPM5 mediates acidic extracellular pH signaling and TRPM5 inhibition reduces spontaneous metastasis in mouse B16-BL6 melanoma cells.

    Science.gov (United States)

    Maeda, Toyonobu; Suzuki, Atsuko; Koga, Kaori; Miyamoto, Chihiro; Maehata, Yojiro; Ozawa, Shigeyuki; Hata, Ryu-Ichiro; Nagashima, Yoji; Nabeshima, Kazuki; Miyazaki, Kaoru; Kato, Yasumasa

    2017-10-03

    Extracellular acidity is a hallmark of solid tumors and is associated with metastasis in the tumor microenvironment. Acidic extracellular pH (pH e ) has been found to increase intracellular Ca 2+ and matrix metalloproteinase-9 (MMP-9) expression by activating NF-κB in the mouse B16 melanoma model. The present study assessed whether TRPM5, an intracellular Ca 2+ -dependent monovalent cation channel, is associated with acidic pH e signaling and induction of MMP-9 expression in this mouse melanoma model. Treatment of B16 cells with Trpm5 siRNA reduced acidic pH e -induced MMP-9 expression. Enforced expression of Trpm5 increased the rate of acidic pH e -induced MMP-9 expression, as well as increasing experimental lung metastasis. This genetic manipulation did not alter the pH e critical for MMP-9 induction but simply amplified the percentage of inducible MMP-9 at each pH e . Treatment of tumor bearing mice with triphenylphosphine oxide (TPPO), an inhibitor of TRPM5, significantly reduced spontaneous lung metastasis. In silico analysis of clinical samples showed that high TRPM5 mRNA expression correlated with poor overall survival rate in patients with melanoma and gastric cancer but not in patients with cancers of the ovary, lung, breast, and rectum. These results showed that TRPM5 amplifies acidic pH e signaling and may be a promising target for preventing metastasis of some types of tumor.

  7. TRPM4 protein expression in prostate cancer

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Soldini, Davide; Jung, Maria

    2016-01-01

    BACKGROUND: Transient receptor potential cation channel, subfamily M, member 4 (TRPM4) messenger RNA (mRNA) has been shown to be upregulated in prostate cancer (PCa) and might be a new promising tissue biomarker. We evaluated TRPM4 protein expression and correlated the expression level.......79-2.62; p = 0.01-0.03 for the two observers) when compared to patients with a lower staining intensity. CONCLUSIONS: TRPM4 protein expression is widely expressed in benign and cancerous prostate tissue, with highest staining intensities found in PCa. Overexpression of TRPM4 in PCa (combination of high...

  8. TRPM4 expression is associated with activated B cell subtype and poor survival in diffuse large B cell lymphoma

    DEFF Research Database (Denmark)

    Loo, Suet K; Ch'ng, Ewe S; Md Salleh, Md Salzihan

    2017-01-01

    to investigate TRPM4 protein expression pattern in non-malignant tissues and DLBCL cases, and its association with clinico-demographic parameters and survival in DLBCL. METHODS AND RESULTS: Analysis of publicly available DLBCL microarray data sets showed that TRPM4 transcripts were up-regulated in DLBCL compared...... to normal germinal centre B (GCB) cells, were expressed more highly in the activated B cell-like DLBCL (ABC-DLBCL) subtype and higher TRPM4 transcripts conferred worse overall survival (OS) in R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone)-treated DLBCL cases (P ... immunohistochemical analysis showed that TRPM4 was expressed in various human tissues but not in normal B cells within lymphoid tissues (reactive tonsil, lymph node and appendix). TRPM4 protein was present in 26% (n = 49 of 189) of our cohort of R-CHOP-treated DLBCL cases and this was associated significantly...

  9. The modulation of TRPM7 currents by nafamostat mesilate depends directly upon extracellular concentrations of divalent cations

    Directory of Open Access Journals (Sweden)

    Chen Xuanmao

    2010-12-01

    Full Text Available Abstract Concentrations of extracellular divalent cations (Ca2+ and Mg2+ fall substantially during intensive synaptic transmission as well as during some pathophysiological conditions such as epilepsy and brain ischemia. Here we report that a synthetic serine protease inhibitor, nafamostat mesylate (NM, and several of its analogues, block recombinant TRPM7 currents expressed in HEK293T cells in inverse relationship to the concentration of extracellular divalent cations. Lowering extracellular Ca2+ and Mg2+ also evokes a divalent-sensitive non-selective cation current that is mediated by TRPM7 expression in hippocampal neurons. In cultured hippocampal neurons, NM blocked these TRPM7-mediated currents with an apparent affinity of 27 μM, as well as the paradoxical Ca2+ influx associated with lowering extracellular Ca2+. Unexpectedly, pre-exposure to NM strongly potentiated TRPM7 currents. In the presence of physiological concentrations of extracellular divalent cations, NM activates TRPM7. The stimulating effects of NM on TRPM7 currents are also inversely related to extracellular Ca2+ and Mg2+. DAPI and HSB but not netropsin, blocked and stimulated TRPM7. In contrast, mono-cationic, the metabolites of NM, p-GBA and AN, as well as protease inhibitor leupeptin and gabexate failed to substantially modulate TRPM7. NM thus provides a molecular template for the design of putative modulators of TRPM7.

  10. The TRPM2 channel: A thermo-sensitive metabolic sensor.

    Science.gov (United States)

    Kashio, Makiko; Tominaga, Makoto

    2017-09-03

    Living organisms continually experience changes in ambient temperature. To detect such temperature changes for adaptive behavioral responses, we evolved the ability to sense temperature. Thermosensitive transient receptor potential (TRP) channels, so-called thermo-TRPs, are involved in many physiologic functions in diverse organisms and constitute important temperature sensors. One of the important roles of thermo-TRPs is detecting ambient temperature in sensory neurons. Importantly, the functional expression of thermo-TRPs is observed not only in sensory neurons but also in tissues and cells that are not exposed to drastic temperature changes, indicating that thermo-TRPs are involved in many physiologic functions within the body's normal temperature range. Among such thermo-TRPs, this review focuses on one thermo-sensitive metabolic sensor in particular, TRPM2, and summarizes recent progress to clarify the regulatory mechanisms and physiologic functions of TRPM2 at body temperature under various metabolic states.

  11. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    Science.gov (United States)

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-10-16

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  12. Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency.

    Science.gov (United States)

    Uvin, Pieter; Franken, Jan; Pinto, Silvia; Rietjens, Roma; Grammet, Luc; Deruyver, Yves; Alpizar, Yeranddy A; Talavera, Karel; Vennekens, Rudi; Everaerts, Wouter; De Ridder, Dirk; Voets, Thomas

    2015-10-01

    Acute exposure of part of the skin to cold stimuli can evoke urinary urgency, a phenomenon termed acute cold-induced urgency (ACIU). Despite its high prevalence, particularly in patients with overactive bladder, little is known about the mechanisms that induce ACIU. To develop an animal model of ACIU and test the involvement of cold-activated ion channels transient receptor potential (TRP) M8 and TRPA1. Intravesical pressure and micturition were monitored in female mice (wild-type C57BL/6J, Trpa1(-/-), Trpm8(+/+), and Trpm8(-/-)) and Sprague Dawley rats. An intravesical catheter was implanted. Localized cooling of the skin was achieved using a stream of air or topical acetone. The TRPM8 antagonist (N-(3-aminopropyl)-2-{[(3-methylphenyl) methyl]oxy}-N-(2-thienylmethyl)benzamide (AMTB) or vehicle was injected intraperitoneally. Frequencies of bladder contractions and voids in response to sensory stimuli were compared using the Mann-Whitney or Kruskal-Wallis test. Brief, innocuously cold stimuli applied to different parts of the skin evoked rapid bladder contractions and voids in anesthetized mice and rats. These responses were strongly attenuated in Trpm8(-/-) mice and in rats treated with AMTB. As rodent bladder physiology differs from that of humans, it is difficult to directly extrapolate our findings to human patients. Our findings indicate that ACIU is an evolutionarily conserved reflex rather than subconscious conditioning, and provide a useful in vivo model for further investigation of the underlying mechanisms. Pharmacological inhibition of TRPM8 may be useful for treating ACIU symptoms in patients. Brief cold stimuli applied to the skin can evoke a sudden desire to urinate, which can be highly bothersome in patients with overactive bladder. We developed an animal model to study this phenomenon, and found that it depends on a specific molecular cold sensor, transient receptor potential M8 (TRPM8). Pharmacological inhibition of TRPM8 may alleviate acute cold

  13. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    Directory of Open Access Journals (Sweden)

    Hofmann Thomas

    2007-07-01

    Full Text Available Abstract Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells. In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.

  14. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2017-05-01

    Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca 2+ -permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca 2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced

  15. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Directory of Open Access Journals (Sweden)

    María Ll Valero

    Full Text Available Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  16. TRPM8 ion channels differentially modulate proliferation and cell cycle distribution of normal and cancer prostate cells.

    Science.gov (United States)

    Valero, María Ll; Mello de Queiroz, Fernanda; Stühmer, Walter; Viana, Félix; Pardo, Luis A

    2012-01-01

    Overexpression of the cation-permeable channel TRPM8 in prostate cancers might represent a novel opportunity for their treatment. Inhibitors of TRPM8 reduce the growth of prostate cancer cells. We have used two recently described and highly specific blockers, AMTB and JNJ41876666, and RNAi to determine the relevance of TRPM8 expression in the proliferation of non-tumor and tumor cells. Inhibition of the expression or function of the channel reduces proliferation rates and proliferative fraction in all tumor cells tested, but not of non-tumor prostate cells. We observed no consistent acceleration of growth after stimulation of the channel with menthol or icilin, indicating that basal TRPM8 expression is enough to sustain growth of prostate cancer cells.

  17. PIP2 and PIP3 interact with N-terminus region of TRPM4 channel

    Czech Academy of Sciences Publication Activity Database

    Boušová, Kristýna; Jirků, Michaela; Bumba, Ladislav; Vondrášek, Jiří; Bednárová, Lucie; Teisinger, Jan

    2015-01-01

    Roč. 22, č. 1 (2015), s. 32 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] R&D Projects: GA ČR(CZ) GAP301/10/1159; GA ČR(CZ) GAP207/11/0717 Institutional support: RVO:61388963 ; RVO:67985823 ; RVO:61388971 Keywords : TRPM4 * ion channel * phospholipids * structure * modeling Subject RIV: CE - Biochemistry

  18. PIP2 interact with cytosolic N-terminal region of the melastatin channel TRPM1

    Czech Academy of Sciences Publication Activity Database

    Jirků, Michaela; Boušová, Kristýna; Bumba, Ladislav; Vondrášek, Jiří; Bednárová, Lucie; Teisinger, Jan

    2015-01-01

    Roč. 22, č. 1 (2015), s. 39-40 ISSN 1211-5894. [Discussions in Structural Molecular Biology. Annual Meeting of the Czech Society for Structural Biology /13./. 19.03.2015-21.03.2015, Nové Hrady] R&D Projects: GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:61388963 ; RVO:67985823 ; RVO:61388971 Keywords : TRPM1 * ion channel * phospholipids * structure * modeling Subject RIV: CE - Biochemistry; ED - Physiology (FGU-C)

  19. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception

    Directory of Open Access Journals (Sweden)

    Giuseppe Mancuso

    2015-10-01

    Full Text Available Ruta graveolens (rue is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  20. Temperature and Voltage Coupling to Channel Opening in Transient Receptor Potential Melastatin 8 (TRPM8)*♦

    Science.gov (United States)

    Raddatz, Natalia; Castillo, Juan P.; Gonzalez, Carlos; Alvarez, Osvaldo; Latorre, Ramon

    2014-01-01

    Expressed in somatosensory neurons of the dorsal root and trigeminal ganglion, the transient receptor potential melastatin 8 (TRPM8) channel is a Ca2+-permeable cation channel activated by cold, voltage, phosphatidylinositol 4,5-bisphosphate, and menthol. Although TRPM8 channel gating has been characterized at the single channel and macroscopic current levels, there is currently no consensus regarding the extent to which temperature and voltage sensors couple to the conduction gate. In this study, we extended the range of voltages where TRPM8-induced ionic currents were measured and made careful measurements of the maximum open probability the channel can attain at different temperatures by means of fluctuation analysis. The first direct measurements of TRPM8 channel temperature-driven conformational rearrangements provided here suggest that temperature alone is able to open the channel and that the opening reaction is voltage-independent. Voltage is a partial activator of TRPM8 channels, because absolute open probability values measured with fully activated voltage sensors are less than 1, and they decrease as temperature rises. By unveiling the fast temperature-dependent deactivation process, we show that TRPM8 channel deactivation is well described by a double exponential time course. The fast and slow deactivation processes are temperature-dependent with enthalpy changes of 27.2 and 30.8 kcal mol−1. The overall Q10 for the closing reaction is about 33. A three-tiered allosteric model containing four voltage sensors and four temperature sensors can account for the complex deactivation kinetics and coupling between voltage and temperature sensor activation and channel opening. PMID:25352597

  1. Exploring 2D and 3D QSARs of benzimidazole derivatives as transient receptor potential melastatin 8 (TRPM8) antagonists using MLR and kNN-MFA methodology

    OpenAIRE

    Bhadoriya, Kamlendra Singh; Kumawat, Narender K.; Bhavthankar, Suvarna V.; Avchar, Mandar H.; Dhumal, Dinesh M.; Patil, Savita D.; Jain, Shailesh V.

    2016-01-01

    TRPM8 is now best known as a cold- and menthol-activated channel implicated in thermosensation. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neuron. TRPM8 plays a major role in the sensation of cold and cooling substances. TRPM8 is a potential new target for the treatment of painful conditions. Thus, TRPM8 antagonists represent a new, novel and potentially useful treatment strategy to treat various disease states such as urological disorders, asthma, COPD, pros...

  2. Sustained Morphine Administration Induces TRPM8-Dependent Cold Hyperalgesia.

    Science.gov (United States)

    Gong, Kerui; Jasmin, Luc

    2017-02-01

    It is not uncommon for patients chronically treated with opioids to exhibit opioid-induced hyperalgesia, and this has been widely reported clinically and experimentally. The molecular substrate for this hyperalgesia is multifaceted, and associated with a complex neural reorganization even in the periphery. For instance, we have recently shown that chronic morphine-induced heat hyperalgesia is associated with an increased expression of GluN2B containing N-methyl-D-aspartate receptors, as well as of the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1, in small-diameter primary sensory neurons only. Cold allodynia is also a common complaint of patients chronically treated with opioids, yet its molecular mechanisms remain to be understood. Here we present evidence that the cold sensor TRPM8 channel is involved in opioid-induced hyperalgesia. After 7 days of morphine administration, we observed an upregulation of TRPM8 channels using patch clamp recording on sensory neurons and Western blot analysis on dorsal root ganglia. The selective TRPM8 antagonist RQ-00203078 blocked cold hyperalgesia in morphine-treated rats. Also, TRPM8 knockout mice failed to develop cold hyperalgesia after chronic administration of morphine. Our results show that chronic morphine upregulates TRPM8 channels, which is in contrast with the previous finding that acute morphine triggers TRPM8 internalization. Patients receiving chronic opioid are sensitive to cold. We show in mice and rats that sustained morphine administration induces cold hyperalgesia and an upregulation of TRPM8. Knockout or selectively blocking TRPM8 reduces morphine-induced cold hyperalgesia suggesting TRPM8 is regulated by opioids. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. Involvement of Opioid System, TRPM8, and ASIC Receptors in Antinociceptive Effect of Arrabidaea brachypoda (DC) Bureau.

    Science.gov (United States)

    Rodrigues, Vinícius Peixoto; Rocha, Cláudia Quintino da; Périco, Larissa Lucena; Santos, Raquel de Cássia Dos; Ohara, Rie; Nishijima, Catarine Massucato; Ferreira Queiroz, Emerson; Wolfender, Jean-Luc; Rocha, Lúcia Regina Machado da; Santos, Adair Roberto Soares; Vilegas, Wagner; Hiruma-Lima, Clélia Akiko

    2017-11-02

    Arrabidaea brachypoda (DC) Bureau is a medicinal plant found in Brazil. Known as "cipó-una", it is popularly used as a natural therapeutic agent against pain and inflammation. This study evaluated the chemical composition and antinociceptive activity of the dichloromethane fraction from the roots of A. brachypoda (DEAB) and its mechanism of action. The chemical composition was characterized by high-performance liquid chromatography, and this fraction is composed only of dimeric flavonoids. The antinociceptive effect was evaluated in formalin and hot plate tests after oral administration (10-100 mg/kg) in male Swiss mice. We also investigated the involvement of TRPV1 (transient receptor potential vanilloid 1), TRPA1 (transient receptor potential ankyrin 1), TRPM8 (transient receptor potential melastatin 8), and ASIC (acid-sensing ion channel), as well as the opioidergic, glutamatergic, and supraspinal pathways. Moreover, the nociceptive response was reduced (30 mg/kg) in the early and late phase of the formalin test. DEAB activity appears to involve the opioid system, TRPM8, and ASIC receptors, clearly showing that the DEAB alleviates acute pain in mice and suggesting the involvement of the TRPM8 and ASIC receptors and the opioid system in acute pain relief.

  4. Pharmacological blockade of the cold receptor TRPM8 attenuates autonomic and behavioral cold defenses and decreases deep body temperature.

    Science.gov (United States)

    Almeida, M Camila; Hew-Butler, Tamara; Soriano, Renato N; Rao, Sara; Wang, Weiya; Wang, Judy; Tamayo, Nuria; Oliveira, Daniela L; Nucci, Tatiane B; Aryal, Prafulla; Garami, Andras; Bautista, Diana; Gavva, Narender R; Romanovsky, Andrej A

    2012-02-08

    We studied N-(2-aminoethyl)-N-(4-(benzyloxy)-3-methoxybenzyl)thiophene-2-carboxamide hydrochloride (M8-B), a selective and potent antagonist of the transient receptor potential melastatin-8 (TRPM8) channel. In vitro, M8-B blocked cold-induced and TRPM8-agonist-induced activation of rat, human, and murine TRPM8 channels, including those on primary sensory neurons. In vivo, M8-B decreased deep body temperature (T(b)) in Trpm8(+/+) mice and rats, but not in Trpm8(-/-) mice, thus suggesting an on-target action. Intravenous administration of M8-B was more effective in decreasing T(b) in rats than intrathecal or intracerebroventricular administration, indicating a peripheral action. M8-B attenuated cold-induced c-Fos expression in the lateral parabrachial nucleus, thus indicating a site of action within the cutaneous cooling neural pathway to thermoeffectors, presumably on sensory neurons. A low intravenous dose of M8-B did not affect T(b) at either a constantly high or a constantly low ambient temperature (T(a)), but the same dose readily decreased T(b) if rats were kept at a high T(a) during the M8-B infusion and transferred to a low T(a) immediately thereafter. These data suggest that both a successful delivery of M8-B to the skin (high cutaneous perfusion) and the activation of cutaneous TRPM8 channels (by cold) are required for the hypothermic action of M8-B. At tail-skin temperatures cold) activation of TRPM8. M8-B affected all thermoeffectors studied (thermopreferendum, tail-skin vasoconstriction, and brown fat thermogenesis), thus suggesting that TRPM8 is a universal cold receptor in the thermoregulation system.

  5. Scraping through the ice: uncovering the role of TRPM8 in cold transduction

    Science.gov (United States)

    McCoy, Daniel D.; Knowlton, Wendy M.

    2011-01-01

    The proper detection of environmental temperatures is essential for the optimal growth and survival of organisms of all shapes and phyla, yet only recently have the molecular mechanisms for temperature sensing been elucidated. The discovery of temperature-sensitive ion channels of the transient receptor potential (TRP) superfamily has been pivotal in explaining how temperatures are sensed in vivo, and here we will focus on the lone member of this cohort, TRPM8, which has been unequivocally shown to be cold sensitive. TRPM8 is expressed in somatosensory neurons that innervate peripheral tissues such as the skin and oral cavity, and recent genetic evidence has shown it to be the principal transducer of cool and cold stimuli. It is remarkable that this one channel, unlike other thermosensitive TRP channels, is associated with both innocuous and noxious temperature transduction, as well as cold hypersensitivity during injury and, paradoxically, cold-mediated analgesia. With ongoing research, the field is getting closer to answering a number of fundamental questions regarding this channel, including the cellular mechanisms of TRPM8 modulation, the molecular context of TRPM8 expression, as well as the full extent of the role of TRPM8 in cold signaling in vivo. These findings will further our understanding of basic thermotransduction and sensory coding, and may have important implications for treatments for acute and chronic pain. PMID:21411765

  6. Involvement of Opioid System, TRPM8, and ASIC Receptors in Antinociceptive Effect of Arrabidaea brachypoda (DC Bureau

    Directory of Open Access Journals (Sweden)

    Vinícius Peixoto Rodrigues

    2017-11-01

    Full Text Available Arrabidaea brachypoda (DC Bureau is a medicinal plant found in Brazil. Known as “cipó-una”, it is popularly used as a natural therapeutic agent against pain and inflammation. This study evaluated the chemical composition and antinociceptive activity of the dichloromethane fraction from the roots of A. brachypoda (DEAB and its mechanism of action. The chemical composition was characterized by high-performance liquid chromatography, and this fraction is composed only of dimeric flavonoids. The antinociceptive effect was evaluated in formalin and hot plate tests after oral administration (10–100 mg/kg in male Swiss mice. We also investigated the involvement of TRPV1 (transient receptor potential vanilloid 1, TRPA1 (transient receptor potential ankyrin 1, TRPM8 (transient receptor potential melastatin 8, and ASIC (acid-sensing ion channel, as well as the opioidergic, glutamatergic, and supraspinal pathways. Moreover, the nociceptive response was reduced (30 mg/kg in the early and late phase of the formalin test. DEAB activity appears to involve the opioid system, TRPM8, and ASIC receptors, clearly showing that the DEAB alleviates acute pain in mice and suggesting the involvement of the TRPM8 and ASIC receptors and the opioid system in acute pain relief.

  7. TRPM8 mechanism of autonomic nerve response to cold in respiratory airway

    Directory of Open Access Journals (Sweden)

    Wang Cong-Yi

    2008-06-01

    Full Text Available Abstract Breathing cold air without proper temperature exchange can induce strong respiratory autonomic responses including cough, airway constriction and mucosal secretion, and can exacerbate existing asthma conditions and even directly trigger an asthma attack. Vagal afferent fiber is thought to be involved in the cold-induced respiratory responses through autonomic nerve reflex. However, molecular mechanisms by which vagal afferent fibers are excited by cold remain unknown. Using retrograde labeling, immunostaining, calcium imaging, and electrophysiological recordings, here we show that a subpopulation of airway vagal afferent nerves express TRPM8 receptors and that activation of TRPM8 receptors by cold excites these airway autonomic nerves. Thus activation of TRPM8 receptors may provoke autonomic nerve reflex to increase airway resistance. This putative autonomic response may be associated with cold-induced exacerbation of asthma and other pulmonary disorders, making TRPM8 receptors a possible target for prevention of cold-associated respiratory disorders.

  8. Effects of β-estradiol on cold-sensitive receptor channel TRPM8 in ovariectomized rats.

    Science.gov (United States)

    Kubo, Takuro; Tsuji, Shunichiro; Amano, Tsukuru; Yoshino, Fumi; Niwa, Yoko; Kasahara, Kyoko; Yoshida, Saori; Mukaisho, Ken-Ichi; Sugihara, Hiroyuki; Tanaka, Sachiko; Kimura, Fuminori; Takahashi, Kentaro; Murakami, Takashi

    2017-10-30

    Transient receptor potential cation channel subfamily M member 8 (TRPM8) is associated with sensitivity to cold sensation in mammals. A previous study demonstrated that TRPM8 was overexpressed in the skin of ovariectomized (OVX) rats due to the loss of estrogen. In the present study, we investigated whether estrogen replacement restricts overexpression of the TRPM8 channel in the skin of OVX rats. We divided 15 Sprague Dawley rats into three groups: a non-operated group (NON-OPE), an ovariectomy group (OVX), and a group subjected to estrogen replacement during 4 weeks beginning 7 days after ovariectomy (OVX + E2). Five weeks later, TRPM8 channel mRNA and protein in lumbar skin were quantified by real-time RT-PCR, protein ELISA, and immunohistochemistry. The OVX + E2 group exhibited a trend for decreased expression of the TRPM8 channel in the lumbar skin in comparison with the OVX group, whereas ELISA data and immunohistochemistry data and immunohistochemistry graphs relating to TRPM8 protein did not show any obvious differences between the OVX group and the OVX + E2 group. Estrogen replacement may restrict the overexpression of TRPM8 in the dermis of OVX rats.

  9. Cyclic ADP-ribose and heat regulate oxytocin release via CD38 and TRPM2 in the hypothalamus during social or psychological stress in mice

    Directory of Open Access Journals (Sweden)

    Jing Zhong

    2016-07-01

    Full Text Available Hypothalamic oxytocin (OT is released into the brain by cyclic ADP-ribose (cADPR with or without depolarizing stimulation. Previously, we showed that the intracellular free calcium concentration ([Ca2+]i that seems to trigger OT release can be elevated by -NAD+, cADPR, and ADP in mouse oxytocinergic neurons. As these -NAD+ metabolites activate warm-sensitive TRPM2 cation channels, when the incubation temperature is increased, the [Ca2+]i in hypothalamic neurons is elevated. However, it has not been determined whether OT release is facilitated by heat in vitro or hyperthermia in vivo in combination with cADPR. Furthermore, it has not been examined whether CD38 and TRPM2 exert their functions on OT release during stress or stress-induced hyperthermia in relation to the anxiolytic roles and social behaviors of OT under stress conditions. Here, we report that OT release from the isolated hypothalami of male mice in culture was enhanced by extracellular application of cADPR or increasing the incubation temperature from 35°C to 38.5°C, and simultaneous stimulation showed a greater effect. This release was inhibited by a cADPR-dependent ryanodine receptor inhibitor and a nonspecific TRPM2 inhibitor. The facilitated release by heat and cADPR was suppressed in the hypothalamus isolated from CD38 knockout mice and CD38- or TRPM2-knockdown mice. In the course of these experiments, we noted that OT release differed markedly between individual mice under stress with group housing. That is, when male mice received cage-switch stress and eliminated due to their social subclass, significantly higher levels of OT release were found in subordinates compared with ordinates. In mice exposed to anxiety stress in an open field, the cerebrospinal fluid (CSF OT level increased transiently at 5 minutes after exposure, and the rectal temperature also increased from 36.6°C to 37.8°C. OT levels in the CSF of mice with lipopolysaccharide-induced fever (+0.8

  10. Supercooling Agent Icilin Blocks a Warmth-Sensing Ion Channel TRPV3

    Directory of Open Access Journals (Sweden)

    Muhammad Azhar Sherkheli

    2012-01-01

    Full Text Available Transient receptor potential vanilloid subtype 3 (TRPV3 is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33–39°C, and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substance and putative ligand of TRPM8, reversibly inhibits TRPV3 activity at nanomolar concentrations in expression systems like Xenopus laeves oocytes, HEK-293 cells, and in cultured human keratinocytes. Our data show that icilin's antagonistic effects for the warm-sensitive TRPV3 ion channel occurs at very low concentrations. Therefore, the cooling effect evoked by icilin may at least in part be due to TRPV3 inhibition in addition to TRPM8 potentiation. Blockade of TRPV3 activity by icilin at such low concentrations might have important implications for overall cooling sensations detected by keratinocytes and free nerve endings in skin. We hypothesize that blockage of TRPV3 might be a signal for cool-sensing systems (like TRPM8 to beat up the basal activity resulting in increased cold perception when warmth sensors (like TRPV3 are shut off.

  11. TRPM7 regulates angiotensin II-induced sinoatrial node fibrosis in sick sinus syndrome rats by mediating Smad signaling.

    Science.gov (United States)

    Zhong, Hongbin; Wang, Tingjun; Lian, Guili; Xu, Changsheng; Wang, Huajun; Xie, Liangdi

    2018-03-06

    Sinoatrial node fibrosis is involved in the pathogenesis of sinus sick syndrome (SSS). Transient receptor potential (TRP) subfamily M member 7 (TRPM7) is implicated in cardiac fibrosis. However, the mechanisms underlying the regulation of sinoatrial node (SAN) fibrosis in SSS by TRPM7 remain unknown. The aim of this study was to investigate the role of angiotensin II (Ang II)/TRPM7/Smad pathway in the SAN fibrosis in rats with SSS. The rat SSS model was established with sodium hydroxide pinpoint pressing permeation. Forty-eight rats were randomly divided into six groups: normal control (ctrl), sham operation (sham), postoperative 1-, 2-, 3-, and 4-week SSS, respectively. The tissue explant culture method was used to culture cardiac fibroblasts (CFs) from rat SAN tissues. TRPM7 siRNA or encoding plasmids were used to knock down or overexpress TRPM7. Collagen (Col) distribution in SAN and atria was assessed using PASM-Masson staining. Ang II, Col I, and Col III levels in serum and tissues or in CFs were determined by ELISA. TRPM7, smad2 and p-smad2 levels were evaluated by real-time PCR, and/or western blot and immunohistochemistry. SAN and atria in rats of the SSS groups had more fibers and higher levels of Ang II, Col I and III than the sham rats. Similar findings were obtained for TRPM7 and pSmad2 expression. In vitro, Ang II promoted CFs collagen synthesis in a dose-dependent manner, and potentiated TRPM7 and p-Smad2 expression. TRPM7 depletion inhibited Ang II-induced p-Smad2 expression and collagen synthesis in CFs, whereas increased TRPM7 expression did the opposite. SAN fibrosis is regulated by the Ang II/TRPM7/Smad pathway in SSS, indicating that TRPM7 is a potential target for SAN fibrosis therapy in SSS.

  12. TRPM7 is required for ovarian cancer cell growth, migration and invasion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Liao, Qian-jin [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Yi [Department of Obstetrics and Gynaecology, Xiangya Hospital, Central South University, Changsha 410078 (China); Zhou, Hui; Luo, Chen-hui; Tang, Jie; Wang, Ying; Tang, Yan; Zhao, Min; Zhao, Xue-heng [The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013 (China); Zhang, Qiong-yu [Department of Basic Medical Science, Yongzhou Vocational Technical College, Yong Zhou 425100 (China); Xiao, Ling, E-mail: lingxiaocsu@126.com [Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha 410013 (China); Institute of Clinical Pharmacology, Central South University, Changsha 410018 (China)

    2014-11-28

    Highlights: • Silence of TRPM7 in ovarian cancer cells inhibits cell proliferation, migration and invasion. • Silence of TRPM7 decreases phosphorylation levels of Akt, Src and p38 in ovarian cancer cells. • Silence of TRPM7 increases expression of filamentous actin and number of focal adhesions in ovarian cancer cells. - Abstract: Our previous study demonstrated that the melastatin-related transient receptor potential channel 7 (TRPM7) was highly expressed in ovarian carcinomas and its overexpression was significantly associated with poor prognosis in ovarian cancer patients. However, the function of TRPM7 in ovarian cancer is mostly unknown. In this study, we examined the roles of TRPM7 in ovarian cancer cell proliferation, migration and invasion. We found that short hairpin RNA interference-mediated silence of TRPM7 significantly inhibited cell proliferation, colony formation, migration and invasion in multiple ovarian cancer cell lines. Mechanistic investigation revealed that silence of TRPM7 decreased phosphorylation levels of Akt, Src and p38 and increased filamentous actin and focal adhesion number in ovarian cancer cells. Thus, our results suggest that TRPM7 is required for proliferation, migration and invasion of ovarian cancer cells through regulating multiple signaling transduction pathways and the formation of focal adhesions.

  13. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hwa-Yong [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Hong, Chang-Won, E-mail: chyj7983@hallym.ac.kr [Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, Daejeon (Korea, Republic of); Lee, Si-Nae [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Kwon, Min-Soo [Department of Pharmacology, School of Medicine, CHA University, Seongnam (Korea, Republic of); Kim, Yeon-Ja [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Song, Dong-Keun, E-mail: dksong@hallym.ac.kr [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of)

    2012-01-01

    Sulfur mustard (2,2′-bis-chloroethyl-sulfide; SM) has been a military threat since the World War I. The emerging threat of bioterrorism makes SM a major threat not only to military but also to civilian world. SM injury elicits an inflammatory response characterized by infiltration of neutrophils. Although SM was reported to prime neutrophils, the mechanism has not been identified yet. In the present study, we investigated the mechanism of SM-induced priming in human neutrophils. SM increased [Ca{sup 2+}]{sub i} in human neutrophils in a concentration-dependent fashion. Transient receptor potential melastatin (TRPM) 2 inhibitors (clotrimazole, econazole and flufenamic acid) and silencing of TRPM2 by shRNA attenuated SM-induced [Ca{sup 2+}]{sub i} increase. SM primed degranulation of azurophil and specific granules in response to activation by fMLP as previously reported. SB203580, an inhibitor of p38 MAPK, inhibited SM-induced priming. Neither PD98057, an ERK inhibitor, nor SP600215, a JNK inhibitor, inhibited SM-induced priming. In addition, SM enhanced phosphorylation of NF-kB p65 and release of TNF-α, interleukin (IL)-6 and IL-8. SB203580 inhibited SM-induced NF-kB phosphorylation and cytokine release. These results suggest the involvement of TRPM2/p38 MAPK pathway in SM-induced priming and cytokines release in neutrophils. -- Highlights: ► SM increased [Ca{sup 2+}]{sub i} in human neutrophils through TPRM2-mediated calcium influx. ► SM primed degranulation of azurophil and specific granules. ► SM enhanced p38 MAPK and NF-κB p65 phosphorylation in human neutrophils. ► SM enhanced release of TNF-α, interleukin (IL)-6 and IL-8 from human neutrophils. ► SB203580 inhibited SM-induced priming, NF-κB p65 phosphorylation and cytokine release.

  14. A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels.

    Science.gov (United States)

    Hwang, Eunson; Lee, Taek Hwan; Lee, Wook-Joo; Shim, Won-Sik; Yeo, Eui-Ju; Kim, Sanghee; Kim, Sun Yeou

    2016-01-01

    Piper amides have a characteristic, unsaturated amide group and exhibit diverse biological activities, including proliferation and differentiation of melanocytes, although the molecular mechanisms underlying its antimelanogenesis effect remain unknown. We screened a selected chemical library of newly synthesized Piper amide derivatives and identified (E)-3-(4-(tert-butyl)phenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide (NED-180) as one of the most potent compounds in suppressing melanogenesis. In murine melan-a melanocytes, NED-180 downregulated the expression of melanogenic regulatory proteins including tyrosinase, Tyrp1, Dct, and MITF. PI3K/Akt-dependent phosphorylation of GSK3β by NED-180 decreases MITF phosphorylation and inhibits melanogenesis without any effects on cytotoxicity and proliferation. Furthermore, topical application of NED-180 significantly ameliorated UVB-induced skin hyperpigmentation in guinea pigs. Interestingly, data obtained using calcium imaging techniques suggested that NED-180 reduced the TPA-induced activation of TRPM1 (melastatin), which could explain the NED-180-induced inhibition of melanogenesis. All things taken together, NED-180 triggers activation of multiple pathways, such as PI3K and ERK, and inhibits TRPM1/TRPV1, leading to inhibition of melanogenesis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Loss of insulin-induced activation of TRPM6 magnesium channels results in impaired glucose tolerance during pregnancy.

    NARCIS (Netherlands)

    Nair, A.V.; Hocher, B.; Verkaart, S.A.J.; Zeeland, F. van; Pfab, T.; Slowinski, T.; Chen, Y.P.; Schlingmann, K.P.; Schaller, A.; Gallati, S.; Bindels, R.J.M.; Konrad, M.; Hoenderop, J.G.J.

    2012-01-01

    Hypomagnesemia affects insulin resistance and is a risk factor for diabetes mellitus type 2 (DM2) and gestational diabetes mellitus (GDM). Two single nucleotide polymorphisms (SNPs) in the epithelial magnesium channel TRPM6 (V(1393)I, K(1584)E) were predicted to confer susceptibility for DM2. Here,

  16. TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor

    Science.gov (United States)

    Olivares, Erick; Salgado, Simón; Maidana, Jean Paul; Herrera, Gaspar; Campos, Matías; Madrid, Rodolfo; Orio, Patricio

    2015-01-01

    Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization. PMID:26426259

  17. TRPM8-Dependent Dynamic Response in a Mathematical Model of Cold Thermoreceptor.

    Directory of Open Access Journals (Sweden)

    Erick Olivares

    Full Text Available Cold-sensitive nerve terminals (CSNTs encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response. During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response. To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics. However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature. Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization.

  18. Inflammatory Effects of Menthol vs. Non-menthol Cigarette Smoke Extract on Human Lung Epithelial Cells: A Double-Hit on TRPM8 by Reactive Oxygen Species and Menthol

    Directory of Open Access Journals (Sweden)

    Tzong-Shyuan Lee

    2017-04-01

    Full Text Available Clinical studies suggest that smokers with chronic obstructive pulmonary disease who use menthol cigarettes may display more severe lung inflammation than those who smoke non-menthol cigarette. However, the mechanisms for this difference remain unclear. Menthol is a ligand of transient receptor potential melastatin-8 (TRPM8, a Ca2+-permeant channel sensitive to reactive oxygen species (ROS. We previously reported that exposure of human bronchial epithelial cells (HBECs to non-menthol cigarette smoke extract (Non-M-CSE triggers a cascade of inflammatory signaling leading to IL-8 induction. In this study, we used this in vitro model to compare the inflammatory effects of menthol cigarette smoke extract (M-CSE and Non-M-CSE and delineate the mechanisms underlying the differences in their impacts. Compared with Non-M-CSE, M-CSE initially increased a similar level of extracellular ROS, suggesting the equivalent oxidant potency. However, M-CSE subsequently produced more remarkable elevations in intracellular Ca2+, activation of the mitogen-activated protein kinases (MAPKs/nuclear factor-κB (NF-κB signaling, and IL-8 induction. The extracellular ROS responses to both CSE types were totally inhibited by N-acetyl-cysteine (NAC; a ROS scavenger. The intracellular Ca2+ responses to both CSE types were also totally prevented by NAC, AMTB (a TRPM8 antagonist, or EGTA (an extracellular Ca2+ chelator. The activation of the MAPK/NF-κB signaling and induction of IL-8 to both CSE types were suppressed to similar levels by NAC, AMTB, or EGTA. These results suggest that, in addition to ROS generated by both CSE types, the menthol in M-CSE may act as another stimulus to further activate TRPM8 and induce the observed responses. We also found that menthol combined with Non-M-CSE induced greater responses of intracellular Ca2+ and IL-8 compared with Non-M-CSE alone. Moreover, we confirmed the essential role of TRPM8 in these responses to Non-M-CSE or M-CSE and the

  19. Serum TRPM1 autoantibodies from melanoma associated retinopathy patients enter retinal on-bipolar cells and attenuate the electroretinogram in mice.

    Directory of Open Access Journals (Sweden)

    Wei-Hong Xiong

    Full Text Available Melanoma-associated retinopathy (MAR is a paraneoplastic syndrome associated with cutaneous malignant melanoma and the presence of autoantibodies that label neurons in the inner retina. The visual symptoms and electroretinogram (ERG phenotype characteristic of MAR resemble the congenital visual disease caused by mutations in TRPM1, a cation channel expressed by both melanocytes and retinal bipolar cells. Four serum samples from MAR patients were identified as TRPM1 immunoreactive by 1. Labeling of ON-bipolar cells in TRPM1+/+ but not TRPM1-/- mouse retina, 2. Labeling of TRPM1-transfected CHO cells; and 3. Attenuation of the ERG b-wave following intravitreal injection of TRPM1-positive MAR IgG into wild-type mouse eyes, and the appearance of the IgG in the retinal bipolar cells at the conclusion of the experiment. Furthermore, the epitope targeted by the MAR autoantibodies was localized within the amino-terminal cytoplasmic domain of TRPM1. Incubation of live retinal neurons with TRPM1-positive MAR serum resulted in the selective accumulation of IgG in ON-bipolar cells from TRPM1+/+ mice, but not TRPM1-/- mice, suggesting that the visual deficits in MAR are caused by the uptake of TRPM1 autoantibodies into ON-bipolar cells, where they bind to an intracellular epitope of the channel and reduce the ON-bipolar cell response to light.

  20. Vagus nerve is involved in the changes in body temperature induced by intragastric administration of 1,8-cineole via TRPM8 in mice.

    Science.gov (United States)

    Urata, Tomomi; Mori, Noriyuki; Fukuwatari, Tsutomu

    2017-05-22

    Transient Receptor Potential Melastatin 8 (TRPM8) is a cold receptor activated by mild cold temperature (<28°C). TRPM8 expressed in cutaneous sensory nerves is involved in cold sensation and thermoregulation. TRPM8 mRNA is detected in various tissues, including the gastrointestinal mucosa, and in the vagal afferent nerve. The relationship between vagal afferent nerve-specific expression of TRPM8 and thermoregulation remains unclear. In this study, we aimed to investigate whether TRPM8 expression in the vagal afferent nerve is involved in autonomic thermoregulation. We found that intragastric administration of 1,8-cineole, a TRPM8 agonist, increased intrascapular brown adipose tissue and colonic temperatures, and M8-B-treatment (TRPM8 antagonist) inhibited these responses. Intravenous administration of 1,8-cineole also showed similar effects. In vagotomized mice, the responses induced by intragastric administration of 1,8-cineole were attenuated. These results suggest that TRPM8 expressed in tissues apart from cutaneous sensory nerves are involved in autonomic thermoregulation response. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Nanosecond pulsed electric fields depolarize transmembrane potential via voltage-gated K+, Ca2+ and TRPM8 channels in U87 glioblastoma cells.

    Science.gov (United States)

    Burke, Ryan C; Bardet, Sylvia M; Carr, Lynn; Romanenko, Sergii; Arnaud-Cormos, Delia; Leveque, Philippe; O'Connor, Rodney P

    2017-10-01

    Nanosecond pulsed electric fields (nsPEFs) have a variety of applications in the biomedical and biotechnology industries. Cancer treatment has been at the forefront of investigations thus far as nsPEFs permeabilize cellular and intracellular membranes leading to apoptosis and necrosis. nsPEFs may also influence ion channel gating and have the potential to modulate cell physiology without poration of the membrane. This phenomenon was explored using live cell imaging and a sensitive fluorescent probe of transmembrane voltage in the human glioblastoma cell line, U87 MG, known to express a number of voltage-gated ion channels. The specific ion channels involved in the nsPEF response were screened using a membrane potential imaging approach and a combination of pharmacological antagonists and ion substitutions. It was found that a single 10ns pulsed electric field of 34kV/cm depolarizes the transmembrane potential of cells by acting on specific voltage-sensitive ion channels; namely the voltage and Ca2 + gated BK potassium channel, L- and T-type calcium channels, and the TRPM8 transient receptor potential channel. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hepatocellular differentiation status is characterized by distinct subnuclear localization and form of the chanzyme TRPM7.

    Science.gov (United States)

    Ogunrinde, Adenike; Pereira, Robyn D; Beaton, Natalie; Lam, D Hung; Whetstone, Christiane; Hill, Ceredwyn E

    The channel-kinase TRPM7 is important for the survival, proliferation, and differentiation, of many cell types. Both plasma membrane channel activity and kinase function are implicated in these roles. Channel activity is greater in less differentiated hepatoma cells compared with non-dividing, terminally differentiated adult hepatocytes, suggesting differences in protein expression and/or localization. We used electrophysiological and immunofluorescence approaches to establish whether hepatocellular differentiation is associated with altered TRPM7 expression. Mean outward current decreased by 44% in WIF-B hepatoma cells incubated with the established hepatic differentiating factors oncostatin M/dexamethasone for 1-8 days. Pre-incubation with pyridone 6, a pan-JAK inhibitor, blocked the current reduction. An antibody targeted to the C-terminus of TRPM7 labelled the cytoplasm in WIF-B cells and intact rat liver. Significant label also localized to the nuclear envelope (NE), with relatively more detected in adult hepatocytes compared with WIF-B cells. Hepatoma cells also exhibited nucleoplasmic labelling with intense signal in the nucleolus. The endogenous labelling pattern closely resembles that of HEK293T cells heterologously expressing a TRPM7 kinase construct containing a putative nucleolar localization sequence. These results suggest that TRPM7 form and distribution between the plasma membrane and nucleus, rather than expression, is altered in parallel with differentiation status in rat hepatic cells. Copyright © 2017 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  3. Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes

    DEFF Research Database (Denmark)

    Ketterer, Caroline; Müssig, Karsten; Heni, Martin

    2011-01-01

    The functional knockout of the calcium-sensitive, nonselective cation channel TRPM5 alters glucose-induced insulin secretion and glucose tolerance. We hypothesized that genetic variation in the TRPM5 gene may contribute to prediabetic phenotypes, including pancreatic ß-cell dysfunction. We...... glucagon-like peptide-1 levels at 30 minutes during the OGTT compared with major allele homozygotes (P = .0124), whereas in male subjects, no significant differences were found (P = .3). In our German population, the common TRPM5 variants are likely to be associated with prediabetic phenotypes...

  4. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans.

    Science.gov (United States)

    Winchester, Wendy J; Gore, Katrina; Glatt, Sophie; Petit, Wendy; Gardiner, Jennifer C; Conlon, Kelly; Postlethwaite, Michael; Saintot, Pierre-Philippe; Roberts, Sonia; Gosset, James R; Matsuura, Tomomi; Andrews, Mark D; Glossop, Paul A; Palmer, Michael J; Clear, Nicola; Collins, Susie; Beaumont, Kevin; Reynolds, David S

    2014-11-01

    The transient receptor potential (subfamily M, member 8; TRPM8) is a nonselective cation channel localized in primary sensory neurons, and is a candidate for cold thermosensing, mediation of cold pain, and bladder overactivity. Studies with TRPM8 knockout mice and selective TRPM8 channel blockers demonstrate a lack of cold sensitivity and reduced cold pain in various rodent models. Furthermore, TRPM8 blockers significantly lower body temperature. We have identified a moderately potent (IC50 = 103 nM), selective TRPM8 antagonist, PF-05105679 [(R)-3-[(1-(4-fluorophenyl)ethyl)(quinolin-3-ylcarbonyl)amino]methylbenzoic acid]. It demonstrated activity in vivo in the guinea pig bladder ice water and menthol challenge tests with an IC50 of 200 nM and reduced core body temperature in the rat (at concentrations >1219 nM). PF-05105679 was suitable for acute administration to humans and was evaluated for effects on core body temperature and experimentally induced cold pain, using the cold pressor test. Unbound plasma concentrations greater than the IC50 were achieved with 600- and 900-mg doses. The compound displayed a significant inhibition of pain in the cold pressor test, with efficacy equivalent to oxycodone (20 mg) at 1.5 hours postdose. No effect on core body temperature was observed. An unexpected adverse event (hot feeling) was reported, predominantly periorally, in 23 and 36% of volunteers (600- and 900-mg dose, respectively), which in two volunteers was nontolerable. In conclusion, this study supports a role for TRPM8 in acute cold pain signaling at doses that do not cause hypothermia. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Relationship between variant forms of estrogen receptor RNA and an apoptosis-related RNA, TRPM-2, with survival in patients with breast cancer.

    Science.gov (United States)

    Rennie, P S; Mawji, N R; Coldman, A J; Godolphin, W; Jones, E C; Vielkind, J R; Bruchovsky, N

    1993-12-15

    Although smaller variant forms of estrogen receptor (ER) messenger RNA (mRNA) have been detected in breast tumors, neither their prevalence nor their prognostic significance have been evaluated. Similarly, TRPM-2 mRNA, the product of a gene induced principally during the onset of apoptosis, is present in mouse and human breast cancer cell lines, but whether it also occurs in primary breast tumors and is related to disease outcome is unknown. The relative expression and transcript size of ER mRNA and TRPM-2 mRNA in 126 primary breast tumors were measured by Northern analysis and compared with tumor grade, hormone receptor status, extent of tumor necrosis, and survival. In ER-positive tumors, 64% of the tumors had only the normal 6.5 kb ER mRNA, an additional 9% had the normal plus smaller ER mRNA, and 2% had variant forms. Only 8% of ER-negative tumors had ER mRNA transcripts. There were significant relationships between the occurrence of ER mRNA and low tumor grade, ER-positive receptor status, and better survival. In contrast, TRPM-2 mRNA was found in only 17% of breast tumors, none of which could be grouped with respect to grade, hormone receptor status, or survival. The presence of smaller variant forms of ER mRNA either alone or in association with the normal ER transcript is not indicative of an unfavorable prognosis, whereas TRPM-2 mRNA occurs in many primary breast tumors, but has no apparent relationship to survival.

  6. The role of trigeminal nasal TRPM8-expressing afferent neurons in the antitussive effects of menthol.

    Science.gov (United States)

    Plevkova, J; Kollarik, M; Poliacek, I; Brozmanova, M; Surdenikova, L; Tatar, M; Mori, N; Canning, B J

    2013-07-15

    The cold-sensitive cation channel TRPM8 is a target for menthol, which is used routinely as a cough suppressant and as an additive to tobacco and food products. Given that cold temperatures and menthol activate neurons through gating of TRPM8, it is unclear how menthol actively suppresses cough. In this study we describe the antitussive effects of (-)-menthol in conscious and anesthetized guinea pigs. In anesthetized guinea pigs, cough evoked by citric acid applied topically to the tracheal mucosa was suppressed by menthol only when it was selectively administered as vapors to the upper airways. Menthol applied topically to the tracheal mucosa prior to and during citric acid application or administered continuously as vapors or as an aerosol to the lower airways was without effect on cough. These actions of upper airway menthol treatment were mimicked by cold air delivered to the upper airways but not by (+)-menthol, the inactive isomer of menthol, or by the TRPM8/TRPA1 agonist icilin administered directly to the trachea. Subsequent molecular analyses confirmed the expression of TRPM8 in a subset of nasal trigeminal afferent neurons that do not coincidently express TRPA1 or TRPV1. We conclude that menthol suppresses cough evoked in the lower airways primarily through a reflex initiated from the nose.

  7. TRPM8 axonal expression is decreased in painful human teeth with irreversible pulpitis and cold hyperalgesia

    Science.gov (United States)

    Alvarado, Lisa T.; Perry, Griffin M.; Hargreaves, Kenneth. M.; Henry, Michael A.

    2009-01-01

    Pulpitis pain may be triggered by a cold stimulus, yet the cellular mechanisms responsible for this phenomenon are largely unknown. One possible mechanism involves the direct activation of cold-responsive thermoreceptors. The purpose of this study was to evaluate the possible role of the TRPM8 thermoreceptor in cold-mediated noxious pulpal pain mechanisms by comparing expression patterns in pulpal nerves from healthy control molars to cold-sensitive painful molars with irreversible pulpitis. Samples were identically processed with the indirect immunofluorescence method and images obtained with confocal microscopy. The immunofluorescence intensity and area occupied by TRPM8 within N52/PGP9.5 identified nerve fibers were quantified. Results showed that relative to normal samples, TRPM8 nerve area expression was significantly less in the cold-sensitive painful samples (34.9% vs. 8%, p<0.03), but with no significant difference in immunofluorescence intensity between the two groups. These results suggest that TRPM8 is most likely not involved in cold-mediated noxious pulpal pain mechanisms. PMID:17889683

  8. Opiates Modulate Thermosensation by Internalizing Cold Receptor TRPM8

    Directory of Open Access Journals (Sweden)

    George Shapovalov

    2013-08-01

    Full Text Available Stimulation of μ-opioid receptors (OPRMs brings powerful pain relief, but it also leads to the development of tolerance and addiction. Ensuing withdrawal in abstinent patients manifests itself with severe symptoms, including cold hyperalgesia, often preventing addicted patients from successfully completing the rehabilitation. Unsurprisingly, OPRMs have been a central point of many studies. Nonetheless, a satisfactory understanding of the pathways leading to distorted sensory responses during opiate administration and abstinence is far from complete. Here, we present a mechanism that leads to modulation by OPRMs of one of the sensory responses, thermosensation. Activation of OPRM1 leads to internalization of a cold-sensor TRPM8, which can be reversed by a follow-up treatment with the inverse OPRM agonist naloxone. Knockout of TRPM8 protein leads to a decrease in morphine-induced cold analgesia. The proposed pathway represents a universal mechanism that is probably shared by regulatory pathways modulating general pain sensation in response to opioid treatment.

  9. Expression of TRPM8 in the distal cerebrospinal fluid-contacting neurons in the brain mesencephalon of rats

    Directory of Open Access Journals (Sweden)

    Zhang Licai

    2009-03-01

    Full Text Available Abstract Background It has been shown that distal cerebrospinal fluid-contacting neurons (dCSF-CNs exist near the ventral midline of the midbrain aqueduct and also in the grey matter of the inferior third ventricle and the fourth ventricle floor in the superior segment of the pons. The dCSF-CNs communicate between the cerebrospinal fluid (CSF and the brain parenchyma and may participate in the transduction and regulation of pain signals. The cold sensation receptor channel, TRPM8 is involved in analgesia for neuropathic pain, but whether the TRPM8 receptor exists on dCSF-CNs remains unknown. However, there is preliminary evidence that TRPM8 is expressed in dCSF-CNs and may participate in the transmission and regulation of sensory information between brain parenchyma and cerebrospinal fluid (CSF in rats. Methods Retrograde tracing of the cholera toxin subunit B labeled with horseradish peroxidase (CB-HRP injected into the lateral ventricle was used to identify dCSF-CNs. A double-labeled immunofluorescent technique and laser scanning confocal microscopy were used to identify the expression of TRPM8 in dCSF-CNs. Software Image-Pro Plus was used to count the number of neurons in three sections where CB-HRP positive neurons were located in the mesencephalon of six rats. Results The cell bodies of CB-HRP-positive dCSF-CNs were found in the brain parenchyma near the midline of the ventral Aq, also in the grey of the 3V, and the 4V floor in the superior segment of the pons. In the mesencephalon their processes extended into the CSF. TRPM8 labeled neurons were also found in the same area as were CB-HRP/TRPM8 double-labeled neurons. CB-HRP/TRPM8 double-labeled neurons were found in 42.9 ± 2.3% of neurons labeled by TRPM8, and all CB-HRP-labeled neurons were also labeled with TPRM8. Conclusion This study has demonstrated that the cold sensation receptor channel, TRPM8, is localised within the dCSF-CNs of the mesencephalon. TRPM8 acts as receptor of d

  10. Characterization of the part of N-terminal PIP2 binding site of the TRPM1 channel

    Czech Academy of Sciences Publication Activity Database

    Jirků, Michaela; Bumba, Ladislav; Bednárová, Lucie; Kubala, M.; Šulc, Miroslav; Franěk, M.; Vyklický ml., Ladislav; Vondrášek, Jiří; Teisinger, Jan; Boušová, Kristýna

    2015-01-01

    Roč. 207, Dec (2015), s. 135-142 ISSN 0301-4622 R&D Projects: GA ČR(CZ) GAP207/11/0717; GA ČR(CZ) GA15-11851S; GA ČR(CZ) GBP304/12/G069 Institutional support: RVO:67985823 ; RVO:61388971 ; RVO:61388963 Keywords : TRPM1 channel * binding site * PIP2 * surface plasmon resonance * FRET * circular dichroism Subject RIV: CE - Biochemistry Impact factor: 2.363, year: 2015

  11. Cold temperature induces mucin hypersecretion from normal human bronchial epithelial cells in vitro through a transient receptor potential melastatin 8 (TRPM8)-mediated mechanism.

    Science.gov (United States)

    Li, MinChao; Li, Qi; Yang, Gang; Kolosov, Victor P; Perelman, Juliy M; Zhou, Xiang Dong

    2011-09-01

    Cold air stimulus is a major environmental factor that exacerbates chronic inflammatory airway diseases, such as chronic obstructive pulmonary disease (COPD) and asthma. At the molecular level, cold is detected by transient receptor potential melastatin 8 (TRPM8). To date, TRPM8 expression has not been characterized in the airway epithelium of patients with COPD. The role of TRPM8 channels in a series of airway responses induced by cold stimuli and the molecular and biochemical pathways of TRPM8 in regulating cold-induced responses are largely unknown. We sought to explore the role of TRPM8 in cold air-provoked mucus hypersecretion and the potential signaling pathway involved in this process. The expression of TRPM8 in the bronchial epithelium was examined by means of immunohistochemistry, RT-PCR, and Western blotting. TRPM8 receptor function and hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) were characterized by means of Ca(2+) imaging and spatiotemporal dynamics of phospholipase C (PLC) δ1-pleckstrin homology-green fluorescent protein, respectively. The expression of MUC5AC mRNA and MUC5AC mucin protein was measured by using real-time PCR and ELISA, respectively. Four serine residues in the myristoylated alanine-rich C kinase substrate (MARCKS)-phosphorylation site domain were mutated to identify the function of MARCKS in TRPM8-mediated airway mucus hypersecretion. TRPM8 protein and mRNA expression were significantly increased in patients with COPD compared with expression seen in healthy subjects. Cold produced robust increases in intracellular Ca(2+) levels and promoted translocation of PLCδ1-pleckstrin homology-green fluorescent protein. Cold increased expression of MUC5AC mRNA and intracellular and secreted MUC5AC protein in a nonsustained way. Phosphorylation site domain-mutant MARCKS cDNA hindered MUC5AC secretion induced by cold. These results indicate that the TRPM8 receptor is involved in cold-induced mucus hypersecretion through the Ca(2

  12. Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations

    Directory of Open Access Journals (Sweden)

    Benham Christopher D

    2006-03-01

    Full Text Available Abstract Background The recent identification of the cold-menthol sensory receptor (TRPM8; CMR1, provides us with an opportunity to advance our understanding of its role in the pathophysiology of bladder dysfunction, and its potential mediation of the bladder cooling reflex. In this study, we report the distribution of the cool and menthol receptor TRPM8 in the urinary bladder in patients with overactive and painful bladder syndromes, and its relationship with clinical symptoms. Methods Bladder specimens obtained from patients with painful bladder syndrome (PBS, n = 16, idiopathic detrusor overactivity (IDO, n = 14, and asymptomatic microscopic hematuria (controls, n = 17, were immunostained using specific antibodies to TRPM8; nerve fibre and urothelial immunostaining were analysed using fibre counts and computerized image analysis respectively. The results of immunohistochemistry were compared between the groups and correlated with the Pain, Frequency and Urgency scores. Results TRPM8-immunoreactive staining was observed in the urothelium and nerve fibres scattered in the suburothelium. The nerve fibre staining was seen in fine-calibre axons and thick (myelinated fibres. There was marked increase of TRPM8-immunoreactive nerve fibres in IDO (P = 0.0249 and PBS (P Conclusion This study demonstrates increased TRPM8 in nerve fibres of overactive and painful bladders, and its relationship with clinical symptoms. TRPM8 may play a role in the symptomatology and pathophysiology of these disorders, and may provide an additional target for future overactive and painful bladder pharmacotherapy.

  13. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain.

    Science.gov (United States)

    Caspani, Ombretta; Zurborg, Sandra; Labuz, Dominika; Heppenstall, Paul A

    2009-10-08

    Cold allodynia is a common feature of neuropathic pain however the underlying mechanisms of this enhanced sensitivity to cold are not known. Recently the transient receptor potential (TRP) channels TRPM8 and TRPA1 have been identified and proposed to be molecular sensors for cold. Here we have investigated the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG) and examined the cold sensitivity of peripheral sensory neurons in the chronic construction injury (CCI) model of neuropathic pain in mice.In behavioral experiments, chronic constriction injury (CCI) of the sciatic nerve induced a hypersensitivity to both cold and the TRPM8 agonist menthol that developed 2 days post injury and remained stable for at least 2 weeks. Using quantitative RT-PCR and in situ hybridization we examined the expression of TRPM8 and TRPA1 in DRG. Both channels displayed significantly reduced expression levels after injury with no change in their distribution pattern in identified neuronal subpopulations. Furthermore, in calcium imaging experiments, we detected no alterations in the number of cold or menthol responsive neurons in the DRG, or in the functional properties of cold transduction following injury. Intriguingly however, responses to the TRPA1 agonist mustard oil were strongly reduced.Our results indicate that injured sensory neurons do not develop abnormal cold sensitivity after chronic constriction injury and that alterations in the expression of TRPM8 and TRPA1 are unlikely to contribute directly to the pathogenesis of cold allodynia in this neuropathic pain model.

  14. The contribution of TRPM8 and TRPA1 channels to cold allodynia and neuropathic pain.

    Directory of Open Access Journals (Sweden)

    Ombretta Caspani

    Full Text Available Cold allodynia is a common feature of neuropathic pain however the underlying mechanisms of this enhanced sensitivity to cold are not known. Recently the transient receptor potential (TRP channels TRPM8 and TRPA1 have been identified and proposed to be molecular sensors for cold. Here we have investigated the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG and examined the cold sensitivity of peripheral sensory neurons in the chronic construction injury (CCI model of neuropathic pain in mice.In behavioral experiments, chronic constriction injury (CCI of the sciatic nerve induced a hypersensitivity to both cold and the TRPM8 agonist menthol that developed 2 days post injury and remained stable for at least 2 weeks. Using quantitative RT-PCR and in situ hybridization we examined the expression of TRPM8 and TRPA1 in DRG. Both channels displayed significantly reduced expression levels after injury with no change in their distribution pattern in identified neuronal subpopulations. Furthermore, in calcium imaging experiments, we detected no alterations in the number of cold or menthol responsive neurons in the DRG, or in the functional properties of cold transduction following injury. Intriguingly however, responses to the TRPA1 agonist mustard oil were strongly reduced.Our results indicate that injured sensory neurons do not develop abnormal cold sensitivity after chronic constriction injury and that alterations in the expression of TRPM8 and TRPA1 are unlikely to contribute directly to the pathogenesis of cold allodynia in this neuropathic pain model.

  15. Rapid and Localized Mechanical Stimulation and Adhesion Assay: TRPM7 Involvement in Calcium Signaling and Cell Adhesion.

    Directory of Open Access Journals (Sweden)

    Wagner Shin Nishitani

    Full Text Available A cell mechanical stimulation equipment, based on cell substrate deformation, and a more sensitive method for measuring adhesion of cells were developed. A probe, precisely positioned close to the cell, was capable of a vertical localized mechanical stimulation with a temporal frequency of 207 Hz, and strain magnitude of 50%. This setup was characterized and used to probe the response of Human Umbilical Endothelial Vein Cells (HUVECs in terms of calcium signaling. The intracellular calcium ion concentration was measured by the genetically encoded Cameleon biosensor, with the Transient Receptor Potential cation channel, subfamily M, member 7 (TRPM7 expression inhibited. As TRPM7 expression also regulates adhesion, a relatively simple method for measuring adhesion of cells was also developed, tested and used to study the effect of adhesion alone. Three adhesion conditions of HUVECs on polyacrylamide gel dishes were compared. In the first condition, the substrate is fully treated with Sulfo-SANPAH crosslinking and fibronectin. The other two conditions had increasingly reduced adhesion: partially treated (only coated with fibronectin, with no use of Sulfo-SANPAH, at 5% of the normal amount and non-treated polyacrylamide gels. The cells showed adhesion and calcium response to the mechanical stimulation correlated to the degree of gel treatment: highest for fully treated gels and lowest for non-treated ones. TRPM7 inhibition by siRNA on HUVECs caused an increase in adhesion relative to control (no siRNA treatment and non-targeting siRNA, but a decrease to 80% of calcium response relative to non-targeting siRNA which confirms the important role of TRPM7 in mechanotransduction despite the increase in adhesion.

  16. The TRPM1 Channel Is Required for Development of the Rod ON Bipolar Cell-AII Amacrine Cell Pathway in the Retinal Circuit.

    Science.gov (United States)

    Kozuka, Takashi; Chaya, Taro; Tamalu, Fuminobu; Shimada, Mariko; Fujimaki-Aoba, Kayo; Kuwahara, Ryusuke; Watanabe, Shu-Ichi; Furukawa, Takahisa

    2017-10-11

    Neurotransmission plays an essential role in neural circuit formation in the central nervous system (CNS). Although neurotransmission has been recently clarified as a key modulator of retinal circuit development, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we investigated the role of neurotransmission from photoreceptor cells to ON bipolar cells in development using mutant mouse lines of both sexes in which this transmission is abrogated. We found that deletion of the ON bipolar cation channel TRPM1 results in the abnormal contraction of rod bipolar terminals and a decreased number of their synaptic connections with amacrine cells. In contrast, these histological alterations were not caused by a disruption of total glutamate transmission due to loss of the ON bipolar glutamate receptor mGluR6 or the photoreceptor glutamate transporter VGluT1. In addition, TRPM1 deficiency led to the reduction of total dendritic length, branch numbers, and cell body size in AII amacrine cells. Activated Goα, known to close the TRPM1 channel, interacted with TRPM1 and induced the contraction of rod bipolar terminals. Furthermore, overexpression of Channelrhodopsin-2 partially rescued rod bipolar cell development in the TRPM1 -/- retina, whereas the rescue effect by a constitutively closed form of TRPM1 was lower than that by the native form. Our results suggest that TRPM1 channel opening is essential for rod bipolar pathway establishment in development. SIGNIFICANCE STATEMENT Neurotransmission has been recognized recently as a key modulator of retinal circuit development in the CNS. However, the roles of individual synaptic transmissions are not yet fully understood. In the current study, we focused on neurotransmission between rod photoreceptor cells and rod bipolar cells in the retina. We used genetically modified mouse models which abrogate each step of neurotransmission: presynaptic glutamate release, postsynaptic glutamate

  17. [TRPM8 mediates PC-12 neuronal cell apoptosis induced by oxygen-glucose deprivation through cAMP-PKA/UCP4 signaling].

    Science.gov (United States)

    Li, Hong-Wei; Zhou, Bin; Zhang, Hai-Hong

    2016-08-20

    To explore the molecular mechanism responsible for apoptosis of PC-12 neuronal cells induced by oxygen-glucose deprivation (OGD). PC12 cells were exposed to OGD for 24 h to simulate ischemia-reperfusion injury. Flow cytometry was employed detect the cell apoptosis, and the expresions of TRPM8, UCP4, cAMP and PKA in the exposed cells were detected with RT-PCR and Western blotting. The changes in the expressions of Bax, Bcl-2, cAMP, PKA and UCP4 proteins were detected in the exposed cells in resposne to inhibition of TRPM8 and cAMP-PKA signal or over-expression of UCP4. OGD for 24 induced obvious apoptosis in PC-12 cells and caused TRPM8 over-expression and inhibition of UCP4 and cAMP-PKA signaling. Inhibiting TRPM8 expression reduced the cell apoptosis and up-regulated cAMP, p-PKA and UCP4 in the cells exposed to OGD. In cells exposed to OGD, inhibition of TRPM8 and cAMP-PKA signaling suppressed the expressio of UCP4 and increased the cell apoptosis. TRPM8 mediates OGD-induced PC12 cell apoptosis through cAMP-PKA/UCP4 signaling.

  18. Functional expression of TRPM8 and TRPA1 channels in rat odontoblasts.

    Directory of Open Access Journals (Sweden)

    Maki Tsumura

    Full Text Available Odontoblasts produce dentin during development, throughout life, and in response to pathological conditions by sensing stimulation of exposed dentin. The functional properties and localization patterns of transient receptor potential (TRP melastatin subfamily member 8 (TRPM8 and ankyrin subfamily member 1 (TRPA1 channels in odontoblasts remain to be clarified. We investigated the localization and the pharmacological, biophysical, and mechano-sensitive properties of TRPM8 and TRPA1 channels in rat odontoblasts. Menthol and icilin increased the intracellular free Ca(2+ concentration ([Ca(2+]i. Icilin-, WS3-, or WS12-induced [Ca(2+]i increases were inhibited by capsazepine or 5-benzyloxytriptamine. The increase in [Ca(2+]i elicited by allyl isothiocyanate (AITC was inhibited by HC030031. WS12 and AITC exerted a desensitizing effect on [Ca(2+]i increase. Low-temperature stimuli elicited [Ca(2+]i increases that are sensitive to both 5-benzyloxytriptamine and HC030031. Hypotonic stimulation-induced membrane stretch increased [Ca(2+]i; HC030031 but not 5-benzyloxytriptamine inhibited the effect. The results suggest that TRPM8 channels in rat odontoblasts play a role in detecting low-temperature stimulation of the dentin surface and that TRPA1 channels are involved in sensing membrane stretching and low-temperature stimulation. The results also indicate that odontoblasts act as mechanical and thermal receptor cells, detecting the stimulation of exposed dentin to drive multiple cellular functions, such as sensory transduction.

  19. How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation

    Directory of Open Access Journals (Sweden)

    McKemy David D

    2005-04-01

    Full Text Available Abstract Recognition of temperature is a critical element of sensory perception and allows us to evaluate both our external and internal environments. In vertebrates, the somatosensory system can discriminate discrete changes in ambient temperature, which activate nerve endings of primary afferent fibers. These thermosensitive nerves can be further segregated into those that detect either innocuous or noxious (painful temperatures; the latter neurons being nociceptors. We now know that thermosensitive afferents express ion channels of the transient receptor potential (TRP family that respond at distinct temperature thresholds, thus establishing the molecular basis for thermosensation. Much is known of those channels mediating the perception of noxious heat; however, those proposed to be involved in cool to noxious cold sensation, TRPM8 and TRPA1, have only recently been described. The former channel is a receptor for menthol, and links the sensations provided by this and other cooling compounds to temperature perception. While TRPM8 almost certainly performs a critical role in cold signaling, its part in nociception is still at issue. The latter channel, TRPA1, is activated by the pungent ingredients in mustard and cinnamon, but has also been postulated to mediate our perception of noxious cold temperatures. However, a number of conflicting reports have suggested that the role of this channel in cold sensation needs to be confirmed. Thus, the molecular logic for the perception of cold-evoked pain remains enigmatic. This review is intended to summarize our current understanding of these cold thermoreceptors, as well as address the current controversy regarding TRPA1 and cold signaling.

  20. The different expression of TRPM7 and MagT1 impacts on the proliferation of colon carcinoma cells sensitive or resistant to doxorubicin.

    Science.gov (United States)

    Cazzaniga, Alessandra; Moscheni, Claudia; Trapani, Valentina; Wolf, Federica I; Farruggia, Giovanna; Sargenti, Azzurra; Iotti, Stefano; Maier, Jeanette A M; Castiglioni, Sara

    2017-01-17

    The processes leading to anticancer drug resistance are not completely unraveled. To get insights into the underlying mechanisms, we compared colon carcinoma cells sensitive to doxorubicin with their resistant counterpart. We found that resistant cells are growth retarded, and show staminal and ultrastructural features profoundly different from sensitive cells. The resistant phenotype is accompanied by the upregulation of the magnesium transporter MagT1 and the downregulation of the ion channel kinase TRPM7. We demonstrate that the different amounts of TRPM7 and MagT1 account for the different proliferation rate of sensitive and resistant colon carcinoma cells. It remains to be verified whether they are also involved in the control of other "staminal" traits.

  1. Differential Contribution of TRPA1, TRPV4 and TRPM8 to Colonic Nociception in Mice.

    Directory of Open Access Journals (Sweden)

    Sonja M Mueller-Tribbensee

    Full Text Available Various transient receptor potential (TRP channels in sensory neurons contribute to the transduction of mechanical stimuli in the colon. Recently, even the cold-sensing menthol receptor TRPM(melastatin8 was suggested to be involved in murine colonic mechano-nociception.To analyze the roles of TRPM8, TRPA1 and TRPV4 in distension-induced colonic nociception and pain, TRP-deficient mice and selective pharmacological blockers in wild-type mice (WT were used. Visceromotor responses (VMR to colorectal distension (CRD in vivo were recorded and distension/pressure-induced CGRP release from the isolated murine colon ex vivo was measured by EIA.Distension-induced colonic CGRP release was markedly reduced in TRPA1-/- and TRPV4-/- mice at 90/150 mmHg compared to WT. In TRPM8-deficient mice the reduction was only distinct at 150 mmHg. Exposure to selective pharmacological antagonists (HC030031, 100 μM; RN1734, 10 μM; AMTB, 10 μM showed corresponding effects. The unselective TRP blocker ruthenium red (RR, 10 μM was as efficient in inhibiting distension-induced CGRP release as the unselective antagonists of mechanogated DEG/ENaC (amiloride, 100 μM and stretch-activated channels (gadolinium, 50 μM. VMR to CRD revealed prominent deficits over the whole pressure range (up to 90 mmHg in TRPA1-/- and TRPV4-/- but not TRPM8-/- mice; the drug effects of the TRP antagonists were again highly consistent with the results from mice lacking the respective TRP receptor gene.TRPA1 and TRPV4 mediate colonic distension pain and CGRP release and appear to govern a wide and congruent dynamic range of distensions. The role of TRPM8 seems to be confined to signaling extreme noxious distension, at least in the healthy colon.

  2. Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice

    Directory of Open Access Journals (Sweden)

    Finger Thomas E

    2008-12-01

    Full Text Available Abstract Background In the past, ciliated receptor neurons, basal cells, and supporting cells were considered the principal components of the main olfactory epithelium. Several studies reported the presence of microvillous cells but their function is unknown. A recent report showed cells in the main olfactory epithelium that express the transient receptor potential channel TrpM5 claiming that these cells are chemosensory and that TrpM5 is an intrinsic signaling component of mammalian chemosensory organs. We asked whether the TrpM5-positive cells in the olfactory epithelium are microvillous and whether they belong to a chemosensory system, i.e. are olfactory neurons or trigeminally-innervated solitary chemosensory cells. Results We investigated the main olfactory epithelium of mice at the light and electron microscopic level and describe several subpopulations of microvillous cells. The ultrastructure of the microvillous cells reveals at least three morphologically different types two of which express the TrpM5 channel. None of these cells have an axon that projects to the olfactory bulb. Tests with a large panel of cell markers indicate that the TrpM5-positive cells are not sensory since they express neither neuronal markers nor are contacted by trigeminal nerve fibers. Conclusion We conclude that TrpM5 is not a reliable marker for chemosensory cells. The TrpM5-positive cells of the olfactory epithelium are microvillous and may be chemoresponsive albeit not part of the sensory apparatus. Activity of these microvillous cells may however influence functionality of local elements of the olfactory system.

  3. Extracts and compounds active on TRP ion channels from Waldheimia glabra, a ritual medicinal plant from Himalaya.

    Science.gov (United States)

    Giorgi, Annamaria; Bassoli, Angela; Borgonovo, Gigliola; Panseri, Sara; Manzo, Alessandra; Pentimalli, Daniela; Schiano Moriello, Aniello; De Petrocellis, Luciano

    2017-08-15

    Waldheimia glabra (Decne.) Regel is a wild plant from the Himalayan Mountains, commonly known as Smooth Ground Daisy. This plant is traditionally used by local populations in religious rituals (incense) or in traditional herbal medicine to treat skin diseases, headache, joint pain and fever. In literature few data are available on the investigation of this aromatic plant. The present work aims at deepening knowledge about the chemical composition of W. glabra extracts and incense, as well as its activity on TRP ion channels. Extracts and incense of W. glabra were analyzed by using HS-SPME GC/MS, GC/MS and NMR analysis. Tests on the activity of W. glabra extracts and isolated compounds (+)-ludartin 1 and B-ring-homo-tonghaosu 2 on TRP channels were also performed. Some extracts and pure compounds from W. glabra showed an interesting activity in terms of efficacy and potency on rat TRPA1, an ion channel involved in several sensory mechanisms, including pungency, environmental irritation and pain perception. Activity is discussed and compared with that of other known TRPA1 natural agonists with different chemical structures. All compounds showed only a negligible inhibition activity on rat TRPM8 ion channel. Our findings demonstrate that W. glabra is involved in the receptor activation mechanism and therefore represents a new natural product potentially useful in pharmaceutical and agrifood research. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Effect of electroacupuncture on TRPM7 mRNA expression after cerebral ischemia/reperfusion in rats via TrkA pathway.

    Science.gov (United States)

    Zhao, Li; Shi, Jing; Sun, Ning; Tian, Shunlian; Meng, Xianfang; Liu, Xiaochun; Li, Lingli

    2005-01-01

    The effect of electroacupuncture (EA) on TRPM7 mRNA expression of focal cerebral ischemia in rats and further the role of EA in the relationship between TRPM7 and trkA pathway was investigated. Thirty SD rats were randomly divided into 5 groups : normal group, ischemia/reperfusion group, EA treated group (ischemic rats with EA treatment), TE infusion group (ischemic rats with EA treatment and TE buffer infusion), AS-ODN group (ischemic rats with EA treatment and antisense trkA oligonucleotide infusion). The stroke animal model was established by the modified method of middle cerebral artery occlusion. Antisense trkA oligonucleotide that blocked NGFs effects was injected into cerebroventricle before EA. The TRPM7 mRNA was detected by RT-PCR method. The results showed that there were low TRPM7 mRNA levels in cortex and hippocampus in normal group. Compared with normal group, TRPM7 mRNA expression was increased significantly in ischemia/reperfusion group (PPM7 mRNA was found in EA treated group in contrast to ischemia/reperfusion group (P<0.05). The expression of TRPM7 mRNA in AS-ODN group was remarkably increased compared with EA treated group and TE infusion group (P<0.05). The results indicated that TRPM7 channels in the ischemic cortex and hippocampus in rats might play a key role in ischemic brain injury. EA could reverse the overexpression of TRPM7 in cerebral ischemia/reperfusion rats. And the inhibitory effect of EA on TRPM7 channels might be through trkA pathway.

  5. The preventive effect of resiniferatoxin on the development of cold hypersensitivity induced by spinal nerve ligation: involvement of TRPM8.

    Science.gov (United States)

    Koh, Won Uk; Choi, Seong-Soo; Kim, Ji Hyun; Yoon, Hye Joo; Ahn, Ho-Soo; Lee, Sun Kyung; Leem, Jeong Gil; Song, Jun Gol; Shin, Jin Woo

    2016-06-21

    Resiniferatoxin (RTX) is a potent analog of capsaicin and activates transient receptor potential (TRP) vanilloid type (TRPV) 1. In the current study, we investigated the preventive effect of perineural RTX on the development of cold hypersensitivity induced by spinal nerve ligation (SNL) in rats. Furthermore, we examined the association between the expression level of TRPV1, TRP ankyrin type (TRPA) 1 and TRP melastatin type (TRPM) 8 in the dorsal root ganglion (DRG) and cold hypersensitivity after SNL. RTX pretreatment prevented the development of SNL-induced hypersensitivity to mechanical, thermal, and cold stimuli. Western blot analysis 4 weeks after RTX pretreatment showed that RTX pretreatment decreased the protein expression level of SNL-induced TRPM8, but not TRPV1 or TRPA1, in the DRG of SNL rats. Immunofluorescent analysis revealed that up-regulated TRPM8-stained neurons after SNL co-localized with neurofilament 200-positive neurons located in the DRG. Pretreatment with perineural RTX significantly inhibits SNL-induced mechanical, thermal, and cold hypersensitivity. The antinociceptive effect of perineural RTX, especially on cold hypersensitivity, may be related to the suppression of TRPM8 expression in DRG.

  6. Cutaneous TRPM8-expressing sensory afferents are a small population of neurons with unique firing properties.

    Science.gov (United States)

    Jankowski, Michael P; Rau, Kristofer K; Koerber, H Richard

    2017-04-01

    It has been well documented that the transient receptor potential melastatin 8 (TRPM8) receptor is involved in environmental cold detection. The role that this receptor plays in nociception however, has been somewhat controversial since conflicting reports have shown different neurochemical identities and responsiveness of TRPM8 neurons. In order to functionally characterize cutaneous TRMP8 fibers, we used two ex vivo somatosensory recording preparations to functionally characterize TRPM8 neurons that innervate the hairy skin in mice genetically engineered to express GFP from the TRPM8 locus. We found several types of cold-sensitive neurons that innervate the hairy skin of the mouse but the TRPM8-expressing neurons were found to be of two specific populations that responded with rapid firing to cool temperatures. The first group was mechanically insensitive but the other did respond to high threshold mechanical deformation of the skin. None of these fibers were found to contain calcitonin gene-related peptide, transient receptor potential vanilloid type 1 or bind isolectin B4. These results taken together with other reports suggest that TRPM8 containing sensory neurons are environmental cooling detectors that may be nociceptive or non-nociceptive depending on the sensitivity of individual fibers to different combinations of stimulus modalities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. ANTIMICROBIAL ACTIVITY OF Ag+, Cu2+, Zn2+, Mg2+ IONS DOPED CHITOSAN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Sukhodub LB

    2015-04-01

    Full Text Available Modification by polymers and inorganic ions of the bioactive materials for orthopedic implants with the purpose of initiating controlled reactions in tissues that surround the implant, is one of the modern approaches in medical materials. A key feature of functional polymers is their ability to form complexes with various metal ions in solution. Chitosan is natural biopolymer with pronounced affinity to transition metal ions. Some researches prove the higher antimicrobial activity of Chitosan-metal complexes compared with pure Chitosan. The purpose of this work was the study of antimicrobial activity of Chitosan nanoparticles modified by metal ions Ag+, Cu2+, Zn2+, Mg2+ against reference strains S. aureus 25923 ATSS, E. coli ATCC 25922, C. albicans ATCC 885653 for their further use as components of the composite biomaterials for medical purpose.Chitosan nanoparticles suspension was prepared by known method based on the ionotropic gelation between chitosan and sodium tripolyphosphate.To obtain Chitosan-metal nanoparticles to the Chitosan suspension were added the corresponding metal ions aqueous solutions in quantity to match the concentration of metal ions of 200 ppm . Antibacterial activities of Ag+, Cu2+, Zn2+, Mg2+ ions doped Chitosan nanoparticles, pure Chitosan nanoparticles, metal ions and 1% (v/v acetic acid solution (it was used as solvent for Chitosan against bacteria were evaluated by determination of minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC in vitro. Muller– Hinton (MH broth and MH agar (Russia were used as growth media. The bacteria suspension for further use was prepared with concentration that corresponded 0,5units by McFarland scale. The MIC was determined by a broth dilution method. The results were read after 24 hours of experimental tubes incubation at 37 oC as equivalent to the concentration of the tube without visible growth. To evaluate MBC, a sample of 0,1 ml was transferred from

  8. A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice.

    Science.gov (United States)

    Eddy, Meghan C; Eschle, Benjamin K; Peterson, Darlene; Lauras, Nathan; Margolskee, Robert F; Delay, Eugene R

    2012-06-01

    Previously, published studies have reported mixed results regarding the role of the TRPM5 cation channel in signaling sweet taste by taste sensory cells. Some studies have reported a complete loss of sweet taste preference in TRPM5 knockout (KO) mice, whereas others have reported only a partial loss of sweet taste preference. This study reports the results of conditioned aversion studies designed to motivate wild-type (WT) and KO mice to respond to sweet substances. In conditioned taste aversion experiments, WT mice showed nearly complete LiCl-induced response suppression to sucrose and SC45647. In contrast, TRPM5 KO mice showed a much smaller conditioned aversion to either sweet substance, suggesting a compromised, but not absent, ability to detect sweet taste. A subsequent conditioned flavor aversion experiment was conducted to determine if TRPM5 KO mice were impaired in their ability to learn a conditioned aversion. In this experiment, KO and WT mice were conditioned to a mixture of SC45647 and amyl acetate (an odor cue). Although WT mice avoided both components of the stimulus mixture, they avoided SC45647 more than the odor cue. The KO mice also avoided both stimuli, but they avoided the odor component more than SC45647, suggesting that while the KO mice are capable of learning an aversion, to them the odor cue was more salient than the taste cue. Collectively, these findings suggest the TRPM5 KO mice have some residual ability to detect SC45647 and sucrose, and, like bitter, there may be a TRPM5-independent transduction pathway for detecting these substances.

  9. Glycolytic metabolite methylglyoxal inhibits cold and menthol activation of the transient receptor potential melastatin type 8 channel.

    Science.gov (United States)

    Ciobanu, A C; Selescu, T; Gasler, I; Soltuzu, L; Babes, A

    2016-03-01

    Methylglyoxal (MG) is a reactive dicarbonyl compound involved in protein modifications linked to diabetes mellitus. The plasma level of MG is elevated in diabetic patients, particularly those with painful diabetic neuropathy. Diabetic neuropathy is often associated with spontaneous pain and altered thermal perception. This study assesses effects of MG on TRPM8, an ion channel involved in innocuous cold sensing and cold allodynia and also in cold-mediated analgesia. Acute treatment with MG inhibited the activation of recombinant rat and human transient receptor potential melastatin type 8 (TRPM8) by cold and chemical agonists. A similar effect was observed when native TRPM8 was investigated in cultured rat dorsal root ganglion (DRG) neurons. DRG neurons treated with MG for 16-24 hr displayed a significant reduction in the fraction of cold- and menthol-sensitive neurons, most likely expressing TRPM8. The fraction of allyl isothiocyanate-sensitive neurons was also reduced, and the coexpression among different neuronal populations was affected. The same prolonged exposure to MG significantly reduced the expression of TRPM8 at the mRNA level. Overall, our data provide evidence for decreased activity and expression level of TRPM8 in the presence of MG, which may be linked to some of the alterations in pain and temperature sensing reported by diabetic patients. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  10. Transient receptor potential melastatin subfamily member 2 cation channel regulates detrimental immune cell invasion in ischemic stroke.

    Science.gov (United States)

    Gelderblom, Mathias; Melzer, Nico; Schattling, Benjamin; Göb, Eva; Hicking, Gordon; Arunachalam, Priyadharshini; Bittner, Stefan; Ufer, Friederike; Herrmann, Alexander M; Bernreuther, Christian; Glatzel, Markus; Gerloff, Christian; Kleinschnitz, Christoph; Meuth, Sven G; Friese, Manuel A; Magnus, Tim

    2014-11-01

    Brain injury during stroke results in oxidative stress and the release of factors that include extracellular Ca(2+), hydrogen peroxide, adenosine diphosphate ribose, and nicotinic acid adenine dinucleotide phosphate. These alterations of the extracellular milieu change the activity of transient receptor potential melastatin subfamily member 2 (TRPM2), a nonselective cation channel expressed in the central nervous system and the immune system. Our goal was to evaluate the contribution of TRPM2 to the tissue damage after stroke. In accordance with current quality guidelines, we independently characterized Trpm2 in a murine ischemic stroke model in 2 different laboratories. Gene deficiency of Trpm2 resulted in significantly improved neurological outcome and decreased infarct size. Besides an already known moderate neuroprotective effect of Trpm2 deficiency in vitro, ischemic brain invasion by neutrophils and macrophages was particularly reduced in Trpm2-deficient mice. Bone marrow chimeric mice revealed that Trpm2 deficiency in the peripheral immune system is responsible for the protective phenotype. Furthermore, experiments with mixed bone marrow chimeras demonstrated that Trpm2 is essential for the migration of neutrophils and, to a lesser extent, also of macrophages into ischemic hemispheres. Notably, the pharmacological TRPM2 inhibitor, N-(p-amylcinnamoyl)anthranilic acid, was equally protective in the stroke model. Although a neuroprotective effect of TRPM2 in vitro is well known, we can show for the first time that the detrimental role of TRPM2 in stroke primarily depends on its role in activating peripheral immune cells. Targeting TRPM2 systemically represents a promising therapeutic approach for ischemic stroke. © 2014 American Heart Association, Inc.

  11. Potential role of melastatin-related transient receptor potential cation channel subfamily M gene expression in the pathogenesis of urinary bladder cancer.

    Science.gov (United States)

    Ceylan, Gülay Güleç; Önalan, Ebru Etem; Kuloğlu, Tuncay; Aydoğ, Gülten; Keleş, İbrahim; Tonyali, Şenol; Ceylan, Cavit

    2016-12-01

    Urinary bladder cancer is one of the most common malignancies of the urinary tract. Ion channels and calcium homeostasis are involved in almost all basic cellular mechanisms. The transient receptor potential cation channel subfamily M (TRPM) takes its name from the melastatin protein, which is classified as potential tumor suppressor. To the best of our knowledge, there have been no previous studies in the literature investigating the role of these ion channels in bladder cancer. The present study aimed to determine whether bladder cancer is associated with mRNA expression levels of TRPM ion channel genes, and whether there is the potential to conduct further studies to establish novel treatment modalities. The present study included a total of 47 subjects, of whom 40 were bladder cancer patients and 7 were controls. Following the histopathological evaluation for bladder carcinoma, the mRNA and protein expression of TRPM were examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in tumor and normal tissues, in order to determine whether there is a difference in the expression of these channels in tumor and normal tissues. Immunoreactivity for TRPM2, TRPM4, TRPM7 and TRPM8 was observed in epithelial bladder cells in the two groups. RT-qPCR revealed a significant increase in TRPM7 expression in bladder cancer tissue compared to the controls (healthy bladder tissue), whereas no differences in TRPM2 or TRPM4 expression levels were observed. There were significant reductions in the expression levels of TRPM5 and TRPM8 in bladder cancer tissues. In the present study, the effects of TRP ion channels on the formation of bladder cancer was investigated. This study is instructive for TRPM2, TRPM4, TRPM5, TRPM7 and TRPM8 and their therapeutic role in bladder cancer. The results support the fact that these gens can be novel targets and can also be tested for during the treatment of bladder cancer.

  12. The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila.

    Science.gov (United States)

    Turner, Heather N; Armengol, Kevin; Patel, Atit A; Himmel, Nathaniel J; Sullivan, Luis; Iyer, Srividya Chandramouli; Bhattacharya, Surajit; Iyer, Eswar Prasad R; Landry, Christian; Galko, Michael J; Cox, Daniel N

    2016-12-05

    The basic mechanisms underlying noxious cold perception are not well understood. We developed Drosophila assays for noxious cold responses. Larvae respond to near-freezing temperatures via a mutually exclusive set of singular behaviors-in particular, a full-body contraction (CT). Class III (CIII) multidendritic sensory neurons are specifically activated by cold and optogenetic activation of these neurons elicits CT. Blocking synaptic transmission in CIII neurons inhibits CT. Genetically, the transient receptor potential (TRP) channels Trpm, NompC, and Polycystic kidney disease 2 (Pkd2) are expressed in CIII neurons, where each is required for CT. Misexpression of Pkd2 is sufficient to confer cold responsiveness. The optogenetic activation level of multimodal CIII neurons determines behavioral output, and visualization of neuronal activity supports this conclusion. Coactivation of cold- and heat-responsive sensory neurons suggests that the cold-evoked response circuitry is dominant. Our Drosophila model will enable a sophisticated molecular genetic dissection of cold nociceptive genes and circuits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Gosha-jinki-gan reduced oxaliplatin-induced hypersensitivity to cold sensation and its effect would be related to suppression of the expression of TRPM8 and TRPA1 in rats.

    Science.gov (United States)

    Kato, Yoshinori; Tateai, Yoshikazu; Ohkubo, Misao; Saito, Yuka; Amagai, Syun-ya; Kimura, Yu-Suke; Iimura, Naohumi; Okada, Megumi; Matsumoto, Akiko; Mano, Yasunari; Hirosawa, Iori; Ohuchi, Kaori; Tajima, Masataka; Asahi, Mariko; Kotaki, Hajime; Yamada, Harumi

    2014-01-01

    Peripheral neuropathy is a common side effect of the chemotherapeutic agent oxaliplatin (Oxp), and is associated with hypersensitivity to cold sensation in the acute stage. Recently, gosha-jinki-gan (GJG), a Japanese herbal medicine, was reported to improve Oxp-induced cold hypersensitivity. However, the mechanism for this effect was not elucidated. We hypothesized that the effect of GJG on Oxp-induced cold hypersensitivity may be associated with the expression of the transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) channels, which are cold-gated ion channels. To assess this hypothesis, we examined alteration of the withdrawal response to cold stimulation following coadministration of GJG and Oxp in rats, and the relationship between this altered withdrawal response and the expression of TRPM8 and TRPA1 mRNA in the dorsal root ganglia (DRG). Assessment of cold hypersensitivity was performed at 4 and 10°C using a cold plate. Compared with Oxp administration alone, coadministration of GJG (oral dose: 1 g/kg/day for 12 days) and Oxp (intraperitoneal dose: 4 mg/kg twice a week) significantly reduced the withdrawal response to cold stimulation. On the 12th day of drug administration, the L4-L6 DRG were removed and the expression of TRPM8 and TRPA1 mRNA was determined using RT-PCR. The expression of TRPM8 and TRPA1 in the DRG of rats that were coadministered GJG and Oxp decreased significantly compared with that in the rats administered Oxp alone. These results suggest that coadministration of GJG may improve Oxp-induced cold hypersensitivity by suppressing the overexpression of TRPM8 and TRPA1 mRNA.

  14. Activation of Transient Receptor Potential Melastatin Subtype 8 Attenuates Cold-Induced Hypertension Through Ameliorating Vascular Mitochondrial Dysfunction.

    Science.gov (United States)

    Xiong, Shiqiang; Wang, Bin; Lin, Shaoyang; Zhang, Hexuan; Li, Yingsha; Wei, Xing; Cui, Yuanting; Wei, Xiao; Lu, Zongshi; Gao, Peng; Li, Li; Zhao, Zhigang; Liu, Daoyan; Zhu, Zhiming

    2017-08-02

    Environmental cold-induced hypertension is common, but how to treat cold-induced hypertension remains an obstacle. Transient receptor potential melastatin subtype 8 (TRPM8) is a mild cold-sensing nonselective cation channel that is activated by menthol. Little is known about the effect of TRPM8 activation by menthol on mitochondrial Ca 2+ homeostasis and the vascular function in cold-induced hypertension. Primary vascular smooth muscle cells from wild-type or Trpm8 -/- mice were cultured. In vitro, we confirmed that sarcoplasmic reticulum-resident TRPM8 participated in the regulation of cellular and mitochondrial Ca 2+ homeostasis in the vascular smooth muscle cells. TRPM8 activation by menthol antagonized angiotensin II induced mitochondrial respiratory dysfunction and excess reactive oxygen species generation by preserving pyruvate dehydrogenase activity, which hindered reactive oxygen species-triggered Ca 2+ influx and the activation of RhoA/Rho kinase pathway. In vivo, long-term noxious cold stimulation dramatically increased vasoconstriction and blood pressure. The activation of TRPM8 by dietary menthol inhibited vascular reactive oxygen species generation, vasoconstriction, and lowered blood pressure through attenuating excessive mitochondrial reactive oxygen species mediated the activation of RhoA/Rho kinase in a TRPM8-dependent manner. These effects of menthol were further validated in angiotensin II-induced hypertensive mice. Long-term dietary menthol treatment targeting and preserving mitochondrial function may represent a nonpharmaceutical measure for environmental noxious cold-induced hypertension. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells.

    NARCIS (Netherlands)

    Thebault, S.C.; Lemonnier, L.; Bidaux, G.; Flourakis, M.; Bavencoffe, A.; Gordienko, D.; Roudbaraki, M.; Delcourt, P.; Panchin, Y.; Shuba, Y.; Skryma, R.; Prevarskaya, N.

    2005-01-01

    Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the

  16. [Effects of ingredients from Chinese herbs with nature of cold or hot on expression of TRPV1 and TRPM8].

    Science.gov (United States)

    Sui, Feng; Yang, Na; Zhang, Changbin; Du, Xinliang; Li, Lanfang; Weng, Xiaogang; Guo, Shuying; Huo, Hairu; Jiang, Tingliang

    2010-06-01

    To study the effects of the ingredients from Chinese herbs with the nature of cold or hot on the expression of TRPV1 and TRPM8. The effects of ingredients from herbs on primary culture DRG neurons are observed in vitro. The expression quantity of gene is detected by the method of real time PCR. the 2 (-deltadeltaCT) method is applied to analyze the data. Ingredients from herbs with the nature of cold up-regulate the expression level of TRPV1 and down-regulate that of TRPM8, especially under the temperature condition of 39 degrees C; while ingredients from herbs with the nature of hot up-regulate the expression level of TRPM8 and down-regulated that of TRPV1, which is more significant under the temperature condition of 19 degrees C. The regulatory changes of TRPV1 and TRPM8 mRNA expression induced by the chemical ingredients might be related to the cold and hot natures of the herbs from which the ingredients are extracted. And this could be one of the therapeutic mechanisms for the treatment of Chinese herbal medicines to cold- and heat-related diseases.

  17. Discovery and development of a novel class of phenoxyacetyl amides as highly potent TRPM8 agonists for use as cooling agents.

    Science.gov (United States)

    Noncovich, Alain; Priest, Chad; Ung, Jane; Patron, Andrew P; Servant, Guy; Brust, Paul; Servant, Nicole; Faber, Nathan; Liu, Hanghui; Gonsalves, Nicole S; Ditschun, Tanya L

    2017-08-15

    The paper presents the activity trends for a novel series of phenoxyacetyl amides as human TRPM8 receptor agonists. This series encompasses in vitro activity values ranging from the micromolar to the picomolar levels. Sensory evaluation of these molecules highlights their relevance as cooling agents for oral applications. The positive outcome of the complete evaluation of N-(1H-pyrazol-3-yl)-N-(thiophen-2-ylmethyl)-2-(p-tolyloxy)acetamide resulted in its approval for Generally Recognized As Safe (GRAS) status by the Flavor & Extract Manufacturer Association (FEMA) as FEMA 4809. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ablation of TRPM5 in Mice Results in Reduced Body Weight Gain and Improved Glucose Tolerance and Protects from Excessive Consumption of Sweet Palatable Food when Fed High Caloric Diets.

    Directory of Open Access Journals (Sweden)

    Marie H Larsson

    Full Text Available The calcium activated cation channel transient receptor potential channel type M5 (TRPM5 is part of the downstream machinery of the taste receptors and have been shown to play a central role in taste signalling. In addition it is also found in other types of chemosensory cells in various parts of the body as well as in pancreatic β-cells. The aim of this study was to investigate the effects of TRPM5 gene ablation on body weight, insulin sensitivity and other metabolic parameters in long-term high caloric diet induced obesity. Trpm5-/- mice gained significantly less body weight and fat mass on both palatable carbohydrate and fat rich cafeteria diet and 60% high fat diet (HFD and developed less insulin resistance compared to wild type mice. A main finding was the clearly improved glucose tolerance in Trpm5-/- mice compared to wild type mice on cafeteria diet, which was independent of body weight. In addition, it was shown that Trpm5-/- mice consumed the same amount of calories when fed a HFD only or a HFD in combination with a palatable chocolate ball, which is in contrast to wild type mice that increased their caloric intake when fed the combination, mainly due to excessive consumption of the chocolate ball. Thus the palatable sugar containing diet induced overeating was prevented in Trpm5-/- mice. This indicates that sweet taste induced overeating may be a cause for the increased energy intake and glucose intolerance development seen for wild type mice on a sugar and high fat rich cafeteria diet compared to when on a high fat diet. This study point to an important role for the taste signalling system and TRPM5 in diet induced glucose intolerance.

  19. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Science.gov (United States)

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  20. Insight into the molecular regulation of the epithelial magnesium channel TRPM6.

    NARCIS (Netherlands)

    Cao, G.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2008-01-01

    PURPOSE OF REVIEW: Recent studies have greatly increased our knowledge concerning the molecular mechanisms of renal magnesium handling. This review highlights the functional features of the newly identified transient receptor potential channel melastatin subtype 6 (TRPM6), which forms the gatekeeper

  1. Single nucleotide polymorphisms and genotypes of transient receptor potential ion channel and acetylcholine receptor genes from isolated B lymphocytes in myalgic encephalomyelitis/chronic fatigue syndrome patients.

    Science.gov (United States)

    Marshall-Gradisnik, Sonya; Johnston, Samantha; Chacko, Anu; Nguyen, Thao; Smith, Peter; Staines, Donald

    2016-12-01

    Objective The pathomechanism of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is unknown; however, a small subgroup of patients has shown muscarinic antibody positivity and reduced symptom presentation following anti-CD20 intervention. Given the important roles of calcium (Ca 2+ ) and acetylcholine (ACh) signalling in B cell activation and potential antibody development, we aimed to identify relevant single nucleotide polymorphisms (SNPs) and genotypes in isolated B cells from CFS/ME patients. Methods A total of 11 CFS/ME patients (aged 31.82 ± 5.50 years) and 11 non-fatigued controls (aged 33.91 ± 5.06 years) were included. Flow cytometric protocols were used to determine B cell purity, followed by SNP and genotype analysis for 21 mammalian TRP ion channel genes and nine mammalian ACh receptor genes. SNP association and genotyping analysis were performed using ANOVA and PLINK analysis software. Results Seventy-eight SNPs were identified in nicotinic and muscarinic acetylcholine receptor genes in the CFS/ME group, of which 35 were in mAChM3. The remaining SNPs were identified in nAChR delta (n = 12), nAChR alpha 9 (n = 5), TRPV2 (n = 7), TRPM3 (n = 4), TRPM4 (n = 1) mAChRM3 2 (n = 2), and mAChRM5 (n = 3) genes. Nine genotypes were identified from SNPs in TRPM3 (n = 1), TRPC6 (n = 1), mAChRM3 (n = 2), nAChR alpha 4 (n = 1), and nAChR beta 1 (n = 4) genes, and were located in introns and 3' untranslated regions. Odds ratios for these specific genotypes ranged between 7.11 and 26.67 for CFS/ME compared with the non-fatigued control group. Conclusion This preliminary investigation identified a number of SNPs and genotypes in genes encoding TRP ion channels and AChRs from B cells in patients with CFS/ME. These may be involved in B cell functional changes, and suggest a role for Ca 2+ dysregulation in AChR and TRP ion channel signalling in the pathomechanism of CFS/ME.

  2. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation.

    Science.gov (United States)

    Borowiec, Anne-Sophie; Sion, Benoit; Chalmel, Frédéric; D Rolland, Antoine; Lemonnier, Loïc; De Clerck, Tatiana; Bokhobza, Alexandre; Derouiche, Sandra; Dewailly, Etienne; Slomianny, Christian; Mauduit, Claire; Benahmed, Mohamed; Roudbaraki, Morad; Jégou, Bernard; Prevarskaya, Natalia; Bidaux, Gabriel

    2016-09-01

    Testes of most male mammals present the particularity of being externalized from the body and are consequently slightly cooler than core body temperature (4-8°C below). Although, hypothermia of the testis is known to increase germ cells apoptosis, little is known about the underlying molecular mechanisms, including cold sensors, transduction pathways, and apoptosis triggers. In this study, using a functional knockout mouse model of the cold and menthol receptors, dubbed transient receptor potential melastatine 8 (TRPM8) channels, we found that TRPM8 initiated the cold-shock response by differentially modulating cold- and heat-shock proteins. Besides, apoptosis of germ cells increased in proportion to the cooling level in control mice but was independent of temperature in knockout mice. We also observed that the rate of germ cell death correlated positively with the reactive oxygen species level and negatively with the expression of the detoxifying enzymes. This result suggests that the TRPM8 sensor is a key determinant of germ cell fate under hypothermic stimulation.-Borowiec, A.-S., Sion, B., Chalmel, F., Rolland, A. D., Lemonnier, L., De Clerck, T., Bokhobza, A., Derouiche, S., Dewailly, E., Slomianny, C., Mauduit, C., Benahmed, M., Roudbaraki, M., Jégou, B., Prevarskaya, N., Bidaux, G. Cold/menthol TRPM8 receptors initiate the cold-shock response and protect germ cells from cold-shock-induced oxidation. © The Author(s).

  3. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Zhao, Xiujian; Yue, Yuanzheng

    2014-11-01

    The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel and facile strategy of synthesizing these unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework by hydrothermal redox reaction between Ce(NO3)3 and KMnO4 with KMnO4/Ce(NO3)3 at a molar ratio of 3 : 1 at 120 °C. Compared to pure OMS-2, the produced catalyst of Ce ion substituted OMS-2 ultrathin nanorods exhibits an enormous enhancement in the catalytic activity for benzene oxidation, which is evidenced by a significant decrease (ΔT50 = 100 °C, ΔT90 = 129 °C) in the reaction temperature of T50 and T90 (corresponding to the benzene conversion = 50% and 90%), which is considerably more efficient than the expensive supported noble metal catalyst (Pt/Al2O3). We combine both theoretical and experimental evidence to provide a new physical insight into the significant effect due to the defects induced by the Ce ion substitution on the catalytic activity of OMS-2. The formation of unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework leads to a significant enhancement of the lattice oxygen activity, thus tremendously increasing the catalytic activity.The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel

  4. The Transient Receptor Potential Melastatin 7 Channel Regulates Pancreatic Cancer Cell Invasion through the Hsp90α/uPA/MMP2 pathway

    Directory of Open Access Journals (Sweden)

    Pierre Rybarczyk

    2017-04-01

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is an aggressive malignancy with a very poor prognosis. There is an urgent need to better understand the molecular mechanisms that regulate PDAC cell aggressiveness. The transient receptor potential melastatin 7 (TRPM7 is a nonselective cationic channel that mainly conducts Ca2+ and Mg2+. TRPM7 is overexpressed in numerous malignancies including PDAC. In the present study, we used the PANC-1 and MIA PaCa-2 cell lines to specifically assess the role of TRPM7 in cell invasion and matrix metalloproteinase secretion. We show that TRPM7 regulates Mg2+ homeostasis and constitutive cation entry in both PDAC cell lines. Moreover, cell invasion is strongly reduced by TRPM7 silencing without affecting the cell viability. Conditioned media were further studied, by gel zymography, to detect matrix metalloproteinase (MMP secretion in PDAC cells. Our results show that MMP-2, urokinase plasminogen activator (uPA, and heat-shock protein 90α (Hsp90α secretions are significantly decreased in TRPM7-deficient PDAC cells. Moreover, TRPM7 expression in human PDAC lymph node metastasis is correlated to the channel expression in primary tumor. Taken together, our results show that TRPM7 is involved in PDAC cell invasion through regulation of Hsp90α/uPA/MMP-2 proteolytic axis, confirming that this channel could be a promising biomarker and possibly a target for PDAC metastasis therapy.

  5. Direct versus indirect actions of ghrelin on hypothalamic NPY neurons.

    Science.gov (United States)

    Hashiguchi, Hiroshi; Sheng, Zhenyu; Routh, Vanessa; Gerzanich, Volodymyr; Simard, J Marc; Bryan, Joseph

    2017-01-01

    Assess direct versus indirect action(s) of ghrelin on hypothalamic NPY neurons. Electrophysiology was used to measure ion channel activity in NPY-GFP neurons in slice preparations. Ca2+ imaging was used to monitor ghrelin activation of isolated NPY GFP-labeled neurons. Immunohistochemistry was used to localize Trpm4, SUR1 and Kir6.2 in the hypothalamus. Acylated ghrelin depolarized the membrane potential (MP) of NPY-GFP neurons in brain slices. Depolarization resulted from a decreased input resistance (IR) in ~70% of neurons (15/22) or an increased IR in the remainder (7/22), consistent with the opening or closing of ion channels, respectively. Although tetrodotoxin (TTX) blockade of presynaptic action potentials reduced ghrelin-induced changes in MP and IR, ghrelin still significantly depolarized the MP and decreased IR in TTX-treated neurons, suggesting that ghrelin directly opens cation channel(s) in NPY neurons. In isolated NPY-GFP neurons, ghrelin produced a sustained rise of [Ca2+]c, with an EC50 ~110 pM. Pharmacologic studies confirmed that the direct action of ghrelin was through occupation of the growth hormone secretagogue receptor, GHS-R, and demonstrated the importance of the adenylate cyclase/cAMP/protein kinase A (PKA) and phospholipase C/inositol triphosphate (PLC/IP3) pathways as activators of 5' AMP-activated protein kinase (AMPK). Activation of isolated neurons was not affected by CNQX or TTX, but reducing [Na+]o suppressed activation, suggesting a role for Na+-permeable cation channels. SUR1 and two channel partners, Kir6.2 and Trpm4, were identified immunologically in NPY-GFP neurons in situ. The actions of SUR1 and Trpm4 modulators were informative: like ghrelin, diazoxide, a SUR1 agonist, elevated [Ca2+]c and glibenclamide, a SUR1 antagonist, partially suppressed ghrelin action, while 9-phenanthrol and flufenamic acid, selective Trpm4 antagonists, blocked ghrelin actions on isolated neurons. Ghrelin activation was unaffected by nifedipine and

  6. A cross-species translational pharmacokinetic-pharmacodynamic evaluation of core body temperature reduction by the TRPM8 blocker PF-05105679.

    Science.gov (United States)

    Gosset, James R; Beaumont, Kevin; Matsuura, Tomomi; Winchester, Wendy; Attkins, Neil; Glatt, Sophie; Lightbown, Ian; Ulrich, Kristina; Roberts, Sonia; Harris, Jolie; Mesic, Emir; van Steeg, Tamara; Hijdra, Diana; van der Graaf, Piet H

    2017-11-15

    PF-05105679 is a moderately potent TRPM8 blocker which has been evaluated for the treatment of cold pain sensitivity. The TRPM8 channel is responsible for the sensation of cold environmental temperatures and has been implicated in regulation of core body temperature. Consequently, blockade of TRPM8 has been suggested to result in lowering of core body temperature. As part of the progression to human studies, the effect of PF-05105679 on core body temperature has been investigated in animals. Safety pharmacology studies showed that PF-05105679 reduced core body temperature in a manner that was inversely related to body weight of the species tested (greater exposure to PF-05105679 was required to lower temperature by 1°C in higher species). Based on an allometric (body weight) relationship, it was hypothesized that PF-05105679 would not lower core body temperature in humans at exposures that could exhibit pharmacological effects on cold pain sensation. On administration to humans, PF-05105679 was indeed effective at reversing the cold pain sensation associated with the cold pressor test in the absence of effects on core body temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Preconcentration of Zn2+ and Cu2+ ions from food and vegetable samples using modified activated carbon.

    Science.gov (United States)

    Ghaedi, M; Tavallali, H; Montazerozohori, M; Zahedi, E; Amirineko, M; Khodadoust, S; Karimipour, G

    2012-11-01

    In this work, two N/S-containing chelating agents 2-(4-methoxybenzylideneamino)thiophenol (2-4-MBAT) and 2-(4-chlorobenzylideneamino) benzenethiol (2-4-CBABT) were synthesized as new sorbents and were used for preconcentration of Zn(2+) and Cu(2+) ions in food and vegetable samples. In the proposed procedure, the trace amount of Zn(2+) and Cu(2+) ions from 250 mL of sample solution at pH = 5.0 was preconcentrated by 1 g of activated carbon (AC) loaded with 15 mg of 2-4-MBAT and 2-4-CBABT separately. The breakthrough volumes (maximum sample volume that their metal ions quantitatively can be enriched) for solid-phase extraction (SPE) procedure based on the AC modified with 2-4-MBAT and 2-4-CBABT were 800 and 750 mL, respectively. The sorbed Zn(2+) and Cu(2+) ions were efficiently eluted by 8 mL of 4 mol L(-1) HNO(3) and preconcentration factor of 112.5 and 93.7 and experimental enhancement factor of 30 and 35 ions were obtained for Zn(2+) and Cu(2+), respectively. The application of this enrichment procedure allowed the extraction of trace metal ions with recoveries exceeding of 90%.

  8. Vacquinol-1 inducible cell death in glioblastoma multiforme is counter regulated by TRPM7 activity induced by exogenous ATP.

    Science.gov (United States)

    Sander, Philip; Mostafa, Haouraa; Soboh, Ayman; Schneider, Julian M; Pala, Andrej; Baron, Ann-Kathrin; Moepps, Barbara; Wirtz, C Rainer; Georgieff, Michael; Schneider, Marion

    2017-05-23

    Glioblastomas (GBM) are the most malignant brain tumors in humans and have a very poor prognosis. New therapeutic options are urgently needed. A novel drug, Vacquinol-1 (Vac), a quinolone derivative, displays promising properties by inducing rapid cell death in GBM but not in non-transformed tissues. Features of this type of cell death are compatible with a process termed methuosis. Here we tested Vac on a highly malignant glioma cell line observed by long-term video microscopy. Human dental-pulp stem cells (DPSCs) served as controls. A major finding was that an exogenous ATP concentration of as little as 1 μM counter regulated the Vac-induced cell death. Studies using carvacrol, an inhibitor of transient receptor potential cation channel, subfamily M, member 7 (TRPM7), demonstrated that the ATP-inducible inhibitory effect is likely to be via TRPM7. Exogenous ATP is of relevance in GBM with large necrotic areas. Our results support the use of GBM cultures with different grades of malignancy to address their sensitivity to methuosis. The video-microscopy approach presented here allows decoding of signaling pathways as well as mechanisms of chemotherapeutic resistance by long-term observation. Before implementing Vac as a novel therapeutic drug in GBM, cells from each individual patient need to be assessed for their ATP sensitivity. In summary, the current investigation supports the concept of methuosis, described as non-apoptotic cell death and a promising approach for GBM treatment. Tissue-resident ATP/necrosis may interfere with this cell-death pathway but can be overcome by a natural compound, carvacrol that even penetrates the blood-brain barrier.

  9. Phospholipase C δ4 regulates cold sensitivity in mice.

    Science.gov (United States)

    Yudin, Yevgen; Lutz, Brianna; Tao, Yuan-Xiang; Rohacs, Tibor

    2016-07-01

    The cold- and menthol-activated transient receptor potential melastatin 8 (TRPM8) channels are thought to be regulated by phospholipase C (PLC), but neither the specific PLC isoform nor the in vivo relevance of this regulation has been established. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 channels in vivo. We show that in small PLCδ4(-/-) TRPM8-positive dorsal root ganglion neurons cold, menthol and WS-12, a selective TRPM8 agonist, evoked significantly larger currents than in wild-type neurons, and action potential frequencies induced by menthol or by current injections were also higher in PLCδ4(-/-) neurons. PLCδ4(-/-) mice showed increased behavioural responses to evaporative cooling, and this effect was inhibited by a TRPM8 antagonist; behavioural responses to heat and mechanical stimuli were not altered. We provide evidence for the involvement of a specific PLC isoform in the regulation of cold sensitivity in mice by regulating TRPM8 activity. The transient receptor potential melastatin 8 (TRPM8) ion channel is a major sensor of environmental low temperatures. Ca(2+) -induced activation of phospholipase C (PLC) has been implied in the regulation of TRPM8 channels during menthol- and cold-induced desensitization in vitro. Here we identify PLCδ4 as the key PLC isoform involved in regulation of TRPM8 in sensory dorsal root ganglion (DRG) neurons. We identified two TRPM8-positive neuronal subpopulations, based on their cell body size. Most TRPM8-positive small neurons also responded to capsaicin, and had significantly larger menthol-induced inward current densities than medium-large cells, most of which did not respond to capsaicin. Small, but not medium-large, PLCδ4(-/-) neurons showed significantly larger currents induced by cold, menthol or WS-12, a specific TRPM8 agonist, compared to wild-type (WT) neurons, but TRPM8 protein levels were not different between the two groups. In current-clamp experiments small neurons

  10. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    Science.gov (United States)

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  11. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    Science.gov (United States)

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  12. Dampened neural activity and abolition of epileptic-like activity in cortical slices by active ingredients of spices

    Science.gov (United States)

    Pezzoli, Maurizio; Elhamdani, Abdeladim; Camacho, Susana; Meystre, Julie; González, Stephanie Michlig; le Coutre, Johannes; Markram, Henry

    2014-01-01

    Active ingredients of spices (AIS) modulate neural response in the peripheral nervous system, mainly through interaction with TRP channel/receptors. The present study explores how different AIS modulate neural response in layer 5 pyramidal neurons of S1 neocortex. The AIS tested are agonists of TRPV1/3, TRPM8 or TRPA1. Our results demonstrate that capsaicin, eugenol, menthol, icilin and cinnamaldehyde, but not AITC dampen the generation of APs in a voltage- and time-dependent manner. This effect was further tested for the TRPM8 ligands in the presence of a TRPM8 blocker (BCTC) and on TRPM8 KO mice. The observable effect was still present. Finally, the influence of the selected AIS was tested on in vitro gabazine-induced seizures. Results coincide with the above observations: except for cinnamaldehyde, the same AIS were able to reduce the number, duration of the AP bursts and increase the concentration of gabazine needed to elicit them. In conclusion, our data suggests that some of these AIS can modulate glutamatergic neurons in the brain through a TRP-independent pathway, regardless of whether the neurons are stimulated intracellularly or by hyperactive microcircuitry. PMID:25359561

  13. Role of TRP Channels in Dinoflagellate Mechanotransduction.

    Science.gov (United States)

    Lindström, J B; Pierce, N T; Latz, M I

    2017-10-01

    Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd 3+ ), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.

  14. Magnesium prevents phosphate-induced vascular calcification via TRPM7 and Pit-1 in an aortic tissue culture model.

    Science.gov (United States)

    Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Masumoto, Asuka; Nakashima, Yuri; Ito, Teppei; Mima, Toru; Negi, Shigeo; Kimura-Suda, Hiromi; Shigematsu, Takashi

    2017-06-01

    Previous clinical and experimental studies have indicated that magnesium may prevent vascular calcification (VC), but mechanistic characterization has not been reported. This study investigated the influence of increasing magnesium concentrations on VC in a rat aortic tissue culture model. Aortic segments from male Sprague-Dawley rats were incubated in serum-supplemented high-phosphate medium for 10 days. The magnesium concentration in this medium was increased to demonstrate its role in preventing VC, which was assessed by imaging and spectroscopy. The mineral composition of the calcification was analyzed using Fourier transform infrared (FTIR) spectroscopic imaging, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) mapping. Magnesium supplementation of high-phosphate medium dose-dependently suppressed VC (quantified as aortic calcium content), and almost ablated it at 2.4 mm magnesium. The FTIR images and SEM-EDX maps indicated that the distribution of phosphate (as hydroxyapatite), phosphorus and Mg corresponded with calcium content in the aortic ring and VC. The inhibitory effect of magnesium supplementation on VC was partially reduced by 2-aminoethoxy-diphenylborate, an inhibitor of TRPM7. Furthermore, phosphate transporter-1 (Pit-1) protein expression was increased in tissues cultured in HP medium and was gradually-and dose dependently-decreased by magnesium. We conclude that a mechanism involving TRPM7 and Pit-1 underpins the magnesium-mediated reversal of high-phosphate-associated VC.

  15. Colorimetric assay of copper ions based on the inhibition of peroxidase-like activity of MoS2 nanosheets

    Science.gov (United States)

    Chen, Huan; Li, Zhihong; Liu, Xueting; Zhong, Jianhai; Lin, Tianran; Guo, Liangqia; Fu, Fengfu

    2017-10-01

    The peroxidase-like catalytic activity of MoS2 nanomaterials has been utilized for colorimetric bioassays and medical diagnostics. However, the application of peroxidase-like catalytic activity of MoS2 nanomaterials in environmental analysis was seldom explored. Herein, copper ions were found to inhibit the peroxidase-like catalytic activity of MoS2 nanosheets, which can catalyze the oxidation of 3, 3‧, 5, 5‧-tetramethylbenzidine by H2O2 to produce a colorimetric product. Based on this finding, a simple sensitive colorimetric method for the detection of copper ions was developed. In the presence of copper ions, the absorbance and color of the solution decreased with the increasing concentration of copper ions. The color of the solution can be used to semi-quantitative on-site assay of copper ions by naked eyes. A linear relationship between the absorbance and the concentration of copper ions was observed in the range of 0.4-4.0 μmol L- 1 with a detection limit of 92 nmol L- 1, which was much lower than the maximum contaminant level of copper in drinking water legislated by the Environmental Protection Agency of USA and the World Health Organization. The method was applied to detect copper ions in environmental water samples with satisfactory results.

  16. Comparison of the transport of QX-314 through TRPA1, TRPM8, and TRPV1 channels

    Directory of Open Access Journals (Sweden)

    Nakagawa H

    2013-03-01

    Full Text Available Hiroshi Nakagawa,1 Akio Hiura2 1Dentistry for Persons with Disability, Tokushima University Hospital, Tokushima, Japan; 2Department of Oral Histology, School of Dentistry, University of Tokushima, Tokushima, Japan Background: It has been demonstrated that N-ethyl-lidocaine (QX-314 can target the transient receptor protein vanilloid 1 (TRPV1 nociceptors when coadministered with capsaicin, resulting in a selective block of the nociceptors. Capsaicin is problematic in therapeutic use because it induces firing of nociceptors. The present study aimed to search for substitutes for capsaicin. We also examined the transportability of QX-314 into nociceptive neurons, through the pores of transient receptor potential ankyrin 1 (TRPA1, transient receptor potential melastatin-8 (TRPM8, and TRPV1. Methods: To investigate the effect on TRPA1, injections of a vehicle, allyl isothiocyanate (AITC, QX-314, or AITC/QX-314 were made into the hind paws of rats. The effects of menthol and capsaicin on the opening of TRPM8 and TRPV1 were also examined and compared with the potency of QX-314. To examine inhibition of the antinociceptive effect by capsaicin/QX-314, capsazepine (50 µg/mL; 10 µL was injected 30 minutes prior to capsaicin/QX-314 (10 µL injection. Thermal sensitivity was investigated by the Hargreaves method. 5(6-carboxyfluorescein (FAM-conjugated QX-314 was used as a tracer to examine how many and which kind of dorsal root ganglia accumulate this molecule. QX-314-FAM, capsaicin/QX-314-FAM, AITC/QX-314-FAM, and menthol/QX-314-FAM were injected into the paw. Two weeks after injections, dorsal root ganglia were removed and sectioned with a cryostat. Results: The capsaicin/QX-314 group induced longer withdrawal-response latency at 60 to 300 minutes after injection than the control. Both menthol only and menthol/QX-314 injections showed analgesia 10 to 60 minutes after injection. No significant difference was seen between the capsazepine/capsaicin/QX-314

  17. Shared CaM- and S100A1-binding epitopes in the distal TRPM4 N terminus

    Czech Academy of Sciences Publication Activity Database

    Boušová, Kristýna; Heřman, P.; Večeř, J.; Bednárová, Lucie; Monincová, Lenka; Majer, Pavel; Vyklický, L.; Vondrášek, Jiří; Teisinger, J.

    2018-01-01

    Roč. 285, č. 3 (2018), s. 599-613 ISSN 1742-464X Institutional support: RVO:61388963 Keywords : calmodulin * fluorescence anisotropy * ligand-binding domains * S100A1 * TRPM4 channel Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 3.902, year: 2016

  18. A structural view of ligand-dependent activation in thermoTRP channels

    Directory of Open Access Journals (Sweden)

    Ximena eSteinberg

    2014-05-01

    Full Text Available Transient Receptor Potential (TRP proteins are a large family of ion channels, grouped intoseven sub-families. Although great advances have been made regarding the activation andmodulation of TRP channel activity, detailed molecular mechanisms governing TRPchannel gating are still needed. Sensitive to electric, chemical, mechanical, and thermalcues, TRP channels are tightly associated with the detection and integration of sensoryinput, emerging as a model to study the polymodal activation of ion channel proteins.Among TRP channels, the temperature-activated kind constitute a subgroup by itself,formed by Vanilloid receptors 1-4, Melastatin receptors 2, 4, 5 and 8, TRPC5, and TRPA1.Some of the so-called thermoTRP channels participate in the detection of noxious stimulimaking them an interesting pharmacological target for the treatment of pain. However, thepoor specificity of the compounds available in the market represents an important obstacleto overcome. Understanding the molecular mechanics underlying ligand-dependentmodulation of TRP channels may help with the rational design of novel syntheticanalgesics. The present review focuses on the structural basis of ligand-dependentactivation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection ofligand-binding sites within TRPV1, PIP 2 -dependent modulation of TRP channels, and thestructure of natural and synthetic ligands.

  19. Activity computer program for calculating ion irradiation activation

    Science.gov (United States)

    Palmer, Ben; Connolly, Brian; Read, Mark

    2017-07-01

    A computer program, Activity, was developed to predict the activity and gamma lines of materials irradiated with an ion beam. It uses the TENDL (Koning and Rochman, 2012) [1] proton reaction cross section database, the Stopping and Range of Ions in Matter (SRIM) (Biersack et al., 2010) code, a Nuclear Data Services (NDS) radioactive decay database (Sonzogni, 2006) [2] and an ENDF gamma decay database (Herman and Chadwick, 2006) [3]. An extended version of Bateman's equation is used to calculate the activity at time t, and this equation is solved analytically, with the option to also solve by numeric inverse Laplace Transform as a failsafe. The program outputs the expected activity and gamma lines of the activated material.

  20. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1

    Czech Academy of Sciences Publication Activity Database

    Jirků, M.; Lánský, Z.; Bednárová, Lucie; Šulc, M.; Monincová, Lenka; Majer, Pavel; Vyklický, L.; Vondrášek, Jiří; Teisinger, J.; Boušová, Kristýna

    2016-01-01

    Roč. 78, Sep (2016), s. 186-193 ISSN 1357-2725 Institutional support: RVO:61388963 Keywords : TRPM1 channel * binding site * calcium-binding protein S100A1 * steady-state fluorescence anisotropy * molecular modeling * circular dichroism Subject RIV: CE - Biochemistry Impact factor: 3.505, year: 2016

  1. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  2. Curcumin ((E,E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) activates and desensitizes the nociceptor ion channel TRPA1.

    Science.gov (United States)

    Leamy, Andrew W; Shukla, Praveen; McAlexander, Michael A; Carr, Michael J; Ghatta, Srinivas

    2011-10-10

    The ion channel TRPA1 is activated by a wide variety of noxious stimuli, such as pollutants, products of oxidative tissue damage, and pungent natural products. Many TRPA1 activators are reactive electrophiles that form Michael adducts with cysteine and lysine residues of TRPA1's intracellular N-terminus. Curcumin, the active principle of turmeric root (Curcuma longa), can also form Michael adducts. In order to test the hypothesis that the electrophilic curcumin activates TRPA1, we have performed whole-cell, voltage-clamp analysis on both HEK293 cells expressing human TRPA1 (hTRPA1-HEK) and native mouse vagal neurons. In nominally calcium-free extracellular and intracellular solutions which minimized the chances of calcium-dependent activation of TRPA1, curcumin increased TRPA1 currents in hTRPA1-HEK cells in a concentration-dependent manner (1-30μM) but did not cause block or activation of recombinant TRPM8 and TRPV1. In addition, 7 out of 11 vagal sensory neurons from wild type mice responded to curcumin (30μM) with inward currents (11.6±5.4pA/pF) that were largely reversed by TRPA1 blockers. In marked contrast, neurons from TRPA1-deficient mice did not respond to curcumin (30μM). With physiological levels of calcium added to the external solution to facilitate channel desensitization, curcumin-dependent currents in hTRPA1-HEK cells were completely desensitized and exhibited marked tachyphylaxis upon subsequent application of curcumin. Taken together, these results demonstrate that curcumin causes activation and subsequent desensitization of native and recombinant TRPA1 ion channels of multiple mammalian species. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Study of electron vibrational interaction parameters in chlorophosphate activated with Eu2+ ion

    International Nuclear Information System (INIS)

    Bhoyar, Priyanka D.; Dhoble, S.J.

    2014-01-01

    We present the results of theoretical study of photoluminescence of Eu 2+ ions activated chlorophosphate M 5.17 (PO 4 ) 3 Cl 5 :Eu 2+ with M = Ca, Sr and Ba estimating electron-vibrational interaction (EVI) parameters such as Huang–Rhys factor, effective phonon energy, Stokes shift and zero phonon line position. Validity of the calculated result was established by modeling the emission line which was found to be in good agreement with the measured photoluminescence spectrum of Eu 2+ doped chorophosphates. - Highlights: • The EVI parameters such as Huang–Rhys factor, effective phonon energy and zero phonon line position were estimated. • Eu 2+ ion emission observed in chlorophosphate. • Material analyzed in this work have intermediate Huang–Rhys factor, high Stokes shift and low effective phonon energy

  4. Regulation of Mg2+ Reabsorption and Transient Receptor Potential Melastatin Type 6 Activity by cAMP Signaling.

    NARCIS (Netherlands)

    Blanchard, M.G.; Kittikulsuth, W.; Nair, A.V.; Baaij, J.H.F. de; Latta, F.; Genzen, J.R.; Kohan, D.E.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2016-01-01

    The transient receptor potential melastatin type 6 (TRPM6) epithelial Mg(2+) channels participate in transcellular Mg(2+) transport in the kidney and intestine. Previous reports suggested a hormonal cAMP-dependent regulation of Mg(2+) reabsorption in the kidney. The molecular details of this process

  5. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    Science.gov (United States)

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy comparable with that of mustard oil isothiocyanates (MO), the most potent being CBC (EC(50) = 60 nM) and the least potent being CBG and CBD acid (EC(50) = 3.4-12.0 microM). CBC also activated MO-sensitive DRG neurons, although with lower potency (EC(50) = 34.3 microM). Furthermore, although none of the compounds tested activated TRPM8-mediated Ca2+ elevation in HEK-293 cells, they all, with the exception of CBC, antagonized this response when it was induced by either menthol or icilin. CBD, CBG, THC, and THC acid were equipotent (IC(50) = 70-160 nM), whereas CBD acid was the least potent compound (IC(50) = 0.9-1.6 microM). CBG inhibited Ca2+ elevation also in icilin-sensitive DRG neurons with potency (IC(50) = 4.5 microM) similar to that of anandamide (IC(50) = 10 microM). Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer.

  6. Effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst

    Science.gov (United States)

    Zhang, Jinjun; Wang, Xiaoyan; Wang, Jimei; Wang, Jing; Ji, Zhijiang

    2016-01-01

    TiO2 nanoparticles were immobilized on diatomite by hydrolysis-deposition method using titanium tetrachloride as precursor. The effect of sulfate ions on the crystallization and photocatalytic activity of TiO2/diatomite composite photocatalyst was characterized by TG-DSC, XRD, BET surface area, SEM, FT-IR spectroscopy, XPS and UV-vis diffuse reflectance spectra. The results indicate that addition of a small amount of sulfate ions promotes the formation of anatase phase and inhibits the transformation from anatase to rutile. On the other hand, sulfate ions immobilized on the surface of TiO2/diatomite have strong affinity for electrons, capturing the photo-generated electrons, which hinders the recombination of electrons and holes.

  7. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  8. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  9. Adsorption of heavy metal ions by activated charcoal

    International Nuclear Information System (INIS)

    Fujikawa, Mitsuo

    1978-01-01

    The adsorption effect was measured for several kinds of heavy metal ions, Pb 2+ , Cd 2+ , Cu 2+ and Zn 2+ by passing them through activated charcoal beds and changing the pH values of solutions. The test procedure is to keep the pH value of solution more than 10 at first, filter heavy metal hydroxide deposit, measure the remaining ion concentration in filtrate, and also test the influence of the addition of alkali to each kind of ions. The individual test procedure for each kind of ions is explained. As for the Cd ions, after the detailed experimental procedure is explained, the adsorption characteristic line is shown as the relation between the adsorption quantity and the equilibrium concentration of Cd 2+ . The similar test procedure and the adsorption characteristic lines are shown and evaluated about Pb 2+ , Cu 2+ and Zn 2+ . These lines are all linear, but have different adsorption quantity and inclination in relation to heavy metal ion concentration. Concerning the influence of pH to adsorption, the characteristics of pH increase are presented, when alkali is added by various quantities to Zn 2+ , Cu 2+ , Pb 2+ and Cd 2+ . The pH of Pb 2+ increased to about 10 by adding 0.4 cc alkali and saturates, but the pH of the other ions did not saturate by adding less than 1.5 cc alkali. When the water containing heavy metals are treated, Cd 2+ , Pb 2+ , Cu 2+ and Zn 2+ are removed almost satisfactorily by passing them through active charcoal filters and keeping pH at 10. The experimental concentrations are 0.05 ppm at pH 10 in Cd, 0.86 ppm at 10.3 in Pb, 0 ppm at pH 9.6 in Cu, 0.06 ppm at pH 8.8 and 12.4 ppm at pH 9.8 in Zn. (Nakai, Y.)

  10. Activation of accelerator construction materials by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Katrík, P., E-mail: p.katrik@gsi.de [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Mustafin, E. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany); Hoffmann, D.H.H. [TU Darmstadt, Schlossgartenstraße 9, D-64289 (Germany); Pavlovič, M. [FEI STU Bratislava, Ilkovičova 3, SK-81219 (Slovakia); Strašík, I. [GSI Darmstadt, Planckstrasse 1, D-64291 (Germany)

    2015-12-15

    Activation data for an aluminum target irradiated by 200 MeV/u {sup 238}U ion beam are presented in the paper. The target was irradiated in the stacked-foil geometry and analyzed using gamma-ray spectroscopy. The purpose of the experiment was to study the role of primary particles, projectile fragments, and target fragments in the activation process using the depth profiling of residual activity. The study brought information on which particles contribute dominantly to the target activation. The experimental data were compared with the Monte Carlo simulations by the FLUKA 2011.2c.0 code. This study is a part of a research program devoted to activation of accelerator construction materials by high-energy (⩾200 MeV/u) heavy ions at GSI Darmstadt. The experimental data are needed to validate the computer codes used for simulation of interaction of swift heavy ions with matter.

  11. Yeast enolase: mechanism of activation by metal ions.

    Science.gov (United States)

    Brewer, J M

    1981-01-01

    Yeast enolase as prepared by current procedures is inherently chemically homogeneous, though deamidation and partial denaturation can produce electrophoretically distinct forms. A true isozyme of the enzyme exists but does not survive the purification procedure. The chemical sequence for both has been established. The enzyme behaves in solution like a compact, nearly spherical molecule of moderate hydration. Strong intramolecular forces maintain the structure of the individual subunits. The enzyme as isolated is dimeric. If dissociated in the presence of magnesium ions and substrate, then the subunits are active, but if the dissociation occurs in the absence of metal ions, they are inactive until they have reassociated and undergone a first order "annealing" process. Magnesium (II) enhances association. The interaction between the subunits is hydrophobic in character. The enzyme can bind up to 2 mol of most metal ions in "conformational" sites which then allows up to 2 mol of substrate or some substrate analogue to bind. This is not sufficient for catalysis, but conformational metal ions do more than just allow substrate binding. A change in the environment of the metal ions occurs on substrate or substrate analogue binding. There is an absolute correlation between the occurrence of a structural change undergone by the 3-amino analogue of phosphoenolpyruvate and whether the metal ions produce any level of enzymatic activity. For catalysis, two more moles of metal ions, called "catalytic", must bind. There is evidence that the enzymatic reaction involves a carbanion mechanism. It is likely that two more moles of metal ion can bind which inhibit the reaction. The requirement for 2 mol of metal ion per subunit which contribute in different ways to catalysis is exhibited by a number of other enzymes.

  12. Monitoring Ion Activities In and Around Cells Using Ion-Selective Liquid-Membrane Microelectrodes

    Directory of Open Access Journals (Sweden)

    Mark D. Parker

    2013-01-01

    Full Text Available Determining the effective concentration (i.e., activity of ions in and around living cells is important to our understanding of the contribution of those ions to cellular function. Moreover, monitoring changes in ion activities in and around cells is informative about the actions of the transporters and/or channels operating in the cell membrane. The activity of an ion can be measured using a glass microelectrode that includes in its tip a liquid-membrane doped with an ion-selective ionophore. Because these electrodes can be fabricated with tip diameters that are less than 1 μm, they can be used to impale single cells in order to monitor the activities of intracellular ions. This review summarizes the history, theory, and practice of ion-selective microelectrode use and brings together a number of classic and recent examples of their usefulness in the realm of physiological study.

  13. Effects of metal ions on growth, β-oxidation system, and thioesterase activity of Lactococcus lactis.

    Science.gov (United States)

    Li, Liang; Ma, Ying

    2014-10-01

    The effects of divalent metal ions (Ca(2+), Mg(2+), Fe(2+), and Cu(2+)) on the growth, β-oxidation system, and thioesterase activity of Lactococcus lactis were investigated. Different metal ions significantly influenced the growth of L. lactis: Ca(2+) and Fe(2+) accelerated growth, whereas Cu(2+) inhibited growth. Furthermore, Mg(2+) inhibited growth of L. lactis at a low concentration but stimulated growth of L. lactis at a high concentration. The divalent metal ions had significant effects on activity of the 4 key enzymes of the β-oxidation system (acyl-CoA dehydrogenase, enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and thiolase) and thioesterase of L. lactis. The activity of acyl-CoA dehydrogenases increased markedly in the presence of Ca(2+) and Mg(2+), whereas it decreased with 1 mmol/L Fe(2+) or 12 mmol/L Mg(2+). All the metal ions could induce activity of enoyl-CoA hydratase. In addition, 12 mmol/L Mg(2+) significantly stimulated activity of L-3-hydroxyacyl-CoA dehydrogenase, and all metal ions could induce activity of thiolase, although thiolase activity decreased significantly when 0.05 mmol/L Cu(2+) was added into M17 broth. Inhibition of thioesterase activity by all 4 metal ions could be reversed by 2 mmol/L Ca(2+). These results help us understand the effect of metal ions on the β-oxidation system and thioesterase activity of Lactococcus lactis. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Activation energy of tracer-diffusion of manganese ions (Mn2+) in alkali metal chloride solutions

    International Nuclear Information System (INIS)

    Borhade, A.V.

    2000-01-01

    The activation energy of the tracer diffusion of Mn 2+ ions in alkali chloride solutions (0.1M) has been determined in agar gel medium (1-2.5%) over the temperature range of 25 - 45 deg C. The decrease in the value of the Arrhenius parameters, E and D 0 , with gel percentage is explained on the basis of the transition state theory. Further, the activation energy as a function of electrolyte concentration is also investigated using 1% agar gel in the temperature range of 25 - 45 deg C. In both the cases, the activation energies are determined by the least square fitting of the diffusion coefficient data obtained at various temperatures through the Arrhenius plots. (author)

  15. Oral treatment with essential oil of Hyptis spicigera Lam. (Lamiaceae) reduces acute pain and inflammation in mice: Potential interactions with transient receptor potential (TRP) ion channels.

    Science.gov (United States)

    Simões, Róli Rodrigues; Coelho, Igor Dos Santos; Junqueira, Stella Célio; Pigatto, Glauce Regina; Salvador, Marcos José; Santos, Adair Roberto Soares; de Faria, Felipe Meira

    2017-03-22

    The genus Hyptis comprehends almost 400 species widespread in tropical and temperate regions of America. The use of Hyptis spicigera Lam. (Lamiaceae) is reported in traditional medicine due to its gastroprotective, anti-inflammatory and analgesic properties. The rationale of this study was to investigate the potential use of the essential oil of H. spicigera (EOHs) as analgesic. The antinociceptive effect of EOHs was verified analyzing acute nocifensive behavior of mice induced by chemical noxious stimuli [i.e., formalin and transient receptor potential (TRP) channels agonists]. We also verified the effects of EOHs on locomotor activity and motor performance in mice. Finally, we investigate the involvement of central afferent C-fibers with EOHs analgesic effect. EOHs presented antinociceptive effect at 300 and 1000mg/kg on formalin-induced pain behavior model, presenting 50% and 72% of inhibition during the first phase (ED 50 =292mg/kg), and 85% and 100% during de second phase (ED 50 =205mg/kg), respectively. Temperature of the hind paw was reduced by EOHs treatment in a dose-dependent manner; oedema was diminished only by EOHs 1000mg/kg. EOHs does not impaired locomotor activity or motor performance. For mice injected with capsaicin, a TRPV1 activator, EOHs (1000mg/kg, ED 50 =660mg/kg) showed decreased (63%) nociceptive behavior. When injected with cinnamaldehyde (TRPA1 activator), mice treated with EOHs showed 23%, 43% and 66% inhibition on nociceptive behavior (100, 300 and 1000mg/kg, respectively; ED 50 402mg/kg). When mice were injected with menthol (TRPM8 activator), EOHs showed 29%, 59% and 98% inhibition of nociceptive behavior (100, 300 and 1000mg/kg, respectively; with ED 50 =198mg/kg. Finally, when desensitized mice were injected with menthol, EOHs (300mg/kg) does not show antinociceptive effect. This study demonstrated the efficacy of EOHs on experimental models of nociception. We have found the involvement of TRP channels V1, A1 and M8 with EOHs

  16. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Stotz, Stephanie C; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E

    2008-05-07

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  17. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  18. Central connectivity of transient receptor potential melastatin 8-expressing axons in the brain stem and spinal dorsal horn.

    Directory of Open Access Journals (Sweden)

    Yun Sook Kim

    Full Text Available Transient receptor potential melastatin 8 (TRPM8 ion channels mediate the detection of noxious and innocuous cold and are expressed by primary sensory neurons, but little is known about the processing of the TRPM8-mediated cold information within the trigeminal sensory nuclei (TSN and the spinal dorsal horn (DH. To address this issue, we characterized TRPM8-positive (+ neurons in the trigeminal ganglion and investigated the distribution of TRPM8+ axons and terminals, and their synaptic organization in the TSN and in the DH using light and electron microscopic immunohistochemistry in transgenic mice expressing a genetically encoded axonal tracer in TRPM8+ neurons. TRPM8 was expressed in a fraction of small myelinated primary afferent fibers (23.7% and unmyelinated fibers (76.3%, suggesting that TRPM8-mediated cold is conveyed via C and Aδ afferents. TRPM8+ axons were observed in all TSN, but at different densities in the dorsal and ventral areas of the rostral TSN, which dominantly receive sensory afferents from intra- and peri-oral structures and from the face, respectively. While synaptic boutons arising from Aδ and non-peptidergic C afferents usually receive many axoaxonic contacts and form complex synaptic arrangements, TRPM8+ boutons arising from afferents of the same classes of fibers showed a unique synaptic connectivity; simple synapses with one or two dendrites and sparse axoaxonic contacts. These findings suggest that TRPM8-mediated cold is conveyed via a specific subset of C and Aδ afferent neurons and is processed in a unique manner and differently in the TSN and DH.

  19. Adsorption efficiencies of calcium (II ion and iron (II ion on activated carbon obtained from pericarp of rubber fruit

    Directory of Open Access Journals (Sweden)

    Orawan Sirichote

    2008-03-01

    Full Text Available Determination of adsorption efficiencies of activated carbon from pericarp of rubber fruit for calcium (II ion and iron (II ion has been performed by flowing the solutions of these ions through a column of activated carbon. The weights of activated carbon in 500 mL buret column (diameter 3.2 cm for flowing calcium (II ion and iron (II ion solutions were 15 g and 10 g, respectively. The initial concentration of calcium ion was prepared to be about eight times more diluted than the true concentration found in the groundwater from the lower part of southern Thailand. Calcium (II ion concentrations were analysed by EDTA titration and its initial concentration was found to be 23.55 ppm. With a flow rate of 26 mL/min, the adsorption efficiency was 11.4 % with passed through volume 4.75 L. Iron (II ion concentrations were analysed by spectrophotometric method; its initial concentration was found to be 1.5565 ppm. At a flow rate of 22 mL/min, the adsorption efficiency was 0.42 % with passed through volume of 34.0 L.

  20. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8?

    Directory of Open Access Journals (Sweden)

    Noushafarin Khajavi

    2017-08-01

    Full Text Available The decarboxylated and deiodinated thyroid hormone (TH derivative, 3-iodothyronamine (3-T1AM, is suggested to be involved in energy metabolism and thermoregulation. G protein-coupled receptors (GPCRs are known as the main targets for 3-T1AM; however, transient receptor potential channels (TRPs were also recently identified as new targets of 3-T1AM. This article reviews the current knowledge of a putative novel role of 3-T1AM in the modulation of TRPs. Specifically, the TRP melastatin 8 (TRPM8 was identified as a target of 3-T1AM in different cell types including neoplastic cells, whereby 3-T1AM significantly increased cytosolic Ca2+ through TRPM8 activation. Similarly, the β-adrenergic receptor is involved in 3-T1AM-induced Ca2+ influx. Therefore, it has been suggested that 3-T1AM-induced Ca2+ mobilization might be due to β-adrenergic receptor/TRPM8 channel interaction, which adds to the complexity of GPCR regulation by TRPs. It has been revealed that TRPM8 activation leads to a decline in TRPV1 activity, which may be of therapeutic benefit in clinical circumstances such as treatment of TRPV1-mediated inflammatory hyperalgesia, colitis, and dry eye syndrome. This review also summarizes the inverse association between changes in TRPM8 and TRPV1 activity after 3-T1AM stimulation. This finding prompted further detailed investigations of the interplay between 3-T1AM and the GPCR/TRPM8 axis and indicated the probability of additional GPCR/TRP constellations that are modulated by this TH derivative.

  1. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1

    Czech Academy of Sciences Publication Activity Database

    Jirků, Michaela; Lánský, Zdeněk; Bednárová, L.; Šulc, Miroslav; Monincová, L.; Majer, P.; Vyklický ml., Ladislav; Vondrášek, J.; Teisinger, Jan; Boušová, Kristýna

    2016-01-01

    Roč. 78, Sep 2016 (2016), s. 186-193 ISSN 1357-2725 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR(CZ) GA15-17488S Institutional support: RVO:67985823 ; RVO:61388971 ; RVO:86652036 Keywords : TRPM1 channel * binding site * calcium-binding protein S100A1 * steady-state fluorescence anisotropy * molecular modeling * circular dichroism Subject RIV: CE - Biochemistry ; EE - Microbiology, Virology (MBU-M); EB - Genetics ; Molecular Biology (BTO-N) Impact factor: 3.505, year: 2016

  2. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    2008-05-01

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  3. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  4. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy

    Directory of Open Access Journals (Sweden)

    Bountra Chas

    2007-05-01

    Full Text Available Abstract Background Transient receptor potential (TRP receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol, have been characterised in pre-clinical models. However, the role of TRPs in common clinical sensory neuropathies needs to be established. Methods We have studied TRPV1, TRPV3, TRPV4, and TRPM8 in nerves (n = 14 and skin from patients with nerve injury, avulsed dorsal root ganglia (DRG (n = 11, injured spinal nerve roots (n = 9, diabetic neuropathy skin (n = 8, non-diabetic neuropathic nerve biopsies (n = 6, their respective control tissues, and human post mortem spinal cord, using immunohistological methods. Results TRPV1 and TRPV3 were significantly increased in injured brachial plexus nerves, and TRPV1 in hypersensitive skin after nerve repair, whilst TRPV4 was unchanged. TRPM8 was detected in a few medium diameter DRG neurons, and was unchanged in DRG after avulsion injury, but was reduced in axons and myelin in injured nerves. In diabetic neuropathy skin, TRPV1 expressing sub- and intra-epidermal fibres were decreased, as was expression in surviving fibres. TRPV1 was also decreased in non-diabetic neuropathic nerves. Immunoreactivity for TRPV3 was detected in basal keratinocytes, with a significant decrease of TRPV3 in diabetic skin. TRPV1-immunoreactive nerves were present in injured dorsal spinal roots and dorsal horn of control spinal cord, but not in ventral roots, while TRPV3 and TRPV4 were detected in spinal cord motor neurons. Conclusion The accumulation of TRPV1 and TRPV3 in peripheral nerves after injury, in spared axons, matches our previously reported changes in avulsed DRG. Reduction of TRPV1 levels

  5. Sorption studies of nickel ions onto activated carbon

    Science.gov (United States)

    Joshi, Parth; Vyas, Meet; Patel, Chirag

    2018-05-01

    Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. The use of low-cost activated carbon derived from azadirachta indica, an agricultural waste material, has been investigated as a replacement for the current expensive methods of removing nickel ions from wastewater. The temperature variation study showed that the nickel ions adsorption is endothermic and spontaneous with increased randomness at the solid solution interface. Significant effect on adsorption was observed on varying the pH of the nickel ion solutions. Therefore, this study revealed that azadirachta indica can serve as a good source of activated carbon with multiple and simultaneous metal ions removing potentials and may serve as a better replacement for commercial activated carbons in applications that warrant their use.

  6. The Activation Mechanism of Bi3+ Ions to Rutile Flotation in a Strong Acidic Environment

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2017-07-01

    Full Text Available Lead hydroxyl compounds are known as rutile flotation of the traditional activated component, but the optimum pH range for flotation is 2–3 using styryl phosphoric acid (SPA as collector, without lead hydroxyl compounds in slurry solution. In this study, Bi3+ ions as a novel activator was investigated. The results revealed that the presence of Bi3+ ions increased the surface potential, due to the specific adsorption of hydroxyl compounds, which greatly increases the adsorption capacity of SPA on the rutile surface. Bi3+ ions increased the activation sites through the form of hydroxyl species adsorbing on the rutile surface and occupying the steric position of the original Ca2+ ions. The proton substitution reaction occurred between the hydroxyl species of Bi3+ ions (Bi(OHn+(3−n and the hydroxylated rutile surface, producing the compounds of Ti-O-Bi2+. The micro-flotation tests results suggested that Bi3+ ions could improve the flotation recovery of rutile from 61% to 90%, and from 61% to 64% for Pb2+ ions.

  7. Metal Fe3+ ions assisted synthesis of highly monodisperse Ag/SiO2 nanohybrids and their antibacterial activity

    International Nuclear Information System (INIS)

    Zhang, Nianchun; Xue, Feng; Yu, Xiang; Zhou, Huihua; Ding, Enyong

    2013-01-01

    Graphical abstract: TEM images of the Ag/SiO 2 -2 nanohybrids. The homogeneous and more mono-disperse Ag nanoparticles deposit on SiO 2 spheres. Through this method, Ag nanoparticles are easily formed on the surface of SiO 2 compared to other methods. Highlights: ► We prepared homogeneous and mono-dispersed Ag/SiO 2 -2 nanohybrids by adding Fe 3+ ions. ► The Ag/SiO 2 -2 nanohybrids had core(SiO 2 )-shell(Ag) structure. ► The Ag/SiO 2 -2 nanohybrids exhibited excellent antibacterial activity against bacteria. ► The reaction temperature was lower and the yield of Ag/SiO 2 -2 nanohybrids were higher. - Abstract: Highly monodispersed Ag/SiO 2 nanohybrids with excellent antibacterial property were synthesized by using DMF as a reducing agent and employing an additional redox potential of metal Fe 3+ ion as a catalytic agent. The obtained Ag/SiO 2 -2 nanohybrids of about 240 nm were highly monodispersity and uniformity by adding trace Fe 3+ ions into the reaction which Ag + reacted with N,N-dimethyl formamide (DMF) at 70 °C. Compared to the conventional techniques, which need long time and high temperature for silica coating of Ag nanoparticles, this new method was capable of synthesizing monodispersed, uniform, high yield Ag/SiO 2 nanohybrids. The electron was transferred from the Fe 2+ ion to the Ag + ion to accelerate the nucleation of silver nanoparticles. The chemical structures, morphologies and properties of the Ag/SiO 2 nanohybrids were characterized by X-ray diffraction (XRD), (High-resolution, Scanning transmission) transmission electron microscopy (TEM, HRTEM and STEM), and X-ray photoelectron spectroscopy (XPS), and UV–vis spectroscopy (UV–vis) and test of antibacterial. The results demonstrated that the silver nanoparticles supported on the surface of SiO 2 spheres in Ag/SiO 2 -2 nanohybrids structure, the Ag nanoparticles were homogeneous and monodispersed. The results also indicated that the Ag/SiO 2 -2 nanohybrid had excellent antibacterial.

  8. Anti-biofilm activity of Fe heavy ion irradiated polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, R.P. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Hareesh, K., E-mail: appi.2907@gmail.com [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Bankar, A. [Department of Microbiology, Waghire College, Pune 412301 (India); Sanjeev, Ganesh [Microtron Centre, Department of Studies in Physics, Mangalore University, Mangalore 574166 (India); Asokan, K.; Kanjilal, D. [Inter University Accelerator Centre, Arun Asaf Ali Marg, New Delhi 110067 (India); Dahiwale, S.S.; Bhoraskar, V.N. [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Dhole, S.D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-10-01

    Highlights: • PC films were irradiated by 60 and 120 MeV Fe ions. • Irradiated PC films showed changes in its physical and chemical properties. • Irradiated PC also showed more anti-biofilm activity compared to pristine PC. - Abstract: Polycarbonate (PC) polymers were investigated before and after high energy heavy ion irradiation for anti-bacterial properties. These PC films were irradiated by Fe heavy ions with two energies, viz, 60 and 120 MeV, at different fluences in the range from 1 × 10{sup 11} ions/cm{sup 2} to 1 × 10{sup 13} ions/cm{sup 2}. UV-Visible spectroscopic results showed optical band gap decreased with increase in ion fluences due to chain scission mainly at carbonyl group of PC which is also corroborated by Fourier transform infrared spectroscopic results. X-ray diffractogram results showed decrease in crystallinity of PC after irradiation which leads to decrease in molecular weight. This is confirmed by rheological studies and also by differential scanning calorimetric results. The irradiated PC samples showed modification in their surfaces prevents biofilm formation of human pathogen, Salmonella typhi.

  9. Activated graphene as a cathode material for Li-ion hybrid supercapacitors.

    Science.gov (United States)

    Stoller, Meryl D; Murali, Shanthi; Quarles, Neil; Zhu, Yanwu; Potts, Jeffrey R; Zhu, Xianjun; Ha, Hyung-Wook; Ruoff, Rodney S

    2012-03-14

    Chemically activated graphene ('activated microwave expanded graphite oxide', a-MEGO) was used as a cathode material for Li-ion hybrid supercapacitors. The performance of a-MEGO was first verified with Li-ion electrolyte in a symmetrical supercapacitor cell. Hybrid supercapacitors were then constructed with a-MEGO as the cathode and with either graphite or Li(4)Ti(5)O(12) (LTO) for the anode materials. The results show that the activated graphene material works well in a symmetrical cell with the Li-ion electrolyte with specific capacitances as high as 182 F g(-1). In a full a-MEGO/graphite hybrid cell, specific capacitances as high as 266 F g(-1) for the active materials at operating potentials of 4 V yielded gravimetric energy densities for a packaged cell of 53.2 W h kg(-1).

  10. Adsorption of heavy metal ions on activated carbon, (5)

    International Nuclear Information System (INIS)

    Yoshida, Hisayoshi; Kamegawa, Katsumi; Arita, Seiji

    1978-01-01

    The adsorption effect of heavy metal ions Cd 2+ , Zn 2+ and Hg 2+ on activated carbon by adding EDTA is reported, utilizing the experimental data. The activated carbons used for the experiment are mostly D, and B, C and F partly. As for the experimental procedure, the solutions of 100 ml which are composed of activated carbon, pH adjusting liquid, EDTA solution and solutions of heavy metals Cd, Zn and Hg, are shaken for 24 hours at 20 deg C, and after the activated carbon is centrifuged and separated for 15 minutes at 3000 rpm, the remaining heavy metal concentrations and pH in the supernatant are measured. The experimental results showed the useful effect on the adsorption of heavy metal ions of Cd, Zn and Hg by adding about 1 mol ratio of (EDTA/heavy metals). The individual experimental results are presented in detail. Concerning the adsorption quantity, 83% of Cd ions remained in the supernatant without addition of EDTA, but less than 1% with addition of about 1 to 5 mol ratio of (EDTA/Cd), and this adsorption effect was almost similar to Zn and Hg, i.e. 100% to 1% in Zn and 70% to 2 or 3% in Hg, under the condition written above. As for the influence of pH on Cd adsorption, the remaining Cd ratio is less than 10%, when pH is 7 to 10.5 at the mol ratio of 1 and 5.5 to 9 at the mol ratio of 10. The adsorption effect was different according to the kinds of activated carbon. The influencing factors for adsorption effect are the concentration of coexisting cations in the solution and the mixing time, etc. The effects of pH on Zn and Hg adsorption were almost similar to Cd. (Nakai, Y.)

  11. Effect of ions on the activity of brain acetylcholinesterase from tropical fish

    Directory of Open Access Journals (Sweden)

    Caio Rodrigo Dias Assis

    2015-07-01

    Full Text Available Objective: To investigate the effect of ions on brain acetylcholinesterase (AChE; EC 3.1.1.7 activities from economic important fish [pirarucu, Arapaima gigas; tambaqui, Colossoma macropomum; cobia, Rachycentron canadum (R. canadum and Nile tilapia, Oreochromis niloticus (O. niloticus] comparing with a commercial enzyme from electric eel [Electrophorus electricus (E. electricus]. Methods: The in vitro exposure was performed at concentrations ranging from 0.001 to 10 mmol/L (except for ethylene diamine tetraacetic acid; up to 150 mmol/L. Inhibition kinetics on R. canadum and O. niloticus were also observed through four methods (Michaelis-Menten, Lineweaver-Burk, Dixon and Cornish-Bowden plots in order to investigate the type of inhibition produced by some ions. Results: Hg 2+ , As 3+ , Cu 2+ , Zn 2+ , Cd 2+ caused inhibition in all the species under study. Ca 2+ , Mg 2+ and Mn 2+ induced slight activation in R. canadum enzyme while Pb 2+ , Ba 2+ , Fe 2+ , Li + inhibited the AChE from some of the analyzed species. The lowest IC 50 and Ki values were estimated for E. electricus AChE in presence of Hg 2+ , Pb 2+ , Zn 2+ . Under our experimental conditions, the results for R. canadum and O. niloticus, As 3+ , Cu 2+ , Cd 2+ , Pb 2+ and Zn 2+ showed a non- competitive/mixed-type inhibition, while Hg 2+ inhibited the enzyme in a mixed/competitive- like manner. Conclusions: E. electricus AChE activity was affected by ten of fifteen ions under study showing that this enzyme could undergo interference by these ions when used as pesticide biosensor in environmental analysis. This hindrance would be less relevant for the crude extracts.

  12. Mechanism of Metal Ion Activation of the Diphtheria Toxin Repressor DtxR

    Energy Technology Data Exchange (ETDEWEB)

    D' Aquino,J.; Tetenbaum-Novatt, J.; White, A.; Berkovitch, F.; Ringe, D.

    2005-01-01

    The diphtheria toxin repressor (DtxR) is a metal ion-activated transcriptional regulator that has been linked to the virulence of Corynebacterium diphtheriae. Structure determination has shown that there are two metal ion binding sites per repressor monomer, and site-directed mutagenesis has demonstrated that binding site 2 (primary) is essential for recognition of the target DNA repressor, leaving the role of binding site 1 (ancillary) unclear. Calorimetric techniques have demonstrated that although binding site 1 (ancillary) has high affinity for metal ion with a binding constant of 2 x 10{sup -7}, binding site 2 (primary) is a low-affinity binding site with a binding constant of 6.3 x 10{sup -4}. These two binding sites act in an independent fashion, and their contribution can be easily dissected by traditional mutational analysis. Our results clearly demonstrate that binding site 1 (ancillary) is the first one to be occupied during metal ion activation, playing a critical role in stabilization of the repressor. In addition, structural data obtained for the mutants Ni-DtxR(H79A, C102D), reported here, and the previously reported DtxR(H79A) have allowed us to propose a mechanism of metal activation for DtxR.

  13. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Science.gov (United States)

    Semsang, Nuananong; Yu, LiangDeng

    2013-07-01

    Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  14. Sawtooth activity of the ion cloud in an electron-beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.

    2003-01-01

    The dynamics of an ensemble of highly charged Ar and Ba ions in an electron-beam ion trap (EBIT) was studied by recording time-resolved x-ray spectra emitted from trapped ions. Sawtoothlike signatures manifest in the spectra for a variety of EBIT operating conditions indicating a sudden collapse of the ion inventory in the trap. The collapse occurs on a time scale of approximately 100 ms and the evolution of the sawteeth is very sensitive to parameters such as electron-beam current and axial trap depth. Analysis of the measurements is based on a time-dependent calculation of the trapping process showing that sawtooth activity is caused by the feedback between the low-Z argon and high-Z barium ions. This unexpected behavior demonstrates the importance of nonlinear effects in electron-beam traps containing more than a single ion species

  15. Induction of antioxidant enzyme activity and lipid peroxidation level in ion-beam-bombarded rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Semsang, Nuananong, E-mail: nsemsang@gmail.com [Molecular Biology Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Yu, LiangDeng [Plasma and Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thailand Center of Excellence in Physics, Commission on Higher Education, 328 Si Ayutthaya Road, Bangkok 10400 (Thailand)

    2013-07-15

    Highlights: ► Ion beam bombarded rice seeds in vacuum. ► Studied seed survival from the ion bombardment. ► Determined various antioxidant enzyme activities and lipid peroxidation level. ► Discussed vacuum, ion species and ion energy effects. ► Attributed the changes to free radical formation due to ion bombardment. -- Abstract: Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29–60 keV and ion fluences of 1 × 10{sup 16} ions cm{sup −2}. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.

  16. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca

    2012-09-01

    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  17. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Tu Zhifeng; He Qun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Chang, Xijun, E-mail: tuzhf07@lzu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Hu Zheng; Gao Ru; Zhang Lina; Li Zhenhua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L{sup -1} HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g{sup -1} for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL{sup -1} for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n = 8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  18. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions.

    Science.gov (United States)

    Tu, Zhifeng; He, Qun; Chang, Xijun; Hu, Zheng; Gao, Ru; Zhang, Lina; Li, Zhenhua

    2009-09-07

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L(-1) HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL(-1) for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n=8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  19. 1-(2-Formamidoethyl)-3-phenylurea functionalized activated carbon for selective solid-phase extraction and preconcentration of metal ions

    International Nuclear Information System (INIS)

    Tu Zhifeng; He Qun; Chang, Xijun; Hu Zheng; Gao Ru; Zhang Lina; Li Zhenhua

    2009-01-01

    A novel method that utilizes 1-(2-formamidoethyl)-3-phenylurea-modified activated carbon (AC-1-(2-formamidoethyl)-3-phenylurea) as a solid-phase extractant has been developed for simultaneous preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) prior to the measurement by inductively coupled plasma atomic emission spectrometry (ICP-AES). Experimental conditions for effective adsorption of trace levels of Cr(III), Cu(II), Fe(III) and Pb(II) were optimized using batch and column procedures in detail. The optimum pH value for the separation of metal ions simultaneously on the new sorbent was 4. And the adsorbed metal ions could be completely eluted by using 2.0 mL 2.0 mol L -1 HCl solution. Common coexisting ions did not interfere with the separation and determination of target metal ions. The maximum static adsorption capacity of the sorbent at optimum conditions was found to be 39.8, 39.9, 77.8 and 17.3 mg g -1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The detection limits of the method were found to be 0.15, 0.41, 0.27 and 0.36 ng mL -1 for Cr(III), Cu(II), Fe(III) and Pb(II), respectively. The relative standard deviation (RSD) of the method was lower than 4.0% (n = 8). The method was successfully applied for the preconcentration of trace Cr(III), Cu(II), Fe(III) and Pb(II) in natural and certified samples with satisfactory results.

  20. Stuides on a Pb2+-selective electrode with a macrocyclic liquid membrane. Potentiometric determination of Pb2+ ions

    Directory of Open Access Journals (Sweden)

    MARIAN ISVORANU

    2006-12-01

    Full Text Available This paper presents experimental and theoretical data regarding the design, characterization and analytical applications of a non-expensive, liquid-membrane ion-selective electrode for Pb2+ ions. The membrane is a solution of the active complex formed by Pb2+ ions with dibenzo-18-crown-6-ionophore (DB-[18]-C-6 extracted in propylene carbonate (PC. The sucessful application of the developed electrode for the determination of Pb2+ ions in aqueos solution samples by direct potentiometry and potentiometric titration is presented. For the presented analytical results, there are insignificant systematic errors between the direct potentiometric method with the developed ion-selective electrode and atomic absorption spectrometry.

  1. Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-07-01

    Full Text Available Carbon ion therapy is a promising modality in radiotherapy to treat tumors, however, a potential risk of induction of late normal tissue damage should still be investigated and protected. The aim of the present study was to explore the long-term cognitive deficits provoked by a high-linear energy transfer (high-LET carbon ions in mice by targeting to hippocampus which plays a crucial role in memory and learning. Our data showed that, one month after 4 Gy carbon ion exposure, carbon ion irradiation conspicuously resulted in the impaired cognitive performance, neurodegeneration and neuronal cell death, as well as the reduced mitochondrial integrity, the disrupted activities of tricarboxylic acid cycle flux and electron transport chain, and the depressed antioxidant defense system, consequently leading to a decline of ATP production and persistent oxidative damage in the hippocampus region. Mechanistically, we demonstrated the disruptions of mitochondrial homeostasis and redox balance typically characterized by the disordered mitochondrial dynamics, mitophagy and glutathione redox couple, which is closely associated with the inhibitions of PINK1 and NRF2 signaling pathway as the key regulators of molecular responses in the context of neurotoxicity and neurodegenerative disorders. Most importantly, we found that administration with melatonin as a mitochondria-targeted antioxidant promoted the PINK1 accumulation on the mitochondrial membrane, and augmented the NRF2 accumulation and translocation. Moreover, melatonin pronouncedly enhanced the molecular interplay between NRF2 and PINK1. Furthermore, in the mouse hippocampal neuronal cells, overexpression of NRF2/PINK1 strikingly protected the hippocampal neurons from carbon ion-elicited toxic insults. Thus, these data suggest that alleviation of the sustained mitochondrial dysfunction and oxidative stress through co-modulation of NRF2 and PINK1 may be in charge of restoration of the cognitive

  2. A unifying mechanism for cancer cell death through ion channel activation by HAMLET.

    Science.gov (United States)

    Storm, Petter; Klausen, Thomas Kjaer; Trulsson, Maria; Ho C S, James; Dosnon, Marion; Westergren, Tomas; Chao, Yinxia; Rydström, Anna; Yang, Henry; Pedersen, Stine Falsig; Svanborg, Catharina

    2013-01-01

    Ion channels and ion fluxes control many aspects of tissue homeostasis. During oncogenic transformation, critical ion channel functions may be perturbed but conserved tumor specific ion fluxes remain to be defined. Here we used the tumoricidal protein-lipid complex HAMLET as a probe to identify ion fluxes involved in tumor cell death. We show that HAMLET activates a non-selective cation current, which reached a magnitude of 2.74±0.88 nA within 1.43±0.13 min from HAMLET application. Rapid ion fluxes were essential for HAMLET-induced carcinoma cell death as inhibitors (amiloride, BaCl2), preventing the changes in free cellular Na(+) and K(+) concentrations also prevented essential steps accompanying carcinoma cell death, including changes in morphology, uptake, global transcription, and MAP kinase activation. Through global transcriptional analysis and phosphorylation arrays, a strong ion flux dependent p38 MAPK response was detected and inhibition of p38 signaling delayed HAMLET-induced death. Healthy, differentiated cells were resistant to HAMLET challenge, which was accompanied by innate immunity rather than p38-activation. The results suggest, for the first time, a unifying mechanism for the initiation of HAMLET's broad and rapid lethal effect on tumor cells. These findings are particularly significant in view of HAMLET's documented therapeutic efficacy in human studies and animal models. The results also suggest that HAMLET offers a two-tiered therapeutic approach, killing cancer cells while stimulating an innate immune response in surrounding healthy tissues.

  3. Preconcentration and Extraction of Copper ion on Activated Carbon using α-Benzoinoxime and Pyrimidin 2-Thiole

    International Nuclear Information System (INIS)

    Ghaedi, M.; Mortazavi, K.; Janbezar, M.; Parham, H.

    2006-01-01

    Activated carbon modified methods were used for preconcentration and determination of copper in some real sample by flame atomic absorption spectrometry. The copper was adsorbed quantitatively on activated carbon due to their complexation with α-benzoinoxime and pyrimidin 2-thiole. The adsorbed copper on solid phase was eluted quantitatively using nitric acid. The important parameters such as pH, amount of carrier, flow rate, amount of activated carbon and type and concentration of eluting agent for obtaining maximum recovery was optimized. The methods based on α- benzoinoxime and pyrimidin 2-thiole at optimum conditions is linear over concentration range of 0.05-1.3 ug mL and 0.06-1.2 ug mL of copper with correlation coefficient of 0.9997 and 0.9994 and both detection limit of 1.2 ngmL, respectively. The preconcentration leads to enrichment factor of 200 and 240 and break through volume of 1200 mL for methods based on α- benzoinoxime and pyrimidin 2-thiole, respectively. The methods have good tolerance limit of interfering ion and selectivity that has been successfully applied for determination of copper content in real sample such as blood, wastewater and river sample. (author)

  4. Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  5. 'Collisional Activation of Peptide Ions in FT-ICR Mass Spectrometry'

    International Nuclear Information System (INIS)

    Laskin, Julia; Futrell, Jean H.

    2003-01-01

    In the last decade characterization of complex molecules, particularly biomolecules became a focus of both fundamental and applied research in mass spectrometry. Most of these studies utilize tandem mass spectrometry (MS/MS) for obtaining structural information for complex molecules. . Tandem mass spectrometry (MS/MS) typically involves the mass selection of a primary ion, its activation by collision or photon excitation, unimolecular decay into fragment ions characteristic of the ion structure and its internal excitation, and mass analysis of the fragment ions. Although the fundamental principles of tandem mass spectrometry of relatively small molecules are fairly well understood, our understanding of the activation and fragmentation of large molecules is much more primitive. For small ions a single energetic collision is sufficient to dissociate the ion but this is not the case for complex molecules. For large ions two fundamental limits severely constrain fragmentation in tandem mass spectrometry. First the center-of-mass collision energy?the absolute upper limit of energy transfer in a collision process?decreases with increasing mass of the projectile ion for fixed ion kinetic energy and neutral mass. Secondly, the dramatic increase in density of states with increasing internal degrees of freedom of the ion decreases the rate of dissociation by many orders of magnitude at a given internal energy. Consequently most practical MS/MS experiments with complex ions involve multiple collision activation (MCA-CID), multi-photon activation or surface-induced dissociation (SID). This review is focused on what has been learned in recent research studies concerned with fundamental aspects of MCA-CID and SID of model peptides with emphasis on experiments carried out using Fourier transform ion cyclotron resonance mass spectrometers (FT-ICR MS). These studies provide the first quantitative comparison of gas-phase multiple-collision activation and SID of peptide ions

  6. Sorption of Heavy Metal Ions from Mine Wastewater by Activated ...

    African Journals Online (AJOL)

    Michael

    2016-12-02

    Dec 2, 2016 ... assess their heavy metal ions adsorption potential. The results show that the .... De-ionised water obtained from the Mineral. Engineering Laboratory of ... Batch adsorption experiment for each of the derived activated carbons ...

  7. EFFECT OF FLUORINE AND CHLORINE IONS ON THE REACTION SINTERING OF MECHANICALLY ACTIVATED ZIRCON-ALUMINA MIXTURE

    Directory of Open Access Journals (Sweden)

    R. Zamani Foroshani

    2015-09-01

    Full Text Available The aim of this work was to study the effect of fluorine and chlorine ions on the formation of mullite during the reaction sintering of mechanically activated zircon-alumina powder mixture. The results showed that mechanical activation of zirconalumina powder mixture for 20 h led to grain refinement and partial amorphization. In the presence of fluorine and chlorine ions, complete formation of mullite in the mechanically activated sample occurred after 2 h of reaction sintering at 1300oC and 1400oC, respectively. In the sample lacking fluorine and chlorine ions, mullitization was not completed even after 2 h of reaction sintering at 1400oC. It was concluded that presence of fluorine and chlorine ions enhance the dissociation of zircon and formation of mullite during the reaction sintering of mechanically activated zircon-alumina mixture.

  8. Experiments on Ion-Ion Plasmas From Discharges

    Science.gov (United States)

    Leonhardt, Darrin; Walton, Scott; Blackwell, David; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Use of both positive and negative ions in plasma processing of materials has been shown to be advantageous[1] in terms of better feature evolution and control. In this presentation, experimental results are given to complement recent theoretical work[2] at NRL on the formation and decay of pulsed ion-ion plasmas in electron beam generated discharges. Temporally resolved Langmuir probe and mass spectrometry are used to investigate electron beam generated discharges during the beam on (active) and off (afterglow) phases in a variety of gas mixtures. Because electron-beam generated discharges inherently[3] have low electron temperatures (<0.5eV in molecular gases), negative ion characteristics are seen in the active as well as afterglow phases since electron detachment increases with low electron temperatures. Analysis of temporally resolved plasma characteristics deduced from these measurements will be presented for pure O_2, N2 and Ar and their mixtures with SF_6. Oxygen discharges show no noticeable negative ion contribution during the active or afterglow phase, presumably due to the higher energy electron attachment threshold, which is well above any electron temperature. In contrast, SF6 discharges demonstrate ion-ion plasma characteristics in the active glow and are completely ion-ion in the afterglow. Comparison between these discharges with published cross sections and production mechanisms will also be presented. [1] T.H. Ahn, K. Nakamura & H. Sugai, Plasma Sources Sci. Technol., 5, 139 (1996); T. Shibyama, H. Shindo & Y. Horiike, Plasma Sources Sci. Technol., 5, 254 (1996). [2] See presentation by R. F. Fernsler, at this conference. [3] D. Leonhardt, et al., 53rd Annual GEC, Houston, TX.

  9. Binding of nickel and zinc ions with activated carbon prepared from sugar cane fibre (Saccharum officinarum L.

    Directory of Open Access Journals (Sweden)

    E.U. Ikhuoria

    2007-04-01

    Full Text Available Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the activated carbon was studied using a range of metal ion concentrations. The sorption data was observed to have an adequate fit for the Langmuir isotherm equation. The level of metal ion uptake was found to be of the order: Ni2+ > Zn2+. The difference in the removal efficiency could be explained in terms of the hydration energy of the metal ions. The distribution coefficient for a range of concentration of the metal ions at the sorbent water interface is found to be higher than the concentration in the continuous phase.

  10. Effects of metal-ion replacement on pyrazinamidase activity: A quantum mechanical study.

    Science.gov (United States)

    Khadem-Maaref, Mahmoud; Mehrnejad, Faramarz; Phirouznia, Arash

    2017-05-01

    Pyrazinamidase (PZase), a metalloenzyme, is responsible for acidic modification of pyrazinamide (PZA), a drug used in tuberculosis treatment. The metal coordination site of the enzyme is able to coordinate various divalent metal cofactors. Previous experimental studies have demonstrated that metal ions, such as Co 2+ , Mn 2+ , and Zn 2+ , are able to reactivate metal-depleted PZase, while others including Cu 2+ , Fe 2+ , and Mg 2+ , cannot restore activity. In this study, we investigated binding of various metal ions to the metal coordination site (MCS) of the enzyme using quantum mechanical calculations. We calculated the metal-ligand (residue) binding energy and the atomic partial charges in the presence of various ions. The results indicated that the tendency of alkaline earth metals to bind to PZase MCS is very low and not suitable for enzyme structural and catalytic function. In contrast, Co 2+ and Ni 2+ ions have very high binding affinity and are favorable to the structural and functional properties of the enzyme. Furthermore, we observed that the rate at which Ni 2+ , Co 2+ and Fe 2+ ions in PZase MCS polarize the OH bond of coordinated water molecules is much higher than the polarization rate created by other ions. This finding suggests that the coordination of Ni 2+ , Co 2+ , or Fe 2+ to PZase facilitates the deprotonation of coordinated water molecules to generate a nucleophile that catalyzes the enzymatic reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Fragile X mental retardation protein controls ion channel expression and activity.

    Science.gov (United States)

    Ferron, Laurent

    2016-10-15

    Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (K v 3.1 and K v 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Ca v 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. Active stabilization of ion trap radiofrequency potentials

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K. G.; Wong-Campos, J. D.; Restelli, A.; Landsman, K. A.; Neyenhuis, B.; Mizrahi, J.; Monroe, C. [Joint Quantum Institute and University of Maryland Department of Physics, College Park, Maryland 20742 (United States)

    2016-05-15

    We actively stabilize the harmonic oscillation frequency of a laser-cooled atomic ion confined in a radiofrequency (rf) Paul trap by sampling and rectifying the high voltage rf applied to the trap electrodes. We are able to stabilize the 1 MHz atomic oscillation frequency to be better than 10 Hz or 10 ppm. This represents a suppression of ambient noise on the rf circuit by 34 dB. This technique could impact the sensitivity of ion trap mass spectrometry and the fidelity of quantum operations in ion trap quantum information applications.

  13. Ameliorating mitochondrial dysfunction restores carbon ion-induced cognitive deficits via co-activation of NRF2 and PINK1 signaling pathway.

    Science.gov (United States)

    Liu, Yang; Yan, Jiawei; Sun, Cao; Li, Guo; Li, Sirui; Zhang, Luwei; Di, Cuixia; Gan, Lu; Wang, Yupei; Zhou, Rong; Si, Jing; Zhang, Hong

    2018-07-01

    Carbon ion therapy is a promising modality in radiotherapy to treat tumors, however, a potential risk of induction of late normal tissue damage should still be investigated and protected. The aim of the present study was to explore the long-term cognitive deficits provoked by a high-linear energy transfer (high-LET) carbon ions in mice by targeting to hippocampus which plays a crucial role in memory and learning. Our data showed that, one month after 4 Gy carbon ion exposure, carbon ion irradiation conspicuously resulted in the impaired cognitive performance, neurodegeneration and neuronal cell death, as well as the reduced mitochondrial integrity, the disrupted activities of tricarboxylic acid cycle flux and electron transport chain, and the depressed antioxidant defense system, consequently leading to a decline of ATP production and persistent oxidative damage in the hippocampus region. Mechanistically, we demonstrated the disruptions of mitochondrial homeostasis and redox balance typically characterized by the disordered mitochondrial dynamics, mitophagy and glutathione redox couple, which is closely associated with the inhibitions of PINK1 and NRF2 signaling pathway as the key regulators of molecular responses in the context of neurotoxicity and neurodegenerative disorders. Most importantly, we found that administration with melatonin as a mitochondria-targeted antioxidant promoted the PINK1 accumulation on the mitochondrial membrane, and augmented the NRF2 accumulation and translocation. Moreover, melatonin pronouncedly enhanced the molecular interplay between NRF2 and PINK1. Furthermore, in the mouse hippocampal neuronal cells, overexpression of NRF2/PINK1 strikingly protected the hippocampal neurons from carbon ion-elicited toxic insults. Thus, these data suggest that alleviation of the sustained mitochondrial dysfunction and oxidative stress through co-modulation of NRF2 and PINK1 may be in charge of restoration of the cognitive impairments in a mouse

  14. Radioprotector modifying influence upon the ion transport ATPase activities

    International Nuclear Information System (INIS)

    Dvoretsky, A.I.; Egorova, E.G.; Ananieva, T.V.; Kulikova, I.A.

    1993-01-01

    The effects of aminothiol and biogenic amine radioprotectors (β-mercaptoethylamine, AET, serotonin, dopamine, histamine) on the basic ion transport enzymes, such as Na, K-ATP ase and Mg, Ca-ATPase activities were investigated in the tissues of numerous organs, with different radiosensitivity in the wistar rats. Experimental results showed that intraperitoneal injection of the used radioprotectors caused preliminary inhibition of the Na, K-ATPase activity in tissues from organs with different radioresistance, but had no influence on the Mg, Ca-ATPase activity in membranes of erythrocytes and rat brain cells. (2 tabs.)

  15. Binding of ferric ions is essential for the biological activity of glycine-extended gastrin

    International Nuclear Information System (INIS)

    Baldwin, G.S.; Pannequin, J.; Hollande, F.; Shulkes, A.

    2002-01-01

    Full text: Non-amidated gastrins, such as glycine-extended gastrin17 (Ggly), are now known to be biologically active. Ggly stimulates cell proliferation and migration, and was recently shown to bind two ferric ions with high affinity. The objective of the present work was to define the structure of Ggly for the first time, and to investigate the role of ferric ions in biological activity. Methods: The structure of Ggly, and the identity of the ammo acids that act as ferric ion ligands, were determined by NMR and fluorescence spectroscopy. The effect on the gastric epithelial cell line IMGE-5 of Ggly fragments, and of Ggy mutants with some or all of the five consecutive glutamate residues replaced by alanine, was measured in terms of cell proliferation, cell migration and phosphorylation of focal adhesion kinase. Results: Ggly adopts a well-defined loop stabilised by hydrophobic interactions between Leu5, Tyrl2, Trp 14 and Phe17. Studies with Ggly fragments indicated that ferric ions bind via the pentaglutamate sequence, which is necessary but not sufficient for full activity Selective replacement of some or all of the glutamates results in a reduction in ferric ion binding, and complete loss of biological activity. Conclusion: Our results are consistent with the hypothesis that ferric ion binding is necessary for biological activity

  16. Theoretical prediction of ion conductivity in solid state HfO2

    Science.gov (United States)

    Zhang, Wei; Chen, Wen-Zhou; Sun, Jiu-Yu; Jiang, Zhen-Yi

    2013-01-01

    A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for the two materials. Negative formation enthalpy and negative vacancy formation energy are found for YSH (yttria-stabilized hafnia) and YSZ (yttria-stabilized zirconia), suggesting the stability of both materials. Low activation energies (below 0.7 eV) of diffusion are found in both materials, and YSH's is a little higher than that of YSZ. In addition, for both HfO2 and ZrO2, the supercells with native oxygen vacancies are also studied. The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one. It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells. A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us, and we attribute this to the different ion vibrations at different temperatures.

  17. CO2 laser photolysis of clustered ions, (1)

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takeshi; Suzuki, Kazuya; Ohno, Shin-ichi.

    1990-09-01

    Vibrational excitation and the following decomposition of cluster ions by CO 2 laser photons are studied. Characteristics of the cluster ion and the CO 2 laser photon are summarized in their relation to the photolysis of cluster ions. An apparatus was installed, which is composed of (1) corona discharge-jet expansion section (formation of cluster ions), (2) CO 2 laser section (photolysis of cluster ions), and (3) mass spectrometer section. Experimental results of ammonia cluster ions were described. Effects of repeller voltage, shape of repellers, and adiabatic cooling are examined on the formation of ammonia cluster ions by corona discharge-jet expansion method. Collisional dissociation of cluster ions was observed at high repeller voltages. Size distribution of the ammonia cluster ion is discussed in connection with the temperature of cluster ions. Intensity of CO 2 laser was related to decomposition yield of cluster ions. (author)

  18. Adsorption of Pb(II) ions from aqueous solutions by date bead carbon activated with ZnCl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Danish, Mohammed; Hashim, Rokiah; Rafatullah, Mohd; Sulaiman, Othman [Division of Bioresource, Paper and Coatings Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang (Malaysia); Ahmad, Anees [Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia, Penang (Malaysia); Govind [Surface Physics and Nanostructures Group, National Physical Laboratory, New Delhi (India)

    2011-04-15

    This study reports on the adsorption characteristics of Pb(II) ions from aqueous solutions using ZnCl{sub 2}-activated date (Phoenix dactylifera) bead (ADB) carbon with respect to change in adsorbent dosage, initial pH, contact time, initial concentration, and temperature of the solution. Kinetic studies of the data showed that the adsorption follows the pseudo-second-order kinetic model. Thermodynamic parameters, enthalpy change ({Delta}H = 55.11 kJ/mol), entropy change ({Delta}S = - 0.193 kJ/mol/K), and Gibbs free energy change ({Delta}G ) were also calculated for the uptake of Pb(II) ions. These parameters show that adsorption on the surface of ADB was feasible, spontaneous in nature, and endothermic between temperatures of 298.2 and 318.2 K. The equilibrium data better fitted the Langmuir and Freundlich isotherm models than the D-R adsorption isotherm model for studying the adsorption behavior of Pb(II) onto the ADB carbon. It could be observed that the maximum adsorption capacity of ADB was 76.92 mg/g at 318.2 K and pH 6.5. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Combined effects of water temperature and copper ion concentration on catalase activity in Crassostrea ariakensis

    Science.gov (United States)

    Wang, Hui; Yang, Hongshuai; Liu, Jiahui; Li, Yanhong; Liu, Zhigang

    2015-07-01

    A central composite experimental design and response surface method were used to investigate the combined effects of water temperature (18-34°C) and copper ion concentration (0.1-1.5 mg/L) on the catalase (CAT) activity in the digestive gland of Crassostrea ariakensis. The results showed that the linear effects of temperature were significant ( P0.05), and the quadratic effects of copper ion concentration were significant ( P0.05), and the effect of temperature was greater than that of copper ion concentration. A model equation of CAT enzyme activity in the digestive gland of C. ariakensis toward the two factors of interest was established, with R 2, Adj. R 2 and Pred. R 2 values as high as 0.943 7, 0.887 3 and 0.838 5, respectively. These findings suggested that the goodness of fit to experimental data and predictive capability of the model were satisfactory, and could be practically applied for prediction under the conditions of the study. Overall, the results suggest that the simultaneous variation of temperature and copper ion concentration alters the activity of the antioxidant enzyme CAT by modulating active oxygen species metabolism, which may be utilized as a biomarker to detect the effects of copper pollution.

  20. Effect of detergents, trypsin, and bivalent metal ions on interfacial activation and functioning of phospholipase D.

    Science.gov (United States)

    Madyarov, Sh R

    2014-07-01

    The effects of detergents, trypsin, and bivalent metal ions on production of phosphatidic and lysophosphatidic acids by the action of phospholipase D (PLD) on lecithin and lysolecithin were studied. It was found that these reaction products and dodecyl sulfate ions activate PLD, whereas other anionic detergents are less effective. A protective effect of the functioning enzyme against its hydrolytic inactivation by trypsin was found. Bivalent metal ions can be arranged in the following sequence by their ability to activate PLD in the hydrolysis of lecithin and lysolecithin: Ca2+>Sr2+>Ba2+>Mg2+. These results are considered in relation to a proposed mechanism of activation and functioning of PLD with the participation of clusters of phosphatidates and lysophosphatidates. Such Me2+-induced formation of rafts or microdomains from the products of hydrolysis of phospholipids can rationalize not only PLD activation and self-regulation, but also the action of this mechanism on other components and properties of biomembranes. PLD and other lipolytic enzymes can be classified as lateral vector enzymes.

  1. Polystyrene nanoparticles activate ion transport in human airway epithelial cells

    Directory of Open Access Journals (Sweden)

    McCarthy J

    2011-06-01

    Full Text Available J McCarthy1, X Gong2, D Nahirney2, M Duszyk2, MW Radomski11School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland; 2Department of Physiology, University of Alberta, Edmonton, Alberta, CanadaBackground: Over the last decade, nanotechnology has provided researchers with new nanometer materials, such as nanoparticles, which have the potential to provide new therapies for many lung diseases. In this study, we investigated the acute effects of polystyrene nanoparticles on epithelial ion channel function.Methods: Human submucosal Calu-3 cells that express cystic fibrosis transmembrane conductance regulator (CFTR and baby hamster kidney cells engineered to express the wild-type CFTR gene were used to investigate the actions of negatively charged 20 nm polystyrene nanoparticles on short-circuit current in Calu-3 cells by Ussing chamber and single CFTR Cl- channels alone and in the presence of known CFTR channel activators by using baby hamster kidney cell patches.Results: Polystyrene nanoparticles caused sustained, repeatable, and concentration-dependent increases in short-circuit current. In turn, these short-circuit current responses were found to be biphasic in nature, ie, an initial peak followed by a plateau. EC50 values for peak and plateau short-circuit current responses were 1457 and 315.5 ng/mL, respectively. Short-circuit current was inhibited by diphenylamine-2-carboxylate, a CFTR Cl- channel blocker. Polystyrene nanoparticles activated basolateral K+ channels and affected Cl- and HCO3- secretion. The mechanism of short-circuit current activation by polystyrene nanoparticles was found to be largely dependent on calcium-dependent and cyclic nucleotide-dependent phosphorylation of CFTR Cl- channels. Recordings from isolated inside-out patches using baby hamster kidney cells confirmed the direct activation of CFTR Cl- channels by the nanoparticles.Conclusion: This is the first study to identify

  2. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective.

    Science.gov (United States)

    Straub, Rainer H

    2014-09-01

    Chronic inflammatory diseases are accompanied by a systemic response of the body, necessary to redirect energy-rich fuels to the activated immune system and to induce volume expansion. The systemic response is switched on by two major pathways: (a) circulating cytokines enter the brain, and (b) signals via sensory nerve fibers are transmitted to the brain. Concerning item b, sensory nerve terminals are equipped with a multitude of receptors that sense temperature, inflammation, osmolality, and pain. Thus, they can be important to inform the brain about peripheral inflammation. Central to these sensory modalities are transient receptor potential channels (TRP channels) on sensory nerve endings. For example, TRP vanilloid 1 (TRPV1) can be activated by heat, inflammatory factors (e.g., protons, bradykinin, anandamide), hyperosmolality, pungent irritants, and others. TRP channels are multimodal switches that transmit peripheral signals to the brain, thereby inducing a systemic response. It is demonstrated how and why these TRP channels (TRPV1, TRP ankyrin type 1 (TRPA1), and TRP melastatin type 8 (TRPM8)) are important to start up a systemic response of energy expenditure, energy allocation, and water retention and how this is linked to a continuously activated immune system in chronic inflammatory diseases.

  3. Wu-Tou Decoction Inhibits Chronic Inflammatory Pain in Mice: Participation of TRPV1 and TRPA1 Ion Channels

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-01-01

    Full Text Available Wu-tou decoction (WTD is a classic traditional Chinese medicine formula and has been used effectively to treat joint diseases clinically. Previous reports indicated that WTD possesses anti-inflammatory activity; however, its actions on pain have not been clarified. Here, we investigated the antinociceptive activity of WTD in CFA-induced mice, and its possible mechanism of the action associated with transient receptor potential (TRP ion channels was also explored. Our results showed that 1.58, 3.15, and 6.30 g/kg WTD significantly attenuated mechanical, cold, and heat hypersensitivities. Moreover, WTD effectively inhibited spontaneous nociceptive responses to intraplantar injections of capsaicin and cinnamaldehyde, respectively. WTD also effectively suppressed jumping and wet-dog-shake behaviors to intraperitoneal injection of icilin. Additionally, WTD significantly reduced protein expression of TRPV1 and TRPA1 in dorsal root ganglia and skins of injured paw. Collectively, our data demonstrate firstly that WTD exerts antinociceptive activity in inflammatory conditions by attenuating mechanical, cold, and heat hypersensitivities. This antinociceptive effect may result in part from inhibiting the activities of TRPV1, TRPA1, and TRPM8, and the suppression of TRPV1 and TRPA1 protein by WTD was also highly effective. These findings suggest that WTD might be an attractive and suitable therapeutic agent for the management of chronic inflammatory pain.

  4. The bare uranyl(2+) ion, UO22+

    International Nuclear Information System (INIS)

    Cornehl, H.H.; Heinemann, C.; Marcalo, J.; Pires de Matos, A.; Schwarz, H.

    1996-01-01

    Ion-molecule reactions between U 2+ and oxygen donors or charge-stripping collisions between singly charged UO 2 2 ions and O 2 collision partners generate uranyl(2+) ions in the gas phase. These do not readily dissociate into singly charged fragments. The standard enthalpy of formation for UO 2 2+ is estimated to be 371±60 kcal mol -1 , in accord with the results of ab initio calculations. (orig.)

  5. Dual mode antibacterial activity of ion substituted calcium phosphate nanocarriers for bone infections

    Directory of Open Access Journals (Sweden)

    Sampath Kumar eT.S.

    2015-05-01

    Full Text Available Nanotechnology has tremendous potential for the management of infectious diseases caused by multi-drug resistant (MDR bacteria, through the development of newer antibacterial materials and efficient modes of antibiotic delivery. Calcium phosphate (CaP bioceramics are commonly used as bone substitutes due to their similarity to bone mineral and are widely researched upon for the treatment of bone infections associated with bone loss. CaPs can be used as local antibiotic delivery agents for bone infections and can be substituted with antibacterial ions in their crystal structure to have a wide spectrum, sustained antibacterial activity even against drug resistant bacteria. In the present work, a dual mode antibiotic delivery system with antibacterial ion substituted calcium deficient hydroxyapatite (CDHA nanoparticles has been developed. Antibacterial ions such as zinc, silver and strontium have been incorporated into CDHA at concentrations of 6 at. %, 0.25-0.75 at. % and 2.5-7.5 at. % respectively. The samples were found to be phase pure, acicular nanoparticles of length 40-50 nm and width 5-6 nm approximately. The loading and release profile of doxycycline, a commonly used antibiotic, was studied from the nanocarriers. The drug release was studied for five days and the release profile was influenced by the ion concentrations. The release of antibacterial ions was studied over a period of 21 days. The ion substituted CDHA samples were tested for antibacterial efficacy on S.aureus and E.coli by MIC/MBC studies and time-kill assay. AgCDHA and ZnCDHA showed high antibacterial activity against both bacteria while SrCDHA was weakly active against S.aureus. Present study shows that the antibiotic release can provide the initial high antibacterial activity and the sustained ion release can provide a long-term antibacterial activity. Such dual mode antibiotic and antibacterial ion release offers an efficient and potent way to treat an incumbent drug

  6. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Yue, Yuanzheng; Greaves, G. Neville; Zhao, Xiujian

    2015-01-01

    The nanostructured Ce ion substituted cryptomelane-type octahedral molecular sieve (OMS-2) catalyst exhibits strong absorption in the entire solar spectrum region. The Ce ion substituted OMS-2 catalyst can efficiently transform the absorbed solar energy to thermal energy, resulting in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed.The nanostructured Ce ion substituted cryptomelane-type octahedral molecular sieve (OMS-2) catalyst exhibits strong absorption in the entire solar spectrum region. The Ce ion substituted OMS-2 catalyst can efficiently transform the absorbed solar energy to thermal energy, resulting in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants

  7. Reactive Landing of Dendrimer Ions onto Activated Self-assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qichi; Laskin, Julia

    2014-02-06

    The reactivity of gaseous, amine-terminated polyamidoamine (PAMAM) dendrimer ions with activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester groups (NHS-SAM) is examined using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS). The reaction extent is determined from depletion of the infrared band at 1753 cm-1, corresponding to the stretching vibration of the NHS carbonyl groups following ion deposition. For reaction yields below 10%, NHS band depletion follows a linear dependence on the ion dose. By comparing the kinetics plots obtained for 1,12-dodecanediamine and different generations of dendrimer ions (G0–G3) containing 4, 8, 16, and 32 terminal amino group, we demonstrate that the relative reaction efficiency increases linearly with the number of NH2 groups in the molecule. This finding is rationalized assuming the formation of multiple amide bonds upon collision of higher-generation dendrimers with NHS-SAM. Furthermore, by comparing the NHS band depletion following deposition of [M+4H]4+ ions of the G2 dendrimer at 30, 80, and 120 eV, we demonstrate that the ion’s kinetic energy has no measurable effect on reaction efficiency. Similarly, the ion’s charge state only has a minor effect on the reactive landing efficiency of dendrimer ions. Our results indicate that reactive landing is an efficient approach for highly selective covalent immobilization of complex multifunctional molecules onto organic surfaces terminated with labile functional groups.

  8. An activated microporous carbon prepared from phenol-melamine-formaldehyde resin for lithium ion battery anode

    International Nuclear Information System (INIS)

    Zhu, Yinhai; Xiang, Xiaoxia; Liu, Enhui; Wu, Yuhu; Xie, Hui; Wu, Zhilian; Tian, Yingying

    2012-01-01

    Highlights: ► Microporous carbon was prepared by chemical activation of phenol-melamine-formaldehyde resin. ► Activation leads to high surface area, well-developed micropores. ► Micropores lead to strong intercalation between carbon and lithium ion. ► Large surface area promotes to improve the lithium storage capacity. -- Abstract: Microporous carbon anode materials were prepared from phenol-melamine-formaldehyde resin by ZnCl 2 and KOH activation. The physicochemical properties of the obtained carbon materials were characterized by scanning electron microscope, X-ray diffraction, Brunauer–Emmett–Teller, and elemental analysis. The electrochemical properties of the microporous carbon as anode materials in lithium ion secondary batteries were evaluated. At a current density of 100 mA g −1 , the carbon without activation shows a first discharge capacity of 515 mAh g −1 . After activation, the capacity improved obviously. The first discharge capacity of the carbon prepared by ZnCl 2 and KOH activation was 1010 and 2085 mAh g −1 , respectively. The reversible capacity of the carbon prepared by KOH activation was still as high as 717 mAh g −1 after 20 cycles, which was much better than that activated by ZnCl 2 . These results demonstrated that it may be a promising candidate as an anode material for lithium ion secondary batteries.

  9. Physicochemical characteristics and sorption capacities of heavy metal ions of activated carbons derived by activation with different alkyl phosphate triesters

    Science.gov (United States)

    Wang, Jing; Liu, Hai; Yang, Shaokun; Zhang, Jian; Zhang, Chenglu; Wu, Haiming

    2014-10-01

    Five alkyl phosphate triesters (APTEs), including trimethyl phosphate (TMP), triethyl phosphate (TEP), triisopropyl phosphate (TPP), tributyl phosphate (TBP) and trioctyl phosphate (TOP), were used as activating agents for preparing activated carbons (AC-APTEs) with high surface acidity and metal ion sorption capacity. N2 adsorption/desorption isotherms, surface morphologies, elemental compositions, results of Boehm's titration and sorption capacities of heavy metal ions of the carbons were investigated. AC-APTEs contained much more acidic groups and exhibited much less surface area (phosphoric acid activation. For the AC-APTEs, AC-TOP had the highest surface area (488 m2/g), AC-TMP showed the highest yield (41.1%), and AC-TBP possessed the highest acidic groups (2.695 mmol/g), oxygen content (47.0%) and metal ion sorption capacities (40.1 mg/g for Ni(II) and 53.5 mg/g for Cd(II)). For the carbons, AC-APTEs showed much larger Ni(II) and Cd(II) sorption capacities than AC-PPA, except AC-TPP. The differences of the carbons in the physicochemical and sorption properties suggested surface chemistry of the carbons was the main factor influencing their sorption capacities whereas the pore structure played a secondary role.

  10. Doping effects of Co2+ ions on ZnO nanorods and their photocatalytic properties

    International Nuclear Information System (INIS)

    Qiu Xiaoqing; Li Guangshe; Sun Xuefei; Li Liping; Fu Xianzhi

    2008-01-01

    A series of Zn 1-x Co x O nanorods with dopant content ranging from x = 0.00 to 0.10 was prepared by a wet chemical method. All Zn 1-x Co x O samples were investigated by x-ray diffraction, transmission electron microscopy, energy-dispersion x-ray line mapping analysis, and UV-visible absorption spectroscopy. It was found that Co 2+ ions were homogeneously substituted for Zn 2+ ions in ZnO nanorods. Rhodamine B degradation was used as a probe reaction to evaluate the effect of Co 2+ doping on ZnO nanorods and photocatalytic performance under UV light and visible light irradiation. Co 2+ ions acted as the trapping or recombination centers for electrons and holes, leading to a reduction in photodegradation efficiency under UV light illumination. Alternatively, Co 2+ ions enhanced the optical absorption and produced the photoinduced carriers under visible illumination in terms of two charge transfer transitions involving Co 2+ ions. Consequently, Co 2+ ions substituted in the lattice of ZnO nanorods significantly improved the visible light photocatalytic activity

  11. Studies in heavy ion activation analysis Pt. 5

    International Nuclear Information System (INIS)

    Ojo, J.F.; Lass, B.D.; Schweikert, E.A.

    1980-01-01

    Nondestructive heavy ion activation analysis has been used to determine the carbon content in various NBS SRM steel samples with a 7.0 MeV 6 Li + beam. The reaction 12 C( 6 Li,αn) 13 N allows for carbon analysis with the only possible interference being beryllium, 9 Be( 6 Li,2n) 13 N. Under interference-free conditions, and employing a post-irradiation etch, the detection limit for carbon analysis in steel was 5 ppm. (author)

  12. Casting granular ion exchange resins with medium-active waste in cement

    International Nuclear Information System (INIS)

    Beijer, O.

    1980-01-01

    Medium active waste from nuclear power stations in Sweden is trapped in granular ion exchange resins. The resin is mixed with cement paste and cast in a concrete shell which is cubic and has an edge dimension of 1.2 m. In some cases the ion exchange cement mortar has cracked. The report presents laboratory sutdies of the properties of the ion exchange resin and the mortar. Also the leaching of the moulds has been investigated. It was shown that a mixture with a water cement ratio higher than about 0.5 swells considerably during the first weeks after casting. The diffusion constant for cesium 137 has been determined at 3.10 -4 cm 2 /24-hour period in conjunction with exposure of the mould and mortar to sea water. The Swedish language report has 400 pages with 90 figures and 30 tables. (author)

  13. A thermal extrapolation method for the effective temperatures and internal energies of activated ions

    Science.gov (United States)

    Meot-Ner (Mautner), Michael; Somogyi, Árpád

    2007-11-01

    The internal energies of dissociating ions, activated chemically or collisionally, can be estimated using the kinetics of thermal dissociation. The thermal Arrhenius parameters can be combined with the observed dissociation rate of the activated ions using kdiss = Athermalexp(-Ea,thermal/RTeff). This Arrhenius-type relation yields the effective temperature, Teff, at which the ions would dissociate thermally at the same rate, or yield the same product distributions, as the activated ions. In turn, Teff is used to calculate the internal energy of the ions and the energy deposited by the activation process. The method yields an energy deposition efficiency of 10% for a chemical ionization proton transfer reaction and 8-26% for the surface collisions of various peptide ions. Internal energies of ions activated by chemical ionization or by gas phase collisions, and of ions produced by desorption methods such as fast atom bombardment, can be also evaluated. Thermal extrapolation is especially useful for ion-molecule reaction products and for biological ions, where other methods to evaluate internal energies are laborious or unavailable.

  14. Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly

    OpenAIRE

    Kweon, Hae-Jin; Kim, Dong-Il; Bae, Yeonju; Park, Jae-Yong; Suh, Byung-Chang

    2016-01-01

    Acid-sensing ion channels (ASICs) are proton-activated cation channels that play important roles as typical proton sensors during pathophysiological conditions and normal synaptic activities. Among the ASIC subunits, ASIC2a and ASIC2b are alternative splicing products from the same gene, ACCN1. It has been shown that ASIC2 isoforms have differential subcellular distribution: ASIC2a targets the cell surface by itself, while ASIC2b resides in the ER. However, the underlying mechanism for this d...

  15. ESR of Ag2+ ions in S2F2 crystal

    International Nuclear Information System (INIS)

    Zaripov, M.M.; Ulanov, V.A.; Falin, M.L.

    1989-01-01

    Experimental data on investigation of bivalent silver ions in S 2 F 2 crystals are presented. Due to the investigation of the grown crystals it is determined that centres of univalent silver ore formed in SrF 2 during crystal growth. X-ray irradiation at room temperature results in the transition of these centres in bivalent staes. Investigation of temperature dependence of ESR spectra type has allowed to make the conclusion about the presence of Jahn-Teller dynamic effect. Analysis of experimental data allows to develop a model of the investigated paramagnetic complex in S 2 F 2 crystal where Ag 2* ion has coordination polyhedron in the form of eight F - ion cube distorted by C 3 3 axis

  16. [Effects of transient receptor potential melastatin 8 cation channels on inflammatory reaction induced by cold temperatures in human airway epithelial cells].

    Science.gov (United States)

    Li, Min-chao; Perelman, Juliy M; Kolosov, Victor P; Zhou, Xiang-dong

    2011-10-01

    /L, (68 ± 11) ng/L] and cold stimulation + calphostin C group [0.40 ± 0.07, 0.44 ± 0.09, 0.47 ± 0.08 and (69 ± 9) ng/L, (86 ± 15) ng/L, (61 ± 10) ng/L] were significantly lower than those in cold stimulation group (t = 2.47 - 4.21, all P cold stimulation + control shRNA group [0.61 ± 0.10, 0.69 ± 0.11, 0.64 ± 0.13 and (89 ± 13) ng/L, (118 ± 20) ng/L, (79 ± 13) ng/L] showed no significant change, compared with cold stimulation group (t = 0.35 - 1.12, all P > 0.05). Cold temperature may induce Ca(2+) influx and up-regulate IL-6, IL-8, and TNF-α expression in 16HBE cells by activating the TRPM8 ion channels, and this is via a signaling pathway involving PKC.

  17. Modeling the adsorption of metal ions (Cu 2+, Ni 2+, Pb 2+) onto ACCs using surface complexation models

    Science.gov (United States)

    Faur-Brasquet, Catherine; Reddad, Zacaria; Kadirvelu, Krishna; Le Cloirec, Pierre

    2002-08-01

    Activated carbon cloths (ACCs), whose efficiency has been demonstrated for microorganics adsorption from water, were here studied in the removal of metal ions from aqueous solution. Two ACCs are investigated, they are characterized in terms of porosity parameters (BET specific surface area, percentage of microporosity) and chemical characteristics (acidic surface groups, acidity constants, point of zero charge). A first part consists in the experimental study of three metal ions removal (Cu 2+, Ni 2+ and Pb 2+) in a batch reactor. Isotherms modeling by Freundlich and Brunauer-Emmett-Teller (BET) equations enables the following adsorption order: Cu 2+>Ni 2+>Pb 2+ to be determined for adsorption capacities on a molar basis. It may be related to adsorbates characteristics in terms of electronegativity and ionic radius. The influence of adsorbent's microporosity is also shown. Adsorption experiments carried out for pH values ranging from 2 to 10 demonstrate: (i) an adsorption occurring below the precipitation pH; (ii) the strong influence of pH, with a decrease of electrostatic repulsion due to the formation of less charged hydrolyzed species coupled with a decrease of activated carbon surface charge as pH increases. The second part focuses on the modeling of adsorption versus the pH experimental data by the diffuse layer model (DLM) using Fiteql software. The model is efficient to describe the system behavior in the pH range considered. Regarding complexation constants, they show the following affinity for ACC: Pb 2+>Cu 2+>Ni 2+. They are related to initial concentrations used for the three metal ions.

  18. Conversion of agonist site to metal-ion chelator site in the beta(2)-adrenergic receptor

    DEFF Research Database (Denmark)

    Elling, C E; Thirstrup, K; Holst, Birgitte

    1999-01-01

    Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor,...... as generic, pharmacologic tools to switch 7TM receptors with engineered metal-ion sites on or off at will.......Previously metal-ion sites have been used as structural and functional probes in seven transmembrane receptors (7TM), but as yet all the engineered sites have been inactivating. Based on presumed agonist interaction points in transmembrane III (TM-III) and -VII of the beta(2)-adrenergic receptor......, in this paper we construct an activating metal-ion site between the amine-binding Asp-113 in TM-III-or a His residue introduced at this position-and a Cys residue substituted for Asn-312 in TM-VII. No increase in constitutive activity was observed in the mutant receptors. Signal transduction was activated...

  19. Rare-earth-ion-doped Al2O3 waveguides for active integrated optical devices

    NARCIS (Netherlands)

    Bradley, J.; Ay, F.; Blauwendraat, Tom; Worhoff, Kerstin; Pollnau, Markus; Orlovic, Valentin A.; Panchenko, Vladislav; Scherbakov, Ivan A.

    2007-01-01

    Reactively co-sputtered amorphous $Al_2O_3$ waveguide layers with low propagation losses have been deposited. In order to define channel waveguides in such $Al_2O_3$ films, the etching behaviour of $Al_2O_3$ has been investigated using an inductively coupled reactive ion etch system. The etch rate

  20. Analysis of movements of both specific activity of tritium and concentration of each ion in short-term precipitation at typhoons

    International Nuclear Information System (INIS)

    Yamada, Ryuta; Watanabe, Minami; Ying, Wang; Kataoka, Noriaki; Morita, Syogo; Imaizumi, Hiroshi; Kano, Naoki

    2015-01-01

    Both the specific activity of tritium and the concentration of several ions(Na + , K + , Mg 2+ , Ca 2+ , Cl - , NO 3 - , SO 4 2- ) in precipitation at typhoons in Niigata city, Japan were measured, and the following matters were found as to precipitation at typhoon. (1) Specific activities of tritium at typhoons were under the average of the activities in precipitation in the same month. (2) The specific activity of tritium depends on that whether the precipitation was sampled after the several days from the last rain, or not so long. (3) Movements of these ion concentrations in precipitation are similar to each other except nitrate ion. (4) Each ion concentration ratio in precipitation at a typhoon became to be similar to that in sea with time. (5) Using relative compositional ratio of sampled water to sea water defined in this research, the effect of sea water on precipitation can be revealed. (author)

  1. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  2. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    Science.gov (United States)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  3. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    Science.gov (United States)

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  4. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    Science.gov (United States)

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  5. Influence of the metal ion on the enzyme activity and kinetics of PepA from Lactobacillus delbrueckii.

    Science.gov (United States)

    Ewert, Jacob; Glück, Claudia; Strasdeit, Henry; Fischer, Lutz; Stressler, Timo

    2018-03-01

    The aminopeptidase A (PepA; EC 3.4.11.7) belongs to the group of metallopeptidases with two bound metal ions per subunit (M1M2(PepA)) and is specific for the cleavage of N-terminal glutamic (Glu) and aspartic acid (Asp) and, in low amounts, serine (Ser) residues. Our group recently characterized the first PepA from a Lactobacillus strain. However, the characterization was performed using synthetic para-nitroaniline substrates and not original peptide substrates, as was done in the current study. Prior to the characterization using original peptide substrates, the PepA purified was converted to its inactive apo-form and eight different metal ions were tested to restore its activity. It was found that five of the metal ions were able to reactivate apo-PepA: Co 2+ , Cu 2+ , Mn 2+ , Ni 2+ and Zn 2+ . Interestingly, depending on the metal ion used for reactivation, the activity and the pH and temperature profile differed. Exemplarily, MnMn(PepA), NiNi(PepA) and ZnZn(PepA) had an activity optimum using MES buffer (50mM, pH 6.0) and 60°C, whereas the activity optimum changed to Na/K-phosphate-buffer (50mM, pH 7.0) and 55°C for CuCu(PepA). However, more important than the changes in optimum pH and temperature, the kinetic properties of PepA were affected by the metal ion used. While all PepA variants could release N-terminal Glu or Asp, only CoCo(PepA), NiNi(PepA) and CuCu(PepA) could release Ser from the particular peptide substrate. In addition, it was found that the enzyme efficiency (V max /K M ) and catalytic mechanism (positive cooperative binding (Hill coefficent; n), substrate inhibition (K IS )) were influenced by the metal ion. Exemplarily, a high cooperativity (n>2),K IS value >20mM and preference for N-terminal Glu were detected for CuCu(PepA). In summary, the results suggested that an exchange of the metal ion can be used for tailoring the properties of PepA for specific hydrolysis requirements. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Variation in yield ratios of fragment ions and of ion-pairs from CF2Cl2 following monochromatic soft X-ray absorption

    International Nuclear Information System (INIS)

    Suzuki, I.H.; Saito, N.; Bozek, J.D.

    1995-01-01

    Fragment ions produced from CF 2 Cl 2 have been measured from 44 to 1200eV using a time-of-flight mass spectrometer and monochromatized synchrotron radiation. Positively charged ion pairs from this molecule were observed in the inner-shell excitation regions using a Selected photoion-photoion coincidence technique. Obtained yield ratios of fragment ions indicate that the atomic chlorine ion, Cl + , has the greatest intensity at all photon energies above 60eV and exhibits a steep increase at the Cl L 2,3 -edges. Some fragment ions, in particular CF 2 + , have a clear intensity increase at the transitions of inner-shell electrons to unoccupied molecular orbitals. The ion pair F + - Cl + exhibits the highest yield at most photon energies, and some of the branching ratios for ion-pair production changed significantly near the Cl L 2,3 -edges. (author)

  7. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.

    Science.gov (United States)

    Yang, Yingchang; Ji, Xiaobo; Lu, Fang; Chen, Qiyuan; Banks, Craig E

    2013-09-28

    Porous activated graphene sheets have been for the first time exploited herein as encapsulating substrates for lithium ion battery (LIB) anodes. The as-fabricated SnO2 nanocrystals-porous activated graphene sheet (AGS) composite electrode exhibits improved electrochemical performance as an anode material for LIBs, such as better cycle performance and higher rate capability in comparison with graphene sheets, activated graphene sheets, bare SnO2 and SnO2-graphene sheet composites. The superior electrochemical performances of the designed anode can be ascribed to the porous AGS substrate, which improves the electrical conductivity of the electrode, inhibits agglomeration between particles and effectively buffers the strain from the volume variation during Li(+)-intercalation-de-intercalation and provides more cross-plane diffusion channels for Li(+) ions. As a result, the designed anode exhibits an outstanding capacity of up to 610 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles and a good rate performance of 889, 747, 607, 482 and 372 mA h g(-1) at a current density of 100, 200, 500, 1000, and 2000 mA g(-1), respectively. This work is of importance for energy storage as it provides a new substrate for the design and implementation of next-generation LIBs exhibiting exceptional electrochemical performances.

  8. Measurements of fast ion spatial dynamics during magnetic activity in the RFP

    Science.gov (United States)

    Goetz, J. A.; Anderson, J. K.; Bonofiglo, P.; Kim, J.; McConnell, R.; Magee, R. M.

    2017-10-01

    Fast ions in the RFP are only weakly affected by a stochastic magnetic field and behave nearly classically in concentration too low to excite Alfvenic activity. At high fast ion concentration sourced by H-NBI in 300kA RFP discharges, a substantial drop in core-localized high pitch fast ions is observed during bursts of coupled EPM and IAE (magnetic island-induced Alfven eigenmode) activity (100-200kHz) through neutral particle analysis. Sourcing instead fast deuterium with NBI, the DD fusion products can measure the dynamics of the fast ion density profile. Both a collimated neutron detector and a new 3MeV fusion proton detector loaned by TriAlpha Energy measure the fast ion density profile with 5cm spatial resolution and 100 μs temporal resolution. In D-NBI, the bursting EPM is excited at slightly lower frequency and the IAE activity is nearly absent, likely due to an isotope effect and loss of wave-particle interaction. In these cases, neutral particle analysis shows little change in the core-localized high pitch fast ion content, and the fusion product profile indicates little change in the fast ion density profile, leaving unexplained the mechanism removing EPM drive. We measure a substantial redistribution of the fast ion profile due to strong lower-frequency ( 30kHz) MHD activity that accompanies the current profile relaxation in the RFP. Profile flattening is strongest in low bulk density discharges, which often occur with a total increase in global neutron flux from acceleration of the beam ions. Work supported by US DoE.

  9. Dense ion clouds of 0.1 − 2 keV ions inside the CPS-region observed by Astrid-2

    Directory of Open Access Journals (Sweden)

    O. Norberg

    Full Text Available Data from the Astrid-2 satellite taken between April and July 1999 show several examples of dense ion clouds in the 0.1–2 keV energy range inside the inner mag-netosphere, both in the northern and southern hemispheres. These inner magnetospheric ion clouds are found predomi-nantly in the early morning sector, suggesting that they could have originated from substorm-related ion injections on the night side. However, their location and density show no cor-relation with Kp, and their energy-latitude dispersion is not easily reproduced by a simple particle drift model. There-fore, these ion clouds are not necessarily caused by substorm-related ion injections. Alternative explanations for the ion clouds are the direct solar wind injections and up-welling ions from the other hemisphere. These explanations do not, however, account for all of the observations.Key words. Magnetospheric physics (energetic particles, trapped; magnetospheric configuration and dynamics; storm and substorms

  10. LEVIS active anode lithium ion source development on PBFA-II

    International Nuclear Information System (INIS)

    Renk, T.J.; Tisone, G.C.; Adams, R.G.; Clark, B.F.; Reyes, C.; Bailey, J.E.; Filuk, A.B.; Desjarlais, M.P.; Johnson, D.J.; Carlson, A.L.; Lake, P.

    1993-01-01

    Experiments are ongoing on the PBFA-II Accelerator (10 MV typical, 50 ns) to optimize an active lithium ion source in a 15-cm focusing Applied-B ion diode using the LEVIS (Laser Evaporation Ion Source) process. Two laser pulses impinge on a thin (500 nm) Li or Li-bearing alloy on an insulating substrate. A Nd:YAG laser beam (1 μm, 8 ns, 0.1--0.2 J/cm 2 ) creates a thin (∼1 mm) Li vapor, which is then ionized by a 30--60 mJ/cm 2 dye laser tuned to the first resonant transition of Li (670.8 nm). In order to achieve a high-purity Li beam on PBFA-II with LEVIS, it has proven necessary to clean the anode surface in some way. The principal technique has been DC-heating of the anode to temperatures of 150--200 C for typically 5 hours, and for as long as 13 hours, prior to machine firing. Use of a LiAg alloy and YAG energy densities of 200 mJ/cm 2 have yielded beams of Li purity greater than 90%. They authors also plan to test a diode configuration that deposits Li in-situ on the anode surface just prior to the machine shot, as an alternative to DC-heating

  11. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion.

    Science.gov (United States)

    Zhang, Xiang; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Fu, Xiaori; Qiu, Zhaofu; Sui, Qian

    2015-03-02

    The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites. Copyright © 2014. Published by Elsevier B.V.

  12. Efficient adsorption of Hg (II) ions in water by activated carbon modified with melamine

    Science.gov (United States)

    Qin, Hangdao; Meng, Jingling; Chen, Jing

    2018-04-01

    Removal of Hg (II) ions from industrial wastewater is important for the water treatment, and adsorption is an efficient treatment process. Activated carbon (AC) was modified with melamine, which introduced nitrogen-containing functional groups onto AC surface. Original AC and melamine modified activated carbon (ACM) were characterized by elemental analysis, N2 adsorption-desorption, determination of the pH of the point of zero charge (pHpzc) and X-ray photoelectron spectroscopy (XPS) and their performance in the adsorption of Hg(II) ions was investigated. Langmuir model fitted the experimental data of equilibrium isotherms well. ACM showed the higher Hg (II) ions adsorption capacity, increasing more than more than 1.8 times compared to the original one. Moreover, ACM showed a wider pH range for the maximum adsorption than the parent AC.

  13. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Directory of Open Access Journals (Sweden)

    Pulikanti Guruprasad Reddy

    2017-08-01

    Full Text Available Helium (He ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR, MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ and sensitivity (E0 of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  14. Heavy metal incorporated helium ion active hybrid non-chemically amplified resists: Nano-patterning with low line edge roughness

    Science.gov (United States)

    Reddy, Pulikanti Guruprasad; Thakur, Neha; Lee, Chien-Lin; Chien, Sheng-Wei; Pradeep, Chullikkattil P.; Ghosh, Subrata; Tsai, Kuen-Yu; Gonsalves, Kenneth E.

    2017-08-01

    Helium (He) ion lithography is being considered as one of the most promising and emerging technology for the manufacturing of next generation integrated circuits (ICs) at nanolevel. However, He-ion active resists are rarely reported. In this context, we are introducing a new non-chemically amplified hybrid resist (n-CAR), MAPDSA-MAPDST, for high resolution He-ion beam lithography (HBL) applications. In the resist architecture, 2.15 % antimony is incorporated as heavy metal in the form of antimonate. This newly developed resists has successfully used for patterning 20 nm negative tone features at a dose of 60 μC/cm2. The resist offered very low line edge roughness (1.27±0.31 nm) for 20 nm line features. To our knowledge, this is the first He-ion active hybrid resist for nanopatterning. The contrast (γ) and sensitivity (E0) of this resist were calculated from the contrast curve as 0.73 and 7.2 μC/cm2, respectively.

  15. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli

    Directory of Open Access Journals (Sweden)

    Long Y

    2017-04-01

    Full Text Available Yan-Min Long,1,2 Li-Gang Hu,1,3 Xue-Ting Yan,1,3 Xing-Chen Zhao,1,3 Qun-Fang Zhou,1,3 Yong Cai,2,4 Gui-Bin Jiang1,3 1State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Beijing, China; 2Institute of Environment and Health, Jianghan University, Wuhan, Hubei, China; 3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; 4Department of Chemistry and Biochemistry, Southeast Environmental Research Center, Florida International University, Miami, FL, USA Abstract: Understanding the mechanism of nanosilver-dependent antibacterial activity against microorganisms helps optimize the design and usage of the related nanomaterials. In this study, we prepared four kinds of 10 nm-sized silver nanoparticles (AgNPs with dictated surface chemistry by capping different ligands, including citrate, mercaptopropionic acid, mercaptohexanoic acid, and mercaptopropionic sulfonic acid. Their surface-dependent chemistry and antibacterial activities were investigated. Owing to the weak bond to surface Ag, short carbon chain, and low silver ion attraction, citrate-coated AgNPs caused the highest silver ion release and the strongest antibacterial activity against Escherichia coli, when compared to the other tested AgNPs. The study on the underlying antibacterial mechanisms indicated that cellular membrane uptake of Ag, NAD+/NADH ratio increase, and intracellular reactive oxygen species (ROS generation were significantly induced in both AgNP and silver ion exposure groups. The released silver ions from AgNPs inside cells through a Trojan-horse-type mechanism were suggested to interact with respiratory chain proteins on the membrane, interrupt intracellular O2 reduction, and induce ROS production. The further oxidative damages of lipid peroxidation and membrane breakdown caused the lethal effect on E. coli. Altogether, this study demonstrated that AgNPs exerted

  16. EFFECT OF ALKALINE IONS ON THE PHASE EVOLUTION, PHOTOLUMINESCENCE, AND AFTERGLOW PROPERTIES OF SrAl2O4: Eu2+, Dy3+ PHOSPHOR

    Directory of Open Access Journals (Sweden)

    HYUNHO SHIN

    2012-12-01

    Full Text Available A series of SrAl2O4: Eu2+, Dy3+ long-afterglow (LAG phosphors with varying concentration of Li+, Na+ and K+, has been synthesized. The increased concentration of the three types of alkaline ions does not decrease the quantity of the total luminescent phases (SrAl2O4 plus Sr4Al14O25, but a different set of secondary phases has been evoluted for the K+-added series due to the failure of the incorporation of relatively large K+ (1.38 Å to the Sr2+ (1.18 Å site in the hosts, unlike the cases of smaller Li+ (0.76 Å and Na+ (1.02 Å ions. PL excitation, PL emission, and LAG luminescence, are decreased by all investigated alkaline ions, which would be due to the diminished incorporation of Eu2+ and Dy3+ activators into the luminescent hosts by the alkaline ions. For the cases of the Li+ and Na+-added series, the incorporated Li+ or Na+ to the luminescent hosts would also limit the activation of Eu2+ and charge trapping/detrapping of Dy3+ to yield the diminished PL properties and LAG luminescence. The type of defect complex formed by the addition of Li+ and Na+ ions has been deduced and compared with that formed when no alkaline ion is added.

  17. Reactive Landing of Gramicidin S and Ubiquitin Ions onto Activated Self-Assembled Monolayer Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laskin, Julia; Hu, Qichi

    2017-03-13

    Using mass-selected ion deposition combined with in situ infrared reflection absorption spectroscopy (IRRAS), we examined the reactive landing of gramicidin S and ubiquitin ions onto activated self-assembled monolayer (SAM) surfaces terminated with N-hydroxysuccinimidyl ester (NHS-SAM) and acyl fluoride (COF-SAM) groups. Doubly protonated gramicidin S, [GS+2H]2+, and two charge states of ubiquitin, [U+5H]5+ and [U+13H]13+, were used as model systems, allowing us to explore the effect of the number of free amino groups and the secondary structure on the efficiency of covalent bond formation between the projectile ion and the surface. For all projectile ions, ion deposition resulted in the depletion of IRRAS bands corresponding to the terminal groups on the SAM and the appearance of several new bands not associated with the deposited species. These new bands were assigned to the C=O stretching vibrations of COOH and COO- groups formed on the surface as a result of ion deposition. The presence of these bands was attributed to an alternative reactive landing pathway that competes with covalent bond formation. This pathway with similar yields for both gramicidin S and ubiquitin ions is analogous to the hydrolysis of the NHS ester bond in solution. The covalent bond formation efficiency increased linearly with the number of free amino groups and was found to be lower for the more compact conformation of ubiquitin compared with the fully unfolded conformation. This observation was attributed to the limited availability of amino groups on the surface of the folded conformation. Our results have provided new insights on the efficiency and mechanism of reactive landing of peptides and proteins onto activated SAMs

  18. Photocontrol of Voltage-Gated Ion Channel Activity by Azobenzene Trimethylammonium Bromide in Neonatal Rat Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sheyda R Frolova

    Full Text Available The ability of azobenzene trimethylammonium bromide (azoTAB to sensitize cardiac tissue excitability to light was recently reported. The dark, thermally relaxed trans- isomer of azoTAB suppressed spontaneous activity and excitation propagation speed, whereas the cis- isomer had no detectable effect on the electrical properties of cardiomyocyte monolayers. As the membrane potential of cardiac cells is mainly controlled by activity of voltage-gated ion channels, this study examined whether the sensitization effect of azoTAB was exerted primarily via the modulation of voltage-gated ion channel activity. The effects of trans- and cis- isomers of azoTAB on voltage-dependent sodium (INav, calcium (ICav, and potassium (IKv currents in isolated neonatal rat cardiomyocytes were investigated using the whole-cell patch-clamp technique. The experiments showed that azoTAB modulated ion currents, causing suppression of sodium (Na+ and calcium (Ca2+ currents and potentiation of net potassium (K+ currents. This finding confirms that azoTAB-effect on cardiac tissue excitability do indeed result from modulation of voltage-gated ion channels responsible for action potential.

  19. Dissociative recombination of molecular ions H2+

    International Nuclear Information System (INIS)

    Abarenov, A.V.; Marchenko, V.S.

    1989-01-01

    The total cross sections of dissociation and dissociative recombination of slow electrons and molecular ions H 2 + have been calculated in terms of the quasiclassical and dipole approximations. In the calculations allowance was made for the quantum nature of vibrational motion of heavy particles and presence of autoionization of divergence states of the H 2 (Σ u , nl) molecules. It is shown that the H 2 + ion dissociation cross sections are dominant in increase of the electron energy in the ε >or approx. 2-3 eV region for H 2 + (v) ion distribution over the vibrational levels characteristic for the beam experiments. 15 refs.; 5 figs

  20. Multiple-channel detection of cellular activities by ion-sensitive transistors

    Science.gov (United States)

    Machida, Satoru; Shimada, Hideto; Motoyama, Yumi

    2018-04-01

    An ion-sensitive field-effect transistor to record cellular activities was demonstrated. This field-effect transistor (bio transistor) includes cultured cells on the gate insulator instead of gate electrode. The bio transistor converts a change in potential underneath the cells into variation of the drain current when ion channels open. The bio transistor has high detection sensitivity to even minute variations in potential utilizing a subthreshold swing region. To open ion channels, a reagent solution (acetylcholine) was added to a human-originating cell cultured on the bio transistor. The drain current was successfully decreased with the addition of acetylcholine. Moreover, we attempted to detect the opening of ion channels using a multiple-channel measurement circuit containing several bio transistors. As a consequence, the drain current distinctly decreased only after the addition of acetylcholine. We confirmed that this measurement system including bio transistors enables to observation of cellular activities sensitively and simultaneously.

  1. Sorption properties of the activated carbon-zeolite composite prepared from coal fly ash for Ni(2+), Cu(2+), Cd(2+) and Pb(2+).

    Science.gov (United States)

    Jha, Vinay Kumar; Matsuda, Motohide; Miyake, Michihiro

    2008-12-15

    Composite materials of activated carbon and zeolite have been prepared successfully by activating coal fly ash (CFA) by fusion with NaOH at 750 degrees C in N(2) followed by hydrothermal treatments under various conditions. Uptake experiments for Ni(2+), Cu(2+), Cd(2+) and Pb(2+) were performed with the materials thus obtained from CFA. Of the various composite materials, that were obtained by hydrothermal treatment with NaOH solution (ca. 4M) at 80 degrees C (a composite of activated carbon and zeolite X/faujasite) proved to be the most suitable for the uptake of toxic metal ions. The relative selectivity of the present sorbents for the various ions was Pb(2+)>Cu(2+)>Cd(2+)>Ni(2+), with equilibrium uptake capacities of 2.65, 1.72, 1.44 and 1.20mmol/g, respectively. The sorption isotherm was a good fit to the Langmuir isotherm and the sorption is thought to progress mainly by ion exchange with Na(+). The overall reaction is pseudo-second order with rate constants of 0.14, 0.17, 0.21 and 0.20Lg/mmol min for the uptake of Pb(2+), Cu(2+), Cd(2+) and Ni(2+), respectively.

  2. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  3. Fluorescence properties of valence-controlled Eu2+ and Mn2+ ions in aluminosilicate glasses

    International Nuclear Information System (INIS)

    Van Tuyen, Ho; Nonaka, Takamasa; Yamanaka, Ken-ichi; Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan; Nogami, Masayuki

    2017-01-01

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na 2 O-Al 2 O 3 -SiO 2 glasses were developed to dope Eu 2+ and Mn 2+ with well controlled valence states by heating in H 2 gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu 3+ , Mn 3+ and Mn 2+ ions incorporated in the as-prepared glasses, the Eu 3+ and Mn 3+ ions were reduced to Eu 2+ and Mn 2+ ions, respectively, by heating in H 2 gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H 2 exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu 2+ and Mn 2+ , respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn 2+ ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu 2+ to Mn 2+ ions and the energy transfer efficiency was estimated with a concentration of Eu 2+ and Mn 2+ ions.

  4. Ion conductivities of ZrF4-BaF2-CsF glasses

    International Nuclear Information System (INIS)

    Kawamoto, Yoji; Nohara, Ichiro

    1987-01-01

    The glass-forming region in the ZrF 4 -BaF 2 -CsF glass system has been determined and the ac conductivity and the transport number of fluoride ions have been measured. The conductivities of compounds β-Cs 2 ZrF 6 , α-SrZrF 6 , α-BaZrF 6 , β-BaZrF 6 and α-PbZrF 6 have also been measured. These results and a previous study of ZrF 4 -BaF 2 -MF n (M: the groups I-IV metals) glasses revealed the following: (1) the ZrF 4 -BaF 2 -CsF glasses are exclusively fluoride-ion conductors; (2) the ionic conductivities of ZrF 4 -based glasses are predominantly determined by the activation energies for conduction; (3) the activation energy for conduction decreases with an increase in the average polarizability of glass-constituting cations; (4) a decrease in average Zr-F bond length and a lowering of the average F coordination number of Zr are presumed to increase the activation energy for conduction. Principles of developing ZrF 4 -based glasses with higher conductivities have also been proposed. (Auth.)

  5. Full Solar Spectrum Light Driven Thermocatalysis with Extremely High Efficiency on Nanostructured Ce Ion Substituted OMS-2 Catalyst for VOCs Purification

    DEFF Research Database (Denmark)

    Hou, J.T.; Li, Y.Z.; Mao, M.Y.

    2015-01-01

    solar spectrum, visible-infrared, and infrared light, the Ce ion substituted OMS-2 catalyst exhibits extremely high catalytic activity and excellent durability for the oxidation of volatile organic pollutants such as benzene, toluene, and acetone. Based on the experimental evidence, we propose a novel...... in a considerable increase of temperature. By combining the efficient photothermal conversion and thermocatalytic activity of the Ce ion substituted OMS-2 catalyst, we carried out full solar spectrum, visible-infrared, and infrared light driven catalysis with extremely high efficiency. Under the irradiation of full...... mechanism of solar light driven thermocatalysis for the Ce ion substituted OMS-2 catalyst. The reason why the Ce ion substituted OMS-2 catalyst exhibits much higher catalytic activity than pure OMS-2 and CeO2/OMS-2 nano composite under the full solar spectrum irradiation is discussed....

  6. Ion channel signaling influences cellular proliferation and phagocyte activity during axolotl tail regeneration.

    Science.gov (United States)

    Franklin, Brandon M; Voss, S Randal; Osborn, Jeffrey L

    2017-08-01

    Little is known about the potential for ion channels to regulate cellular behaviors during tissue regeneration. Here, we utilized an amphibian tail regeneration assay coupled with a chemical genetic screen to identify ion channel antagonists that altered critical cellular processes during regeneration. Inhibition of multiple ion channels either partially (anoctamin1/Tmem16a, anoctamin2/Tmem16b, K V 2.1, K V 2.2, L-type Ca V channels and H/K ATPases) or completely (GlyR, GABA A R, K V 1.5 and SERCA pumps) inhibited tail regeneration. Partial inhibition of tail regeneration by blocking the calcium activated chloride channels, anoctamin1&2, was associated with a reduction of cellular proliferation in tail muscle and mesenchymal regions. Inhibition of anoctamin 1/2 also altered the post-amputation transcriptional response of p44/42 MAPK signaling pathway genes, including decreased expression of erk1/erk2. We also found that complete inhibition via voltage gated K + channel blockade was associated with diminished phagocyte recruitment to the amputation site. The identification of H + pumps as required for axolotl tail regeneration supports findings in Xenopus and Planaria models, and more generally, the conservation of ion channels as regulators of tissue regeneration. This study provides a preliminary framework for an in-depth investigation of the mechanistic role of ion channels and their potential involvement in regulating cellular proliferation and other processes essential to wound healing, appendage regeneration, and tissue repair. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Application of ion chromatography to batchwise activated sludge process for simultaneous removal of thiosulfate, acetate and ammonium ions.

    OpenAIRE

    田中, 一彦; 黒川, 利一; 中島, 良三

    1988-01-01

    Ion chromatography (IC) with conductivity detection for determining anions and ion-exclusion chromatography (IEC) with conductivity detection for determining cations were investigated. Both techniques were applied to the establishment of the optimal conditions for the simultaneous removal of thiosulfate, acetate, and ammonium ions by a batchwise activated sludge process. The process consists of the combination of aerobic and anaerobic biological treatment processes by a sequential automatic p...

  8. Upconversion study of singly activator ions doped La2O3 nanoparticle synthesized via optimized solvothermal method

    Science.gov (United States)

    Tiwari, S. P.; Singh, S.; Kumar, A.; Kumar, K.

    2016-05-01

    In present work, an optimized solvothermal method has been chosen to synthesize the singly doped Er3+ activator ions with La2O3 host matrix. The sample is annealed at 500 °C in order to remove the moisture and other organic impurities. The sample is characterized by using XRD and FESEM to find out the phase and surface morphology. The observed particle size is found almost 80 nm with spherical agglomerated shape. Upconversion spectra are recorded at room temperature using 976 nm diode laser excitation sources and consequently the emission peaks in green and red region are observed. The color coordinate diagram shows the results that the present material may be applicable in different light emitting sources.

  9. Recent activities at the ORNL multicharged ion research facility (MIRF)

    International Nuclear Information System (INIS)

    Meyer, F.W.; Bannister, M.E.; Hale, J.W.; Havener, C.C.; Krause, H.F.; Vane, C.R.; Deng, S.; Draganic, I.N.; Harris, P.R.

    2012-01-01

    Recent activities at the ORNL Multicharged Ion Research Facility (MIRF) are summarized. A brief summary of the MIRF high voltage (HV) platform and floating beam line upgrade is provided. An expansion of our research program to the use of molecular ion beams in heavy-particle and electron collisions, as well as in ion surface interactions is described, and a brief description is provided of the most recently added Ion Cooling and Characterization End-station (ICCE) trap. With the expansion to include molecular ion beams, the acronym MIRF for the facility, however, remains unchanged: 'M' can now refer to either 'Multicharged' or 'Molecular'. The paper is followed by the slides of the presentation. (authors)

  10. Ion chemistry of 1H-1,2,3-triazole.

    Science.gov (United States)

    Ichino, Takatoshi; Andrews, Django H; Rathbone, G Jeffery; Misaizu, Fuminori; Calvi, Ryan M D; Wren, Scott W; Kato, Shuji; Bierbaum, Veronica M; Lineberger, W Carl

    2008-01-17

    A combination of experimental methods, photoelectron-imaging spectroscopy, flowing afterglow-photoelectron spectroscopy and the flowing afterglow-selected ion flow tube technique, and electronic structure calculations at the B3LYP/6-311++G(d,p) level of density functional theory (DFT) have been employed to study the mechanism of the reaction of the hydroxide ion (HO-) with 1H-1,2,3-triazole. Four different product ion species have been identified experimentally, and the DFT calculations suggest that deprotonation by HO- at all sites of the triazole takes place to yield these products. Deprotonation of 1H-1,2,3-triazole at the N1-H site gives the major product ion, the 1,2,3-triazolide ion. The 335 nm photoelectron-imaging spectrum of the ion has been measured. The electron affinity (EA) of the 1,2,3-triazolyl radical has been determined to be 3.447 +/- 0.004 eV. This EA and the gas-phase acidity of 2H-1,2,3-triazole are combined in a negative ion thermochemical cycle to determine the N-H bond dissociation energy of 2H-1,2,3-triazole to be 112.2 +/- 0.6 kcal mol-1. The 363.8 nm photoelectron spectroscopic measurements have identified the other three product ions. Deprotonation of 1H-1,2,3-triazole at the C5 position initiates fragmentation of the ring structure to yield a minor product, the ketenimine anion. Another minor product, the iminodiazomethyl anion, is generated by deprotonation of 1H-1,2,3-triazole at the C4 position, followed by N1-N2 bond fission. Formation of the other minor product, the 2H-1,2,3-triazol-4-ide ion, can be rationalized by initial deprotonation of 1H-1,2,3-triazole at the N1-H site and subsequent proton exchanges within the ion-molecule complex. The EA of the 2H-1,2,3-triazol-4-yl radical is 1.865 +/- 0.004 eV.

  11. Non-Essential Activation of Co"2"+ and Zn"2"+ on Mushroom Tyrosinase: Kinetic and Structural Stability

    International Nuclear Information System (INIS)

    Gheibi, N.; Sarreshtehdari, M.; Saboury, A. A.

    2011-01-01

    Tyrosinase is a widespread enzyme with great promising capabilities. The Lineweaver-Burk plots of the catecholase reactions showed that the kinetics of mushroom tyrosinase (MT), activated by Co"2"+ and Zn"2"+ at different pHs (6, 7, 8 and 9) obeyed the non-essential activation mode. The binding of metal ions to the enzyme increases the maximum velocity of the enzyme due to an increase in the enzyme catalytic constant (k_c_a_t). From the kinetic analysis, dissociation constants of the activator from the enzyme-metal ion complex (K_a) were obtained as 5 x 10"4 M"-"1 and 8.33 x 10"3 M"-"1 for Co"2"+ and Zn"2"+ at pH 9 and 6 respectively. The structural analysis of MT through circular dichroism (CD) and intensive fluorescence spectra revealed that the conformational stability of the enzyme in these pHs reaches its maximum value in the presence of each of the two metal ions

  12. Ion imprinted activated carbon solid-phase extraction coupled to flame atomic absorption spectrometry for selective determination of lead ions in environmental samples

    International Nuclear Information System (INIS)

    Naraghi, Kiyana; Panahi, Homayon Ahmad; Hassani, Amir Hesam; Moniri, Elham

    2014-01-01

    A simple lead ion imprinted sorbent was synthesized by coupling activated carbon with a known metal chelating compound, iminodiacetic acid. The ion imprinted sorbent has been characterized using Fourier transform infrared spectroscopy, elemental analysis and thermogravimetric analysis and subjected for the extraction and determination of trace Pb(II) in environmental water samples. The optimum pH value for sorption of the lead ion was 6.5. The sorption capacity of lead imprinted sorbent was 42.2 mg g"−"1. The chelating imprinted sorbent can be reused for five cycles of sorption-desorption without any significant change in sorption capacity. Compared with non-imprinted polymer particles, the lead ion imprinted sorbent showed high adsorption capacity, significant selectivity, good site accessibility for Pb(II). The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models

  13. Systematic and quantitative mRNA expression analysis of TRP channel genes at the single trigeminal and dorsal root ganglion level in mouse

    Directory of Open Access Journals (Sweden)

    Vandewauw Ine

    2013-02-01

    Full Text Available Abstract Background Somatosensory nerve fibres arising from cell bodies within the trigeminal ganglia (TG in the head and from a string of dorsal root ganglia (DRG located lateral to the spinal cord convey endogenous and environmental stimuli to the central nervous system. Although several members of the transient receptor potential (TRP superfamily of cation channels have been implicated in somatosensation, the expression levels of TRP channel genes in the individual sensory ganglia have never been systematically studied. Results Here, we used quantitative real-time PCR to analyse and compare mRNA expression of all TRP channels in TG and individual DRGs from 27 anatomically defined segments of the spinal cord of the mouse. At the mRNA level, 17 of the 28 TRP channel genes, TRPA1, TRPC1, TRPC3, TRPC4, TRPC5, TRPM2, TRPM3, TRPM4, TRPM5, TRPM6, TRPM7, TRPM8, TRPV1, TRPV2, TRPV4, TRPML1 and TRPP2, were detectable in every tested ganglion. Notably, four TRP channels, TRPC4, TRPM4, TRPM8 and TRPV1, showed statistically significant variation in mRNA levels between DRGs from different segments, suggesting ganglion-specific regulation of TRP channel gene expression. These ganglion-to-ganglion differences in TRP channel transcript levels may contribute to the variability in sensory responses in functional studies. Conclusions We developed, compared and refined techniques to quantitatively analyse the relative mRNA expression of all TRP channel genes at the single ganglion level. This study also provides for the first time a comparative mRNA distribution profile in TG and DRG along the entire vertebral column for the mammalian TRP channel family.

  14. Spatially-Resolved Ion Trajectory Measurements During Cl2 Reactive Ion Beam Etching and Ar Ion Beam Etching

    International Nuclear Information System (INIS)

    Vawter, G. Allen; Woodworth, Joseph R.; Zubrzycki, Walter J.

    1999-01-01

    The angle of ion incidence at the etched wafer location during RIBE and IBE using Cl 2 , Ar and O 2 ion beams has been characterized using an ion energy and angle analyzer. Effects of beam current and accelerator grid bias on beam divergence and the spatial uniformity of the spread of incident angles are measured. It is observed that increased total beam current can lead to reduced current density at the sample stage due to enhanced beam divergence at high currents. Results are related to preferred etch system design for uniform high-aspect-ratio etching across semiconductor wafers

  15. Action potentials and ion conductances in wild-type and CALHM1-knockout type II taste cells

    Science.gov (United States)

    Saung, Wint Thu; Foskett, J. Kevin

    2017-01-01

    Taste bud type II cells fire action potentials in response to tastants, triggering nonvesicular ATP release to gustatory neurons via voltage-gated CALHM1-associated ion channels. Whereas CALHM1 regulates mouse cortical neuron excitability, its roles in regulating type II cell excitability are unknown. In this study, we compared membrane conductances and action potentials in single identified TRPM5-GFP-expressing circumvallate papillae type II cells acutely isolated from wild-type (WT) and Calhm1 knockout (KO) mice. The activation kinetics of large voltage-gated outward currents were accelerated in cells from Calhm1 KO mice, and their associated nonselective tail currents, previously shown to be highly correlated with ATP release, were completely absent in Calhm1 KO cells, suggesting that CALHM1 contributes to all of these currents. Calhm1 deletion did not significantly alter resting membrane potential or input resistance, the amplitudes and kinetics of Na+ currents either estimated from action potentials or recorded from steady-state voltage pulses, or action potential threshold, overshoot peak, afterhyperpolarization, and firing frequency. However, Calhm1 deletion reduced the half-widths of action potentials and accelerated the deactivation kinetics of transient outward currents, suggesting that the CALHM1-associated conductance becomes activated during the repolarization phase of action potentials. NEW & NOTEWORTHY CALHM1 is an essential ion channel component of the ATP neurotransmitter release mechanism in type II taste bud cells. Its contribution to type II cell resting membrane properties and excitability is unknown. Nonselective voltage-gated currents, previously associated with ATP release, were absent in cells lacking CALHM1. Calhm1 deletion was without effects on resting membrane properties or voltage-gated Na+ and K+ channels but contributed modestly to the kinetics of action potentials. PMID:28202574

  16. Co2+ ion exchange with NaY

    International Nuclear Information System (INIS)

    Garcia, I.; Solache-Rios, M.; Bulbulian, S.; Bosch, P.

    1993-01-01

    Co 2+ ion exchange from aqueous cobalt chloride-sodium chloride solutions with NaY zeolite has been investigated. The effect of contact time on the sorption of Co 2+ by dehydrated Y zeolite at 150 degrees C is unusual. A fast sorption uptake is observed in which 1.73 mequiv/g of zeolite of Na + ions is replaced by cobalt ions, followed by a desorption process where the uptake decreases to 1.56 mequiv/g of zeolite. This behavior is explained by the location and coordination of cobalt in Y zeolite sites. It is suggested that the maximum uptake corresponds to cobalt ions being simultaneously in two sites; tetrahedrally coordinated in the sodalite units and octahedrally coordinated in the large cavities. It is also suggested that the desorption process is a consequence of a reaction between Cl - ions and the tetrahedral species. 20 refs., 4 figs

  17. Insights into the activation mechanism of calcium ions on the sericite surface: A combined experimental and computational study

    Science.gov (United States)

    Hu, Yuehua; He, Jianyong; Zhang, Chenhu; Zhang, Chenyang; Sun, Wei; Zhao, Dongbo; Chen, Pan; Han, Haisheng; Gao, Zhiyong; Liu, Runqing; Wang, Li

    2018-01-01

    The adsorption behaviors and the activation mechanism of calcium ions (Ca2+) on sericite surface have been investigated by Zeta potential measurements, Fourier transform infrared spectroscopy (FT-IR), Micro-flotation tests and First principle calculations. Zeta potential tests results show that the sericite surface potential increases due to the adsorption of calcium ions on the surface. Micro-flotation tests demonstrate that sericite recovery remarkably rise by 10% due to the calcium ions activation on sericite surface. However, the characteristic adsorption bands of calcium oleate do not appear in the FT-IR spectrum, suggesting that oleate ions just physically adsorb on the sericite surface. The first principle calculations based on the density functional theory (DFT) further reveals the microscopic adsorption mechanism of calcium ions on the sericite surface before and after hydration.

  18. The fragment ion C13H9O2 m/z 197 in the mass spectra of 2-(2'-R-phenyl)benzoic acids

    International Nuclear Information System (INIS)

    Gills, R.G.; Porter, Q.N.

    1990-01-01

    In the electron impact mass spectrum of 2-( ' -R-phenyl)benzoic acids where R = H, NO 2 , OCH 3 , COOH, or Br, and abundant fragment ion m/z 197 is formed by an ipso substitution in which R is expelled as a radical. The structure of the ion m/z 197 has been shown by collision-activated dissociation to be identical with that of the protonated molecule formed by methane chemical ionization of 6H-dibenzo[b,d]pyran-6-one. 11 refs., 1 fig., ills

  19. Effect of Heavy Metal Ions and Carbohydrates on the Activity of Cauliflower (Brassica oleracea Var. botrytis Myrosinase

    Directory of Open Access Journals (Sweden)

    Prakash, Om

    2013-04-01

    Full Text Available Myrosinase is an enzyme of cruciferous vegetables, hydrolyse glucosinolates. The breakdown products are involved in plant defence against insect and also have anti-fungal property. Myrosinase has been purified to apparent homogeneity from 5 days old germinated cauliflower seedlings having a specific activity of 12.71 units/mg proteins with 54.6 % recovery, using ammonium sulfate fractionation followed by gel filtration chromatography on Sephadex G-100. Effect of some metal ions and carbohydrates on the activity of partially purified cauliflower myrosinase was studied. Sr+2 at 4 mM concentration exhibited marked activating effect on the activity up to 2.7 fold while Fe+2 significantly inhibited. However, Sn+2 and Ba+2 increased the activity to a certain extent and then suppressed. On the other hand, some metal ions [Fe+2, Fe+3, Cu+2 and Zn+2] strongly inhibited the activity even at lower concentrations. Several carbohydrates viz., glucose, fructose, sucrose, maltose and sorbitol even at comparatively higher concentrations had little detectable inhibitory effects. Activation kinetics of myrosinase in presence of Sn+2 and Sr+2 were studied between 0- 20min. The rate of reaction was almost constant till 15 min and then slight deactivation was recorded at various concentrations used.

  20. Removal of copper (II) from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

    International Nuclear Information System (INIS)

    Almohammadi, S.; Mirzaei, M.

    2016-01-01

    In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC) in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as p H, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum p H required for maximum adsorption was found to be 4.5 for copper. Equilibrium was evaluated at 144 h at room temperature. The removal efficiency of Cu(II) was 71.12% at this time. The kinetics of copper adsorption on activated carbon followed the pseudo second-order model. The experimental equilibrium sorption data were tested using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R) equations and the Langmuir model was found to be well fitted for copper adsorption onto GAC. The maximum adsorption capacity of the adsorbent for Cu(II) was calculated from the Langmuir isotherm and found to be 7.03 mg/g. Subsequently, the removal of copper by granular activated carbon in the presence of Ag 1 + and Mn 2 + as competitor ions was investigated. The removal efficiency of Cu(II) ions without the presence of the competitor ions was 46% at 6 h, while the removal efficiency of Cu(II) ions in the presence of competitor ions, Ag 1 + and Mn 2 + , was 34.76% and 31.73%, respectevely.

  1. A Variety of Activation Methods Employed in 'Activated-Ion' Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions

    International Nuclear Information System (INIS)

    Oh, Han Bin; McLafferty, Fred W.

    2006-01-01

    Fragmentation efficiencies of various 'activated-ion' electron capture dissociation (AI-ECD) methods are compared for a model system of bovine ubiquitin 7+ cations. In AI-ECD studies, sufficient internal energy was given to protein cations prior to ECD application using IR laser radiation, collisions, blackbody radiation, or in-beam collisions, in turn. The added energy was utilized in increasing the population of the precursor ions with less intra-molecular noncovalent bonds or enhancing thermal fluctuations of the protein cations. Removal of noncovalent bonds resulted in extended structures, which are ECD friendly. Under their best conditions, a variety of activation methods showed a similar effectiveness in ECD fragmentation. In terms of the number of fragmented inter-residue bonds, IR laser/blackbody infrared radiation and 'in-beam' activation were almost equally efficient with ∼70% sequence coverage, while collisions were less productive. In particular, 'in-beam' activation showed an excellent effectiveness in characterizing a pre-fractionated single kind of protein species. However, its inherent procedure did not allow for isolation of the protein cations of interest

  2. TRPA1 expression levels and excitability brake by KV channels influence cold sensitivity of TRPA1-expressing neurons.

    Science.gov (United States)

    Memon, Tosifa; Chase, Kevin; Leavitt, Lee S; Olivera, Baldomero M; Teichert, Russell W

    2017-06-14

    The molecular sensor of innocuous (painless) cold sensation is well-established to be transient receptor potential cation channel, subfamily M, member 8 (TRPM8). However, the role of transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in noxious (painful) cold sensation has been controversial. We find that TRPA1 channels contribute to the noxious cold sensitivity of mouse somatosensory neurons, independent of TRPM8 channels, and that TRPA1-expressing neurons are largely non-overlapping with TRPM8-expressing neurons in mouse dorsal-root ganglia (DRG). However, relatively few TRPA1-expressing neurons (e.g., responsive to allyl isothiocyanate or AITC, a selective TRPA1 agonist) respond overtly to cold temperature in vitro, unlike TRPM8-expressing neurons, which almost all respond to cold. Using somatosensory neurons from TRPM8-/- mice and subtype-selective blockers of TRPM8 and TRPA1 channels, we demonstrate that responses to cold temperatures from TRPA1-expressing neurons are mediated by TRPA1 channels. We also identify two factors that affect the cold-sensitivity of TRPA1-expressing neurons: (1) cold-sensitive AITC-sensitive neurons express relatively more TRPA1 transcripts than cold-insensitive AITC-sensitive neurons and (2) voltage-gated potassium (K V ) channels attenuate the cold-sensitivity of some TRPA1-expressing neurons. The combination of these two factors, combined with the relatively weak agonist-like activity of cold temperature on TRPA1 channels, partially explains why few TRPA1-expressing neurons respond to cold. Blocking K V channels also reveals another subclass of noxious cold-sensitive DRG neurons that do not express TRPM8 or TRPA1 channels. Altogether, the results of this study provide novel insights into the cold-sensitivity of different subclasses of somatosensory neurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Controlled phase stability of highly Na-active triclinic structure in nanoscale high-voltage Na2-2xCo1+xP2O7 cathode for Na-ion batteries

    Science.gov (United States)

    Song, Hee Jo; Kim, Jae-Chan; Dar, Mushtaq Ahmad; Kim, Dong-Wan

    2018-02-01

    With the increasing demand for high energy density in energy-storage systems, a high-voltage cathode is essential in rechargeable Li-ion and Na-ion batteries. The operating voltage of a triclinic-polymorph Na2CoP2O7, also known as the rose form, is above 4.0 V (vs. Na/Na+), which is relatively high compared to that of other cathode materials. Thus, it can be employed as a potential high-voltage cathode material in Na-ion batteries. However, it is difficult to synthesize a pure rose phase because of its low phase stability, thus limiting its use in high-voltage applications. Herein, compositional-engineered, rose-phase Na2-2xCo1+xP2O7/C (x = 0, 0.1 and 0.2) nanopowder are prepared using a wet-chemical method. The Na2-2xCo1+xP2O7/C cathode shows high electrochemical reactivity with Na ions at 4.0 V, delivering high capacity and high energy density.

  4. Picomolar detection limits with current-polarized Pb2+ ion-selective membranes.

    Science.gov (United States)

    Pergel, E; Gyurcsányi, R E; Tóth, K; Lindner, E

    2001-09-01

    Minor ion fluxes across ion-selective membranes bias submicromolar activity measurements with conventional ion-selective electrodes. When ion fluxes are balanced, the lower limit of detection is expected to be dramatically improved. As proof of principle, the flux of lead ions across an ETH 5435 ionophore-based lead-selective membrane was gradually compensated by applying a few nanoamperes of galvanostatic current. When the opposite ion fluxes were matched, and the undesirable leaching of primary ions was eliminated, Nernstian response down to 3 x 10(-12) M was achieved.

  5. Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms

    Science.gov (United States)

    Cho, Se Youn; Yoon, Hyeon Ji; Kim, Na Rae; Yun, Young Soo; Jin, Hyoung-Joon

    2016-10-01

    Nanostructured carbon-based materials fabricated via simple methods from renewable bio-resources have great potential in rechargeable energy storage systems. In this study, nanoporous pyroproteins containing a large amount of redox-active heteroatoms (H-NPs) were fabricated from silk fibroin by an in situ carbonization/activation method. The H-NPs have a large surface area of ∼3050 m2 g-1, which is mainly comprised of nanometer-scale pores. Also, these H-NPs have oxygen and nitrogen heteroatoms of 17.4 wt% and 2.9 wt%, respectively. Synergistic sodium ion storage behaviors originate from electrochemical double layer capacitance and pseudocapacitance, leading to very high electrochemical performances of H-NPs in aqueous and non-aqueous electrolyte systems. Sodium-ion supercapacitors (NISs) based on commercial graphite//H-NPs show a high specific power of ∼1900 W kg-1 at ∼77 Wh kg-1. Also, NISs based on commercial hard carbon//H-NPs exhibit a high specific energy of ∼217 Wh kg-1 at ∼42 W kg-1. In addition, outstanding cycling performances over 30,000 cycles are achieved for symmetric NISs.

  6. Effect of seismic activities on ion temperature in the F{sub 2} region of the ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, D.K.; Rai, J. [Department of Physics, Indian Institute of Technology, Roorkee (India); Chand, R.; Israil, M. [Department of Earth Sciences, Indian Institute of Technology, Roorkee (India)]. E-mail: ramesh20june@yahoo.co.in

    2006-01-15

    Ionospheric anomalies related to the seismic events have been analyzed in the present paper. The ionospheric ion temperature data recorded by the Retarded Potential Analyzer (RPA) payload aboard the Indian SROSS-C2 satellite are used for the period from January 1995 to December 1996. Earthquake events recorded in the region of interest from United State Geological Survey (USGS) were used to define the ionospheric ion temperature anomalies associated with the earthquake preparation, occurrence and relaxation. Ionospheric ion temperature data were analyzed in such a way that the anomalies due to other phenomena will not be masked over the temperature anomalies due to earthquakes. Ion temperature enhancements in the ionosphere were observed during earthquake events and few pre-post days to the events. The seismogenic vertical electric field propagation up to ionospheric height induces the Joule heating that may cause the ion temperature enhancement. [Spanish] En este articulo se analizan anomalias ionosfericas relacionadas con eventos sismicos. Se utilizaron los datos de temperatura ionosferica registrados por el Analizador Potencial Retrasado (RPA) del satelite hindu SROSS-C2 para el periodo de enero de 1995 a diciembre de 1996. Para definir las anomalias de la temperatura ionica de la ionosfera asociadas con la preparacion, ocurrencia y relajacion de los eventos sismicos se utilizaron los datos de estos eventos registrados por el Estudio Geologico de Estado Unido (USGS) para la region de interes. Los datos de temperatura ionica fueron analizados de manera que las anomalias debidas a otros fenomenos no enmascararan aquellas relacionadas con los eventos sismicos. La propagacion del campo electrico vertical sismogenico hacia la ionosfera induce el calentamiento joulico que podria causar el incremento de la temperatura ionica.

  7. Ion imprinted activated carbon solid-phase extraction coupled to flame atomic absorption spectrometry for selective determination of lead ions in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Naraghi, Kiyana; Panahi, Homayon Ahmad; Hassani, Amir Hesam [Islamic Azad University, Tehran (Korea, Republic of); Moniri, Elham [Islamic Azad University, Varamin (Iran, Islamic Republic of)

    2014-10-15

    A simple lead ion imprinted sorbent was synthesized by coupling activated carbon with a known metal chelating compound, iminodiacetic acid. The ion imprinted sorbent has been characterized using Fourier transform infrared spectroscopy, elemental analysis and thermogravimetric analysis and subjected for the extraction and determination of trace Pb(II) in environmental water samples. The optimum pH value for sorption of the lead ion was 6.5. The sorption capacity of lead imprinted sorbent was 42.2 mg g{sup −1}. The chelating imprinted sorbent can be reused for five cycles of sorption-desorption without any significant change in sorption capacity. Compared with non-imprinted polymer particles, the lead ion imprinted sorbent showed high adsorption capacity, significant selectivity, good site accessibility for Pb(II). The equilibrium adsorption data of Pb(II) by modified resin were analyzed by Langmuir, Freundlich, Temkin and Redlich-Peterson models.

  8. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    Science.gov (United States)

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  9. Gene expression changes in rat prostate after activation or blocking of the androgen and estrogen receptor

    DEFF Research Database (Denmark)

    Nellemann, Christine Lydia; Dalgaard, Majken; Holst, Bjørn

    2005-01-01

    responsive genes (complement C3, ER alpha, ER beta, AR, TRPM-2, PBPC3, ODC, and IGF-1 mRNA) was analyzed in rat ventral prostate by real time RT-PCR. Administration of estradiol benzoate (EB) to castrated testosterone-treated rats had no effect on reproductive organ weights or gene expression levels...... reversed by ICI 182780, and affected TRPM-2, PBP C3, ODC, IGF-1, AR, and ERa mRNA levels. AR expression in the prostate seemed to be under regulation of both estrogens and androgens, as ICI 182780 inhibited the testosterone-induced AR expression, and flutamide inhibited the EB-induced AR expression...... administration abolished the effects of EB. First choice of gene expression profiles in the Hershberger assay to study androgenic or anti-androgenic effects would be the traditional, TRPNI-2 and PBP C3, supplemented with the new complement C3....

  10. Evolution of Field-Aligned Electron and Ion Densities From Whistler Mode Radio Soundings During Quiet to Moderately Active Period and Comparisons With SAMI2 Simulations

    Science.gov (United States)

    Reddy, A.; Sonwalkar, V. S.; Huba, J. D.

    2018-02-01

    Knowledge of field-aligned electron and ion distributions is necessary for understanding the physical processes causing variations in field-aligned electron and ion densities. Using whistler mode sounding by Radio Plasma Imager/Imager for Magnetopause-to-Aurora Global Exploration (RPI/IMAGE), we determined the evolution of dayside electron and ion densities along L ˜ 2 and L ˜ 3 (90-4,000 km) during a 7 day (21-27 November 2005) geomagnetically quiet to moderately active period. Over this period the O+/H+ transition height was ˜880 ± 60 km and ˜1000 ± 100 km, respectively, at L ˜ 2 and L ˜ 3. The electron density varied in a complex manner; it was different at L ˜ 2 and L ˜ 3 and below and above the O+/H+ transition height. The measured electron and ion densities are consistent with those from Challenging Minisatellite Payload (CHAMP) and Defense Meteorological Satellite Program (DMSP) and other past measurements, but they deviated from bottomside sounding and International Reference Ionosphere (IRI) 2012 empirical model results. Using SAMI2 (Naval Research Laboratory (NRL) ionosphere model) with reasonably adjusted values of inputs (neutral densities, winds, electric fields, and photoelectron heating), we simulated the evolution of O+/H+ transition height and field-aligned electron and ion densities so that a fair agreement was obtained between the simulation results and observations. Simulation studies indicated that reduced neutral densities (H and/or O) with time limited O+-H charge exchange process. This reduction in neutral densities combined with changes in neutral winds and plasma temperature led to the observed variations in the electron and ion densities. The observation/simulation method presented here can be extended to investigate the role of neutral densities and composition, disturbed winds, and prompt penetration electric fields in the storm time ionosphere/plasmasphere dynamics.

  11. Studies in heavy ion activation analysis Pt. 4

    International Nuclear Information System (INIS)

    Lass, B.D.; Ojo, J.F.; Schweikert, E.A.

    1980-01-01

    The use of 7 MeV 6 Li + for heavy ion activation analysis was investigated. A survey of reactions, involving targets of lithium through oxygen inclusive, were studied for production of β + radioactivation products with half-lives of 10 1 -10 5 seconds. Specific activities for all reactions under the experimental conditions are reported and their use for analysis is assessed. (author)

  12. Kinetics of Ar+*(2G9/2) metastable ions and transport of argon ions in ICP reactor

    NARCIS (Netherlands)

    Sadeghi, N.; Derouard, J.; Grift, van de M.; Kroesen, G.M.W.; Hoog, de F.J.; Tachibana, K.; Watanabe, Y.

    1997-01-01

    The decay time of the argon Ar~~(2G912) metastable ions was measured in the afterglow of a low pressure pulsed helicon reactor. From the argon pressure and electron density dependence of this decay time, rate coefficients for quenching of these ions by argon atoms and by plasma electrons have been

  13. Photoreflection investigations of the dopant activation in InP doped with beryllium ions

    International Nuclear Information System (INIS)

    Avakyants, L.P.; Bokov, P.Yu.; Chervyakov, A.V.

    2005-01-01

    The processes of the dopant activation in the InP crystals implanted with Be + ions (energy 100 keV, dose 10 13 cm -2 and subsequent thermal annealing during 10 s) have been studied by means of photoreflection spectroscopy. Spectral lines of the crystal InP were absent in the photoreflection spectra of the samples annealed at temperatures less then 400 Deg C. This fact is connected with the disordering of the crystal structure due to the ion implantation. In the temperature range 400-700 Deg C the lines from InP band gap (1.34 eV) and conductance band-spin-orbit splitting valence subband (1.44 eV) have been observed due to the recovery of the crystal structure. In the photoreflectance spectra of a 800 Deg C annealed sample the Franz-Keldysh oscillations have been observed, which can be an evidence in favour of the dopant activation. Carrier concentration calculated from the period of Franz-Keldysh oscillations was equal to 2.2 x 10 16 cm -3 [ru

  14. Distribution profiles of transient receptor potential melastatin- and vanilloid-related channels in rat spermatogenic cells and sperm.

    Science.gov (United States)

    Li, Shilin; Wang, Xinghuan; Ye, Haixia; Gao, Weicheng; Pu, Xiaoyong; Yang, Zhonghua

    2010-03-01

    In the present study, we aimed to investigate the expression and distribution of transient receptor potential melastatin (TRPM)- and vanilloid (TRPV)- related channels in rat spermatogenic cells and spermatozoa. Spermatogenic cells and spermatozoa were obtained from male Sprague-Dawley rats. Reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of all TRPM and TRPV channel members with specific primers. Western blot analysis was applied for detecting the expression of TRPM and TRPV channel proteins. Immunohistochemistry staining for TRPM4, TRPM7 and TRPV5 was also performed in rat testis. The mRNAs of TRPM3, TRPM4, TRPM7 and TRPV5 were detected in the spermatogenic cells and spermatozoa in rat. Western blot analysis verified the expression of TRPM4, TRPM7 and TRPV5 in the rat spermatogenic cells and spermatozoa. Immunocytochemistry staining for TRPM and TRPV channel families indicated that TRPM4 and TRPM7 proteins were highly expressed in different stages of spermatogenic cells and spermatozoa, while TRPV5 protein was lowly expressed in these cells. Our results demonstrate that mRNAs or proteins for TRPM3, TRPM4, TRPM7 and TRPV5 exist in rat spermatogenic cells and spermatozoa. These data presented here may assist in elucidating the possible physiological function of TRPM and TRPV channels in spermatogenic cells and spermatozoa.

  15. Removal of copper (II from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

    Directory of Open Access Journals (Sweden)

    Saeed Almohammadi

    2016-04-01

    Full Text Available In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as pH, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum pH required for maximum adsorption was found to be 4.5 for copper. Equilibrium was evaluated at 144 h at room temperature. The removal efficiency of Cu(II was 71.12% at this time. The kinetics of copper adsorption on activated carbon followed the pseudo second-order model. The experimental equilibrium sorption data were tested using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R equations and the Langmuir model was found to be well fitted for copper adsorption onto GAC. The maximum adsorption capacity of the adsorbent for Cu(II was calculated from the Langmuir isotherm and found to be 7.03 mg/g. Subsequently, the removal of copper by granular activated carbon in the presence of Ag1+ and Mn2+ as competitor ions was investigated. The removal efficiency of Cu(II ions without the presence of the competitor ions was 46% at 6 h, while the removal efficiency of Cu(II ions in the presence of competitor ions, Ag1+ and Mn2+ , was 34.76% and 31.73%, respectively.

  16. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    Science.gov (United States)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  17. Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology

    Science.gov (United States)

    Smith, Amy C.; Hristov, Kiril L.; Cheng, Qiuping; Xin, Wenkuan; Parajuli, Shankar P.; Earley, Scott; Malysz, John

    2013-01-01

    Members of the transient receptor potential (TRP) channel superfamily, including the Ca2+-activated monovalent cation-selective TRP melastatin 4 (TRPM4) channel, have been recently identified in the urinary bladder. However, their expression and function at the level of detrusor smooth muscle (DSM) remain largely unexplored. In this study, for the first time we investigated the role of TRPM4 channels in guinea pig DSM excitation-contraction coupling using a multidisciplinary approach encompassing protein detection, electrophysiology, live-cell Ca2+ imaging, DSM contractility, and 9-phenanthrol, a recently characterized selective inhibitor of the TRPM4 channel. Western blot and immunocytochemistry experiments demonstrated the expression of the TRPM4 channel in whole DSM tissue and freshly isolated DSM cells with specific localization on the plasma membrane. Perforated whole cell patch-clamp recordings and real-time Ca2+ imaging experiments with fura 2-AM, both using freshly isolated DSM cells, revealed that 9-phenanthrol (30 μM) significantly reduced the cation current and decreased intracellular Ca2+ levels. 9-Phenanthrol (0.1–30 μM) significantly inhibited spontaneous, 0.1 μM carbachol-induced, 20 mM KCl-induced, and nerve-evoked contractions in guinea pig DSM-isolated strips with IC50 values of 1–7 μM and 70–80% maximum inhibition. 9-Phenanthrol also reduced nerve-evoked contraction amplitude induced by continuous repetitive electrical field stimulation of 10-Hz frequency and shifted the frequency-response curve (0.5–50 Hz) relative to the control. Collectively, our data demonstrate the novel finding that TRPM4 channels are expressed in guinea pig DSM and reveal their critical role in the regulation of guinea pig DSM excitation-contraction coupling. PMID:23302778

  18. PRTR ion exchange vault column sampling

    International Nuclear Information System (INIS)

    Cornwell, B.C.

    1995-01-01

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal

  19. Electrochemical activation and inhibition of neuromuscular systems through modulation of ion concentrations with ion-selective membranes

    Science.gov (United States)

    Song, Yong-Ak; Melik, Rohat; Rabie, Amr N.; Ibrahim, Ahmed M. S.; Moses, David; Tan, Ara; Han, Jongyoon; Lin, Samuel J.

    2011-12-01

    Conventional functional electrical stimulation aims to restore functional motor activity of patients with disabilities resulting from spinal cord injury or neurological disorders. However, intervention with functional electrical stimulation in neurological diseases lacks an effective implantable method that suppresses unwanted nerve signals. We have developed an electrochemical method to activate and inhibit a nerve by electrically modulating ion concentrations in situ along the nerve. Using ion-selective membranes to achieve different excitability states of the nerve, we observe either a reduction of the electrical threshold for stimulation by up to approximately 40%, or voluntary, reversible inhibition of nerve signal propagation. This low-threshold electrochemical stimulation method is applicable in current implantable neuroprosthetic devices, whereas the on-demand nerve-blocking mechanism could offer effective clinical intervention in disease states caused by uncontrolled nerve activation, such as epilepsy and chronic pain syndromes.

  20. Ion from Aqueous Solution using Magnetite, Activated Carbon

    African Journals Online (AJOL)

    ADOWIE PERE

    Thermodynamic studies on Adsorption of lead (II) Ion from Aqueous Solution using. Magnetite ... process industries and agricultural activities, which tends to ... osmosis. These processes are however, not economically feasible for small scale industries .... Freundlich coefficient. ..... from binary component system, Beni-suef.

  1. Towards rare-earth-ion-doped Al2O3 active integrated optical devices

    OpenAIRE

    Ay, F.; Bradley, J.; Worhoff, Kerstin; Pollnau, Markus

    2007-01-01

    Aluminum oxide planar waveguides with low loss (0.11 dB/cm at 1523 nm) are fabricated. Channel waveguides are obtained by reactive ion etching. Erbium-doped layers show no upconversion luminescence, a hint that ion clustering is small.

  2. Fe(III) and Fe(II) ions different effects on Enterococcus hirae cell growth and membrane-associated ATPase activity

    Energy Technology Data Exchange (ETDEWEB)

    Vardanyan, Zaruhi [Department of Biophysics of the Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan (Armenia); Trchounian, Armen, E-mail: trchounian@ysu.am [Department of Biophysics of the Biology Faculty, Yerevan State University, 1 A. Manoukian Str., 0025 Yerevan (Armenia)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Fe{sup 3+} stimulates but Fe{sup 2+} suppresses Enterococcus hirae wild-type and atpD mutant growth. Black-Right-Pointing-Pointer Fe ions change oxidation-reduction potential drop during cell growth. Black-Right-Pointing-Pointer Fe{sup 3+} and Fe{sup 2+} have opposite effects on a membrane-associated ATPase activity. Black-Right-Pointing-Pointer These effects are either in the presence of F{sub 0}F{sub 1} inhibitor or non-functional F{sub 0}F{sub 1}. Black-Right-Pointing-Pointer Fe ions decrease protons and coupled potassium ions fluxes across the membrane. -- Abstract: Enterococcus hirae is able to grow under anaerobic conditions during glucose fermentation (pH 8.0) which is accompanied by acidification of the medium and drop in its oxidation-reduction potential (E{sub h}) from positive values to negative ones (down to {approx}-200 mV). In this study, iron (III) ions (Fe{sup 3+}) have been shown to affect bacterial growth in a concentration-dependent manner (within the range of 0.05-2 mM) by decreasing lag phase duration and increasing specific growth rate. While iron(II) ions (Fe{sup 2+}) had opposite effects which were reflected by suppressing bacterial growth. These ions also affected the changes in E{sub h} values during bacterial growth. It was revealed that ATPase activity with and without N,N Prime -dicyclohexylcarbodiimide (DCCD), an inhibitor of the F{sub 0}F{sub 1}-ATPase, increased in the presence of even low Fe{sup 3+} concentration (0.05 mM) but decreased in the presence of Fe{sup 2+}. It was established that Fe{sup 3+} and Fe{sup 2+} both significantly inhibited the proton-potassium exchange of bacteria, but stronger effects were in the case of Fe{sup 2+} with DCCD. Such results were observed with both wild-type ATCC9790 and atpD mutant (with defective F{sub 0}F{sub 1}) MS116 strains but they were different with Fe{sup 3+} and Fe{sup 2+}. It is suggested that the effects of Fe{sup 3+} might be due to

  3. "JCE" Classroom Activity #106. Sequestration of Divalent Metal Ion by Superabsorbent Polymer in Diapers

    Science.gov (United States)

    Chen, Yueh-Huey; Lin, Jia-Ying; Lin, Li-Pin; Liang, Han; Yaung, Jing-Fun

    2010-01-01

    This activity explores an alternative use of a superabsorbent polymer known as a water absorbing material. A dilute solution of CuCl[subscript 2] is treated with a small piece of unused disposable diaper containing superabsorbent sodium polyacrylates. The polymer is used for the removal of Cu[superscript 2+] ions from the solution. The…

  4. Interaction of He+2 ions with hydrogen molecules

    International Nuclear Information System (INIS)

    Afrosimov, V.V.; Leiko, G.A.; Panov, M.N.

    1980-01-01

    Cross sections for all elementary reactions involving a change in charge state in He +2 -H 2 collisions have been measured for He +2 kinetic energies in the range E=1.2--100 keV. Measurements were carried out by distinguishing an individual collision by a coincidence method and by simultaneously analyzing the charge states of the fast and slow particles. Furthermore, in the same event, the electronic states of the particles after the collision were determined by analyzing the kinetic energies of the resulting ions. The elementary reactions involving the formation of He + ions in the ground and excited states were studied. The reactions involving transitions in the hydrogen molecule to the 1ssigma/sub g/ and 2psigma/sub u/ states of H 2 + ions, and reactions in which wto protons are formed, were also studied. At E>15 keV, the largest cross section is that corresponding to one-electron capture: He +2 +H 2 →He + +H 2 + (this cross section is sigma=8.3 x 10 -16 cm 2 at E=50 keV). In this reaction, 90--98% of the He + ions are formed in excited states with principal quantum number n=2. At E + ion predominates, accompanied by the simultaneous dissociation of the H 2 + ion: He +2 +H 2 →He + (1s)+H + H+H0+e - . The cross section for this exothermic capture with dissociation (the energy released is ΔEapprox. =+36.3--3.8 eV) increases with decreasing energy E. At E>15 keV, an endothermic pathway is predominant: →He + (2s,2p)+H + +H+0+e - (the energy expended, ΔE, is more than 3.2 eV). The existence of two capture reactions with dissociation - exothermic and endothermic - leads to a minimum in the cross section for this reaction, at Eapprox. =15 keV. Ionization reactions and ionization with dissociation have the smallest cross sections

  5. Activation characteristics of ion-implanted Si+ in AlGaN

    International Nuclear Information System (INIS)

    Irokawa, Y.; Fujishima, O.; Kachi, T.; Pearton, S.J.; Ren, F.

    2005-01-01

    Multiple-energy Si + implantation in the range 30-360 keV into Al 0.13 Ga 0.87 N for n-type doping was carried out at room temperature, followed by annealing at 1150-1375 deg. C for 5 min. Activation efficiencies close to 100% were obtained for ion doses of 1.0x10 15 cm -2 after annealing at 1375 deg. C, with a resulting sheet resistance of 74 Ω/square. By sharp contrast, the activation efficiency at 1150 deg. C was only 4% for this dose, with a sheet resistance of 1.63x10 4 Ω/square. The activation efficiency was also a function of dose, with a maximum activation percentage of only 55% for lower doses of 1.0x10 14 cm -2 annealed at 1375 deg. C. This is due to the comparatively larger effect of compensating acceptors at the lower dose and is also lower than the corresponding activation of Si in pure GaN under these conditions (78%). The measurement temperature dependence of sheet carrier density showed an activation energy of 23 meV, consistent with the ionization energy of Si in AlGaN

  6. Mass Spectrum Analysis of CO2 and N2 Using Ion Beam Separator System

    International Nuclear Information System (INIS)

    Tjipto-Sujitno, BA; Darsono; Agus-Santoso

    2000-01-01

    The main purpose of this research is to study investigate the massspectrum profile of CO 2 and N 2 emitted from Penning ion source using ionbeam separator. Besides that, it is also identified the compositions of CO 2 and N 2 ion gas and their abundances through their mass spectrum profile,because as we know that these ions are consist of ion of atom or molecule aswell as the their abundances. To get these profiles, the ion beam acceleratedin accelerating tube are passed through magnet separator. After passing themagnet separator, the ion current beam was detected using microampere meter.By scanning the strength of magnetic field, it will be found the currentspectrum profile as a function of magnetic field. From this current spectrum,we can make a mass spectrum profile. From experiment done, it was found thatthe mass spectrum peak of CO 2 and N 2 were C + with m/z = (12.00 ± 0.10)amu, O 2 + = (31.96 ± 0.29) amu, CO 2 + = (43.93 ± 0.31) amu, N + (13.97 ± 0.33) amu, and N 2 + = (28.05 ± 0.18) amu. (author)

  7. How much do we know about the activity of individual ions?

    International Nuclear Information System (INIS)

    Wilczek-Vera, Grazyna; Vera, Juan H.

    2016-01-01

    Highlights: • Almost unknown experimental data on individual activities of ions are brought to light. • Details of different methods of measurements are provided and compared. • Agreement and disagreement of information is highlighted. • Paper encourages further research on activity of individual ions. - Abstract: Data of activity of individual ions reported in the literature by nine authors are compared in graphical form. Visual observation of the plots clearly shows that for some systems the data are in fair agreement and it can be used to test theories of electrolyte solutions. For systems that the data show discrepancy between different researchers, it is possible to judge which data are out of the trend showed by the majority of the other studies. Only a few systems appear to need further measurements. This compilation of results is the first of its class in modern times and not only helps in showing the consistency between data from different laboratories but it also indicates for what systems data are still needed.

  8. An Interaction of Rhamnolipids with Cu2+ Ions

    Directory of Open Access Journals (Sweden)

    Jolanta Cieśla

    2018-02-01

    Full Text Available This study was focused on the description of interaction between Cu2+ ions and the 1:1 mono- and dirhamnolipid mixtures in the premicellar and aggregated state in water and 20 mM KCl solution at pH 5.5 and 6.0. The critical micelle concentration of biosurfactants was determined conductometrically and by the pH measurements. Hydrodynamic diameter and electrophoretic mobility were determined in micellar solutions using dynamic light scattering and laser Doppler electrophoresis, respectively. The copper immobilization by rhamnolipids, methylglycinediacetic acid (MGDA, and ethylenediaminetetraacetic acid (EDTA was estimated potentiometrically for the Cu2+ to chelating agent molar ratio from 16:100 to 200:100. The degree of ion binding and the complex stability constant were calculated at a 1:1 metal to chelant molar ratio. The aggregates of rhamnolipids (diameter of 43–89 nm were negatively charged. Biosurfactants revealed the best chelating activities in premicellar solutions. For all chelants studied the degree of metal binding decreased with the increasing concentration of the systems. The presence of K+ lowered Cu2+ binding by rhamnolipids, but did not modify the complex stability significantly. Immobilization of Cu2+ by biosurfactants did not cause such an increase of acidification as that observed in MGDA and EDTA solutions. Rhamnolipids, even in the aggregated form, can be an alternative for the classic chelating agents.

  9. Local structure of Pb2 ion catalysts anchored within zeolite cavities and their photo-catalytic reactivity for the elimination of N2O

    International Nuclear Information System (INIS)

    Ju, Woo-Sung; Matsuoka, Masaya; Yamashita, Hiromi; Anpo, Masakazu

    2001-01-01

    The Pb 2+ /ZSM-5 catalyst was prepared by an ion-exchange method and its photo-catalytic activity for the decomposition of N 2 O under UV irradiation was investigated. In-situ UV-Vis absorption spectroscopy and XAFS (XANES and FT-EXAFS) investigations revealed that the Pb 2+ ions exist in a highly dispersed state within the pores of the zeolites. UV irradiation of the catalysts in the presence of N 2 O led to the photo-catalytic decomposition of N 2 O into N 2 at temperatures as low as 298κ. The effective wavelength of the irradiated UV light indicated that the excited state of the Pb 2+ ions included within the zeolite cavities plays a significant role in the photo-catalytic decomposition of N 2 O molecules. (au)

  10. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls.

    Science.gov (United States)

    Rao, M Madhava; Ramana, D K; Seshaiah, K; Wang, M C; Chien, S W Chang

    2009-07-30

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g(-1) for Pb(II), 21.2 mg g(-1) for Zn(II), 19.5 mg g(-1) for Cu(II), and 15.7 mg g(-1) for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  11. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls

    International Nuclear Information System (INIS)

    Rao, M. Madhava; Ramana, D.K.; Seshaiah, K.; Wang, M.C.; Chien, S.W. Chang

    2009-01-01

    Removal of lead [Pb(II)], zinc [Zn(II)], copper [Cu(II)], and cadmium [Cd(II)] from aqueous solutions using activated carbon prepared from Phaseolus aureus hulls (ACPAH), an agricultural waste was studied. The influence of various parameters such as effect of pH, contact time, adsorbent dose, and initial concentration of metal ions on the removal was evaluated by batch method. The removal of metal ions by ACPAH was pH dependent and the optimum pH values were 7.0, 8.0, 7.0 and 6.0 for Cu(II), Cd(II), Zn(II), and Pb(II), respectively. The sorption isotherms were studied using Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and Temkin isotherm models. The maximum adsorption capacity values of ACPAH for metal ions were 21.8 mg g -1 for Pb(II), 21.2 mg g -1 for Zn(II), 19.5 mg g -1 for Cu(II), and 15.7 mg g -1 for Cd(II). The experiments demonstrated that the removal of metal ions followed the pseudo-second-order kinetic model. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.

  12. Goatpoxvirus ATPase activity is increased by dsDNA and decreased by zinc ion.

    Science.gov (United States)

    Lee, Ming-Liang; Hsu, Wei-Li; Wang, Chi-Young; Chen, Hui-Yu; Lin, Fong-Yuan; Chang, Ming-Huang; Chang, Hong-You; Wong, Min-Liang; Chan, Kun-Wei

    2016-10-01

    Viral-encoded ATPase can act as a part of molecular motor in genome packaging of DNA viruses, such as vaccinia virus and adenovirus, by ATP hydrolysis and interaction with DNA. Poxviral ATPase (also called A32) is involved in genomic double-stranded DNA (dsDNA) encapsidation, and inhibition of the expression of A32 causes formation of immature virions lacking viral DNA. However, the role of A32 in goatpoxvirus genome packaging and its dsDNA binding property are not known. In this study, purified recombinant goatpoxvirus A32 protein (rA32) was examined for its dsDNA binding property as well as the effect of dsDNA on ATP hydrolysis. We found that rA32 could bind dsDNA, and its ATPase activity was significant increased with dsDNA binding. Effects of magnesium and calcium ions on ATP hydrolysis were investigated also. The ATPase activity was dramatically enhanced by dsDNA in the presence of Mg(2+); in contrast, ATPase function was not altered by Ca(2+). Furthermore, the enzyme activity of rA32 was completely blocked by Zn(2+). Regarding DNA-protein interaction, the rA32-ATP-Mg(2+) showed lower dsDNA binding affinity than that of rA32-ATP-Ca(2+). The DNA-protein binding was stronger in the presence of zinc ion. Our results implied that A32 may play a role in viral genome encapsidation and DNA condensation.

  13. Synthesis, structure, antioxidant activity, and water solubility of trolox ion conjugates

    Directory of Open Access Journals (Sweden)

    Yuliya V. Yushkova

    2018-01-01

    Full Text Available The interaction of trolox with ammonia, alkylamines of different classes, and amino derivatives of heterocyclic compounds, including nitroxyl radicals and alkaloids, led to the production of ammonium salts called ion conjugates (ICs. Five ICs were characterised by X-ray diffraction. This is the first time a wide range of ICs were made from trolox with amines, and ESI-MS data demonstrated they have the potential to generate pseudomolecular [(A−B+ + H]+ ions. For all obtained trolox ICs, a significant increase (1–3 orders of magnitude in water solubility was achieved while retaining high antioxidant activity. ICs synthesised from two biologically active fragments may be used to create polyfunctional agents with varying solubility and bioavailability. Keywords: Trolox, Amines, Ion conjugates, Antioxidants, Mass-spectrometry

  14. Fluorescence properties of valence-controlled Eu{sup 2+} and Mn{sup 2+} ions in aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Van Tuyen, Ho [Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam); Nonaka, Takamasa; Yamanaka, Ken-ichi [Toyota Central R& D Labs., Inc., Nagakute, Aichi (Japan); Chau, Pham Minh; Quy Hai, Nguyen Thi; Quang, Vu Xuan [Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam); Nogami, Masayuki, E-mail: mnogami@mtj.biglobe.ne.jp [Toyota Physical and Chemical Research Institute, Nagakute, Aichi (Japan); Ton Duc Thang University, Ho Chi Minh City (Viet Nam); Duy Tan University, 3 Quang Trung, Hai Chau, Da Nang (Viet Nam)

    2017-04-15

    Controlling of valence states of metal ions doped in glasses has attracted considerable interest due to the possibility of looking toward optical applications. In this study, new Na{sub 2}O-Al{sub 2}O{sub 3}-SiO{sub 2} glasses were developed to dope Eu{sup 2+} and Mn{sup 2+} with well controlled valence states by heating in H{sub 2} gas atmosphere, and the changes in the valence state of doped-ions and their fluorescence properties were investigated using visible and infrared optical absorption spectroscopies, X-ray absorption fine structure spectroscopy, and fluorescence spectroscopy. Among Eu{sup 3+}, Mn{sup 3+} and Mn{sup 2+} ions incorporated in the as-prepared glasses, the Eu{sup 3+} and Mn{sup 3+} ions were reduced to Eu{sup 2+} and Mn{sup 2+} ions, respectively, by heating in H{sub 2} gas and OH bonds were concurrently formed. The fluorescence spectra of glasses heated in H{sub 2} exhibited broad emission bands at 450 and 630 nm wavelength, assigned to the Eu{sup 2+} and Mn{sup 2+}, respectively, ions, in which the fluorescence intensity at 450 nm was observed to decrease with increasing Mn{sup 2+} ion content. The increased fluorescence intensities were analyzed as the energy transfer from Eu{sup 2+} to Mn{sup 2+} ions and the energy transfer efficiency was estimated with a concentration of Eu{sup 2+}and Mn{sup 2+} ions.

  15. Heavy ion activation analysis

    International Nuclear Information System (INIS)

    Lass, B.D.; Roche, N.G.; Sanni, A.O.; Schweikert, E.A.; Ojo, J.F.

    1982-01-01

    A report on radioactivation with ion beams of 3 6 Li and 14 N is presented with some analytical applications: the determination of C via 12 C( 6 Li,αn) 13 N; the determination of Li and Be, using 14 N activation. Next, examples, with limitations in selectivity. The detection limits using a 1 μA h of activation irradiation are 5 ppm for C and 1 ppm for Li or Be. With 9 Be suitable for analytical applications are: sup(10,11)B( 9 Be,xn) 18 F and 14 N( 9 Be,αn) 18 F. Assuming a 1 μA h irradiation the detection limits for N and B are 1.5 ng and 0.5 ng, respectively, using a 7.8 MeV 9 Be beam. For activation with 12 C, experimental results with 12 MeV 12 C beam demonstrate that the beam is best suited for 7 Li analysis by the reaction 7 Li( 12 C,n) 18 F. The detection limit for a 1 μA h irradiation is 1 ng and the only other low Z elements activated are B and C. Finally, 12 C radioactivation was further combined with autoradiography for positional analysis. The spatial resolution of the technique was estimated to be 40 μm for an exposure corresponding to 6x10 5 disintegrations. As low as 10 -12 g of Li was readily detected by autoradiography. (author)

  16. Ion-Exchange Reaction Of A-Site In A2Ta2O6 Pyrochlore Crystal Structure

    Directory of Open Access Journals (Sweden)

    Matsunami M.

    2015-06-01

    Full Text Available Na+ or K+ ion rechargeable battery is started to garner attention recently in Place of Li+ ion cell. It is important that A+ site ion can move in and out the positive-electrode materials. When K2Ta2O6 powder had a pyrochlore structure was only dipped into NaOH aqueous solution at room temperature, Na2Ta2O6 was obtained. K2Ta2O6 was fabricated from a tantalum sheet by a hydrothermal synthesize with KOH aqueous solution. When Na2Ta2O6 was dipped into KOH aqueous solution, K2Ta2O6 was obtained again. If KTaO3 had a perovskite structure was dipped, Ion-exchange was not observed by XRD. Because a lattice constant of pyrochlore structure of K-Ta-O system is bigger than perovskite, K+ or Na+ ion could shinny through and exchange between Ta5+ and O2ion site in a pyrochlore structure. K+ or Na+ ion exchange of A2Ta2O6 pyrochlore had reversibility. Therefore, A2Ta2O6 had a pyrochlore structure can be expected such as Na+ ion rechargeable battery element.

  17. Research on giving antibacteria activity of tailored dental materials; Gin ion ni yoru shikayo zairyo no kokinsei fuyo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The secondary dental caries easily occur by breeding of bacteria in cavities between living body and composite resin, false tooth or root of tailored tooth as tooth repairing materials. The antibacteria activity of tailored dental materials was thus studied by implanting Ag ion. The antibacteria effect with time after culture of caries bacteria was studied by implanting Ag ion into SiO2 powder, PMMA samples and Ti alloy samples at 20 and 200keV in energy of ion. In addition, the antibacteria activity of SiO2 powder as composite material was found at 25keV which was previously effective for the antibacteria activity. This SiO2 filler (Ag{sup +} filler) showed the antibacteria activity on every bacteria sample after 2h, and in particular, could kill all of 3 kinds of bacteria obtained from a composite resin surface after 12h. The number of living S. salivarius was reduced by half after 12h. The application of the composite resin filler implanted with Ag{sup +} is significant to prevent recurrence of caries. 5 refs., 27 figs., 7 tabs.

  18. Ion-molecular equilibria and activity determination in the RbF-ZrF4 system

    International Nuclear Information System (INIS)

    Skokan, E.V.; Nikitin, M.I.; Sorokin, I.D.; Korenev, Yu.M.; Sidorov, L.N.

    1983-01-01

    Activity of zirconium tetrofluoride in 100-33.3 mol % ZrF 4 concentration range was determined during isothermal evaporation of samples of different initial composition of RbF-ZrF 4 system, using ion-molecular equilibrium method. It became possible, using the exchange ion-molecular reactions to determine ZrF 4 activity approximately 10 -10 in the region of state diagram of RbF-ZrF 4 system, adjoining to rubidium fluoride. The comparative analysis of results, obtained by the methods of isothermal evaporation, ion-molecular equilibria is given; the advantages and restrictions of ion-molecular equilibrium method are presented

  19. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    International Nuclear Information System (INIS)

    Osipov, E. M.; Polyakov, K. M.; Tikhonova, T. V.; Kittl, R.; Dorovatovskii, P.V.; Shleev, S. V.; Popov, V. O.; Ludwig, R.

    2015-01-01

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu + -containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu + - and Cu 2+ -containing solutions. Copper ions were found to be incorporated into the active site only when Cu + was used. A comparative analysis of the native and depleted forms of the enzymes was performed

  20. Recyclable UV and visible light photocatalytically active amorphous TiO2 doped with M (III) ions (M = Cr and Fe)

    International Nuclear Information System (INIS)

    Buddee, Supat; Wongnawa, Sumpun; Sirimahachai, Uraiwan; Puetpaibool, Walailak

    2011-01-01

    Research highlights: → The low photocatalytic activity of amorphous TiO2 was enhanced by doping with Cr(III) or Fe(III) ions. → The doped catalysts performed close to P25 under UV light and better with visible light. → The doped catalysts can be recycled. - Abstract: Samples of amorphous TiO 2 doped with Cr(III) and Fe(III), designated as Cr-TiO 2 and Fe-TiO 2 , were prepared via modified impregnation method. The resulting products were characterized by X-ray diffraction, scanning electron microscopy, specific surface area by the Brunauer, Emmett and Teller method, UV-vis absorption and diffuse reflectance spectroscopy, and electron spin resonance spectroscopy. Experimental results revealed that the concentrations of dopants under studied, from 0.05 to 0.2 mol%, had no effect on the phase of products. The band gap energies shifted from 3.28 eV in the undoped amorphous TiO 2 to 2.50 eV and 2.86 eV for Fe-TiO 2 and Cr-TiO 2 , respectively. The doped amorphous TiO 2 showed photocatalytic activities under both UV and visible light with optimal results at 0.1 mol% dopants. Under UV irradiation, the 0.1 mol% doped samples decolorized methylene blue solutions to the same extent as the commercial TiO 2 samples (P25 and anatase) in 5 h. Under visible light, the doped samples decolorized dye solutions in 12 h while the commercial ones were much less active. The used catalysts can be recycled many times without any special treatment.

  1. Negative ion formation and neutralization processes, (2)

    International Nuclear Information System (INIS)

    Sugiura, Toshio

    1982-09-01

    This review is 2nd part of the report published at January 1982 (JAERI-M-9902). A compilation includes the survey of the data of the cross sections of H - and D - ion formations and the neutralization of these ions. This is also presented new information about the photosensitization by laser beam in dissociative-resonance electron capture of sulfur hexafluoride reported by Chen et al., for reference to enhancement of D - ions in discharge. For neutralization, the data of mutual neutralization and photodetachment are also presented. (author)

  2. Carbon monoxide activation via O-bound CO using decamethylscandocinium-hydridoborate ion pairs.

    Science.gov (United States)

    Berkefeld, Andreas; Piers, Warren E; Parvez, Masood; Castro, Ludovic; Maron, Laurent; Eisenstein, Odile

    2012-07-04

    Ion pairs [Cp*(2)Sc](+)[HB(p-C(6)F(4)R)(3)](-) (R = F, 1-F; R = H, 1-H) were prepared and shown to be unreactive toward D(2) and α-olefins, leading to the conclusion that no back-transfer of hydride from boron to scandium occurs. Nevertheless, reaction with CO is observed to yield two products, both ion pairs of the [Cp*(2)Sc](+) cation with formylborate (2-R) and borataepoxide (3-R) counteranions. DFT calculations show that these products arise from the carbonyl adduct of the [Cp*(2)Sc](+) in which the CO is bonded to scandium through the oxygen atom, not the carbon atom. The formylborate 2-R is formed in a two-step process initiated by an abstraction of the hydride by the carbon end of an O-bound CO, which forms an η(2)-formyl intermediate that adds, in a second step, the borane at the carbon. The borataepoxide 3-R is suggested to result from an isomerization of 2-R. This unprecedented reaction represents a new way to activate CO via a reaction channel emanating from the ephemeral isocarbonyl isomer of the CO adduct.

  3. Modified granular activated carbon: A carrier for the recovery of nickel ions from aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.; Natarajan, G.S.; Sen, R. [Central Fuel Research Inst., Nagpur (India)

    2004-07-01

    Granular Activated Carbon (GAC) is widely used for the removal and recovery of toxic pollutants including metals because of its low cost and high affinity towards the scavenging of metal ions. Activated carbon derived from bituminous coal is preferred for wastewater treatment due to its considerable hardness, a characteristic needed to keep down handling losses during re-activation. Commercial grade bituminous coal based carbon, viz. Filtrasorb (F-400), was used in the present work. The scavenging of precious metals such as nickel onto GAC was studied and a possible attempt made to recover the adsorbed Ni{sup 2+} ions through the use of some suitable leaching processes. As part of the study, the role of complexing agents on the surface of the carbon was also investigated. The use of organic complexing agents such as oxine and 2-methyloxine in the recovery process was found to be promising. In addition, the surface of the carbon was modified with suitable oxidising agents that proved to be more effective than chelating agents. Several attempts were made to optimise the recovery of metal ions by carrying out experiments with oxidising agents in order to obtain maximum recovery from the minimum quantity of carbon. Experiments with nitric acid indicated that not only was the carbon surface modified but such modification also helped in carbon regeneration.

  4. A novel ammonia complex-assisted ion-exchange strategy to fabricate heterostructured PdO/TiO{sub 2} nanorods with enhanced photocatalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Liang, E-mail: shiliang19870917@163.com [Ocean University of China, College of Chemistry and Chemical Engineering (China); Han, Qian, E-mail: 120339369@qq.com [Ocean University of China, Institute of Materials Science and Engineering (China); Cao, Lixin, E-mail: caolixin@ouc.edu.cn [Ocean University of China, College of Chemistry and Chemical Engineering (China); Zhao, Fenghuan, E-mail: 1029581171@qq.com [Ocean University of China, Institute of Materials Science and Engineering (China); Xia, Chenghui, E-mail: c.xia@uu.nl [Ocean University of China, College of Chemistry and Chemical Engineering (China); Dong, Bohua, E-mail: dongbohua@ouc.edu.cn; Xi, Yaoning, E-mail: 464985694@qq.com [Ocean University of China, Institute of Materials Science and Engineering (China)

    2016-12-15

    Heterojunctions have been often employed to improve the photocatalytic behavior of titania-based materials. Herein, we propose a novel strategy to fabricate PdO/TiO{sub 2} heterostructured nanorods, as PdO was proved to be an efficient co-catalyst in photocatalytic reactions. Primarily, ammonia complex-assisted ion-exchange method was used to store Pd(II) ions in protonated titanate nanotubes, as which cannot be replaced by metallic cations via traditional route. Then, PdO/TiO{sub 2} heterojunctions formed through calcination in air, as nanotubes dehydrated and shrank into nanorods. X-ray diffraction, Raman spectra, and X-ray photoelectron spectroscopy were used to demonstrate the formation of PdO component, and transmission electron microscopy was employed to prove the successful connection between TiO{sub 2} nanorods and PdO nanoparticles. Moreover, inductive coupled plasma proved excellent compositional gradient of Pd(II) in the PdO/TiO{sub 2} heterostructured nanorods. In the present work, the photocatalytic activities of PdO/TiO{sub 2} heterostructured nanorods were investigated by decoloring several dyes under UV illumination. Our research revealed appropriate PdO loading (1.0 wt%) enhanced photocatalytic performance compared with bare TiO{sub 2} nanorods, where PdO/TiO{sub 2} heterojunctions were responsible for the prohibitive photogenerated carries recombination.

  5. Electrostatic control by lipids upon the membrane-bound (Na+ + K+)-ATPase. II. The influence of surface potential upon the activating ion equilibria.

    Science.gov (United States)

    Ahrens, M L

    1983-07-13

    Electrostatic influences upon the enzymatic activity of the (Na+ + K+)-ATPase from ox brain (EC 3.6.1.3) have been studied. (1) The characteristics of the temperature dependence of the activity - the slopes and inflection temperature, Ti, of the Arrhenius plots - have been shown to depend on the total concentration, but not on the specific properties of added monovalent ions. (2) The enzymatic activity has been shown to be subject simultaneously to unspecific and specific influences of alkali-metal ions or NH+4. Ion-specific effects result from different binding constants of complexation between activating ions and enzyme. These stability constants are affected by the formation of an electrical double layer at the membrane surface. With increasing electrostatic screening, the complex formation is destabilized and, as a consequence, the enzymatic activity decreases. (3) This interaction between ion binding and surface electrostatics enables the enzyme to adapt its activity to the actual ionic conditions. This gives rise to a complex net dependence of the enzymatic activity upon the concentrations of activating ions. Such dependencies are analyzed, and an 'activity surface' has been constructed which represents the enzymatic activity as a function of simultaneously varying concentrations of sodium and potassium. The shape of this activity surface is determined by the relations between ion concentrations, surface potential and the resulting stability of the complexation between the activating ions and the enzyme. By means of three-dimensional representation it is demonstrated that the adaptability of the stability constants is of great importance with respect to the maintenance of the optimal ionic concentrations within the living cell. Therefore, by means of the surrounding membrane, the ATPase is provided with a quality, in addition to its substrate specificity and catalytic ability, which is necessary for its function as a transport enzyme.

  6. Infrared Spectroscopy of Gas-Phase M+(CO2)n (M = Co, Rh, Ir) Ion-Molecule Complexes.

    Science.gov (United States)

    Iskra, Andreas; Gentleman, Alexander S; Kartouzian, Aras; Kent, Michael J; Sharp, Alastair P; Mackenzie, Stuart R

    2017-01-12

    The structures of gas-phase M + (CO 2 ) n (M = Co, Rh, Ir; n = 2-15) ion-molecule complexes have been investigated using a combination of infrared resonance-enhanced photodissociation (IR-REPD) spectroscopy and density functional theory. The results provide insight into fundamental metal ion-CO 2 interactions, highlighting the trends with increasing ligand number and with different group 9 ions. Spectra have been recorded in the region of the CO 2 asymmetric stretch around 2350 cm -1 using the inert messenger technique and their interpretation has been aided by comparison with simulated infrared spectra of calculated low-energy isomeric structures. All vibrational bands in the smaller complexes are blue-shifted relative to the asymmetric stretch in free CO 2 , consistent with direct binding to the metal center dominated by charge-quadrupole interactions. For all three metal ions, a core [M + (CO 2 ) 2 ] structure is identified to which subsequent ligands are less strongly bound. No evidence is observed in this size regime for complete activation or insertion reactions.

  7. PARP-1 depletion in combination with carbon ion exposure significantly reduces MMPs activity and overall increases TIMPs expression in cultured HeLa cells

    International Nuclear Information System (INIS)

    Ghorai, Atanu; Sarma, Asitikantha; Chowdhury, Priyanka; Ghosh, Utpal

    2016-01-01

    Hadron therapy is an innovative technique where cancer cells are precisely killed leaving surrounding healthy cells least affected by high linear energy transfer (LET) radiation like carbon ion beam. Anti-metastatic effect of carbon ion exposure attracts investigators into the field of hadron biology, although details remain poor. Poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors are well-known radiosensitizer and several PARP-1 inhibitors are in clinical trial. Our previous studies showed that PARP-1 depletion makes the cells more radiosensitive towards carbon ion than gamma. The purpose of the present study was to investigate combining effects of PARP-1 inhibition with carbon ion exposure to control metastatic properties in HeLa cells. Activities of matrix metalloproteinases-2, 9 (MMP-2, MMP-9) were measured using the gelatin zymography after 85 MeV carbon ion exposure or gamma irradiation (0- 4 Gy) to compare metastatic potential between PARP-1 knock down (HsiI) and control cells (H-vector - HeLa transfected with vector without shRNA construct). Expression of MMP-2, MMP-9, tissue inhibitor of MMPs such as TIMP-1, TIMP-2 and TIMP-3 were checked by immunofluorescence and western blot. Cell death by trypan blue, apoptosis and autophagy induction were studied after carbon ion exposure in each cell-type. The data was analyzed using one way ANOVA and 2-tailed paired-samples T-test. PARP-1 silencing significantly reduced MMP-2 and MMP-9 activities and carbon ion exposure further diminished their activities to less than 3 % of control H-vector. On the contrary, gamma radiation enhanced both MMP-2 and MMP-9 activities in H-vector but not in HsiI cells. The expression of MMP-2 and MMP-9 in H-vector and HsiI showed different pattern after carbon ion exposure. All three TIMPs were increased in HsiI, whereas only TIMP-1 was up-regulated in H-vector after irradiation. Notably, the expressions of all TIMPs were significantly higher in HsiI than H-vector at 4 Gy. Apoptosis was

  8. Acute effects of cadmium on osmoregulation of the freshwater teleost Prochilodus lineatus: Enzymes activity and plasma ions

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Alexandre O.F. da [Departamento de Ciências Fisiológicas, Laboratório de Ecofisiologia Animal, UEL, Londrina (Brazil); Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, UEL, Londrina (Brazil); Centro de Ciências Humanas e da Educação, UENP, Jacarezinho (Brazil); Martinez, Cláudia B.R., E-mail: cbueno@uel.br [Departamento de Ciências Fisiológicas, Laboratório de Ecofisiologia Animal, UEL, Londrina (Brazil); Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, UEL, Londrina (Brazil)

    2014-11-15

    Highlights: • Cd effects were evaluated on plasma ions and ATPases of Prochilodus lineatus. • Fish were exposed to 1 and 10 μg Cd L{sup −1} for 24 and 96 h. • Na{sup +}/K{sup +}-ATPase and carbonic anhydrase decreased in gills and kidney after Cd exposure. • Gill Ca{sup 2+}-ATPase and plasma Ca{sup 2+} decreased after Cd exposure. • Cd concentrations set by Brazilian guidelines affect Ca{sup 2+} regulation of P. lineatus. - Abstract: Cadmium (Cd) is a trace element that is very toxic to fish. It is commonly found in surface waters contaminated with industrial effluents. When dissolved in water, Cd can rapidly cause physiological changes in the gills and kidneys of freshwater fish. The objective of this study was to evaluate the acute effects of Cd on the osmoregulation of the Neotropical fish Prochilodus lineatus. Juvenile fish were exposed to Cd at two concentrations [1 (Cd1) and 10 (Cd10) μg L{sup −1}] for 24 and 96 h. The effects of Cd were evaluated through the analysis of ions (Na{sup +}, K{sup +}, Ca{sup 2+}, and Cl{sup −}) and plasma osmolality, and by measuring the activities of enzymes involved in osmoregulation obtained from the gills and kidney. Fish exposed to Cd for 24 and 96 h showed a decrease in Na{sup +}/K{sup +}-ATPase activity in the gills and kidney. The activity of carbonic anhydrase decreased in the gills after 24 h and in both tissues after 96 h of Cd exposure. The gill Ca{sup 2+}-ATPase activity also decreased with Cd exposure, with a concomitant drop in the plasma concentration of Ca{sup 2+}. Despite the hypocalcemia, there were no changes in the concentration of the ions Na{sup +}, K{sup +}, and Cl{sup −} or in plasma osmolality. Among the enzymes involved in ion transport, H{sup +}-ATPase was the only enzyme that showed increased activity in gills, whereas its activity in kidney remained unchanged. The results of this study demonstrate that waterborne Cd at the maximum concentrations set by Brazilian guidelines for

  9. Acute effects of cadmium on osmoregulation of the freshwater teleost Prochilodus lineatus: Enzymes activity and plasma ions

    International Nuclear Information System (INIS)

    Silva, Alexandre O.F. da; Martinez, Cláudia B.R.

    2014-01-01

    Highlights: • Cd effects were evaluated on plasma ions and ATPases of Prochilodus lineatus. • Fish were exposed to 1 and 10 μg Cd L −1 for 24 and 96 h. • Na + /K + -ATPase and carbonic anhydrase decreased in gills and kidney after Cd exposure. • Gill Ca 2+ -ATPase and plasma Ca 2+ decreased after Cd exposure. • Cd concentrations set by Brazilian guidelines affect Ca 2+ regulation of P. lineatus. - Abstract: Cadmium (Cd) is a trace element that is very toxic to fish. It is commonly found in surface waters contaminated with industrial effluents. When dissolved in water, Cd can rapidly cause physiological changes in the gills and kidneys of freshwater fish. The objective of this study was to evaluate the acute effects of Cd on the osmoregulation of the Neotropical fish Prochilodus lineatus. Juvenile fish were exposed to Cd at two concentrations [1 (Cd1) and 10 (Cd10) μg L −1 ] for 24 and 96 h. The effects of Cd were evaluated through the analysis of ions (Na + , K + , Ca 2+ , and Cl − ) and plasma osmolality, and by measuring the activities of enzymes involved in osmoregulation obtained from the gills and kidney. Fish exposed to Cd for 24 and 96 h showed a decrease in Na + /K + -ATPase activity in the gills and kidney. The activity of carbonic anhydrase decreased in the gills after 24 h and in both tissues after 96 h of Cd exposure. The gill Ca 2+ -ATPase activity also decreased with Cd exposure, with a concomitant drop in the plasma concentration of Ca 2+ . Despite the hypocalcemia, there were no changes in the concentration of the ions Na + , K + , and Cl − or in plasma osmolality. Among the enzymes involved in ion transport, H + -ATPase was the only enzyme that showed increased activity in gills, whereas its activity in kidney remained unchanged. The results of this study demonstrate that waterborne Cd at the maximum concentrations set by Brazilian guidelines for freshwater affects the gills and kidney functions of P. lineatus. Acute exposure to

  10. Effect of Mg(2+), Ca(2+), Sr(2+) and Ba(2+) metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans.

    Science.gov (United States)

    Haja Hameed, Abdulrahman Syedahamed; Karthikeyan, Chandrasekaran; Senthil Kumar, Venugopal; Kumaresan, Subramanian; Sasikumar, Seemaisamy

    2015-01-01

    The antifungal ability of pure and alkaline metal ion (Mg(2+), Ca(2+), Sr(2+) and Ba(2+)) doped ZnO nanoparticles (NPs) prepared by the co-precipitation method was tested against the pathogenic yeast, Candida albicans (C. albicans), and the results showed that the Mg-doped ZnO NPs possessed greater effect than the other alkaline metal ion doped ZnO NPs. The impact of the concentration of Mg doped ZnO sample on the growth of C. albicans was also studied. The Minimal Fungicidal Concentration (MFC) of the Mg doped ZnO NPs was found to be 2000 μg/ml for which the growth of C. albicans was completely inhibited. The ZnO:Mg sample (1.5mg/ml) with various concentrations of histidine reduced the fungicidal effect of the nanoparticles against C. albicans, which was deliberately explained by the role of ROS. The ZnO:Mg sample added with 5mM of histidine scavenged the ample amount of generated ROS effectively. The binding of the NPs with fungi was observed by their FESEM images and their electrostatic attraction is confirmed by the zeta potential measurement. Copyright © 2015. Published by Elsevier B.V.

  11. Natural sisal fibers derived hierarchical porous activated carbon as capacitive material in lithium ion capacitor

    Science.gov (United States)

    Yang, Zhewei; Guo, Huajun; Li, Xinhai; Wang, Zhixing; Yan, Zhiliang; Wang, Yansen

    2016-10-01

    Lithium-ion capacitor (LIC) is a novel advanced electrochemical energy storage (EES) system bridging gap between lithium ion battery (LIB) and electrochemical capacitor (ECC). In this work, we report that sisal fiber activated carbon (SFAC) was synthesized by hydrothermal treatment followed by KOH activation and served as capacitive material in LIC for the first time. Different particle structure, morphology, specific surface area and heteroatoms affected the electrochemical performance of as-prepared materials and corresponding LICs. When the mass ratio of KOH to char precursor was 2, hierarchical porous structured SFAC-2 was prepared and exhibited moderate specific capacitance (103 F g-1 at 0.1 A g-1), superior rate capability and cyclic stability (88% capacity retention after 5000 cycles at 1 A g-1). The corresponding assembled LIC (LIC-SC2) with optimal comprehensive electrochemical performance, displayed the energy density of 83 Wh kg-1, the power density of 5718 W kg-1 and superior cyclic stability (92% energy density retention after 1000 cycles at 0.5 A g-1). It is worthwhile that the source for activated carbon is a natural and renewable one and the synthesis method is eco-friendly, which facilitate that hierarchical porous activated carbon has potential applications in the field of LIC and other energy storage systems.

  12. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270 MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRIS) has been designed, fabricated and installed successfully. It has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  13. Heavy ion accelerator and associated development activities at IUAC

    International Nuclear Information System (INIS)

    Kanjilal, D.

    2011-01-01

    A vertical 15UD Pelletron electrostatic tandem accelerator having highest terminal voltage tested up to 16 MV has been in regular operation at Inter-University Accelerator Center (IUAC) for more than two decades. It has been providing consistently various ion beams in the energy range from a few tens of MeV to 270MeV for scheduled experiments. A superconducting linear accelerator (LINAC) booster module having eight niobium quarter wave resonators has been designed, fabricated and installed successfully. It is fully operational for scheduled experiments. The LINAC module has been tested and used to accelerate energetic heavy ion beams from 15 UD Pelletron. A new type of high temperature superconducting electron cyclotron resonance ion source (HTS-ECRlS) has been designed, fabricated and installed successfully. lt has been in regular operation as future source of highly charged ions having higher beam current for the alternate high current injector (HCI) system for the superconducting LINAC. A radio frequency quadrupole (RFQ) accelerator is being developed to accelerate highly charged particles (A/Q ∼ 6) from HTS-ECRIS to energy of 180 keV/u. The beam will then be accelerated further by drift tube linacs (DTL) to the required velocity for injection of the ion beams in to the existing superconducting LINAC booster. A low energy ion beam facility (LEIBF) having permanent magnet ECRIS on high voltage platform and a 1.7 MV Pelletron are being used for regular experiments. Details of various developmental activities related to the heavy ion accelerator and associated systems at Inter-University Accelerator Centre (IUAC) are presented. (author)

  14. LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery.

    Science.gov (United States)

    Li, Jili; Yao, Ruimin; Cao, Chuanbao

    2014-04-09

    As we know, Li(+)-ion transport in layered LiNi1/3Co1/3Mn1/3O2 (NCM) is through two-dimensional channels parallel to the Li(+)-ion layers that are indexed as {010} active planes. In this paper, NCM nanoplates with exposed {010} active facets are synthesized in a polyol medium (ethylene glycol) and characterized by XRD, XPS, SEM, and HR-TEM. In addition, the effects of reaction conditions on the morphologies, structures and electrochemical performances are also evaluated. The results show that more {010} facets can be exposed with the thickness of NCM nanoplates increasing which can lead to more channels for Li(+)-ion migration. However, when the annealing temperatures exceed 900 °C, many new crystal planes grow along the thickness direction covering the {010} facets. In all of the NCM nanoplates obtained at different conditions, the NCM nanoplates calcined at 850 °C for 12 h (NCM-850-12H) display a high initial discharge capacity of 207.6 mAh g(-1) at 0.1 C (1 C = 200 mA g(-1)) between 2.5 and 4.5 V higher than most of NCM materials as cathodes for lithium ion batteries. The discharge capacities of NCM-850-12H are 169.8, 160.5, and 149.3 mAh g(-1) at 2, 5, and 7 C, respectively, illustrating the excellent rate capability. The superior electrochemical performance of NCM-850-12H cathode can be attributed to more {010} active planes exposure.

  15. A novel active equalization method for lithium-ion batteries in electric vehicles

    International Nuclear Information System (INIS)

    Wang, Yujie; Zhang, Chenbin; Chen, Zonghai; Xie, Jing; Zhang, Xu

    2015-01-01

    Highlights: • Build an active equalization method for lithium-ion batteries. • A bidirectional transformer topology is introduced for active equalization. • The PF method is used for cell SOC estimation to eliminate drift noise of current. • The SOC based equalization algorithm is analyzed with different SOC bounds. - Abstract: Cell inconsistency is inevitable due to manufacturing constraint. Therefore, cell equalization is essentially required. In this paper, we propose a novel active equalization method based on the remaining capacity of cells which is feasible for lithium-ion battery packs in electric vehicles (EVs). The cell models are established based on a combined electrochemical model of lithium-ion batteries. The remaining capacity and state-of-charge (SOC) of cells are observed at the beginning of equalization. The particle filter (PF) method is employed to estimate the cell SOCs during equalization in order to eliminate the drift noise of the current sensor. The first high-SOC cell discharge (FHCD) and first low-SOC cell charge (FLCC) equalization algorithms are proposed and compared with 1% and 3% SOC bounds, respectively. The validation experiment results have shown that the proposed algorithm is suitable for equalization of lithium-ion batteries in EVs

  16. Temperature oscillations drive cycles in the activity of MMP-2,9 secreted by a human trabecular meshwork cell line.

    Science.gov (United States)

    Li, Stanley Ka-Lok; Banerjee, Juni; Jang, Christopher; Sehgal, Amita; Stone, Richard A; Civan, Mortimer M

    2015-02-05

    Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels. Copyright 2015 The Association for Research in Vision and Ophthalmology, Inc.

  17. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent

    Science.gov (United States)

    Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku

    2018-03-01

    In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.

  18. Activation of ion transport systems during cell volume regulation

    International Nuclear Information System (INIS)

    Eveloff, J.L.; Warnock, D.G.

    1987-01-01

    This review discusses the activation of transport pathways during volume regulation, including their characteristics, the possible biochemical pathways that may mediate the activation of transport pathways, and the relations between volume regulation and transepithelial transport in renal cells. Many cells regulate their volume when exposed to an anisotonic medium. The changes in cell volume are caused by activation of ion transport pathways, plus the accompanying osmotically driven water movement such that cell volume returns toward normal levels. The swelling of hypertonically shrunken cells is termed regulatory volume increase (RVI) and involves an influx of NaCl into the cell via either activation of Na-Cl, Na-K-2Cl cotransport systems, or Na + -H + and Cl - -HCO 3 - exchangers. The reshrinking of hypotonically swollen cells is termed regulatory volume decrease (RVD) and involves an efflux of KCl and water from the cell by activation of either separate K + and Cl - conductances, a K-Cl cotransport system, or parallel K + -H + and Cl - -HCO 3 - exchangers. The biochemical mechanisms involved in the activation of transport systems are largely unknown, however, the phosphoinositide pathway may be implicated in RVI; phorbol esters, cGMP, and Ca 2+ affect the process of volume regulation. Renal tubular cells, as well as the blood cells that transverse the medulla, are subjected to increasing osmotic gradients from the corticomedullary junction to the papillary tip, as well as changing interstitial and tubule fluid osmolarity, depending on the diuretic state of the animal. Medullary cells from the loop of Henle and the papilla can volume regulate by activating Na-K-2Cl cotransport or Na + -H + and Cl - -HCO 3 - exchange systems

  19. short communication binding of nickel and zinc ions with activated

    African Journals Online (AJOL)

    a

    Equilibrium sorption of nickel and zinc ions by the activated carbon was studied using a range of ... their toxicity, accumulative behaviour and effects on human health, heavy metal pollution has become ... The determination of the total surface charge was made .... These values suggest high efficiency of the activated carbon,.

  20. A radiochemical technique for the establishment of a solvent-independent scale of ion activities in amphiprotic solvents

    International Nuclear Information System (INIS)

    Kim, J.I.; Duschner, H.; Born, H.J.

    1975-01-01

    The radiochemical determination of solubilities of hardly soluble compounds of silver (Ph 4 BAg, AgCl), by means of Ag-110m in amphiprotic solutions is used for setting-up a solvent-independent scale of ion activities based on the concept of the media effect. The media effects of the salts are calculated from the solubility data of the Ag compounds in question. The splitting into the media effects of single ions takes place with the extrathermodynamic assumption of the same media effects for large ions, such as Ph 4 B - = Ph 4 As - . A standardized ion activity scale in connection with the activity coefficients for the solvent in question can be established with water as the basic state of the chemical potential. As the sum of the media effects of the single ions gives the media effect of the salt concerned, which is easily obtained from data which are experimentally accessible (solubility, vapour pressure, ion exchange ect.), this method leads to single ion activities of a large number of ions in a multitude of solvents. (orig./LH) [de

  1. Ion channel activity of membrane vesicles released from sea urchin sperm during the acrosome reaction

    International Nuclear Information System (INIS)

    Schulz, Joseph R.; Vega-Beltran, Jose L. de la; Beltran, Carmen; Vacquier, Victor D.; Darszon, Alberto

    2004-01-01

    The sperm acrosome reaction (AR) involves ion channel activation. In sea urchin sperm, the AR requires Ca 2+ and Na + influx and K + and H + efflux. During the AR, the plasma membrane fuses with the acrosomal vesicle membrane forming hybrid membrane vesicles that are released from sperm into the medium. This paper reports the isolation and preliminary characterization of these acrosome reaction vesicles (ARVs), using synaptosome-associated protein of 25 kDa (SNAP-25) as a marker. Isolated ARVs have a unique protein composition. The exocytosis regulatory proteins vesicle-associated membrane protein and SNAP-25 are inside ARVs, as judged by protease protection experiments, and membrane associated based on Triton X-114 partitioning. ARVs fused with planar bilayers display three main types of single channel activity. The most frequently recorded channel is cationic, weakly voltage dependent and has a low open probability that increases with negative potentials. This channel is activated by cAMP, blocked by Ba 2+ , and has a PK + /PNa + selectivity of 4.5. ARVs represent a novel membrane preparation suitable to deepen our understanding of ion channel activity in the AR and during fertilization

  2. Study on surface modification of M2 steel induced by Cu ions and Al ions implantation

    International Nuclear Information System (INIS)

    Wang Chao; Liu Zhengmin

    2001-01-01

    Changes of surface hardness and wear resistances in M2 type steel implanted by Cu Al ions were reported. The dependence of surface strengthening on ion species and dose was studied by X-ray diffraction (XRD) and Rutherford Backscattering Spectroscopy (RBS) for microhardness and wear resistances measurement. It is shown that both hardness and wear resistance increases apparently after ion implantation. XRD analysis indicates that different phases formed after Al Cu ions implanted. It is also suggested that Cu, Al ions have different role in surface strengthening

  3. Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection.

    Science.gov (United States)

    Wen, Jun; Huang, Zeng; Hu, Sheng; Li, Shuo; Li, Weiyi; Wang, Xiaolin

    2016-11-15

    A novel tetraphenylethene-based fluorescent sensor, TPE-T, was developed for the detection of uranyl ions. The selective binding of TPE-T to uranyl ions resulted in a detectable signal owing to the quenching of its aggregation-induced emission. The developed sensor could be used to visually distinguish UO2(2+) from lanthanides, transition metals, and alkali metals under UV light; the presence of other metal ions did not interfere with the detection of uranyl ions. In addition, TPE-T was successfully used for the detection of uranyl ions in river water, illustrating its potential applications in environmental systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ion chromatographic analysis of high specific activity 18FDG preparations and detection of the chemical impurity 2-deoxy-2-chloro-D-glucose

    International Nuclear Information System (INIS)

    Alexoff, D.L.; Casati, R.; Fowler, J.S.; Wolf, A.P.; Shea, C.; Schlyer, D.J.; Chyng-Yann Shiue

    1992-01-01

    Because of the widespread use of 2-deoxy-2-[ 18 F]fluoro-D-glucose(FDG) prepared by the ''Julich'' method or its variants it was decided necessary to determine the major chemical impurities present in the final product. An analytical system for quantifying FDG was developed using pulsed amperometry after separation by high-performance anion exchange chromotography. With this system a heretofore unidentified impurity, 2-deoxy-2-chloro-D-glucose(C1DG) was found in our preparation and in those from other laboratories using the ''Julich'' method. C1DG arises from C1 - ion displacement during the labeling procedure where C1 - ion comes from several sources, and C1 - ion displacement from the HC1 used in the hydrolysis step. FDG mass was present in the same preparations at a level of ca 1-40 μg. Other major chemical constituents were glucose (ca 1-6 mg) and mannose (ca 10-18 μg). Glycerol, arising from sterilizing filters, was also detected in most preparations. Although C1DG is a chemical impurity which has not been detected previously in nca FDG preparations, its biochemical and pharmacological properties are similar to FDG and 2-deoxy-D-glucose. Thus it is unlikely that the presence of small quantities of C1DG found in typical FDG preparations (ca 100 μg) would have adverse pharmacological or toxicological consequences that would limit continued application of this radiopharmaceutical in basic and clinical studies. (Author)

  5. Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization.

    Science.gov (United States)

    Sharifpour, Ebrahim; Khafri, Hossein Zare; Ghaedi, Mehrorang; Asfaram, Arash; Jannesar, Ramin

    2018-01-01

    Copper sulfide nanorods loaded on activated carbon (CuS-NRs-AC) was synthesized and used for simultaneous ultrasound-assisted adsorption of malachite green (MG) and Pb 2+ ions from aqueous solution. Following characterization of CuS-NRs-AC were investigated by SEM, EDX, TEM and XRD, the effects of pH (2.0-10), amount of adsorbent (0.003-0.011g), MG concentration (5-25mgL -1 ), Pb 2+ concentration (3-15mgL -1 ) and sonication time (1.5-7.5min) and their interactions on responses were investigated by central composite design (CCD) and response surface methodology. According to desirability function on the Design Expert optimum removal (99.4%±1.0 for MG and 68.3±1.8 for Pb 2+ ions) was obtained at pH 6.0, 0.009g CuS-NRs-AC, 6.0min mixing by sonication and 15 and 6mgL -1 for MG and Pb 2+ ions, respectively. High determination coefficient (R 2 >0.995), Pred-R 2 -value (>0.920) and Adju-R 2 -value (>0.985) all are good indication of best agreement between the experimental and design modelling. The adsorption kinetics follows the pseudo-second order model and adsorption isotherm follows the Langmuir model with maximum adsorption capacity of 145.98 and 47.892mgg -1 for MG and Pb 2+ ions, respectively. This adsorbent over short contact time is good choice for simultaneous removal of large content of both MG and Pb 2+ ions from wastewater sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Adsorption behaviour and kinetics of exchange of Zn2+ and Eu3+ ions on a composite ion exchanger

    International Nuclear Information System (INIS)

    Morcos, T.N.

    2007-01-01

    Equilibria and kinetics of exchange of both Zn2+ and Eu3+ ions on a composite ion-exchanger, cobalt hexacyanocobaltate (III) (CoHCC) incorporated in polyacrylonitrile (PAN), has been studied. The apparent capacity of CoHCC-PAN for Zn2+ and Eu3+ was determined and found to be 0.353 and 0.69 meq/g, respectively. The higher capacity for Eu3+ ions than that for Zn2+ ions is due to the higher electrostatic interaction strength of the higher charge ion with the surface. Freundlich and Langmiur adsorption isotherms were used to investigate solute (Zn2+ or Eu3+) exchange phenomenon at the liquid/solid interface. The results indicated that both Langmuir and Freundlich isotherms fit well for both Zn2+ and Eu3+. Sorption data have been also treated with the Dubinin-Radushkevich equation. The kinetics of Zn2+ or Eu3+ sorption on the composite seems to show that the reaction was proceed via two steps. The first one was fast and probably due to adsorption followed by a slow exchange reaction. In view of the data obtained on the effect of particle size and metal ion concentrations on the rate of exchange reaction, it is concluded that the mechanism for both ions was chemical control. Generally, it seems that there are two exchange sites chemically equivalent but present in pores of different sizes which lead to different degrees of dehydration of the ions sorbed on the two sites

  7. Chelation Ion Exchange Properties of 2, 4-Dihydroxyacetophenone-Biuret-Formaldehyde Terpolymer Resin

    Directory of Open Access Journals (Sweden)

    Sanjiokumar S. Rahangdale

    2009-01-01

    Full Text Available The terpolymer resin 2, 4-HABF has been synthesized by the condensation of 2, 4-dihydroxyacetophenone (2, 4-HA and biuret (B with formaldehyde (F in 1:1:2 molar ratios in presence of 2 M hydrochloric acid as catalyst. UV-Visible, IR and proton NMR spectral studies have been carried out to elucidate the structure of the resin. A terpolymer (2, 4-HABF proved to be a selective chelating ion exchange polymer for certain metals. Chelating ion-exchange properties of this polymer were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+ and Pb2+ ions. A batch equilibrium method was employed in the study of the selectivity of metal ion uptake involving the measurement of the distribution of a given metal ion between the polymer sample and a solution containing the metal ion. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed highest selectivity for Fe3+, Cu2+ ions than for Ni2+, Co2+, Zn2+, Cd2+, and Pb2+ ions. Study of distribution ratio as a formation of pH indicates that the amount of metal ion taken by resin is increases with the increasing pH of the medium.

  8. Effect of Sr2+AND Mg2+ IONS on electrochemical deposition of calcium phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Correia, M.B.; Gualberto Junior, J.P.; Macedo, M.C.S.S.; Resende, C.X.; Santos, E.A. [Universidade Federal de Sergipe (UFS), SE (Brazil)

    2014-07-01

    The incorporation of Sr2+ and Mg2+ ions into apatite favors the mineralization process of the bone, besides it to prevent the osteoporosis. In this work, it was evaluated the individual effect of Sr2+ and Mg2+ ions in the electrochemical deposition process of calcium phosphate on metallic substrate. The electrodeposition was performed using a conventional three- electrode cell. The titanium sheets were immersed in the electrolyte containing Ca(NO3)2 and NH4H2PO4 and a potential of -0. 8 V was applied. The coatings were characterized by SEM and XRD. By XRD analysis was possible to identify octacalcium phosphate in the control sample. However, after the addition of Mg2+ ions the OCP becomes the secondary phase while the brushite showed as majoritary phase. On the other hand, the incorporation of Sr2+ ions stabilized the OCP phase. (author)

  9. Enhancing visible light photocatalytic and photocharge separation of (BiO)_2CO_3 plate via dramatic I"− ions doping effect

    International Nuclear Information System (INIS)

    Liang, Lei; Cao, Jing; Lin, Haili; Guo, Xiaomin; Zhang, Meiyu; Chen, Shifu

    2016-01-01

    Highlights: • Novel I-(BiO)_2CO_3 was prepared by a facile chemical precipitation method. • I"− ions impurity level located on the top of valence band of (BiO)_2CO_3. • I"− ions doping largely improved photocatalytic activity of I-(BiO)_2CO_3. • I-(BiO)_2CO_3 displayed excellent photocharge separation efficiency. - Abstract: Novel I"− ions doped (BiO)_2CO_3 (I-(BiO)_2CO_3) photocatalysts were successfully synthesized via a facile chemical precipitation method. Under visible light (λ > 400 nm), I-(BiO)_2CO_3 displayed much higher activity for rhodamine B and dichlorophenol degradation than the undoped (BiO)_2CO_3. The pseudo-first-order rate constant k_a_p_p of RhB degradation over 15.0% I-(BiO)_2CO_3 was 0.54 h"−"1, which is 11.3 times higher than that of (BiO)_2CO_3. The doped I"− ions formed an impurity level on the top of valence band of (BiO)_2CO_3 and induced much more visible light to be absorbed. The enhanced photocurrent and surface photovoltage properties were detected, which strongly ensures the efficient separation of electrons and holes in I-(BiO)_2CO_3 system under visible light. It provides a facile way to improve the photocatalytic activity of the wide-band-gap (BiO)_2CO_3 via intense doping effect of I"− ions.

  10. Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting.

    Science.gov (United States)

    Wang, Xiang; Shen, Shuai; Jin, Shaoqing; Yang, Jingxiu; Li, Mingrun; Wang, Xiuli; Han, Hongxian; Li, Can

    2013-11-28

    Zn-doped and Pb-doped β-Ga2O3-based photocatalysts were prepared by an impregnation method. The photocatalyst based on the Zn-doped β-Ga2O3 shows a greatly enhanced activity in water splitting while the Pb-doped β-Ga2O3 one shows a dramatic decrease in activity. The effects of Zn(2+) and Pb(2+) dopants on the activity of Ga2O3-based photocatalysts for water splitting were investigated by HRTEM, XPS and time-resolved IR spectroscopy. A ZnGa2O4-β-Ga2O3 heterojunction is formed in the surface region of the Zn-doped β-Ga2O3 and a slower decay of photogenerated electrons is observed. The ZnGa2O4-β-Ga2O3 heterojunction exhibits type-II band alignment and facilitates charge separation, thus leading to an enhanced photocatalytic activity for water splitting. Unlike Zn(2+) ions, Pb(2+) ions are coordinated by oxygen atoms to form polyhedra as dopants, resulting in distorted surface structure and fast decay of photogenerated electrons of β-Ga2O3. These results suggest that the Pb dopants act as charge recombination centers expediting the recombination of photogenerated electrons and holes, thus decreasing the photocatalytic activity.

  11. A laser activated ion source

    International Nuclear Information System (INIS)

    Hughes, J.; Luther-Davies, B.; Hora, H.; Kelly, J.

    1978-01-01

    Apparatus for generating energetic ions of a target material from a cold plasma of the material is described. A pulsed laser beam is directed onto the target to produce the cold plasma. Laser beam pulses are short in relation to the collision time in the plasma. Non-linear elctrodynamic forces within the plasma act to accelerate and eject ions from the plasma. The apparatus can be used to separate ions of isotopes of an element

  12. Removal of Pb2+,Cd2+, Fe3+ and Sr2+ from Aqueous Solution by Selected Activated Carbons Derived from Date Pits

    International Nuclear Information System (INIS)

    Awwad, N.S.; Daifuallah, A.A.M.; Ali, M.M.S.

    2008-01-01

    Date pits (DP) as a huge solid waste in Egypt is of little or no economic value and in fact present a disposal problem. The quantity of DP has been estimated to million tons per year. DP was used for preparation of physically and chemically activated carbons. The raw materials were physically activated with pure steam, steam with flow of nitrogen gas or steam with current of air, while the chemically activated samples were prepared by impregnation of 10% ferric chloride or 10% calcium acetate. The effect of various factors, e.g., carbon type, carbon dosage, ph, initial concentration, temperature, and various inorganic ions on the adsorption capacity, were quantitatively determined. The two-parameters equilibrium models Langmuir and Freundlich equations were discussed. In this work, analyses and batch adsorption experiments have been carried out to characterize and to understand adsorption mechanism by modeling the adsorption kinetics. The present study deals with the factors affecting the uptake of Pb 2+ , Cd 2+ , Fe 3+ , and Sr 2+ ions from aqueous solution using activated carbon developed from locally available material DP, by one-step steam pyrolysis in a batch mode. Concurrently removal of these cations from aqueous medium are affected by the presence of other ions e.g. NO 3 - , CO 3 - , SO 4 - and masking agents e.g. oxalic acid and EDTA in solution. Uptake values are decreased with increasing the concentration of these ions in solution heavy metals

  13. Removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution using rice husk-based activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Mohd F., E-mail: faisalt@petronas.com.my; Shaharun, Maizatul S. [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia); Shuib, Anis Suhaila, E-mail: anisuha@petronas.com.my; Borhan, Azry [Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    An attempt was made to investigate the potential of rice husk-based activated carbon as an alternative low-cost adsorbent for the removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Rice husk-based activated carbon was prepared via treatment of rice husk with NaOH followed by the carbonization process at 400°C for 2 hours. Three samples, i.e. raw rice husk, rice husk treated with NaOH and rice husk-based activated carbon, were analyzed for their morphological characteristics using field-emission scanning electron microscope/energy dispersive X-ray (FESEM/EDX). These samples were also analyzed for their carbon, hydrogen, nitrogen, oxygen and silica contents using CHN elemental analyzer and FESEM/EDX. The porous properties of rice husk-based activated carbon were determined by Brunauer-Emmett-Teller (BET) surface area analyzer, and its surface area and pore volume were 255 m{sup 2}/g and 0.17 cm{sup 2}/g, respectively. The adsorption studies for the removal of Ni(II), Zn(II) and Pb(II) ions from single metal aqueous solution were carried out at a fixed initial concentration of metal ion (150 ppm) with variation amount of adsorbent (rice husk-based activated carbon) as a function of varied contact time at room temperature. The concentration of each metal ion was analyzed using atomic absorption spectrophotometer (AAS). The results obtained from adsorption studies indicate the potential of rice husk as an economically promising precursor for the preparation of activated carbon for removal of Ni(II), Zn(II) and Pb(II) ions from single aqueous solution. Isotherm and kinetic model analyses suggested that the experimental data of adsorption studies fitted well with Langmuir, Freundlich and second-order kinetic models.

  14. The Function of the Novel Mechanical Activated Ion Channel Piezo1 in the Human Osteosarcoma Cells

    OpenAIRE

    Jiang, Long; Zhao, Yi-ding; Chen, Wei-xiang

    2017-01-01

    Background The Piezo1 protein ion channel is a novel mechanical activated ion channel which is related to mechanical signal transduction. However, the function of the mechanically activated ion channel Piezo1 had not been explored. In this study, we explored the function of the Piezo1 ion channel in human osteosarcoma (OS) cells related to apoptosis, invasion, and the cell proliferation. Material/Methods Reverse transcription polymerase chain reaction (RT-PCR) and western-blotting were used t...

  15. TL response of Eu activated LiF nanocubes irradiated by 85 MeV carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Numan, E-mail: nsalah@kau.edu.sa [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Alharbi, Najlaa D. [Sciences Faculty for Girls, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Habib, Sami S. [Center of Nanotechnology, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Lochab, S.P. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2015-09-01

    Carbon ions were found to be effective for cancer treatment. These heavy ions have a high relative biological effectiveness compared to those of photons. They have higher linear energy transfer and sharper Bragg peak with a very excellent local tumor control. However, the dose of these swift heavy ions needs to be measured with great accuracy. Lithium fluoride (LiF) is a highly sensitive phosphor widely used for radiation dosimetry. In this work Eu activated LiF nanocubes were exposed to 85 MeV C{sup 6+} ion beam and evaluated for their thermoluminescence (TL) response. Pellet forms of this nanomaterial were exposed to these ions in the fluence range 10{sup 9}–10{sup 13} ions/cm{sup 2}. The obtained result shows a prominent TL glow peak at around 320 °C, which is different than that induced by gamma rays. This glow peak exhibits a linear response in the range 10{sup 9}–10{sup 12} ions/cm{sup 2}, corresponding to the equivalent absorbed doses 0.273–273 kGy. The absorbed doses, penetration depths and main energy loss were calculated using TRIM code based on the Monte Carlo simulation. The supralinearity function and stopping power in this nanomaterial were also studied. The modification induced in the glow curve structure as a result of changing irradiation type might be utilized to use LiF:Eu nanocubes as a dosimeter for mixed filed radiations. Moreover, the wide linear response of LiF:Eu nanocubes along with the low fading are another imperative results suggesting that this nanomaterial might be a good candidate for carbon ions dosimetry.

  16. TL response of Eu activated LiF nanocubes irradiated by 85 MeV carbon ions

    International Nuclear Information System (INIS)

    Salah, Numan; Alharbi, Najlaa D.; Habib, Sami S.; Lochab, S.P.

    2015-01-01

    Carbon ions were found to be effective for cancer treatment. These heavy ions have a high relative biological effectiveness compared to those of photons. They have higher linear energy transfer and sharper Bragg peak with a very excellent local tumor control. However, the dose of these swift heavy ions needs to be measured with great accuracy. Lithium fluoride (LiF) is a highly sensitive phosphor widely used for radiation dosimetry. In this work Eu activated LiF nanocubes were exposed to 85 MeV C 6+ ion beam and evaluated for their thermoluminescence (TL) response. Pellet forms of this nanomaterial were exposed to these ions in the fluence range 10 9 –10 13 ions/cm 2 . The obtained result shows a prominent TL glow peak at around 320 °C, which is different than that induced by gamma rays. This glow peak exhibits a linear response in the range 10 9 –10 12 ions/cm 2 , corresponding to the equivalent absorbed doses 0.273–273 kGy. The absorbed doses, penetration depths and main energy loss were calculated using TRIM code based on the Monte Carlo simulation. The supralinearity function and stopping power in this nanomaterial were also studied. The modification induced in the glow curve structure as a result of changing irradiation type might be utilized to use LiF:Eu nanocubes as a dosimeter for mixed filed radiations. Moreover, the wide linear response of LiF:Eu nanocubes along with the low fading are another imperative results suggesting that this nanomaterial might be a good candidate for carbon ions dosimetry

  17. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation.

    Science.gov (United States)

    Di Giovanni, James P; Barkley, Robert M; Jones, David N M; Hankin, Joseph A; Murphy, Robert C

    2018-04-23

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H] - ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H] - and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H 2 O-CO 2 ] - and [M-H-H 2 O] - displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H 2 O] - ion from LTB 4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H 2 O] - product ions from LTB 4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. Graphical Abstract ᅟ.

  18. Tandem Mass Spectrometry and Ion Mobility Reveals Structural Insight into Eicosanoid Product Ion Formation

    Science.gov (United States)

    Di Giovanni, James P.; Barkley, Robert M.; Jones, David N. M.; Hankin, Joseph A.; Murphy, Robert C.

    2018-04-01

    Ion mobility measurements of product ions were used to characterize the collisional cross section (CCS) of various complex lipid [M-H]- ions using traveling wave ion mobility mass spectrometry (TWIMS). TWIMS analysis of various product ions derived after collisional activation of mono- and dihydroxy arachidonate metabolites was found to be more complex than the analysis of intact molecular ions and provided some insight into molecular mechanisms involved in product ion formation. The CCS observed for the molecular ion [M-H]- and certain product ions were consistent with a folded ion structure, the latter predicted by the proposed mechanisms of product ion formation. Unexpectedly, product ions from [M-H-H2O-CO2]- and [M-H-H2O]- displayed complex ion mobility profiles suggesting multiple mechanisms of ion formation. The [M-H-H2O]- ion from LTB4 was studied in more detail using both nitrogen and helium as the drift gas in the ion mobility cell. One population of [M-H-H2O]- product ions from LTB4 was consistent with formation of covalent ring structures, while the ions displaying a higher CCS were consistent with a more open-chain structure. Using molecular dynamics and theoretical CCS calculations, energy minimized structures of those product ions with the open-chain structures were found to have a higher CCS than a folded molecular ion structure. The measurement of product ion mobility can be an additional and unique signature of eicosanoids measured by LC-MS/MS techniques. [Figure not available: see fulltext.

  19. Heavy-ion induced desorption yields of cryogenic surfaces bombarded with 4.2 MeV/u lead ions

    CERN Document Server

    Mahner, E; Evans, L; Kollmus, H; Küchler, D; Scrivens, R; Severin, D; Wengenroth, M; CERN. Geneva. ATS Department

    2011-01-01

    The ion-induced desorption experiment, installed in the CERN Heavy-Ion Accelerator LINAC 3, has been used to study the dynamic outgassing of cryogenic surfaces. Two different targets, bare and goldcoated copper, were bombarded under perpendicular impact with 4.2 MeV/u Pb54+ ions. Partial pressure rises of H2, CH4, CO, and CO2 and effective desorption yields were measured at 300, 77, and 6.3 K using single shot and continuous ion bombardment techniques. We find that the heavy-ion-induced desorption yield is temperature dependent and investigate the influence of CO gas cryosorbed at 6.3 K. The gain in desorption yield reduction at cryogenic temperature vanishes after several monolayers of CO are cryosorbed on both targets. In this paper we describe the new cryogenic target assembly, the temperature-dependent pressure rise, desorption yield, and gas adsorption measurements.

  20. Measurement of negative ion mobility in O2 at high pressures using a point plate gap as an ion detector

    International Nuclear Information System (INIS)

    Okuyama, Y; Kimura, T; Suzuki, S; Itoh, H

    2012-01-01

    This paper describes the experimental results for negative ion mobility in O 2 at 0.5-2.0 atm. The ion mobility is observed using a high-pressure ion drift tube with a positive corona gap (Geiger counter), which is constructed from a point plate gap and acts as a negative ion detector. The variation of waveforms in the burst pulse is observed by varying the voltage applied to the ion detector to find the optimum voltage that must be applied across the ion detector in O 2 . This is investigated carefully to ensure the precise determination of mobility. The distortion of the electric field near the mesh electrode, which operates as the cathode of the ion detector and as the anode of the ion drift gap, is then examined to determine the optimum applied voltage to suppress its effect on the measurement of mobility. The mobility is subsequently measured at a reduced electric field intensity of 2.83 × 10 -3 to 2.83. The observed mobility of 2.31 ± 0.03 cm 2 V -1 s -1 in O 2 is concluded to be that of O 2 - . This value is also obtained in experiments over a wide range of gas pressures (0.5-2.0 atm) and drift lengths (1.00-9.00 cm). The mobilities of O 3 - and O - are also obtained experimentally. (paper)

  1. A 2-100 keV, UHV ion impact spectrometer for ion-solid interaction studies

    International Nuclear Information System (INIS)

    Berg, J.A. Van den; Armour, D.G.; Verheij, L.K.

    1978-01-01

    A 2 to 100 keV ion accelerator has been constructed as part of an ion impact spectrometer in which a number of analytical techniques have been combined to allow a comprehensive study of the interaction of low- and medium-energy ions with solids to be carried out under carefully controlled conditions. The overall requirements of the ion beam system in terms of ion species, beam purity, uniformity, energy spread and intensity were dictated by the interest in carrying out low-energy ion scattering, Rutherford back-scattering and thermal desorption experiments. The accelerator design utilises the principle of low-energy extraction and mass analysis, and post-acceleration up to the required high energy. The ions are produced in a duoplasmatron ion source and a parallel beam is obtained after mass selection, utilising a quadrupole triplet lens in conjunction with a 60 0 stigmatic focusing magnetic analyser. Proton and rare gas ion beams of 1 to 100 nA are routinely obtained on target. The 54 cm diameter, UHV target chamber is pumped by a 270 1 s -1 turbo-molecular pump in conjunction with an in-line titanium sublimator, and typical base pressures of 1 to 4 x 10 -11 Torr are achieved. The target is supported in a precision, three-axis goniometer and the detection system, at present comprising a 90 mm mean diameter hemispherical energy analyser and channel electron multiplier, is mounted on a two-axis manipulator. Preliminary measurements using the system have employed the low-energy ion scattering technique to study the oxidation of a Ni(110) surface. (author)

  2. Binding of nickel and zinc ions with activated carbon prepared from ...

    African Journals Online (AJOL)

    Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the ...

  3. Aggregation-induced emission active tetraphenylethene-based sensor for uranyl ion detection

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Jun; Huang, Zeng; Hu, Sheng [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, Sichuan Province (China); Li, Shuo, E-mail: lishuo@cqut.edu.cn [School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054 (China); Li, Weiyi, E-mail: weiyili@mail.xhu.edu.cn [School of Science, Xihua University, Chengdu, Sichuan, 610065 (China); Wang, Xiaolin, E-mail: xlwang@caep.cn [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, Sichuan Province (China)

    2016-11-15

    Highlights: • A novel AIE fluorescent sensor for the detection of uranyl has been developed. • TPE-T is capable of visually distinguish UO{sub 2}{sup 2+} among many metals owing to the AIE phenomenon. • TPE-T showed a wide effective pH range, high selectivity and good anti-interference qualities. • TPE-T showed good accuracy in the determination of uranyl in river water. - Abstract: A novel tetraphenylethene-based fluorescent sensor, TPE-T, was developed for the detection of uranyl ions. The selective binding of TPE-T to uranyl ions resulted in a detectable signal owing to the quenching of its aggregation-induced emission. The developed sensor could be used to visually distinguish UO{sub 2}{sup 2+} from lanthanides, transition metals, and alkali metals under UV light; the presence of other metal ions did not interfere with the detection of uranyl ions. In addition, TPE-T was successfully used for the detection of uranyl ions in river water, illustrating its potential applications in environmental systems.

  4. V2O5-C-SnO2 Hybrid Nanobelts as High Performance Anodes for Lithium-ion Batteries

    Science.gov (United States)

    Zhang, Linfei; Yang, Mingyang; Zhang, Shengliang; Wu, Zefei; Amini, Abbas; Zhang, Yi; Wang, Dongyong; Bao, Shuhan; Lu, Zhouguang; Wang, Ning; Cheng, Chun

    2016-09-01

    The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design.

  5. Development of intense pulsed heavy ion beam diode using gas puff plasma gun as ion source

    International Nuclear Information System (INIS)

    Ito, H.; Higashiyama, M.; Takata, S.; Kitamura, I.; Masugata, K.

    2006-01-01

    A magnetically insulated ion diode with an active ion source of a gas puff plasma gun has been developed in order to generate a high-intensity pulsed heavy ion beam for the implantation process of semiconductors and the surface modification of materials. The nitrogen plasma produced by the plasma gun is injected into the acceleration gap of the diode with the external magnetic field system. The ion diode is operated at diode voltage approx. =200 kV, diode current approx. =2 kA and pulse duration approx. =150 ns. A new acceleration gap configuration for focusing ion beam has been designed in order to enhance the ion current density. The experimental results show that the ion current density is enhanced by a factor of 2 and the ion beam has the ion current density of 27 A/cm 2 . In addition, the coaxial type Marx generator with voltage 200 kV and current 15 kA has been developed and installed in the focus type ion diode. The ion beam of ion current density approx. =54 A/cm 2 is obtained. To produce metallic ion beams, an ion source by aluminum wire discharge has been developed and the aluminum plasma of ion current density ∼70 A/cm 2 is measured. (author)

  6. Ion-exchange resin separation applied to activation analysis (1963); Separation par resines echangeuses d'ions appliquees a l'analyse par activation (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Aubouin, G; Laverlochere, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-07-01

    The separation techniques based on ion-exchange resins have been used, in this study, for carrying out activation analyses on about thirty impurities. A separation process has been developed so as to standardise these analyses and to render them execution a matter of routine. The reparation yields obtained are excellent and make it possible to carry out analyses on samples having a large activation cross-section ween working inside a reinforced fume-cupboard. This technique has been applied to the analysis of impurities in tantalum, iron, gallium, germanium, terphenyl, and tungsten. The extension of this process to other impurities and to other matrices is now being studied. (authors) [French] Les techniques de separations sur resines echangeusee d'ions ont ete utilisees, dans cette etude, pour effectuer des analyses par activation sur une trentaine d'impuretes. Un schema de separation a ete mis au point de maniere a normaliser ces analyses et a pouvoir les faire en routine. Les rendements de separation obtenus sont excellents et permettent de proceder a des analyses d'echantillons a grande section efficace d'activation en travaillant dans une sorbonne blindee. Des applications de cette technique ont ete faites pour des analyses d'impuretes dans le tantale, le fer, le gallium, le germanium, le terphenyle, le tungstene. L'extension de ce schema a d'autres impuretes et a d'autres matrices est en cours d'etude. (auteurs)

  7. Modification of WS2 nanosheets with controllable layers via oxygen ion irradiation

    Science.gov (United States)

    Song, Honglian; Yu, Xiaofei; Chen, Ming; Qiao, Mei; Wang, Tiejun; Zhang, Jing; Liu, Yong; Liu, Peng; Wang, Xuelin

    2018-05-01

    As one kind of two-dimensional materials, WS2 nanosheets have drawn much attention with different kinds of research methods. Yet ion irradiation method was barely used for WS2 nanosheets. In this paper, the structure, composition and optical band gap (Eg) of the multilayer WS2 films deposited by chemical vapor deposition (CVD) method on sapphire substrates before and after oxygen ion irradiation with different energy and fluences were studied. Precise tailored layer-structures and a controllable optical band gap of WS2 nanosheets were achieved after oxygen ion irradiation. The results shows higher energy oxygen irradiation changed the shape from triangular shaped grains to irregular rectangle shape but did not change 2H-WS2 phase structure. The intensity of E2g1 (Г) and A1g (Г) modes decreased and have small shifts after oxygen ion irradiation. The peak frequency difference between the E2g1 (Г) and A1g (Г) modes (Δω) decreased after oxygen ion irradiation, and this result indicates the number of layers decreased after oxygen ion irradiation. The Eg decreased with the increase of the energy and the fluence of oxygen ions. The number of layers, thickness and optical band gap changed after ion irradiation with different ion fluences and energies. The results proposed a new strategy for precise control of multilayer nanosheets and demonstrated the high applicability of ion irradiation in super-capacitors, field effect transistors and other applications.

  8. Barodiffusion phenomena at active transport of na+ and K+ ions through the cell membrane

    International Nuclear Information System (INIS)

    Khrapijchuk, G.V.; Chalyi, A.V.; Nurishchenko, N.Je.

    2010-01-01

    The influence of ultrasound as the significant motive force of barodiffusion phenomena at the processes of active transport of Na + and K + ions through the cell membrane is considered. The dependence of membrane potential is theoretically estimated at active transport of natrium and potassium ions on the ultrasound intensity and pressure overfall between external and internal medium of the cell.

  9. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation

    Science.gov (United States)

    Cherrak, Sabri Ahmed; Mokhtari-Soulimane, Nassima; Berroukeche, Farid; Bensenane, Bachir; Cherbonnel, Angéline; Merzouk, Hafida; Elhabiri, Mourad

    2016-01-01

    Natural flavonoids such as quercetin, (+)catechin and rutin as well as four methoxylated derivatives of quercetin used as models were investigated to elucidate their impact on the oxidant and antioxidant status of human red blood cells (RBCs). The impact of these compounds against metal toxicity was studied as well as their antiradical activities with DPPH assay. Antihemolytic experiments were conducted on quercetin, (+)catechin and rutin with excess of Fe, Cu and Zn (400 μM), and the oxidant (malondialdehyde, carbonyl proteins) and antioxidant (reduced glutathione, catalase activity) markers were evaluated. The results showed that Fe and Zn have the highest prooxidant effect (37 and 33% of hemolysis, respectively). Quercetin, rutin and (+)catechin exhibited strong antioxidant properties toward Fe, but this effect was decreased with respect to Zn ions. However, the Cu showed a weak antioxidant effect at the highest flavonoid concentration (200 μM), while a prooxidant effect was observed at the lowest flavonoid concentration (100 μM). These results are in agreement with the physico-chemical and antiradical data which demonstrated that binding of the metal ions (for FeNTA: (+)Catechin, KLFeNTA = 1.6(1) × 106 M-1 > Rutin, KLFeNTA = 2.0(9) × 105 M-1 > Quercetin, KLFeNTA = 1.0(7) × 105 M-1 > Q35OH, KLFeNTA = 6.3(8.7) × 104 M-1 > Quercetin3’4’OH and Quercetin 3OH, KLFeNTA ~ 2 × 104 M-1) reflects the (anti)oxidant status of the RBCs. This study reveals that flavonoids have both prooxidant and antioxidant activity depending on the nature and concentration of the flavonoids and metal ions. PMID:27788249

  10. Experimental Ion Mobility measurements in Ne-CO$_2$ and CO$_2$-N$_2$ mixtures

    CERN Document Server

    Encarnação, P.M.C.C.; Veenhof, R.; Neves, P.N.B.; Santos, F.P.; Trindade, A.M.F.; Borges, F.I.G.M.; Conde, C.A.N.

    2016-01-01

    In this paper we present the experimental results for the mobility, K0, of ions in neon-carbon dioxide (Ne-CO2) and carbon dioxide-nitrogen (CO2-N2) gaseous mixtures for total pressures ranging from 8–12 Torr, reduced electric fields in the 10–25 Td range, at room temperature. Regarding the Ne-CO2 mixture only one peak was observed for CO2 concentrations above 25%, which has been identified as an ion originated in CO2, while below 25% of CO2 a second-small peak appears at the left side of the main peak, which has been attributed to impurities. The mobility values for the main peak range between 3.51 ± 0.05 and 1.07 ± 0.01 cm2V−1s−1 in the 10%-99% interval of CO2, and from 4.61 ± 0.19 to 3.00 ± 0.09 cm2V−1s−1 for the second peak observed (10%–25% of CO2). For the CO2-N2, the time-of-arrival spectra displayed only one peak for CO2 concentrations above 10%, which was attributed to ions originated in CO2, namely CO2+(CO2), with a second peak appearing for CO2 concentrations below 10%. This secon...

  11. Low-altitude ion heating with downflowing and upflowing ions

    Science.gov (United States)

    Shen, Y.; Knudsen, D. J.; Burchill, J. K.; Howarth, A. D.; Yau, A. W.; James, G.; Miles, D.; Cogger, L. L.; Perry, G. W.

    2017-12-01

    Mechanisms that energize ions at the initial stage of ion upflow are still not well understood. We statistically investigate ionospheric ion energization and field-aligned motion at very low altitudes (330-730 km) using simultaneous plasma, magnetic field, wave electric field and optical data from the e-POP satellite. The high-time-resolution (10 ms) dataset enables us to study the micro-structures of ion heating and field-aligned ion motion. The ion temperature and field-aligned bulk flow velocity are derived from 2-D ion distribution functions measured by the SEI instrument. From March 2015 to March 2016, we've found 17 orbits (in total 24 ion heating periods) with clear ion heating signatures passing across the dayside cleft or the nightside auroral regions. Most of these events have consistent ion heating and flow velocity characteristics observed from both the SEI and IRM instruments. The perpendicular ion temperature goes up to 4.5 eV within a 2 km-wide region in some cases, in which the Radio Receiver Instrument (RRI) sees broadband extremely low frequency (BBELF) waves, demonstrating significant wave-ion heating down to as low as 350 km. The e-POP Fast Auroral Imager (FAI) and Magnetic Field (MGF) instruments show that many events are associated with active aurora and are within downward current regions. Contrary to what would be expected from mirror-force acceleration of heated ions, the majority of these heating events (17 out of 24) are associated with the core ion downflow rather than upflow. These statistical results provide us with new sights into ion heating and field-aligned flow processes at very low altitudes.

  12. Active ion temperature measurement with heating neutral beam

    International Nuclear Information System (INIS)

    Miura, Yukitoshi; Matsuda, Toshiaki; Yamamoto, Shin

    1987-03-01

    When the heating neutral-beam (hydrogen beam) is injected into a deuterium plasma, the density of neutral particles is increased locally. By using this increased neutral particles, the local ion temperature is measured by the active charge-exchange method. The analyzer is the E//B type mass-separated neutral particle energy analyzer and the measured position is about one third outside of the plasma radius. The deuterium energy spectrum is Maxwellian, and the temperature is increased from 350 eV to 900 eV during heating. Since the local hydrogen to deuterium density concentration and the density of the heating neutral-beam as well as the ion temperature can be obtained good S/N ratio, the usefulness of this method during neutral-beam heating is confirmed by this experiment. (author)

  13. Report on the FY 1999 investigational survey on the activation of oxygen electrode by ion implantation; 1999 nendo ion chunyuho ni yoru sanso denkyoku no kasseika ni kansuru kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The oxygen electrode is important as the base electrode for water electrolysis and fuel cell, but to move it, overvoltage (activated energy) in addition to equilibrium voltage is necessary, which leads to the lowering of energy efficiency. By forming the active spot by ion implantation, the lowering of overvoltage was studied. The implantation of Ru{sup +} ion in Ruthenium dioxide thin film electrode reduced the oxygen generating overvoltage by 15-20mV. Even in the oxygen reduction, activity was also increased. The chemical composition of thin film does not change by ion implantation. The increase in activity is based on a physical change which is called the surface defect formation. The layer of ion implantation is composed of microcrystals, which is thought to contribute to the formation of any active spot. Ions were implanted in Pt electrode as a practical use material, and even in the oxygen reduction of Pt, a possibility of heightening activity by ion implantation was admitted even in the oxygen reduction of Pt. The generation of high activity oxygen by ion plantation and development of oxygen reduction electrode were established as one method as a rule. (NEDO)

  14. Spectroscopic properties of Fe2+ ions at tetragonal sites-Crystal field effects and microscopic modeling of spin Hamiltonian parameters for Fe2+ (S=2) ions in K2FeF4 and K2ZnF4

    International Nuclear Information System (INIS)

    Rudowicz, C.; Piwowarska, D.

    2011-01-01

    Magnetic and spectroscopic properties of the planar antiferromagnet K 2 FeF 4 are determined by the Fe 2+ ions at tetragonal sites. The two-dimensional easy-plane anisotropy exhibited by K 2 FeF 4 is due to the zero field splitting (ZFS) terms arising from the orbital singlet ground state of Fe 2+ ions with the spin S=2. To provide insight into the single-ion magnetic anisotropy of K 2 FeF 4 , the crystal field theory and the microscopic spin Hamiltonian (MSH) approach based on the tensor method is adopted. Survey of available experimental data on the crystal field energy levels and free-ion parameters for Fe 2+ ions in K 2 FeF 4 and related compounds is carried out to provide input for microscopic modeling of the ZFS parameters and the Zeeman electronic ones. The ZFS parameters are expressed in the extended Stevens notation and include contributions up to the fourth-order using as perturbation the spin-orbit and electronic spin-spin couplings within the tetragonal crystal field states of the ground 5 D multiplet. Modeling of the ZFS parameters and the Zeeman electronic ones is carried out. Variation of these parameters is studied taking into account reasonable ranges of the microscopic ones, i.e. the spin-orbit and spin-spin coupling constants, and the energy level splittings, suitable for Fe 2+ ions in K 2 FeF 4 and Fe 2+ :K 2 ZnF 4 . Conversions between the ZFS parameters in the extended Stevens notation and the conventional ones are considered to enable comparison with the data of others. Comparative analysis of the MSH formulas derived earlier and our more complete ones indicates the importance of terms omitted earlier as well as the fourth-order ZFS parameters and the spin-spin coupling related contributions. The results may be useful also for Fe 2+ ions at axial symmetry sites in related systems, i.e. Fe:K 2 MnF 4 , Rb 2 Co 1-x Fe x F 4 , Fe 2+ :Rb 2 CrCl 4 , and Fe 2+ :Rb 2 ZnCl 4 . - Highlights: → Truncated zero field splitting (ZFS) terms for Fe 2+ in K

  15. Energetic heavy ions overcome tumor radioresistance caused by overexpression of Bcl-2

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Hara, Takamitsu; Omura-Minamisawa, Motoko; Funayama, Tomoo; Sakashita, Tetsuya; Sora, Sakura; Yokota, Yuichiro; Nakano, Takashi

    2008-01-01

    Background and purpose: Overexpression of Bcl-2 is frequent in human cancers and has been associated with radioresistance. Here we investigated the potential impact of heavy ions on Bcl-2 overexpressing tumors. Materials and methods: Bcl-2 cells (Bcl-2 overexpressing HeLa cells) and Neo cells (neomycin resistant gene-expressing HeLa cells) exposed to γ-rays or heavy ions were assessed for the clonogenic survival, apoptosis and cell cycle distribution. Results: Whereas Bcl-2 cells were more resistant to γ-rays (0.2 keV/μm) and helium ions (16.2 keV/μm) than Neo cells, heavy ions (76.3-1610 keV/μm) yielded similar survival regardless of Bcl-2 overexpression. Carbon ions (108 keV/μm) decreased the difference in the apoptotic incidence between Bcl-2 and Neo cells, and prolonged G 2 /M arrest that occurred more extensively in Bcl-2 cells than in Neo cells. Conclusions: High-LET heavy ions overcome tumor radioresistance caused by Bcl-2 overexpression, which may be explained at least in part by the enhanced apoptotic response and prolonged G 2 /M arrest. Thus, heavy-ion therapy may be a promising modality for Bcl-2 overexpressing radioresistant tumors

  16. Asymmetric fission and evaporation of C60r+ (r = 2-4) fullerene ions in ion-C60 collisions: I. Proton results

    International Nuclear Information System (INIS)

    Rentenier, A; Bordenave-Montesquieu, A; Moretto-Capelle, P; Bordenave-Montesquieu, D

    2004-01-01

    A quantitative description of the asymmetric fission (AF) of C 60 r+ fullerene ions (r = 2-4), using a multistop coincidence technique between both fragment ions, is presented. Charged light fragment (LF) and heavy fragment (HF) size distributions are discussed together with the corresponding averaged sizes. Complete AF distributions are reported for the first time for C 60 2+ ions. Simple dependences of the more probable channels and averaged fragment sizes on the partner size are found and discussed. The LF ones are not very sensitive to the parent fullerene ion charge r and vary linearly with the HF size at least for the largest ones. On the other hand the HF ones present an oscillating dependence against the LF size, the odd-numbered LFs being correlated to a smaller HF size, and depend on r. In the comparison of branching ratios between AF and the competing pure neutral evaporation channel, some emphasis is given to the behaviour of the unimolecular processes with r which are compared with the evolution of the activation energies and fission barriers. From a close examination of the individual HF distributions the production mechanisms of odd-n fragments are discussed, and the most probable dissociation channels of even-numbered C n + excited carbon clusters identified. Finally, an analysis of the neutral channels is also presented for the first time, the total neutral mass N (in carbon units) being deduced from the mass conservation law. Surprising similarities between the charged LF- and N-distributions are found. AF processes are also identified where light neutrals and ions play a symmetrical role. These findings lead us to suggest that a concerted emission of ions and heavy neutrals is probably a fission mechanism to be considered to understand the AF process of the C 60 molecule in addition to the often assumed multistep fragmentation cascade scheme

  17. Removal of copper (II) from aqueous solutions by flotation using polyaluminum chloride silicate (PAX-XL60 S) as coagulant and carbonate ion as activator.

    Science.gov (United States)

    Ghazy, S E; Mahmoud, I A; Ragab, A H

    2006-01-01

    Flotation is a separation technology for removing toxic heavy metal ions from aqueous solutions. Here a simple and rapid flotation procedure is presented for the removal of copper(II) from aqueous solutions. It is based on the use of polyaluminum chloride silicate (PAX-XL60 S) as coagulant and flocculent, carbonate ion as activator and oleic acid (HOL) as surfactant. Both ion and precipitate flotation are included depending on the solution pH. Ion and precipitate flotation in the aqueous HOL-PAX-XL60 S-Cu2+-CO3(2-) system gave powerful preferential removal of Cu2+ (F -100%) over the HOL-PAX-XL60 S-Cu2+ system containing no CO3(2+) ion (F approximately 86%). The role of CO3(2-) ion is also evident from decreasing the dose of PAX-XL60 S from 700 mg l(-1) to 200 mg l(-1). The other parameters, influencing the flotation process, namely: metal ion, surfactant and PAX-XL60 S concentrations, ionic strength, temperature and foreign ions were examined. Moreover, the procedure was successfully applied to recover Cu2+ ions from different volumes up to 11 and from natural water samples.

  18. Removal of radioactive ions from nuclear waste solutions by electrodialysis

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, S [Radia Industries Co. Ltd., Takasaki, Gunma (Japan)

    1978-10-01

    Removal of radioactive ions was studied from low and medium level radioactive waste solutions by electrodialysis using ion exchange membranes. The test solutions contained /sup 137/Cs/sup +/, /sup 106/Ru/sup 3 +/ or fission products (F.P.) as active ions and NaCl, Na/sub 2/SO/sub 4/ or Ca(NO/sub 3/)/sub 2/ as inactive coexisting salts. The decontamination factor of the active ions was in the order: /sup 137/Cs/sup +/ (greater than 99%) > /sup 90/Sr/sup 2 +/ > F.P. > /sup 106/Ru/sup 3 +/. The dialysis time required to attain the saturation was the shortest for monovalent cations K/sup +/, Cs/sup +/ and Na/sup +/, intermediate for divalent cation Sr/sup 2 +/, and the longest for trivalent cation Ru/sup 3 +/. The ratio of the decontamination factor of an active ion eta sub( a) to the desalination factor of an inactive ion eta sub( b) was nearly equal to unity for /sup 24/Na, /sup 42/K, /sup 137/Cs and /sup 90/Sr. On the other hand, the apparent selective permeability of an active ion (A/sup +/) against Na/sup +/ ion, T sub(Na/sup +/) sup( a) was higher than unity for all the active ions tested, and was in the order of /sup 137/Cs > /sup 90/Sr > /sup 42/K > /sup 24/Na, where T sub(Na/sup +/) sup( a) is defined by the ratio of ..gamma..sub( a) to ..gamma..sub(Na/sup +/) with ..gamma..sub( a) being the ratio of dilution of A in the diluate the ..gamma..sub(Na/sup +/) being that of Na/sup +/ in the same diluate. The decontamination factor of the active ions did not depend significantly on the species and concentration of the coexistent salts or on the concentration of the active ions.

  19. Generation of electrical defects in ion beam assisted deposition of Cu(In,Ga)Se2 thin film solar cells

    International Nuclear Information System (INIS)

    Zachmann, H.; Puttnins, S.; Daume, F.; Rahm, A.; Otte, K.

    2011-01-01

    Thin films of Cu(In,Ga)Se 2 (CIGS) absorber layers for thin film solar cells have been manufactured on polyimide foil in a low temperature, ion beam assisted co-evaporation process. In the present work a set of CIGS thin films was produced with varying selenium ion energy. Solar cell devices have been manufactured from the films and characterized via admittance spectroscopy and capacitance-voltage profiling to determine the influence of the selenium ion energy on the electric parameters of the solar cells. It is shown that the impact of energetic selenium ions in the CIGS deposition process leads to a change in the activation energy and defect density and also in the spatial distribution of electrically active defects. For the interpretation of the results two defect models are taken into account.

  20. Experimental ion mobility measurements in Xe-CO2

    Science.gov (United States)

    Cortez, A. F. V.; Santos, M. A. G.; Veenhof, R.; Patra, R. N.; Neves, P. N. B.; Santos, F. P.; Borges, F. I. G. M.; Conde, C. A. N.

    2017-06-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors. In the present work the method, experimental setup and results for the ion mobility measurements in Xe-CO2 mixtures are presented. The results for this mixture show the presence of only one peak for all gas ratios of Xe-CO2, low reduced electric fields, E/N, 10-25 Td (2.4-6.1 kV·cm-1·bar-1), low pressures 6-8 Torr (8-10.6 mbar), at room temperature.

  1. Study on fast ion loss in HL-2A tokamak

    International Nuclear Information System (INIS)

    Liu Yi; Sun Tengfei; Ji Xiaoquan

    2012-01-01

    Experiments with a high-energy deuterium neutral beam (NB) injection (30 keV, about 0.6 MW) were performed on the HL-2A tokamak. Analysis of neutron decay following the NB 'blip' injection indicates that tangentially injected beam ions are well confined, slowing down classically in the HL-2A. Anomalous losses of beam ions were observed when a beta-induced Alfven acoustic (BAAE) mode was present in the plasma. Such a high energetic particle driven mode led to fast-ion loss, showing a strong influence of the energetic particle driven mode on the fast-ion transport. (authors)

  2. CO2 laser photo-induced decomposition of ammoniated ammonium ions

    International Nuclear Information System (INIS)

    Ikezoe, Yasumasa; Soga, Takesi; Suzuki, Kazuya; Moriyama, Noboru; Ohno, Shin-ichi

    1995-01-01

    Photo-induced decomposition of ammoniated (clustered) ammonium ions was studied using a CO 2 laser to excite vibrational levels of the cluster ion. A tandem mass spectrometer (TMS) was installed with two quadrupole mass filters, a corona discharge ionization chamber, and a series of einzel lenses. Cluster ions of NH 4 + ·nNH 3 with n=1-7 were formed in TMS, and found to decompose at the frequency of 1077 cm -1 to an extent in proportional to laser intensity. CO 2 laser between 925 and 1055 do not decompose the cluster ions with laser intensities examined. (author)

  3. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity.

    Science.gov (United States)

    Cai, Xiang; Zhang, Bin; Liang, Yuanyuan; Zhang, Jinglin; Yan, Yinghui; Chen, Xiaoyin; Wu, Zhimin; Liu, Hongxi; Wen, Shuiping; Tan, Shaozao; Wu, Ting

    2015-08-01

    To improve the antibacterial activity of Cu(2+), a series of Cu(2+) and/or Nd(3+)-modified layered α-zirconium phosphate (ZrP) was prepared and characterized, and the antibacterial activities of the prepared Cu(2+) and/or Nd(3+)-modified ZrP on Gram-negative Escherichia coli were investigated. The results showed that the basal spacing of ZrP was not obviously affected by the incorporation of Cu(2+), but the basal spacing of the modified ZrP changed into an amorphous state with increasing additions of Nd(3+). An antibacterial mechanism showed that Cu(2+) and Nd(3+) could enter into E. coli cells, leading to changes in ion concentrations and leakage of DNA, RNA and protein. The Cu(2+)- and Nd(3+)-modified ZrP, combining the advantages of Cu(2+) and Nd(3+), displayed excellent additive antibacterial activity and lower cytotoxicity, suggesting the great potential application as an antibacterial powder for microbial control. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  4. Rare-earth-ion doped KY(WO4)2 optical waveguides grown by liquid-phase epitaxy

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Apostolopoulos, V.; Utke, U.; Pollnau, Markus

    High-quality KY(WO4)2 thin layers doped with rare-earth-ions were grown using liquid-phase epitaxy. A low-temperature mixture of chlorides was used as the flux and undoped KY(WO4)2 crystals as substrates. The crystalline layers possessed thicknesses up to 10 µm. Passive and active planar waveguiding

  5. Reticular V2O5·0.6H2O Xerogel as Cathode for Rechargeable Potassium Ion Batteries.

    Science.gov (United States)

    Tian, Bingbing; Tang, Wei; Su, Chenliang; Li, Ying

    2018-01-10

    Potassium ion batteries (KIBs), because of their low price, may exhibit advantages over lithium ion batteries as potential candidates for large-scale energy storage systems. However, owing to the large ionic radii of K-ions, it is challenging to find a suitable intercalation host for KIBs and thus the rechargeable KIB electrode materials are still largely unexplored. In this work, a reticular V 2 O 5 ·0.6H 2 O xerogel was synthesized via a hydrothermal process as a cathode material for rechargeable KIBs. Compared with the orthorhombic crystalline V 2 O 5 , the hydrated vanadium pentoxide (V 2 O 5 ·0.6H 2 O) exhibits the ability of accommodating larger alkali metal ions of K + because of the enlarged layer space by hosting structural H 2 O molecules in the interlayer. By intercalation of H 2 O into the V 2 O 5 layers, its potassium electrochemical activity is significantly improved. It exhibits an initial discharge capacity of ∼224.4 mA h g -1 and a discharge capacity of ∼103.5 mA h g -1 even after 500 discharge/charge cycles at a current density of 50 mA g -1 , which is much higher than that of the V 2 O 5 electrode without structural water. Meanwhile, X-ray diffraction and X-ray photoelectron spectroscopy combined with energy dispersive spectroscopy techniques are carried out to investigate the potassiation/depotassiation process of the V 2 O 5 ·0.6H 2 O electrodes, which confirmed the potassium intercalation storage mechanisms of this hydrated material. The results demonstrate that the interlayer-spacing-enlarged V 2 O 5 ·0.6H 2 O is a promising cathode candidate for KIBs.

  6. Multisite Ion Model in Concentrated Solutions of Divalent Cations (MgCl2 and CaCl2): Osmotic Pressure Calculations

    Science.gov (United States)

    2015-01-01

    Accurate force field parameters for ions are essential for meaningful simulation studies of proteins and nucleic acids. Currently accepted models of ions, especially for divalent ions, do not necessarily reproduce the right physiological behavior of Ca2+ and Mg2+ ions. Saxena and Sept (J. Chem. Theor. Comput.2013, 9, 3538–3542) described a model, called the multisite-ion model, where instead of treating the ions as an isolated sphere, the charge was split into multiple sites with partial charge. This model provided accurate inner shell coordination of the ion with biomolecules and predicted better free energies for proteins and nucleic acids. Here, we expand and refine the multisite model to describe the behavior of divalent ions in concentrated MgCl2 and CaCl2 electrolyte solutions, eliminating the unusual ion–ion pairing and clustering of ions which occurred in the original model. We calibrate and improve the parameters of the multisite model by matching the osmotic pressure of concentrated solutions of MgCl2 to the experimental values and then use these parameters to test the behavior of CaCl2 solutions. We find that the concentrated solutions of both divalent ions exhibit the experimentally observed behavior with correct osmotic pressure, the presence of solvent separated ion pairs instead of direct ion pairs, and no aggregation of ions. The improved multisite model for (Mg2+ and Ca2+) can be used in classical simulations of biomolecules at physiologically relevant salt concentrations. PMID:25482831

  7. Heavy-ion-induced luminescence of amorphous SiO2 during nanoparticle formation

    International Nuclear Information System (INIS)

    Bandourko, Vassili; Umeda, Naoki; Plaksin, Oleg; Kishimoto, Naoki

    2005-01-01

    Silica glass was implanted with negative 60 keV Cu ions at an ion flux from 5 to 75 μA/cm 2 up to a fluence of 1 x 10 17 ions/cm 2 at initial sample temperatures of 300, 573 and 773 K. Spectra of ion-induced photon emission (IIPE) were collected in situ in the range from 250 to 850 nm. Optical absorption spectra of implanted specimens were ex situ measured in the range from 190 to 2500 nm. IIPE spectra showed a broad band centered around 560 nm (2.2 eV) that was assigned to Cu + solutes. The band appeared at the onset of irradiation, increased in intensity up to a fluence of about 5 x 10 15 ions/cm 2 and then gradually decreased indicating three stage of the ion beam synthesis of nanoclusters: accumulation of implants, nucleation and growth nanoclusters. The IIPE intensity normalized on the ion flux is independent on the ion flux below 20 μA/cm 2 at higher fluences. The intensity of the band increased with increasing samples temperature, when optical absorption spectra reveal the increase of Cu nanoparticles size

  8. Fragmentations and rearrangements of metastable [C2H5OS]+ ions

    NARCIS (Netherlands)

    de Vries, Marcel; Oudman, D; Weringa, WD

    1992-01-01

    Several [C2H5OS]+ ions with different structures were generated from the appropriate precursors and their metastable ion spectra were determined. Deuterium labelled analogues of some of the [C2H5OS]+ ions were used to elucidate the nature of the observed fragmentations and their mechanisms.

  9. Effect of the reference solution in the measurement of ion activity coefficients using cells with transference at T = 298.15 K

    International Nuclear Information System (INIS)

    Lladosa, Estela; Arce, Alberto; Wilczek-Vera, Grazyna; Vera, Juan H.

    2010-01-01

    This work reports individual activity coefficients of ions at T = 298.15 K in aqueous solutions obtained from voltage values of the respective half-cell ion-selective-electrode and a single-junction Ag-AgCl reference electrode, filled with different reference solutions at different concentrations. For potassium and chloride ions in KCl aqueous solutions, reference solutions of KCl, NaCl, or CsCl were used. For sodium and chloride ions in aqueous NaCl solutions, reference solutions of CsCl were used. Experimental runs were performed at molalities (1, 2, and 3) m of the reference solution. The concentration of the sample solution was increased, starting from around 1 . 10 -3 m, up to the molality of the reference solution. The values of activity coefficients are calculated using the Henderson equation to estimate the liquid-junction potential. Results show that the ionic activity coefficients are independent of the nature and concentration of reference solution.

  10. Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein.

    Directory of Open Access Journals (Sweden)

    Guowei Wei

    Full Text Available Influenza A virus poses serious health threat to humans. Neutralizing antibodies against the highly conserved M2 ion channel is thought to offer broad protection against influenza A viruses. Here, we screened synthetic Camel single-domain antibody (VHH libraries against native M2 ion channel protein. One of the isolated VHHs, M2-7A, specifically bound to M2-expressed cell membrane as well as influenza A virion, inhibited replication of both amantadine-sensitive and resistant influenza A viruses in vitro, and protected mice from a lethal influenza virus challenge. Moreover, M2-7A showed blocking activity for proton influx through M2 ion channel. These pieces of evidence collectively demonstrate for the first time that a neutralizing antibody against M2 with broad specificity is achievable, and M2-7A may have potential for cross protection against a number of variants and subtypes of influenza A viruses.

  11. Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation

    DEFF Research Database (Denmark)

    Elling, Christian E; Frimurer, Thomas M; Gerlach, Lars-Ole

    2006-01-01

    for monoamine binding in TM-III, was used as the starting point to engineer activating metal ion sites between the extracellular segments of the beta2-adrenergic receptor. Cu(II) and Zn(II) alone and in complex with aromatic chelators acted as potent (EC50 decreased to 0.5 microm) and efficacious agonists...

  12. Reactions of POxCly- ions with O2(a 1[Delta]g), H2O, and Cl2 at 298 K

    Science.gov (United States)

    Midey, Anthony J.; Dotan, Itzhak; Viggiano, A. A.

    2008-06-01

    The rate constants and product branching ratios for the reactions of phosphorus oxychloride anions, POxCly- for x = 1-2 and y = 1-3, with O2(a 1[Delta]g), Cl2, and H2O have been measured in a selected ion flow tube (SIFT) at 298 K. A mixture of O2(a 1[Delta]g) in O2 has been produced using a recently designed chemical singlet oxygen generator (sparger) with an emission detection scheme adopted previously in our laboratory. The experiments continue a series of investigations into the oxidation reactions of POxCly- ions, searching for pathways to the terminal PO2- and PO3- ions observed in combustion chemistry with POCl3 present. None of the POxCly- ions react with H2O or O2(a 1[Delta]g). The O2(a 1[Delta]g) rate constants have a limit of <1 × 10-11 cm3 s-1, except for PO2Cl- where a limit of <5 × 10-11 cm3 s-1 has been determined. The H2O rate constants have limits of <1 × 10-11 cm3 s-1. All of the POxCly- ions react with Cl2, excluding PO3- and PO2Cl2-. Depending on the reactant ion, Cl-, Cl2- or PO2Cl2- product ions form.

  13. He2+ molecular ion and the He- atomic ion in strong magnetic fields

    Science.gov (United States)

    Vieyra, J. C. Lopez; Turbiner, A. V.

    2017-08-01

    We study the question of existence, i.e., stability with respect to dissociation of the spin-quartet permutation- and reflection-symmetric 4(-3) +g (Sz=-3 /2 ,M =-3 ) state of the (α α e e e ) Coulomb system: the He2 + molecular ion, placed in a magnetic field 0 ≤B ≤10 000 a.u. We assume that the α particles are infinitely massive (Born-Oppenheimer approximation of zero order) and adopt the parallel configuration, when the molecular axis and the magnetic field direction coincide, as the optimal configuration. The study of the stability is performed variationally with a physically adequate trial function. To achieve this goal, we explore several helium-containing compounds in strong magnetic fields, in particular; we study the spin-quartet ground state of the He- ion and the ground (spin-triplet) state of the helium atom, both for a magnetic field in 100 ≤B ≤10 000 a.u. The main result is that the He2 + molecular ion in the state 4(-3) +g is stable towards all possible decay modes for magnetic fields B ≳120 a .u . and with the magnetic field increase the ion becomes more tightly bound and compact with a cigar-type form of electronic cloud. At B =1000 a .u . , the dissociation energy of He2 + into He-+α is ˜702 eV and the dissociation energy for the decay channel to He +α +e is ˜729 eV , and both energies are in the energy window for one of the observed absorption features of the isolated neutron star 1E1207.4-5209.

  14. Hierarchical SnO2-Graphite Nanocomposite Anode for Lithium-Ion Batteries through High Energy Mechanical Activation

    International Nuclear Information System (INIS)

    Ng, Vincent Ming Hong; Wu, Shuying; Liu, Peijiang; Zhu, Beibei; Yu, Linghui; Wang, Chuanhu; Huang, Hui; Xu, Zhichuan J.; Yao, Zhengjun; Zhou, Jintang; Que, Wenxiu; Kong, Ling Bing

    2017-01-01

    Highlights: •A simple and scalable process to concomitant downsizing to nanoscale, carbon coating, inclusion of voids and conductive network of graphite. •Using tungsten carbide milling media and 80:1 ball to powder ratio, micron SnO 2 particles are comminuted to nanosized SnO 2 crystallites. •Hierarchical structure of carbon-coated SnO2 nanoclusters anchored on thin graphite sheets are prepared. •Impressive reversible capacity of 725 mAh g −1 is achieved by ball milling a mixture of SnO 2 with 20 wt. % graphite for 20 h. •Synthesis parameters such as graphite content and milling time are systematically examined. -- Abstract: Development of novel electrode materials with unique architectural designs is necessary to attain high power and energy density lithium-ion batteries (LIBs). SnO 2 , with high theoretical capacity of 1494 mAh g −1 , is a promising candidate anode material, which has been explored with various strategies, such as dimensional reduction, morphological modifications and composite formation. Unfortunately, most of the SnO 2 -based electrodes are prepared by using complex chemical synthesis methods, which are not feasible to scale up for practical applications. In addition, concomitant irrecoverable initial capacity loss and consequently poor initial Coulombic efficiency still persistently plagued these SnO 2 -based anodes. To overcome hitherto conceived irreversible formation of Li 2 O by conversion reaction, to fully harness its theoretical capacity, this work demonstrates that a hierarchical structured SnO 2 -C nanocomposite with 68.5% initial Coulombic efficiency and reversible capacity of 725 mAh g −1 can be derived from the mixtures of SnO 2 and graphite, by using low cost industrial compatible high energy ball milling activation.

  15. Study of radio-active ions in the atmosphere

    International Nuclear Information System (INIS)

    Renoux, A.

    1965-01-01

    A comparative study is made of active, deposits of radon and thoron in suspension in the atmosphere by means of α radiation counting, using ZELENY tubes, scattering equipment, filter papers or membranes. It has been possible to show the existence of small and large ions which are negative and positive, as well as of neutral radio-active nuclei; their properties are studied. A theoretical interpretation of the results is presented. The average content of radon (using the Ra A concentration) and of Th B in the air has been determined. The radioactive equilibrium between radon and its daughter products in atmospheric air are examined. The techniques developed for active radon and thoron deposits are applied to the study of artificial radio-activity, the analyses being carried out by means of γ spectrometry. (author) [fr

  16. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles

    International Nuclear Information System (INIS)

    Ge, Fei; Li, Meng-Meng; Ye, Hui; Zhao, Bao-Xiang

    2012-01-01

    We prepared novel Fe 3 O 4 magnetic nanoparticles (MNPs) modified with 3-aminopropyltriethoxysilane (APS) and copolymers of acrylic acid (AA) and crotonic acid (CA). The MNPs were characterized by transmission electron microscopy, X-ray diffraction, infra-red spectra and thermogravimetric analysis. We explored the ability of the MNPs for removing heavy metal ions (Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ ) from aqueous solution. We investigated the adsorption capacity of Fe 3 O 4 -APS-AA-co-CA at different pH in solution and metal ion uptake capacity as a function of contact time and metal ion concentration. Moreover, adsorption isotherms, kinetics and thermodynamics were studied to understand the mechanism of the synthesized MNPs adsorbing metal ions. In addition, we evaluated the effect of background electrolytes on the adsorption. Furthermore, we explored desorption and reuse of MNPs. Fe 3 O 4 -APS-AA-co-CA MNPs are excellent for removal of heavy metal ions such as Cd 2+ , Zn 2+ , Pb 2+ and Cu 2+ from aqueous solution. Furthermore, the MNPs could efficiently remove the metal ions with high maximum adsorption capacity at pH 5.5 and could be used as a reusable adsorbent with convenient conditions.

  17. The nature of single-ion activity coefficients calculated from potentiometric measurements on cells with liquid junctions

    Energy Technology Data Exchange (ETDEWEB)

    Zarubin, Dmitri P., E-mail: dmitri.zarubin@mtu-net.ru [Department of Physical and Collod Chemistry, Moscow State University of Technology and Management, 73 Zemlyanoi Val, Moscow 109803 (Russian Federation)

    2011-08-15

    Highlights: > Problem of ionic activity coefficients, determined by potentiometry, is reconsidered. > They are found to be functions of mean activity coefficients and transport numbers of ions. > The finding is verified by calculations and comparing the results with reported data. > Calculations are performed for systems with single electrolytes and binary mixtures. - Abstract: Potentiometric measurements on cells with liquid junctions are sometimes used for calculations of single-ion activity coefficients in electrolyte solutions, the incidence of this being increased recently. As surmised by Guggenheim in the 1930s, such coefficients (of ions i), {gamma}{sub i}, are actually complicated functions of mean ionic activity coefficients, {gamma}{sub {+-}}, and transport numbers of ions, t{sub i}. In the present paper specific functions {gamma}{sub i}({gamma}{sub {+-}}, t{sub i}) are derived for a number of cell types with an arbitrary mixture of strong electrolytes in a one-component solvent in the liquid-junction system. The cell types include cells with (i) identical electrodes, (ii) dissimilar electrodes reversible to the same ions, (iii) dissimilar electrodes reversible to ions of opposite charge signs, (iv) dissimilar electrodes reversible to different ions of the same charge sign, and (v) identical reference electrodes and an ion-selective membrane permeable to ions of only one type. Pairs of functions for oppositely charged ions are found to be consistent with the mean ionic activity coefficients as would be expected for pairs of the proper {gamma}{sub i} quantities by definition of {gamma}{sub {+-}}. The functions are tested numerically on some of the reported {gamma}{sub i} datasets that are the more tractable. A generally good agreement is found with data reported for cells with single electrolytes HCl and KCl in solutions, and with binary mixtures in the liquid-junction systems of KCl from the reference solutions and NaCl and HCl from the test solutions. It

  18. Improving the electrocatalytic performance of carbon nanotubes for VO"2"+/VO_2"+ redox reaction by KOH activation

    International Nuclear Information System (INIS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-01-01

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO"2"+/VO_2"+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO"2"+/VO_2"+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO"2"+/VO_2"+ redox reaction for VRFB system.

  19. Characterization of active ion transport across primary rabbit corneal epithelial cell layers (RCrECL) cultured at an air-interface.

    Science.gov (United States)

    Chang-Lin, Joan-En; Kim, Kwang-Jin; Lee, Vincent H L

    2005-06-01

    Previously, we reported the development of a primary culture model of tight rabbit corneal epithelial cell layers (RCrECL) characterizing bioelectric parameters, morphology, cytokeratin, and passive permeability. In the present study, we specifically evaluated the active ion transport processes of RCrECL cultured from either pigmented or albino rabbits. Primary cultured RCrECL were grown at an air-interface on Clear-Snapwells precoated with collagen/fibronectin/laminin and mounted in a modified Ussing-type chamber for the evaluation of their active ion transport processes under short-circuited conditions. Contribution of active Na(+) and Cl(-) transport to overall short-circuit current (I(sc)) was evaluated by removing Na(+) and Cl(-), respectively, from bathing fluids of RCrECL and measurements of net fluxes of Na(+) and Cl(-) using (22)Na and (36)Cl, respectively. Amiloride and benzamil were used to determine the role of apical Na(+)-channel activities to net Na(+) fluxes. N-phenylanthranilic acid (NPAA), ouabain, BaCl(2) and bumetanide were used to determine the role of basolateral Na,K-ATPase, apical Cl(-)-channel, and basolateral K(+)-channel and Na(+)(K(+))2Cl(-)-cotransporter activities, respectively, in active ion transport across RCrECL. I(sc) of RCrECL derived from pigmented rabbits was comprised of 64+/-2% and 44+/-5% for active Na(+) and Cl(-) transport, respectively, consistent with net Na(+) absorption and Cl(-) secretion of 0.062+/-0.006 and 0.046+/-0.008 muEq/cm(2)/hr estimated from radionuclide fluxes. Apical amiloride and benzamil inhibited I(sc) by up to approximately 50% with an IC(50) of 1 and 0.1 microm, respectively, consistent with participation of apical epithelial Na(+)-channels to net Na(+) absorption across RCrECL cultured from pigmented rabbits. Addition of ouabain to the basolateral, NPAA to the apical, BaCl(2) to the basolateral and bumetanide to basolateral fluid decreased I(sc) by 86+/-1.5%, 53+/-3%, 18+/-1.8% and 13+/-1.9% in RCr

  20. Adsorption of Cu 2+ , As 3+ and Cd 2+ ions from aqueous solution ...

    African Journals Online (AJOL)

    The adsorption of Cu2+, Cd2+ and As3+ ions on eggshell from aqueous solution was studied under batch conditions at 30, 40, 50 and 60oC and concentrations of 10, 20, 30, 60 and 80 mg/l. The partition coefficient for the ions between aqueous solution and chicken eggshell increased with time and with increase in the ...

  1. Adsorption of manganese(II) ions by EDTA-treated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A.Y.; Mazyck, D.W. [Jones Edmunds & Associates, Gainesville, FL (United States)

    2009-07-01

    The adsorption of manganese(II) ions from aqueous solution onto three different granular activated carbons treated with ethylenediamine tetraacetic acid (EDTA) and its sodium salt was investigated. Characterization of the chelate-treated carbons showed that EDTA altered the physical and chemical properties of the sorbents relative to their untreated counterparts. Furthermore, the modified sorbents exhibited a heightened capacity towards the adsorption of Mn(II) ions from aqueous media. Manganese(II) ion removal increased from 0 to 6.5 mg/g for the lignite coal-based sorbent, from 3.5 to 14.7 mg/g for the wood-based sorbent and from 1.3 to 7.9 mg/g for the bituminous coal-based sorbent. The increased removal is attributed, in part, to the creation of Lewis base sites that participate in covalent interactions and hydrolysis reactions.

  2. Influence of activated carbon surface acidity on adsorption of heavy metal ions and aromatics from aqueous solution

    International Nuclear Information System (INIS)

    Sato, Sanae; Yoshihara, Kazuya; Moriyama, Koji; Machida, Motoi; Tatsumoto, Hideki

    2007-01-01

    Adsorption of toxic heavy metal ions and aromatic compounds onto activated carbons of various amount of surface C-O complexes were examined to study the optimum surface conditions for adsorption in aqueous phase. Cadmium(II) and zinc(II) were used as heavy metal ions, and phenol and nitrobenzene as aromatic compounds, respectively. Activated carbon was de-ashed followed by oxidation with nitric acid, and then it was stepwise out-gassed in helium flow up to 1273 K to gradually remove C-O complexes introduced by the oxidation. The oxidized activated carbon exhibited superior adsorption for heavy metal ions but poor performance for aromatic compounds. Both heavy metal ions and aromatics can be removed to much extent by the out-gassed activated carbon at 1273 K. Removing C-O complexes, the adsorption mechanisms would be switched from ion exchange to Cπ-cation interaction for the heavy metals adsorption, and from some kind of oxygen-aromatics interaction to π-π dispersion for the aromatics

  3. Electrochemical ion-exchange for medium active liquid waste treatment

    International Nuclear Information System (INIS)

    Bridger, N.J.; Turner, A.D.

    1987-01-01

    Electrochemical ion-exchange has already been demonstrated to be a robust, effective process for the treatment of active liquid wastes -with high decontamination and volume reduction factors, and only a low energy requirement. The primary aim of this new programme is to scale up this process - initially to 0.1m 3 /h, and ultimately to 1 3 m/h. A new 0.4m 2 electrode module has been designed and constructed, together with 3m 3 feed tanks for the first phase of this work. Further development work is also being carried out on alternative electrode designs and fabrication methods, as well as new exchange media (including inorganic absorbers and organic chelating resins) in order to optimize selectivity performance. (author)

  4. Valent states of ions in CuCrsub(2(1-x))Vsub(2x)Ssub(4) solid solutions

    International Nuclear Information System (INIS)

    Prokopenko, V.K.; Prokhorenko, Yu.I.; Shemyakov, A.A.; Menshchikova, T.K.; Gubskaya, G.F.; Kalinnikov, V.T.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1982-01-01

    Using the NMR method electron configurations of ions in copper-chromium chalcogenide spinels, in which part of chromium ions is substituted for by vanadium ions: CuCrsub(2(1-x))Vsub(2x)Ssub(4) (x=0; 0.025; 0.05), have been studied. In CuCrsub(2(1-x))Vsub(2x)Ssub(4) at x [ru

  5. Mg2+ Effect on Argonaute and RNA Duplex by Molecular Dynamics and Bioinformatics Implications

    Science.gov (United States)

    Nam, Seungyoon; Ryu, Hyojung; Son, Won-joon; Kim, Yon Hui; Kim, Kyung Tae; Balch, Curt; Nephew, Kenneth P.; Lee, Jinhyuk

    2014-01-01

    RNA interference (RNAi), mediated by small non-coding RNAs (e.g., miRNAs, siRNAs), influences diverse cellular functions. Highly complementary miRNA-target RNA (or siRNA-target RNA) duplexes are recognized by an Argonaute family protein (Ago2), and recent observations indicate that the concentration of Mg2+ ions influences miRNA targeting of specific mRNAs, thereby modulating miRNA-mRNA networks. In the present report, we studied the thermodynamic effects of differential [Mg2+] on slicing (RNA silencing cycle) through molecular dynamics simulation analysis, and its subsequent statistical analysis. Those analyses revealed different structural conformations of the RNA duplex in Ago2, depending on Mg2+ concentration. We also demonstrate that cation effects on Ago2 structural flexibility are critical to its catalytic/functional activity, with low [Mg2+] favoring greater Ago2 flexibility (e.g., greater entropy) and less miRNA/mRNA duplex stability, thus favoring slicing. The latter finding was supported by a negative correlation between expression of an Mg2+ influx channel, TRPM7, and one miRNA’s (miR-378) ability to downregulate its mRNA target, TMEM245. These results imply that thermodynamics could be applied to siRNA-based therapeutic strategies, using highly complementary binding targets, because Ago2 is also involved in RNAi slicing by exogenous siRNAs. However, the efficacy of a siRNA-based approach will differ, to some extent, based on the Mg2+ concentration even within the same disease type; therefore, different siRNA-based approaches might be considered for patient-to-patient needs. PMID:25330448

  6. Transport of oxygen ions in Er doped La2Mo2O9 oxide ion conductors: Correlation with microscopic length scales

    Science.gov (United States)

    Paul, T.; Ghosh, A.

    2018-01-01

    We report oxygen ion transport in La2-xErxMo2O9 (0.05 ≤ x ≤ 0.25) oxide ion conductors. We have measured conductivity and dielectric spectra at different temperatures in a wide frequency range. The mean square displacement and spatial extent of non-random sub-diffusive regions are estimated from the conductivity spectra and dielectric spectra, respectively, using linear response theory. The composition dependence of the conductivity is observed to be similar to that of the spatial extent of non-random sub-diffusive regions. The behavior of the composition dependence of the mean square displacement of oxygen ions is opposite to that of the conductivity. The attempt frequency estimated from the analysis of the electric modulus agrees well with that obtained from the Raman spectra analysis. The full Rietveld refinement of X-ray diffraction data of the samples is performed to estimate the distance between different oxygen lattice sites. The results obtained from such analysis confirm the ion hopping within the spatial extent of non-random sub-diffusive regions.

  7. Redox‐Active Separators for Lithium‐Ion Batteries

    Science.gov (United States)

    Pan, Ruijun; Ruan, Changqing; Edström, Kristina; Strømme, Maria

    2017-01-01

    Abstract A bilayered cellulose‐based separator design is presented that can enhance the electrochemical performance of lithium‐ion batteries (LIBs) via the inclusion of a porous redox‐active layer. The proposed flexible redox‐active separator consists of a mesoporous, insulating nanocellulose fiber layer that provides the necessary insulation between the electrodes and a porous, conductive, and redox‐active polypyrrole‐nanocellulose layer. The latter layer provides mechanical support to the nanocellulose layer and adds extra capacity to the LIBs. The redox‐active separator is mechanically flexible, and no internal short circuits are observed during the operation of the LIBs, even when the redox‐active layer is in direct contact with both electrodes in a symmetric lithium–lithium cell. By replacing a conventional polyethylene separator with a redox‐active separator, the capacity of the proof‐of‐concept LIB battery containing a LiFePO4 cathode and a Li metal anode can be increased from 0.16 to 0.276 mA h due to the capacity contribution from the redox‐active separator. As the presented redox‐active separator concept can be used to increase the capacities of electrochemical energy storage systems, this approach may pave the way for new types of functional separators. PMID:29593967

  8. Novel Potassium-Ion Hybrid Capacitor Based on an Anode of K2Ti6O13 Microscaffolds.

    Science.gov (United States)

    Dong, Shengyang; Li, Zhifei; Xing, Zhenyu; Wu, Xianyong; Ji, Xiulei; Zhang, Xiaogang

    2018-05-09

    To fill the gap between batteries and supercapacitors requires integration of the following features in a single system: energy density well above that of supercapacitors, cycle life much longer than Li-ion batteries, and low cost. Along this line, we report a novel nonaqueous potassium-ion hybrid capacitor (KIC) that employs an anode of K 2 Ti 6 O 13 (KTO) microscaffolds constructed by nanorods and a cathode of N-doped nanoporous graphenic carbon (NGC). K 2 Ti 6 O 13 microscaffolds are studied for potential applications as the anode material in potassium-ion storage for the first time. This material exhibits an excellent capacity retention of 85% after 1000 cycles. In addition, the NGC//KTO KIC delivers a high energy density of 58.2 Wh kg -1 based on the active mass in both electrodes, high power density of 7200 W kg -1 , and outstanding cycling stability over 5000 cycles. The usage of K ions as the anode charge carrier instead of Li ions and the amenable performance of this device suggest that hybrid capacitor devices may welcome a new era of beyond lithium.

  9. Photocatalytic activity of ferric oxide/titanium dioxide nanocomposite films on stainless steel fabricated by anodization and ion implantation

    Science.gov (United States)

    Zhan, Wei-ting; Ni, Hong-wei; Chen, Rong-sheng; Yue, Gao; Tai, Jun-kai; Wang, Zi-yang

    2013-08-01

    A simple surface treatment was used to develop photocatalytic activity for stainless steel. AISI 304 stainless steel specimens after anodization were implanted by Ti ions at an extracting voltage of 50 kV with an implantation dose of 3 × 1015 atoms·cm-2 and then annealed in air at 450°C for 2 h. The morphology was observed by scanning electron microscopy. The microstructure was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The photocatalytic degradation of methylene blue solution was carried out under ultraviolet light. The corrosion resistance of the stainless steel was evaluated in NaCl solution (3.5 wt%) by electrochemical polarization curves. It is found that the Ti ions depth profile resembles a Gaussian distribution in the implanted layer. The nanostructured Fe2O3/TiO2 composite film exhibits a remarkable enhancement in photocatalytic activity referenced to the mechanically polished specimen and anodized specimen. Meanwhile, the annealed Ti-implanted specimen remains good corrosion resistance.

  10. Positron-annihilation-induced ion desorption from TiO2(110)

    Science.gov (United States)

    Tachibana, T.; Hirayama, T.; Nagashima, Y.

    2014-05-01

    We have investigated the positron-stimulated desorption of ions from a TiO2(110) surface. Desorbed O+ ions were detected in coincidence with the emission of annihilation γ rays. The energy dependence of the ion yields shows that the O+ ions were detected at energies much lower than the previously reported threshold for electron impact desorption corresponding to the excitation energy of Ti(3p) core electrons. These results provide evidence that core-hole creation by positron annihilation with electrons in the core levels leads to ion desorption.

  11. Cathodoluminescence and ion beam analysis of ion-implanted combinatorial materials libraries on thermally grown SiO2

    International Nuclear Information System (INIS)

    Chen, C.-M.; Pan, H.C.; Zhu, D.Z.; Hu, J.; Li, M.Q.

    1999-01-01

    A method combining ion implantation and physical masking technique has been used to generate material libraries of various ion-implanted samples. Ion species of C, Ga, N, Pb, Sn, Y have been sequentially implanted to an SiO 2 film grown on a silicon wafer through combinatorial masks and consequently a library of 64 (2 6 ) samples is generated by 6 masking combinations. This approach offers rapid synthesis of samples with potential new compounds formed in the matrix, which may have specific luminescent properties. The depth-resolved cathodoluminescence (CL) measurements revealed some specific optical property in the samples correlated with implanted ion distributions. A marker-based technique is developed for the convenient location of sample site in the analysis of Rutherford backscattering spectrometry (RBS) and proton elastic scattering (PES), intended to characterize rapidly the ion implanted film libraries. These measurements demonstrate the power of nondestructively and rapidly characterizing composition and the inhomogeneity of the combinatorial film libraries, which may determine their physical properties

  12. Development of surface plasmon resonance sensor for determining zinc ion using novel active nanolayers as probe.

    Science.gov (United States)

    Fen, Yap Wing; Yunus, W Mahmood Mat; Talib, Zainal Abidin; Yusof, Nor Azah

    2015-01-05

    In this study, novel active nanolayers in combination with surface plasmon resonance (SPR) system for zinc ion (Zn(2+)) detection has been developed. The gold surface used for the SPR system was modified with the novel developed active nanolayers, i.e. chitosan and chitosan-tetrabutyl thiuram disulfide (chitosan-TBTDS). Both chitosan and chitosan-TBTDS active layers were fabricated on the gold surface by spin coating technique. The system was used to monitor SPR signal for Zn(2+) in aqueous media with and without sensitivity enhancement by TBTDS. For both active nanolayers, the shift of resonance angle is directly proportional to the concentration of Zn(2+) in aqueous media. The higher shift of resonance angle was obtained for chitosan-TBTDS active nanolayer due to a specific binding of TBTDS with Zn(2+). The chitosan-TBTDS active nanolayer enhanced the sensitivity of detection down to 0.1 mg/l and also induced a selective detection towards Zn(2+). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mesospheric H2O and H2O2 densities inferred from in situ positive ion composition measurement

    Science.gov (United States)

    Kopp, E.

    1984-01-01

    A model for production and loss of oxonium ions in the high-latitude D-region is developed, based on the observed excess of 34(+) which has been interpreted as H2O2(+). The loss mechanism suggested in the study is the attachment of N2 and/or CO2 in three-body reactions. Furthermore, mesospheric water vapor and H2O2 densities are inferred from measurements of four high-latitude ion compositions, based on the oxonium model. Mixing ratios of hydrogen peroxide of up to two orders of magnitude higher than previous values were obtained. A number of reactions, reaction constants, and a block diagram of the oxonium ion chemistry in the D-region are given.

  14. An analysis of plasma ion toroidal rotation during large amplitude MHD activity in JET

    International Nuclear Information System (INIS)

    Snipes, J.A.; Esch, H.P.L. de; Lazzaro, E.; Stork, D.; Hellermann, M. von; Galvao, R.; Hender, T.C.; Zasche, D.

    1989-01-01

    A detailed study of plasma ion toroidal rotation in JET during large amplitude MHD activity has revealed a strong viscous force that couples plasma ions to MHD modes. Depending on the MHD modes present, this force can couple across all of the plasma cross section, across only the central region, roughly within the q=1 surface, or across only the outer region outside the q=1.5 surface. The force acts to flatten the ion toroidal rotation frequency profile, measured by the JET active charge exchange spectroscopy diagnostic, across the coupled region of plasma. The frequency of rotation in this region agrees with the MHD oscillation frequency measured by magnetic pick-up coils at the wall. The strength of the force between the ions and modes becomes evident during high power NBI when the mode locks and drags the ion toroidal rotation frequency to zero, within the errors of the measurements. The present theories of plasma rotation either ignore MHD effects entirely, consider only moderate n toroidal field ripple, or low n ripple effects. (author) 7 refs., 3 figs

  15. SORPTION OF Cu2+ IONS ONTO DIATOMITE CONSTITUENTS

    Directory of Open Access Journals (Sweden)

    Vasile Rusu

    2009-06-01

    Full Text Available Studies of the sorption capacity towards Cu2+ ions of diatomite from the Ghidirim location of RM, as well as of the extracted clay phase are presented. Separated clay fraction from diatomic material is clean enough, and especially is rich in montmorillonite. Maximum sorption capacity for studied clay fraction is achieved by rising the temperature of calcination treatment up to 200oC. At higher temperatures the lattice of montmorillonite is contracted and its sorption capacity towards Cu2+ ions decreases strongly.

  16. Imobilisasi TiO2 ke dalam Resin Penukar Kation dan Aplikasinya sebagai Fotokatalis dalam Proses Fotoreduksi Ion Hg2+

    Directory of Open Access Journals (Sweden)

    Rosyid Ridho

    2017-03-01

    Full Text Available Abstrak Dalam rangka mengembangkan bahan fotokatalitis TiO2 pada penelitian ini telah dilakukan preparasi fotokatalis TiO2-Resin yang disertai dengan karakterisasi dan uji aktivitas untuk proses fotoreduksi ion Hg(II. Preparasi imobilisasi ini dilakukan dengan metode pertukaran ion yang di ikuti dengan kalsinasi pada suhu tertentu. Pada preparasi telah dipelajari pengaruh konsentrasi Titanium Isopropoksida sebagai sumber ion Ti(IV terhadap TiO2-Resin yang dikarakterisasi dengan menggunakan Difraksi Sinar X (XRD dan Thermografimetri (TGA. Pada proses fotoreduksi ion Hg(II dipelajari pengaruh massa fotokatalis, kadar TiO2 yang terimobilisasi ke dalam resin, konsentrasi Ion Hg(II, dan pengaruh pH. Proses fotoreduksi dilakukan dalam suatu reaktor tertutup yang dilengkapi dengan lampu UV, yaitu dengan cara menyinari campuran yang terdiri dari larutan ion Hg(II dan serbuk fotokatalis TiO2-Resin, disertai dengan pengadukan selama waktu tertentu. Hasil fotoreduksi dihitung berdasarkan selisih antara konsentrasi ion Hg(II awal dengan ion Hg(II yang tak tereduksi. Penentuan konsentrasi ion Hg(II yang tak tereduksi dilakukan dengan menggunakan Spektrofotometer Serapan Atom (SSA teknik pembangkitan uap dingin atau Cold Vapor Atomic Absorption Spectrophotometry(CV-AAS. Hasil preparasi menunjukkan semakin tinggi konsentrasi Titanium Isopropoksida yang ditambahkan pada resin semakin tinggi juga kadar TiO2 yang terbentuk pada TiO2-Resin. Hasil uji fotokatalis menunjukkan bahwa penggunaan fotokatalis TiO¬2-Resin dapat meningkatkan hasil fotoreduksi ion Hg(II yang peningkatannya lebih tinggi dibandingkan TiO2 serbuk. Penambahan fotokatalis dengan massa yang semakin besar menambah efektivitas fotoreduksi terhadap ion Hg(II yang semakin besar, namun jika ditambahkan massa fotokatalis yang lebih tinggi lagi akan menurunkan efektivitas fotoreduksi terhadap ion Hg(II. Kenaikan konsentrasi Hg(II menyebabkan efektivitas fotoreduksi semakin rendah. Pada pH 1-4 terjadi

  17. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration.

    Science.gov (United States)

    Fearnley, Gareth W; Bruns, Alexander F; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2015-04-24

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response. © 2015. Published by The Company of Biologists Ltd.

  18. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  19. MARVEL analysis of the rotational-vibrational states of the molecular ions H2D+ and D2H+.

    Science.gov (United States)

    Furtenbacher, Tibor; Szidarovszky, Tamás; Fábri, Csaba; Császár, Attila G

    2013-07-07

    Critically evaluated rotational-vibrational line positions and energy levels, with associated critically reviewed labels and uncertainties, are reported for two deuterated isotopologues of the H3(+) molecular ion: H2D(+) and D2H(+). The procedure MARVEL, standing for Measured Active Rotational-Vibrational Energy Levels, is used to determine the validated levels and lines and their self-consistent uncertainties based on the experimentally available information. The spectral ranges covered for the isotopologues H2D(+) and D2H(+) are 5.2-7105.5 and 23.0-6581.1 cm(-1), respectively. The MARVEL energy levels of the ortho and para forms of the ions are checked against ones determined from accurate variational nuclear motion computations employing the best available adiabatic ab initio potential energy surfaces of these isotopologues. The number of critically evaluated, validated and recommended experimental (levels, lines) are (109, 185) and (104, 136) for H2D(+) and D2H(+), respectively. The lists of assigned MARVEL lines and levels and variational levels obtained for H2D(+) and D2H(+) as part of this study are deposited in the ESI to this paper.

  20. Poisson-Fermi modeling of ion activities in aqueous single and mixed electrolyte solutions at variable temperature

    Science.gov (United States)

    Liu, Jinn-Liang; Eisenberg, Bob

    2018-02-01

    The combinatorial explosion of empirical parameters in tens of thousands presents a tremendous challenge for extended Debye-Hückel models to calculate activity coefficients of aqueous mixtures of the most important salts in chemistry. The explosion of parameters originates from the phenomenological extension of the Debye-Hückel theory that does not take steric and correlation effects of ions and water into account. By contrast, the Poisson-Fermi theory developed in recent years treats ions and water molecules as nonuniform hard spheres of any size with interstitial voids and includes ion-water and ion-ion correlations. We present a Poisson-Fermi model and numerical methods for calculating the individual or mean activity coefficient of electrolyte solutions with any arbitrary number of ionic species in a large range of salt concentrations and temperatures. For each activity-concentration curve, we show that the Poisson-Fermi model requires only three unchanging parameters at most to well fit the corresponding experimental data. The three parameters are associated with the Born radius of the solvation energy of an ion in electrolyte solution that changes with salt concentrations in a highly nonlinear manner.

  1. Ion Source Physics and Technology (2/2)

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    This series of lectures starts with an introduction in some aspects of atomic and plasma physics as base for the ion source physics. The main part covers aspects of ion source physics, technology and operation. Several source types are presented. Some information on infrastructure and supporting services (as high voltage, cooling, microwaves etc) are given to better understand the source environment. The last part on engineering aims to show that, in the field of ion sources, many different technologies are combined in a quite small environment, which is challenging and interesting at the same time.

  2. Setup of an ion-beam facility for the nanostructuration of 2D materials with highly charged ions

    International Nuclear Information System (INIS)

    Hopster, Johannes

    2014-01-01

    This work deals with the interaction of highly charged ions with surfaces. When an ion approaches a surface, its potential energy is deposited into the surface via a cascade of electronic processes. A strong electronic excitation of the surface results, which is localized in a nanometer sized region. As a consequence of further mechanisms, this excitation may lead to nanostructures being of topographic, structural or chemical modifications of the material. During this work, a setup of a complete ion beamline was constructed. The beamline offers production, focussing and charge separation of ion beams as well as irradiations of surfaces with highly charged ions. Additionally, new methods for beam profile and particle density analysis via Raman microscopy on graphene are presented. Experimental results of highly charged ions impinging on 2D materials provide the second part of this work. Ion induced nanostructures on lamellar materials, i.e. MoS 2 as well as single layers of graphene, could be identified and analyzed. Each of them were triggered by the potential energy of the ions. Processes of the ion surface interaction could be deduced qualitatively from the data. Local regions of enhanced friction on graphene could be detected by Friction Force Microscopy after irradiations. Thresholds for defect creation were established regarding the potential energy, which depend strongly on the kinetic energy of the ions. In terms of the over the barrier model, this dependency could be related to the time of flight the ion spends above the surface. Defects on irradiated graphene as well as on free standing graphene were analyzed via Raman microscopy. Possible dependencies of the defect diameters and nature on the layer number as well as on the presence of a substrate were proved. It was shown, that graphene becomes locally hydrogenated by the impact of highly charged ions. Such a chemical modification leads to an enhanced friction as well as to an appearance of defect modes

  3. A Statistical Thermodynamic Model for Ligands Interacting With Ion Channels: Theoretical Model and Experimental Validation of the KCNQ2 Channel

    Directory of Open Access Journals (Sweden)

    Fang Bai

    2018-03-01

    Full Text Available Ion channels are important therapeutic targets, and their pharmacology is becoming increasingly important. However, knowledge of the mechanism of interaction of the activators and ion channels is still limited due to the complexity of the mechanisms. A statistical thermodynamic model has been developed in this study to characterize the cooperative binding of activators to ion channels. By fitting experimental concentration-response data, the model gives eight parameters for revealing the mechanism of an activator potentiating an ion channel, i.e., the binding affinity (KA, the binding cooperative coefficients for two to four activator molecules interacting with one channel (γ, μ, and ν, and the channel conductance coefficients for four activator binding configurations of the channel (a, b, c, and d. Values for the model parameters and the mechanism underlying the interaction of ztz240, a proven KCNQ2 activator, with the wild-type channel have been obtained and revealed by fitting the concentration-response data of this activator potentiating the outward current amplitudes of KCNQ2. With these parameters, our model predicted an unexpected bi-sigmoid concentration-response curve of ztz240 activation of the WT-F137A mutant heteromeric channel that was in good agreement with the experimental data determined in parallel in this study, lending credence to the assumptions on which the model is based and to the model itself. Our model can provide a better fit to the measured data than the Hill equation and estimates the binding affinity, as well as the cooperative coefficients for the binding of activators and conductance coefficients for binding states, which validates its use in studying ligand-channel interaction mechanisms.

  4. Beta-lactam degradation catalysed by Cd2+ ion in methanol.

    Science.gov (United States)

    Martínez, J H; Navarro, P G; Garcia, A A; de las Parras, P J

    1999-08-01

    Kinetic schemes are established for degradation catalysed by Cd2+ ions in methanolic medium for penicillin G, penicillin V and cephalothin, a cephalosporin. Methanolysis of penicillin V and cephalothin occurs with the formation of a single substrate-metal ion intermediate complex, SM, while degradation of penicillin G occurs with the initial formation of two complexes with different stoichiometry, SM and S2M. In each case. degradation is of first order with respect to SM with rate constant values equal to 0.079 min(-1), 0.120 min(-1) and 0.166 min(-1) at 20, 25 and 30 degrees C, respectively, for penicillin G; 0.061 min(-1) at 20 degrees C for penicillin V; and 2.0 x 10(-3) min(-1) at 20 degrees C for cephalothin. Activation energy for the decomposition process of the SM intermediate for penicillin G was calculated to be about 5.5 x 10(4) J/mol. Equilibrium constant values between SM compound and S2M at 20 degrees C (77.1 l/mol), 25 degrees C (45.3 l/mol) and at 30 degrees C (25.7 l/mol) were also calculated as well as the normal enthalpy of this equilibrium. With respect to the reaction products there is evidence that Cd2+ becomes part of their structure, forming complexes between Cd2+ and the product resulting from antibiotic methanolysis (L). Some characteristics of these complexes are discussed.

  5. GEOS-2 measurements of cold ions in the magnetosheath

    International Nuclear Information System (INIS)

    Rodgers, D.J.; Johnstone, A.D.; Sojka, J.J.

    1985-01-01

    The Suprathermal Plasma Analysers on GEOS-2 are able to make differential energy measurements of plasma particles down to sub-eV energies because the entire sensor package can be biased relative to the spacecraft. When the package is biased negatively with respect to space potential, low energy positive ions are sucked in and are more easily detected against the background. Large fluxes of ions with temperatures of the order of 1 eV or less were consistently detected at space potential when the spacecraft was in the magnetosheath though not when it was in the nearby magnetosphere. This apparent geophysical correlation, suggesting that the ions were part of the magnetosheath ion population, was contradicted by the fact that the ions showed no signs of the large drift velocity associated with the electric field in the magnetosheath. It is concluded, after further investigation, that the observed ions were probably sputtered as neutrals from the spacecraft surface by the impact of solar wind ions and subsequently ionized by sunlight or electron impact. The effect of sputtering by solar wind ions has not been previously observed, although it could have consequences for the long-term stability of spacecraft surfaces. (author)

  6. CATALYTIC WAVE OF CHLORATE IONS IN THE PREZENCE OF THE MOLYBDENUM (VI - 2,3-DIHYDROXYBENZALDEHYDE COMPLEX

    Directory of Open Access Journals (Sweden)

    Ludmila Kiriyak

    2010-12-01

    Full Text Available The polarographic catalytic current in acid solutions of Mo(VI, 2,3-dihydroxybenzaldehyde (2,3-DHBA and chlorate ions has been investigated. The scheme of reactions taking place in the solutions and on the electrode has been elaborated. The increase of the catalytic current is explained by the formation of the active intermediate complex [Mo(V×2,3-DHBA (ClO3-]. The rate constant of formation for the active intermediate complex K = 2.5 × 106 mol-1 × dm3 × s-1, the activation energy of reaction Ea=14.0 kcal×mol-1 and the activation entropy ∆Sa¹= -28.3 e.u. have also been determined.

  7. Investigating the Effect of Glass Ion Release on the Cytocompatibility, Antibacterial Eflcacy and Antioxidant Activity of Y2O3 / CeO2 doped SiO2-SrO-Na2O glasses

    Directory of Open Access Journals (Sweden)

    Placek L. M.

    2018-02-01

    Full Text Available The effect on ion release and cytocompatibility of Yttrium (Y and Cerium (Ce are investigated when substituted for Sodium (Na in a 0.52SiO2-0.24SrO-0.24-Na2OMOglass series (where MO= Y2O3 or CeO2. Glass leaching was evaluated through pH measurements and Inductive Coupled Plasma-Optical Emission Spectrometry (ICP-OES analysiswhere the extract pH increased during incubation (11.2 - 12.5. Ion release of Silicon (Si, Na and Strontium (Sr from the Con glass was at higher than that of glasses containing Y or Ce, and reached a limit after 1 day. Ion release from Y and Ce containing glasses reached a maximum of 1800 μg/mL, 1800 μg/mL, and 10 μg/mL for Si, Na, and Sr, respectively. Release of Y and Cewas below the ICP- OES detection limit 75% of bacteria at a 9% extract concentration. Antioxidant capacity (mechanism for neuroprotection was evaluated using the ABTS assay. All glasses had inherent radical oxygen species (ROS scavenging capability with Con reaching 9.5 mMTE.

  8. Evaluation of the ion-density measurements by the Indian satellite SROSS-C2

    Science.gov (United States)

    Subrahmanyam, P.; Jain, A. R.; Maini, H. K.; Bahl, M.; Das, Rupesh M.; Garg, S. C.; Niranjan, K.

    2010-12-01

    The ion and electron F region plasma measurements made by the ion and electron Retarding Potential Analyzers (RPAs) onboard the Indian satellite SROSS-C2, have yielded excellent data set over the Indian region for more than half a solar cycle, after the SROSS-C2 launch in May 1994. The absolute ion density, ion temperature, and ion composition parameters are derived from these in situ measurements and used by many workers. In this paper the absolute values of ion density derived from the ion RPA measurements are compared and evaluated with the measurements made by ground-based ionosondes located in the Indian region and close to the SROSS-C2 orbital path. It is shown that a slight adjustment in efficiency factor of the ion RPA sensor brings the in situ measurements much closer to those obtained from the ground-based ionosonde measurements taking into account the model calculations. It may be mentioned that this is a correction to the ion density measurement by SROSS-C2 by a fixed proportion (14-11.4%). The effect of change in efficiency factor on the ion current, which is used to deduce the ion number density, is demonstrated and discussed.

  9. Damage evolution in Xe-ion irradiated rutile (TiO2) single crystals

    International Nuclear Information System (INIS)

    Li, F.; Sickafus, K.E.; Evans, C.R.; Nastasi, M.

    1999-01-01

    Rutile (TiO 2 ) single crystals with (110) orientation were irradiated with 360 keV Xe 2+ ions at 300 K to fluences ranging from 2 x 10 19 to 1 x 10 20 Xe/m 2 . Irradiated samples were analyzed using: (1) Rutherford backscattering spectroscopy combined with ion channeling analysis (RBS/C); and (2) cross-sectional transmission electron microscopy (XTEM). Upon irradiation to a fluence of 2 x 10 19 Xe/m 2 , the sample thickness penetrated by the implanted ions was observed to consist of three distinct layers: (1) a defect-free layer at the surface (thickness about 12 nm) exhibiting good crystallinity; (2) a second layer with a low density of relatively large-sized defects; and (3) a third layer consisting of a high concentration of small defects. After the fluence was increased to 7 x 10 19 Xe/m 2 , a buried amorphous layer was visible by XTEM. The thickness of the amorphous layer was found to increase with increasing Xe ion fluence. The location of this buried amorphous layer was found to coincide with the measured peak in the Xe concentration (measured by RBS/C), rather than with the theoretical maximum in the displacement damage profile. This observation suggests the implanted Xe ions may serve as nucleation sites for the amorphization transformation. The total thickness of the damaged microstructure due to ion irradiation was always found to be much greater than the projected range of the Xe ions. This is likely due to point defect migration under the high stresses induced by ion implantation

  10. Evidence of diketopiperazine and oxazolone structures for HA b2+ ion.

    Science.gov (United States)

    Perkins, Brittany R; Chamot-Rooke, Julia; Yoon, Sung Hwan; Gucinski, Ashley C; Somogyi, Arpád; Wysocki, Vicki H

    2009-12-09

    Peptide fragmentation can lead to an oxazolone or diketopiperazine b(2)(+) ion structure. IRMPD spectroscopy combined with computational modeling and gas-phase H/D exchange was used to study the structure of the b(2)(+) ion from protonated HAAAA. The experimental spectrum of the b(2)(+) ion matches both the experimental spectrum for the protonated cyclic dipeptide HA (a commercial diketopiperazine) and the theoretical spectrum for a diketopiperazine protonated at the imidazole pi nitrogen. A characteristic band at 1875 cm(-1) and increased abundance of the peaks at 1619 and 1683 cm(-1) indicate a second population corresponding to an oxazolone species. H/D exchange also shows a mixture of two populations consistent with a mixture of b(2)(+) ion diketopiperazine and oxazolone structures.

  11. High Energy Ion Beam Studies of Ion Exchange in a Na2O-Al2O3-SiO2 Glass

    International Nuclear Information System (INIS)

    Shutthanadan, Vaithiyalingam; Baer, Donald R.; Thevuthasan, Suntharampillai; Adams, Evan M.; Maheswaran, Saravanamuthu; Engelhard, Mark H.; Icenhower, Jonathan P.; McGrail, Bernard P.

    2002-01-01

    As part of understanding the processes leading to sodium release and ion exchange, the surface and near surface reaction regions on several specimens of a Na2O-Al2O3-SiO2 glass have been examined after exposures to isotopically labeled aqueous solutions. The majority of the analyses describe here have been carried out using energetic ion beam analysis. Rutherford backscattering spectrometry (RBS) has been used to measure the overall glass composition and to determine the profiles and amounts of Na released from the surface. An important part of the ion exchange process is the uptake and incorporation of hydrogen and oxygen in the glass from the solution. To facilitate this analysis, the glasses were exposed to a solution containing 18O and deuterium and analyzed by accelerator based nuclear reaction analysis (NRA). To confirm some of the RBS depth profile data very near the surface, XPS depth profiles were collected on some samples. Although the Na concentration is decreased in the near surface region, it is not totally removed from the outer surface. In this same region, there is also a significant amount of 18O incorporated demonstrating considerable interaction between the water and the glass. Deeper into the material the amounts of deuterium and 18O are more consistent with water or H3O+ diffusion. These results suggest that there exist an outer reaction layer and an inner diffusion controlled layer in the surface region of the reacted glass

  12. Improving the specific energy of Li-Ion capacitor laminate cell using hybrid activated Carbon/LiNi0.5Co0.2Mn0.3O2 as positive electrodes

    Science.gov (United States)

    Hagen, M.; Cao, W. J.; Shellikeri, A.; Adams, D.; Chen, X. J.; Brandt, W.; Yturriaga, S. R.; Wu, Q.; Read, J. A.; Jow, T. R.; Zheng, J. P.

    2018-03-01

    In this work, we investigated the performance impact of LiNi0.5Co0.2Mn0.3O2 (NMC) as an additive to activated carbon (AC) electrodes within a high-performance Li-ion capacitor (LIC) fabricated with activated carbon positive electrodes (PEs) and hard carbon negative electrodes (NEs) having lithium thin films as Li sources loaded on the surface of the negative electrodes. The NMC additive impact in initial testing showed an increase in specific energy of the LIC of nearly 50.5% with a 32% maximum specific power loss. Contrary to its typical low rate battery decay at high rate cycling the cell having a hybrid PE is still able to maintain over 90% capacity at a 0.7C rate after 11,000 cycles at rate of 18C and an additional 9000 cycles at a rate of 36C. We conclude at high rate cycling minimal impacts occurs to the NMC properties which can be seen with low rate intercepts.

  13. Structures and ion conduction pathways of amorphous lithium ion conductors

    International Nuclear Information System (INIS)

    Mori, Kazuhiro; Fukunaga, Toshiharu; Onodera, Yohei

    2014-01-01

    For ( 7 Li 2 S) x (P 2 S 5 ) 100-x glasses (x = 50, 60, and 70) and 7 Li 7 P 3 S 11 metastable crystal, time-of-flight neutron diffraction and synchrotron X-ray diffraction experiments were performed, and three-dimensional structures and conduction pathways of lithium ions were studied using the reverse Monte Carlo (RMC) modeling and the bond valence sum (BVS) approach. The conduction pathways of the lithium ions could be classified into two types: lithium 'stable' and 'metastable' regions, respectively. Moreover, it was found that there is a significant relationship between the activation energy of the electrical conduction and the topology of the conduction pathways of the lithium ions. (author)

  14. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation

    Science.gov (United States)

    Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.

    2018-01-01

    The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. [Figure not available: see fulltext.

  15. Antibacterial TiO2Coating Incorporating Silver Nanoparticles by Micro arc Oxidation and Ion Implantation

    International Nuclear Information System (INIS)

    Zhang, P.; Zhang, Z.; Li, W.

    2013-01-01

    Infection associated with titanium implants remains the most common serious complication in hard tissue replacement surgery. Since such postoperative infections are usually difficult to cure, it is critical to find optimal strategies for preventing infections. In this study, TiO 2 coating incorporating silver (Ag) nanoparticles were fabricated on pure titanium by micro arc oxidation and ion implantation. The antibacterial activity was evaluated by exposing the specimens to Staphylococcus aureus and comparing the reaction of the pathogens to Ti-MAO-Ag with Ti-MAO controls. Ti-MAO-Ag clearly inhibited bacterial colonization more than the control specimen. The coating’s antibacterial ability was enhanced by increasing the dose of silver ion implantation, and Ti-MAO-Ag 20.0 had the best antibacterial ability. In addition, cytocompatibility was assessed by culturing cell colonies on the specimens. The cells grew well on both specimens. These findings indicate that surface modification by means of this process combining MAO and silver ion implantation is useful in providing antibacterial activity and exhibits cytocompatibility with titanium implants

  16. Role of hydrogen ions in standard and activation heap leaching of gold

    Science.gov (United States)

    Rubtsov, YuI

    2017-02-01

    The role of hydrogen ions in activation heap leaching of gold from rebellious ore has been studied, which has allowed enhancing gold recovery. The author puts forward a gold leaching circuit with the use of activated oxygen-saturated solutions acidified to pH = 6-9.

  17. Intercalation of Mg-ions in layered V2O5 cathode materials for rechargeable Mg-ion batteries

    DEFF Research Database (Denmark)

    Sørensen, Daniel Risskov; Johannesen, Pætur; Christensen, Christian Kolle

    The development of functioning rechargeable Mg-ion batteries is still in its early stage, and a coarse screening of suitable cathode materials is still on-going. Within the intercalation-type cathodes, layered crystalline materials are of high interest as they are known to perform well in Li-ion...... intercalation batteries and are also increasingly being explored for Na-ion batteries. Here, we present an investigation of the layered material orthorhombic V2O5, which is a classical candidate for an ion-intercalation material having a high theoretical capacity1. We present discharge-curves for the insertion...... discharge. This indicates that the degradation is highly associated with formation of ion-blocking layers on the anode....

  18. Ion exchange fiber prepared by radiation grafting, (2)

    International Nuclear Information System (INIS)

    Sekiguchi, Hideaki; Fujiwara, Kunio; Fujii, Toshiaki; Takai, Takeshi; Kobayashi, Atsushi

    1991-01-01

    Ion exchange fiber prepared by radiation grafting has the capabilities for wide application as high performance materials. Extensive studies were made to evaluate the ion exchange fiber prepared by radiation grafting for removing some toxic or malodorous gases, continuing from the previous work (presented in Ebara Engng. Review, No. 146), in which the ability of removing ammonia with cation exchange fiber was investigated. The results of this study can be summarized by the following conclusions: (1) Methods of evaluating the ability of removing ammonia, acetaldehyde, and some lower fatty acids in low concentration were established, (2) Besides being effective for the removal of acidic or basic gases, neutral gas such as acetaldehyde can also be removed by adding some functional compounds to the ion exchange fiber, and (3) Ion exchange fiber prepared by radiation grafting is effective as a deodorizing filter. (author)

  19. Experimental ion mobility measurements in Ne-N2

    International Nuclear Information System (INIS)

    Cortez, A.F.V.; Encarnação, P.M.C.C.; Santos, F.P.; Borges, F.I.G.M.; Conde, C.A.N.; Veenhof, R.; Neves, P.N.B.

    2016-01-01

    Data on ion mobility is important to improve the performance of large volume gaseous detectors, such as the ALICE TPC or in the NEXT experiment. In the present work the method, experimental setup and results for the ion mobility measurements in Ne-N 2 mixtures are presented. The results for this mixture show the presence of two peaks for different gas ratios of Ne-N 2 , low reduced electric fields, E / N , 10–20 Td (2.4–4.8 kV·cm −1 ·bar −1 ), low pressures 6–8 Torr (8–10.6 mbar) and at room temperature.

  20. Direct Binding between Pre-S1 and TRP-like Domains in TRPP Channels Mediates Gating and Functional Regulation by PIP2

    Directory of Open Access Journals (Sweden)

    Wang Zheng

    2018-02-01

    Full Text Available Transient receptor potential (TRP channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2, with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C that is functionally essential. The interaction was mediated by aromatic Trp81 in pre-S1 domain and cationic Lys568 in TRP-like domain. Structure-function analyses revealed similar N-C interaction in TRPP2 as well as TRPM8/-V1/-C4 via highly conserved tryptophan and lysine/arginine residues. PIP2 bound to cationic residues in TRPP3, including K568, thereby disrupting the N-C interaction and negatively regulating TRPP3. PIP2 had similar negative effects on TRPP2. Interestingly, we found that PIP2 facilitates the N-C interaction in TRPM8/-V1, resulting in channel potentiation. The intramolecular N-C interaction might represent a shared mechanism underlying the gating and PIP2 regulation of TRP channels.

  1. Purification of labeled cyanogen bromide peptides of the alpha polypeptide from sodium ion and potassium ion activated adenosinetriphosphatase modified with N-[3H]ethylmaleimide

    International Nuclear Information System (INIS)

    Le, D.T.

    1986-01-01

    Sodium ion and potassium ion activated adenosinetriphosphatase, isolated from canine kidney, was reacted with N-[ 3 H]ethylmaleimide while it was poised in three different conformations, ostensibly E2-P, E2, and E1, respectively. These assignments were made from a consideration of the particular concentrations of ligands in the respective alkylation mixtures. After a 30-min reaction, the remaining enzymatic activity was found to vary among these three different samples from 90 to 30% of that of unalkylated controls. In all cases, the alpha polypeptide was purified and subjected to digestion with cyanogen bromide, and in each digest the same two distinct radioactive peptides were identified and purified by gel filtration on a column of Sephadex LH-60. The incorporation of N-[ 3 H]ethylmaleimide into one of these two peptides correlated closely with enzymatic inactivation, while the incorporation into the other was most extensive when the portion of the active site to which ATP binds was unoccupied. Alkylation of the residue within the latter peptide, however, does not result in inactivation of the enzyme. Both peptides were further purified by high-pressure liquid chromatography, and their amino-terminal sequences were determined by manual dansyl Edman or solid-phase techniques. The peptide containing the sulfhydryl protected by ATP has, as its amino terminus, the lysine that reacts exclusively with fluoresceinyl 5'-isothiocyanate

  2. Ion Uptake Determination of Dendrochronologically-Dated Trees Using Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kenan Unlu; P.I. Kuniholm; D.K.H. Schwarz; N.O. Cetiner; J.J. Chiment

    2009-03-30

    Uptake of metal ions by plan roots is a function of the type and concentration of metal in the soil, the nutrient biochemistry of the plant, and the immediate environment of the root. Uptake of gold (Au) is known to be sensitive to soil pH for many species. Soil acidification due to acid precipitation following volcanic eruptions can dramatically increase Au uptake by trees. Identification of high Au content in tree rings in dendrochronologically-dated, overlapping sequences of trees allows the identification of temporally-conscribed, volcanically-influenced periods of environmental change. Ion uptake, specifically determination of trace amounts of gold, was performed for dendrochronologically-dated tree samples utilizing Neutron Activation Analysis (NAA) technique. The concentration of gold was correlated with known enviironmental changes, e.g. volcanic activities, during historic periods.

  3. Average energetic ion flux variations associated with geomagnetic activity from EPIC/STICS on Geotail

    Science.gov (United States)

    Christon, S. P.; Gloeckler, G.; Eastman, T. E.; McEntire, R. W.; Roelef, E. C.; Lui, A. T. Y.; Williams, D. J.; Frank, L. A.; Paterson, W. R.; Kokubun, S.; hide

    1996-01-01

    The magnetotail ion flux measurements from the Geotail spacecraft are analyzed both with and without the application of selection criteria that identify the plasma regime in which an observation is obtained. The different results are compared with each other. The initial results on the changes of energetic ion flux and composition correlated to average substorm activity in different magnetotail plasma regimes are discussed. The energetic ions are measured using the energetic particles and ion composition (EPIC) experiment and the suprathermal ion composition spectrometer (STICS). The plasma, wave and field instruments of the Geotail satellite were used to identify the principle magnetotail plasma regimes of plasma sheet, lobe, and magnetospheric boundary layer, as well as the magnetosheath and solar wind. Energetic O and H ions were observed in all the plasma regimes.

  4. NOx reduction over metal-ion exchanged novel zeolite under lean conditions. Activity and hydrothermal stability

    International Nuclear Information System (INIS)

    Subbiah, Ayyappan; Gujar, Amit; Price, Geoffrey L.; Cho, Byong K.; Blint, Richard J.; Yie, Jae E.

    2003-01-01

    Zeolite SUZ-4 was synthesized and tested for its hydrothermal stability using a standard aging procedure coupled with NMR spectroscopy, and was identified as a promising support for lean-NO x catalysts for high temperature applications. Various metals such as Cu, Ag, Fe, Co were ion exchanged onto the SUZ-4 zeolite, and their catalytic activity for NO/NO x conversion was measured in the presence of excess oxygen using ethylene as the reducing agent. Among the metal-ions exchanged, copper proved to be the best metal cation for lean-NO x catalysis with the optimum level of exchange at 29-42%. The optimized, fresh Cu/SUZ-4 catalyst achieved 70-80% of NO/NO x conversion activity over a wide range of temperature from 350 to 600C with the maximum conversion temperature at 450C. The presence of H 2 O and SO 2 reduced the NO/NO x conversion by about 30% of the fresh Cu/SUZ-4 catalyst due possibly to the blocking of active sites for NO/NO x adsorption. Substitution of gasoline vapor for ethylene as the reductant improved the NO x reduction activity of the fresh Cu/SUZ-4 catalyst at high temperatures above 350C. Aging the Cu/SUZ-4 catalyst resulted in a slight shift of activity profile toward higher temperatures, yielding an increase of NO conversion by 16% and a decrease of NO x conversion by 15% at 525C. The effect of H 2 O and SO 2 on the aged catalyst was to reduce the NO activity by 20% and NO x activity by 30% at 500C. The effect of space velocity change was not significant except in the low temperature range where the reaction light-off occurs. Adsorption/desorption measurements indicate that aging Cu/SUZ-4 results in partial migration/agglomeration of Cu particles in the pores thereby reducing the NO/NO x activity. Overall, the NO x conversion efficiency of Cu/SUZ-4, for both fresh and aged, is much better than the benchmark Cu/ZSM-5 in the presence of H 2 O and/or SO 2

  5. Competition Between Co(NH3)63+ and Inner Sphere Mg2+ Ions in the HDV Ribozyme

    Science.gov (United States)

    Gong, Bo; Chen, Jui-Hui; Bevilacqua, Philip C.; Golden, Barbara L.; Carey, Paul R.

    2009-01-01

    Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg2+ are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH3)63+, an analog of Mg(H2O)62+. Here, the binding of Mg2+ and Co(NH3)63+ to the HDV ribozyme are studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg2+ alone is introduced to the ribozyme, inner sphere coordination of Mg(H2O)x2+ (x≤5) to non-bridging PO2− oxygen, and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg2+ induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH3)63+ alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg2+ binding, Co(NH3)63+ binding does not perturb PO2− group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH3)63+ ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO2− groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH3)63+ ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg2+-PO2− binding sites: sites that Co(NH3)63+ can displace, and others it cannot. PMID:19888753

  6. Antifungal Activity of (+-2,2’-Epicytoskyrin A and Its Membrane-Disruptive Action

    Directory of Open Access Journals (Sweden)

    Dewi Wulansari

    2016-12-01

    Full Text Available (+-2,2’-Epicytoskyrin A, a bis-anthraquinone isolated from fungal endophyte Diaporthe sp. GNBP-10 associated with Uncaria gambir Roxb., was investigated for its antifungal activity. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC against 22 yeast strains and three filamentous fungi. The MICs of (+-2,2’-epicytoskyrin A ranged from 16 to 128 µg/mL, which exhibited lower activity than the antifungal nystatin. A study of the mechanism of action revealed similar effects of (+-2,2’-epicytoskyrin A and nystatin on Candida tropicalis at their MICs (16 and 8 µg/mL, respectively and 2 times of the MIC. Both compounds caused cytoplasmic material and ion leakages on fungal cell, which were characterized by an increase in absorbance at 260 nm and 280 nm as well as Ca2+ and K+ ion concentrations. The morphology of the fungal cells after (+-2,2’-epicytoskyrin A treatment was observed under a scanning electron microscope. The control cells, which were not treated with either (+-2,2’-epicytoskyrin A or nystatin, showed a smooth surface, while the cells treated with either (+-2,2’-epicytoskyrin A or nystatin shrank and displayed a donut-like shape. More shrinkage was observed in the 2 times MIC concentration and even more in the cells exposed to nystatin. The action of (+-2,2’-epicytoskyrin A was proposed through membrane disruption.

  7. Transport of Zn(OH)4(-2) ions across a polyolefin microporous membrane

    Science.gov (United States)

    Krejci, Ivan; Vanysek, Peter; Trojanek, Antonin

    1993-04-01

    Transport of ZN(OH)4(2-) ions through modified microporous polypropylene membranes (Celgard 3401, 350140) was studied using polarography and conductometry. Soluble Nafion as an ion exchange modifying agent was applied to the membrane by several techniques. The influence of Nafion and a surfactant on transport of zinc ions through the membrane was studied. A relationship between membrane impedance and the rate of Zn(OH)4(2-) transport was found. The found correlation between conductivity, ion permeability and Nafion coverage suggests a suitable technique of membrane preparation to obtain desired zinc ion barrier properties.

  8. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon

    International Nuclear Information System (INIS)

    Kuratani, Kentaro; Yao, Masaru; Senoh, Hiroshi; Takeichi, Nobuhiko; Sakai, Tetsuo; Kiyobayashi, Tetsu

    2012-01-01

    We assembled a sodium-ion capacitor (Na-IC) by combining sodium pre-doped hard carbon (HC) as the negative- and activated carbon (AC) as the positive-electrode. The electrochemical properties were compared with two lithium-ion capacitors (Li-ICs) in which the negative electrodes were prepared with Li pre-doped HC and mesocarbon microbeads (MCMB). The positive and negative electrodes were prepared using the established doctor blade method. The negative electrodes were galvanostatically pre-doped with Na or Li to 80% of the full capacity of carbons. The potential of the negative electrodes after pre-doping was around 0.0 V vs. Na/Na + or Li/Li + , which resulted in the higher output potential difference of the Na-IC and Li-ICs than that of the conventional electrochemical double-layer capacitors (EDLCs) because AC positive electrode works in the same principle both in the ion capacitors and in the EDLC. The state-of-charge of the negative electrode varied 80 ± 10% during the electrochemical charging and discharging. The capacity of the cell was evaluated using galvanostatic charge–discharge measurement. At the discharge current density of 10 mA cm −2 , the Na-IC maintained 70% of the capacity that obtained at the current density of 0.5 mA cm −2 , which was comparable to the Li-ICs. At 50 mA cm −2 , the capacities of the Li-IC(MCMB) and the Na-IC dropped to 20% whereas the Li-IC(HC) retained 30% of the capacity observed at 0.5 mA cm −2 . The capacities of the Na-IC and Li-ICs decreased by 9% and 3%, respectively, after 1000 cycles of charging and discharging.

  9. A novel electrode surface fabricated by directly attaching gold nanoparticles onto NH2+ ions implanted-indium tin oxide substrate

    International Nuclear Information System (INIS)

    Liu Chenyao; Jiao Jiao; Chen Qunxia; Xia Ji; Li Shuoqi; Hu Jingbo; Li Qilong

    2010-01-01

    A new type of gold nanoparticle attached to a NH 2 + ion implanted-indium tin oxide surface was fabricated without using peculiar binder molecules, such as 3-(aminopropyl)-trimethoxysilane. A NH 2 /indium tin oxide film was obtained by implantation at an energy of 80 keV with a fluence of 5 x 10 15 ions/cm 2 . The gold nanoparticle-modified film was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical techniques and compared with a modified bare indium tin oxide surface and 3-(aminopropyl)-trimethoxysilane linked surface, which exhibited a relatively low electron transfer resistance and high electrocatalytic activity. The results demonstrate that NH 2 + ion implanted-indium tin oxide films can provide an important route to immobilize nanoparticles, which is attractive in developing new biomaterials.

  10. Synchrotron radiation-based 61Ni Mössbauer spectroscopic study of Li(Ni1/3Mn1/3Co1/3)O2 cathode materials of lithium ion rechargeable battery

    Science.gov (United States)

    Segi, Takashi; Masuda, Ryo; Kobayashi, Yasuhiro; Tsubota, Takayuki; Yoda, Yoshitaka; Seto, Makoto

    2016-12-01

    Layered rocksalt type oxides, such as Li(Ni1/3Mn1/3Co1/3)O2, are widely used as the cathode active materials of lithium-ion rechargeable batteries. Because the nickel ions are associated with the role of the charge compensation at discharge and charge, the 61Ni Mössbauer measurements at 6 K using synchrotron radiation were performed to reveal the role of Ni. The Ni ions of the active materials play two roles for the redox process between the charge and discharge states of lithium-ion batteries. Half of the total Ni ions change to the low-spin Ni3+ with Jahn-Teller distortion from the Ni2+ ions of the discharge state. The remainder exhibit low-spin state divalent Ni ions.

  11. Hierarchical Li1.2 Ni0.2 Mn0.6 O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries.

    Science.gov (United States)

    Chen, Lai; Su, Yuefeng; Chen, Shi; Li, Ning; Bao, Liying; Li, Weikang; Wang, Zhao; Wang, Meng; Wu, Feng

    2014-10-22

    Hierarchical Li1.2 Ni0.2 Mn0.6 O2 nanoplates with exposed {010} planes are designed and synthesized. In combination with the advantages from the hierarchical archi-tecture and the exposed electrochemically active {010} planes of layered materials, this material satisfies both efficient ion and electron transport and thus shows superior rate capability and excellent cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthesis, structure and photocatalytic activity of nano TiO2 and ...

    Indian Academy of Sciences (India)

    The material shows higher photocatalytic activity both in UV and visible region of the solar radiation compared to commercial Degussa P25 TiO2. Transition metal ion substitution for Ti4+ creates mid-gap states which act as recombination centers for electron{hole induced by photons thus reducing photocatalytic activity.

  13. Treatment of low-activity-level process wastewaters by Continuous Countercurrent Ion Exchange

    International Nuclear Information System (INIS)

    Hall, R.; Watson, J.S.; Robinson, S.M.

    1990-01-01

    This paper discusses application of the Thomas model for predicting breakthrough curves from ion exchange column tests, methods for scale-up of experimental small-scaled ion exchange columns to industrial scale columns, and methods for predicting effluent compositions in a continuous countercurrent ion exchange system. 20 refs., 6 figs., 2 tabs

  14. Adsorption of ions onto treated natural zeolite

    Directory of Open Access Journals (Sweden)

    Cristiane da Rosa Oliveira

    2007-12-01

    Full Text Available This work presents studies of modification of a natural zeolite by activation with Na+ cations and functionalisation with Ba+2 and/or Cu2+ ions (FZ. The zeolite was characterized, modified and applied in adsorption studies of sulphate and isopropilxanthate ions as flocculated and powdered forms. The reuse of SO4Ba-FZ was investigated by adsorption-removal of either Ba2+ or sulphate ions in stages. Equilibrium data showed that the FZ, flocculated or as powder, provide considerable removal of sulphate ions (q mLangmuir: 1.15 and 1.35 meq.g-1, respectively and isopropilxanthate (q mLangmuir: 0.35 and 0.93 meq.g-1, respectively. The reuse of the SO4-FZ, either powdered or flocculated also uptake significant amount of Ba2+ or sulphate ions (q mLangmuir: 1.15 meq.g-1, providing a new alternative for the exhausted adsorbent. Thus the activated and functionalised zeolites create new options on the materials engineering area with applications in environmental applied adsorption processes.

  15. Protective effect of diallyl disulfide against the irradiation damage in mice induced by "1"2C"6"+ ion beams

    International Nuclear Information System (INIS)

    Xu Shuai; Ma Xiaofei; Zhang Hong; Liu Yang

    2013-01-01

    The radioprotective effect of Diallyl disulfide (DADS) on "1"2C"6"+ ion irradiation was studied. Pretreated with DADS of different concentration, male Kung-Ming mice were exposed to whole body irradiation with dosage of 4 Gy "1"2C"6"+ ion. The animals were sacrificed after irradiation. Then the bone marrow cells micronucleus rate, malondialdehyde (MDA) levels, content of protein carbonylation, total antioxidant capacity (T-AOC) and alanine aminotransferase (ALT) activity were measured. As compared with those in irradiated group, the ratio of micronucleus cells in marrow and the hepatic ALT activity in the pretreatment group with low dose DADS decreased significantly (p < O.OOl). Similarly, the content of protein carbonylation and the levels of MDA dropped dramatically in the group with middle dose DADS treatment (p < 0.05). On the contrary, the hepatic T-AOC increased markedly in the group of pretreatment with low dose DADS (p < 0.05). The results showed that DADS protect lipoid, protein and genetic material from "1"2C"6"+ ion irradiation by right of resisting oxidative stress. (authors)

  16. SnSe2 2D Anodes for Advanced Sodium Ion Batteries

    KAUST Repository

    Zhang, Fan; Xia, Chuan; Zhu, Jiajie; Ahmed, Bilal; Liang, Hanfeng; Velusamy, Dhinesh Babu; Schwingenschlö gl, Udo; Alshareef, Husam N.

    2016-01-01

    A simple synthesis method to prepare pure SnSe2 nanosheet anodes for Na ion batteries is reported. The SnSe2 2D sheets achieve a stable and reversible specific capacity of 515 mA h g-1 after 100 cycles, with excellent rate performance. The sodiation

  17. Adsorption of heavy metal ions on different clays

    International Nuclear Information System (INIS)

    Kruse, K.

    1992-01-01

    The aim of the present dissertation is to study the adsorption of heavy metal ions (Cd 2+ , Cu 2+ , Pb 2+ , Zn <