WorldWideScience

Sample records for ionotropic gelation method

  1. Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances.

    Science.gov (United States)

    Desai, Kashappa Goud

    2016-01-01

    The objective of this review is to summarize recent advances in chitosan nanoparticles prepared by ionotropic gelation. Significant progress has occurred in this area since the method was first reported. The gelation technique has been improved through a number of creative methodological modifications. Ionotropic gelation via electrospraying and spinning disc processing produces nanoparticles with a more uniform size distribution. Large-scale manufacturing of the nanoparticles can be achieved with the latter approach. Hydrophobic and hydrophilic drugs can be simultaneously encapsulated with high efficiency by emulsification followed by ionic gelation. The turbulent mixing approach facilitates nanoparticle formation at a relatively high polymer concentration (5 mg/mL). The technique can be easily tuned to achieve the desired polymer/surface modifications (e.g., blending, coating, and surface conjugation). Using factorial-design-based approaches, optimal conditions for nanoparticle formation can be determined with a minimum number of experiments. New insights have been gained into the mechanism of chitosan-tripolyphosphate nanoparticle formation. Chitosan nanoparticles prepared by ionotropic gelation tend to aggregate/agglomerate in unfavorable environments. Factors influencing this phenomenon and strategies that can be adopted to minimize the instability are discussed. Ionically cross-linked nanoparticles based on native chitosan and modified chitosan have shown excellent efficacy for controlled and targeted drug-delivery applications.

  2. Shape optimization and characterization of polysaccharide beads prepared by ionotropic gelation.

    Science.gov (United States)

    Smrdel, Polona; Bogataj, Marija; Zega, Anamarija; Planinsek, Odon; Mrhar, Ales

    2008-03-01

    The shape of drug loaded polysaccharide beads produced by ionotropic gelation has been optimized, with the aim of producing spherical beads suitable for further technological operations, such as coating. The optimization was performed on a model system sodium alginate/theophylline by inclusion of various fillers. Incorporation of excipients markedly influenced the morphological characteristics of the beads. The undesired irregular shape of beads caused by incorporation of the drug could only be improved by incorporating a combination of polycarbophil (PK) and polyvinylpyrrolidone (PVP). The spherical shape of these beads was stabilized mechanically by numerous air bubbles trapped inside the beads, which prevented the collapse of the beads during drying. The optimized method was shown to be applicable to a target system of pectin and an anti-inflammatory drug, LK-423.

  3. Preparation and In vitro release of hydrochlorothiazide from gellan beads produced by ionotropic gelation

    Directory of Open Access Journals (Sweden)

    Emeje M

    2009-01-01

    Full Text Available The inherent property of gellan gum to gel and form circular beads through a process of ionotropic gelation in the presence of cations was utilized in the formulation of hydrochlorothiazide (HCTZ. The prepared beads exhibited good drug entrapment efficiency, content uniformity, and sustained release potential. The gelatin-HCTZ beads could be utilized in the delivery of HCTZ, by which reduced frequency of the drug administration could be achieved.

  4. Optimized Preparation of Levofloxacin-loaded Chitosan Nanoparticles by Ionotropic Gelation

    Science.gov (United States)

    Guan, J.; Cheng, P.; Huang, S. J.; Wu, J. M.; Li, Z. H.; You, X. D.; Hao, L. M.; Guo, Y.; Li, R. X.; Zhang, H.

    The present work investigates the feasibility of fabricating chitosan (CS)-levofloxacin (LOF) nanoparticles by ionotropic gelation technology. An orthogonal experiment was designed to optimize its preparing parameters and multi-index comprehensive weighed score analysis method was used to study the effects of various factors including concentration of CS, concentration of tripolyphosphate (TPP), mass ratio of CS to TPP, and mass ratio of CS to LOF on the properties of nanoparticles. The particles prepared under optimal condition of 2 mg/ml CS concentration, 2 mg/ml TPP concentration, 0.5:1 mass ratio of oil to water and 4:1 mass ratio of CS to TPP had 140 nm diameter, 0.95 span, 6.13% loading capacity (LC) and 24.91% encapsulation efficiency (EE). In vitro release profile showed that LOF released fast initially and then slowly with T90 occurring at 76.5 h. Future studies should focus on antibacterial and biocompatible properties in order to evaluate its potential as sustainable delivery system.

  5. Design and Characterization of Colon Targeted Tegaserod Microspheres by Ionotropic Gelation.

    Directory of Open Access Journals (Sweden)

    Nemade M. S.

    2015-11-01

    Full Text Available The aim of study was to develop and evaluate tegaserod maleate (TM microspheres for colonic drug delivery system. Microspheres of TM were prepared by with little modification in the ionotropic gelation method by using polymer tamarind seed polysaccharide (TSP. These microspheres were evaluated for angle of repose, bulk density, tapped density, particle size, percentage drug entrapment, swelling behavior and in-vitro drug release studies. All the micrometric properties of the microsphere were within the range. The mean particle size of prepared microspheres was found to be in a range of 715.66 - 747.00 μm. Percentage drug entrapment observed in all formulations was between 74.03 - 76.69 %. The % water uptake in the pH 1.2 and pH 7.8 was between 69.66 - 73.33 and 181 - 192 respectively. In-vitro drug release studies showed that the release of tegaserod maleate from the microspheres was mainly influenced by the polymer concentration. Among all the formulations, F1 and F3 shows 94.98 and 88.52% better controlled release at the end of 12 hr respectively. The results indicated that a decrease in release of the drug was observed by increasing the polymer concentration. It is concluded from the present investigation that TM loaded microspheres were promising controlled release carriers for colon targeted delivery.

  6. Formulation and evaluation of hydroxyzine hydrochloride sustained release microspheres by ionotropic gelation technique using Carbopol 934P

    Directory of Open Access Journals (Sweden)

    Soumyadeep Ghosh

    2014-01-01

    Full Text Available Preparation of sustained release microspheres of hydroxyzine hydrochloride by ionotropic gelation technique and evaluation. Microspheres of hydroxyzine hydrochloride were prepared by ionotropic gelation method using sodium alginate, Carbopol 934P and calcium chloride. The powders were evaluated for their flow properties. Hydroxyzine hydrochloride microspheres were characterized by Fourier transform infrared and in vitro dissolution studies. The drug release study of hydroxyzine hydrochloride microspheres was evaluated using basket type dissolution test apparatus. The release rate of Hydroxyzine hydrochloride microspheres was studied for 12 h in pH 7.4 phosphate buffer media. From the five batches F5 batch showed good release behavior 91.08% of drug is released over 12 h, and r2 = 0.987 in zero-order kinetics. The microspheres were prepared without the use of organic solvents. Microspheres of hydroxyzine hydrochloride decrease the incidence of side effects and also improve patient compliance by reducing the number of dosing and by reducing the fluctuations of drug in the blood. This entire attributed attitude proves that microsphere technology from novel drug delivery can be very much effective in reducing dosage frequency, dose dumping, and better patient compliance and economical to the patient. In the future, natural, biodegradable polymers can be used to improve therapeutic efficacy of the drug and further minimizing side-effects.

  7. Biocompatible coating of encapsulated cells using ionotropic gelation.

    Directory of Open Access Journals (Sweden)

    Friederike Ehrhart

    Full Text Available The technique of immunoisolated transplantation has seen in the last twenty years improvements in biocompatibility, long term stability and methods for avoidance of fibrosis in alginate capsules. However, two major problems are not yet solved: living cellular material that is not centered in the capsule is not properly protected from the hosts' immune system and the total transplant volume needs to be reduced. To solve these problems, we present a method for applying fully biocompatible alginate multilayers to a barium-alginate core without the use of polycations. We report on the factors that influence layer formation and stability and can therefore provide data for full adjustability of the additional layer. Although known for yeast and plant cells, this technique has not previously been demonstrated with mammalian cells or ultra-high viscous alginates. Viability of murine insulinoma cells was investigated by live-dead staining and live cell imaging, for murine Langerhans' islets viability and insulin secretion have been measured. No hampering effects of the second alginate layer were found. This multi-layer technique therefore has great potential for clinical and in vitro use and is likely to be central in alginate matrix based immunoisolated cell therapy.

  8. Biocompatible Coating of Encapsulated Cells Using Ionotropic Gelation

    Science.gov (United States)

    Ehrhart, Friederike; Mettler, Esther; Böse, Thomas; Weber, Matthias Max; Vásquez, Julio Alberto; Zimmermann, Heiko

    2013-01-01

    The technique of immunoisolated transplantation has seen in the last twenty years improvements in biocompatibility, long term stability and methods for avoidance of fibrosis in alginate capsules. However, two major problems are not yet solved: living cellular material that is not centered in the capsule is not properly protected from the hosts’ immune system and the total transplant volume needs to be reduced. To solve these problems, we present a method for applying fully biocompatible alginate multilayers to a barium-alginate core without the use of polycations. We report on the factors that influence layer formation and stability and can therefore provide data for full adjustability of the additional layer. Although known for yeast and plant cells, this technique has not previously been demonstrated with mammalian cells or ultra-high viscous alginates. Viability of murine insulinoma cells was investigated by live-dead staining and live cell imaging, for murine Langerhans’ islets viability and insulin secretion have been measured. No hampering effects of the second alginate layer were found. This multi-layer technique therefore has great potential for clinical and in vitro use and is likely to be central in alginate matrix based immunoisolated cell therapy. PMID:24039964

  9. Preparation and In vitro release of hydrochlorothiazide from gellan beads produced by ionotropic gelation

    OpenAIRE

    2009-01-01

    The inherent property of gellan gum to gel and form circular beads through a process of ionotropic gelation in the presence of cations was utilized in the formulation of hydrochlorothiazide (HCTZ). The prepared beads exhibited good drug entrapment efficiency, content uniformity, and sustained release potential. The gelatin-HCTZ beads could be utilized in the delivery of HCTZ, by which reduced frequency of the drug administration could be achieved.

  10. Biological Effects of Drug-Free Alginate Beads Cross-Linked by Copper Ions Prepared Using External Ionotropic Gelation.

    Science.gov (United States)

    Pavelková, M; Kubová, K; Vysloužil, J; Kejdušová, M; Vetchý, D; Celer, V; Molinková, D; Lobová, D; Pechová, A; Vysloužil, J; Kulich, P

    2016-08-08

    External ionotropic gelation offers a unique possibility to entrap multivalent ions in a polymer structure. The aim of this experimental study was to prepare new drug-free sodium alginate (ALG) particles cross-linked by Cu(2+) ions and to investigate their technological parameters (particle size, sphericity, surface topology, swelling capacity, copper content, release of Cu(2+) ions, mucoadhesivity) and biological activity (cytotoxicity and efficiency against the most common vaginal pathogens-Herpes simplex, Escherichia coli, Candida albicans) with respect to potential vaginal administration. Beads prepared from NaALG dispersions (3 or 4%) were cross-linked by Cu(2+) ions (0.5 or 1.0 M CuCl2) using external ionotropic gelation. Prepared mucoadhesive beads with particle size over 1000 μm exhibited sufficient sphericity (all ˃0.89) and copper content (214.8-249.07 g/kg), which increased with concentration of polymer and hardening solution. Dissolution behaviour was characterized by extended burst effect, followed by 2 h of copper release. The efficiency of all samples against the most common vaginal pathogens was observed at cytotoxic Cu(2+) concentrations. Anti-HSV activity was demonstrated at a Cu(2+) concentration of 546 mg/L. Antibacterial activity of beads (expressed as minimum inhibition concentration, MIC) was influenced mainly by the rate of Cu(2+) release which was controlled by the extent of swelling capacity. Lower MIC values were found for E. coli in comparison with C. albicans. Sample ALG-3_1.0 exhibited the fastest copper release and was proved to be the most effective against both bacteria. This could be a result of its lower polymer concentration in combination with smaller particle size and thus larger surface area.

  11. Formulation of mucoadhesive microspheres of rosiglitazone maleate and its in vitro evaluation using ionotropic gelation technique

    Directory of Open Access Journals (Sweden)

    Akanksha Garud

    2015-01-01

    Full Text Available Aim: The objective of the present study is to design and evaluate mucoadhesive microspheres for oral controlled release. Materials and Method: Rosiglitazone maleate microspheres with a coat consisting of alginate and a mucoadhesive polymer sodium carboxymethylcellulose, carbopol 934P and hydroxypropylmethylcellulose were prepared by an orifice-ionic gelation process. The microspheres were evaluated for FTIR studies, morphology, particle size, micromeritic properties, percentage entrapment efficiency, in-vitro wash-off test and in-vitro release studies. Results: The resulting microspheres were spherical and free flowing. The percent entrapment efficiency was 68.2 to 85.6%. The microspheres exhibited good mucoadhesive property in the in vitro wash-off test. Rosiglitazone release from these mucoadhesive microspheres was slow and extended over 12 h duration of time depending on the composition of coat. Conclusions: The prepared mucoadhesive microspheres are thus suitable for oral controlled release of Rosiglitazone maleate and thereby help in the management of type II diabetes mellitus.

  12. A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation.

    Science.gov (United States)

    Kleine-Brueggeney, H; Zorzi, G K; Fecker, T; El Gueddari, N E; Moerschbacher, B M; Goycoolea, F M

    2015-11-01

    Chitosan is a linear aminopolysaccharide that has been widely used for the formation of chitosan-based nanoparticles by ionic gelation with sodium tripolyphosphate (TPP). Often, the experimental design used to obtain these systems does not take into consideration important variables, such as the degree of acetylation (DA) and the molecular weight (Mw) of chitosan. In this work, we studied the formation of chitosan-TPP nanoparticles with chitosan samples of varying DA and Mw (DA0 ∼ 0-47% and Mw ∼ 2.5-282 kDa). We addressed the influence the degree of space occupancy and the degree of crosslinking on the physical properties of chitosan-TPP nanoparticles. Nanoparticles that comprised chitosan of DA ∼ 0-21.7% behaved differently than those made of chitosan of DA ∼ 34.7-47%. We attributed these differences to the polymer conformation and chain flexibility of the distinct chitosans in solution. Moreover, chitosan of high Mw were found to have a stronger preference for incorporating into the formed nanoparticles than do low-Mw ones, as determined by SEC-HPLC. These results open new perspectives to understand the formation of chitosan nanoparticles by the ionic gelation technique.

  13. Cetirizine dihydrochloride loaded microparticles design using ionotropic cross-linked chitosan nanoparticles by spray-drying method.

    Science.gov (United States)

    Li, Feng-Qian; Ji, Rui-Rui; Chen, Xu; You, Ben-Ming; Pan, Yong-Hua; Su, Jia-Can

    2010-12-01

    To control the release rate and mask the bitter taste, cetirizine dihydrochloride (CedH) was entrapped within chitosan nanoparticles (CS-NPs) using an ionotropic gelation process, followed by microencapsulation to produce CS matrix microparticles using a spray-drying method. The aqueous colloidal CS-NPs dispersions with a drug encapsulation efficiency (EE) of 70%. The resultant spherical CS microparticles had a smooth surface, were free of organic solvent residue and showed a diameter range of 0.5~5 μm. The in vitro drug release properties of CedH encapsulated microparticles showed an initial burst effect during the first 2 h. Drug release from the matrix CS microparticles could be retarded by the crosslinking agent pentasodium tripolyphosphate or the wall material. The technique of 'ionotropic gelation' combined with 'spray-drying' could be applicable for preparation of CS nanoparticlesin-microparticles drug delivery systems. CS-NPs based microparticles might provide a potential micro-carrier for oral administration of the freely water-soluble drug--CedH.

  14. A NOVEL METHOD FOR CHARACTERIZING THE WHOLE PROCESS OF POLYMER GELATION

    Institute of Scientific and Technical Information of China (English)

    Qiang Chen; Xian-min Zhang; Guo-wei Wang; Jian Xu

    2001-01-01

    A novel method was established to investigate the gelation process of polymers. The change of refractive index of a polyner system during gelation was determined in situ in a prismatic cell. It can give reliable information on the whole gelation process. The apparatus and the execution of this technique are illustrated and the error is also discussed.``

  15. Nozzleless Fabrication of Oil-Core Biopolymeric Microcapsules by the Interfacial Gelation of Pickering Emulsion Templates.

    Science.gov (United States)

    Leong, Jun-Yee; Tey, Beng-Ti; Tan, Chin-Ping; Chan, Eng-Seng

    2015-08-05

    Ionotropic gelation has been an attractive method for the fabrication of biopolymeric oil-core microcapsules due to its safe and mild processing conditions. However, the mandatory use of a nozzle system to form the microcapsules restricts the process scalability and the production of small microcapsules (palm olein, cyclohexane, dichloromethane, and toluene). In addition, small microcapsules with a mean size smaller than 100 μm can be produced by selecting the appropriate conventional emulsification methods available to prepare the Pickering emulsion. The simplicity and versatility of this method allows biopolymeric microcapsules to be fabricated with ease by ionotropic gelation for numerous applications.

  16. Determination of gelation dose of poly(vinyl acetate) by a spectrophotometric method

    Energy Technology Data Exchange (ETDEWEB)

    Guven, Olgun; Yigit, Fatma

    1986-01-01

    The gelation point is an important property of polymers undergoing crosslinking when subjected to high energy radiation. This point is generally determined by viscometric and solubility methods or by mechanical measurements. When crosslinking and discoloration take place simultaneously, gelation doses can be determined spectrophotometrically. In this work it is demonstrated that the gelation dose of poly (vinyl acetate) can be determined by simply recording the u.v.-vis. spectra of the solutions of ..gamma..-irradiated polymer. The reliability of the method is verified by viscometric and solubility measurements.

  17. Production and Characterization Chitosan Nano from Black Tiger Shrimpwith Ionic Gelation Methods

    OpenAIRE

    Laode Muhamad Hazairin Nadia; Pipih - Suptijah; Bustami - Ibrahim

    2014-01-01

    Black tiger shrimp shell (Penaeus monodon) has a potential as raw materials in the manufacturing process of nano-chitosan that contains chitin. The purposes of this study is to formed nano-chitosan through ionic gelation process and size reduction by magnetic stirrer and determine the characteristic of nano-chitosan based on morphology and size of nanoparticles. Nano-chitosan were formed by ionic gelation method, which is polyelectrolite complexation between the positively charged chitosan an...

  18. Determination of gelation doses of gamma-irradiated hydrophilic polymers by different methods

    Science.gov (United States)

    Yiǧit, Fatma; Tekin, Niket; Erkan, Sevin; Güven, Olgun

    1994-04-01

    Poly(acrylic acid) and poly(vinyl pyrrolidone) are hydrophilic polymers. Poly(acrylic acid) is a polyelectrolyte which ionizes in water to produce an electrically conducting medium. Therefore, the gelation dose of poly(acrylic acid) can be determined by conductometric titration, simple titration and the measurement of pH. The conventional techniques of determining gelation dose are very time and material consuming especially for poly(acrylic acid) and subject to serious errors due to its electrolytic behavior. In this study, it has been shown that the gelation dose of poly(acrylic acid) can be determined by conductimetric and titrimetric methods with NaOH and measuring pH of aqueous solution of γ-irradiated polymer. In order to develop new, simpler and rapid methods for the determination of gelation dose of PVP, its complexation with gallic acid in dilute aqueous solution has been used. The complex formation between gallic acid and irradiated PVP in aqueous solutions is followed by UV-vis spectroscopy. The reliability of the dose value found, 120 kGy for poly(acrylic acid) and 140 kGy for poly(vinyl pyrrolidone), are also verified by viscometric and solubility measurements.

  19. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in w

  20. Cold gelation of globular proteins

    NARCIS (Netherlands)

    Alting, A.C.

    2003-01-01

    Keywords : globular proteins, whey protein, ovalbumin, cold gelation, disulfide bonds, texture, gel hardnessProtein gelation in food products is important to obtain desirable sensory and textural properties. Cold gelation is a novel method to produce protein-based gels. It is a two step process in w

  1. Ionotropically gelled novel hydrogel beads: Preparation, characterization and in vitro evaluation

    OpenAIRE

    2011-01-01

    Prolonged release drug delivery system of stavudine was made by ionotropic gelation and polyelectrolyte complexation technique. Cross-linking reinforced chitosan-gellan complex beads were prepared by gelation of anionic gellan gum, the primary polymer, with oppositely charged counter ion to form beads which were further complexed with chitosan as a polyelectrolyte. The effect of this polymer on release profile of drug was studied. Beads without chitosan complexation were also made. The reacti...

  2. Microencapsulation of Lactobacillus plantarum DKL 109 using External Ionic Gelation Method.

    Science.gov (United States)

    Chun, Honam; Kim, Cheol-Hyun; Cho, Young-Hee

    2014-01-01

    The aim of this study was to apply the external ionic gelation using an atomizing spray device comprised of a spray gun to improve the viability of Lactobacillus plantarum DKL 109 and for its commercial use. Three coating material formulas were used to microencapsulate L. plantarum DKL 109: 2% alginate (Al), 1% alginate/1% gellan gum (Al-GG), and 1.5% alginate/3% gum arabic (Al-GA). Particle size of microcapsules was ranged from 18.2 to 23.01 μm depending on the coating materials. Al-GA microcapsules showed the highest microencapsulation yield (98.11%) and resulted in a significant increase in survivability of probiotic in a high acid and bile environment. Encapsulation also improved the storage stability of cells. The viability of encapsulated cells remained constant after 1-mon storage at ambient temperature. The external ionic gelation method using an atomizing spray device and the Al-GA seems to be an efficient encapsulation technology for protecting probiotics in terms of scale-up potential and small microcapsule size.

  3. Microencapsulation of Lactobacillus plantarum DKL 109 using External Ionic Gelation Method

    Science.gov (United States)

    Chun, Honam

    2014-01-01

    The aim of this study was to apply the external ionic gelation using an atomizing spray device comprised of a spray gun to improve the viability of Lactobacillus plantarum DKL 109 and for its commercial use. Three coating material formulas were used to microencapsulate L. plantarum DKL 109: 2% alginate (Al), 1% alginate/1% gellan gum (Al-GG), and 1.5% alginate/3% gum arabic (Al-GA). Particle size of microcapsules was ranged from 18.2 to 23.01 μm depending on the coating materials. Al-GA microcapsules showed the highest microencapsulation yield (98.11%) and resulted in a significant increase in survivability of probiotic in a high acid and bile environment. Encapsulation also improved the storage stability of cells. The viability of encapsulated cells remained constant after 1-mon storage at ambient temperature. The external ionic gelation method using an atomizing spray device and the Al-GA seems to be an efficient encapsulation technology for protecting probiotics in terms of scale-up potential and small microcapsule size. PMID:26761504

  4. Production and Characterization Chitosan Nano from Black Tiger Shrimpwith Ionic Gelation Methods

    Directory of Open Access Journals (Sweden)

    Laode Muhamad Hazairin Nadia

    2014-11-01

    Full Text Available Black tiger shrimp shell (Penaeus monodon has a potential as raw materials in the manufacturing process of nano-chitosan that contains chitin. The purposes of this study is to formed nano-chitosan through ionic gelation process and size reduction by magnetic stirrer and determine the characteristic of nano-chitosan based on morphology and size of nanoparticles. Nano-chitosan were formed by ionic gelation method, which is polyelectrolite complexation between the positively charged chitosan and negative charged tripolyphosphate. Yield of chitosan from Black Tiger Shrimp shell are 19,08%, while the yield of nano-chitosan by size reduction treatment using a magnetic stirrer is 80,67%. Value of the deacetylation degree from chitosan which is used to formed nano-chitosan is equal to 98,65%, it indicates the chitosan which is produced is a native chitosan. Nano-chitosan have an average size of 228.74 nm, fairly uniform, relatively stable and has a sphere like particle shape. Particle size reduction with magnetic stirrer, can distribute more homogeneous particle size. Added tripolyphosphate (TPP and surfactants (Tween 80 can enhance the mechanical properties of chitosan that are naturally fragile and enhanced formation if ionic crosslinking between chitosan molecules.

  5. Ionotropic crustacean olfactory receptors.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Corey

    Full Text Available The nature of the olfactory receptor in crustaceans, a major group of arthropods, has remained elusive. We report that spiny lobsters, Panulirus argus, express ionotropic receptors (IRs, the insect chemosensory variants of ionotropic glutamate receptors. Unlike insects IRs, which are expressed in a specific subset of olfactory cells, two lobster IR subunits are expressed in most, if not all, lobster olfactory receptor neurons (ORNs, as confirmed by antibody labeling and in situ hybridization. Ligand-specific ORN responses visualized by calcium imaging are consistent with a restricted expression pattern found for other potential subunits, suggesting that cell-specific expression of uncommon IR subunits determines the ligand sensitivity of individual cells. IRs are the only type of olfactory receptor that we have detected in spiny lobster olfactory tissue, suggesting that they likely mediate olfactory signaling. Given long-standing evidence for G protein-mediated signaling in activation of lobster ORNs, this finding raises the interesting specter that IRs act in concert with second messenger-mediated signaling.

  6. Preparation and Characterization of Ionotropic Cross-Linked Chitosan Microparticles for Controlled Release of Aceclofenac

    Directory of Open Access Journals (Sweden)

    N. G. Raghavendra Rao

    2010-04-01

    Full Text Available Aceclofenac, (2-[2-[2-(2, 6-dichlorophenyl aminophenyl] acety] oxyacetic acid a non-steroidal anti-inflammatory drug (NSAID, has been indicated for various conditions like post-traumatic pain, rheumatoid arthritis, ankylosing spondylitis. Multiple-unit systems have been reported to avoid the variations in gastric emptying and different transit rates through gastro-intestinal and spread over a large area preventing exposure of the absorbing site to high drug concentration on chronic dosing. The purpose of this study was therefore to develop aceclofenac loaded chitosan microparticles by ionotropic gelation method. Drug loading efficiency (DLE of microparticles was found between 62.20 to 92.93 % and depended on the formulation variables. Increase in the Tripolyphosphate (TPP concentration, pH of the TPP solution and cross-linking time decreased the drug release. The particle size decreased with increase in cross-linking time and found between the ranges of 1194.1 to 1568.9 µm. Drug release showed slight burst effect in phosphate buffer pH 7.4 in first hour followed by prolonged release for 8 hrs. FTIR and DSC revealed that there was no interaction between drug and polymer. The release data was fitted into first order, zero order and Higuchi model to find release kinetics. The values of regression coefficient r2 were found to be greater (£ 0.9541 for first order than for zero order (£ 0.8740 and the r2 value for Higuchi was £ 0.9805 suggesting diffusion controlled process. The result concluded that TPP-chitosan microparticles developed by ionotropic gelation method might become potential delivery system to prolonging the release of aceclofenac.

  7. Microencapsulation of Lactobacillus plantarum DKL 109 using External Ionic Gelation Method

    National Research Council Canada - National Science Library

    Chun, Honam; Kim, Cheol-Hyun; Cho, Young-Hee

    2014-01-01

    The aim of this study was to apply the external ionic gelation using an atomizing spray device comprised of a spray gun to improve the viability of Lactobacillus plantarum DKL 109 and for its commercial use...

  8. Delaying cluster growth of ionotropic induced alginate gelation by oligoguluronate.

    Science.gov (United States)

    Padoł, Anna Maria; Maurstad, Gjertrud; Draget, Kurt Ingar; Stokke, Bjørn Torger

    2015-11-20

    Alginates form gels in the presence of various divalent ions, such as Ca(2+) that mediate lateral association of chain segments. Various procedures exist that introduce Ca(2+) to yield alginate hydrogels with overall homogeneous or controlled gradients in the concentration profiles. In the present study, the effect of adding oligomers of α-l-guluronic acid (oligoGs) to gelling solutions of alginate was investigated by determination of the cluster growth stimulated by in situ release of Ca(2+). Three different alginate samples varying in fraction of α-l-guluronic acid and molecular weights were employed. The cluster growth was determined for both pure alginates and alginates with two different concentrations of the oligoGs employing dynamic light scattering. The results show that addition of oligoG slows down the cluster growth, the more efficient for the alginates with higher fraction of α-l-guluronic acid, and the higher molecular weight. The efficiency in delaying and slowing the cluster growth induced by added oligoG were discussed in view of the molecular parameters of the alginates. These results show that oligoG can be added to alginate solutions to control the cluster growth and eventually also transition to the gel state. Quantitative relation between the concentration of added oligoG, type and molecular weight of the alginate, and concentration, can be employed as guidelines in tuning alginate cluster growth with specific properties.

  9. Production and characterization of nanocapsules encapsulated linalool by ionic gelation method using chitosan as wall material

    Directory of Open Access Journals (Sweden)

    Zuobing XIAO

    Full Text Available Abstract Linalool has been extensively applied in various fields, such as flavoring agent, perfumes, cosmetics and medical science. However, linalool is unstable, volatile and readily oxidizable. A sensitive substance can be encapsulated in a capsule, so encapsulation technology can solve these problems. In this paper, linalool-loaded nanocapsules (Lin-nanocapsules were prepared via the ionic gelation method and Lin-nanocapsules were characterized. The results of Fourier transformation infrared spectroscopy (FTIR showed that linalool was successfully encapsulated in the wall materials. Scanning electron microscopy (SEM results demonstrated that the shapes of Lin-nanocapsules, with smooth surfaces, were nearly spherical. Lin-nanocapsule average particle size was 352 nm and its polydispersity index (PDI was proved to be 0.214 by the results of dynamic light scattering (DLC. Thermogravimetric results indicated that linalool loading capacity (LC was 15.17%, and encapsulation could decrease linalool release and increase linalool retaining time under the high temperature. Oscillatory shear and steady-state shear measurements of Lin-nanocapsule emulsions were systematically investigated. The results of steady-state shear showed that Lin-nanocapsule emulsion, which was Newtonian only for high shear rate, was non-Newtonian. It was proved by oscillatory shear that when oscillation frequency changed from low to high, Lin-nanocapsules emulsion changed from viscous into elastic.

  10. Synthesis and Characterization of New Thiolated Chitosan Nanoparticles Obtained by Ionic Gelation Method

    Directory of Open Access Journals (Sweden)

    Reynaldo Esquivel

    2015-01-01

    Full Text Available We derivatized low molecular weight chitosan (LMWC with 3-mercaptopropanoic acid (3-MPA by a coupling reaction. The chemical modification of LMWC was characterized by Fourier transform infrared spectroscopy (FT-IR and nuclear magnetic resonance, 1HNMR. We researched the influence of 3-MPA on the nanoparticles formation by ionic gelation method using sodium tripolyphosphate (TPP as cross-linker reagent. In order to optimize the nanoparticles formation, we studied the effect of the pH solution and molar ratio on nanoparticles stability. Analyses of particle size, morphology, and surface charge were determined by dynamic light scattering, Atomic Force Microscopy, and zeta potential, respectively. It was found that formation of semispherical and stable nanoparticles was improved due to the chemical modification of chitosan. Optimized semispherical nanoparticles of thiolated chitosan were synthesized with the parameters (pH 4.7, molar ratios 1 : 106. Additionally, we reported the thermodynamic profile of the nanoparticles formation determined by isothermal titration calorimetry (ITC. The aggregation process achieved to form nanoparticles of thiolated and nonmodified chitosan consisted of two stages, considering one binding site model. Gibbs free energy (ΔG and binding constant (Ka describe the aggregation process of thiolated chitosan/TPP, which is an initial reaction and followed by an endothermic stage. These results are promising for the possible application of these nanoparticles as nanocarriers and delivery systems.

  11. Emulsification/internal gelation as a method for preparation of diclofenac sodium-sodium alginate microparticles.

    Science.gov (United States)

    Ahmed, Mahmoud M; El-Rasoul, Saleh Abd; Auda, Sayed H; Ibrahim, Mohamed A

    2013-01-01

    Emulsification/internal gelation has been suggested as an alternative to extrusion/external gelation in the encapsulation of several compounds including non-steroidal anti-inflammatory drugs such as diclofenac sodium. The objective of the present study was a trial to formulate diclofenac sodium as controlled release microparticles that might be administered once or twice daily. This could be achieved via emulsification/internal gelation technique applying Box-Behnken design to choose these formulae. Box-Behnken design determined fifteen formulae containing specified amounts of the independent variables, which included stirring speed in rpm (X1), drug:polymer ratio (X2) and the surfactant span 80% (X3). The dependent variables studied were cumulative percent release after two hours (Y1), four hours (Y2) and eight hours (Y3). The prepared microparticles were characterized for their production yield, sizes, shapes and morphology, entrapment efficiency and Diclofenac sodium in vitro release as well. The results showed that the production yield of the prepared diclofenac sodium microparticles was found to be between 79.55% and 97.41%. The formulated microparticles exhibited acceptable drug content values that lie in the range 66.20-96.36%. Also, the data obtained revealed that increasing the mixing speed (X1) generally resulted in decreased microparticle size. In addition, scanning electron microscope images of the microparticles illustrated that the formula contains lower span concentration (1%) in combination with lower stirring speed (200 rpm) which showed wrinkled, but smooth surfaces. However, by increasing surfactant concentration, microspheres' surfaces become smoother and slightly porous. Kinetic treatment of the in vitro release from drug-loaded microparticles indicated that the zero order is the drug release mechanism for the most formulae.

  12. C-ADU Gel Particle Preparation by Modified-External Gelation Method

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Cha; Eom, Sung Ho; Cho, Cho Moon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Carbon black powder as a carbon source in the final UCO kernel is added during the broth solution preparation, in the processing of UCO kernel fabrication. The preparation of a good quality UCO kernel is very difficult owing to the homogeneous distribution of carbon in a UCO kernel. The key technology used to obtain a good quality sphere (sphericity, density, C/U, O/U ratios) is a uniform distribution of carbon particles into the C-ADU gel sphere, i.e., during the gelation step of liquid droplets formation before the thermal treatment. We carried out carbon source selection experiments on the various kinds of carbon black powder and a dispersion test in a simulated broth solution. The CB10 sample shows that the relative cumulative velocity and the velocity distribution density have the highest value. This is a Cabot Emperor 1800 CB particle.

  13. Gelation properties of spent duck meat surimi-like material produced using acid-alkaline solubilization methods.

    Science.gov (United States)

    Nurkhoeriyati, T; Huda, N; Ahmad, R

    2011-01-01

    The gelation properties of spent duck meat surimi-like material produced using acid solubilization (ACS) or alkaline solubilization (ALS) were studied and compared with conventionally processed (CON) surimi-like material. The ACS process yielded the highest protein recovery (P gelation and color properties of spent duck and possibly applied for other high fat raw material.

  14. The effect of temperature and chitosan concentration during storage on the growth of chitosan nanoparticle produced by ionic gelation method

    Science.gov (United States)

    Handani, Wenny Rinda; Sediawan, Wahyudi Budi; Tawfiequrrahman, Ahmad; Wiratni, Kusumastuti, Yuni

    2017-05-01

    The objective of this research was to get the mechanism of nano size chitosan particle growth during storage by observing the effect of temperature and initial concentration of chitosan. The products were analyzed using PSA to have the average of particle radius. Nanochitosan solution was prepared by ionic gelation method. This method is described as an electrostatic interaction between positively charged amine with negatively charged polyanion, such as tripolyphosphate (TPP). Chitosan was dissolved in 1% acetic acid and was stirred for 30 minutes. Tween 80 was added to avoid agglomeration. TPP was prepared by dissolving 0.336 g into distilled water. The nano size chitosan was obtained by mixing TPP and chitosan solution dropwise while stirring for 30 minutes. This step was done at 15°C and ambient temperature (about 30°C) and chitosan concentration 0.2%, 0.4% and 0.6%. The results show that temperature during ionic gelation process (15°C and 30°C) does not affect the initial size of the nanoparticles produced as well as the growth of the nanoparticles during storage. On the other hand, initial chitosan concentration strongly affects initial size of the nanoparticles produced and the growth of the nanoparticles during storage. The concentration of chitosan at 0.2%, 0.4%, 0.6% gave initial size of nanoparticle chitosan of 175.3 nm, 337.9 nm, 643.3 nm respectively. On the other hand, the growth mechanism of chitosan nanoparticle depended on its radius(R). At R500 nm, it is controlled by diffusion in the liquid film around the particles.

  15. Application of method of differential scanning calorimetry is for the study of mechanism of gelation of composition on the basis of carbonanotube

    Directory of Open Access Journals (Sweden)

    Е. Г. Привалко

    2013-07-01

    Full Text Available By differential scanning calorimetry method have been studied influence of nanotubes upon structure mechanism of gelation of composition. It is shown that particles of carbonanotube are active nucleation agents for crystallization of polipropilen. Crystallization takes place on the mechanism of the strained matrix. After by the got results, at content of carbonanotube of 1-2 % there are the best terms for crystallization of polymeric matrix

  16. EFFECTS OF GELATION RETARDATION ON THERMAL RESPONSE BEHAVIOR OF PNIAPM GELS: A METHOD TO IMPROVE THEIR DESWELLING KINETICS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    P(N-isopropylacrylamide) (PNIPAM) prepared by reversible addition fragmentation chain transfer (RAFT) polymerization exhibited gelation retardation. The intermediate before gelation was characterized and indicated the presence of branched or hyperbranched chains. The swelling behavior was investigated, and the gel by RAFT polymerization (RAFT gel) showed accelerated shrinking kinetics and higher swelling ratio comparing with conventional gels (CG). The study was extended to gels prepared by using 2-hydroxy-1-ethanethiol as chain transfer agent and by using low concentration solutions.The two systems also exhibited retardation effects and improved deswelling kinetics. The different swelling behaviors of these gels and CG could be attributed to the presence of dangling chains caused by gelation retardation.

  17. Ionotropic glutamate receptors & CNS disorders.

    Science.gov (United States)

    Bowie, Derek

    2008-04-01

    Disorders of the central nervous system (CNS) are complex disease states that represent a major challenge for modern medicine. Although aetilogy is often unknown, it is established that multiple factors such as defects in genetics and/or epigenetics, the environment as well as imbalance in neurotransmitter receptor systems are all at play in determining an individual's susceptibility to disease. Gene therapy is currently not available and therefore, most conditions are treated with pharmacological agents that modify neurotransmitter receptor signaling. Here, I provide a review of ionotropic glutamate receptors (iGluRs) and the roles they fulfill in numerous CNS disorders. Specifically, I argue that our understanding of iGluRs has reached a critical turning point to permit, for the first time, a comprehensive re-evaluation of their role in the cause of disease. I illustrate this by highlighting how defects in AMPA receptor (AMPAR) trafficking are important to fragile X mental retardation and ectopic expression of kainate receptor (KAR) synapses contributes to the pathology of temporal lobe epilepsy. Finally, I discuss how parallel advances in studies of other neurotransmitter systems may allow pharmacologists to work towards a cure for many CNS disorders rather than developing drugs to treat their symptoms.

  18. The hydrodynamics of colloidal gelation.

    Science.gov (United States)

    Varga, Zsigmond; Wang, Gang; Swan, James

    2015-12-14

    Colloidal gels are formed during arrested phase separation. Sub-micron, mutually attractive particles aggregate to form a system spanning network with high interfacial area, far from equilibrium. Models for microstructural evolution during colloidal gelation have often struggled to match experimental results with long standing questions regarding the role of hydrodynamic interactions. In nearly all models, these interactions are neglected entirely. In the present work, we report simulations of gelation with and without hydrodynamic interactions between the suspended particles executed in HOOMD-blue. The disparities between these simulations are striking and mirror the experimental-theoretical mismatch in the literature. The hydrodynamic simulations agree with experimental observations, however. We explore a simple model of the competing transport processes in gelation that anticipates these disparities, and conclude that hydrodynamic forces are essential. Near the gel boundary, there exists a competition between compaction of individual aggregates which suppresses gelation and coagulation of aggregates which enhances it. The time scale for compaction is mildly slowed by hydrodynamic interactions, while the time scale for coagulation is greatly accelerated. This enhancement to coagulation leads to a shift in the gel boundary to lower strengths of attraction and lower particle concentrations when compared to models that neglect hydrodynamic interactions. Away from the gel boundary, differences in the nearest neighbor distribution and fractal dimension persist within gels produced by both simulation methods. This result necessitates a fundamental rethinking of how dynamic, discrete element models for gelation kinetics are developed as well as how collective hydrodynamic interactions influence the arrest of attractive colloidal dispersions.

  19. Gelation under shear

    Energy Technology Data Exchange (ETDEWEB)

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C. [National Institute of Standards and Technology, Boulder, CO (United States); Muzny, C.D. [Univ. of Colorado, Boulder, CO (United States)

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  20. Influence of oligoguluronates on alginate gelation and on alginate gel properties

    OpenAIRE

    Padoł, Anna Maria

    2016-01-01

    Alginates are very abundant material in nature, mostly known for its gelling ability. Alginate is a family of linear copolymers of β-D-mannuronic acid and α-L-guluronic acid. Due to its biocompatibility, nontoxicity and its mild ionotropic gelation it have paved the way to biomedical and pharmaceutical industries. Where they are used, as immunological isolation barriers between implant and host, functionality for cell entrapment and for controlled drug delivery. Understanding how to control i...

  1. Gelation on the microscopic scale

    Science.gov (United States)

    Oppong, Felix K.; Coussot, P.; de Bruyn, John R.

    2008-08-01

    Particle-tracking methods are used to study gelation in a colloidal suspension of Laponite clay particles. We track the motion of small fluorescent polystyrene spheres added to the suspension, and obtain the micron-scale viscous and elastic moduli of the material from their mean-squared displacement. The fluorescent spheres move subdiffusively due to the microstructure of the suspension, with the diffusive exponent decreasing from close to one at early times to near zero as the material gels. The particle-tracking data show that the system becomes more heterogeneous on the microscopic scale as gelation proceeds. We also determine the bulk-scale moduli using small-amplitude oscillatory shear rheometry. Both the macroscopic and microscopic moduli increase with time, and on both scales we observe a transition from a primarily viscous fluid to an elastic gel. We find that the gel point, determined as the time at which the viscous and elastic moduli are equal, is length-scale dependent—gelation occurs earlier on the bulk scale than on the microscopic scale.

  2. Protein mixtures: interactions and gelation

    NARCIS (Netherlands)

    Ersch, C.

    2015-01-01

    Gelation is a ubiquitous process in the preparation of foods. As most foods are multi constituent mixtures, understanding gelation in mixtures is an important goal in food science. Here we presented a systematic investigation on the influence of molecular interactions on the gelation in protein mixt

  3. Protein mixtures: interactions and gelation

    NARCIS (Netherlands)

    Ersch, C.

    2015-01-01

    Gelation is a ubiquitous process in the preparation of foods. As most foods are multi constituent mixtures, understanding gelation in mixtures is an important goal in food science. Here we presented a systematic investigation on the influence of molecular interactions on the gelation in protein mixt

  4. Oil core microcapsules by inverse gelation technique.

    Science.gov (United States)

    Martins, Evandro; Renard, Denis; Davy, Joëlle; Marquis, Mélanie; Poncelet, Denis

    2015-01-01

    A promising technique for oil encapsulation in Ca-alginate capsules by inverse gelation was proposed by Abang et al. This method consists of emulsifying calcium chloride solution in oil and then adding it dropwise in an alginate solution to produce Ca-alginate capsules. Spherical capsules with diameters around 3 mm were produced by this technique, however the production of smaller capsules was not demonstrated. The objective of this study is to propose a new method of oil encapsulation in a Ca-alginate membrane by inverse gelation. The optimisation of the method leads to microcapsules with diameters around 500 μm. In a search of microcapsules with improved diffusion characteristics, the size reduction is an essential factor to broaden the applications in food, cosmetics and pharmaceuticals areas. This work contributes to a better understanding of the inverse gelation technique and allows the production of microcapsules with a well-defined shell-core structure.

  5. Muscimol as an ionotropic GABA receptor agonist.

    Science.gov (United States)

    Johnston, Graham A R

    2014-10-01

    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  6. Protein mixtures: interactions and gelation

    OpenAIRE

    Ersch, C.

    2015-01-01

    Gelation is a ubiquitous process in the preparation of foods. As most foods are multi constituent mixtures, understanding gelation in mixtures is an important goal in food science. Here we presented a systematic investigation on the influence of molecular interactions on the gelation in protein mixtures. Gelatin gels with added globular protein and globular protein gels with added gelatin were analyzed for their gel microstructure and rheological properties. Mixed gels with altered microstruc...

  7. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery.

    Science.gov (United States)

    Anandhakumar, S; Krishnamoorthy, G; Ramkumar, K M; Raichur, A M

    2017-01-01

    In recent years, nanoparticles (NPs) based on biopolymers or peptides are gaining popularity for the encapsulation and release of drug molecules, especially for cancer therapy, due to their ability for targeted and controlled release. The use of collagen peptide (CP) for the preparation of chitosan (CN) NPs is especially interesting as it results in NPs that are stable under physiological conditions. In this work, mono-dispersed pH responsive CPCN NPs of about 100nm were prepared via ionic gelation method by simple and mild co-precipitation of CN and CP. Investigation of NPs with Fourier transform infra-red (FTIR) spectroscopy and dynamic light scattering (DLS) measurements reveals that hydrogen bonding and electrostatic interactions are believed to be major driving forces for NP formation and drug encapsulation, respectively. Scanning electron microscopic (SEM) investigations show that hard and fine CPCN NPs transform to soft and bigger gel like particles as a function of collagen concentration. The unique "polymeric gel" structure of NPs showed high encapsulation efficiency towards doxorubicin hydrochloride (DOX) as well as pH controlled release. Anti-proliferative and cell viability analysis revealed that DOX loaded NPs showed excellent anti-proliferative characteristics against HeLa cells with favorable biocompatibility against normal cells. Such NPs have high potential for use as smart drug delivery carriers in advanced cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Smart Magnetically Responsive Hydrogel Nanoparticles Prepared by a Novel Aerosol-Assisted Method for Biomedical and Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Ibrahim M. El-Sherbiny

    2011-01-01

    Full Text Available We have developed a novel spray gelation-based method to synthesize a new series of magnetically responsive hydrogel nanoparticles for biomedical and drug delivery applications. The method is based on the production of hydrogel nanoparticles from sprayed polymeric microdroplets obtained by an air-jet nebulization process that is immediately followed by gelation in a crosslinking fluid. Oligoguluronate (G-blocks was prepared through the partial acid hydrolysis of sodium alginate. PEG-grafted chitosan was also synthesized and characterized (FTIR, EA, and DSC. Then, magnetically responsive hydrogel nanoparticles based on alginate and alginate/G-blocks were synthesized via aerosolization followed by either ionotropic gelation or both ionotropic and polyelectrolyte complexation using CaCl2 or PEG-g-chitosan/CaCl2 as crosslinking agents, respectively. Particle size and dynamic swelling were determined using dynamic light scattering (DLS and microscopy. Surface morphology of the nanoparticles was examined using SEM. The distribution of magnetic cores within the hydrogels nanoparticles was also examined using TEM. In addition, the iron and calcium contents of the particles were estimated using EDS. Spherical magnetic hydrogel nanoparticles with average particle size of 811 ± 162 to 941 ± 2 nm were obtained. This study showed that the developed method is promising for the manufacture of hydrogel nanoparticles, and it represents a relatively simple and potential low-cost system.

  9. Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process.

    Science.gov (United States)

    Song, Huiyi; Yu, Weiting; Gao, Meng; Liu, Xiudong; Ma, Xiaojun

    2013-07-01

    Alginate-chitosan microcapsules containing probiotics (Yeast, Y235) were prepared by emulsification/external gelation and emulsification/internal gelation techniques respectively. The gel beads by external gelation showed asymmetrical structure, but those by internal gelation showed symmetrical structure in morphology. The cell viability was approximately 80% for these two techniques. However, during cell culture process, emulsification/internal gelation microcapsules showed higher cell growth and lower cell leakage. Moreover, the survival rate of entrapped low density cells with culture (ELDCwc) increased obviously than that directly entrapped high density cells (dEHDC) and free cells when keeping in simulated gastrointestinal conditions. It indicated the growth process of cells in microcapsule was important and beneficial to keep enough active probiotics under harmful environment stress. Therefore, the emulsification/internal gelation technique was the preferred method for application in food or biotechnological industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effect of solvent state and isothermal conditions on gelation of methylcellulose hydrogels.

    Science.gov (United States)

    Joshi, Sunil C; Liang, C M; Lam, Y C

    2008-01-01

    In this study, thermal behavior of aqueous solutions of methyl cellulose (MC) at a constant temperature of 50 degrees C was analyzed. Various samples were studied for two consecutive heating-cooling cycles. The experiments with the solutions prepared using cold de-ionized (DI) water showed that the rate of gelation was higher for higher MC concentrations. However, the rate was slower during the first heating-cooling cycle than during the second cycle. The possible reasons behind such observations are discussed. Various MC solutions prepared using hot DI water were studied for understanding the role of the solvent state in the isothermal gelation process. The gelation of these MC solutions started at a lower MC concentration and resulted in a higher gelation rate. The gelation mechanism responsible for such effects is explored and presented. Finally, a gel-indexing method is proposed to provide a quantitative measure of the gelation state of all the MC gels.

  11. Characterization method of dielectric properties of free falling drops in a microwave processing cavity and its application in microwave internal gelation

    Science.gov (United States)

    Cabanes-Sempere, M.; Catalá-Civera, J. M.; Peñaranda-Foix, F. L.; Cozzo, C.; Vaucher, S.; Pouchon, M. A.

    2013-09-01

    Microwave internal gelation (MIG) is a chemical process proposed for the production of nuclear particle fuel. The internal gelation reaction is triggered by a temperature increase of aqueous droplets falling by gravity by means of non-contact microwave heating. Due to the short residence time of a solution droplet in a microwave heating cavity, a detailed knowledge of the interaction between microwaves and chemical solution (shaped in small drops) is required. This paper describes a procedure that enables the measurement of the dielectric properties of aqueous droplets that freely fall through a microwave cavity. These measurements provide the information to determine the optimal values of the parameters (such as frequency and power) that dictate the heating of such a material under microwaves.

  12. Colloidal gelation of oppositely charged particles

    NARCIS (Netherlands)

    Russel, E.; Sprakel, J.H.B.; Kodger, T.E.; Weitz, D.A.

    2012-01-01

    Colloidal gelation has been extensively studied for the case of purely attractive systems, but little is understood about how colloidal gelation is affected by the presence of repulsive interactions. Here we demonstrate the gelation of a binary system of oppositely charged colloids, in which repulsi

  13. Synthesis of Fluorescent Gelators and Direct Observation of Gelation with a Fluorescence Microscope.

    Science.gov (United States)

    Hanabusa, Kenji; Ueda, Takuya; Takata, Shingo; Suzuki, Masahiro

    2016-11-14

    Fluorescein-, benzothiazole-, quinoline-, stilbene-, and carbazole-containing fluorescent gelators have been synthesized by connecting gelation-driving segments, including l-isoleucine, l-valine, l-phenylalanine, l-leucine residue, cyclo(l-asparaginyl-l-phenylalanyl), and trans-(1R,2R)-diaminocyclohexane. The emission behaviors of the gelators were investigated, and their gelation abilities studied against 15 solvents. The minimum gel concentration, variable-temperature spectroscopy, transmission electron microscopy, scanning electron microscopy, fluorescence microscopy (FM), and confocal laser scanning microscopy (CLSM) were used to characterize gelation. The intermolecular hydrogen bonding between the N-H and C=O of amide, van der Waals interactions and π-π stacking play important roles in gelation. The colors of emission are related to the fluorescence structures of gelators. Fibrous aggregates characterized by the color of their emission were observed by FM. 3D images are produced by the superposition of images captured by CLSM every 0.1 μm to a settled depth. The 3D images show that the large micrometer-sized aggregates spread out three dimensionally. FM observations of mixed gelators are studied. In the case of gelation, two structurally related gelators with the same gelation-driving segment lead to the gelators build up of the same aggregates through similar hydrogen-bonding patterns. When two gelators with structurally different gelation-driving segments induce gelation, the gelators build up each aggregate through individual hydrogen-bonding patterns. A fluorescent reagent that was incorporated into the aggregates of gels through van der Waals interactions was developed. The addition of this fluorescent reagent enables the successful observation of nonfluorescent gelators' aggregates by FM.

  14. An investigation and characterization on alginate hydogel dressing loaded with metronidazole prepared by combined inotropic gelation and freeze-thawing cycles for controlled release.

    Science.gov (United States)

    Sarheed, Omar; Rasool, Bazigha K Abdul; Abu-Gharbieh, Eman; Aziz, Uday Sajad

    2015-06-01

    The purpose of this study was to investigate the effect of combined Ca(2+) cross-linking and freeze-thawing cycle method on metronidazole (model drug) drug release and prepare a wound film dressing with improved swelling property. The hydrogel films were prepared with sodium alginate (SA) using the freeze-thawing method alone or in combination with ionotropic gelation with CaCl2. The gel properties such as morphology, swelling, film thickness, and content uniformity and in vitro dissolution profiles using Franz diffusion cell were investigated. The cross-linking process was confirmed by differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy. In vitro protein adsorption test, in vivo wound-healing test, and histopathology were also performed. The hydrogel (F2) composed of 6% sodium alginate and 1% metronidazole prepared by combined Ca(2+) cross-linking and freeze-thawing cycles showed good swelling. This will help to provide moist environment at the wound site. With the in vivo wound-healing and histological studies, F2 was found to improve the wound-healing effect compared with the hydrogel without the drug, and the conventional product.

  15. Sonication-induced gelation of silk fibroin for cell encapsulation.

    Science.gov (United States)

    Wang, Xiaoqin; Kluge, Jonathan A; Leisk, Gary G; Kaplan, David L

    2008-03-01

    Purified native silk fibroin forms beta-sheet-rich, physically cross-linked, hydrogels from aqueous solution, in a process influenced by environmental parameters. Previously we reported gelation times of days to weeks for aqueous native silk protein solutions, with high ionic strength and temperature and low pH responsible for increasing gelation kinetics. Here we report a novel method to accelerate the process and control silk fibroin gelation through ultrasonication. Depending on the sonication parameters, including power output and time, along with silk fibroin concentration, gelation could be controlled from minutes to hours, allowing the post-sonication addition of cells prior to final gel setting. Mechanistically, ultrasonication initiated the formation of beta-sheets by alteration in hydrophobic hydration, thus accelerating the formation of physical cross-links responsible for gel stabilization. K(+) at physiological concentrations and low pH promoted gelation, which was not observed in the presence of Ca(2+). The hydrogels were assessed for mechanical properties and proteolytic degradation; reported values matched or exceeded other cell-encapsulating gel material systems. Human bone marrow derived mesenchymal stem cells (hMSCs) were successfully incorporated into these silk fibroin hydrogels after sonication, followed by rapid gelation and sustained cell function. Sonicated silk fibroin solutions at 4%, 8%, and 12% (w/v), followed by mixing in hMSCs, gelled within 0.5-2 h. The cells grew and proliferated in the 4% gels over 21 days, while survival was lower in the gels with higher protein content. Thus, sonication provides a useful new tool with which to initiate rapid sol-gel transitions, such as for cell encapsulation.

  16. Metal-Phenolic Supramolecular Gelation.

    Science.gov (United States)

    Rahim, Md Arifur; Björnmalm, Mattias; Suma, Tomoya; Faria, Matthew; Ju, Yi; Kempe, Kristian; Müllner, Markus; Ejima, Hirotaka; Stickland, Anthony D; Caruso, Frank

    2016-10-24

    Materials assembled by coordination interactions between naturally abundant polyphenols and metals are of interest for a wide range of applications, including crystallization, catalysis, and drug delivery. Such an interest has led to the development of thin films with tunable, dynamic properties, however, creating bulk materials remains a challenge. Reported here is a class of metallogels formed by direct gelation between inexpensive, naturally abundant tannic acid and group(IV) metal ions. The metallogels exhibit diverse properties, including self-healing and transparency, and can be doped with various materials by in situ co-gelation. The robustness and flexibility, combined with the ease, low cost, and scalability of the coordination-driven assembly process make these metallogels potential candidates for chemical, biomedical, and environmental applications.

  17. Gelation for Marcus–Lushnikov process

    OpenAIRE

    Rezakhanlou, Fraydoun

    2013-01-01

    The Marcus-Lushnikov process is a simple mean field model of coagulating particles that converges to the homogeneous Smoluchowski equation in the large mass limit. If the coagulation rates grow sufficiently fast as the size of particles get large, giant particles emerge in finite time. This is known as gelation, and such particles are known as gels. Gelation comes in different flavors: simple, instantaneous and complete. In the case of an instantaneous gelation, giant particles are formed in ...

  18. Olfactory Ionotropic Receptors in Mosquito Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Chen, Qian; Man, Yahui; Li, Jianyong; Pei, Di; Wu, Wenjian

    2017-09-01

    Ionotropic glutamate receptors (iGluRs) are a conserved family of ligand-gated ion channels that primarily function to mediate neuronal communication at synapses. A variant subfamily of iGluRs, the ionotropic receptors (IRs), was recently identified in insects and proved with the function in odorant recognition. Ionotropic receptors participate in a distinct olfactory signaling pathway that is independent of olfactory receptors activity. In the present study, we identify 102 putative IR genes, dubbed as AalbIr genes, in mosquito Aedes albopictus (Skuse) by in silico comparative sequence analysis. Among AalbIr genes, 19 show expression in the female antenna by RT-PCR. These putative olfactory AalbIRs share four conservative hydrophobic domains of amino acids, similar to the transmembrane and ion channel pore regions found in conventional iGluRs. To determine the potential function of these olfactory AalbIRs in host-seeking, we compared their transcript expression levels in the antennae of blood-fed females with that of non-blood-fed females by quantitative real-time RT-PCR. Three AalbIr genes showed downregulation when the mosquito finished a bloodmeal. These results may help to improve our understanding of the IR-mediated olfactory signaling in mosquitoes. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Ionotropic GABA Receptors and Distal Retinal ON and OFF Responses

    Directory of Open Access Journals (Sweden)

    E. Popova

    2014-01-01

    Full Text Available In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells in distal retina. The activity of large populations of ON and OFF bipolar cells is reflected in the b- and d-waves of the diffuse electroretinogram (ERG. The role of gamma-aminobutyric acid (GABA, acting through ionotropic GABA receptors in shaping the ON and OFF responses in distal retina, is a matter of debate. This review summarized current knowledge about the types of the GABAergic neurons and ionotropic GABA receptors in the retina as well as the effects of GABA and specific GABAA and GABAC receptor antagonists on the activity of the ON and OFF bipolar cells in both nonmammalian and mammalian retina. Special emphasis is put on the effects on b- and d-waves of the ERG as a useful tool for assessment of the overall function of distal retinal ON and OFF channels. The role of GABAergic system in establishing the ON-OFF asymmetry concerning the time course and absolute and relative sensitivity of the ERG responses under different conditions of light adaptation in amphibian retina is also discussed.

  20. Low-molecular-weight gelators: elucidating the principles of gelation based on gelator solubility and a cooperative self-assembly model.

    Science.gov (United States)

    Hirst, Andrew R; Coates, Ian A; Boucheteau, Thomas R; Miravet, Juan F; Escuder, Beatriu; Castelletto, Valeria; Hamley, Ian W; Smith, David K

    2008-07-16

    This paper highlights the key role played by solubility in influencing gelation and demonstrates that many facets of the gelation process depend on this vital parameter. In particular, we relate thermal stability ( T gel) and minimum gelation concentration (MGC) values of small-molecule gelation in terms of the solubility and cooperative self-assembly of gelator building blocks. By employing a van't Hoff analysis of solubility data, determined from simple NMR measurements, we are able to generate T calc values that reflect the calculated temperature for complete solubilization of the networked gelator. The concentration dependence of T calc allows the previously difficult to rationalize "plateau-region" thermal stability values to be elucidated in terms of gelator molecular design. This is demonstrated for a family of four gelators with lysine units attached to each end of an aliphatic diamine, with different peripheral groups (Z or Boc) in different locations on the periphery of the molecule. By tuning the peripheral protecting groups of the gelators, the solubility of the system is modified, which in turn controls the saturation point of the system and hence controls the concentration at which network formation takes place. We report that the critical concentration ( C crit) of gelator incorporated into the solid-phase sample-spanning network within the gel is invariant of gelator structural design. However, because some systems have higher solubilities, they are less effective gelators and require the application of higher total concentrations to achieve gelation, hence shedding light on the role of the MGC parameter in gelation. Furthermore, gelator structural design also modulates the level of cooperative self-assembly through solubility effects, as determined by applying a cooperative binding model to NMR data. Finally, the effect of gelator chemical design on the spatial organization of the networked gelator was probed by small-angle neutron and X

  1. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Marisa S Goo

    2015-10-01

    Full Text Available Changes in synaptic strength underlie the basis of learning and memory and are controlled, in part, by the insertion or removal of AMPA-type glutamate receptors at the postsynaptic membrane of excitatory synapses. Once internalized, these receptors may be recycled back to the plasma membrane by subunit-specific interactions with other proteins or by post-translational modifications such as phosphorylation. Alternatively, these receptors may be targeted for destruction by multiple degradation pathways in the cell. Ubiquitination, another post-translational modification, has recently emerged as a key signal that regulates the recycling and trafficking of glutamate receptors. In this review, we will discuss recent findings on the role of ubiquitination in the trafficking and turnover of ionotropic glutamate receptors and plasticity of excitatory synapses.

  2. Factors influencing gelation properties of corn germ proteins.

    Science.gov (United States)

    Sun, Xiang Dong; Shi, Dan; Lan, Yu; Yao, Xin Miao; Zhang, Rui Ying; Zhang, Ying Lei; Su, Ping; Shan, Hong

    2017-03-07

    As a by-product of the oil industry, corn germ meal is mainly applied as a high-protein ingredient in animal feeds, without any application of the specific functional properties of corn germ protein (CGP). Factors influencing the gelation properties of CGP in relation to its dynamic rheology are still unclear owing to limited information. CGP concentrate was recovered by the isoelectric precipitation method, and factors affecting its gelation properties were investigated using a rheometer. A weak gel formed at natural pH with 0.3 mol L(-1) NaCl, and the minimum gel-forming concentration was observed at 150 g kg(-1) . Higher CGP protein concentrations induced stiffer gels, and linear relationships were found between protein concentration and gel stiffness (G') as well as between protein concentration and gel viscosity (G″). Lower heating and cooling rate promoted the formation of stiffer gels. CGP gelation was both NaCl- and pH-dependent. Sodium tripolyphosphate significantly increased gel stiffness with increasing concentration. No difference in gel elasticity (tanδ) was observed with the inclusion of various concentrations of sodium tripolyphosphate or sodium polyphosphate. Heating and cooling rate, NaCl, protein concentration, pH and phosphates all impact the gel-forming ability of CGP concentrate. Desired gel properties can be obtained through adjustment of these factors. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Influence of emulsifier concentration on nanoemulsion gelation.

    Science.gov (United States)

    Erramreddy, Vivek Vardhan; Ghosh, Supratim

    2014-09-23

    Nanoemulsion gels are a new class of soft materials that manifest stronger elasticity even at lower dispersed phase volume fraction. In this work, gelation in 40 wt % canola oil-in-water nanoemulsions was investigated as a function of emulsifier type (anionic sodium dodecyl sulfate (SDS) or nonionic Tween 20) and concentration. It was observed that the liquid nanoemulsions transformed into viscoelastic gels at a specific concentration range of SDS, whereas no gelation was observed for Tween 20. The apparent viscosity, yield stress, and storage modulus of the nanogels increased with SDS concentration until 15 times critical micelle concentration (CMC), thereafter decreased steadily as the gelation weakened beginning 20 CMC. Three regimes of colloidal interactions in the presence of emulsifier were proposed. (1) Repulsive gelation: at low SDS concentration (0.5-2 times CMC) the repulsive charge cloud around the nanodroplets acted as interfacial shell layer that significantly increased the effective volume fraction of the dispersed phase (ϕ(eff)). When ϕ(eff) became comparable to the volume fraction required for maximal random jamming, nanoemulsions formed elastic gels. (2) Attractive gelation: as the SDS concentration increased to 5-15 times CMC, ϕ(eff) dropped due to charge screening by more counterions from SDS, but depletion attractions generated by micelles in the continuous phase led to extensive droplet aggregation which immobilized the continuous phase leading to stronger gel formation. (3) Decline in gelation due to oscillatory structural forces (OSF): at very high SDS concentration (20-30 time CMC), structural forces were manifested due to the layered-structuring of excess micelles in the interdroplet regions resulting in loss of droplet aggregation. Tween 20 nanoemulsions, on the other hand, did not show repulsive gelation due to lack of charge cloud, while weak depletion attraction and early commencement of OSF regime leading to liquid-like behavior at

  4. Colloidal gelation with variable attraction energy.

    Science.gov (United States)

    Zaccone, Alessio; Crassous, Jérôme J; Ballauff, Matthias

    2013-03-14

    We present an approximation scheme to the master kinetic equations for aggregation and gelation with thermal breakup in colloidal systems with variable attraction energy. With the cluster fractal dimension df as the only phenomenological parameter, rich physical behavior is predicted. The viscosity, the gelation time, and the cluster size are predicted in closed form analytically as a function of time, initial volume fraction, and attraction energy by combining the reversible clustering kinetics with an approximate hydrodynamic model. The fractal dimension df modulates the time evolution of cluster size, lag time and gelation time, and of the viscosity. The gelation transition is strongly nonequilibrium and time-dependent in the unstable region of the state diagram of colloids where the association rate is larger than the dissociation rate. Only upon approaching conditions where the initial association and the dissociation rates are comparable for all species (which is a condition for the detailed balance to be satisfied) aggregation can occur with df = 3. In this limit, homogeneous nucleation followed by Lifshitz-Slyozov coarsening is recovered. In this limited region of the state diagram the macroscopic gelation process is likely to be driven by large spontaneous fluctuations associated with spinodal decomposition.

  5. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.

    Science.gov (United States)

    Gray, John A; Zito, Karen; Hell, Johannes W

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.

  6. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    John A. Gray

    2016-05-01

    Full Text Available Provocative emerging evidence suggests that the N-methyl-D-aspartate (NMDA receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD, directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.

  7. Gelation behavior of Antheraea pernyi silk fibroin

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The sol-gel transition behavior of Antherae pernyi silk fibroin(Ap-SF) has not been systematically investigated.In this work,the influence of environmental temperature,pH,the concentration of Ap-SF,K+ and Ca2+ on the gelation time,and the structural changes of Ap-SF in sol-gel transformation were studied.The results indicated that the gelation time of the Ap-SF aqueous solution decreased with the increase of the Ap-SF concentration and environmental temperature.The sol-gel transformation of Ap-SF was much more rapid than that of Bombyx mori silk fibroin under the same conditions.The Ap-SF was sensitive to changes in the concentration of Ca2+ and K+.Upon gelation,the random coil structure of the Ap-SF was significantly transformed into the β-sheet structure.

  8. The gelation of oil using ethyl cellulose.

    Science.gov (United States)

    Davidovich-Pinhas, M; Barbut, S; Marangoni, A G

    2015-03-06

    The characterization of the thermo-gelation mechanism and properties of ethyl cellulose/canola oil oleogels was performed using rheology and thermal analysis. Thermal analysis detected no evidence for thermal transitions contributed to secondary conformational changes, suggesting a gelation mechanism that does not involve secondary ordered structure formation. Rheological analysis demonstrated a relationship between the polymer molecular weight and the final gel strength, the cross-over behavior as well as the gel point temperature. Increasing polymer molecular weight led to an increase in final gel strength, the modulus at cross-over, and the gel point temperature. Cooling/heating rates affect gel modulus only for the low molecular weight samples. A decrease in gel strength with increasing cooling rate was detected. The cross-over temperature was not affected by the cooling/heating rates. Cooling rate also affected the gelation setting time where slow cooling rates produced a stable gel faster.

  9. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel.

    Science.gov (United States)

    Bain, Mrinal Kanti; Bhowmick, Biplab; Maity, Dipanwita; Mondal, Dibyendu; Mollick, Md Masud Rahaman; Rana, Dipak; Chattopadhyay, Dipankar

    2012-12-01

    Gelation temperature of methylcellulose (MC) can be altered by adding different additives. Pure MC showed sol-gel transition at 60°C. Sodium citrate and sodium tartrate were used alone and in combination to see the effect of individual salt and combination of salts on the gelation temperature of MC. The gelation temperature of all the binary and ternary combinations of MC and salts were measured with different methods such as test tube tilting method (TTM), UV-vis spectroscopy, viscometry, and by rheometer and also the morphology of gels were characterized with the help of environmental scanning electron microscopy (ESEM). It was observed that when 0.1 M sodium citrate (NaC) and 0.1 M sodium tartrate (NaT) were used separately, the gelation temperature of MC was reduced up to 44°C and 47°C respectively but when mixture of NaC and NaT (0.1 (M) NaC and 0.1 (M) (NaT)) were used the gelation temperature was further reduced to 36°C. It was clear from ESEM images that when NaC and NaT were used separately the formation of network was not distinguishable. But, well-connected network structure was observed when a mixture 0.1 M NaC and 0.1 M NaT was used.

  10. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Directory of Open Access Journals (Sweden)

    Francisco Andrés Peralta

    2016-07-01

    Full Text Available Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators.

  11. Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines

    Science.gov (United States)

    Üçpunar, Habibe K.; Svensson, Thomas; Quillery, Elsa; Gompel, Nicolas; Ignell, Rickard; Grunwald Kadow, Ilona C.

    2016-01-01

    The ability to find and consume nutrient-rich diets for successful reproduction and survival is fundamental to animal life. Among the nutrients important for all animals are polyamines, a class of pungent smelling compounds required in numerous cellular and organismic processes. Polyamine deficiency or excess has detrimental effects on health, cognitive function, reproduction, and lifespan. Here, we show that a diet high in polyamine is beneficial and increases reproductive success of flies, and we unravel the sensory mechanisms that attract Drosophila to polyamine-rich food and egg-laying substrates. Using a combination of behavioral genetics and in vivo calcium imaging, we demonstrate that Drosophila uses multisensory detection to find and evaluate polyamines present in overripe and fermenting fruit, their favored feeding and egg-laying substrate. In the olfactory system, two coexpressed ionotropic receptors (IRs), IR76b and IR41a, mediate the long-range attraction to the odor. In the gustatory system, multimodal taste sensation by IR76b receptor and GR66a bitter receptor neurons is used to evaluate quality and valence of the polyamine providing a mechanism for the fly’s high attraction to polyamine-rich and sweet decaying fruit. Given their universal and highly conserved biological roles, we propose that the ability to evaluate food for polyamine content may impact health and reproductive success also of other animals including humans. PMID:27145030

  12. Candidate ionotropic taste receptors in the Drosophila larva.

    Science.gov (United States)

    Stewart, Shannon; Koh, Tong-Wey; Ghosh, Arpan C; Carlson, John R

    2015-04-07

    We examine in Drosophila a group of ∼35 ionotropic receptors (IRs), the IR20a clade, about which remarkably little is known. Of 28 genes analyzed, GAL4 drivers representing 11 showed expression in the larva. Eight drivers labeled neurons of the pharynx, a taste organ, and three labeled neurons of the body wall that may be chemosensory. Expression was not observed in neurons of one taste organ, the terminal organ, although these neurons express many drivers of the Gr (Gustatory receptor) family. For most drivers of the IR20a clade, we observed expression in a single pair of cells in the animal, with limited coexpression, and only a fraction of pharyngeal neurons are labeled. The organization of IR20a clade expression thus appears different from the organization of the Gr family or the Odor receptor (Or) family in the larva. A remarkable feature of the larval pharynx is that some of its organs are incorporated into the adult pharynx, and several drivers of this clade are expressed in the pharynx of both larvae and adults. Different IR drivers show different developmental dynamics across the larval stages, either increasing or decreasing. Among neurons expressing drivers in the pharynx, two projection patterns can be distinguished in the CNS. Neurons exhibiting these two kinds of projection patterns may activate different circuits, possibly signaling the presence of cues with different valence. Taken together, the simplest interpretation of our results is that the IR20a clade encodes a class of larval taste receptors.

  13. Zinc as Allosteric Ion Channel Modulator: Ionotropic Receptors as Metalloproteins

    Science.gov (United States)

    Peralta, Francisco Andrés; Huidobro-Toro, Juan Pablo

    2016-01-01

    Zinc is an essential metal to life. This transition metal is a structural component of many proteins and is actively involved in the catalytic activity of cell enzymes. In either case, these zinc-containing proteins are metalloproteins. However, the amino acid residues that serve as ligands for metal coordination are not necessarily the same in structural proteins compared to enzymes. While crystals of structural proteins that bind zinc reveal a higher preference for cysteine sulfhydryls rather than histidine imidazole rings, catalytic enzymes reveal the opposite, i.e., a greater preference for the histidines over cysteines for catalysis, plus the influence of carboxylic acids. Based on this paradigm, we reviewed the putative ligands of zinc in ionotropic receptors, where zinc has been described as an allosteric modulator of channel receptors. Although these receptors do not strictly qualify as metalloproteins since they do not normally bind zinc in structural domains, they do transitorily bind zinc at allosteric sites, modifying transiently the receptor channel’s ion permeability. The present contribution summarizes current information showing that zinc allosteric modulation of receptor channels occurs by the preferential metal coordination to imidazole rings as well as to the sulfhydryl groups of cysteine in addition to the carboxyl group of acid residues, as with enzymes and catalysis. It is remarkable that most channels, either voltage-sensitive or transmitter-gated receptor channels, are susceptible to zinc modulation either as positive or negative regulators. PMID:27384555

  14. Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines.

    Directory of Open Access Journals (Sweden)

    Ashiq Hussain

    2016-05-01

    Full Text Available The ability to find and consume nutrient-rich diets for successful reproduction and survival is fundamental to animal life. Among the nutrients important for all animals are polyamines, a class of pungent smelling compounds required in numerous cellular and organismic processes. Polyamine deficiency or excess has detrimental effects on health, cognitive function, reproduction, and lifespan. Here, we show that a diet high in polyamine is beneficial and increases reproductive success of flies, and we unravel the sensory mechanisms that attract Drosophila to polyamine-rich food and egg-laying substrates. Using a combination of behavioral genetics and in vivo calcium imaging, we demonstrate that Drosophila uses multisensory detection to find and evaluate polyamines present in overripe and fermenting fruit, their favored feeding and egg-laying substrate. In the olfactory system, two coexpressed ionotropic receptors (IRs, IR76b and IR41a, mediate the long-range attraction to the odor. In the gustatory system, multimodal taste sensation by IR76b receptor and GR66a bitter receptor neurons is used to evaluate quality and valence of the polyamine providing a mechanism for the fly's high attraction to polyamine-rich and sweet decaying fruit. Given their universal and highly conserved biological roles, we propose that the ability to evaluate food for polyamine content may impact health and reproductive success also of other animals including humans.

  15. Ionotropic Chemosensory Receptors Mediate the Taste and Smell of Polyamines.

    Science.gov (United States)

    Hussain, Ashiq; Zhang, Mo; Üçpunar, Habibe K; Svensson, Thomas; Quillery, Elsa; Gompel, Nicolas; Ignell, Rickard; Grunwald Kadow, Ilona C

    2016-05-01

    The ability to find and consume nutrient-rich diets for successful reproduction and survival is fundamental to animal life. Among the nutrients important for all animals are polyamines, a class of pungent smelling compounds required in numerous cellular and organismic processes. Polyamine deficiency or excess has detrimental effects on health, cognitive function, reproduction, and lifespan. Here, we show that a diet high in polyamine is beneficial and increases reproductive success of flies, and we unravel the sensory mechanisms that attract Drosophila to polyamine-rich food and egg-laying substrates. Using a combination of behavioral genetics and in vivo calcium imaging, we demonstrate that Drosophila uses multisensory detection to find and evaluate polyamines present in overripe and fermenting fruit, their favored feeding and egg-laying substrate. In the olfactory system, two coexpressed ionotropic receptors (IRs), IR76b and IR41a, mediate the long-range attraction to the odor. In the gustatory system, multimodal taste sensation by IR76b receptor and GR66a bitter receptor neurons is used to evaluate quality and valence of the polyamine providing a mechanism for the fly's high attraction to polyamine-rich and sweet decaying fruit. Given their universal and highly conserved biological roles, we propose that the ability to evaluate food for polyamine content may impact health and reproductive success also of other animals including humans.

  16. Role of principal ionotropic and metabotropic receptors in visceral pain.

    Science.gov (United States)

    Kannampalli, Pradeep; Sengupta, Jyoti N

    2015-03-30

    Visceral pain is the most common form of pain caused by varied diseases and a major reason for patients to seek medical consultation. It also leads to a significant economic burden due to workdays lost and reduced productivity. Further, long-term use of non-specific medications is also associated with side effects affecting the quality of life. Despite years of extensive re-search and the availability of several therapeutic options, management of patients with chronic visceral pain is often in-adequate, resulting in frustration for both patients and physicians. This is, most likely, because the mechanisms associated with chronic visceral pain are different from those of acute pain. Accumulating evidence from years of research implicates several receptors and ion channels in the induction and maintenance of central and peripheral sensitization during chronic pain states. Understanding the specific role of these receptors will facilitate to capitalize on their unique properties to augment the ther-apeutic efficacy while at the same time minimizing unwanted side effects. The aim of this review is to provide a concise review of the recent literature that reports on the role of principal ionotropic receptors and metabotropic receptors in the modulation visceral pain. We also include an overview of the possibility of these receptors as potential new targets for the treatment of chronic visceral pain conditions.

  17. Gelation and interfacial behaviour of vegetable proteins

    NARCIS (Netherlands)

    Vliet, T. van; Martin, A.H.; Bos, M.A.

    2002-01-01

    Recent studies on gelation and interfacial properties of vegetable protiens are reviewed. Attention is focused on legume proteins, mainly soy proteins, and on wheat proteins. The rheological properteis of vegetable protein gels as a function of heating time or temperature is discussed as well as the

  18. Gelation in Physically Associating Polymer Solutions

    Science.gov (United States)

    Kumar, Sanat

    2001-03-01

    Macromolecules, which possess moieties capable of physical association, commonly form reversible gels when dissolved in solvents. This unusual state of matter, which displays weakly elastic character at short times, is ubiquitous in contexts ranging from foods, viscosity modifiers and the cytoskeleton of living organisms. Gel formation in these systems is currently modeled by assuming that the ``sticker" pairing times are long, thus suggesting a connection to percolation concepts developed in the 1940's. We have performed computer simulations on solutions of chains with ``weak" stickers, i.e., in a realistic limit where sticker pairing energies are comparable to thermal energy, and find that gelation is not synonymous with percolation. Rather, as the temperature is lowered below a threshold value, the stickers cluster into multiplets, thus dramatically slowing the relaxation processes in these materials. The similarity of polymer physical gelation to vitrification suggests that reversible gelation and the glass transition should be describable by a common language. This view accords with recent suggestions that gelation in colloid solutions is a nonergodicity transition, comparable to the glass transition.

  19. Reversible thermal gelation in soft spheres

    DEFF Research Database (Denmark)

    Kapnistos, M.; Vlassopoulos, D.; Fytas, G.

    2000-01-01

    Upon heating, concentrated solutions of star polymers and block copolymer micelles in a good solvent, representing soft spheres, undergo a reversible gelation. This phenomenon is attributed to the formation of clusters causing a partial dynamic arrest of the swollen interpenetrating spheres at hi...

  20. Gelation and interfacial behaviour of vegetable proteins

    NARCIS (Netherlands)

    Vliet, van T.; Martin, A.H.; Bos, M.A.

    2002-01-01

    Recent studies on gelation and interfacial properties of vegetable proteins are reviewed. Attention is focused on legume proteins, mainly soy proteins, and on wheat proteins. The rheological properties of vegetable protein gels as a function of heating time or temperature is discussed as well as the

  1. Gelation and interfacial behaviour of vegetable proteins

    NARCIS (Netherlands)

    Vliet, T. van; Martin, A.H.; Bos, M.A.

    2002-01-01

    Recent studies on gelation and interfacial properties of vegetable protiens are reviewed. Attention is focused on legume proteins, mainly soy proteins, and on wheat proteins. The rheological properteis of vegetable protein gels as a function of heating time or temperature is discussed as well as the

  2. Some Topics in Percolation and Gelation Processes.

    Science.gov (United States)

    Gonzalez-Flores, Agustin Eduardo

    The percolation problem has been studied extensively in the last years. One reason for this current interest is that it is a good model for a variety of physical phenomena, including the anomalous behavior of low temperature water and the gelation of polymers. In this dissertation we consider three main topics related to percolation problems:. (a) A Position Space Renormalization Group Study of the "Four-Coordinated" Correlated Percolation Model. Recently, a new site-correlated percolation problem was introduced in connection with the anomalous properties of low temperature water. Within a position-space renormalization group approach, this problem is shown to belong to the same universality class as random percolation. (b) An Extension of the Flory-Stockmayer Theory to a Binary Mixture of Polymers. The old theory of vulcanization of long polymer chains by Flory and Stockmayer is known to be equivalent to the percolation problem on Bethe lattices. We extend the theory to treat the case of a binary mixture of two polymers A and B with three different types of cross-links between them (A-A, B-B and A-B). By solving a bichromatic percolation problem on the Bethe lattice with three different bond probabilities, we were able to find the critical surface (gelation threshold), the gel fraction, and the weight-average molecular weight of the finite molecules. When we take the appropriate limit of a one-component case, we recover the old results by Flory and Stockmayer. (c) An Approximate Treatment of Polymer Gelation in a Solvent. We consider the gelation problem of long polymer chains immersed in a solvent, where the monomers composing the chains are capable of forming hydrogen bonds when they touch. Recent experimental results in these systems have shown that the gelation curves for the same polymer system with different solvents (different quality of the solvent) cross when plotted on the same temperature-concentration diagram. In this work we present an approximate

  3. Ionotropic GABA and Glutamate Receptor Mutations and Human Neurologic Diseases.

    Science.gov (United States)

    Yuan, Hongjie; Low, Chian-Ming; Moody, Olivia A; Jenkins, Andrew; Traynelis, Stephen F

    2015-07-01

    The advent of whole exome/genome sequencing and the technology-driven reduction in the cost of next-generation sequencing as well as the introduction of diagnostic-targeted sequencing chips have resulted in an unprecedented volume of data directly linking patient genomic variability to disorders of the brain. This information has the potential to transform our understanding of neurologic disorders by improving diagnoses, illuminating the molecular heterogeneity underlying diseases, and identifying new targets for therapeutic treatment. There is a strong history of mutations in GABA receptor genes being involved in neurologic diseases, particularly the epilepsies. In addition, a substantial number of variants and mutations have been found in GABA receptor genes in patients with autism, schizophrenia, and addiction, suggesting potential links between the GABA receptors and these conditions. A new and unexpected outcome from sequencing efforts has been the surprising number of mutations found in glutamate receptor subunits, with the GRIN2A gene encoding the GluN2A N-methyl-d-aspartate receptor subunit being most often affected. These mutations are associated with multiple neurologic conditions, for which seizure disorders comprise the largest group. The GluN2A subunit appears to be a locus for epilepsy, which holds important therapeutic implications. Virtually all α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor mutations, most of which occur within GRIA3, are from patients with intellectual disabilities, suggesting a link to this condition. Similarly, the most common phenotype for kainate receptor variants is intellectual disability. Herein, we summarize the current understanding of disease-associated mutations in ionotropic GABA and glutamate receptor families, and discuss implications regarding the identification of human mutations and treatment of neurologic diseases.

  4. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles.

    Science.gov (United States)

    Reis, Catarina P; Neufeld, Ronald J; Vilela, Sandra; Ribeiro, António J; Veiga, Francisco

    2006-05-01

    Emulsification/internal gelation has been suggested as an alternative to extrusion/external gelation in the encapsulation of several compounds including sensitive biologicals such as protein drugs. Protein-loaded microparticles offer an inert environment within the matrix and encapsulation is conducted at room temperature in a media free of organic solvents. Recently, the concept of internal gelation has been applied to formulating nanoparticles as drug delivery systems. Emulsification/internal gelation technologies available for microparticles preparation, particularly that involving alginate polymer, are described as well as recent advances towards applications in nanotechnology. Those methods show great promise as a tool for the development of encapsulation processes, especially for the new field of nanotechnology using natural polymers.

  5. Effect of methyl cellulose on gelation behavior and drug release from poloxamer based ophthalmic formulations.

    Science.gov (United States)

    Dewan, Mitali; Bhowmick, Biplab; Sarkar, Gunjan; Rana, Dipak; Bain, Mrinal Kanti; Bhowmik, Manas; Chattopadhyay, Dipankar

    2015-01-01

    The effect of weight average molecular weight (Mw) of methyl cellulose (MC) on the gelation behavior of Poloxamer 407 (PM) and in vitro release of Ketorolac Tromethamine (KT) from different ophthalmic formulations based on PM is examined. A drop of gelation temperature of PM is observed using MC of various M(w) by test tube tilting method, UV-vis spectroscopy, viscometry and rheometry. It is also observed that the viscosity and gel strength of all the formulations are increased with the increase in Mw of MC. PM with highest Mw of MC provides best drug release property among all the formulations. It is evident from this investigation that there is a distinct effect of M(w) of MC on the gelation behavior of PM as well as on the drug release profile of KT from PM-MC based ophthalmic formulations.

  6. Non-destructive and in-situ determination of the degree of gelation of pvc pipes

    NARCIS (Netherlands)

    Drenth, E.; Bor, T.C.; Visser, H.A.; Wolters, M.; Davidovski, Z.

    2012-01-01

    Various non-destructive methods, based on different physical principles, were investigated for their ability to differentiate between uPVC pipes having various levels of gelation. It was found that the micro-hardness method was not able to differentiate between uPVC samples of different levels of ge

  7. Ionotropic Receptors Identified within the Tentacle of the Freshwater Snail Biomphalaria glabrata, an Intermediate Host of Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Di Liang

    Full Text Available Biomphalaria glabrata (B. glabrata is an air-breathing aquatic mollusc found in freshwater habitats across the Western Hemisphere. It is most well-known for its recognized capacity to act as a major intermediate host for Schistosoma mansoni, the human blood fluke parasite. Ionotropic receptors (IRs, a variant family of the ionotropic glutamate receptors (iGluR, have an evolutionary ancient function in detecting odors to initiate chemosensory signaling. In this study, we applied an array of methods towards the goal of identifying IR-like family members in B. glabrata, ultimately revealing two types, the iGluR and IR. Sequence alignment showed that three ligand-binding residues are conserved in most Biomphalaria iGluR sequences, while the IRs did exhibit a variable pattern, lacking some or all known glutamate-interactingresidues, supporting their distinct classification from the iGluRs. We show that B. glabrata contains 7 putative IRs, some of which are expressed within its chemosensory organs. To further investigate a role for the more ancient IR25a type in chemoreception, we tested its spatial distribution pattern within the snail cephalic tentacle by in situ hybridization. The presence of IR25a within presumptive sensory neurons supports a role for this receptor in olfactory processing, contributing to our understanding of the molecular pathways that are involved in Biomphalaria olfactory processing.

  8. Preparation of curcumin nanoparticle by using reinforcement ionic gelation technique

    Science.gov (United States)

    Suryani, Halid, Nur Hatidjah Awaliyah; Akib, Nur Illiyyin; Rahmanpiu, Mutmainnah, Nina

    2017-05-01

    Curcumin, a polyphenolic compound present in curcuma longa has a wide range of activities including anti-inflammatory properties. The potency of curcumin is limited by its poor oral bioavailability because of its poor solubility in aqueous. Various methods have been tried to solve the problem including its encapsulation into nanoparticle. The aim of this study is to develop curcumin nanoparticle by using reinforcement ionic gelation technique and to evaluate the stability of curcumin nanoparticles in gastrointestinal fluid. Curcumin nanoparticles were prepared by using reinforcement ionic gelation technique with different concentrations of chitosan, trypolyphosphate, natrium alginate and calcium chloride. Curcumin nanoparticles were then characterized including particle size and zeta potential by using particle size analyzer and morphology using a transmission electron microscope, entrapment efficiency using UV-Vis Spectrophotometer and chemical structure analysis by Infra Red Spectrophotometer (FTIR). Furthermore, the stability of curcumin nanoparticles were evaluated on artificial gastric fluid and artificial intestinal fluids by measuring the amount of curcumin released in the medium at a time interval. The result revealed that curcumin nanoparticles can be prepared by reinforcement ionic gelation technique, the entrapment efficiency of curcumin nanoparticles were from 86.08 to 91.41%. The average of particle size was 272.9 nm and zeta potential was 12.05 mV. The morphology examination showed that the curcumin nanoparticles have spherical shape. The stability evaluation of curcumin nanoparticles showed that the nanoparticles were stable on artificial gastric fluid and artificial intestinal fluid. This result indicates that curcumin nanoparticles have the potential to be developed for oral delivery.

  9. Gelation on heating of supercooled gelatin solutions.

    Science.gov (United States)

    Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2012-04-23

    Diluted (1.0-1.5 wt%) aqueous gelatin solutions have been cooled to -10 °C at a cooling rate 20 °C min(-1) without freezing and detectable gelation. When heated at a constant heating rate (0.5 -2 °C min(-1)), the obtained supercooled solutions demonstrate an atypical process of gelation that has been characterized by regular and stochastically modulated differential scanning calorimetry (DSC) as well as by isoconversional kinetic analysis. The process is detectable as an exothermic peak in the total heat flow of regular DSC and in the nonreversing heat flow of stochastically modulated DSC. Isoconversional kinetic analysis applied to DSC data reveals that the effective activation energy of the process increases from approximately 75 to 200 kJ mol(-1) as a supercooled solution transforms to gel on continuous heating.

  10. Fine-Tuning of Saponification-Triggered Gelation by Strategic Modification of Peripheral Substituents: Gelation Regulators.

    Science.gov (United States)

    Kumar, Ashish; Singh, Roop Shikha; Kumar, Amit; Ali, Afsar; Biswas, Arnab; Pandey, Daya Shankar

    2016-09-19

    A pioneering approach towards controlling the efficiency of saponification assisted gelation in ethyl ester based Zn(II) -complexes have been described. Using four new ester containing bis-salen Zn(II) complexes (C1-C4) involving different para-azo phenyl substituted ligands it has been clearly shown that gelation efficiency is greatly influenced by the electronic effects of the substituents (-H (C1), -CH3 (C2), -NO2 (C3), and -OCH3 (C4)). Morphological, photophysical, and rheological investigations corroborated the experimental observations well and established that gelation efficiency was enhanced with electron-withdrawing characteristics of substituents (C4

  11. Stereostructure-activity studies on agonists at the AMPA and kainate subtypes of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Johansen, Tommy N; Greenwood, Jeremy R; Frydenvang, Karla Andrea

    2003-01-01

    -methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of ionotropic Glu receptors in the presence or absence of an agonist has provided important information about ligand-receptor interaction mechanisms. The availability of these binding domain crystal structures has formed the basis for rational...... design of ligands, especially for the AMPA and kainate subtypes of ionotropic Glu receptors. This mini-review will focus on structure-activity relationships on AMPA and kainate receptor agonists with special emphasis on stereochemical and three-dimensional aspects....

  12. Inhibition of GABA release by presynaptic ionotropic GABA receptors in hippocampal CA3.

    Science.gov (United States)

    Axmacher, Nikolai; Draguhn, Andreas

    2004-02-09

    Vesicular transmitter release can be regulated by transmitter-gated ion channels at presynaptic axon terminals. The central inhibitory transmitter GABA acts on such presynaptic ionotropic receptors in various cells, including inhibitory interneurons. Here we report that GABA-mediated postsynaptic inhibitory currents in CA3 pyramidal cells of rat hippocampal slices are suppressed by agonists of GABAA receptors. The effect is present for both stimulus-induced and miniature IPSCs, indicating a reduction in the probability of vesicular release by presynaptic, action-potential-independent mechanisms. We conclude that the release of GABA from hippocampal CA3 interneurons is regulated by a negative feedback via presynaptic ionotropic GABA autoreceptors.

  13. Strong cation exchange monoliths for HPLC by Reactive Gelation.

    Science.gov (United States)

    Brand, Bastian; Krättli, Martin; Storti, Giuseppe; Morbidelli, Massimo

    2011-08-01

    Polymeric monolithic stationary phases for HPLC can be produced by Reactive Gelation. Unlike the conventional method of using porogens, such novel process consists of a number of separate steps, thus enabling a better control of the quality of the final material. A suspension of polymer nanoparticles in water is produced and subsequently swollen with hydrophobic monomers. The particles are then destabilised (usually by salt addition) to make them aggregate into a large percolating structure, the so-called monolith. Finally, the added monomer can then be polymerised to harden the structure. In this work, a polystyrene latex is used as the base material and functionalised by introduction of epoxide groups on the surface and subsequent reaction to sulphonic acid groups, yielding a SO3(-) density of 0.7 mmol/g dry material. Morphological investigations show 54% porosity made of 300 nm large pores. Van Deemter measurements of a large protein show no practical influence of diffusion limitations on the plate number. Finally, a preliminary separation of a test protein mixture is shown, demonstrating the potential of using ion-exchange chromatography on Reactive Gelation monoliths.

  14. Rheology of the gelation process of silica gel

    OpenAIRE

    Filho, O. K.; Aegerter, Michel A.

    1988-01-01

    The rheology of silica sols prepared from mixtures of tetramethoxysilane (TMOS)-methanol-water under basic neutral conditions has been studied at 25, 40 and 60 ° C during the gelation process. The sols show non-Newtonian pseudoplastic behavior from the time of preparation with the appearance of yield stress near the gelation point. The results are analysed using rheological equations of state and the concept of the point of gelation is discussed. For neutral sols an apparent activation energy...

  15. Physical and chemical interactions in cold gelation of food proteins.

    Science.gov (United States)

    Alting, Arno C; de Jongh, Harmen H J; Visschers, Ronald W; Simons, Jan-Willem F A

    2002-07-31

    pH-Induced cold gelation of whey proteins is a two-step process. After protein aggregates have been prepared by heat treatment, gelation is established at ambient temperature by gradually lowering the pH. To demonstrate the importance of electrostatic interactions between aggregates during this latter process, beta-lactoglobulin aggregates with a decreased iso-electric point were prepared via succinylation of primary amino groups. The kinetics of pH-induced gelation was affected significantly, with the pH gelation curves shifting to lower pH after succinylation. With increasing modification, the pH of gelation decreased to about 2.5. In contrast, unmodified aggregates gel around pH 5. Increasing the iso-electric point of beta-lactoglobulin via methylation of carboxylic acid groups resulted in gelation at more alkaline pH values. Comparable results were obtained with whey protein isolate. At low pH disulfide cross-links between modified aggregates were not formed after gelation and the gels displayed both syneresis and spontaneous gel fracture, in this way resembling the morphology of previously characterized thiol-blocked whey protein isolate gels (Alting, et al., J. Agric. Food Chem. 2000, 48, 5001-5007). Our results clearly demonstrate the importance of the net electric charge of the aggregates during pH-induced gelation. In addition, the absence of disulfide bond formation between aggregates during low-pH gelation was demonstrated with the modified aggregates.

  16. Gelation Behavior of Poly (Vinylidene Fluoride )-based Gel Polymer Electrolyte

    Institute of Scientific and Technical Information of China (English)

    WANG Biao-bing; GU Li-xia

    2006-01-01

    Poly ( vinylidene fluoride ) ( PVdF )-based gel polymer electrolytes with various compositions were prepared by solution casting technique. The kinetics of gelation was analyzed via the correlation between the apparent gelation rate and concentration of PVdF at a given temperature.Combination the results of the kinetics of gelation and the DSC study, it revealed that the phase separation was the major behavior and the fibrils were the major junction joints of the three-dimensional network even in the ease the concentration of PVdF was higher than 25 wt%. The porous surface observed by ESEM also reflected that the phase separation took place during the gelation.

  17. Oxalyl retro-peptide gelators. Synthesis, gelation properties and stereochemical effects

    Directory of Open Access Journals (Sweden)

    Janja Makarević

    2010-10-01

    Full Text Available In this work we report on gelation properties, self-assembly motifs, chirality effects and morphological characteristics of gels formed by chiral retro-dipeptidic gelators in the form of terminal diacids (1a–5a and their dimethyl ester (1b–5b and dicarboxamide (1c–5c derivatives. Terminal free acid retro-dipeptides (S,S-bis(LeuLeu 1a, (S,S-bis(PhgPhg 3a and (S,S-bis(PhePhe 5a showed moderate to excellent gelation of highly polar water/DMSO and water/DMF solvent mixtures. Retro-peptides incorporating different amino acids (S,S-(LeuPhg 2a and (S,S-(PhgLeu 4a showed no or very weak gelation. Different gelation effectiveness was found for racemic and single enantiomer gelators. The heterochiral (S,R-1c diastereoisomer is capable of immobilizing up to 10 and 4 times larger volumes of dichloromethane/DMSO and toluene/DMSO solvent mixtures compared to homochiral (S,S-1c. Based on the results of 1H NMR, FTIR, CD investigations, molecular modeling and XRPD studies of diasteroisomeric diesters (S,S-1b/(S,R-1b and diacids (S,S-1b/(S,R-1a, a basic packing model in their gel aggregates is proposed. The intermolecular hydrogen bonding between extended gelator molecules utilizing both, the oxalamide and peptidic units and layered organization were identified as the most likely motifs appearing in the gel aggregates. Molecular modeling studies of (S,S-1a/(S,R-1a and (S,S-1b/(S,R-1b diasteroisomeric pairs revealed a decisive stereochemical influence yielding distinctly different low energy conformations: those of (S,R-diastereoisomers with lipophilic i-Bu groups and polar carboxylic acid or ester groups located on the opposite sides of the oxalamide plane resembling bola amphiphilic structures and those of (S,S-diasteroisomers possessing the same groups located at both sides of the oxalamide plane. Such conformational characteristics were found to strongly influence both, gelator effectiveness and morphological characteristics of gel aggregates.

  18. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    de Turco, Elena B; Diemer, Nils Henrik; Bazan, Nicolas G

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H]A...

  19. Determination of the Gelation Mechanism of Freeze-Thawed Hen Egg Yolk.

    Science.gov (United States)

    Au, Carmen; Acevedo, Nuria C; Horner, Harry T; Wang, Tong

    2015-11-25

    A study of yolks stored up to 168 d at -20 °C was conducted to determine the gelation behavior and mechanism of freeze-thawed yolk. Methods used were rheology, native and sodium dodecyl sulfate polyacrylamide gel electrophoresis (native- and SDS-PAGE), differential scanning calorimetry (DSC), transmission electron microscopy (TEM), particle size analysis, and proton nuclear magnetic resonance ((1)H NMR) spectroscopy for matrix mobility. Results indicate that both constituents of plasma and granules contributed to gelation of yolk under freezing. PAGE analyses suggest that granular proteins participated in aggregation during freeze-thaw. Increasing gel strength and particle size and decreasing water and lipid-water mobility indicate that lipoproteins or apolipoproteins aggregated. At storage times ≥84 d, increased protein and lipid mobility, the detection of smaller particles, and secondarily increased gel strength suggest the liberation of protein or lipoprotein components from previously formed aggregates and further aggregation of these constituents. Disruption of the gelled yolk matrix observed with TEM supported that ice crystal formation was required for gelation to occur. A two-stage dynamic gelation model is thus proposed.

  20. Acid-induced gelation behavior of casein/whey protein solutions assessed by oscillatory rheology.

    Science.gov (United States)

    Sadeghi, Mahboubeh; Madadlou, Ashkan; Khosrowshahi, Asghar; Mohammadifar, Mohammadamin

    2014-09-01

    Gelation process of acid-induced casein gels was studied using response surface method (RSM). Ratio of casein to whey proteins, incubation and heating temperatures were independent variables. Final storage modulus (G') measured 200 min after the addition of glucono-δ-lactone and the gelation time i.e. the time at which G' of gels became greater than 1 Pa were the parameters studied. Incubation temperature strongly affected both parameters. The higher the incubation temperature, the lower was the G' and the shorter the gelation time. Increased heating temperature however, increased the G' but again shortened the gelation time. Increase in G' was attributed to the formation of disulphide cross-linkages between denatured whey proteins and casein chains; whilst the latter was legitimized by considering the higher isoelectric pH of whey proteins. Maximum response (G' = 268.93 Pa) was obtained at 2.7 % w/w, 25 °C and 90 °C for casein content, incubation and heating temperatures, respectively.

  1. Effect of Isotacticity of Linear Poly(N-isopropylacrylamide) on its Gelation in Benzyl Alcohol

    Indian Academy of Sciences (India)

    CHANDRA SEKHAR BISWAS; KHEYANATH MITRA; SHIKHA SINGH; DINESH K PATEL; BISWAJIT MAITI; PRALAY MAITI; BISWAJIT RAY

    2016-06-01

    Thermoreversible gelation of three different isotactic linear poly(N-isopropylacrylamide) (PNIPAM)s having meso dyad (m) values 62, 68 and 81% has been observed in benzyl alcohol. All the gels weretransparent in nature. SEM image of the dried gels showed fibrillar network morphology. Melting temperatureof the gels gradually increased with the increase in the concentration. XRD data of dry polymers and their correspondingdry gels showed shifting in the peak positions. Rheological study showed that stronger gels wereformed with increasing isotacticity of PNIPAM while lower isotactic sample exhibited typical polymer meltrheology. The formation of a plunge in the storage modulus as well as in the viscosity plot at the same frequencyrange indicates the reversible nature of the structure breaking/reformation under frequency sweep. Moreover,the mechanical strength of the gel decreased with increase in temperature. UV-Vis kinetic study also indicatedthe change in the conformation and aggregation of PNIPAM chains during gelation. Molecular modelling calculationshowed that the number of solvent molecules involved in forming gel (polymer-solvent compound)decreased with the increase in the isotacticity of the polymer. Gelation rate of these gels was studied as a functionof temperature, concentration and isotacticity using test-tube tilting method. It increased with the increasein the concentration and isoacticity of the polymer, and with the decrease in the temperature. Critical gelationconcentration of the gel gradually increased with the decrease in the isotacticity and with the increase in thetemperature. All these experimental results indicated that gelation occurs presumably through polymer-solventcompound formation.

  2. A new multistep Ca2+-induced cold gelation process for beta-lactoglobulin.

    Science.gov (United States)

    Veerman, Cecile; Baptist, Harry; Sagis, Leonard M C; van der Linden, Erik

    2003-06-18

    The objective of this study was to obtain beta-lactoglobulin (beta-lg) gels at very low protein concentrations using a new multistep Ca(2+)-induced cold gelation process. In the conventional cold gelation process, salt free beta-lg solutions were heated at neutral pH, cooled, and cross-linked by adding salts. In our new process, first, long linear beta-lg fibrils were formed at pH 2. Solutions of these fibrils were cooled, and subsequently, the pH was adjusted to 7 or 8. Transmission electron microscopy studies showed that the long linear fibrils formed at pH 2 were stable when the pH was adjusted to 7 or 8. In the final step, the fibrils were cross-linked using CaCl(2). Using rheological measurements, the critical percolation concentration was determined. In the new multistep cold gelation process, the critical percolation concentration was an order of magnitude lower than in the conventional cold gelation method.

  3. Chitosan-Pectin Synergistic Interaction and Gelation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mixed gels of chitosan-pectin were prepared by varying the ratio of constituents in the presence of NaCl. Mixed gel at 3% of total polysaccharide concentration with addtion of 12% NaCl showed a synergistic maximum when the ratio of chitosan to pectin was 60 : 40. The effect of the polysaccharide concentration,the preparation temperature(Tp), the time of incubation, balk salt concentration, the molecular weight and the degree of deacetylation of chitosan on gelation have been studied. Interaction mechanism between molecules of both polysaccharides was investigated by FT-IR spectrometry.

  4. Controlling thermal gelation properties of novel Tetronic RTM hydrogel-based tissue adhesive

    Science.gov (United States)

    Alejos, Martin Fernando

    The advancement in laparoscopic and robotic surgeries is calling for innovation in wound closure methods where the classical mechanical ligatures are proving very challenging due to reduction in surgical spaces, even for seasoned surgeons. Tissue adhesives have been investigated as an alternative and/or adjuvant method to address some of these unmet needs. Previously in our lab, Sanders and co-workers developed a successful synthetic adhesive by modifying Tetronic 1107 to incorporate acrylate (ACR) for chemical crosslinking and N-hydroxisuccinimide (NHS) to enhance tissue bonding, improving the seminal work done by Cho et al. However, solutions of modified T1107 would undergo reverse thermal gelation below room temperature, imposing a usability limitation since they could gel while being handled, and a functional limitation because if the material gelled to fast it would not make a good contact with the microstructure of the underlying tissues. Therefore, the main objective of this master's thesis research is to further improve the performance of these Tetronic-based adhesives by controlling the gelation temperature of these polymeric systems. To control the gelation temperatures of functionalized T1107 blends solutions, the acrylated version of a lower molecular Tetronic, T304, was incorporated into these polymers blends. This strategy proved to be effective to control de gelation temperature of the Tetronic-based adhesives, and also extended their degradation times. However, increased amounts of T304-ACR were correlated with lower adhesive strengths. With the right blend ratio, these three properties can be balanced to yield a mechanically strong adhesive, with a useful degradation profile and controlled gelation temperature.

  5. Oxidative enzymatic gelation of sugar beet pectin for emulsion stabilization

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Meyer, Anne S.

    2013-01-01

    emulsions has recently been investigated in model food emulsions. This paper reviews the pectin chemistry, enzymatic oxidative gelation mechanisms, interaction mechanisms of the sugar beet pectin with the emulsion droplets and explores how the gelation affects the rheology and stability of emulsion systems...

  6. Physical and chemical interactions in cold gelation of food proteins

    NARCIS (Netherlands)

    Alting, A.C.; Jongh, de H.H.J.; Visschers, R.W.; Simons, J.W.F.A.

    2002-01-01

    pH-Induced cold gelation of whey proteins is a two-step process. After protein aggregates have been prepared by heat treatment, gelation is established at ambient temperature by gradually lowering the pH. To demonstrate the importance of electrostatic interactions between aggregates during this

  7. Physical and chemical interactions in cold gelation of food proteins

    NARCIS (Netherlands)

    Alting, A.C.; Jongh, de H.H.J.; Visschers, R.W.; Simons, J.W.F.A.

    2002-01-01

    pH-Induced cold gelation of whey proteins is a two-step process. After protein aggregates have been prepared by heat treatment, gelation is established at ambient temperature by gradually lowering the pH. To demonstrate the importance of electrostatic interactions between aggregates during this latt

  8. Physical and chemical interactions in cold gelation of food proteins

    NARCIS (Netherlands)

    Alting, A.C.; Jongh, de H.H.J.; Visschers, R.W.; Simons, J.W.F.A.

    2002-01-01

    pH-Induced cold gelation of whey proteins is a two-step process. After protein aggregates have been prepared by heat treatment, gelation is established at ambient temperature by gradually lowering the pH. To demonstrate the importance of electrostatic interactions between aggregates during this latt

  9. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  10. Ultrasound- and Temperature-Induced Gelation of Gluconosemicarbazide Gelator in DMSO and Water Mixtures

    Directory of Open Access Journals (Sweden)

    Mothukunta Himabindu

    2017-04-01

    Full Text Available We have developed amphiphilic supramolecular gelators carrying glucose moiety that could gel a mixture of dimethyl sulfoxide (DMSO and water upon heating as well as ultrasound treatment. When the suspension of gluconosemicarbazide was subjected to ultrasound treatment, gelation took place at much lower concentrations compared to thermal treatment, and the gels transformed into a solution state at higher temperatures compared to temperature-induced gels. The morphology was found to be influenced by the nature of the stimulus and presence of salts such as KCl, NaCl, CaCl2 and surfactant (sodium dodecyl sulphate at a concentration of 0.05 M. The gel exhibited impressive tolerance to these additives, revealing the stability and strength of the gels. Fourier transform infrared spectroscopy (FTIR revealed the presence of the intermolecular hydrogen bonding interactions while differential scanning calorimetry (DSC and rheological studies supported better mechanical strength of ultrasound-induced (UI gels over thermally-induced (TI gels.

  11. Induced gelation in a two-site spatial coagulation model

    OpenAIRE

    Siegmund-Schultze, Rainer; Wagner, Wolfgang

    2006-01-01

    A two-site spatial coagulation model is considered. Particles of masses $m$ and $n$ at the same site form a new particle of mass $m+n$ at rate $mn$. Independently, particles jump to the other site at a constant rate. The limit (for increasing particle numbers) of this model is expected to be nondeterministic after the gelation time, namely, one or two giant particles randomly jump between the two sites. Moreover, a new effect of induced gelation is observed--the gelation happening at the site...

  12. Probing the function of ionotropic and G protein-coupled receptors in surface-confined membranes.

    Science.gov (United States)

    Danelon, Christophe; Terrettaz, Samuel; Guenat, Olivier; Koudelka, Milena; Vogel, Horst

    2008-10-01

    This article reports on recent electrical and optical techniques for investigating cellular signaling reactions in artificial and native membranes immobilized on solid supports. The first part describes the formation of planar artificial lipid bilayers on gold electrodes, which reveal giga-ohm electrical resistance and the insertion and characterization of ionotropic receptors therein. These membranes are suited to record a few or even single ion channels by impedance spectroscopy. Such tethered membranes on planar arrays of microelectrodes offer mechanically robust, long-lasting measuring devices to probe the influence of different chemistries on biologically important ionotropic receptors and therefore will have a future impact to probe the function of channel proteins in basic science and in biosensor applications. In a second part, we present complementary approaches to form inside-out native membrane sheets that are immobilized on micrometer-sized beads or across submicrometer-sized holes machined in a planar support. Because the native membrane sheets are plasma membranes detached from live cells, these approaches offer a unique possibility to investigate cellular signaling processes, such as those mediated by ionotropic or G protein-coupled receptors, with original composition of lipids and proteins.

  13. Experimental Methodology for Determining Optimum Process Parameters for Production of Hydrous Metal Oxides by Internal Gelation

    Energy Technology Data Exchange (ETDEWEB)

    Collins, J.L.

    2005-10-28

    The objective of this report is to describe a simple but very useful experimental methodology that was used to determine optimum process parameters for preparing several hydrous metal-oxide gel spheres by the internal gelation process. The method is inexpensive and very effective in collection of key gel-forming data that are needed to prepare the hydrous metal-oxide microspheres of the best quality for a number of elements.

  14. Gelation transitions of colloidal systems with bridging attractions

    Science.gov (United States)

    Yuan, Guangcui; Luo, Junhua; Han, Charles C.; Liu, Yun

    2016-10-01

    Gelation transitions in a colloidal system, where there is a strong reversible attraction between small, soft microgels and large, hard spheres, are systematically investigated. Different from widely studied depletion attraction systems that are also two-component systems, the strong attraction between small solvent and large solute particles introduces bridging attractions between large solute particles. We conclusively demonstrate that the formation of physical gels at the intermediate volume fraction of our bridging attraction system follows more closely with the percolation line that is in stark contrast to what is observed in depletion attraction systems, where the gelation transition is related with the frustrated spinodal separation, not a purely kinetic phenomenon. Our results introduce a different way to control gelation transitions in spherical colloidal systems, and imply that people need to be prudent when generalizing the physical picture of the gelation transitions obtained from systems with different origins of effective attraction as the solvent molecule may play important roles.

  15. Effects of single-walled carbon nanotubes on lysozyme gelation.

    Science.gov (United States)

    Tardani, Franco; La Mesa, Camillo

    2014-09-01

    The possibility to disperse carbon nanotubes in biocompatible matrices has got substantial interest from the scientific community. Along this research line, the inclusion of single walled carbon nanotubes in lysozyme-based hydrogels was investigated. Experiments were performed at different nanotube/lysozyme weight ratios. Carbon nanotubes were dispersed in protein solutions, in conditions suitable for thermal gelation. The state of the dispersions was determined before and after thermal treatment. Rheology, dynamic light scattering and different microscopies investigated the effect that carbon nanotubes exert on gelation. The gelation kinetics and changes in gelation temperature were determined. The effect of carbon and lysozyme content on the gel properties was, therefore, determined. At fixed lysozyme content, moderate amounts of carbon nanotubes do not disturb the properties of hydrogel composites. At moderately high volume fractions in carbon nanotubes, the gels become continuous in both lysozyme and nanotubes. This is because percolating networks are presumably formed. Support to the above statements comes by rheology.

  16. Genuine non-self-averaging and ultraslow convergence in gelation

    Science.gov (United States)

    Cho, Y. S.; Mazza, M. G.; Kahng, B.; Nagler, J.

    2016-08-01

    In irreversible aggregation processes droplets or polymers of microscopic size successively coalesce until a large cluster of macroscopic scale forms. This gelation transition is widely believed to be self-averaging, meaning that the order parameter (the relative size of the largest connected cluster) attains well-defined values upon ensemble averaging with no sample-to-sample fluctuations in the thermodynamic limit. Here, we report on anomalous gelation transition types. Depending on the growth rate of the largest clusters, the gelation transition can show very diverse patterns as a function of the control parameter, which includes multiple stochastic discontinuous transitions, genuine non-self-averaging and ultraslow convergence of the transition point. Our framework may be helpful in understanding and controlling gelation.

  17. Gelation process visualized by aggregation-induced emission fluorogens

    Science.gov (United States)

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-06-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of attention on the entire process. Here we show the entire gelation process of chitosan LiOH-urea aqueous system by aggregation-induced emission fluorescent imaging. Accompanied by other pseudo in situ investigations, we propose the mechanism of gelation process, focusing on the formation of junction points including hydrogen bonds and crystalline.

  18. Gelation threshold of cross-linked polymer brushes.

    Science.gov (United States)

    Hoffmann, Max; Lang, Michael; Sommer, Jens-Uwe

    2011-02-01

    The cross-linking of polymer brushes is studied using the bond-fluctuation model. By mapping the cross-linking process into a two-dimensional (2D) percolation problem within the lattice of grafting points, we investigate the gelation transition in detail. We show that the particular properties of cross-linked polymer brushes can be reduced to the distribution of bonds which are formed between the grafted chains, and we propose scaling arguments to relate the gelation threshold to the chain length and the grafting density. The gelation threshold is lower than the percolation threshold for 2D bond percolation because of the longer range and broad distribution of bonds formed by the cross-linking process. We term this type of percolation problem star percolation. We observe a broad crossover from mean-field to critical percolation behavior by analyzing the cluster size distribution near the gelation threshold.

  19. Key role of hydrodynamic interactions in colloidal gelation.

    Science.gov (United States)

    Furukawa, Akira; Tanaka, Hajime

    2010-06-18

    Colloidal gelation is caused by the formation of a percolated network of colloidal particles suspended in a liquid. Thus far the major transport process leading to gelation has been believed to be the brownian diffusion of particles. Contrary to this common belief, we reveal by numerical simulations that many-body hydrodynamic interactions between colloidal particles also play an essential role in gelation: They significantly promote gelation, or lower the colloid volume fraction threshold for percolation, as compared to their absence. We find that the incompressible nature of a liquid component and the resulting self-organization of hydrodynamic flow with a transverse (rotational) character are responsible for this enhancement of network-forming ability.

  20. Wetting reversal at gelation transition freezes thermodynamically unstable states.

    Science.gov (United States)

    Hirayama, Shinya; Sano, Masahito

    2013-07-23

    The contact angle of a drop of gelling solution on a flat, solid surface was monitored as the hot solution was allowed to cool. When a solvent with a high cohesive energy and a wettable solid surface was used, a wetting solution turned into a dewetting solid at the gelation transition. The density profiles in gel as probed by confocal Raman microscopy reveal that the adsorption of both gelator and solvent shifts at the transition and the solvent is severely depleted from the interfacial region. Thus, the wetting reversal is accompanied by the interfacial desolvation. As a result of the adsorption shift during the gelation process in progress, a locally concentrated region of the gelator is frozen in space far away from the surface. This is a thermodynamically unstable state but can be realized reproducibly. The profile analysis also shows that the effect of the surface extends out to a few hundred micrometers, 2 orders of magnitude larger than the bulk correlation length.

  1. An analysis of fractal geometry of macromolecular gelation

    Institute of Scientific and Technical Information of China (English)

    左榘; 陈天红; 冉少峰; 何炳林; 董宝中; 生文君; 杨恒林

    1996-01-01

    With fractal geometry theory and based on experiments, an analysis of fractal geometry behavior of gelation of macromolecules was carried out. Using the cross-linking copolymerization of styrene-divinylbenzene (DVB) as an example, through the determinations of the evolution of the molecular weight, size and the dependence of scattering intensity on the angle of macromolecules by employing laser and synchrotron small angle X-ray scattering, respectively, this chemical reaction was described quantitatively, its fractal behavior was analyzed and the fractal dimension was also measured. By avoiding the complex theories on gelation, this approach is based on modern physical techniques and theories to perform the analysis of the behavior of fractal geometry of macromolecular gelation and thus is able to reveal the rules of this kind of complicated gelation more essentially and profoundly.

  2. Glucose oxidase-mediated gelation: a simple test to detect glucose in food products.

    Science.gov (United States)

    Liu, Yi; Javvaji, Vishal; Raghavan, Srinivasa R; Bentley, William E; Payne, Gregory F

    2012-09-12

    This paper reports a simple, rapid, and sugar-selective method to induce gelation from glucose-containing samples. This method employs glucose oxidase (GOx) to selectively "recognize" and oxidize glucose to generate gluconic acid, which acts to solubilize calcium carbonate and release calcium ions. The release of calcium ions triggers gelation of the calcium-responsive polysaccharide alginate to form a calcium-alginate hydrogel. Rheological measurements confirm that gel formation is triggered by glucose but not fructose or sucrose (consistent with GOx's selectivity). Vial inversion tests demonstrate that gel formation can be readily observed without the need for instrumentation. Proof-of-concept studies demonstrate that this gel-forming method can detect glucose in food/beverage products sweetened with glucose or high-fructose corn syrups. These results indicate that the enzyme-induced gelation of alginate may provide a simple means to test for sweeteners using components that are safe for use on-site or in the home.

  3. Gelation process visualized by aggregation-induced emission fluorogens

    OpenAIRE

    Wang, Zhengke; Nie, Jingyi; Qin, Wei; Hu, Qiaoling; Tang, Ben Zhong

    2016-01-01

    Alkaline-urea aqueous solvent system provides a novel and important approach for the utilization of polysaccharide. As one of the most important polysaccharide, chitosan can be well dissolved in this solvent system, and the resultant hydrogel material possesses unique and excellent properties. Thus the sound understanding of the gelation process is fundamentally important. However, current study of the gelation process is still limited due to the absence of direct observation and the lack of ...

  4. The Fabrication of Microstructure Surface of Super- hydrophobic Coating by Surface Gelation Technology

    Institute of Scientific and Technical Information of China (English)

    DUAN Hui; WANG Houzhi; ZHAO Lei; ZHAO Huizhong

    2008-01-01

    The microstructured surface of materials were fabricated by a two-step acid-base catalyzed sol-gel process. In fluorinated polymer with PTFE doping, the well-proportioned composite sols were prepared using sol-gel processing under the hydrochloric acid and deficiency of water conditions. After the substrate was coated by composite sols, and the gelation treatment on the surface of composite coating, the micrometer-scale and nanometer-scale hierarchical structures were formed in surface layer of material. XPS and TEM technologies were employed to identify that the gelation occurs just on the surface of composite coating. The morphology of coating surface was observed by SEM and AFM technologies. The microstructured surface of material can be fabricated using this inexpensive and easily controlled method on low surface energy resin materials, the super-hydrophobic coatings materials can be prepared.

  5. THE FABRICATION OF CARBON AEROGELS BY GELATION IN ISOPROPANOL WITH BASIC CATALYST

    Institute of Scientific and Technical Information of China (English)

    WU Dingcai; ZHANG Shuting; FU Ruowen

    2003-01-01

    A new method for the fabrication of carbon aerogels is reported in this paper. Resorcinol and furfural were gelated in isopropanol with basic catalysts and then dried directly under isopropanol supercritical condition, followed by carbonization under nitrogen atmosphere. The bulk densities of carbon aerogels obtained are in the range of 0. 21g/cm3~0. 27g/cm3 and the sizes of the interconnected carbon nano-particles are in the range of 20nm~30nm. All of the aerogel samples exhibit high BET surface areas in the range of 730m2/g~900m2/g. The bulk density, micro-porevolume, meso-pore volume and meso-pore diameter can be controlled by gelation conditions such as R/I ratio and R/C ratio.

  6. Pectin gelation with chlorhexidine: Physico-chemical studies in dilute solutions.

    Science.gov (United States)

    Lascol, Manon; Bourgeois, Sandrine; Guillière, Florence; Hangouët, Marie; Raffin, Guy; Marote, Pedro; Lantéri, Pierre; Bordes, Claire

    2016-10-05

    Low methoxyl pectin is known to gel with divalent cations (e.g. Ca(2+), Zn(2+)). In this study, a new way of pectin gelation in the presence of an active pharmaceutical ingredient, chlorhexidine (CX), was highlighted. Thus chlorhexidine interactions with pectin were investigated and compared with the well-known pectin/Ca(2+) binding model. Gelation mechanisms were studied by several physico-chemical methods such as zeta potential, viscosity, size measurements and binding isotherm was determined by Proton Nuclear Magnetic Resonance Spectroscopy ((1)H NMR). The binding process exhibited similar first two steps for both divalent ions: a stoichiometric monocomplexation of the polymer followed by a dimerization step. However, stronger interactions were observed between pectin and chlorhexidine. Moreover, the dimerization step occurred under stoichiometric conditions with chlorhexidine whereas non-stoichiometric conditions were involved with calcium ions. In the case of chlorhexidine, an additional intermolecular binding occurred in a third step.

  7. Stoichiometric sensing to opt between gelation and crystallization.

    Science.gov (United States)

    Vidyasagar, Adiyala; Sureshan, Kana M

    2015-10-05

    A new class of organogelators having a cyclohexane-1a,3a-diol motif capable of congealing non-polar liquids was developed. These gelators underwent crystallization at low concentration and gelation above the critical gelation concentration (CGC) in the same solvent. The crystals and gel fibers were analyzed by single crystal XRD and PXRD respectively, which revealed their different modes of assembly. The XRD studies and thermogravimetric analysis (TGA) confirmed that the crystals contain a water of crystallization whereas the gel fibers do not. A systematic study revealed that when the concentration of the gelator exceeds that of adventitious water in the solvent, it congeals the solvent and when the concentration of the gelator is less than water, it undergoes crystallization. This unprecedented stoichiometric sensing behavior in deciding the mode of self-assembly offers a handle to opt between mutually competing gelation and crystallization. We have confirmed that the system can be biased to congeal or crystallize by varying the amount of water.

  8. The Gelation Ability and Morphology Study of Organogel System Based on Calamitic Hydrazide Derivatives

    Directory of Open Access Journals (Sweden)

    Xia Ran

    2015-01-01

    Full Text Available The gelation property of a series of LMOG bearing hydrazide and azobenzene groups, namely, N-4-(alkoxyphenyl-N′-4-[(4-methoxyphenylazophenyl] benzohydrazide (BNBC-n, n=8,12,14, has been systematically studied in this work. The obtained results demonstrate that the gelling ability in organic solvents is significantly influenced by the length of terminal alkoxy chain. In different organic solvents, it is hard to observe the organogel formation for BNBC-8 molecule. On the contrary, the organogelators BNBC-12 and BNBC-14 bearing longer terminal chains have shown great ability to gel organic solvents to form stable organogels. The critical gelation concentration for BNBC-12 reaches as low as 5.3 × 10−3 M, which can be considered as a supergelator. It has been manifested that the aggregation morphology of organogel strongly depends on the nature of the gelling solvents and the length of the terminal alkoxy chain. The gelation of BNBC-n provides an easy method for the preparation of multidimensional structure and manipulation of morphology from ribbons, hollow tube fiber to 3D net-like structure in different solvents. The cooperation of hydrogen bonding, π-π interaction, and Van der Waals force is suggested to be the main contribution to this self-assembled structure.

  9. Single-handed helical carbonaceous nanotubes prepared using a pair of cationic low molecular weight gelators

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Huayan; Wang, Qing; Guo, Yongmin; Li, Baozong; Li, Yi, E-mail: liyi@suda.edu.cn; Yang, Yonggang

    2016-08-15

    Highlights: • 3-aminophenol-formaldeyde resins were prepared through a templating method. • A pair of cationic gelators have been used as the templates. • Single-handed helical carbonaceous nanotubes were obtained after carbonization. • The carbonaceous nanotubes showed optical activity. - Abstract: We design a facile route to obtain enantiopure carbonaceous nanostructures, which have potential application as chiral sensors, electromagnetic wave absorbers, and asymmetric catalysts. A pair of cationic low molecular weight gelators was synthesized, which were able to self-assemble into twisted nanoribbons in ethanol at a concentration of 20 g L{sup −1} at 25 °C. Single-handed helical 3-aminophenol-formaldehyde resin nanotubes with optical activity were prepared using the self-assembly of the low molecular weight gelators as templates. After carbonization, single-handed helical carbonaceous nanotubes were obtained and characterized using circular dichroism, wide-angle X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The results indicate that the walls of the nanotubes are amorphous carbon. Moreover, the left- and right-handed helical nanotubes exhibit opposite optical activity.

  10. Organic Gelators as Growth Control Agents for Stable and Reproducible Hybrid Perovskite-Based Solar Cells

    KAUST Repository

    Masi, Sofia

    2017-03-03

    Low-molecular-weight organic gelators are widely used to influence the solidification of polymers, with applications ranging from packaging items, food containers to organic electronic devices, including organic photovoltaics. Here, this concept is extended to hybrid halide perovskite-based materials. In situ time-resolved grazing incidence wide-angle X-ray scattering measurements performed during spin coating reveal that organic gelators beneficially influence the nucleation and growth of the perovskite precursor phase. This can be exploited for the fabrication of planar n-i-p heterojunction devices with MAPbI3 (MA = CH3NH3+) that display a performance that not only is enhanced by ≈25% compared to solar cells where the active layer is produced without the use of a gelator but that also features a higher stability to moisture and a reduced hysteresis. Most importantly, the presented approach is straightforward and simple, and it provides a general method to render the film formation of hybrid perovskites more reliable and robust, analogous to the control that is afforded by these additives in the processing of commodity “plastics.”

  11. Pharmacological analysis of ionotropic glutamate receptor function in neuronal circuits of the zebrafish olfactory bulb.

    Directory of Open Access Journals (Sweden)

    Rico Tabor

    Full Text Available Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca(2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1 interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2 interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3 AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4 ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb.

  12. Controlled gelation kinetics of cucurbit[7]uril-adamantane cross-linked supramolecular hydrogels with competing guest molecules

    Science.gov (United States)

    Chen, Hao; Hou, Shengzhen; Ma, Haili; Li, Xu; Tan, Yebang

    2016-02-01

    Gelation kinetics of hydrogels is closely linked to many applications such as the development of injectable and printable hydrogels. However, the control of gelation kinetics without compromising the structure and other properties of the hydrogels, remains a challenge. Here, we demonstrate a method to control the gelation kinetics of cucurbit[7]uril-adamantane (CB[7]-AD) cross-linked supramolecular hydrogels by using competing guest molecules. The association between CB[7] and AD moieties on the polymer backbone was impeded by pre-occupying the CB[7] cavity with competing guest molecules. By using various guest molecules and concentrations, the gelation of the hydrogels could be varied from seconds to hours. The strong interaction of CB[7]-AD pair endue the hydrogels good mechanical properties and stability. Moreover, the binding of functionalized guest molecules of CB[7] moieties offers a facile approach for tailoring of the hydrogels’ scaffold. Combined with hydrogel injection and printing technology, this method offers an approach for the development of hydrogels with advanced temporal and spatial complexity.

  13. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin.

    Science.gov (United States)

    Wu, Xilong; Hou, Jing; Li, Mingzhong; Wang, Jiangnan; Kaplan, David L; Lu, Shenzhou

    2012-07-01

    The in situ formation of injectable silk fibroin (SF) hydrogels have potential advantages over various other biomaterials due to the minimal invasiveness during application. Biomaterials need to gel rapidly under physiological conditions after injection. In the current paper, a novel way to accelerate SF gelation using an anionic surfactant, sodium dodecyl sulfate (SDS), as a gelling agent is reported. The mechanism of SDS-induced rapid gelation was determined. At low surfactant concentrations, hydrophobic interactions among the SF chains played a dominant role in the association, leading to decreased gelation time. At higher concentrations of surfactant, electrostatic repulsive forces among micellar aggregates gradually became dominant and gelation was hindered. Gel formation involves the connection of clusters formed by the accumulation of nanoparticles. This process is accompanied by the rapid formation of β-sheet structures due to hydrophobic and electrostatic interactions. It is expected that the silk hydrogel with short gelation time will be used as an injectable hydrogel in drug delivery or cartilage tissue engineering.

  14. Carbon nanotubes induced gelation of unmodified hyaluronic acid.

    Science.gov (United States)

    Zamora-Ledezma, Camilo; Buisson, Lionel; Moulton, Simon E; Wallace, Gordon; Zakri, Cécile; Blanc, Christophe; Anglaret, Eric; Poulin, Philippe

    2013-08-13

    This work reports an experimental study of the kinetics and mechanisms of gelation of carbon nanotubes (CNTs)-hyaluronic acid (HA) mixtures. These materials are of great interest as functional biogels for future medical applications and tissue engineering. We show that CNTs can induce the gelation of noncovalently modified HA in water. This gelation is associated with a dynamical arrest of a liquid crystal phase separation, as shown by small-angle light scattering and polarized optical microscopy. This phenomenon is reminiscent of arrested phase separations in other colloidal systems in the presence of attractive interactions. The gelation time is found to strongly vary with the concentrations of both HA and CNTs. Near-infrared photoluminescence reveals that the CNTs remain individualized both in fluid and in gel states. It is concluded that the attractive forces interplay are likely weak depletion interactions and not strong van der Waals interactions which could promote CNT rebundling, as observed in other biopolymer-CNT mixtures. The present results clarify the remarkable efficiency of CNT at inducing the gelation of HA, by considering that CNTs easily phase separate as liquid crystals because of their giant aspect ratio.

  15. Effects of Coalescence on Shear-Induced Gelation of Colloids.

    Science.gov (United States)

    Jaquet, Baptiste; Lazzari, Stefano; Colonna, Luca; Colombo, Gabriele; Soos, Miroslav; Morbidelli, Massimo

    2017-02-07

    Shearing lyophobic colloidal suspensions can lead to aggregation, followed by gelation, if the formed clusters grow to sizes large enough to percolate. If the temperature is set over the glass transition temperature of the suspended material, the particles embedded in the same aggregate start to coalesce with one another. Coalescence occurs to the finite viscosity of the particles' material, which leads to material diffusion from particle to particle. The driving force of this process is the reduction of the particle-dispersant interface and, as a consequence, the decrease the center-to-center separation of the particles. This leads to decreased cluster size, and hence a delayed gelation. Simultaneously, coalescence reinforces the particle-particle bonds formed upon aggregation, leading to clusters that are able to resist higher hydrodynamic forces before breaking up, hence leading to faster gelation. These two competing effects, combined with the natural complexity of colloidal aggregation makes it rather difficult to understand and predict which trend becomes dominant. In the present work, the shear-induced gelation of model polymeric colloidal systems with different glass transition temperatures has been studied. Starting with their interaction potential we investigate the impact of temperature on the gel time in concentrated suspensions (φ = 5%) under steady shear, followed by the effect of temperature on the stress-resistance of fully destabilized clusters under agitation. The results of the present work allow for a systematic view and deepened understanding of the factors governing shear-induced gelation in the presence of coalescence.

  16. Hydrogel films and coatings by swelling-induced gelation.

    Science.gov (United States)

    Moreau, David; Chauvet, Caroline; Etienne, François; Rannou, François P; Corté, Laurent

    2016-11-22

    Hydrogel films used as membranes or coatings are essential components of devices interfaced with biological systems. Their design is greatly challenged by the need to find mild synthesis and processing conditions that preserve their biocompatibility and the integrity of encapsulated compounds. Here, we report an approach to produce hydrogel films spontaneously in aqueous polymer solutions. This method uses the solvent depletion created at the surface of swelling polymer substrates to induce the gelation of a thin layer of polymer solution. Using a biocompatible polymer that self-assembles at high concentration [poly(vinyl alcohol)], hydrogel films were produced within minutes to hours with thicknesses ranging from tens to hundreds of micrometers. A simple model and numerical simulations of mass transport during swelling capture the experiments and predict how film growth depends on the solution composition, substrate geometry, and swelling properties. The versatility of the approach was verified with a variety of swelling substrates and hydrogel-forming solutions. We also demonstrate the potential of this technique by incorporating other solutes such as inorganic particles to fabricate ceramic-hydrogel coatings for bone anchoring and cells to fabricate cell-laden membranes for cell culture or tissue engineering.

  17. The striking influence of SWNT-COOH on self-assembled gelation.

    Science.gov (United States)

    Mandal, Subhra Kanti; Kar, Tanmoy; Das, Dibyendu; Das, Prasanta Kumar

    2012-02-07

    A miniscule amount of f-SWNTs remarkably improved (~17-fold) the gelation efficiency of amphiphilic molecules by triggering the formation of interconnecting self-assembled fibrillar networks (SAFIN) in supramolecular gelation.

  18. Insights into the olfactory system of the ectoparasite Caligus rogercresseyi: molecular characterization and gene transcription analysis of novel ionotropic receptors.

    Science.gov (United States)

    Núñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Marambio, Jorge Pino; Wadsworth, Simon; Gallardo-Escárate, Cristian

    2014-10-01

    Although various elements of the olfactory system have been elucidated in insects, it remains practically unstudied in crustaceans at a molecular level. Among crustaceans, some species are classified as ectoparasites that impact the finfish aquaculture industry. Thus, there is an urgent need to identify and comprehend the signaling pathways used by these in host recognition. The present study, through RNA-seq and qPCR analyses, found novel transcripts involved in the olfactory system of Caligus rogercresseyi, in addition to the transcriptomic patterns expressed during different stages of salmon lice development. From a transcriptomic library generated by Illumina sequencing, contigs that annotated for ionotropic receptors and other genes implicated in the olfactory system were identified and extracted. Full length mRNA was obtained for the ionotropic glutamate receptor 25, which had 3923 bp, and for the glutamate receptor ionotropic kainate 2, which had 2737 bp. Furthermore, two other transcripts identified as glutamate receptor, ionotropic kainate 2-like were found. In silico analysis was performed for the transcription expression from different stages of development in C. rogercresseyi, and clusters according to RPKM values were constructed. Gene transcription data were validated through qPCR assays in ionotropic receptors, and showed an expression of glutamate receptor 25 associated with the copepodid stage whereas adults, especially male adults, were associated with the kainate 2 and kainate 2-like transcripts. Additionally, gene transcription analysis of the ionotropic receptors showed an overexpression in response to the presence of masking compounds and immunostimulant in salmon diets. This response correlated to a reduction in sea lice infection following in vivo challenge. Diets with masking compounds showed a decrease of lice infestation of up to 25%. This work contributes to the available knowledge on chemosensory systems in this ectoparasite, providing

  19. IN SITU INTERFEROMETRIC STUDY ON THE GELATION PROCESS OF POLYACRYLIC ACID GELS

    Institute of Scientific and Technical Information of China (English)

    Ying Guan; Qiang Chen; Xian-min Zhang; Yu-xing Peng; Jian Xu

    2000-01-01

    In situ interferometry was used to investigate the gelation process of polyacrylic acid (PAA) gels. The basic principle of the in situ interferometry technique is illustrated. It can give sufficient information for non-destructive and successful investigation of the whole gelation process. The effect of initiator concentration on the gelation process was studied. The polymerization rate of AA increases with increasing initiator concentration. The error arising from the thermal effect in the gelation process can be neglected.

  20. Effect of addition of ethyl alcohol on gelation and viscoelasticity of tissue conditioners

    OpenAIRE

    Murata, Hiroshi; Hamada, Taizo; Harshini,; Toki, Kazuhito; Nikawa, Hiroki

    2001-01-01

    The clinical effectiveness of tissue conditioners is influenced by their gelation characteristics and viscoelastic properties after gelation. The purpose of this study was to evaluate the effect of addition of ethyl alcohol (EtOH) on these properties, and to compare the effect of EtOH with that of the powder/liquid (P/L) ratio. Three tissue conditioners were used in this study. The gelation times were obtained with an oscillating rheometer. The viscoelastic properties after gelation were also...

  1. A necessary and sufficient condition for gelation of a reversible Markov process of polymerization

    CERN Document Server

    Han, D

    2003-01-01

    A reversible Markov process as a chemical polymerization model which permits the coagulation and fragmentation reactions is considered. We present a necessary and sufficient condition for the occurrence of a gelation in the process. We show that a gelation transition may or may not occur, depending on the value of the fragmentation strength, and, in the case that gelation takes place, a critical value for the occurrence of the gelation and the mass of the gel can be determined by close forms.

  2. Photothermal characterization of the gelation process in Gelidium robustum Agar

    Science.gov (United States)

    Freile-Pelegrín, Y.; Bante, J.; Alvarado-Gil, J. J.; Yánez-Limón, J. M.

    2005-06-01

    Agar is a hydrophilic colloid formed by polysaccharides, whose ability to form reversible gels simply by cooling hot aqueous solutions is the most important property and can be regarded as the prototype and model for all gelling systems. In this paper the evolution of the gelation process of agar obtained from algae of the species Gelidium robustum, using the photopyroelectric technique is reported. It is shown that thermal effusivity increase when the agar is cooled, reaching a maximum value around 37°C. The increase in thermal effusivity can be related to the increasing of the bondings in the gel as temperature decreases, reaching the maximum at the gelation point. The decrease of the thermal effusivity at lower temperature could be due to the syneresis process involving a gradual release of water after gelation.

  3. Trivalent Iron Induced Gelation in Lambda-Carrageenan.

    Science.gov (United States)

    Running, Cordelia A; Falshaw, Ruth; Janaswamy, Srinivas

    2012-03-01

    This communication reports gelation of lambda-carrageenan, for the first time, in the presence of trivalent iron ions. Kappa-, iota- and lambda-carrageenans are sulfated polysaccharides used extensively in food, pharmaceutical and medical applications. Kappa- and iota-carrageenans show gelation in the presence of mono- and di-valent ions, but lambda-carrageenan yields only viscous solutions. Our results show that gelation in lambda-carrageenan indeed is possible, but with trivalent ions. X-ray fiber diffraction patterns of iron (III)-lambda-carrageenan are characteristic of highly oriented and polycrystalline fibers containing well resolved Bragg reflections. The elastic modulus (G') of the product is far greater than the loss modulus (G") indicating the thermal stability of lambda-carrageenan in the presence of iron (III) ions. This novel finding has potential to expand lambda-carrageenan's current utility beyond a viscosifying agent.

  4. Trivalent iron induced gelation in lambda-carrageenan

    Energy Technology Data Exchange (ETDEWEB)

    Running, Cordelia A.; Falshaw, Ruth; Janaswamy, Srinivas (Purdue)

    2012-05-24

    This communication reports gelation of lambda-carrageenan, for the first time, in the presence of trivalent iron ions. Kappa-, iota- and lambda-carrageenans are sulfated polysaccharides used extensively in food, pharmaceutical and medical applications. Kappa- and iota-carrageenans show gelation in the presence of mono- and di-valent ions, but lambda-carrageenan yields only viscous solutions. Our results show that gelation in lambda-carrageenan indeed is possible, but with trivalent ions. X-ray fiber diffraction patterns of iron (III)-lambda-carrageenan are characteristic of highly oriented and polycrystalline fibers containing well resolved Bragg reflections. The elastic modulus (G*) of the product is far greater than the loss modulus (G*) indicating the thermal stability of lambda-carrageenan in the presence of iron (III) ions. This novel finding has potential to expand lambda-carrageenan's current utility beyond a viscosifying agent.

  5. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder.

    Science.gov (United States)

    Goodwani, Sunil; Saternos, Hannah; Alasmari, Fawaz; Sari, Youssef

    2017-02-24

    Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the initiation and development of alcohol and drug dependence. Alcohol consumption induced downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via interactions with several glutamate receptors. Alcohol consumption interferes with the glutamatergic signal transmission by altering the functions of these receptors. Among the glutamate receptors involved in alcohol-drinking behavior are the metabotropic receptors such as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. This review provides ample information about the potential therapeutic role of glutamatergic receptors for the treatment of AUD.

  6. Ionotropic receptors and ion channels in ischemic neuronal death and dysfunction

    Institute of Scientific and Technical Information of China (English)

    Nicholas L WEILINGER; Valentyna MASLIEIEVA; Jennifer BIALECKI; Sarup S SRIDHARAN; Peter L TANG; Roger J THOMPSON

    2013-01-01

    Loss of energy supply to neurons during stroke induces a rapid loss of membrane potential that is called the anoxic depolarization.Anoxic depolarizations result in tremendous physiological stress on the neurons because of the dysregulation of ionic fluxes and the loss of ATP to drive ion pumps that maintain electrochemical gradients.In this review,we present an overview of some of the ionotropic receptors and ion channels that are thought to contribute to the anoxic depolarization of neurons and subsequently,to cell death.The ionotropic receptors for glutamate and ATP that function as ligand-gated cation channels are critical in the death and dysfunction of neurons.Interestingly,two of these receptors (P2X7 and NMDAR) have been shown to couple to the pannexin-1 (Panx1) ion channel.We also discuss the important roles of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in responses to ischemia.The central challenge that emerges from our current understanding of the anoxic depolarization is the need to elucidate the mechanistic and temporal interrelations of these ion channels to fully appreciate their impact on neurons during stroke.

  7. Control of the gelation process of silk fibroin solution

    Directory of Open Access Journals (Sweden)

    Liu Yu

    2014-01-01

    Full Text Available In the present study, silk fibroin solution was controlled through a simple shearing to accomplish the steady and rapid gelation process and the conformational transition. Antheraea yamamai silk fibroin was formed into hydrogels quicker than Bombyx mori silk fibroin on the same condition. Comparing with Bombyx mori silk fibroin, the rapid gelation of Antheraea yamamai silk fibroin was concerned with its alternate polyalanine-containing units which are tended to form the α-helix structures spontaneously. The entropic cost during the conformational transition to β-sheet is less than that from random coil to β-sheet.

  8. Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology.

    Science.gov (United States)

    Capretto, Lorenzo; Mazzitelli, Stefania; Balestra, Cosimo; Tosi, Azzura; Nastruzzi, Claudio

    2008-04-01

    The present paper reports the production of Ba-alginate microspheres by microfluidic chip technology. The general production strategy is based on the formation of an alginate multiphase flow by a 'Y' junction squeezing mechanism. Special emphasis is given to the relationship existing between the gelation process and the final morphological characteristics of the produced microbeads. A series of different gelation strategies, namely: 'external gelation', 'internal gelation' and 'partial gelation' were compared in terms of size, size distribution and morphology of the produced microbeads.

  9. Selective removals of heavy metals (Pb(2+), Cu(2+), and Cd(2+)) from wastewater by gelation with alginate for effective metal recovery.

    Science.gov (United States)

    Wang, Fei; Lu, Xingwen; Li, Xiao-yan

    2016-05-05

    A novel method that uses the aqueous sodium alginate solution for direct gelation with metal ions is developed for effective removal and recovery of heavy metals from industrial wastewater. The experimental study was conducted on Pb(2+), Cu(2+), and Cd(2+) as the model heavy metals. The results show that gels can be formed rapidly between the metals and alginate in less than 10 min and the gelation rates fit well with the pseudo second-order kinetic model. The optimum dosing ratio of alginate to the metal ions was found to be between 2:1 and 3:1 for removing Pb(2+) and around 4:1 for removing Cu(2+) and Cd(2+) from wastewater, and the metal removal efficiency by gelation increased as the solution pH increased. Alginate exhibited a higher gelation affinity toward Pb(2+) than Cu(2+) and Cd(2+), which allowed a selective removal of Pb(2+) from the wastewater in the presence of Cu(2+) and Cd(2+) ions. Chemical analysis of the gels suggests that the gelation mainly occurred between the metal ions and the -COO(-) and -OH groups on alginate. By simple calcination of the metal-laden gels at 700 °C for 1 h, the heavy metals can be well recovered as valuable resources. The metals obtained after the thermal treatment are in the form of PbO, CuO, and CdO nanopowders with crystal sizes of around 150, 50, and 100 nm, respectively.

  10. 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes

    DEFF Research Database (Denmark)

    Madsen, Ulf; Pickering, Darryl S; Nielsen, Birgitte;

    2005-01-01

    4-Alkylated analogues of homoibotenic acid (HIBO) have previously shown high potency and selectivity at ionotropic and metabotropic glutamic acid receptor (iGluR and mGluR) subtypes. Compounds with different selectivity profiles are valuable pharmacological tools for neuropharmacological studies...

  11. Development of potent fluorescent polyamine toxins and application in labeling of ionotropic glutamate receptors in hippocampal neurons

    DEFF Research Database (Denmark)

    Nørager, Niels Grøn; Jensen, Christel Barker; Rathje, Mette;

    2013-01-01

    The natural product argiotoxin-636 (ArgTX-636) found in the venom of the Argiope lobata spider is a potent open-channel blocker of ionotropic glutamate (iGlu) receptors, and recently, two analogues, ArgTX-75 and ArgTX-48, were identified with increased potency and selectivity for iGlu receptor...

  12. Identification of an ionotropic glutamate receptor AMPA1/GRIA1 polymorphism in crossbred beef cows differing in fertility

    Science.gov (United States)

    A proposed functional polymorphism in the ionotropic glutamate receptor AMPA1 (GRIA1) has been reported to influence antral follicle numbers and fertility in cows. Repeat Breeder cows that fail to produce a calf in multiple seasons have been reported to have reduced numbers of small (1-3 mm) antral ...

  13. Conductive Screen Printing Inks by Gelation of Graphene Dispersions

    NARCIS (Netherlands)

    Arapov, K.; Rubingh, E.; Abbel, R.J.; Laven, J.; With, G. de; Friedrich, H.

    2016-01-01

    This paper describes the gelation of highly concentrated graphene/polymer dispersions triggered by mild heating. The gel formation is only dependent on the concentration of graphene with 3.25 mg mL-1 as the minimum value for graphene network formation. The graphene gel is then utilized for the prepa

  14. Do sulfhydryl groups affect aggregation and gelation properties of ovalbumin?

    NARCIS (Netherlands)

    Broersen, K.; Teeffelen, A.M.M. van; Vries, A.; Voragen, A.G.J.; Hamer, R.J.; Jongh, H.H.J. de

    2006-01-01

    The aim of this work is to evaluate the impact of sulfhydryl groups on ovalbumin aggregation and gelation. Ovalbumin was chemically modified to add sulfhydryl groups in various degrees. The rate of aggregation was not affected by the introduction of sulfhydryl groups, and disulfide bond formation wa

  15. Silk Fibroin-Sophorolipid Gelation: Deciphering the Underlying Mechanism.

    Science.gov (United States)

    Dubey, Parul; Kumar, Sugam; Aswal, Vinod K; Ravindranathan, Sapna; Rajamohanan, Pattuparambil R; Prabhune, Asmita; Nisal, Anuya

    2016-10-10

    Silk fibroin (SF) protein, produced by silkworm Bombyx mori, is a promising biomaterial, while sophorolipid (SL) is an amphiphilic functional biosurfactant synthesized by nonpathogenic yeast Candida bombicola. SL is a mixture of two forms, acidic (ASL) and lactonic (LSL), which when added to SF results in accelerated gelation of silk fibroin. LSL is known to have multiple biological functionalities and hence hydrogels of these green molecules have promising applications in the biomedical sector. In this work, SANS, NMR, and rheology are employed to examine the assembling properties of individual and mixed SLs and their interactions with SF to understand the mechanism that leads to rapid gelation. SANS and NMR studies show that ASL assembles to form charged micelles, while LSL forms micellar assemblies and aggregates of a mass fractal nature. ASL and LSL together form larger mixed micelles, all of which interact differently with SF. It is shown that preferential binding of LSL to SF causes rapid unfolding of the SF chain leading to the formation of intermolecular beta sheets, which trigger fast gelation. Based on the observations, a mechanism for gelation of SF in the presence of different sophorolipids is proposed.

  16. Gelation of a Reversible Markov Process of Polymerization

    Institute of Scientific and Technical Information of China (English)

    Dong Han; Yian-lin Han

    2003-01-01

    In this paper a reversible Markov process as a chemical polymers reaction of two types of monomers is defined. By analyzing the partition functions of the process we obtain three different distributions of the average molecular weight, depending on the value of strength of the fragmentation reaction, and prove that a gelation of the process will occur in the thermodynamic limit.

  17. Variation in oxidative gelation among wheat mill streams

    Science.gov (United States)

    Batter viscosity is an important quality trait of wheat flour. Water-extractable arabinoxylans form oxidative gels which contribute to variation in viscosity. The purpose of this study was to investigate the oxidative gelation potential of wheat flour mill streams to better understand sources of va...

  18. Gelation of polymers adsorbed at a water-air interface.

    NARCIS (Netherlands)

    Cohen Stuart, M.A.; Keurentjes, J.T.F.; Bonekamp, B.C.; Fraaye, J.G.E.M.

    1986-01-01

    Rheological data on air—water interfaces with adsorbed water-soluble polymer layers are presented which prove the existence of a surface gel. The gel is found to behave thixotropically and its yield stress is determined under various conditions. The gelation seems to be related to the lack of relaxa

  19. Use of different additives to improve low quality surimi gelation.

    Directory of Open Access Journals (Sweden)

    Deysi Cando

    2014-06-01

    In conclusion, in general, the physicochemical and viscoelastic properties of gels were improved by the addition of both ingredients, giving stronger gels even at very low level of salt. These results indicate that both ingredients, which do not add calories to the final gels, can be used as a good alternative for the better gelation of the low quality surimis.

  20. Conductive Screen Printing Inks by Gelation of Graphene Dispersions

    NARCIS (Netherlands)

    Arapov, K.; Rubingh, E.; Abbel, R.J.; Laven, J.; With, G. de; Friedrich, H.

    2016-01-01

    This paper describes the gelation of highly concentrated graphene/polymer dispersions triggered by mild heating. The gel formation is only dependent on the concentration of graphene with 3.25 mg mL-1 as the minimum value for graphene network formation. The graphene gel is then utilized for the

  1. An additional fluorenylmethoxycarbonyl (Fmoc) moiety in di-Fmoc-functionalized L-lysine induces pH-controlled ambidextrous gelation with significant advantages.

    Science.gov (United States)

    Reddy, Samala Murali Mohan; Shanmugam, Ganesh; Duraipandy, Natarajan; Kiran, Manikantan Syamala; Mandal, Asit Baran

    2015-11-07

    In recent years, several fluorenylmethoxycarbonyl (Fmoc)-functionalized amino acids and peptides have been used to construct hydrogels, which find a wide range of applications. Although several hydrogels have been prepared from mono Fmoc-functionalized amino acids, herein, we demonstrate the importance of an additional Fmoc-moiety in the hydrogelation of double Fmoc-functionalized L-lysine [Fmoc(Nα)-L-lysine(NεFmoc)-OH, (Fmoc-K(Fmoc))] as a low molecular weight gelator (LMWG). Unlike other Fmoc-functionalized amino acid gelators, Fmoc-K(Fmoc) exhibits pH-controlled ambidextrous gelation (hydrogelation at different pH values as well as organogelation), which is significant among the gelators. Distinct fibrous morphologies were observed for Fmoc-K(Fmoc) hydrogels formed at different pH values, which are different from organogels in which Fmoc-K(Fmoc) showed bundles of long fibers. In both hydrogels and organogels, the self-assembly of Fmoc-K(Fmoc) was driven by aromatic π-π stacking and hydrogen bonding interactions, as evidenced from spectroscopic analyses. Characterization of Fmoc-K(Fmoc) gels using several biophysical methods indicates that Fmoc-K(Fmoc) has several advantages and significant importance as a LMWG. The advantages of Fmoc-K(Fmoc) include pH-controlled ambidextrous gelation, pH stimulus response, high thermal stability (∼100 °C) even at low minimum hydrogelation concentration (0.1 wt%), thixotropic property, high kinetic and mechanical stability, dye removal properties, cell viability to the selected cell type, and as a drug carrier. While single Fmoc-functionalized L-lysine amino acids failed to exhibit gelation under similar experimental conditions, the pH-controlled ambidextrous gelation of Fmoc-K(Fmoc) demonstrates the benefit of a second Fmoc moiety in inducing gelation in a LMWG. We thus strongly believe that the current findings provide a lead to construct or design various new synthetic Fmoc-based LMW organic gelators for several

  2. The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors.

    Science.gov (United States)

    Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V

    2012-09-06

    The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents.

  3. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2...

  4. Molecular pharmacology of 4-substituted glutamic acid analogues at ionotropic and metabotropic excitatory amino acid receptors

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Nielsen, B; Stensbøl, T B;

    1997-01-01

    using rat brain ionotropic glutamate receptors, and in functional assays using cloned metabotropic glutamate (mGlu) receptors. As a notable result of these studies, (2S,4R)-4-methylglutamic acid and (2S,4S)-4-methylglutamic acid were shown to be selective for kainic acid receptors and mGlu receptors......The pharmacology of (2S,4R)-4-methylglutamic acid, (2S,4S)-4-methylglutamic acid and (S)- and (R)-4-methyleneglutamic acids (obtained in high chemical and enantiomeric purity from racemic 4-methyleneglutamic acid by chiral HPLC using a Crownpak CR(+) column), was examined in binding experiments...... (subtypes 1alpha and 2), respectively, whereas (S)-4-methyleneglutamic acid showed high but rather non-selective affinity for the (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), kainic acid, NMDA and mGlu receptors (subtypes 1alpha and 2). Although none of the compounds were specific...

  5. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    Directory of Open Access Journals (Sweden)

    Hitoshi Miyakawa

    Full Text Available Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH, which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms

  6. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex.

    Science.gov (United States)

    Miyakawa, Hitoshi; Sato, Masanao; Colbourne, John K; Iguchi, Taisen

    2015-01-01

    Phenotypic plasticity is the ability held in many organisms to produce different phenotypes with a given genome in response to environmental stimuli, such as temperature, nutrition and various biological interactions. It seems likely that environmental signals induce a variety of mechanistic responses that influence ontogenetic processes. Inducible defenses, in which prey animals alter their morphology, behavior and/or other traits to help protect against direct or latent predation threats, are among the most striking examples of phenotypic plasticity. The freshwater microcrustacean Daphnia pulex forms tooth-like defensive structures, "neckteeth," in response to chemical cues or signals, referred to as "kairomones," in this case released from phantom midge larvae, a predator of D. pulex. To identify factors involved in the reception and/or transmission of a kairomone, we used microarray analysis to identify genes up-regulated following a short period of exposure to the midge kairomone. In addition to identifying differentially expressed genes of unknown function, we also found significant up-regulation of genes encoding ionotropic glutamate receptors, which are known to be involved in neurotransmission in many animal species. Specific antagonists of these receptors strongly inhibit the formation of neckteeth in D. pulex, although agonists did not induce neckteeth by themselves, indicating that ionotropic glutamate receptors are necessary but not sufficient for early steps of neckteeth formation in D. pulex. Moreover, using co-exposure of D. pulex to antagonists and juvenile hormone (JH), which physiologically mediates neckteeth formation, we found evidence suggesting that the inhibitory effect of antagonists is not due to direct inhibition of JH synthesis/secretion. Our findings not only provide a candidate molecule required for the inducible defense response in D. pulex, but also will contribute to the understanding of complex mechanisms underlying the recognition

  7. Genome-wide analysis of ionotropic receptors provides insight into their evolution in Heliconius butterflies.

    Science.gov (United States)

    van Schooten, Bas; Jiggins, Chris D; Briscoe, Adriana D; Papa, Riccardo

    2016-03-22

    In a world of chemical cues, smell and taste are essential senses for survival. Here we focused on Heliconius, a diverse group of butterflies that exhibit variation in pre- and post-zygotic isolation and chemically-mediated behaviors across their phylogeny. Our study examined the ionotropic receptors, a recently discovered class of receptors that are some of the most ancient chemical receptors. We found more ionotropic receptors in Heliconius (31) than in Bombyx mori (25) or in Danaus plexippus (27). Sixteen genes in Lepidoptera were not present in Diptera. Only IR7d4 was exclusively found in butterflies and two expansions of IR60a were exclusive to Heliconius. A genome-wide comparison between 11 Heliconius species revealed instances of pseudogenization, gene gain, and signatures of positive selection across the phylogeny. IR60a2b and IR60a2d are unique to the H. melpomene, H. cydno, and H. timareta clade, a group where chemosensing is likely involved in pre-zygotic isolation. IR60a2b also displayed copy number variations (CNVs) in distinct populations of H. melpomene and was the only gene significantly higher expressed in legs and mouthparts than in antennae, which suggests a gustatory function. dN/dS analysis suggests more frequent positive selection in some intronless IR genes and in particular in the sara/sapho and melpomene/cydno/timareta clades. IR60a1 was the only gene with an elevated dN/dS along a major phylogenetic branch associated with pupal mating. Only IR93a was differentially expressed between sexes. All together these data make Heliconius butterflies one of the very few insects outside Drosophila where IRs have been characterized in detail. Our work outlines a dynamic pattern of IR gene evolution throughout the Heliconius radiation which could be the result of selective pressure to find potential mates or host-plants.

  8. In situ Gelation of Monodisperse Alginate Hydrogel in Microfluidic Channel Based on Mass Transfer of Calcium Ions

    Energy Technology Data Exchange (ETDEWEB)

    Song, YoungShin; Lee, Chang-Soo [Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-15

    A microfluidic method for the in situ production of monodispersed alginate hydrogels using biocompatible polymer gelation by crosslinker mass transfer is described. Gelation of the hydrogel was achieved in situ by the dispersed calcium ion in the microfluidic device. The capillary number (Ca) and the flow rate of the disperse phase which are important operating parameters mainly influenced the formation of three distinctive flow regions, such as dripping, jetting, and unstable dripping. Under the formation of dripping region, monodispersed alginate hydrogels having a narrow size distribution (C.V=2.71%) were produced in the microfluidic device and the size of the hydrogels, ranging from 30 to 60 µm, could be easily controlled by varying the flow rate, viscosity, and interfacial tension. This simple microfluidic method for the production of monodisperse alginate hydrogels shows strong potential for use in delivery systems of foods, cosmetics, inks, and drugs, and spherical alginate hydrogels which have biocompatibility will be applied to cell transplantation.

  9. Gelation of Polyacryionitrile Solution%聚丙烯腈溶液的凝胶化研究

    Institute of Scientific and Technical Information of China (English)

    万锕俊; 谭连江

    2012-01-01

    聚丙烯腈是用途最广泛的聚合物之一,其溶于适当溶剂中形成的聚丙烯腈溶液是制备聚丙烯腈纤维、渗透膜等高分子材料的原料。聚丙烯腈溶液的物理化学性质对所制备材料的性能有很大的影响。本文对高分子溶液的凝胶化和高分子凝胶的特点做了简要介绍,并介绍了聚丙烯腈及其凝胶的特点。根据高分子浓溶液体系的特点提出用于表征聚丙烯腈溶液凝胶化的主要方法。从浓度和温度对聚丙烯腈溶液凝胶化行为的影响、熟化和非溶剂对聚丙烯腈溶液凝胶化行为的影响、聚丙烯腈溶液凝胶化的热可逆性、聚丙烯腈溶液凝胶化的分形特征以及聚丙烯腈凝胶的交联机理这几个方面对已有聚丙烯腈溶液的凝胶化研究成果和最新进展进行了综述。最后对聚丙烯腈溶液凝胶化和聚丙烯腈凝胶的研究前景做了展望。%Polyacrylonitrile (PAN) is one of the most widely used polymers. PAN solutions using suitable solvents are the precursors for fabrication of PAN fibers, osmotic membranes and other PAN-related materials. The physical and chemical properties of PAN solutions have great effect on the performance of the resultant materials. In this article, the gelation characteristics of polymer solution and the characteristics of polymer gels as well as the characteristics of PAN and PAN gels are introduced. Suitable characterization methods for the gelation of PAN solutions are proposed according to the properties of concentrated polymer solution systems. The recent research findings and latest progress of gelation of PAN solutions are summarized in the following respects: influences of concentration and temperature on gelation behavior of PAN solutions, influences of aging and non-solvent on gelation behavior of PAN solutions, thermoreversibility of gelation of PAN solutions, fractal characteristics of gelation of PAN solutions, and crosslinking mechanism

  10. Microencapsulation of Bifidobacterium bifidum F-35 in whey protein-based microcapsules by transglutaminase-induced gelation.

    Science.gov (United States)

    Zou, Qiang; Liu, Xiaoming; Zhao, Jianxin; Tian, Fengwei; Zhang, He-ping; Zhang, Hao; Chen, Wei

    2012-05-01

    Bifidobacterium bifidum F-35 was microencapsulated into whey protein microcapsules (WPMs) by a transglutaminase (TGase)-induced method after optimization of gelation conditions. The performance of these WPMs was compared with that produced by a spray drying method (WPMs-A). WPMs produced by the TGase-induced gelation method (WPMs-B) had larger and denser structures in morphological examinations. Native gel and SDS-PAGE analyses showed that most of the polymerization observed in WPMs-B was due to stable covalent crosslinks catalyzed by TGase. The degradation properties of these WPMs were investigated in simulated gastric juice (SGJ) with or without pepsin. In the presence of pepsin, WPMs-A degraded more quickly than did WPMs-B. Finally, survival rates of the microencapsulated cells in both WPMs were significantly better than that of free cells and varied with the microencapsulation method. However, WPMs-B produced by TGase-induced gelation could provide better protection for microencapsulated cells in low pH conditions and during 1 mo of storage at 4 °C or at ambient temperature.

  11. LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR

    Directory of Open Access Journals (Sweden)

    S Simbolon

    2015-03-01

    Full Text Available LABORATORY-SCALE PRODUCTION OF ADU GELS BY EXTERNAL GELATION FOR AN INTERMEDIATE HTGR NUCLEAR. The The aim of this research is to produce thousands of microsphere ADU (Ammonium Diuranate gels by using external gelation for an intermediate HTGR (High Temperature Gas-cooled Reactor nuclear fuel in laboratory-scale. Microsphere ADU gels were based on sol-solution which was made from a homogeneous mixture of ADUN (Acid Deficient Uranyl Nitrate which was containing uranyl ion in high concentration, a water soluble organic compound PVA (Polyvinyl Alcohol and THFA (Tetrahydrofurfuryl Alcohol. The simple unified home made laboratory experimental machine was developed to replace test tube experiment method which was once used due to a tiny amount of microsphere ADU gels produced. It consists of four main parts: tank filled sol-solution connecting to peristaltic pump and vibrating nozzle, preliminary gelation and gelation column. The machine has successfully converted 150 mL sol-solution into thousands of drops which produced 120 - 130 drops in each minute in steady state in ammonia gas free sector. Preliminary gelation reaction was carried out in ammonia gas sector where drops react with ammonia gas in a bat an eye followed by gelation reaction in column containing ammonia solution 7 M. In ageing process, ADU gels were collected and submerged into a vessel containing ammonia solution which was shaken for 1 hour in a shaker device. Isopropyl alcohol (90% solution was used to wash ADU gels and a digital camera was used to measured spherical form of ADU gels. Diameters in spherical spheroid form were found between 1.8 mm until 2.2 mm. The spherical purity of ADU gels were 10% - 20% others were oblate, prolate spheroid and microsphere which have hugetiny of dimples on the surface.   PRODUKSI GEL ADU SKALA LABORATORIUM DENGAN MENGGUNAKAN GELASI EKSTERNAL UNTUK BAHAN BAKAR ANTARA HTGR. Penelitian ini bertujuan untuk membuat ribuan gel bulat ADU (Ammonium

  12. Rational Design of Molecular Gelator - Solvent Systems Guided by Solubility Parameters

    Science.gov (United States)

    Lan, Yaqi

    Self-assembled architectures, such as molecular gels, have attracted wide interest among chemists, physicists and engineers during the past decade. However, the mechanism behind self-assembly remains largely unknown and no capability exists to predict a priori whether a small molecule will gelate a specific solvent or not. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (logP), to Henry's law constants (HLC), to solvatochromic ET(30) parameters, to Kamlet-Taft parameters (beta, alpha and pi), to Hansen solubility parameters (deltap, deltad, deltah), etc., are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries.

  13. To gel or not to gel: correlating molecular gelation with solvent parameters.

    Science.gov (United States)

    Lan, Y; Corradini, M G; Weiss, R G; Raghavan, S R; Rogers, M A

    2015-10-07

    Rational design of small molecular gelators is an elusive and herculean task, despite the rapidly growing body of literature devoted to such gels over the past decade. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (log P), to Henry's law constants (HLC), to solvatochromic parameters (ET(30)), and Kamlet-Taft parameters (β, α and π), and to Hansen solubility parameters (δp, δd, δh), are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries. These tools illustrate that the quest for the universal gelator should be left in the hands of Don Quixote and as researchers we must focus on identifying gelators capable of gelling classes of solvents as there is likely no one gelator capable of gelling all solvents.

  14. Dynamic Gelation of HPAM/Cr(III under Shear in an Agitator and Porous Media

    Directory of Open Access Journals (Sweden)

    Haiyang Yu

    2015-11-01

    Full Text Available Water shutoff and profile control is one of the most important technologies to enhance oil recovery. To ensure the success of this technology, the key is to accurately determine gelation time and gel strength during gel flow in porous media. The HPAM (Hydrolyzed PolyAcrylaMide system and redox system (sodium bichromate and sodium sulfite is widely used, whose static gelation time in ampoule bottles and porous media was determined, as well as the dynamic gelation time in an agitator and porous media. The shear rate was considered one of the major factors affecting gelation time. The results showed that the static gelation time in porous media was much longer than that in ampoule bottles. The Initial Gelation Time (IGT in porous media was two or three times that in ampoule bottles, while the final gelation time in porous media was six times that in ampoule bottles. Under shearing in an agitator, the gelation process was divided into four phases: induction, sudden increase, stability and decrease. With the increase in shear rate, gelation time was prolonged and gel strength decreased. There was a critical gelation shear rate, above which there was no gel formed. Shear had almost no influence on gel strength during the induction stage but in the process of sudden increase, shear could degrade gel strength sharply. The time of dynamic gelation in porous media was much longer than that of static gelation in porous media and ampoule bottles. When HPAM and RS (Redox System concentrations increased, the IGT of dynamic gelation in porous media was shortened.

  15. New sugar-based gelators bearing a p-nitrophenyl chromophore: remarkably large influence of a sugar structure on the gelation ability

    NARCIS (Netherlands)

    Amanokura, Natsuki; Yoza, Kenji; Shinmori, Hideyuki; Shinkai, Seiji; Reinhoudt, David N.

    1998-01-01

    Three sugar-integrated gelators bearing a p-nitrophenyl group as a chromophore were synthesised. D-Mannose-based compound 3 was too soluble in most organic solvents to act as a gelator whereas D-galactose-based compound 2 was sparingly soluble in most organic solvents. D-Glucose-based compound 1 was

  16. Effects of gelation temperature on Mozzarella-type curd made from buffalo and cows' milk: 2. Curd yield, overall quality and casein fractions.

    Science.gov (United States)

    Hussain, Imtiaz; Yan, Jen; Grandison, Alistair S; Bell, Alan E

    2012-12-01

    The overall quality of Mozzarella-type curds made from buffalo and cows' milks were measured at gelation temperatures of 28, 34 and 39°C, and cutting times of 45, 60, 75 and 90min after chymosin addition. The curd yield and moisture content decreased with increasing gelation temperature, while whey fat losses increased. The effect of higher gelation temperature (39°C) was more pronounced in cows' milk than buffalo milk. This results in more fat losses and lower yields in both milk samples at a gelation temperature of 39°C. The minimum losses of fat and protein in rennet whey occurred at a gelation temperature of 34°C in both milk samples. The curd yield was higher in buffalo milk as compared to cows' milk. This is due to difference in total solids (fat and protein contents) of the two types of bovine milk. The different cutting times had a small effect on the yield and overall quality of curds made from both milk types. Curd moisture and loss tangent have a strong relationship with respect to effects of gelation temperature. Two different curd drainage methods (centrifugation and Buchner funnel filtration) were used to compare the final overall quality of Mozzarella-type curds made from both milk types. The α(s1) and β casein fractions were found to be in different proportions in the two milk types. The total- and casein bound-calcium were higher in buffalo milk than cows' milk. The total protein, casein and fat were also found to be higher in buffalo milk than cows' milk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Micropatterning of hydrogels on locally hydrophilized regions on PDMS by stepwise solution dipping and in situ gelation.

    Science.gov (United States)

    Sugaya, Sari; Kakegawa, Shunta; Fukushima, Shizuka; Yamada, Masumi; Seki, Minoru

    2012-10-02

    This study presents a simple but highly versatile method of fabricating picoliter-volume hydrogel patterns on poly(dimethylsiloxane) (PDMS) substrates. Hydrophilic regions were prepared on hydrophobic PDMS plates by trapping and melting functional polymer particles and performing subsequent reactions with partially oxidized dextran. Small aliquots of a gelation solution were selectively trapped on the hydrophilic areas by a simple dipping process that was utilized to make thin hydrogel patterns by the in situ gelation of a sol solution. Using this process, we successfully formed calcium alginate, collagen I, and chitosan hydrogels with a thickness of several micrometers and shapes that followed the hydrophilized regions. In addition, alginate and collagen gel patterns were used to capture cells with different adhesion properties selectively on or off the hydrogel structures. The presented strategy could be applicable to the preparation of a variety of hydrogels for the development of functional biosensors, bioreactors, and cell cultivation platforms.

  18. Understanding the mechanism of ionic gelation for synthesis of chitosan nanoparticles using qualitative techniques

    Directory of Open Access Journals (Sweden)

    Kunjachan Sijumon

    2010-01-01

    Full Text Available We focused on qualitatively exploring the basic mechanisms involved in the Ionic gelation (IG process, a method quite frequently used for synthesis of chitosan (CS microparticles (MPs and nanoparticles (NPs. We synthesized CS MPs and NPs using the Ionic gelation and microemulsion methods, and characterized the CS NPs and MPs at different stages of formulation using scanning electron microscopy (SEM and fluorescence microscopy. Fourier Transform Infrared (FTIR analysis was carried out to confirm effective cross-linking. Moreover, for the first time, we reported the mechanisms of IG technique for CS NP and MP synthesis with qualitative proof: (1 Complex formation of long chain oligomers with polyanions (long beaded structures (2 cleavages at weak sites on addition of acid (HCl (3 formation of CS NPs on chain scission. The versatility of IG for the synthesis of CS MPs and NPs was proved and compared with the microemulsion technique, thereby enhancing the wide spectrum of its use in therapeutics and biomedical applications.

  19. Enzymatic gelation of sugar beet pectin in food products

    DEFF Research Database (Denmark)

    Bergsøe, Merete Norsker; Jensen, Mette; Adler-Nissen, Jens

    2000-01-01

    in standard gels. Protein reduced the hardness, stiffness and chewiness of the gels whereas there were some variation in the effect of protein on the adhesiveness of the gels. Sugar beet pectin in black currant juice formed a gel and a gelation also took place in milk. In luncheon meat a cohesive gel......Sugar beet pectin is a food ingredient with specific functional properties. It may form gels by an oxidative cross-linking of ferulic acid. In the present study, the gel forming properties of three oxidative enzymes were examined in different food relevant conditions. The enzymes chosen were two...... laccases and one peroxidase. The textural properties of the produced gels were measured on a texture analyser. The influence of sugar, salt and protein were analysed. Finally, the enzymatic gelation was studied in three food products with added sugar beet pectin. These were black currant juice, milk...

  20. Oxidative enzymatic gelation of sugar beet pectin for emulsion stabilization

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Meyer, Anne S.

    2013-01-01

    Pectin from sugar beet is derived from the sugar beet pulp residue which results when sugar beets are processed for sucrose extraction. The sugar beet pectin has poor gelationability by the classic divalentcation molecular mechanism because of a relatively high acetylation degree and short...... polygalacturonate backbone chain length. However, due to the feruloyl-substitutions on the side chains, the sugar beet pectic polysaccharides can be cross-linked via enzyme catalyzed oxidation. The enzyme kinetics and functionality of such oxidativelycross-linked sugar beet pectin, in relation to stabilizing...... emulsions has recently been investigated in model food emulsions. This paper reviews the pectin chemistry, enzymatic oxidative gelation mechanisms, interaction mechanisms of the sugar beet pectin with the emulsion droplets and explores how the gelation affects the rheology and stability of emulsion systems...

  1. Nonionic gelation agents prepared from hydroxypropyl guar gum.

    Science.gov (United States)

    Kono, Hiroyuki; Hara, Hideyuki; Hashimoto, Hisaho; Shimizu, Yuuichi

    2015-03-06

    Nonionic gels were prepared from hydroxypropyl guar gum (HPG) with different molar substitution degrees by crosslinking with ethylene glycol diglycidyl ether (EGDE). FTIR and solid-state NMR spectroscopy revealed that the crosslinking degree of HPG gels increased with the amount of EGDE used during the reaction; this result was also confirmed by the water mobility in the swollen gels. Rheological characterization revealed behaviors typical of true gels, and their viscoelastic behaviors strongly depended on the crosslinking degree. The HPG gels absorbed buffers, aqueous saline, and water, and the absorption was not affected by the ionic strength or pH of the solution. In addition, HPG gels with high crosslinking degrees and molar substitution degrees exhibited gelation ability toward protic organic solvents such as methanol, ethanol, and 1-propanol. These HPG gels may find application as gelation agents for many industrial uses.

  2. Gelation of mucin: Protecting the stomach from autodigestion

    Science.gov (United States)

    Bansil, Rama

    2011-03-01

    In this talk I will describe the molecular mechanisms involved in the remarkable ability of the mucus lining of the stomach for protecting the stomach from being digested by the acidic gastric juices that it secretes. These physical properties can be attributed to the presence of a high molecular weight glycoprotein found in mucus, called mucin. Rheology and other measurements show that gastric mucin forms a gel under acidic pH. A model of gelation based on the interplay of hydrophobic and electrostatic interactions will be discussed. Molecular Dynamics simulation studies of folding and aggregation of mucin domains provide further support for this model. The relevance of gelation to the motion of the ulcer causing bacterium H. pylori will be discussed.

  3. Heat-denatured lysozyme aggregation and gelation as revealed by combined dielectric relaxation spectroscopy and light scattering measurements.

    Science.gov (United States)

    Giugliarelli, A; Sassi, P; Paolantoni, M; Onori, G; Cametti, C

    2012-09-06

    The dielectric behavior of native and heat-denatured lysozyme in ethanol-water solutions was examined in the frequency range from 1 MHz to 2 GHz, using frequency-domain dielectric relaxation spectroscopy. Because of the conformational changes on unfolding, dielectric methods provide information on the denaturation process of the protein and, at protein concentration high enough, on the subsequent aggregation and gelation. Moreover, the time evolution of the protein aggregation and gelation was monitored measuring, by means of dynamic light scattering methods, the diffusion coefficient of micro-sized polystyrene particles, deliberately added to the protein solution, which act as a probe of the viscosity of the microenvironment close to the particle surface. All together, our measurements indicate that heat-induced denaturation favors, at high concentrations, a protein aggregation process which evolves up to the full gelation of the system. These findings have a direct support from IR measurements of the absorbance of the amide I band that, because of the unfolding, indicate that proteins entangle each other, producing a network structure which evolves, in long time limit, in the gel.

  4. General synthesis of β-alanine-containing spider polyamine toxins and discovery of nephila polyamine toxins 1 and 8 as highly potent inhibitors of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Lucas, Simon; Poulsen, Mette H; Nørager, Niels G

    2012-01-01

    Certain spiders contain large pools of polyamine toxins, which are putative pharmacological tools awaiting further discovery. Here we present a general synthesis strategy for this class of toxins and prepare five structurally varied polyamine toxins. Electrophysiological testing at three ionotrop...

  5. Gelation and fodrin purification from rat brain extracts.

    Science.gov (United States)

    Levilliers, N; Péron-Renner, M; Coffe, G; Pudles, J

    1986-06-03

    Extracts from rat brain tissue have been shown to give rise to a gel which exhibits the following features. It is mainly enriched in actin and in a high-molecular-weight protein with polypeptide chains of 235 and 240 kDa, which we identified as fodrin. Tubulin is also a major component of the gel but it appears to be trapped non-specifically during the gelation process. Gelation is pH-, ionic strength- and Ca2+-concentration-dependent, and is optimal under the conditions which promote the interaction between polymerized actin and fodrin. In a similar way to that described for the purification of rat brain actin (Levilliers, N., Péron-Renner, M., Coffe, G. and Pudles, J. (1984) Biochimie 66, 531-537), we used the gelation system as a selective means of recovering fodrin from the mixture of a low-ionic-strength extract from whole rat brain and a high-ionic-strength extract of the particulate fraction. From this gel, fodrin was purified with a good yield by a simple procedure involving gel dissociation in 0.5 M KCl and depolymerization in 0.7 M KI, Bio-Gel A-15m chromatography, followed by ammonium sulfate precipitation.

  6. In situ chitosan gelation initiated by atmospheric plasma treatment.

    Science.gov (United States)

    Molina, R; Jovancic, P; Vilchez, S; Tzanov, T; Solans, C

    2014-03-15

    This work reports on the feasibility of atmospheric dielectric barrier discharge (DBD) plasma as a novel synthetic pathway for the liquid phase gelation of chitosan. The DBD plasma chitosan gelation process did not significantly alter the chemical structure of the biopolymer as confirmed by FTIR study. However, the oxidation processes and local heating effect associated with the solvent evaporation during the plasma treatment could provoke both reaction of chitosan degradation and the cleavage of β-1-4-glycosidic linkages with the concomitant generation of aldehyde groups able to crosslink via Schiff-base with amino groups from other chitosan molecules. Shear viscosity measurements suggested the formation of chitosan fragments of lower molecular weight after the plasma treatment of 1% (w/v) chitosan and fragments of higher molecular weight after the plasma treatment of 2% (w/v) chitosan. The crosslinking density of hydrogels generated during the in situ DBD plasma chitosan gelation process increased as a function of the treatment time and concentration of chitosan. As of consequence of the increase of the cross-linking density, the equilibrium swelling ratio and water content decreased significantly.

  7. The shear dependence of the methylcellulose gelation phenomena in aqueous solution and in ceramic paste.

    Science.gov (United States)

    Knarr, Matthias; Bayer, Roland

    2014-10-13

    The gelation temperature of methylcellulose (MC) in aqueous solutions as well as in aqueous ceramic paste depends on the applied shear. Rheological investigations in oscillation vs. shear mode show lower gelation temperature at low shear rates as for the corresponding angular frequencies. Above a critical shear rate the gelation temperature is shifted to higher temperatures. The paste extrusion process uses MC as a plasticizer and runs under high shear conditions. When extruding close to the gelation temperature of the MC in the paste, crack formation and other defects can occur. The upwards shift of the gelation temperature with increasing applied shear gives a larger temperature window during the extrusion process. The understanding of the shear influence on the gelation temperature is important to design the optimal process conditions.

  8. Synthesis of acyl alanine methyl ester gelator and assessment of its gelation factors%脂酰丙氨酸酯同系凝胶因子的合成与成胶因素的评价

    Institute of Scientific and Technical Information of China (English)

    叶连宝; 秦凌浩; 王晓明; 胡巧红

    2012-01-01

    Objective To synthesize the N-tetradecanoyI, N-hexadecanoyl and N-octadecanoyl ala-nine methyl ester gelators and investigate their gelation ability. Methods N-tetradecanoyl, N-hexadecanoyl and N-octadecanoyl alanine methyl ester gelators were synthesized using alanine methyl ester, N-tetradecanoyl chloride, N-hexadecanoyl chloride and N-octadecanoyl chloride. Chemical structures of the gelators were confirmed by MS, IR, and 'H-NMR, respectively. Gelation ability of different solvents,temperatures and chain lengths was studied. Results The synthesized N-tetradecanoyl, N-hexadecanoyl and N-octadecanoyl alanine methyl ester gelators could produce gel in many organic solvents. Their minimum gel concentration in soybean oil and medium chain triglycerides( MCT) was 11.9, 7.2, 8.5 mg/ml and 18.7, 12.3, 13.4 mg/ml, respectively, and their enthalpy (AH) in soybean oil was 74. 741, 51. 70 kj/mol and 61.61 kj/mol, respectively. Conclusion The synthesized N-tetradecanoyl, N-hexadecanoyl and N-octadecanoyl alanine methyl ester gelators have a good gelation ability, and can thus be used as a local long-acting drug carrier.%[目的]合成十四、十六、十八酰丙氨酸甲酯,并对其胶凝能力进行考察.[方法]以丙氨酸甲酯,十四、十六、十八酰氯为原料,合成十四、十六、十八酰丙氨酸甲酯,采用IR、1H-NMR、MS确证其结构,对不同溶剂、不同温度及不同链长的胶凝能力进行研究.[结果]该类凝胶因子可以在大多数的有机溶剂中形成凝胶,十四、十六、十八酰丙氨酸甲酯在注射用大豆油和中链脂肪酸三甘酯(medium chain triglycerides,MCT)中的最低成胶浓度分别为11.9、7.2、8.5mg/ml和18.7、12.3、13.4mg/ml;3种凝胶因子在大豆油中的胶凝焓变分别为74.74、51.70J/mol和61.61kJ/mol.[结论]合成得到目标化合物具有较好的胶凝能力,可以作为局部给药的长效药物载体.

  9. Oil encapsulation in core-shell alginate capsules by inverse gelation. I: dripping methodology.

    Science.gov (United States)

    Martins, Evandro; Renard, Denis; Adiwijaya, Zenia; Karaoglan, Emre; Poncelet, Denis

    2017-02-01

    The production of capsules by inverse gelation consists of adding dropwise oil containing calcium dispersion into an alginate bath. A dripping technique to produce capsules from oil-in-water (O/W) emulsions was proposed by Abang. However, little is known about the oil encapsulation using water-in-oil (W/O) emulsions. This work aims to develop a new method of W/O emulsions encapsulation by inverse gelation. The success of the W/O emulsion encapsulation is due to three factors: 1) use of an emulsion with moderate stability (50 min); 2) production of an emulsion with at least 90 g/L of CaCl2 and 3) addition of ethanol (20% v/v) into the alginate bath. Both wet and dry capsules were obtained with a spherical shape with diameters of 7 and 3.6 mm, respectively. All volume of oil was encapsulated and the oil loading in the wet and dry capsules was of 23 and 68% v/v, respectively.

  10. Microwave dielectric study of an oligomeric electrolyte gelator by time domain reflectometry.

    Science.gov (United States)

    Kundu, Shyamal Kumar; Yagihara, Shin; Yoshida, Masaru; Shibayama, Mitsuhiro

    2009-07-30

    The dynamics of water molecules in aqueous solutions of an oligomeric electrolyte gelator, poly[pyridinium-1,4-diyliminocarbonyl-1,4-phenylene-methylene chloride] (1-Cl) was characterized by microwave dielectric measurements using the time domain reflectometry method. The dielectric dispersion and absorption curves related to the orientational motion of water molecules were described by the Cole-Cole equation. Discontinuities were observed in the concentration dependence of the dielectric relaxation strength, Deltaepsilonh, as well as in the Cole-Cole parameter, betah. These discontinuities were observed between the samples with concentrations of 6 and 7 g/L 1-Cl/water, which correspond to a change in the transparency. Such a discontinuity corresponds to the observation of the critical concentration of gelation. The interaction between water and 1-Cl molecules was discussed from the tauh-betah diagram. As 1-Cl carries an amide group, it could be expected that 1-Cl may interact hydrophilically with water, but the present result suggests that 1-Cl interact hydrophobically with water.

  11. Synthesis of zirconia sphere particles based on gelation of sodium alginate

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, Takahiro [Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Arima, Tatsumi, E-mail: arima@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Idemitsu, Kazuya; Inagaki, Yaohiro [Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan)

    2011-05-01

    Zirconia sphere particles were synthesized through the gelation process of Na-alginate, and cermet (ZrO{sub 2}-Mo) pellets were fabricated under several conditions. In this process, a zirconia slurry was prepared by mixing oxide powders (ZrO{sub 2}, Y{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, CeO{sub 2}), distilled water and Na-alginate, and subsequently dropped into CaCl{sub 2} solution. As a result, zirconia sphere particles coated with a gelled film were synthesized. The slurry density (zirconia content in slurry) of 30-64 wt.% and Na-alginate concentration of a few% were good for gelation for up to 10 wt.% CaCl{sub 2} solution. Sphere particles with smaller diameter were obtained by dropping slurry with a mechanical vibration. The prolongation of the ball milling time for mixture of oxide powders was effective to increase the sintered density of zirconia sphere particles, especially for higher CeO{sub 2} concentration. The dense cermet pellets were fabricated for max. 50% volume ratio of zirconia phase for Mo matrix using zirconia particles covered with Mo powder by a rotating granulation method.

  12. Preparation of macroporous methacrylate-based monoliths for chromatographic applications by the Reactive Gelation Process.

    Science.gov (United States)

    Bechtle, M; Butté, A; Storti, G; Morbidelli, M

    2010-07-09

    Polymeric monoliths are a relatively new separation medium for chromatographic applications. The innovative approach to produce such monoliths, the Reactive Gelation Process, presented by Marti et al. [1] for polystyrene macroporous materials is applied to a methacrylate-based material. It is shown that it is possible to create a macroporous structure by Reactive Gelation also with this polymer even if the properties of the material are different. Besides the analysis of the material by SEM and BET, several chromatographic methods are used to analyze the material properties. The ISEC experiments showed a much smaller size exclusion effect than in conventional packed beds. The permeability of the material is comparable to a packed bed with 4.13 μm particles. The column efficiency is not changing for increasing flow rates. Because of the high efficiency of the material, shorter columns are needed and therefore the comparatively low permeability is compensated. The monolith also exhibits a significant adsorption capacity for hydrophobic interaction, which makes it suitable for chromatographic purification processes.

  13. Pancreatic cell immobilization in alginate beads produced by emulsion and internal gelation.

    Science.gov (United States)

    Hoesli, Corinne A; Raghuram, Kamini; Kiang, Roger L J; Mocinecová, Dušana; Hu, Xiaoke; Johnson, James D; Lacík, Igor; Kieffer, Timothy J; Piret, James M

    2011-02-01

    Alginate has been used to protect transplanted pancreatic islets from immune rejection and as a matrix to increase the insulin content of islet progenitor cells. The throughput of alginate bead generation by the standard extrusion and external gelation method is limited by the rate of droplet formation from nozzles. Alginate bead generation by emulsion and internal gelation is a scaleable alternative that has been used with biological molecules and microbial cells, but not mammalian cells. We describe the novel adaptation of this process to mammalian cell immobilization. After optimization, the emulsion process yielded 90 ± 2% mouse insulinoma 6 (MIN6) cell survival, similar to the extrusion process. The MIN6 cells expanded at the same rate in both bead types to form pseudo-islets with increased glucose stimulation index compared to cells in suspension. The emulsion process was suitable for primary pancreatic exocrine cell immobilization, leading to 67 ± 32 fold increased insulin expression after 10 days of immobilized culture. Due to the scaleability and broad availability of stirred mixers, the emulsion process represents an attractive option for laboratories that are not equipped with extrusion-based cell encapsulators, as well as for the production of immobilized or encapsulated cellular therapeutics on a clinical scale.

  14. Dynamic Gelation of HPAM/Cr(III) under Shear in an Agitator and Porous Media

    OpenAIRE

    Haiyang Yu; Yefei Wang; Jian Zhang; Peng Lv; Shenglong Shi

    2015-01-01

    Water shutoff and profile control is one of the most important technologies to enhance oil recovery. To ensure the success of this technology, the key is to accurately determine gelation time and gel strength during gel flow in porous media. The HPAM (Hydrolyzed PolyAcrylaMide) system and redox system (sodium bichromate and sodium sulfite) is widely used, whose static gelation time in ampoule bottles and porous media was determined, as well as the dynamic gelation time in an agitator and poro...

  15. End-Crosslinking Gelation of Poly(amide acid) Gels studied with Scanning Microscopic Light Scattering

    OpenAIRE

    Furukawa, Hidemitsu; Kobayashi, Mizuha; Miyashita, Yoshiharu; HORIE, Kazuyuki

    2006-01-01

    Network formation in the gelation process of end-crosslinked poly(amide acid) gels, which are the precursor of end-crosslinked polyimide gels, was studied by scanning dynamic light scattering. The gelation process is essentially non-reversible due to the formation of covalent bonds. The molecular structure formed in the gelation process is controlled by varying the equivalence ratio of end-crosslinker to oligomer during the preparation. It was found that a couple of relaxation modes are obser...

  16. Gelation in free-radical crosslinking copolymerization; fast transient fluorescence study

    OpenAIRE

    Ö. Pekcan; D. Kaya

    2002-01-01

    The fast transient fluorescence (FTRF) technique was used to study the sol-gel phase transition in free-radical crosslinking copolymerization (FCC) in two different monomeric systems. Pyrene (Py) was used as a fluorescence probe for the in situ polymerization experiments. The fluorescence lifetimes of Py from its decay traces were measured and used to monitor the gelation process. Monomer consumption profiles were determined during gelation process using Stern-Volmer model. Gelations...

  17. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Olsen, Lars;

    2012-01-01

    Positive allosteric modulators of the ionotropic glutamate receptor-2 (GluA2) are promising compounds for the treatment of cognitive disorders, e.g. Alzheimer's disease. These modulators bind within the dimer interface of the ligand-binding domain and stabilize the agonist-bound conformation slow...... by the ethyl substituent of BPAM-97. These results add important information on binding affinities and thermodynamic details, and provide a new tool in development of drugs against cognitive disorders....

  18. Alkali cold gelation of whey proteins. Part I: sol-gel-sol(-gel) transitions.

    Science.gov (United States)

    Mercadé-Prieto, Ruben; Gunasekaran, Sundaram

    2009-05-19

    The cold gelation of preheated whey protein isolate (WPI) solutions at alkaline conditions (pH>10) has been studied to better understand the effect of NaOH in the formation and destruction of whey protein aggregates and gels. Oscillatory rheology has been used to follow the gelation process, resulting in novel and different gelation profiles with the gelation pH. At low alkaline pH, typical sol-gel transitions are observed, as in many other biopolymers. At pH>11.5, the system gels quickly, after approximately 300 s, followed by a slow degelation step that transforms the gel to a viscous solution. Finally, there is a second gelation step. This results in a surprising sol-gel-sol-gel transition in time at constant gelation conditions. At very high pH (>12.5), the degelation step is very severe, and the second gelation step is not observed, resulting in a sol-gel-sol transition. The first quick gelation step is related to the quick swelling of the WPI aggregates in alkali, as observed from light scattering, which enables the formation of new noncovalent interactions to form a gel network. These interactions are argued to be destroyed in the subsequent degelation step. Disulfide cross-linking is observed only in the second gelation step, not in the first step.

  19. [Effects of blockade of ionotropic glutamate receptors on the development of pentylenetetrazole kindling in mice].

    Science.gov (United States)

    Lukomskaia, N Ia; Lavrent'eva, V V; Starshinova, L A; Zhabko, E P; Gorbunova, L V; Tikhonova, T B; Gmiro, V E; Magazanik, L G

    2005-11-01

    Effects of mono- and dicationic derivatives of adamantane and phenylcyclohexyl on the petyleneterazole-induced (35 mg/kg i. p.) kindling were studied in the experiments on mice. Monocationic derivative of phenylcyclohexyl IEM-1921, effectively retarded the development of kindling beginning the dose 0.0001 microM/kg. Memantine: derivative of adamantane (derivative of adamatane) produced the same effect with 100-fold increased dose. Dicationic derivative ofphenylcyclohexyl: IEM-1925, is able to block equally the open channels of both NMDA and subtype of Ca-permeable AMPA receptors. Its effect on kindling differed markedly from selective NMDA antagonists (IEM-1921 and memantine) in more complicated dose-dependence. The retardation of kindling IEM-1925 was induced at 0.001 microM/kg. On the contrary, a 10-time lower dose: 0.0001 microM/kg, facilitated the development of kindling. The observed difference in the activity of selective NMDA antagonists and the drugs combining anti-NMDA and anti-AMPA potency indicates that both types of ionotropic glutamate receptors are involved in the mechanism of petyleneterazole-induced kindling. The integral effect of channel blockade evoked by drugs seems to be dependent not only upon the ratio of the receptor types but on the kinetics of drug action, too.

  20. Allosteric control of an ionotropic glutamate receptor with an optical switch.

    Science.gov (United States)

    Volgraf, Matthew; Gorostiza, Pau; Numano, Rika; Kramer, Richard H; Isacoff, Ehud Y; Trauner, Dirk

    2006-01-01

    The precise regulation of protein activity is fundamental to life. The allosteric control of an active site by a remote regulatory binding site is a mechanism of regulation found across protein classes, from enzymes to motors to signaling proteins. We describe a general approach for manipulating allosteric control using synthetic optical switches. Our strategy is exemplified by a ligand-gated ion channel of central importance in neuroscience, the ionotropic glutamate receptor (iGluR). Using structure-based design, we have modified its ubiquitous clamshell-type ligand-binding domain to develop a light-activated channel, which we call LiGluR. An agonist is covalently tethered to the protein through an azobenzene moiety, which functions as the optical switch. The agonist is reversibly presented to the binding site upon photoisomerization, initiating clamshell domain closure and concomitant channel gating. Photoswitching occurs on a millisecond timescale, with channel conductances that reflect the photostationary state of the azobenzene at a given wavelength. Our device has potential uses not only in biology but also in bioelectronics and nanotechnology.

  1. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Haruka Aoki

    2014-01-01

    Full Text Available An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR, infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1 and acid-sensing ion channels (ASICs in severe acidic pH (of less than 6.0-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  2. Structure-activity relationship study of spider polyamine toxins as inhibitors of ionotropic glutamate receptors.

    Science.gov (United States)

    Xiong, Xiao-Feng; Poulsen, Mette H; Hussein, Rama A; Nørager, Niels G; Strømgaard, Kristian

    2014-12-01

    The spider polyamine toxins Joro spider toxin-3 (JSTX-3) and Nephila polyamine toxins-1 and -8 (NPTX-1 and NPTX-8) are isolated from the venom of the orb-weaver spider Nephila clavata (Joro spider). They share a high degree of structural resemblance, their aromatic head groups being the only difference, and were recently found to be very potent open-channel blockers of ionotropic glutamate (iGlu) receptors. In this study we designed and synthesized a collection of 24 analogues of these toxins using a recently developed solid-phase synthetic methodology. Systematic variation in two regions of the toxins and subsequent evaluation of biological activity at AMPA and NMDA subtypes of iGlu receptors provided succinct information on structure-activity relationships. In particular, one set of analogues were found to display exquisite selectivity and potency for AMPA receptors relative to the natural products. Thus, this systematic SAR study has provided new pharmacological tools for studies of iGlu receptors.

  3. Characterization of Antibiotic-Loaded Alginate-Osa Starch Microbeads Produced by Ionotropic Pregelation

    Directory of Open Access Journals (Sweden)

    Gizele Cardoso Fontes

    2013-01-01

    Full Text Available The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM, zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC, powder X-ray diffraction (XRD, and Fourier transform infrared (FTIR analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC, interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin.

  4. Purinergic signaling in the cerebellum: Bergmann glial cells express functional ionotropic P2X7 receptors.

    Science.gov (United States)

    Habbas, Samia; Ango, Fabrice; Daniel, Hervé; Galante, Micaela

    2011-12-01

    Astrocytes constitute active networks of intercommunicating cells that support the metabolism and the development of neurons and affect synaptic functions via multiple pathways. ATP is one of the major neurotransmitters mediating signaling between neurons and astrocytes. Potentially acting through both purinergic metabotropic P2Y receptors (P2YRs) and ionotropic P2X receptors (P2XRs), up until now ATP has only been shown to activate P2YRs in Bergmann cells, the radial glia of the cerebellar cortex that envelopes Purkinje cell afferent synapses. In this study, using multiple experimental approaches in acute cerebellar slices we demonstrate the existence of functional P2XRs on Bergmann cells. In particular, we show here that Bergmann cells express uniquely P2X7R subtypes: (i) immunohistochemical analysis revealed the presence of P2X7Rs on Bergmann cell processes, (ii) in whole cell recordings P2XR pharmacological agonists induced depolarizing currents that were blocked by specific antagonists of P2X7Rs, and could not be elicited in slices from P2X₇R-deficient mice and finally, (iii) calcium imaging experiments revealed two distinct calcium signals triggered by application of exogenous ATP: a transient signal deriving from release of calcium from intracellular stores, and a persistent one following activation of P2X7Rs. Our data thus reveal a new pathway by which extracellular ATP may affect glial cell function, thus broadening our knowledge on purinergic signaling in the cerebellum.

  5. Gelation Behavior Study of a Resorcinol–Hexamethyleneteramine Crosslinked Polymer Gel for Water Shut-Off Treatment in Low Temperature and High Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Yongpeng Sun

    2017-07-01

    Full Text Available Mature oilfields usually encounter the problem of high watercut. It is practical to use chemical methods for water-shutoff in production wells, however conventional water-shutoff agents have problems of long gelation time, low gel strength, and poor stability under low temperature and high salinity conditions. In this work a novel polymer gel for low temperature and high salinity reservoirs was developed. This water-shutoff agent had controllable gelation time, adjustable gel strength and good stability performance. The crosslinking process of this polymer gel was studied by rheological experiments. The process could be divided into an induction period, a fast crosslinking period, and a stable period. Its gelation behaviors were investigated in detail. According to the Gel Strength Code (GSC and vacuum breakthrough method, the gel strength was displayed in contour maps. The composition of the polymer gel was optimized to 0.25~0.3% YG100 + 0.6~0.9% resorcinol + 0.2~0.4% hexamethylenetetramine (HMTA + 0.08~0.27% conditioner (oxalic acid. With the concentration increase of the polymer gel and temperature, the decrease of pH, the induction period became shorter and the crosslinking was more efficient, resulting in better stability performance. Various factors of the gelation behavior which have an impact on the crosslinking reaction process were examined. The relationships between each impact factor and the initial crosslinking time were described with mathematical equations.

  6. Rheological and physical properties of camel and cow milk gels enriched with phosphate and calcium during acid-induced gelation

    National Research Council Canada - National Science Library

    Kamal, Mohammad; Foukani, Mohammed; Karoui, Romdhane

    2017-01-01

    .... The increase of the added CaCl2 levels improved significantly the gelation properties of camel and cow milk gels, since a reduction in the gelation time and an increase in the gel firmness were observed...

  7. Cold gelation of alginates induced by monovalent cations.

    Science.gov (United States)

    Karakasyan, C; Legros, M; Lack, S; Brunel, F; Maingault, P; Ducouret, G; Hourdet, D

    2010-11-08

    A new reversible gelation pathway is described for alginates in aqueous media. From various samples differing by their mannuronic/guluronic content (M/G), both enthalpic and viscoelastic experiments demonstrate that alginates having a high M content are able to form thermoreversible assemblies in the presence of potassium salts. The aggregation behavior is driven by the low solubility of M-blocks at low temperature and high ionic strength. In semidilute solutions, responsive assemblies induce a strong increase of the viscosity below a critical temperature. A true physical gel is obtained in the entangled regime, although the length scale of specific interactions between M-blocks decreases with increasing density of entanglements. Cold setting takes place at low temperatures, below 0 °C for potassium concentrations lower than 0.2 mol/kg, but the aggregation process can be easily shifted to higher temperatures by increasing the salt concentration. The self-assembling process of alginates in solution of potassium salts is characterized by a sharp gelation exotherm and a broad melting endotherm with a large hysteresis of 20-30 °C between the transition temperatures. The viscoelastic properties of alginate gels in potassium salts closely depend on thermal treatment (rate of cooling, time, and temperature of storage), polymer and salt concentrations, and monomer composition as well. In the case of alginates with a high G content, a similar aggregation behavior is also evidenced at higher salt concentrations, but the extent of the self-assembling process remains too weak to develop a true gelation behavior in solution.

  8. Stress-enhanced Gelation: A Dynamic Nonlinearity of Elasticity

    Science.gov (United States)

    Yao, Norman Y.; Broedersz, Chase P.; Depken, Martin; Becker, Daniel J.; Pollak, Martin R.; MacKintosh, Frederick C.; Weitz, David A.

    2013-01-01

    A hallmark of biopolymer networks is their sensitivity to stress, reflected by pronounced nonlinear elastic stiffening. Here, we demonstrate a distinct dynamical nonlinearity in biopolymer networks consisting of F-actin cross-linked by α-actinin-4. Applied stress delays the onset of relaxation and flow, markedly enhancing gelation and extending the regime of solid-like behavior to much lower frequencies. We show that this macroscopic network response can be accounted for at the single molecule level by the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior. PMID:23383843

  9. Modulation of Ionotropic Glutamate Receptors and Acid-Sensing Ion Channels by Nitric Oxide

    Directory of Open Access Journals (Sweden)

    John Q Wang

    2012-05-01

    Full Text Available Ionotropic glutamate receptors (iGluR are ligand-gated ion channels and are densely expressed in broad areas of mammalian brains. Like iGluRs, acid-sensing ion channels (ASIC are ligand (H+-gated channels and are enriched in brain cells and peripheral sensory neurons. Both ion channels are enriched at excitatory synaptic sites, functionally coupled to each other, and subject to the modulation by a variety of signaling molecules. Central among them is a gasotransmitter, nitric oxide (NO. Available data show that NO activity-dependently modulates iGluRs and ASICs via either a direct or an indirect pathway. The former involves a NO-based and cGMP-independent posttranslational modification (S-nitrosylation of extracellular cysteine residues in channel subunits or channel-interacting proteins. The latter is achieved by NO activation of soluble guanylyl cyclase, which in turn triggers an intracellular cGMP-sensitive cascade to indirectly modulate iGluRs and ASICs. The NO modification is usually dynamic and reversible. Modified channels undergo significant, interrelated changes in biochemistry and electrophysiology. Since NO synthesis is enhanced in various neurological disorders, the NO modulation of iGluRs and ASICs is believed to be directly linked to the pathogenesis of these disorders. This review summarizes the direct and indirect modifications of iGluRs and ASICs by NO and analyzes the role of the NO-iGluR and NO-ASIC coupling in cell signaling and in the pathogenesis of certain related neurological diseases.

  10. Expression of ionotropic receptors in terrestrial hermit crab’s olfactory sensory neurons

    Directory of Open Access Journals (Sweden)

    Katrin Christine Groh-Lunow

    2015-02-01

    Full Text Available Coenobitidae are one out of at least five crustacean lineages which independently succeeded in the transition from water to land. This change in lifestyle required adaptation of the peripheral olfactory organs, the antennules, in order to sense chemical cues in the new terrestrial habitat. Hermit crab olfactory aesthetascs are arranged in a field on the distal segment of the antennular flagellum. Aesthetascs house approximately 300 dendrites with their cell bodies arranged in spindle-like complexes of ca. 150 cell bodies each. While the aesthetascs of aquatic crustaceans have been shown to be the place of odor uptake and previous studies identified ionotropic receptors (IRs as the putative chemosensory receptors expressed in decapod antennules, the expression of IRs besides the IR co-receptors IR25a and IR93a in olfactory sensory neurons (OSNs has not been documented yet. Our goal was to reveal the expression and distribution pattern of non-co-receptor IRs in OSNs of Coenobita clypeatus, a terrestrial hermit crab, with RNA in situ hybridization. We expanded our previously published RNAseq dataset, and revealed 22 novel IR candidates in the Coenobita antennules. We then used RNA probes directed against three different IRs to visualize their expression within the OSN cell body complexes. Furthermore we aimed to characterize ligand spectra of single aesthetascs by recording local field potentials and responses from individual dendrites. This also allowed comparison to functional data from insect OSNs expressing antennal IRs. We show that this orphan receptor subgroup with presumably non-olfactory function in insects is likely the basis of olfaction in terrestrial hermit crabs.

  11. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    Science.gov (United States)

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  12. Self-assemblies of lecithin and a-tocopherol as gelators of lipid material

    NARCIS (Netherlands)

    Nikiforidis, C.V.; Scholten, E.

    2014-01-01

    Amongst the different mechanisms that have been proposed and used to structure organogels, self-assembly of the gelators into supramolecular structures linked through non-covalent bonds is the most interesting. The gelator activity of LMGOs is often found most effective when micellar or lamellar pha

  13. A new multistep Ca2+-Induced Cold Gelation Process for ß-Lactoglobulin

    NARCIS (Netherlands)

    Veerman, C.; Baptist, H.G.M.; Sagis, L.M.C.; Linden, van der E.

    2003-01-01

    The objective of this study was to obtain -lactoglobulin (-lg) gels at very low protein concentrations using a new multistep Ca2+-induced cold gelation process. In the conventional cold gelation process, salt free -lg solutions were heated at neutral pH, cooled, and cross-linked by adding salts. In

  14. Stabilization of oil-in-water emulsions by enzyme catalyzed oxidative gelation of sugar beet pectin

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2013-01-01

    Enzyme catalyzed oxidative cross-linking of feruloyl groups can promote gelation of sugar beet pectin (SBP). It is uncertain how the enzyme kinetics of this cross-linking reaction are affected in emulsion systems and whether the gelation affects emulsion stability. In this study, SBP (2.5% w...

  15. Enzymatic hydrolysis as a means of expanding the cold gelation conditions of soy proteins

    NARCIS (Netherlands)

    Kuipers, B.J.H.; Koningsveld, van G.A.; Alting, A.C.; Driehuis, F.; Gruppen, H.; Voragen, A.G.J.

    2005-01-01

    Acid-induced cold gelation of soy protein hydrolysates was studied. Hydrolysates with degrees of hydrolysis (DH) of up to 10% were prepared by using subtilisin Carlsberg. The enzyme was inhibited to uncouple the hydrolysis from the subsequent gelation; the latter was induced by the addition of

  16. Physical gelation of a microfiber suspension.

    Science.gov (United States)

    Perazzo, Antonio; Nunes, Janine K.; Guido, Stefano; Stone, Howard A.

    2015-11-01

    Hydrogels are among the most exploited materials in tissue engineering and there is growing interest in injectable hydrogels, especially as applied to surgical adhesives and bioprinting materials. Here we report a method to produce a hydrogel in a desired location by simply extruding a suspension of high aspect ratio and flexible microfibers from a syringe. The mechanism of gel formation is purely physical and based on irreversible entanglements formed by the microfibers under the action of flow. The single microfibers have been produced and finely tailored by microfluidic methods. Shear rheology has been performed in order to get insights on the entanglements, and results show that the formation of entanglements is related to a shear thickening behavior of the suspension, which in turn depends on shear rate and concentration of fibers. When shearing the suspension, highly non-linear viscoelastic behavior is observed and probed by a highly positive first normal stress difference. We also report the hydrogel swelling behavior and its linear viscoelastic properties as obtained by imposing small oscillatory stress to the material.

  17. Gelation Behaviors and Mechanism of Silk Fibroin According to the Addition of Nitrate Salts

    Directory of Open Access Journals (Sweden)

    Dong Su Im

    2016-10-01

    Full Text Available Silk fibroin (SF is a typical fibrous protein that is secreted by silkworms and spiders. It has been used in a variety of areas, and especially for tissue-engineering scaffolds, due to its sound processability, mechanical properties, biodegradability, and biocompatibility. With respect to gelation, the SF gelation time is long in aqueous solutions, so a novel approach is needed to shorten this time. The solubility of regenerated SF is sound in formic acid (FA, which is a carboxylic acid of the simplest structure. In this study, SF was dissolved in formic acid, and the addition of salts then induced a rapid gelation that accompanied a solution-color change. Based on the gelation behaviors of the SF solution according to different SF and salt concentrations, the gelation mechanism was investigated.

  18. Interplay between gelation and phase separation in aqueous solutions of methylcellulose and hydroxypropylmethylcellulose.

    Science.gov (United States)

    Fairclough, J Patrick A; Yu, Hao; Kelly, Oscar; Ryan, Anthony J; Sammler, Robert L; Radler, Michael

    2012-07-17

    Thermally induced gelation in aqueous solutions of methylcellulose (MC) and hydroxypropylmethylcellulose (HPMC) has been studied by rheological, optical microscopy, and turbidimetry measurements. The structural and mechanical properties of these hydrogels are dominated by the interplay between phase separation and gelation. In MC solutions, phase separation takes place almost simultaneously with gelation. An increase in the storage modulus is coupled to the appearance of a bicontinuous structure upon heating. However, a thermal gap exists between phase separation and gelation in the case of HPMC solutions. The storage modulus shows a dramatic decrease during phase separation and then rises in the subsequent gelation. A macroporous structure forms in the gels via "viscoelastic phase separation" linked to "double phase separation".

  19. A study of function mechanism of hemxamethyl tetra-amine in gelation process of uranium

    Institute of Scientific and Technical Information of China (English)

    GUO Wenli; LIANG Tongxiang; ZHAO Xingyu; HAO Shaochang; FU Xiaoming

    2006-01-01

    The UO2 ceramic microspheres are the most important materials in the spherical fuel elements for high temperature reactor (HTR). A process for preparation of UO2 kernels known as total gelation process of uranium (TGU) was developed as the production process of 10 mW HTR at Tsinghua University. The TGU process is based on the traditional sol-gel process, external gelation process and internal gelation process of uranium (EGU and IGU), which implies that the gelation action is initiated both by ammonia out of the gel particles and hemxamethyl tetra-amine (HMTA) inside the gel particles. The gelation behavior and the properties of uranium microspheres were investigated of the solution with and without HMTA. It is observed that good spherical particles can be obtained without HMTA in the sol, which indicates a more controllable and industrialized route will be set up. Contrasts between this route and the traditional EGU were also listed .

  20. Gelation Behaviors and Mechanism of Silk Fibroin According to the Addition of Nitrate Salts.

    Science.gov (United States)

    Im, Dong Su; Kim, Min Hee; Yoon, Young Il; Park, Won Ho

    2016-10-10

    Silk fibroin (SF) is a typical fibrous protein that is secreted by silkworms and spiders. It has been used in a variety of areas, and especially for tissue-engineering scaffolds, due to its sound processability, mechanical properties, biodegradability, and biocompatibility. With respect to gelation, the SF gelation time is long in aqueous solutions, so a novel approach is needed to shorten this time. The solubility of regenerated SF is sound in formic acid (FA), which is a carboxylic acid of the simplest structure. In this study, SF was dissolved in formic acid, and the addition of salts then induced a rapid gelation that accompanied a solution-color change. Based on the gelation behaviors of the SF solution according to different SF and salt concentrations, the gelation mechanism was investigated.

  1. The interplay of aggregation, fibrillization and gelation of an unexpected low molecular weight gelator: glycylalanylglycine in ethanol/water.

    Science.gov (United States)

    Farrell, Stefanie; DiGuiseppi, David; Alvarez, Nicolas; Schweitzer-Stenner, Reinhard

    2016-07-13

    Hydrogels formed by polypeptides could be much-favored tools for drug delivery because their main ingredients are generally biodegradable. However, the gelation of peptides in aqueous solution generally requires a minimal length of the peptide as well as distinct sequences of hydrophilic and hydrophobic residues. The aggregation of short peptides like tripeptides, which are relatively cheap and offer a high degree of biodegradability, are generally thought to require a high hydrophobicity of their residues. We found that contrary to this expectation cationic glycylalanylglycine in 55 mol% ethanol/45 mol% water forms a gel below a melting temperature of ca. 36 °C. A pure hydrogel state can be obtained after allowing the ethanol component to evaporate. The gel phase consists of crystalline fibrils of several 100 μm, which form a sample-spanning network. Rheological data reveal a soft elastic solid gel. We investigated the kinetics of the various processes that lead to the final gel state of the ternary mixture by a unique combination of UV circular dichroism, infrared, vibrational circular dichroism (VCD) and rheological measurements. A mathematical analysis of our data show that gelation is preceded by the formation of peptide β-sheet like tapes or ribbons, which give rise to a significant enhancement of the amide I' VCD signal, and the subsequent formation of rather thick and long fibrils. The VCD signals indicate that the tapes exhibit a right-handed helicity at temperatures above 16 °C and a left-handed helicity below. The tapes'/ribbons' helicity change occurs at a temperature where the UVCD data reflect a relatively long nucleation process. The kinetics of gel formation probed by the storage and loss moduli are composed of a fast process that follows tape/ribbon/fibril formation and is clearly identifiable in a movie that shows the gelation process and a slow process that causes an additional gel stabilization. The rheological data indicate that left

  2. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique.

    Science.gov (United States)

    Fan, Wen; Yan, Wei; Xu, Zushun; Ni, Hong

    2012-02-01

    Chitosan nanoparticles have been extensively studied for drug and gene delivery. In this paper, monodisperse, low molecular weight (LMW) chitosan nanoparticles were prepared by a novel method based on ionic gelation using sodium tripolyphosphate (TPP) as cross-linking agent. The objective of this study was to solve the problem of preparation of chitosan/TPP nanoparticles with high degree of monodispersity and stability, and investigate the effect of various parameters on the formation of LMW chitosan/TPP nanoparticles. It was found that the particle size distribution of the nanoparticles could be significantly narrowed by a combination of decreasing the concentration of acetic acid and reducing the ambient temperature during cross-linking process. The optimized nanoparticles exhibited a mean hydrodynamic diameter of 138 nm with a polydispersity index (PDI) of 0.026 and a zeta potential of +35 mV, the nanoparticles had good storage stability at room temperature up to at least 20 days.

  3. Functionalized core-shell hydrogel microsprings by anisotropic gelation with bevel-tip capillary

    Science.gov (United States)

    Yoshida, Koki; Onoe, Hiroaki

    2017-04-01

    This study describes a novel microfluidic-based method for the synthesis of hydrogel microsprings that are capable of encapsulating various functional materials. A continuous flow of alginate pre-gel solution can spontaneously form a hydrogel microspring by anisotropic gelation around the bevel-tip of the capillary. This technique allows fabrication of hydrogel microsprings using only simple capillaries and syringe pumps, while their complex compartmentalization characterized by a laminar flow inside the capillary can contribute to the optimization of the microspring internal structure and functionality. Encapsulation of several functional materials including magnetic-responsive nanoparticles or cell dispersed collagen for tissue scaffold was demonstrated to functionalize the microsprings. Our core-shell hydrogel microsprings have immense potential for application in a number of fields, including biological/chemical microsensors, biocompatible soft robots/microactuators, drug release, self-assembly of 3D structures and tissue engineering.

  4. Light-activated ionic gelation of common biopolymers.

    Science.gov (United States)

    Javvaji, Vishal; Baradwaj, Aditya G; Payne, Gregory F; Raghavan, Srinivasa R

    2011-10-18

    Biopolymers such as alginate and pectin are well known for their ability to undergo gelation upon addition of multivalent cations such as calcium (Ca(2+)). Here, we report a simple way to activate such ionic gelation by UV irradiation. Our approach involves combining an insoluble salt of the cation (e.g., calcium carbonate, CaCO(3)) with an aqueous solution of the polymer (e.g., alginate) along with a third component, a photoacid generator (PAG). Upon UV irradiation, the PAG dissociates to release H(+) ions, which react with the CaCO(3) to generate free Ca(2+). In turn, the Ca(2+) ions cross-link the alginate chains into a physical network, thereby resulting in a hydrogel. Dynamic rheological experiments confirm the elastic character of the alginate gel, and the gel modulus is shown to be tunable via the irradiation time as well as the PAG and alginate concentrations. The above approach is easily extended to other biopolymers such as pectin. Using this approach, a photoresponse can be imparted to conventional biopolymers without the need for any chemical modification of the molecules. Photoresponsive alginate gels may be useful in creating biomaterials or tissue mimics. As a step toward potential applications, we demonstrate the ability to photopattern a thin film of alginate gel onto a glass substrate under mild conditions.

  5. Tuning cellulose nanocrystal gelation with polysaccharides and surfactants.

    Science.gov (United States)

    Hu, Zhen; Cranston, Emily D; Ng, Robin; Pelton, Robert

    2014-03-18

    Gelation of cellulose nanocrystal (CNC) dispersions was measured as a function of the presence of four nonionic polysaccharides. Addition of hydroxyethyl cellulose (HEC), hydroxypropyl guar (HPG), or locust bean gum (LBG) to CNC dispersions induced the gelation of dilute CNC dispersions, whereas dextran (DEX) did not. These behaviors correlated with adsorption tendencies; HEC, HPG, and LBG adsorbed onto CNC-coated quartz crystal microbalance sensors, whereas DEX did not adsorb. We propose that the adsorbing polysaccharides greatly increased the effective volume fraction of dilute CNC dispersions, driving more of the nanocrystals into anisotropic domains. SDS and Triton X-100 addition disrupted HEC-CNC gels whereas CTAB did not. Surface plasmon resonance measurements with CNC-coated sensors showed that SDS and Triton X-100 partially removed adsorbed HEC, whereas CTAB did not. These behaviors illustrate the complexities associated with including CNC dispersions in formulated products: low CNC contents can induce spectacular changes in rheology; however, surfactants and soluble polymers may promote gel formation or induce CNC coagulation.

  6. QENS study on thermal gelation in aqueous solution of methylcellulose

    Energy Technology Data Exchange (ETDEWEB)

    Onoda-Yamamuro, N. [Department of Natural Sciences, College of Science and Engineering, Tokyo Denki University, Hiki-gun, Saitama 350-0394 (Japan)]. E-mail: yamamuro@u.dendai.ac.jp; Yamamuro, O. [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Inamura, Y. [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Nomura, H. [Department of Natural Sciences, College of Science and Engineering, Tokyo Denki University, Hiki-gun, Saitama 350-0394 (Japan)

    2007-04-30

    Dynamics of water and methylcellulose (MC) molecules in MC aqueous solution has been studied by means of quasi-elastic neutron-scattering (QENS) measurements. The dynamic structure factor S(Q,E) of the MC aqueous solution was fitted well to the sum of Lorentzian and delta functions. The former is attributed to diffusive motion of water molecules and the latter to local vibrational motion of MC molecules. The self-diffusion coefficient of water molecules was obtained from the Q dependence of the half-width at half-maximum (HWHM) of the Lorentzian function, while the mean-square displacement of MC molecules from the Q dependence of the intensity of the delta term. Both the diffusion coefficient and the mean-square displacement gradually increased on heating and abruptly decreased around the thermal gelation temperature (around 320 K). The present results revealed that the microscopic motions of both water and MC molecules give rise to dynamic slowing down on thermal gelation.

  7. INVESTIGATION ON THE GELATION BEHAVIOR OF BIODEGRADABLE POLY(BUTYLENE SUCCINATE) DURING ISOTHERMAL CRYSTALLIZATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    Fa-liang Luo; Xiu-qin Zhang; Wei Ning; Du-jin Wang

    2011-01-01

    The early stage of polymer crystallization may be viewed as physical gelation process, ie., the phase transition of polymer from liquid to solid. Determination of the gel point is of significance in polymer processing. In this work, the gelation behavior ofpoly(bntylene succinate) (PBS) at different temperatures has been investigated by theological method. It was found that during the isothermal crystallization process of PBS, both the storage modulus (G′) and the loss modulus (G")increase with time, and the theological response of the system varies from viscous-dominated (G′ < G") to elastic-dominated (G′ > G"), meaning the phase transition from liquid to solid. The physical gel point was determined by the intersection point of loss tangent curves measured under different frequencies. The gel time (tc) for PBS was found to increase with increasing crystallization temperature. The relative crystallinity of PBS at the gel point is very low (2.5%-8.5%) and increases with increasing the crystallization temperature. The low crystallinity of PBS at the gel point suggests that only a few junctions are necessary to form a spanning network, indicating that the network is “loosely” connected, in another word, the critical gel is soft. Due to the elevated crystallinity at gel point under higher crystallization temperature, the gel strength Sg increases,while the relaxation exponent n decreases with increasing the crystallization temperature. These experimental results suggest that rheological method is an effective tool for verifying the gel point of biodegradable semi-crystalline polymers.

  8. A large dipole moment to promote gelation for 4-nitrophenylacrylonitrile derivatives with gelation-induced emission enhancement properties.

    Science.gov (United States)

    Xue, Pengchong; Yao, Boqi; Zhang, Yuan; Chen, Peng; Li, Kechang; Liu, Baijun; Lu, Ran

    2014-09-28

    A series of 4-nitrophenylacrylonitrile and phenylacrylonitrile derivatives consisting of a carbazole moiety was synthesized. Some of these derivatives with longer alkyl chains and a nitro group could gelatinize some organic solvents, such as ethanol, n-butanol, ethyl acetate, and DMSO. By contrast, phenylacrylonitrile derivatives did not form gels in measured solvents. This result proved that the electron-withdrawing nitro moiety was important for gel formation because it conferred the molecules with large dipole moments, which enhanced the intermolecular interaction. Analyses by UV-vis absorption, X-ray diffraction, and scanning electron microscopy showed that the gelator molecules could self-assemble into one-dimensional nanofibers with layer packing, which further twisted into thicker fibers and formed three-dimensional networks in the gel phase. The single crystal structure of C4CNPA implied that the gelators might adopt an anti-parallel molecular stacking because of their larger ground-state dipole moment. Interestingly, the organogels had enhanced fluorescence relative to solutions at the same concentrations.

  9. Undifferentiated embryonic stem cells express ionotropic glutamate receptor mRNAs

    Directory of Open Access Journals (Sweden)

    Svenja ePachernegg

    2013-12-01

    Full Text Available Ionotropic glutamate receptors (iGluRs do not only mediate the majority of excitatory neurotransmission in the vertebrate CNS, but also modulate pre- and postnatal neurogenesis. Most of the studies on the developmental role of iGluRs are performed on neural progenitors and neural stem cells. We took a step back in our study by examining the role of iGluRs in the earliest possible cell type, embryonic stem cells (ESCs, by looking at the mRNA expression of the major iGluR subfamilies in undifferentiated mouse ESCs. For that, we used two distinct murine ES cell lines, 46C ESCs and J1 ESCs. Regarding 46C ESCs, we found transcripts of kainate receptors (GluK2 to GluK5, AMPA receptors (GluA1, GluA3, and GluA4, and NMDA receptors (GluN1, and GluN2A to GluN2D. Analysis of 46C-derived cells of later developmental stages, namely neuroepithelial precursor cells (NEPs and neural stem cells (NSCs, revealed that the mRNA expression of KARs is significantly upregulated in NEPs and, subsequently, downregulated in NSCs. However, we could not detect any protein expression of any of the KAR subunits present on the mRNA level either in ESCs, NEPs, or NSCs. Regarding AMPARs and NMDARs, GluN2A is weakly expressed at the protein level only in NSCs. Matching our findings for GluRs, all three cell types were found to weakly express pre- and postsynaptic markers of glutamatergic synapses only at the mRNA level. Finally, we performed patch-clamp recordings of 46C ESCs and could not detect any current upon iGluR agonist application. Similar to 46C ESCs, J1 ESCs express kainate receptors (GluK2 to GluK5, AMPA receptors (GluA3, and NMDA receptors (GluN1, and GluN2A to GluN2D at the mRNA level, but these transcripts are not translated into receptor proteins either. Thus, we conclude that ESCs do not contain functional iGluRs, although they do express an almost complete set of iGluR subunit mRNAs.

  10. 1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and its derivatives--efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future.

    Science.gov (United States)

    Okesola, Babatunde O; Vieira, Vânia M P; Cornwell, Daniel J; Whitelaw, Nicole K; Smith, David K

    2015-06-28

    Dibenzylidene-D-sorbitol (DBS) has been a well-known low-molecular-weight gelator of organic solvents for over 100 years. As such, it constitutes a very early example of a supramolecular gel--a research field which has recently developed into one of intense interest. The ability of DBS to self-assemble into sample-spanning networks in numerous solvents is predicated upon its 'butterfly-like' structure, whereby the benzylidene groups constitute the 'wings' and the sorbitol backbone the 'body'--the two parts representing the molecular recognition motifs underpinning its gelation mechanism, with the nature of solvent playing a key role in controlling the precise assembly mode. This gelator has found widespread applications in areas as diverse as personal care products and polymer nucleation/clarification, and has considerable potential in applications such as dental composites, energy technology and liquid crystalline materials. Some derivatives of DBS have also been reported which offer the potential to expand the scope and range of applications of this family of gelators and endow the nansocale network with additional functionality. This review aims to explain current trends in DBS research, and provide insight into how by combining a long history of application, with modern methods of derivatisation and analysis, the future for this family of gelators is bright, with an increasing number of high-tech applications, from environmental remediation to tissue engineering, being within reach.

  11. Relation between gelation conditions and the physical properties of whey protein particles.

    Science.gov (United States)

    Sağlam, Dilek; Venema, Paul; de Vries, Renko; van Aelst, Adriaan; van der Linden, Erik

    2012-04-24

    Whey protein particles have several applications in modulating food structure and for encapsulation, but there is a lack of methods to prepare particles with a very high internal protein content. In this study whey protein particles with high internal protein content were prepared through emulsification and heat gelation of 25% (w/w) whey protein isolate solution at different pH (6.8 or 5.5) and NaCl concentrations (50, 200, or 400 mM). Particles formed at pH 6.8 were spherical, whereas those formed at pH 5.5 were irregular and had a cauliflower-like appearance. Both particles had an average size of few micrometers, and the particles formed at pH 5.5 had higher protein content (∼39% w/v) than the particles formed at pH 6.8 (∼18% w/v). Similarly, particle morphology and protein density were also affected by initial NaCl concentration: particles formed at 50 mM NaCl (pH 6.8) were spherical, whereas particles formed at either 200 mM NaCl (pH 6.7) or 400 mM NaCl (pH 6.6) were irregular and protein density of the particles increased with increasing initial NaCl concentration. Whey protein particles formed at pH 5.5 showed an excellent heat stability: viscosity of the suspensions containing approximately 30% of protein particles formed at pH 5.5 did not show any change after heating at 90 °C for 30 min while the viscosity of suspensions containing protein particles prepared at other conditions increased after heating. In summary, whey protein particles with varying microstructure, shape, internal protein density, and heat stability can be formed by using heat-induced gelation of whey protein isolate at different gelling conditions.

  12. Detecting De-gelation through Tissue Using Magnetically Modulated Optical Nanoprobes (MagMOONs).

    Science.gov (United States)

    Nguyen, KhanhVan T; Anker, Jeffrey N

    2014-12-15

    Alginate gels are widely used for drug delivery and implanted devices. The rate at which these gels break down is important for controlling drug release. Since the de-gelation may be different in vivo, monitoring this process in situ is essential. However, it is challenging to monitor the gel through tissue due to optical scattering and tissue autofluorescence. Herein we describe a method to detect through tissue the chemically-induced changes in viscosity and de-gelation process of alginate gels using magnetically modulated optical nanoprobes (MagMOONs). The MagMOONs are fluorescent magnetic microspheres coated with a thin layer of opaque metal on one hemisphere. The metal layer prevents excitation and emission light from passing through one side of the MagMOONs, which creates orientation-dependent fluorescence intensity. The magnetic particles also align in an external magnetic field and give blinking signals when they rotate to follow an external modulated magnetic field. The blinking signals from these MagMOONs are distinguished from background autofluorescence and can be tracked on a single particle level in the absence of tissue, or for an ensemble average of particles blinking through tissue. When these MagMOONs are dispersed in calcium alginate gel, they become sensors for detecting gel degradation upon addition of either ammonium ion or alginate lyase. Our results show MagMOONs start blinking approximately 10 minutes after 2 mg/mL alginate lyase addition and this blinking is clearly detected even through up to 4 mm chicken breast. This approach can potentially be employed to detect bacterial biofilm formation on medical implants by sensing specific proteases that either activate a related function or regulate biofilm formation. It can also be applied to other biosensors and drug delivery systems based on enzyme-catalyzed breakdown of gel components.

  13. Gelation or molecular recognition; is the bis-(α,β-dihydroxy esters motif an omnigelator?

    Directory of Open Access Journals (Sweden)

    Peter C. Griffiths

    2010-11-01

    Full Text Available Understanding the gelation of liquids by low molecular weight solutes at low concentrations gives an insight into many molecular recognition phenomena and also offers a simple route to modifying the physical properties of the liquid. Bis-(α,β-dihydroxy esters are shown here to gel thermoreversibly a wide range of solvents, raising interesting questions as to the mechanism of gelation. At gelator concentrations of 5–50 mg ml−1, gels were successfully formed in acetone, ethanol/water mixtures, toluene, cyclohexane and chloroform (the latter, albeit at a higher gelator concentration. A range of neutron techniques – in particular small-angle neutron scattering (SANS – have been employed to probe the structure of a selection of these gels. The universality of gelation in a range of solvent types suggests the gelation mechanism is a feature of the bis-(α,β-dihydroxy ester motif, with SANS demonstrating the presence of regular structures in the 30–40 Å range. A correlation between the apparent rodlike character of the structures formed and the polarity of the solvent is evident. Preliminary spin-echo neutron scattering studies (SESANS indicated the absence of any larger scale structures. Inelastic neutron spectroscopy (INS studies demonstrated that the solvent is largely unaffected by gelation, but does reveal insights into the thermal history of the samples. Further neutron studies of this kind (particularly SESANS and INS are warranted, and it is hoped that this work will stimulate others to pursue this line of research.

  14. Gelation kinetics and viscoelastic properties of pluronic and α-cyclodextrin-based pseudopolyrotaxane hydrogels.

    Science.gov (United States)

    Pradal, Clementine; Jack, Kevin S; Grøndahl, Lisbeth; Cooper-White, Justin J

    2013-10-14

    The results of a systematic investigation into the gelation behavior of α-cyclodextrin (α-CD) and Pluronic (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers) pseudopolyrotaxane (PPR) hydrogels are reported here in terms of the effects of temperature, α-CD concentration, and Pluronic type (Pluronic F68 and Pluronic F127). It was found that α-CD significantly modifies the gelation behavior of Pluronic solutions and that the PPR hydrogels are highly sensitive to changes in the α-CD concentration. In some cases, the addition of α-CD was found to be detrimental to the gelation process, leading to slower gelation kinetics and weaker gels than with Pluronic alone. However, in other cases, the hydrogels formed in the presence of the α-CDs reached higher moduli and showed faster gelation kinetics than with Pluronic alone and in some instances α-CD allowed the formation of hydrogels from Pluronic solutions that would normally not undergo gelation. Depending on composition and ratio of α-CD/Pluronic, these highly viscoelastic hydrogels displayed elastic shear modulus values ranging from 2 kPa to 7 MPa, gelation times ranging from a few seconds to a few hours and self-healing behaviors post failure. Using dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS), we probed the resident structure of these systems, and from these insights we have proposed a new molecular mechanism that accounts for the macroscopic properties observed.

  15. Nontraditional π Gelators Based on β-Iminoenolate and Their Difluoroboron Complexes: Effect of Halogens on Gelation and Their Fluorescent Sensory Properties Towards Acids.

    Science.gov (United States)

    Wu, Zhu; Sun, Jingbo; Zhang, Zhenqi; Yang, Hao; Xue, Pengchong; Lu, Ran

    2017-02-03

    We have synthesized a series of new β-iminoenolates and their corresponding difluoroboron complexes without any traditional gelation moieties, and some of them were able to gelatinize organic solvents. It was found that the presence of halogen atoms as substituents had a significant effect on gelation ability. In particular, bromo-containing compounds 4 A and 4 B exhibited excellent gelation abilities compared with other halogen-substituted gelators. By analyses of the single-crystal structure, the PXRD pattern of the xerogel, and electronic spectral changes during gelation, we deemed that π-π, C-H⋅⋅⋅F, and C-H⋅⋅⋅Br interactions were the driving forces for the gelation of 4 B. Interestingly, (Z)-1-(4-bromophenyl)-2-(3-methylpyrazin-2-yl)ethen-1-ol (8 A), prepared in this work, is the lowest-molecular-weight organogelator to have been reported. It should be noted that although β-iminoenolates 3 A-5 A are nonemissive in solution, they emit strong yellow light in organogels, which suggests aggregation-induced emissive activity, whereas the difluoroboron complexes 3 B-5 B show strong fluorescence in solutions, organogels, and xerogel-based films. Moreover, we found that the emission of 4 B in a nanofiber-based film could be quenched significantly upon exposure to gaseous trifluoroacetic acid and that the decay time and detection limit were 0.5 s and 0.17 ppm, respectively. Thus, through this work we have provided a new strategy for the design of nontraditional π gelators by introducing halogen atoms into π-conjugated systems with moderate polarities.

  16. Interplay of thermal and covalent gelation of silanized hydroxypropyl methyl cellulose gels.

    Science.gov (United States)

    Allahbash, Shahin; Nicolai, Taco; Chassenieux, Christophe; Tassin, Jean-Francois; Benyahia, Lazhar; Weiss, Pierre; Rethore, Gildas

    2015-01-22

    Silanized hydroxypropyl methyl cellulose (Si-HPMC) is a biocompatible polysaccharide that forms a covalently crosslinked hydrogel at all temperatures due to silanol condensation. Unmodified HPMC forms reversible turbid physical gels when heated above 55°C. The interaction between thermal gelation and covalent crosslinking of Si-HPMC was investigated with rheology, turbidity and microscopy. Thermal gelation of the HPMC backbone was found to reinforce Si-HPMC gels at room temperature. However, simultaneous thermal and covalent crosslinking at higher temperatures led to weaker turbid gels at room temperature. The effect of the pH and the addition of orthophosphate on the elastic modulus and the gelation kinetics was investigated.

  17. Enzymatic gelation of sugar beet pectin in food products

    DEFF Research Database (Denmark)

    Bergsøe, Merete Norsker; Jensen, Mette; Adler-Nissen, Jens

    2000-01-01

    Sugar beet pectin is a food ingredient with specific functional properties. It may form gels by an oxidative cross-linking of ferulic acid. In the present study, the gel forming properties of three oxidative enzymes were examined in different food relevant conditions. The enzymes chosen were two...... laccases and one peroxidase. The textural properties of the produced gels were measured on a texture analyser. The influence of sugar, salt and protein were analysed. Finally, the enzymatic gelation was studied in three food products with added sugar beet pectin. These were black currant juice, milk...... and chopped heat-treated meat emulsion. The addition of salt resulted in softer, less stiff and chewy, and less adhesive gels. Generally speaking, sugar addition increased the hardness but at high concentration the gels were very brittle. However, Young's modulus was lower in gels containing sugar than...

  18. From Gelation and Glass Transition of Colloidal Systems to Polymers

    Science.gov (United States)

    Han, Charles; Yuan, Guangcui; Cheng, He

    Charles C. Han, Guangcui Yuan and He Cheng Joint Laboratory of Polymer Science and Materials, ICCAS, Beijing, China and Institute for Advanced Study, Shenzhen University, Shenzhen, China Aggregation and gelation behavior of mixed suspensions of polystyrene microspheres and poly(N-isopropylacrylamide) microgels have been studied. In dilute microsphere suspensions, with increasing concentration of microgel (MG), microspheres (MS) first aggregated with each other through the bridging of the microgels, then dispersed individually when saturated adsorption was achieved, and finally depletion clusters formed at even higher concentrations of microgel. In concentrated microsphere suspensions, with saturated MG adsorption, a state transition from attractive glass to repulsive glass can be observed. This type of system can be viewed as a molecular model system which has a long range repulsive interaction potential and a short range attractive potential. A comparison between the glass transition of the colloidal systems and the glass transition of polymeric systems can be made.

  19. Network formation and gelation in telechelic star polymers

    Science.gov (United States)

    Wadgaonkar, Indrajit; Chatterji, Apratim

    2017-02-01

    We investigate the efficiency of gelation and network formation in telechelic star polymer melt, where the tips of polymer arms are dipoles while the rest of the monomers are uncharged. Our work is motivated by the experimental observations [A. Kulkarni et al., Macromolecules 48, 6580 (2015)] in which rheological studies of telechelic star polymers of poly-(L-lactide), a bio-degradable polymer, showed a drastic increase in elastic properties (up to 2000 times) compared to corresponding star polymers without the telechelic arm ends. In contrast to previous studies, we avoid using effective attractive Lennard-Jones potentials or dipolar potentials to model telechelic interactions. Instead we use explicit Coulomb positive and negative charges at the tip of polymer-arms of our bead-spring model of star polymers. By our simulations we show that the dipoles at the tip of star arms aggregate together to form clusters of dipoles. Each cluster has contributions from several stars, and in turn each star contributes to several clusters. Thus the entire polymer melt forms a connected network. Network forming tendencies decrease with a decrease of the value of the effective charge constituting the dipole: this can be experimentally realized by choosing a different ionomer for the star tip. We systematically varied the value of dipole charges, the fraction of star-arms with dipoles at the tip, and the length of the arms. The choice of explicit charges in our calculations enables us to make better quantitative predictions about the onset of gelation; moreover we get qualitatively distinct results about structural organization of dipoles within a dipole-cluster.

  20. Normal force controlled rheology applied to agar gelation

    Science.gov (United States)

    Mao, Bosi; Divoux, Thibaut; Snabre, Patrick

    2016-05-01

    A wide range of thermoreversible gels are prepared by cooling down to ambient temperature hot aqueous polymer solutions. During the sol-gel transition, such materials may experience a volume contraction which is traditionally overlooked as rheological measurements are usually performed in geometries of constant volume. In this article, we revisit the formation of 1.5\\% wt. agar gels through a series of benchmark rheological experiments performed with a plate-plate geometry. We demonstrate on that particular gel of polysaccharides that the contraction associated with the sol/gel transition cannot be neglected. Indeed, imposing a constant gap width during the gelation results in the strain hardening of the sample, as evidenced by the large negative normal force that develops. Such hardening leads to the slow drift in time of the gel elastic modulus $G'$ towards ever larger values, and thus to an erroneous estimate of $G'$. As an alternative, we show that imposing a constant normal force equals to zero during the gelation, instead of a constant gap width, suppresses the hardening as the decrease of the gap compensates for the sample contraction. Using normal force controlled rheology, we then investigate the impact of thermal history on 1.5\\% wt. agar gels. We show that neither the value of the cooling rate, nor the introduction of a constant temperature stage during the cooling process influence the gel elastic properties. Instead, $G'$ only depends on the terminal temperature reached at the end of the cooling ramp, as confirmed by direct imaging of the gel microstructure by cryoelectron microscopy. The present work offers an extensive review of the technical difficulties associated with the rheology of hydrogels and paves the way for a systematic use of normal force controlled rheology to monitor non-isochoric processes.

  1. Ultrasound-induced gelation of fluorenyl-9-methoxycarbonyl-l-lysine(fluorenyl-9-methoxycarbonyl)-OH and its dipeptide derivatives showing very low minimum gelation concentrations.

    Science.gov (United States)

    Geng, Huimin; Ye, Lin; Zhang, Ai-Ying; Shao, Ziqiang; Feng, Zeng-Guo

    2017-03-15

    Four l-Lysine(Lys)-l-glutamic acid(Glu) dipeptide derivatives (1-4) and their precursor-a single fluorenyl-9-methoxycarbonyl(Fmoc)-l-Lys(Fmoc)-OH amino acid (5) were demonstrated as gelators to gelate a variety of alcohols and aromatic solvents under the sonication conditions. Compared to the routine heating-cooling protocol, the ultrasound substantially brought down the minimum gelation concentrations (MGCs) of the resulting organogels. The Fourier transform infrared spectroscopy (FT-IR) and fluorescence studies revealed that the π-π stacking and hydrogen bonding act as major driving forces for the self-assembly of these lysine-based gelators into supramolecular fibrous three dimensional (3D) network, where the more the Fmoc protecting groups, the gelators are more responsive to ultrasound-stimulus and more conducive to an ordered molecular arrangement reinforcing the intermolecular forces. Moreover, the ultrasound-triggered organogels of 5 exhibited the thixotropic property. Upon imposing a mechanical shear, its gels with the fibrous 3D network structure were unraveled into sols. However, after standing quiescently over time, these sols returned to the gels showing a more ordered lamella-like packing structure as evidenced by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses.

  2. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.

    Science.gov (United States)

    Shih, Han; Liu, Hung-Yi; Lin, Chien-Chi

    2017-02-28

    Hydrogels immobilized with biomimetic peptides have been used widely for tissue engineering and drug delivery applications. Photopolymerization has been among the most commonly used techniques to fabricate peptide-immobilized hydrogels as it offers rapid and robust peptide immobilization within a crosslinked hydrogel network. Both chain-growth and step-growth photopolymerizations can be used to immobilize peptides within covalently crosslinked hydrogels. A previously developed visible light mediated step-growth thiol-norbornene gelation scheme has demonstrated efficient crosslinking of hydrogels composed of an inert poly(ethylene glycol)-norbornene (PEGNB) macromer and a small molecular weight bis-thiol linker, such as dithiothreitol (DTT). Compared with conventional visible light mediated chain-polymerizations where multiple initiator components are required, step-growth photopolymerized thiol-norbornene hydrogels are more cytocompatible for the in situ encapsulation of radical sensitive cells (e.g., pancreatic β-cells). This contribution explored visible light based crosslinking of various bis-cysteine containing peptides with macromer 8-arm PEGNB to form biomimetic hydrogels suitable for in situ cell encapsulation. It was found that the addition of soluble tyrosine during polymerization not only significantly accelerated gelation, but also improved the crosslinking efficiency of PEG-peptide hydrogels as evidenced by a decreased gel point and enhanced gel modulus. In addition, soluble tyrosine drastically enhanced the cytocompatibility of the resulting PEG-peptide hydrogels, as demonstrated by in situ encapsulation and culture of pancreatic MIN6 β-cells. This visible light based thiol-norbornene crosslinking mechanism provides an attractive gelation method for preparing cytocompatible PEG-peptide hydrogels for tissue engineering applications.

  3. A comparative study of nitride purity and Am fabrication losses in PuN materials by the powder and internal gelation production routes

    Science.gov (United States)

    Hedberg, Marcus; Ekberg, Christian

    2016-12-01

    Fabrication of plutonium containing fuels through the internal gelation method has mostly been studied in mixed metal systems such as U, Pu or Zr,Pu. In this work production of undiluted PuN has been performed by carbothermal reduction on both oxide powder and Pu microspheres produced by the internal gelation method. Nitride purities reached using the different methods have been studied together with final densities achieved during pellet fabrication as well as losses of ingrown Am during the different production steps. Formation of Pu microspheres was successfully performed using the internal gelation method, although extensive microsphere fracturing occurred during thermal treatment. Final densities of PuN pellets produced by cold pressing and sintering reached 70-80% of theoretical density. Am losses during the carbothermal reduction step was on average about 3.7%. After sintering about 11% of Am was lost in total through the entire production process if sintering in N2 + 5% H2 atmosphere while about 50% of the Am in total was lost when using Ar as sintering atmosphere.

  4. Preparation and Characterization ofβ-TCP/CS Scaffolds by Freeze-extraction and Freeze-gelation

    Institute of Scientific and Technical Information of China (English)

    HAO Ruiran; WANG Deping; YAO Aihua; HUANG Wenhai

    2011-01-01

    The freeze-extraction and freeze-gelation methods were used to prepare highly porous β-TCP/CS scaffolds with different β-TCP/CS ratio. In these methods, the suspending mixture of β-TCP and chitosan was frozen, the frozen mixture was immersed in a non-solvent(0.05 mol/L NaOH/ehanol aqueous) bath to allow the exchange between solvent(acetic-acid aqueous) and non-solvent at a temperature lower than the freezing point of the acetic-acid. Then, the β-TCP/CS scaffolds were formed and dried at room temperature. Scanning electron microscopy (SEM), X-ray diffraction (XRD), gas chromatography (GC) and omnipotence material testing machine were employed to characterize theβ-TCP/CS scaffolds. The results of GC show that the freeze extraction of the β-TCP/chitosan scaffolds was completed when the extraction time is above 24 h. The SEM results show that the β-TCP/CS scaffolds are composed of interconnected pore network. The porosity of the β-TCP/CS scaffolds decrease with the increase of the content of the β-TCP. The β-TCP/CS scaffolds have a highest compressive strength when the chitosan/β-TCP ratio is 30:70. The present work displays that the β-TCP/CS composite scaffolds with appropriate mechanical properties and high porosity can be successfully prepared by the freeze-extraction and freeze-gelation methods.

  5. Probing structural evolution in heat induced protein gelation by scattering techniques

    Science.gov (United States)

    Kumar, Sugam; Piplani, Pulkit; Mehan, S.; Aswal, V. K.

    2017-05-01

    The heating of a globular protein is known to elicit conformational changes in the protein molecules, resulting in the formation of a gel depending on the solution conditions. We have used dynamic light scattering (DLS) and small-angle neutron scattering (SANS) to investigate the phase behavior and structure evolution in heat induced gelation of Bovine Serum Albumin (BSA) protein as a function of pH and ionic strength. The gelation temperature is found to be increasing with increase in pH and decrease in ionic strength. The structure of the protein molecule remains intact very close to the gelation temperature. However, on further increase in temperature, the protein molecules form small aggregates which eventually lead to a network gel at gelation temperature. The gel structure is characterized by a mass fractal having a fractal dimension about 2.

  6. Distribution of Starch Lysophosphatidylcholine in Pasting and Gelation of Wheat Starch Suspensions

    National Research Council Canada - National Science Library

    ISHINAGA, Masataka; UEDA, Aiko; MATSUNAKA, Chie; TAMURA, Miho

    2011-01-01

    The amount and fatty acid composition of lysophosphatidylcholine (LPC) in the gelatinization, pasting and gelation of wheat starch were measured under a specific temperature program of a Rapid Visco Analyzer...

  7. Gelation: the role of sugars and polyols on gelatin and agarose.

    Science.gov (United States)

    Shimizu, Seishi; Matubayasi, Nobuyuki

    2014-11-20

    Gelation is enhanced by the addition of sugars and polyols. How, at a microscopic level, do such cosolvents enhance gelation? The following two different hypotheses have been proposed so far to answer this question: (i) enhancement of water structure around the biopolymer induced by cosolvents; (ii) exclusion of cosolvents from biopolymer surfaces. To examine the validity of the above hypotheses, as well as to quantify the driving forces of cosolvent-induced gelation, we have constructed a statistical thermodynamic theory of gelation, by extending our Kirkwood-Buff theory of cosolvency; biopolymer-water and biopolymer-cosolvent interactions can both be determined from thermodynamic data. The exclusion of cosolvents is shown to be the dominant contribution, whereas the hydration change is a minor contribution, which may be important only so far as to mediate the exclusion of cosolvents.

  8. A new type of chitosan hydrogel sorbent generated by anionic surfactant gelation.

    Science.gov (United States)

    Chatterjee, Sudipta; Chatterjee, Tania; Woo, Seung H

    2010-06-01

    A new type of chitosan hydrogel beads (CSB) with a core-shell membrane structure was generated by sodium dodecyl sulfate (SDS) gelation process. CSB exhibited higher mechanical strength and acid stability than chitosan hydrogel beads (CB) formed by alkali gelation. The effect of SDS concentration variation during gelation on the adsorption capacity of CSB for congo red (CR) as a model anionic dye showed that CSB formed by 4gl(-1) SDS gelation had the highest adsorption capacity. The maximum adsorption capacity of CSB (208.3mgg(-1)) obtained from the Sips model was found slightly higher than that of CB (200.0mgg(-1)). Membrane materials of CSB obtained after squeezing core water from the beads showed approximately 25 times higher volumetric adsorption capacity than CB.

  9. Structural and solubility parameter correlations of gelation abilities for dihydroxylated derivatives of long-chain, naturally occurring fatty acids.

    Science.gov (United States)

    Zhang, Mohan; Selvakumar, Sermadurai; Zhang, Xinran; Sibi, Mukund P; Weiss, Richard G

    2015-06-01

    Creating structure-property correlations at different distance scales is one of the important challenges to the rational design of molecular gelators. Here, a series of dihydroxylated derivatives of long-chain fatty acids, derived from three naturally occurring molecules-oleic, erucic and ricinoleic acids-are investigated as gelators of a wide variety of liquids. Conclusions about what constitutes a more (or less!) efficient gelator are based upon analyses of a variety of thermal, structural, molecular modeling, and rheological results. Correlations between the manner of molecular packing in the neat solid or gel states of the gelators and Hansen solubility data from the liquids leads to the conclusion that diol stereochemistry, the number of carbon atoms separating the two hydroxyl groups, and the length of the alkanoic chains are the most important structural parameters controlling efficiency of gel formation for these gelators. Some of the diol gelators are as efficient or even more efficient than the well-known, excellent gelator, (R)-12-hydroxystearic acid; others are much worse. The ability to form extensive intermolecular H-bonding networks along the alkyl chains appears to play a key role in promoting fiber growth and, thus, gelation. In toto, the results demonstrate how the efficiency of gelation can be modulated by very small structural changes and also suggest how other structural modifications may be exploited to create efficient gelators.

  10. Large enhancements in gelation behavior of wheat gliadins by incorporation of low concentrations of methylcellulose

    Institute of Scientific and Technical Information of China (English)

    Yi Hu Song; Ling Fang Li; Qiang Zheng

    2009-01-01

    Influence of non-gelling methylcellulose (MC) on gelation behavior of wheat gliadins in 13 wt% alkaline propanol/water (50:50,v/v) solution was investigated using dynamic theological time sweep test.Increasing MC concentration (CMc) up to CMC = 1 wt%caused a significant reduction in gelation time (tgel) of the solution and an increase in loss tangent (tan δ) value of the resultant gel at T< 30 ℃.

  11. Gelation-driven Dynamic Systemic Resolution: in situ Generation and Self-Selection of an Organogelator

    Science.gov (United States)

    Hu, Lei; Zhang, Yang; Ramström, Olof

    2015-06-01

    An organogelator was produced and identified from a dynamic imine system, resolved and amplified by selective gelation. The formation of the organogel was monitored in situ by 1H NMR, showing the existence of multiple reversible reactions operating simultaneously, and the redistribution of the involved species during gelation. The formed organogelator proved effective with a range of organic solvents, including DMSO, toluene, and longer, linear alcohols.

  12. Highly Fluorescent Non-Conventional Boron-Difluoride-Based π Organogel with Gelation-Assisted Piezochromism.

    Science.gov (United States)

    Wang, Sa; Lan, Haichuang; Xiao, Shuzhang; Tan, Ronghua; Lu, Yunxiang

    2017-01-17

    Triphenylamine-functionalized boron 2-(2'-pyridyl)imidazole complex bearing no alkyl chains or H-bond unit was found to be able to gelate a series of solvents, and the balanced intermolecular π-π interactions play an important role in its supramolecular self-assembly. The gelator molecule is piezochromic, and the dried gel responded to pressure more sensitively than regular crystalline powder.

  13. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    DEFF Research Database (Denmark)

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus

    2017-01-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D...

  14. Synthesis of new isoxazoline-based acidic amino acids and investigation of their affinity and selectivity profile at ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Pinto, Andrea; Conti, Paola; Grazioso, Giovanni;

    2011-01-01

    The synthesis of four new isoxazoline-based amino acids being analogues of previously described glutamate receptor ligands is reported and their affinity for ionotropic glutamate receptors is analyzed in comparison with that of selected model compounds. Molecular modelling investigations have been...

  15. Alginate gelation-induced cell death during laser-assisted cell printing.

    Science.gov (United States)

    Gudapati, Hemanth; Yan, Jingyuan; Huang, Yong; Chrisey, Douglas B

    2014-09-01

    Modified laser-induced forward transfer has emerged as a promising bioprinting technique. Depending on the operating conditions and cell properties, laser cell printing may cause cell injury and even death, which should be carefully elucidated for it to be a viable technology. This study has investigated the effects of alginate gelation, gelation time, alginate concentration, and laser fluence on the post-transfer cell viability of NIH 3T3 fibroblasts. Sodium alginate and calcium chloride are used as the gel precursor and gel reactant solution to form cell-laden alginate microspheres. It is found that the effects of gelation depend on the duration of gelation. Two-minute gelation is observed to increase the cell viability after 24 h incubation, mainly due to the protective cushion effect of the forming gel membrane during droplet landing. Despite the cushion effect from 10 min gelation, it is observed that the cell viability decreases after 24 h incubation because of the forming thick gel membrane that reduces nutrient and oxygen diffusion from the culture medium. In addition, the cell viability after 24 h incubation decreases as the laser fluence or alginate concentration increases.

  16. Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Francotte, Pierre; Pickering, Darryl S

    2016-01-01

    The 1,2,4-benzothiadiazine 1,1-dioxide type of positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) are promising lead compounds for the treatment of cognitive disorders, e.g., Alzheimer’s disease. The modulators bind in a cleft formed by the interface of two neighboring.......5 (4) and 4.8 (5). Thus, the dissociation constants (Kd, μM) of 4 (11.2) and 5 (0.16) are similar to those of 2 (5.6) and 3 (0.35). Functionally, 4 and 5 potentiated responses of 10 μM L-glutamate at homomeric rat GluA2(Q)i receptors with EC50 values of 67.3 and 2.45 μM, respectively. The binding mode...

  17. Influence of oligoguluronates on alginate gelation, kinetics, and polymer organization.

    Science.gov (United States)

    Jørgensen, Tor Erik; Sletmoen, Marit; Draget, Kurt I; Stokke, Bjørn T

    2007-08-01

    Structural polysaccharides of the alginate family form gels in aqueous Ca2+-containing solutions by lateral association of chain segments. The effect of adding oligomers of alpha-l-guluronic acid (G blocks) to gelling solutions of alginate was investigated using rheology and atomic force microscopy (AFM). Ca-alginate gels were prepared by in situ release of Ca2+. The gel strength increased with increasing level of calcium saturation of the alginate and decreased with increasing amount of free G blocks. The presence of free G blocks also led to an increased gelation time. The gel point and fractal dimensionalities of the gels were determined based on the rheological characterization. Without added free G blocks the fractal dimension of the gels increased from df = 2.14 to df = 2.46 when increasing [Ca2+] from 10 to 20 mM. This increase was suggested to arise from an increased junction zone multiplicity induced by the increased concentration of calcium ions. In the presence of free G blocks (G block/alginate = 1/1) the fractal dimension increased from 2.14 to 2.29 at 10 mM Ca2+, whereas there was no significant change associated with addition of G blocks at 20 mM Ca2+. These observations indicate that free G blocks are involved in calcium-mediated bonds formed between guluronic acid sequences within the polymeric alginates. Thus, the added oligoguluronate competes with the alginate chains for the calcium ions. The gels and pregel situations close to the gel point were also studied using AFM. The AFM topographs indicated that in situations of low calcium saturation microgels a few hundred nanometers in diameter develop in solution. In situations of higher calcium saturation lateral association of a number of alginate chains are occurring, giving ordered fiber-like structures. These results show that G blocks can be used as modulators of gelation kinetics as well as local network structure formation and equilibrium properties in alginate gels.

  18. Short-term sleep deprivation impairs spatial working memory and modulates expression levels of ionotropic glutamate receptor subunits in hippocampus.

    Science.gov (United States)

    Xie, Meilan; Yan, Jie; He, Chao; Yang, Li; Tan, Gang; Li, Chao; Hu, Zhian; Wang, Jiali

    2015-06-01

    Hippocampus-dependent learning memory is sensitive to sleep deprivation (SD). Although the ionotropic glutamate receptors play a vital role in synaptic plasticity and learning and memory, however, whether the expression of these receptor subunits is modulated by sleep loss remains unclear. In the present study, western blotting was performed by probing with specific antibodies against the ionotropic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluA1, GluA2, GluA3, and against the N-methyl-d-aspartate (NMDA) glutamate receptor subunits GluN1, GluN2A, GluN2B. In hippocampus, down regulation of surface GluA1 and GluN2A surface expression were observed in both SD groups. However, surface expression level of GluA2, GluA3, GluN1 and GluN2B was significantly up-regulated in 8h-SD rats when compared to the 4h-SD rats. In parallel with the complex changes in AMPA and NMDA receptor subunit expressions, we found the 8h-SD impaired rat spatial working memory in 30-s-delay T-maze task, whereas no impairment of spatial learning was observed in 4h-SD rats. These results indicate that sleep loss alters the relative expression levels of the AMPA and NMDA receptors, thus affects the synaptic strength and capacity for plasticity and partially contributes to spatial memory impairment. Copyright © 2015. Published by Elsevier B.V.

  19. Preparation and characterization of alginate-gelatin microencapsulated Bacillus subtilis SL-13 by emulsification/internal gelation.

    Science.gov (United States)

    Tu, Liang; He, Yanhui; Yang, Hongbing; Wu, Zhansheng; Yi, Lijuan

    2015-01-01

    Gelatin was blended with sodium alginate (NaALG) to obtain a novel microbial fungicide, and dispersed micron Bacillus subtilis SL-13 microspheres prepared by emulsification/internal gelation method. Microscopic examination revealed that microcapsules were nearly spherical in shape. Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction confirmed that the electrostatic interaction was occurred when gelatin added into NaALG. The maximum encapsulation efficiency was 93.44% at a gelatin concentration of 1.5%. Particle size, swelling, and biodegradation of beads increased with gelatin content increase. Furthermore, the viability of encapsulated SL-13 could be preserved at more than 10(8) CFU/mL after 120 d storage at 25 °C. The number of viable cells released from microcapsules presented an initial rapid increase followed by a gradual increase, and reached the maximum as 10(10) CFU/mL on day 35. Thus, it is feasible to prepare uniform, rounded shape, and well-dispersed micron microcapsules of SL-13 via emulsification/internal gelation using NaALG and gelatin composites. This encapsulation strategy could be considered as a potential alternative to future applications in the agricultural industry.

  20. Aggregation and Gelation of Aromatic Polyamides with Parallel and Anti-parallel Alignment of Molecular Dipole Along the Backbone

    Science.gov (United States)

    Zhu, Dan; Shang, Jing; Ye, Xiaodong; Shen, Jian

    2016-12-01

    The understanding of macromolecular structures and interactions is important but difficult, due to the facts that a macromolecules are of versatile conformations and aggregate states, which vary with environmental conditions and histories. In this work two polyamides with parallel or anti-parallel dipoles along the linear backbone, named as ABAB (parallel) and AABB (anti-parallel) have been studied. By using a combination of methods, the phase behaviors of the polymers during the aggregate and gelation, i.e., the forming or dissociation processes of nuclei and fibril, cluster of fibrils, and cluster-cluster aggregation have been revealed. Such abundant phase behaviors are dominated by the inter-chain interactions, including dispersion, polarity and hydrogen bonding, and correlatd with the solubility parameters of solvents, the temperature, and the polymer concentration. The results of X-ray diffraction and fast-mode dielectric relaxation indicate that AABB possesses more rigid conformation than ABAB, and because of that AABB aggregates are of long fibers while ABAB is of hairy fibril clusters, the gelation concentration in toluene is 1 w/v% for AABB, lower than the 3 w/v% for ABAB.

  1. High intensity ultrasound modified ovalbumin: Structure, interface and gelation properties.

    Science.gov (United States)

    Xiong, Wenfei; Wang, Yuntao; Zhang, Chunlan; Wan, Jiawei; Shah, Bakht Ramin; Pei, Yaqiong; Zhou, Bin; Li, Jin; Li, Bin

    2016-07-01

    Influence of high intensity ultrasound (HIUS) on the structure and properties of ovalbumin (OVA) were investigated. It was found that the subunits and secondary structure of OVA did not change significantly with HIUS treatment from the electrophoretic patterns and circular dichroism (CD) spectrum. The amount of free sulfhydryl groups increased and intrinsic fluorescence spectra analysis indicated changes in the tertiary structure and partial unfold of OVA after sonication increased. Compared with the untreated OVA, HIUS treatment increased the emulsifying activity and foaming ability, and decreased interface tension (oil-water and air-water interface), which due to the increased surface hydrophobicity and decreased the surface net charge in OVA, while the emulsifying and foaming stability had no remarkable differences. The increased particle size may be attributed to formation of protein aggregates. Moreover, the gelation temperatures of HIUS-treated samples were higher than the untreated OVA according to the temperature sweep model rheology, and this effect was consistent with the increased in surface hydrophobicity for ultrasound treated OVA. These changes in functional properties of OVA would promote its application in food industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Gelation of soybean protein and polysaccharides delays digestion.

    Science.gov (United States)

    Hu, Bing; Chen, Qing; Cai, Qimeng; Fan, Yun; Wilde, Peter J; Rong, Zhen; Zeng, Xiaoxiong

    2017-04-15

    Xanthan gum and carrageenan, representing the medium and highly negatively charged polysaccharides, were heated respectively together with soybean protein isolate (SPI) at different biopolymer ratios. Upon mixing with simulated stomach juice (SSJ), the xanthan-SPI and carrageenan-SPI at biopolymer ratios higher than 0.01 leads to self-assembled gelation immediately. Stronger gel is formed under higher biopolymer ratios. Highly negatively charged carrageenan forms a stronger gel than that composed with xanthan gum. SDS-PAGE results show the digestibility of SPI is delayed after incorporation with the polysaccharides, which is enhanced with the increase of the biopolymer mass ratios. And the polysaccharide with higher negative charge has stronger potential in delaying the digestion of SPI. Furthermore, the microstructure of the xanthan-SPI and carrageenan-SPI gel before and after simulated stomach digestion was characterized by scanning electron microscope (SEM), which also confirms that the gel delays the digestion of soybean protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Thermal gelation of mixed egg yolk/kappa-carrageenan dispersions.

    Science.gov (United States)

    Aguilar, J M; Cordobés, F; Raymundo, A; Guerrero, A

    2017-04-01

    This study aims to evaluate the effect of gum content and pH on the thermal gelation of mixed egg yolk/κ-carrageenan (EY/κC) dispersions, monitored by linear viscoelastic measurements. Heat processing induces dramatic changes in the microstructure and viscoelastic properties of EY/κC systems, which may be attributed to a multistage mechanism that yields an interparticle gel network. An increase in κC content generally induces an enhancement in viscoelasticity. A reduction in pH hinders this enhancement and causes an anticipation of the multistage process, which confirms the importance of the electrostatic interactions of EY/κC dispersions. The viscoelastic properties of EY/κC gels generally fit a master mechanical spectrum, which suggests that the protein matrix generally dominates the microstructure of EY/κC gels. However, SEM images reveal formation of a κC network at low pH, at which some κC autohydrolysis may also play a role. Electrostatic attractions seem to favour interactions among EY aggregates and κC into the carrageenan network.

  4. Flow-induced gelation of living (micellar) polymers

    Science.gov (United States)

    Bruinsma, Robijn; Gelbart, William M.; Ben-Shaul, Avinoam

    1992-01-01

    The effect of shear velocity gradients on the size (L) of rodlike micelles in dilute and semidilute solution is considered. A kinetic equation is introduced for the time-dependent concentration of aggregates of length L, consisting of 'bimolecular' combination processes L + L-prime yield (L + L-prime) and unimolecular fragmentations L yield L + (L - L-prime). The former are described by a generalization (from spheres to rods) of the Smoluchowski mechanism for shear-induced coalesence of emulsions, and the latter by incorporating the tension-deformation effects due to flow. Steady-state solutions to the kinetic equation are obtained, with the corresponding mean micellar size evaluated as a function of the Peclet number P (i.e., the dimensionless ratio of the flow rate and the rotational diffusion coefficient). For sufficiently dilute solutions, only a weak dependence of the micellar size on P is found. In the semidilute regime, however, an apparent divergence in the micellar size at P of about 1 suggests a flow-induced first-order gelation phenomenon.

  5. Gelation in mixtures of polymers and bidisperse colloids

    Science.gov (United States)

    Pandey, Rahul; Conrad, Jacinta C.

    2016-01-01

    We investigated the effects of varying the volume fraction of large particles (r ) on the linear rheology and microstructure of mixtures of polymers and bidisperse colloids, in which the ratio of the small and large particle diameters was α =0.31 or α =0.45 . Suspensions formulated at a total volume fraction of ϕT=0.15 and a constant concentration of polymer in the free volume c /c*≈0.7 contained solid-like gels for small r and fluids or fluids of clusters at large r . The solid-like rheology and microstructure of these suspensions changed little with r when r was small, and fluidized only when r >0.8 . By contrast, dense suspensions with ϕT=0.40 and α =0.31 contained solid-like gels at all concentrations of large particles and exhibited only modest rheological and microstructural changes upon varying the volume fraction of large particles. These results suggest that the effect of particle-size dispersity on the properties of colloid-polymer mixtures are asymmetric in particle size and are most pronounced near a gelation boundary.

  6. Gelation of charged catanionic vesicles prepared by a semispontaneous process.

    Science.gov (United States)

    Huang, Zheng-Lin; Hong, Jhen-Yi; Chang, Chien-Hsiang; Yang, Yu-Min

    2010-02-16

    Various stable charged catanionic vesicles with mean zeta-potential values from +59 mV to -96 mV were successfully prepared from an ion-pair amphiphile (dodecyltrimethylammonium-dodecylsulfate, DTMA-DS) and different amounts of the component ionic surfactants (dodecyltrimethylammonium bromide and sodium dodecyl sulfate) by using a simple semispontaneous process with the aid of cosolvent (1-propanol) addition in water. With the ensuring positively and negatively charged catanionic vesicles, gelation of them by four water-soluble polymers with various charge and hydrophobic characteristics was systematically studied by the tube inversion and rheological characteristic analyses. Four phase maps, which show regions of phase separation, viscous solution, and gel by varying the vesicle composition and polymer content, were thereby constructed. Furthermore, the experimental results of the relaxation time and the storage modulus at 1 Hz for the viscous solutions and gel samples revealed that the interactions at play between charged catanionic vesicles and the water-soluble polymers are of electrostatic and hydrophobic origin. The phase maps and the rheological properties obtained for mixtures of charged catanionic vesicles and polymers may provide useful information for the potential application of catanionic vesicles in mucosal or transdermal delivery of drugs.

  7. In situ gelation of Al(III)-4-tert-butylpyridine based metal-organic gel electrolyte for efficient quasi-solid-state dye-sensitized solar cells

    Science.gov (United States)

    Dong, Yu-Jie; Rao, Hua-Shang; Cao, Yang; Chen, Hong-Yan; Kuang, Dai-Bin; Su, Cheng-Yong

    2017-03-01

    A novel Al(III)-4-tert-butylpyridine (TBP) gel electrolyte is successfully achieved by a simple and facile in situ gelation method and applied as quasi-solid-state electrolyte for dye-sensitized solar cells (DSSCs). Through directly adding Al3+ into the TBP solution, the induced hydrolysis of Al3+ and the coordination interaction between Al3+ and TBP facilitates the formation of metal-organic gels(MOGs), in which such bi-functional TBP molecules will act as both gelators and active additives to tailor the performance of electrolytes. In addition, the gel electrolytes can largely preserve the properties of liquid electrolyte and penetrate well into the TiO2 photoanode film. Both Al3+ and TBP in the gel electrolytes affect the performance of cells. The Jsc of gel electrolytes decrease with the increasing concentration of gelators due to the enhanced strength and viscosity of the gel electrolytes, while the competition between Al3+ and TBP causes conduction band edge shift and electron recombination, leading to a variation of Voc. Herein, by tuning the molar ratio of Al3+/TBP, an impressive conversion efficiency of 8.25% is obtained, indicating a promising protocol of preparing MOGs not only to achieve high performance in solar cells, but also opens up extended scopes in other energy-related fields such as catalysis.

  8. Microphase Separation and Gelation of Methylcellulose in the Presence of Gallic Acid and NaCl as an In Situ Gel-Forming Drug Delivery System.

    Science.gov (United States)

    Sangfai, Tanatchaporn; Tantishaiyakul, Vimon; Hirun, Namon; Li, Lin

    2016-05-11

    Novel hydrogels of methylcellulose (MC) with gallic acid (GA) and NaCl were developed for an in situ gel-forming delivery system. Plain MC and GA/NaCl/MC were characterized using micro-differential scanning calorimetry (micro-DSC), rheological and turbidity methods. The gelation temperatures of MC were reduced to body temperature with adding GA/NaCl. GA and NaCl caused slightly different effects on the gelation/degelation temperatures during heating/cooling, respectively, based on the different sensitivities of these three techniques. The gelation mechanism was investigated by UV spectrophotometry, and the hydrophobic interaction between the aromatic ring of GA and MC was verified. The NaCl/MC hydrogel had smaller micropores than GA/MC and MC, indicating a greater cross-linked density. Doxycycline (DX) was loaded into the systems and demonstrated a synergistic effect of DX/GA. Both GA and DX exhibited a sustained release. The hydrogel of GA/4NaCl/MC could be potentially used for the in situ delivery of DX for deep wound healing.

  9. Slow-release Permanganate Gel (SRP-G) for Groundwater Remediation: Spreading, Gelation, and Release in Porous and Low-Permeability Media

    Science.gov (United States)

    Lee, E. S.; Hastings, J.; Kim, Y.

    2015-12-01

    Dense nonaqueous phase liquids (DNAPLs) like trichloroethylene (TCE) serve as the most common form of groundwater pollution in the world. Pore-plugging by the solid oxidation product MnO2 and limited lateral dispersion of the oxidant are two common problems with existing in-situ chemical oxidation (ISCO) schemes that could be alleviated through the development of a delayed gelation method for oxidant delivery. The objective of the current study was to further develop and optimize slow-release permanganate gel (SRP-G), a solution comprising colloidal silica and KMnO4, as a novel low-cost treatment option for large and dilute TCE plumes in groundwater. Batch tests showed that gelation could be delayed through manipulation of KMnO4 concentration, pH, and silica particle size of the SRP-G solution. In flow-through columns and flow-tanks filled with saturated sands, silica concentration had little effect on the gelation lag stage and release rate, but increasing silica concentration was associated with increasing release duration. When compared to a pure KMnO4 solution, visual observations and [MnO4-] measurements from flow tank tests demonstrated that the SRP-G prolonged the release duration and enhanced lateral spreading of the oxidant.

  10. In Situ Gelation of Poly(vinylidene fluoride) Nanospheres for Dye-Sensitized Solar Cells: The Analysis on the Efficiency Enhancement upon Gelation.

    Science.gov (United States)

    Ha, Su-Jin; Lee, Sang Goo; Ha, Jong-Wook; Moon, Jun Hyuk

    2016-08-09

    The in situ gelation that utilizes the dissolution of polymers inside the cell is allowed high concentration polymer gel without concerns regarding high viscous electrolyte incorporation into the cell as in the conventional approach. We demonstrate the in situ gelation of polymer composite electrolytes using poly(vinylidene fluoride) nanospheres (PVdF NSs). The PVdF NSs were synthesized by high pressure emulsion polymerization using gaseous vinylidene fluoride monomers. Compared to the liquid electrolyte (LE) DSCs without PVdF gelation, the PVdF polymer gel electrolyte (PGE) DSCs displayed higher η than the LE DSCs; specifically, the 10 wt % PVdF PGE DSCs display 8.1% of the η, while the LE DSCs only display 6.5%. We characterized the effect of PVdF PGE on the photovoltaic parameters in detail. We also compared the long-term stability of DSCs containing LE and PVdF PGE. The DSCs with PVdF PGE exhibited high stability compared to the LE DSCs, similar to a conventional PGE system. We believe that this facile in situ gelation approach could be utilized for not only the practical application of polymer gel electrolytes DSCs but also for various energy-storage devices.

  11. Small-angle neutron scattering study of structure and kinetics of temperature-induced protein gelation.

    Science.gov (United States)

    Chodankar, S; Aswal, V K; Kohlbrecher, J; Vavrin, R; Wagh, A G

    2009-02-01

    The phase diagram, structural evolution, and kinetics of temperature-induced protein gelation of protein Bovine Serum Albumin (BSA) have been studied as a function of solution pH and protein concentration. The protein gelation temperature represents the onset of turbidity in the protein solution, which increases significantly with increasing pH beyond the isoelectric pH of the protein molecule. On the other hand, the gelation temperature decreases with an increase in protein concentration only in the low-protein-concentration regime and shows a small increasing trend at higher protein concentrations. The structural evolution and kinetics of protein gelation have been studied using small-angle neutron scattering. The structure of the protein molecule remains stable up to temperatures very close to the gelation temperature. On increasing the temperature above the gelation temperature, the protein solution exhibits a fractal structure, an indication of gel formation due to aggregation. The fractal dimension of the gel increases with increasing temperature, suggesting an increase in branching between the aggregates, which leads to stronger gels. The increase in both solution pH and protein concentration is found to delay the growth in the fractal structure and its saturation. The kinetics of gelation has been studied using the temperature-jump process of heating. It is found that the structure of the protein gels remains invariant after the heating time ( approximately 1 min), indicating a rapid formation of gel structure within this time. The protein gels prepared through gradual and temperature-jump heating routes do not always show the same structure. In particular, at higher temperatures (e.g., 85 degrees C ), while gradual heating shows a fractal structure, there is collapse of such fractal structure during temperature-jump heating.

  12. Factors Affecting Alkaline Sodium Silicate Gelation for In-Depth Reservoir Profile Modification

    Directory of Open Access Journals (Sweden)

    Aly A. Hamouda

    2014-01-01

    Full Text Available Alkaline sodium silicate (Na-silicate is environment-friendly and possesses water-like viscosity during the injection stage for in-depth reservoir treatment to enhance sweep efficiency. Gel setting time (tg and gel strength are interrelated. Factors that accelerate tg are Na-silicate content (wt%, low pH, presence of divalent ions and temperature. Pressure drop across the gel accelerates syneresis; however, the gel appeared to remain intact. Presence of Ca2+ and Mg2+ ions is shown to increase gel strength. With a Na-silicate content of 4.5 wt%, for example, at a pH of 10.3 and a temperature of 20 °C, gel strength almost tripled and was reached about eight times faster at the combined tested concentration of 0.009 M, based on the average effect from the coexistence of both ions. Low-salinity water (LSW has an ion composition of 25-fold diluted seawater, did not show precipitation, and could accordingly be a candidate for a pre-flush before the injection of a Na-silicate solution in the event of a field application. This is important since LSW for enhancing oil recovery is a popular method in oil industry. A suggested predictive tool (simple graphical method to estimate the effect of different factors on gelation time and gel strength is presented.

  13. Importance of casein micelle size and milk composition for milk gelation.

    Science.gov (United States)

    Glantz, M; Devold, T G; Vegarud, G E; Lindmark Månsson, H; Stålhammar, H; Paulsson, M

    2010-04-01

    The economic output of the dairy industry is to a great extent dependent on the processing of milk into other milk-based products such as cheese. The yield and quality of cheese are dependent on both the composition and technological properties of milk. The objective of this study was to evaluate the importance and effects of casein (CN) micelle size and milk composition on milk gelation characteristics in order to evaluate the possibilities for enhancing gelation properties through breeding. Milk was collected on 4 sampling occasions at the farm level in winter and summer from dairy cows with high genetic merit, classified as elite dairy cows, of the Swedish Red and Swedish Holstein breeds. Comparisons were made with milk from a Swedish Red herd, a Swedish Holstein herd, and a Swedish dairy processor. Properties of CN micelles, such as their native and rennet-induced CN micelle size and their zeta-potential, were analyzed by photon correlation spectroscopy, and rennet-induced gelation characteristics, including gel strength, gelation time, and frequency sweeps, were determined. Milk parameters of the protein, lipid, and carbohydrate profiles as well as minerals were used to obtain correlations with native CN micelle size and gelation characteristics. Milk pH and protein, CN, and lactose contents were found to affect milk gelation. Smaller native CN micelles were shown to form stronger gels when poorly coagulating milk was excluded from the correlation analysis. In addition, milk pH correlated positively, whereas Mg and K correlated negatively with native CN micellar size. The milk from the elite dairy cows was shown to have good gelation characteristics. Furthermore, genetic progress in relation to CN micelle size was found for these cows as a correlated response to selection for the Swedish breeding objective if optimizing for milk gelation characteristics. The results indicate that selection for smaller native CN micelles and lower milk pH through breeding would

  14. Effects of high pressure modification on conformation and gelation properties of myofibrillar protein.

    Science.gov (United States)

    Zhang, Ziye; Yang, Yuling; Zhou, Peng; Zhang, Xing; Wang, Jingyu

    2017-02-15

    The effects of high pressure (HP) treatment (100-500MPa) on conformation and gelation properties of myofibrillar protein (MP) were investigated. As pressure increased (0.1-500MPa), α-helix and β-sheet changed into random coil and β-turn, proteins unfolded to expose interior hydrophobic and sulfhydryl groups, therefore surface hydrophobicity and formation of disulfide bonds were strengthened. At 200MPa, protein solubility and gel hardness reached their maximum value, particle size had minimum value, and gel microstructure was dense and uniform. DSC data showed that actin and myosin completely denatured at 300MPa and 400MPa, respectively. Rheological modulus (G' and G″) of HP-treated MP decreased as pressure increased during thermal gelation. Moderate HP treatment (≦200MPa) strengthened gelation properties of MP, while stronger HP treatment (⩾300MPa) weakened the gelation properties. 200MPa was the optimum pressure level for modifying MP conformation to improve its gelation properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    Science.gov (United States)

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Microscopic Origin of the Hofmeister Effect in Gelation Kinetics of Colloidal Silica.

    Science.gov (United States)

    van der Linden, Marte; Conchúir, Breanndán O; Spigone, Elisabetta; Niranjan, Arun; Zaccone, Alessio; Cicuta, Pietro

    2015-08-06

    The gelation kinetics of silica nanoparticles is a central process in physical chemistry, yet it is not fully understood. Gelation times are measured to increase by over 4 orders of magnitude, simply changing the monovalent salt species from CsCl to LiCl. This striking effect has no microscopic explanation within current paradigms. The trend is consistent with the Hofmeister series, pointing to short-ranged solvation effects not included in the standard colloidal (DLVO) interaction potential. By implementing a simple form for short-range repulsion within a model that relates the gelation timescale to the colloidal interaction forces, we are able to explain the many orders of magnitude difference in the gelation times at fixed salt concentration. The model allows us to estimate the magnitude of the non-DLVO hydration forces, which dominate the interparticle interactions on the length scale of the hydrated ion diameter. This opens the possibility of finely tuning the gelation time scale of nanoparticles by just adjusting the background electrolyte species.

  17. Synergistic effects of mixed salt on the gelation of κ-carrageenan.

    Science.gov (United States)

    Nguyen, Bach T; Nicolai, Taco; Benyahia, Lazhar; Chassenieux, Christophe

    2014-11-04

    The effect of the addition of calcium or sodium ions on the potassium induced gelation of κ-carrageenan (κ-car) is investigated using oscillatory shear rheology and turbidimetry. Both the gelation kinetics and the steady state shear moduli are investigated. Gelation in mixed salt solutions is compared with that in pure potassium and calcium solutions. It is shown that the elastic shear modulus increases with increasing pure KCl concentration, but decreases with increasing pure CaCl2 concentration. In mixed salts, gelation of κ-car is induced by potassium and addition of CaCl2 leads to an increase of the elastic modulus with increasing CaCl2 concentration. κ-Car gelled at low mixed salt concentrations for which it remained liquid in pure salt. At equivalent ionic strengths, the effect of adding NaCl on potassium induced gelation is much weaker. In pure KCl solutions, κ-car gels are transparent, but in pure CaCl2 they become increasingly turbid with increasing CaCl2 concentration. The turbidity of gels formed in mixed salts is intermediate.

  18. Effects of salt on the gelation mechanism of a D-sorbitol-based hydrogelator.

    Science.gov (United States)

    Li, Jingjing; Fan, Kaiqi; Niu, Libo; Li, Yuanchao; Song, Jian

    2013-05-16

    The effect of salt on the gelatinization of 2,4-(3,4-dichlorobenzylidene)-D-sorbitol (DCBS), a novel low-molecular-weight gelator, was studied. DCBS showed pronounced hydrogelation and the electron micrographs indicated that the hydrogels consists of globular aggregates. Addition of NaCl to the aqueous medium accelerated the gelation process and also caused the gel's morphology to change from globular to long fibers. In addition, the thermal properties of the hydrogels were improved with the addition of NaCl. UV-vis and fluorescence emission spectra showed that extensive aggregation of the phenyl rings was responsible for the gelation. The presence of NaCl induced a red shift in the emission peaks of DCBS and a decrease of the pyrene polarity index I1/I3 in the gels, which indicated that there was more π-π stacking in the hydrogels with NaCl than in the gels without NaCl. Variable-temperature (1)H NMR spectra further demonstrated that the π-π interactions were enhanced by NaCl. FTIR studies showed that hydrogen bonding was also a contributing factor in the gelation process. Wide-angle X-ray diffraction (WXRD) showed that the hydrogels had a layered structure which did not change with the addition of NaCl. Density functional theory (DFT) calculations indicated the possible molecular packing of the gelator in the nanofibers.

  19. An efficient phase-selective gelator for aromatic solvents recovery based on a cyanostilbene amide derivative.

    Science.gov (United States)

    Zhang, Yuping; Ma, Yao; Deng, Mengyu; Shang, Hongxing; Liang, Chunshuang; Jiang, Shimei

    2015-07-07

    Two novel low molecular weight organogelators (LMOGs) 1 and 2 composed of a cholesteryl group, an amide group and various terminal cyanostilbene moieties were synthesized. They could form stable gels in p-xylene. In particular, 2 with more extended π-conjugation length showed remarkable gelation ability in many aromatic solvents, chloroform and chloroform-containing mixed solvents at a relatively low concentration. FT-IR and XRD spectra indicated that the difference between 1 and 2 in the gelation properties may result from the deviation of the intermolecular hydrogen bonding and π–π stacking as driving forces for the formation of the gels. Significantly, 2 can function as an efficient room-temperature phase-selective gelator (PSG) for potential application in the separation and recovery of various aromatic solvents from its mixture with water. Meanwhile, the gelator can be easily recovered and reused several times. Furthermore, the phase-selective gelation properties of 2 can provide a simple and feasible approach for the removal of the rhodamine B (RhB) dye from water.

  20. Universal growth of microdomains and gelation transition in agar hydrogels.

    Science.gov (United States)

    Boral, Shilpi; Saxena, Anita; Bohidar, H B

    2008-03-27

    Investigations were carried out on aqueous sols and gels of agar (extracted from red seaweed Gelidiella acerosa) to explore the growth of microdomains en route to gelation. Isothermal frequency sweep studies on gel samples revealed master plots showing power-law dependence of gel elastic modulus, |G*|, on oscillation frequency, omega as |G*| approximately omegan, independent of temperature, with 0.5universally fitted to RS approximately epsilon(-3/5) and RL approximately epsilon-1/3 (epsilon=(T/Tg-1), T>Tg). The S(q,t) behavior close to the gel transition point (Tg approximately (38+/-3 degrees C determined from rheology) followed a stretched exponential function: S(t)=A exp(-t/ts)beta. The beta factor increased from 0.25 to 1 as the gel temperature approached 25 degrees C from Tg, and relaxation time, ts, showed a peak at T approximately 30 degrees C. The SLS data (in the sol state) suggested the scaling of scattered intensity, Is(q) approximately epsilon(-gamma) (epsilon=(T/Tg-1), T>Tg) with gamma=0.13+/-0.03, and the presence of two distinct domains characterized by a Guinier regime (low q) and a power-law regime (high q). Close to and above Tg (+2 degrees C), IS(q) scaled with q as Is(q) approximately q(-alpha) with alpha=2.2+/-0.2, which decreased to 1.4+/-1 just below Tg (-2 degrees C), implying a coil-helix transition for 0.2% (w/v) and 0.3% (w/v) samples. For a 0.01% sample, alpha=3.5+/-0.5 which indicated the presence of spherical microgels.

  1. Freeze gelated porous membranes for periodontal tissue regeneration.

    Science.gov (United States)

    Qasim, Saad B; Delaine-Smith, Robin M; Fey, Tobias; Rawlinson, Andrew; Rehman, Ihtesham Ur

    2015-09-01

    Guided tissue regeneration (GTR) membranes have been used for the management of destructive forms of periodontal disease as a means of aiding regeneration of lost supporting tissues, including the alveolar bone, cementum, gingiva and periodontal ligaments (PDL). Currently available GTR membranes are either non-biodegradable, requiring a second surgery for removal, or biodegradable. The mechanical and biofunctional limitations of currently available membranes result in a limited and unpredictable treatment outcome in terms of periodontal tissue regeneration. In this study, porous membranes of chitosan (CH) were fabricated with or without hydroxyapatite (HA) using the simple technique of freeze gelation (FG) via two different solvents systems, acetic acid (ACa) or ascorbic acid (ASa). The aim was to prepare porous membranes to be used for GTR to improve periodontal regeneration. FG membranes were characterized for ultra-structural morphology, physiochemical properties, water uptake, degradation, mechanical properties, and biocompatibility with mature and progenitor osteogenic cells. Fourier transform infrared (FTIR) spectroscopy confirmed the presence of hydroxyapatite and its interaction with chitosan. μCT analysis showed membranes had 85-77% porosity. Mechanical properties and degradation rate were affected by solvent type and the presence of hydroxyapatite. Culture of human osteosarcoma cells (MG63) and human embryonic stem cell-derived mesenchymal progenitors (hES-MPs) showed that all membranes supported cell proliferation and long term matrix deposition was supported by HA incorporated membranes. These CH and HA composite membranes show their potential use for GTR applications in periodontal lesions and in addition FG membranes could be further tuned to achieve characteristics desirable of a GTR membrane for periodontal regeneration.

  2. [The viscosity of Thiokol impression material during gelation (author's transl)].

    Science.gov (United States)

    Araki, Y; Kawakami, M

    1976-09-01

    Viscosity behavior of the impression materials is important property which determines the pressure and its distribution to be exerted on oral soft tissues in relation to the tray design and impression technique. The impression material, however, react to gel so fast to measure the viscosity during the reaction that it is still not completely elucidated. It would be able to seize the viscosity behavior of Thiokol impression material during the gelation unequivocally by retarding the oxidative condensation reaction using weak oxidative, lead monoxide. Based on the equal reactivity of SH groups of Thiokol liquid polymer there is no difference in statistic molecular weight distribution at any degree of the reaction between with lead monoxide and with the other oxidatives now in practical use. The viscosity measurement of the mixture of Thiokol LP-2, lead monoxide, and di-butyl phthalate was performed at the rates of shear ranged from 10(1.5) to 10(3.9) sec-1 at 20 degrees C. The viscosity of the mixture progressively increases after spatulation of the materials but yield value does not appear for the time being before setting, that is, the infinite network forming via the pendant SH groups could not take place until the most of SH groups were consumed, attributed to low concentration of poly-functional prepolymer in the liquid polymer. At early stages of the reaciton the viscosity behavior is approximately Newtonian at lower rates of shear and pseudplastic at higher rates of shear. As the reaction proceeds it becomes pseudplastic even at lower rates of shear.

  3. Gelation of photopolymerized hyaluronic acid grafted with glycidyl methacrylate

    Energy Technology Data Exchange (ETDEWEB)

    Prado, S.S.; Weaver, J.M.; Love, B.J., E-mail: bjlove@umich.edu

    2011-12-01

    Experiments have tracked the ambient gelation of a series of hydrophilic hyaluronic acid (HA) resins grafted with glycidyl methacrylate (GM) and photopolymerized as a function of dose. The resin mixtures range in GMHA concentration between 0.5 and 1.5% w/w in phosphate buffered saline (PBS). Illuminated at 20 mW/cm{sup 2}, the dynamic viscosity ({eta}(t)) has been tracked and characterized using the Boltzmann log-sigmoidal model. A gelled viscosity of {approx} 10 Pa s was determined at 0.5% w/w which rose to {approx} 50 Pa s at or above 1% w/w. More curing agent marginally increased the gel viscosity at each concentration. Time constants associated with viscosity advancement were shortest at [GMHA] = 1.0%; higher concentrations are attributed with lower quantum efficiency when illuminated. Subsequent frequency sweeps replicated already published work using similar GHMA concentrations in PBS. G' values ranged from 100 to 500 Pa over the formulation range with expected sensitivity to GMHA and curing agent concentration. Overall, the sigmoidal model represented this advancing viscosity data well, and further analysis of the physical significance of these model parameters may help in understanding photopolymerization of this complicated formulation more broadly. Highlights: {yields} The ambient dynamic viscosity of photopolymerized GMHA gels has been measured. {yields} 2 physical parameters and two time constants were extracted from the sigmoidal model. {yields} Higher crosslinker content for a fixed GMHA concentration led to higher gel viscosity. {yields} The time to toggle between the initial and final viscosity ranged between 5 and 10 s. {yields} Dynamic frequency sweep tests on cured gels also revealed G' values between 100 and 500 Pa.

  4. A Sugar-Based Gelator for Marine Oil-Spill Recovery.

    Science.gov (United States)

    Vibhute, Amol M; Muvvala, Venkatanarayana; Sureshan, Kana M

    2016-06-27

    Marine oil spills constitute an environmental disaster with severe adverse effects on the economy and ecosystem. Phase-selective organogelators (PSOGs), molecules that can congeal oil selectively from oil-water mixtures, have been proposed to be useful for oil-spill recovery. However, a major drawback lies in the mode of application of the PSOG to an oil spill spread over a large area. The proposed method of using carrier solvents is impractical for various reasons. Direct application of the PSOG as a solid, although it would be ideal, is unknown, presumably owing to poor dispersion of the solid through the oil. We have designed five cheap and easy-to-make glucose-derived PSOGs that disperse in the oil phase uniformly when applied as a fine powder. These gelators were shown to selectively congeal many oils, including crude oil, from oil-water mixtures to form stable gels, which is an essential property for efficient oil-spill recovery. We have demonstrated that these PSOGs can be applied aerially as a solid powder onto a mixture of crude oil and sea water and the congealed oil can then be scooped out. Our innovative mode of application and low cost of the PSOG offers a practical solution to oil-spill recovery.

  5. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process.

    Science.gov (United States)

    Hosseini, Seyede Marzieh; Hosseini, Hedayat; Mohammadifar, Mohammad Amin; Mortazavian, Amir Mohammad; Mohammadi, Abdorreza; Khosravi-Darani, Kianoosh; Shojaee-Aliabadi, Saeedeh; Dehghan, Solmaz; Khaksar, Ramin

    2013-11-01

    In this study, an o/w/o multiple emulsion/ionic gelation method was developed for production of alginate microparticles loaded with Satureja hortensis essential oil (SEO). It was found that the essential oil concentration has significant influence on encapsulation efficiency (EE), loading capacity (LC) and size of microparticles. The values of EE, LC and particle mean diameter were about 52-66%, 20-26%, and 47-117 μm, respectively, when the initial SEO content was 1-3% (v/v) .The essential oil-loaded microparticles were porous, as displayed by scanning electron micrograph. The presence of SEO in alginate microparticles was confirmed by Fourier transform-infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) analyses. SEO-loaded microparticles showed good antioxidant (with DPPH radical scavenging activity of 40.7-73.5%) and antibacterial properties; this effect was greatly improved when the concentration of SEO was 3% (v/v). S. aureus was found to be the most sensitive bacterium to SEO and showed a highest inhibition zone of 304.37 mm(2) in the microparticles incorporated with 3% (v/v) SEO. In vitro release studies showed an initial burst release and followed by a slow release. In addition, the release of SEO from the microparticles followed Fickian diffusion with acceptable release.

  6. Nanoparticle and gelation stabilized functional composites of an ionic salt in a hydrophobic polymer matrix.

    Science.gov (United States)

    Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A Levent; Kizilel, Seda

    2014-01-01

    Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.

  7. Nanoparticle and gelation stabilized functional composites of an ionic salt in a hydrophobic polymer matrix.

    Directory of Open Access Journals (Sweden)

    Selin Kanyas

    Full Text Available Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.

  8. Properties of bioadhesive ketoprofen liquid suppositories: preparation, determination of gelation temperature, viscosity studies and evaluation of mechanical properties using texture analyzer by 4 × 4 factorial design.

    Science.gov (United States)

    Ozgüney, Işık; Kardhiqi, Anita

    2014-12-01

    Development and evaluation of thermosensitive and bioadhesive liquid suppositories containing ketoprofen (KP). This study was conducted to develope thermosensitive and bioadhesive liquid suppositories containing KP using poloxamer and different bioadhesive polymers and to investigate their gelation temperature, viscosity and mechanical properties. Bioadhesive liquid suppositories were prepared by the cold method using poloxamer 407 (P 407), Poloxamer 188 (P 188) and various amounts of different bioadhesive polymers. Their gelation temperatures, viscosity values and mechanical properties were determined using texture analyzer by 4 × 4 factorial design. It was seen that in presence of KP, gelation temperature of formulation P 407/P 188 (4/20%) significantly decreased from 64 to 37.1 °C. It is to be noted that addition of increasing concentrations of bioadhesive polymers lowered gelation temperature and its decrease was highest with addition of Carbopol 934 P (C). Results of texture profile analysis (TPA) showed that formulations containing C have significantly higher hardness and adhesiveness values than other bioadhesive formulations. According to TPA, gel structure of liquid suppository formulation F5, containing P 407/P 188/KP/C (4/20/2.5/0.8%), exhibited the greatest hardness, compressibilty, adhesiveness and besides greatest viscosity. According to mechanical properties and viscosity values, it was concluded that F5 could be a promising formulation.

  9. A NOVEL EOR POLYMER(Ⅰ)——STUDY ON GELATION OF RESORCINOL FORMALDEHYDE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Yinfeng; Stanley McCool; G. Paul Willhite; Don W. Green

    1995-01-01

    Factors affecting the gelation of resorcinol-formaldehyde systems have been examined over variable ranges applicable to oilfield use. Gelation of resorcinol-formaldehyde (RF)system was sensitive to pH,salinity and hardness. Generally,this gel system could be used in fresh water or low salinity brine at pH higher than about 9. The application would require careful monitoring of injection fluids to avoid premature gelation or prolonged shut-in times ,especially under conditions of low salinity and high pH. Salinity and hardness compatibilities of the system were improved by sulfomethylation of resorcinol. Aqueous sulfomethylated resorcinol formaldehyde (SMRF)system could be used in brine with higher salinity and hardness and at a wider pH range of 5-10.

  10. Pyrene appended bile acid conjugates: Synthesis and a structure-gelation property study

    Indian Academy of Sciences (India)

    Shreedhar Bhat; Arto Valkonen; Juha Koivukorpi; Anupama Ambika; Erkki Kolehmainen; Uday Maitra; Kari Rissanen

    2011-07-01

    A wide variety of novel compounds obtained by combining two types of known organogelators, viz., bile acid alkyl amides and pyrene alkanoic acids, were synthesized and screened for their gelation ability. The 3 esters of 1-pyrene butyric acid (PBA) of alkylamides of deoxycholic acid (DCA) turned out to be effective in the gel formation with many organic solvents although the gelation has to be triggered by the addition of a charge transfer (CT) agent 2,4,7-trinitrofluorenone (TNF). The special feature of these molecules is that the organogelation is achieved only after derivatizing the acid moiety of the 1-pyrenealkanoic acids. Additionally, the gelation properties can be fine-tuned by inserting different functional groups at the bile acid side chain. The gels obtained are deep red in colour and optically transparent up to 2% w/v. The SEM studies of the obtained xerogels revealed bundled rod-like morphology without specialized branching.

  11. Factors influencing the gelation and rennetability of camel milk using camel chymosin

    DEFF Research Database (Denmark)

    Hailu, Yonas; Hansen, Egon Bech; Seifu, Eyassu

    2016-01-01

    and decreasing pH. For all samples gelation was initiated at levels of camel milk κ-CN hydrolysis >95%. The gelation time (Tg) of camel milk was significantly reduced (from 717 to 526 s) at 30 °C when the concentration of chymosin was increased, but was independent of chymosin concentration at 40 °C. Reducing p......H also reduced Tg. The gel firmness increased at 40 °C (58 Pa) compared with 30 °C (44 Pa) and effect of CaCl2 addition on the gelation properties of camel milk was found to be dependent on pH; a significant improvement was only found at pH 6.3....

  12. External and internal gelation of pectin solutions: microscopic dynamics versus macroscopic rheology

    Science.gov (United States)

    Secchi, E.; Munarin, F.; Alaimo, M. D.; Bosisio, S.; Buzzaccaro, S.; Ciccarella, G.; Vergaro, V.; Petrini, P.; Piazza, R.

    2014-11-01

    Pectin is a natural biopolymer that forms, in the presence of divalent cations, ionic-bound gels typifying a large class of biological gels stabilized by non-covalent cross-links. We investigate and compare the kinetics of formation and aging of pectin gels obtained either through external gelation via perfusion of free Ca2+ ions, or by internal gelation due to the supply of the same ions from the dissolution of CaCO3 nanoparticles. The microscopic dynamics obtained with photon correlation imaging, a novel optical technique that allows obtaining the microscopic dynamics of the sample while retaining the spatial resolution of imaging techniques, is contrasted with macroscopic rheological measurements at constant strain. Pectin gelation is found to display peculiar two-stage kinetics, highlighted by non-monotonic growth in time of both microscopic correlations and gel mechanical strength. These results are compared to those found for alginate, another biopolymer extensively used in food formulation.

  13. Scalable ionic gelation synthesis of chitosan nanoparticles for drug delivery in static mixers.

    Science.gov (United States)

    Dong, Yuancai; Ng, Wai Kiong; Shen, Shoucang; Kim, Sanggu; Tan, Reginald B H

    2013-05-15

    The purpose of this study is to synthesize chitosan (CS) nanoparticles (NPs) by ionic gelation with tripolyphosphate (TPP) as crossslinker in static mixers. The proposed static mixing technique showed good control over the ionic gelation process and 152-376 nm CS NPs were achieved in a continuous and scalable mode. Increasing the flow rates of CS:TPP solution streams, decreasing the CS concentration or reducing the CS:TPP solution volume ratio led to the smaller particles. Sylicylic acid (SA) was used as a model drug and successfully loaded into the CS NPs during the fabrication process. Our work demonstrates that ionic gelation-static mixing is a robust platform for continuous and large scale production of CS NPs for drug delivery.

  14. External and internal gelation of pectin solutions: microscopic dynamics versus macroscopic rheology.

    Science.gov (United States)

    Secchi, E; Munarin, F; Alaimo, M D; Bosisio, S; Buzzaccaro, S; Ciccarella, G; Vergaro, V; Petrini, P; Piazza, R

    2014-11-19

    Pectin is a natural biopolymer that forms, in the presence of divalent cations, ionic-bound gels typifying a large class of biological gels stabilized by non-covalent cross-links. We investigate and compare the kinetics of formation and aging of pectin gels obtained either through external gelation via perfusion of free Ca(2+) ions, or by internal gelation due to the supply of the same ions from the dissolution of CaCO3 nanoparticles. The microscopic dynamics obtained with photon correlation imaging, a novel optical technique that allows obtaining the microscopic dynamics of the sample while retaining the spatial resolution of imaging techniques, is contrasted with macroscopic rheological measurements at constant strain. Pectin gelation is found to display peculiar two-stage kinetics, highlighted by non-monotonic growth in time of both microscopic correlations and gel mechanical strength. These results are compared to those found for alginate, another biopolymer extensively used in food formulation.

  15. Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3

    NARCIS (Netherlands)

    Paques, J.P.; Sagis, L.M.C.; Rijn, van C.J.M.; Linden, van der E.

    2014-01-01

    Gelled nanospheres of alginate are prepared through a single step technique involving emulsification and gelation. CaCO3 nanoparticles, together with glucono delta-lactone (GDL), are dispersed in an alginate solution, which is subsequently dispersed in an oil phase and followed by gelation of the al

  16. Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3

    NARCIS (Netherlands)

    Paques, J.P.; Sagis, L.M.C.; Rijn, van C.J.M.; Linden, van der E.

    2014-01-01

    Gelled nanospheres of alginate are prepared through a single step technique involving emulsification and gelation. CaCO3 nanoparticles, together with glucono delta-lactone (GDL), are dispersed in an alginate solution, which is subsequently dispersed in an oil phase and followed by gelation of the

  17. General synthesis of β-alanine-containing spider polyamine toxins and discovery of nephila polyamine toxins 1 and 8 as highly potent inhibitors of ionotropic glutamate receptors.

    Science.gov (United States)

    Lucas, Simon; Poulsen, Mette H; Nørager, Niels G; Barslund, Anne F; Bach, Tinna B; Kristensen, Anders S; Strømgaard, Kristian

    2012-11-26

    Certain spiders contain large pools of polyamine toxins, which are putative pharmacological tools awaiting further discovery. Here we present a general synthesis strategy for this class of toxins and prepare five structurally varied polyamine toxins. Electrophysiological testing at three ionotropic glutamate receptor subtypes reveals that two of these, Nephila polyamine toxins 1 (NPTX-1) and 8 (NPTX-8), comprise intriguing pharmacological activities by having subnanomolar IC(50) values at kainate receptors.

  18. Characterization of the fluid and solid components of cyanogel systems during the gelation process

    Science.gov (United States)

    Fortmeyer, Ivy Camille

    The work in this thesis concerns the sol-gel transformation in cyanogel systems comprised of d8 square planar chlorometalates (M=Pd(II), Pt(II)) and d6 octahedral hexacyanometalates (M=Fe(II), Co(III), Ru(II)). The body of this thesis is split into two chapters. The first chapter examines the physical changes in the solvent phase of the sol-gel network, and the second focuses on the polymer backbone of the gel. Studies on the water component of cyanogel systems during the gelation process were carried out with a variety of in situ spectroscopic techniques. The use of high resolution-magic angle spinning nuclear magnetic resonance (HR-MAS NMR) to identify and characterize different water environments was explored, but was ultimately found to disrupt gelation. Standard solution-phase 1H NMR proved sufficient for calculation and qualitative modeling of spin-spin and spin-lattice relaxations, providing distinct spectral markers of the gelation point and subsequent aging process. Vibrational spectroscopy was used to explore the hydrogen bonding environment of the water during gelation. The kinetics of polymerization of the cyanogel backbone was explored using both in situ and ex situ techniques. Data collected by 13C NMR and 195Pt NMR primarily demonstrated first order kinetics, implying a dissociative substitution mechanism at the chlorometalate center. Rate constants for gelation in the presence of various added monopotassium and nitrate salts were calculated. Added chloride was found to significantly slow gelation and was further explored using NMR and vibrational spectroscopy. A mechanism was proposed for the polymerization taking into account the dissociative substitution and the bridging geometries implied by 13C NMR.

  19. Determining Chiral Configuration of Diamines via Contact Angle Measurements on Enantioselective Alanine-Appended Benzene-Tricarboxamide Gelators.

    Science.gov (United States)

    Jung, Sung Ho; Kim, Ka Young; Ahn, Ahreum; Choi, Myong Yong; Jaworski, Justyn; Jung, Jong Hwa

    2016-06-08

    Spectroscopic techniques exist that may discern between enantiomers and assess chiral purity. A nonspectroscopic approach that may be directly observed could provide numerous benefits. Using chiral alanine-appended benzene-tricarboxamide gelators, we reveal a methanol gel system that is capable of providing visual discrimination between enantiomers of various diamines. Specifically, gelation is induced by supramolecular nanofiber assembly resulting from interaction between a chiral gelator and a diamine of opposing chirality (i.e., a heterochiral system). Upon further implementing the chiral gelator in electrospun fibers as solid state films, we revealed enantioselective surface wetting properties that allowed for determining chirality through contact angle measurements. While these two approaches of observable gelation and surface wetting offer nonspectroscopic approaches, we also find that the supramolecular nanofiber assembly was able to enhance the induced circular dichroism signal resulting from addition of chiral diamines, allowing precise quantification of their enantiomeric purity.

  20. Effects of NMDA and non-NMDA ionotropic glutamate receptors in the medial preoptic area on body temperature in awake rats.

    Science.gov (United States)

    Sengupta, Trina; Jaryal, Ashok Kumar; Mallick, Hruda Nanda

    2016-10-01

    Glutamate when microinjected at the medial preoptic area (mPOA) influences brain temperature (Tbr) and body temperature (Tb) in rats. Glutamate and its various receptors are present at the mPOA. The aim of this study was to identify the contribution of each of the ionotropic glutamatergic receptors at the mPOA on changes in Tbr and Tb in freely moving rats. Adult male Wistar rats (n=40) were implanted with bilateral guide cannula with indwelling styli above the mPOA. A telemetric transmitter was implanted at the peritoneum to record Tb and locomotor activity (LMA). A precalibrated thermocouple wire implanted near the hypothalamus was used to assess Tbr. Specific agonist for each ionotropic glutamate receptor was microinjected into the mPOA and its effects on temperature and LMA were measured in the rats. The rats were also microinjected with the respective ionotropic receptor antagonists, 15min prior to the microinjection of each agonist. Amongst amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-d-aspartate (NMDA) and kainic acid, AMPA increased Tb and LMA when injected at the mPOA. Specific antagonists for AMPA receptors was able to attenuate this increase (ptemperature.

  1. Factors influencing chymosin-induced gelation of milk from individual dairy cows

    DEFF Research Database (Denmark)

    Gustavsson, F.; Glantz, M; Buitenhuis, Albert Johannes

    2014-01-01

    calcium content, phosphorous content and casein micelle size on chymosin-induced gelation was determined in milk from 98 Swedish Red cows. The study showed that protein content and total calcium content, ionic calcium concentration and casein micelle size were the most important factors explaining...... the variation of gelation properties in this sample set. Non-coagulating milk was suggested to have lower ionic and total calcium content as well as lower relative concentrations of β-lactoglobulin than coagulating milk. The lower total calcium content in non-coagulating milk poses a problem as the difference...

  2. Rheology and Gelation Temperature of Aqueous Gelatin and Sodium Alginate Solutions

    Science.gov (United States)

    Florián-Algarín, Vivian; Acevedo-Rullán, Aldo

    2008-07-01

    The rheology and gelation of biodegradable polymers, such as gelatin and sodium alginate, are of particular interest in the processing of films in pharmaceutical industry. Constant-stress temperature-ramps were used to determine the gelation temperature (Tgel). The effect of operating parameters, such as stress and cooling rate, and formulation parameters, concentration and pH among other were studied. The steady-state rheology above Tgel was experimentally determined over a wide range of concentrations and temperatures. Time-Temperature superposition and concentration shifting were used to obtain master-curves for the steady-state viscosity. Simple phenomenological models were fitted to the master curves.

  3. Excessive activation of ionotropic glutamate receptors induces apoptotic hair-cell death independent of afferent and efferent innervation

    Science.gov (United States)

    Sheets, Lavinia

    2017-01-01

    Accumulation of excess glutamate plays a central role in eliciting the pathological events that follow intensely loud noise exposures and ischemia-reperfusion injury. Glutamate excitotoxicity has been characterized in cochlear nerve terminals, but much less is known about whether excess glutamate signaling also contributes to pathological changes in sensory hair cells. I therefore examined whether glutamate excitotoxicity damages hair cells in zebrafish larvae exposed to drugs that mimic excitotoxic trauma. Exposure to ionotropic glutamate receptor (iGluR) agonists, kainic acid (KA) or N-methyl-D-aspartate (NMDA), contributed to significant, progressive hair cell loss in zebrafish lateral-line organs. To examine whether hair-cell loss was a secondary effect of excitotoxic damage to innervating neurons, I exposed neurog1a morphants—fish whose hair-cell organs are devoid of afferent and efferent innervation—to KA or NMDA. Significant, dose-dependent hair-cell loss occurred in neurog1a morphants exposed to either agonist, and the loss was comparable to wild-type siblings. A survey of iGluR gene expression revealed AMPA-, Kainate-, and NMDA-type subunits are expressed in zebrafish hair cells. Finally, hair cells exposed to KA or NMDA appear to undergo apoptotic cell death. Cumulatively, these data reveal that excess glutamate signaling through iGluRs induces hair-cell death independent of damage to postsynaptic terminals. PMID:28112265

  4. Phosphocholine – an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors

    Science.gov (United States)

    Richter, K.; Mathes, V.; Fronius, M.; Althaus, M.; Hecker, A.; Krasteva-Christ, G.; Padberg, W.; Hone, A. J.; McIntosh, J. M.; Zakrzewicz, A.; Grau, V.

    2016-01-01

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions. PMID:27349288

  5. Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors.

    Science.gov (United States)

    Richter, K; Mathes, V; Fronius, M; Althaus, M; Hecker, A; Krasteva-Christ, G; Padberg, W; Hone, A J; McIntosh, J M; Zakrzewicz, A; Grau, V

    2016-06-28

    We demonstrated previously that phosphocholine and phosphocholine-modified macromolecules efficiently inhibit ATP-dependent release of interleukin-1β from human and murine monocytes by a mechanism involving nicotinic acetylcholine receptors (nAChR). Interleukin-1β is a potent pro-inflammatory cytokine of innate immunity that plays pivotal roles in host defence. Control of interleukin-1β release is vital as excessively high systemic levels cause life threatening inflammatory diseases. In spite of its structural similarity to acetylcholine, there are no other reports on interactions of phosphocholine with nAChR. In this study, we demonstrate that phosphocholine inhibits ion-channel function of ATP receptor P2X7 in monocytic cells via nAChR containing α9 and α10 subunits. In stark contrast to choline, phosphocholine does not evoke ion current responses in Xenopus laevis oocytes, which heterologously express functional homomeric nAChR composed of α9 subunits or heteromeric receptors containing α9 and α10 subunits. Preincubation of these oocytes with phosphocholine, however, attenuated choline-induced ion current changes, suggesting that phosphocholine may act as a silent agonist. We conclude that phophocholine activates immuno-modulatory nAChR expressed by monocytes but does not stimulate canonical ionotropic receptor functions.

  6. Production and characterization of alginate-starch-chitosan microparticles containing stigmasterol through the external ionic gelation technique

    Directory of Open Access Journals (Sweden)

    Gislene Mari Fujiwara

    2013-09-01

    Full Text Available Stigmasterol - a plant sterol with several pharmacological activities - is susceptible to oxidation when exposed to air, a process enhanced by heat and humidity. In this context, microencapsulation is a way of preventing oxidation, allowing stigmasterol to be incorporated into various pharmaceutical forms while increasing its absorption. Microparticles were obtained using a blend of polymers of sodium alginate, starch and chitosan as the coating material through a one-stage process using the external gelation technique. Resultant microparticles were spherical, averaging 1.4 mm in size. Encapsulation efficiency was 90.42% and method yield 94.87%. The amount of stigmasterol in the oil recovered from microparticles was 9.97 mg/g. This technique proved feasible for the microencapsulation of stigmasterol.

  7. Progress in the Studies of Low-Molecular Mass Gelators with Phase-Selective Gelation Properties%具有选择性胶凝能力的小分子胶凝剂研究进展

    Institute of Scientific and Technical Information of China (English)

    侯晓育; 刘凯强; 房喻

    2011-01-01

    Phase-selective gelation of mixed un-miscible solvents is of great importance considering its applications in purification and separation, particularly in the recovery of spilled oil and in the purification of water. Celators with phase-selective gelation properties could be polymers, micro- nano-particles or low-molecular mass gelators (LMMGs). Compared with former two kinds of gelators, gelation using LMMGs as gelators is always reversible. Such reversibility could add additional advantages to practical applications of the gel systems. Progress in the studies of LMMGs with phase-selective gelation properties is reviewed according to the structures of the relevant gelators. Furthermore, prospectives of the studies and the potential applications of the phase-selective gelation phenomenon are also presented.%不相溶混合溶剂的选择性胶凝对于溶剂纯化和分离,特别是溢油处理和水体净化具有十分重要的意义.具有选择性胶凝能力的胶凝剂可以是高分子、微纳米颗粒和小分子胶凝剂.然而,相对于高分子和微纳米颗粒材料,以小分子化合物为胶凝剂的凝胶往往具有凝胶-溶胶相变可逆性,这种可逆性无疑会对凝胶体系的实际应用带来额外的好处.基于这些考虑,本文按照胶凝剂分子的结构,分类介绍此类小分子胶凝剂研究进展,并展望了相关研究的前景和可能应用.

  8. Heat-induced gelation of pea legumin: Comparison with soybean glycinin

    NARCIS (Netherlands)

    O'Kane, F.E.; Happe, R.P.; Vereijken, J.M.; Gruppen, H.; Boekel, M.A.J.S. van

    2004-01-01

    Gel network formation of pea legumin (8.4% on a protein basis, pH 7.6) was monitored via dynamic rheological measurements. Gelation was performed in the absence and presence of the thiol-blocking reagent N-ethylmaleimide, at different rates of heating and cooling. Overall, it was shown that pea legu

  9. Effect of Cationic Surfactant on the Gelation of HPAM by Cr(III)

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effect of cationic surfactant cetyltrimethylammonium bromide (CTAB) on the gelation of partially hydrolyzed polyacrylamide (HPAM) by Cr (III) was investigated by using rheological measurements. The results indicated that the CTAB concentration has a pronounced effect on the viscoelastic properties of the gelling system.

  10. Modular construction and hierarchical gelation of organooxotin nanoclusters derived from simple building blocks.

    Science.gov (United States)

    Hahn, Uwe; Hirst, Andrew R; Delgado, Juan Luis; Kaeser, Adrien; Delavaux-Nicot, Béatrice; Nierengarten, Jean-Francois; Smith, David K

    2007-12-14

    Mixtures of an appropriate carboxylic acid and n-butylstannoic acid constitute modular gelation systems, in which the formation of a well-defined 'tin-drum' nanocluster subsequently underpins the hierarchical assembly of nanostructured fibres, which form self-supporting gel-phase networks in organic solvents.

  11. Heat-Induced Gelation of Pea Legumin: Comparison with Soybean Glycinin

    NARCIS (Netherlands)

    O'Kane, F.E.; Vereijken, J.M.; Happe, R.P.; Gruppen, H.; Boekel, van M.A.J.S.

    2004-01-01

    Gel network formation of pea legumin (8.4% on a protein basis, pH 7.6) was monitored via dynamic rheological measurements. Gelation was performed in the absence and presence of the thiol-blocking reagent N-ethylmaleimide, at different rates of heating and cooling. Overall, it was shown that pea

  12. Thermal gelation of aqueous hydroxypropylmethylcellulose solutions with SDS and hydrophobic drug particles.

    Science.gov (United States)

    Acevedo, Aldo; Takhistov, Paul; de la Rosa, Carlos Pinzón; Florián, Vivian

    2014-02-15

    The thermal gelation of hydroxypropylmethylcellulose (HPMC) solutions has been studied as a function of sodium dodecyl sulfate (SDS) concentration with and without griseofulvin, a model particulate BCS Class II drug by rheological measurements of gelation temperature (Tgel), steady-state viscosity (η) at 25 °C, and ζ-potential. Polymer adsorption on the drug was demonstrated by a decrease in η and potential in the absence of SDS. Griseofulvin had a synergistic effect on gelation which was attributed to an effective spanning of associated hydrophobic polymeric regions through interactions with the adsorbed polymer. Adding SDS offsets this effect on Tgel shielding hydrophobic interactions. Higher SDS concentrations had no effect on the particles surface as evidenced by constant ζ-potential and Tgel. Yet, polymeric chains are saturated and larger surfactant aggregates account for the increase in viscosity. Understanding the gelation mechanism and complex interactions of HPMC with surfactants and drugs is necessary for the design of pharmaceutical products and optimization of their performance properties.

  13. Synthesis, Photophysical Characterization, and Gelation Studies of a Stilbene-Cholesterol Derivative

    Science.gov (United States)

    Geiger, H. Christina; Geiger, David K.; Baldwin, Christine

    2006-01-01

    Organogels are low molar mass organic compounds with the ability to immobilize an incredible quantity of solvent and fibrous aggregation of these compounds formed by noncovalent interaction usually involves hydrogen bonding. For stilbene-cholesterol based gelators, the driving force for molecular aggregation are weak van der Waal interactions…

  14. Uniqueness of post-gelation solutions of a class of coagulation equations

    CERN Document Server

    Normand, Raoul

    2010-01-01

    We prove well-posedness of global solutions for a class of coagulation equations which exhibit the gelation phase transition. Considering the generating functions, we solve an associated partial differential equation before and after the phase transition. Applications include the classical Smoluchowski and Flory equations with multiplicative coagulation rate and the recently introduced symmetric model with limited aggregations.

  15. New Hydrogen Bonded Supramolecular Hydrogels Formed through Gelating Two Isomeric Building Units Simultaneously

    Institute of Scientific and Technical Information of China (English)

    Ji Wei WU; Li Ming TANG; Kai CHEN; Liang YAN; Yu Jiang WANG

    2006-01-01

    New hydrogen bonded supramolecular hydrogels were formed through simultaneously gelating two isomeric building units, 4-oxo-4-(2-pyridinylamino)butanoic acid (G1) and 4-oxo-4-(3-pyridinylamino)butanoic acid (G2) at various molar ratios in water.

  16. Heat stability and acid gelation properties of calcium-enriched reconstituted skim milk affected by ultrasonication.

    Science.gov (United States)

    Chandrapala, Jayani; Bui, Don; Kentish, Sandra; Ashokkumar, Muthupandian

    2014-05-01

    The aggregation of proteins after heating of calcium-fortified milks has been an ongoing problem in the dairy industry. This undesirable effect restricts the manufacture of calcium rich dairy products. To overcome this problem, a completely new approach in controlling the heat stability of dairy protein solutions, developed in our lab, has been employed. In this approach, high intensity, low frequency ultrasound is applied for a very short duration after a pre-heating step at ⩾70 °C. The ultrasound breaks apart whey/whey and whey/casein aggregates through the process of acoustic cavitation. Protein aggregates do not reform on subsequent post-heating, thereby making the systems heat stable. In this paper, the acid gelation properties of ultrasonicated calcium-enriched skim milks have also been investigated. It is shown that ultrasonication alone does not change the gelation properties significantly whereas a sequence of preheating (72 °C/1 min) followed by ultrasonication leads to decreased gelation times, decreased gel syneresis and increased skim milk viscosity in comparison to heating alone. Overall, ultrasonication has the potential to provide calcium-fortified dairy products with increased heat stability. However, enhanced gelation properties can only be achieved when ultrasonication is completed in conjunction with heating.

  17. NOTE: Measuring oxidative gelation of aqueous flour suspensions using the Rapid Visco Analyzer

    Science.gov (United States)

    The Rapid Visco Analyzer (RVA) was investigated as a tool to measure oxidative gelation capacity (OGC) of aqueous wheat-flour suspensions. One, club-wheat patent flour was used to determine optimal hydration time and 33 straight-grade flours (representing 12 hard and 31 soft varieties) were used to ...

  18. Eco-friendly Synthesis of Ceria Foam via Carboxymethylcellulose Gelation: Application for the Epoxidation of Chalcone

    Science.gov (United States)

    A simple and innovative process is described for the eco-friendly preparation of ceria foams via the carboxymethylcellulose gelation by Ce4+ cations; heat treatment of the ensuing xerogels produces ceria foams. The influence of the concentration of cerium and of the calcination t...

  19. Synthesis of azobenzene-containing liquid crystalline gelator for use in liquid crystal gels

    Institute of Scientific and Technical Information of China (English)

    Guang Wang; Xiao Liang Zhao; Yue Zhao

    2008-01-01

    A liquid crystalline gelator containing the azobenzene chromophore was synthesized for the first time; it was used to form self-assembled network in nematic liquid crystals resulting in liquid crystal gels with distinct features.? 2008 Guang Wang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  20. Gelation, oxygen permeability and mechanical properties of mammalian and fish gelatin films

    Science.gov (United States)

    The objective of this study was to evaluate the gelation, thermal, mechanical and oxygen permeability properties of different mammalian, warm- and cold-water fish gelatin solutions and films. Mammalian gelatin solutions had the highest gel set temperatures, followed by warm-water fish and then cold-...

  1. Controlling the aggregation and gelation of ß-lactoglobulin by the addition of its peptides

    NARCIS (Netherlands)

    Kosters, H.A.

    2012-01-01

    In this thesis the effects of peptides, or protein hydrolysates on the heat-induced aggregation and gelation of (concentrated) protein systems were studied. First, it was investigated if specific peptides could influence the heat-induced denaturation and aggregation of intact proteins solutions, and

  2. Peptide-functionalized oxime hydrogels with tunable mechanical properties and gelation behavior.

    Science.gov (United States)

    Lin, Fei; Yu, Jiayi; Tang, Wen; Zheng, Jukuan; Defante, Adrian; Guo, Kai; Wesdemiotis, Chrys; Becker, Matthew L

    2013-10-14

    We demonstrate the formation of polyethylene glycol (PEG) based hydrogels via oxime ligation and the photoinitiated thiol-ene 3D patterning of peptides within the hydrogel matrix postgelation. The gelation process and final mechanical strength of the hydrogels can be tuned using pH and the catalyst concentration. The time scale to reach the gel point and complete gelation can be shortened from hours to seconds using both pH and aniline catalyst, which facilitates the tuning of the storage modulus from 0.3 to over 15 kPa. Azide- and alkene-functionalized hydrogels were also synthesized, and we have shown the post gelation "click"-type Huisgen 1,3 cycloaddition and thiolene-based radical reactions for spatially defined peptide incorporation. These materials are the initial demonstration for translationally relevant hydrogel materials that possess tunable mechanical regimes attractive to soft tissue engineering and possess atom neutral chemistries attractive for post gelation patterning in the presence or absence of cells.

  3. Heat-Induced Gelation of Pea Legumin: Comparison with Soybean Glycinin

    NARCIS (Netherlands)

    O'Kane, F.E.; Vereijken, J.M.; Happe, R.P.; Gruppen, H.; Boekel, van M.A.J.S.

    2004-01-01

    Gel network formation of pea legumin (8.4% on a protein basis, pH 7.6) was monitored via dynamic rheological measurements. Gelation was performed in the absence and presence of the thiol-blocking reagent N-ethylmaleimide, at different rates of heating and cooling. Overall, it was shown that pea legu

  4. Solvent-mediated pathways to gelation and phase separation in suspensions of grafted nanoparticles

    KAUST Repository

    Anyfantakis, Manos

    2009-01-01

    We explore the role of the solvent medium on the interplay between gelation and phase separation in suspensions of organosilicate planar hybrids grafted with hydrocarbon chains. We establish their phase diagram by means of dynamic light scattering, rheology and visual observations, and different routes to gelation, depending on the solvent used. In agreement with earlier works, the solvent quality for the grafted chains at a given temperature controls the balance between attractions and repulsions, and hence the phase diagram of the nanoparticles and their tendency to gel. Here we show how to tune the suspension state and hence its rheology. For decane, a good solvent for the hydrocarbon chains, gelation occurs at rather low volume fractions in the presence of phase separation. This is due to the interdigitation of solvent molecules with the grafted chains, resulting in their crystalline packing that promotes the attraction between particles. For toluene, a solvent of reduced quality for the hydrocarbon chains, no interdigitation takes place, and hence gelation is triggered by clustering at higher volume fractions before phase separation. Our results support the generic picture of complex kinetic arrest/phase separation interplay in soft matter, where phase separation can proceed, be interrupted or be completely inhibited. A number of interesting possibilities for tailoring the rheology of grafted colloidal systems emerge. © 2009 The Royal Society of Chemistry.

  5. Enzyme catalyzed oxidative gelation of sugar beet pectin: Kinetics and rheology

    DEFF Research Database (Denmark)

    Abang Zaidel, Dayang Norulfairuz; Chronakis, Ioannis S.; Meyer, Anne S.

    2012-01-01

    Sugar beet pectin (SBP) is a marginally utilized co-processing product from sugar production from sugar beets. In this study, the kinetics of oxidative gelation of SBP, taking place via enzyme catalyzed cross-linking of ferulic acid moieties (FA), was studied using small angle oscillatory measure...

  6. A saponification-triggered gelation of ester-based Zn(II) complex through conformational transformations.

    Science.gov (United States)

    Kumar, Ashish; Dubey, Mrigendra; Kumar, Amit; Pandey, Daya Shankar

    2014-09-11

    Novel saponification-triggered gelation in an ester-based bis-salen Zn(II) complex (1) is described. Strategic structural modifications induced by NaOH in 1 tune the dipolar-/π-interactions leading to J-aggregation and the creation of an inorganic gel material (IGM), which has been established by photophysical, DFT and rheological studies.

  7. Effect of solvent hydrophobicity on gelation kinetics and phase diagram of gelatin ionogels.

    Science.gov (United States)

    Rawat, Kamla; Pathak, Jyotsana; Bohidar, H B

    2014-02-14

    We present a systematic investigation of the effect of solvent hydrophobicity (alkyl chain length) on the gelation kinetics and the phase states of the polypeptide gelatin in imidazolium based ionic liquid (IL) solutions. We have observed that IL concentration and hydrophobicity had dramatic influences on the thermal and viscoelastic properties of gelatin ionogels. Gelation concentration cg was observed to increase from 1.75 to 2.75% (w/v) while the gelation temperature Tg was found to decrease from 32 to 26 °C with increase in 1-octyl-3-methyl imidazolium chloride [C8mim][Cl] (most hydrophobic) concentration as compared to the case of the least hydrophobic IL 1-ethyl-3-methyl imidazolium chloride [C2mim][Cl], where the corresponding changes were marginal. Gradual softening of the gel with increase in hydrophobicity and concentration of IL was clearly noticed. The viscosity of the gelling sol diverged as ηr ∼ ε(1)(-k) and storage modulus of gel grew as G0 ∼ ε(1)(t) where ε1 = |1 - c/cg| with the exponents having values k = 1.2-1.8 ± 0.08 and t = 1.2-1.6 ± 0.08, close to but not exactly the same as predicted by the percolation model: k = 0.7-1.3 and t = 1.9. Thus, the gelation kinetics involved in the growth of interconnected networks could be conceived to follow an anomalous percolation model. The temporal growth of self-assembled structures followed a power law dependence given by: ηr ∼ ε(2)(-α) and Rh ∼ ε(2)(-β) where ε(2) = t > tg (α = 1-2.9 ± 0.08 and β = 1-2.7 ± 0.08). The low frequency storage modulus G0, gelation temperature Tg, gelation concentration cg and gelation time tg adequately defined the sol-gel phase diagram. Results clearly revealed that by adjusting the hydrophobic chain length and concentration of IL it was possible to customize both thermal and mechanical properties of these ionogels to match specific application requirements.

  8. Gelation or molecular recognition; is the bis-(α,β-dihydroxy ester)s motif an omnigelator?

    Science.gov (United States)

    Knight, David W; Morgan, Ian R; Ford, Amy; Brown, James; Davies, Ben; Heenan, Richard K; King, Stephen M; Dalgliesh, Robert M; Tomkinson, John; Prescott, Stuart; Schweins, Ralf; Paul, Alison

    2010-01-01

    Summary Understanding the gelation of liquids by low molecular weight solutes at low concentrations gives an insight into many molecular recognition phenomena and also offers a simple route to modifying the physical properties of the liquid. Bis-(α,β-dihydroxy ester)s are shown here to gel thermoreversibly a wide range of solvents, raising interesting questions as to the mechanism of gelation. At gelator concentrations of 5–50 mg ml−1, gels were successfully formed in acetone, ethanol/water mixtures, toluene, cyclohexane and chloroform (the latter, albeit at a higher gelator concentration). A range of neutron techniques – in particular small-angle neutron scattering (SANS) – have been employed to probe the structure of a selection of these gels. The universality of gelation in a range of solvent types suggests the gelation mechanism is a feature of the bis-(α,β-dihydroxy ester) motif, with SANS demonstrating the presence of regular structures in the 30–40 Å range. A correlation between the apparent rodlike character of the structures formed and the polarity of the solvent is evident. Preliminary spin-echo neutron scattering studies (SESANS) indicated the absence of any larger scale structures. Inelastic neutron spectroscopy (INS) studies demonstrated that the solvent is largely unaffected by gelation, but does reveal insights into the thermal history of the samples. Further neutron studies of this kind (particularly SESANS and INS) are warranted, and it is hoped that this work will stimulate others to pursue this line of research. PMID:21160568

  9. Effects of gelation temperature on Mozzarella-type curd made from buffalo and cows' milk. 1: rheology and microstructure.

    Science.gov (United States)

    Hussain, Imtiaz; Grandison, Alistair S; Bell, Alan E

    2012-10-01

    The rheology and microstructure of Mozzarella-type curds made from buffalo and cows' milk were measured at gelation temperatures of 28, 34 and 39 °C after chymosin addition. The maximum curd strength (G') was obtained at a gelation temperature of 34 °C in both types of bovine milk. The viscoelasticity (tan δ) of both curds was increased with increasing gelation temperature. The rennet coagulation time was reduced with increase of gelation temperature in both types of milk. Frequency sweep data (0.1-10 Hz was recorded 90 min after chymosin addition, and both milk samples showed characteristics of weak viscoelastic gel systems. When both milk samples were subjected to shear stress to break the curd system at constant shear rate, 95 min after chymosin addition, the maximum yield stress was obtained at the gelation temperatures of 34 °C and 28 °C in buffalo and cows' curd respectively. The cryo-SEM and CLSM techniques were used to observe the microstructure of Mozzarella-type curd. The porosity was measured using image J software. The cryo-SEM and CLSM micrographs showed that minimum porosity was observed at the gelation temperature of 34 °C in both types of milk. Buffalo curd showed minimum porosity at similar gelation temperature when compared to cows' curd. This may be due to higher protein concentration in buffalo milk. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Gelation or molecular recognition; is the bis-(α,β-dihydroxy ester)s motif an omnigelator?

    Science.gov (United States)

    Griffiths, Peter C; Knight, David W; Morgan, Ian R; Ford, Amy; Brown, James; Davies, Ben; Heenan, Richard K; King, Stephen M; Dalgliesh, Robert M; Tomkinson, John; Prescott, Stuart; Schweins, Ralf; Paul, Alison

    2010-11-18

    Understanding the gelation of liquids by low molecular weight solutes at low concentrations gives an insight into many molecular recognition phenomena and also offers a simple route to modifying the physical properties of the liquid. Bis-(α,β-dihydroxy ester)s are shown here to gel thermoreversibly a wide range of solvents, raising interesting questions as to the mechanism of gelation. At gelator concentrations of 5-50 mg ml⁻¹, gels were successfully formed in acetone, ethanol/water mixtures, toluene, cyclohexane and chloroform (the latter, albeit at a higher gelator concentration). A range of neutron techniques - in particular small-angle neutron scattering (SANS) - have been employed to probe the structure of a selection of these gels. The universality of gelation in a range of solvent types suggests the gelation mechanism is a feature of the bis-(α,β-dihydroxy ester) motif, with SANS demonstrating the presence of regular structures in the 30-40 Å range. A correlation between the apparent rodlike character of the structures formed and the polarity of the solvent is evident. Preliminary spin-echo neutron scattering studies (SESANS) indicated the absence of any larger scale structures. Inelastic neutron spectroscopy (INS) studies demonstrated that the solvent is largely unaffected by gelation, but does reveal insights into the thermal history of the samples. Further neutron studies of this kind (particularly SESANS and INS) are warranted, and it is hoped that this work will stimulate others to pursue this line of research.

  11. Pyrene-based fluorescent ambidextrous gelators: scaffolds for mechanically robust SWNT-gel nanocomposites.

    Science.gov (United States)

    Mandal, Deep; Kar, Tanmoy; Das, Prasanta Kumar

    2014-01-27

    With the rapid progress in the development of supramolecular soft materials, examples of low-molecular-weight gelators (LMWGs) with the ability to immobilise both water and organic solvents by the same structural scaffold are very limited. In this paper, we report the development of pyrene-containing peptide-based ambidextrous gelators (AGs) with the ability to efficiently gelate both organic and aqueous solvents. The organo- and hydrogelation efficiencies of these gelators are in the range 0.7-1.1% w/v in various organic solvents and 0.5-5% w/v in water at certain acidic pH values (pH 2.0-4.0). Moreover, for the first time, AGs have been utilised to prepare single-walled carbon-nanotube (SWNT)-included soft nanocomposites in both hydro- and organogel matrices. The influence of different non-covalent interactions such as hydrogen bonding, hydrophobic, π-π and van der Waals interactions in self-assembled gelation has been studied in detail by circular dichroism, FTIR, variable-temperature NMR, 2D NOESY and luminescence spectroscopy. Interestingly, the presence of the pyrene moiety in the structure rendered these AGs intrinsically fluorescent, which was quenched upon successful integration of the SWNTs within the gel. The prepared hydro- and organogels along with their SWNT-integrated nanocomposites are thermoreversible in nature. The supramolecular morphologies of the dried gels and SWNT-gel nanocomposites have been studied by transmission electron microscopy, fluorescence microscopy and polarising optical microscopy, which confirmed the presence of three-dimensional self-assembled fibrillar networks (SAFINs) as well as the integrated SWNTs. Importantly, rheological studies revealed that the inclusion of SWNTs within the ambidextrous gels improved the mechanical rigidity of the resulting soft nanocomposites up to 3.8-fold relative to the native gels.

  12. Mutations in ionotropic AMPA receptor 3 alter channel properties and are associated with moderate cognitive impairment in humans.

    Science.gov (United States)

    Wu, Ye; Arai, Amy C; Rumbaugh, Gavin; Srivastava, Anand K; Turner, Gillian; Hayashi, Takashi; Suzuki, Erika; Jiang, Yuwu; Zhang, Lilei; Rodriguez, Jayson; Boyle, Jackie; Tarpey, Patrick; Raymond, F Lucy; Nevelsteen, Joke; Froyen, Guy; Stratton, Mike; Futreal, Andy; Gecz, Jozef; Stevenson, Roger; Schwartz, Charles E; Valle, David; Huganir, Richard L; Wang, Tao

    2007-11-13

    Ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (iGluRs) mediate the majority of excitatory synaptic transmission in the CNS and are essential for the induction and maintenance of long-term potentiation and long-term depression, two cellular models of learning and memory. We identified a genomic deletion (0.4 Mb) involving the entire GRIA3 (encoding iGluR3) by using an X-array comparative genomic hybridization (CGH) and four missense variants (G833R, M706T, R631S, and R450Q) in functional domains of iGluR3 by sequencing 400 males with X-linked mental retardation (XLMR). Three variants were found in males with moderate MR and were absent in 500 control males. Expression studies in HEK293 cells showed that G833R resulted in a 78% reduction of iGluR3 due to protein misfolding. Whole-cell recording studies of iGluR3 homomers in HEK293 cells revealed that neither iGluR3-M706T (S2 domain) nor iGluR3-R631S (near channel core) had substantial channel function, whereas R450Q (S1 domain) was associated with accelerated receptor desensitization. When forming heteromeric receptors with iGluR2 in HEK293 cells, all four iGluR3 variants had altered desensitization kinetics. Our study provides the genetic and functional evidence that mutant iGluR3 with altered kinetic properties is associated with moderate cognitive impairment in humans.

  13. DSC and TMA studies on freezing and thawing gelation of galactomannan polysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, Mika, E-mail: m-iijima@nagasaki-u.ac.jp [Faculty of Education, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521 (Japan); Hatakeyama, Tatsuko [Lignocell Research, 73-8 Yatsumata, Fukui 910-3558 (Japan); Hatakeyama, Hyoe [Department of Environment and Biotechnology, Faculty of Engineering, Fukui University of Technology, 3-6-1, Gakuen, Fukui 910-8505 (Japan)

    2012-03-20

    Research highlights: Black-Right-Pointing-Pointer Locust bean gum forms hydrogels by freezing and thawing. Black-Right-Pointing-Pointer Syneresis was observed when freezing and thawing cycle (n) increased. Black-Right-Pointing-Pointer Dynamic Young's modulus increased with increasing n. Black-Right-Pointing-Pointer Non-freezing water content restrained by hydrogels decreased with increasing n. Black-Right-Pointing-Pointer Strong gel with densely packed network structure formed with increasing n. - Abstract: Among various kinds of polysaccharides known to form hydrogels, locust bean gum (LBG) consisting of a mannose backbone and galactose side chains has unique characteristics, since LBG forms hydrogels by freezing and thawing. In this study, effect of thermal history on gelation was investigated by differential scanning calorimetry (DSC) and thermomechanical analysis (TMA). Gel/sol ratio calculated by weighing method was found to be affected by sol concentration, freezing rate and the number of freezing and thawing cycle (n). Once LBG hydrogels are formed, they are thermally stable, although syneresis was observed when n increased. Dynamic Young's modulus (E Prime ) of hydrogels measured by TMA in water increased with increasing n and decreasing freezing rate. Non-freezing water calculated from DSC melting peak of ice in the gel decreased with increasing n and decreasing freezing rate. Morphological observation of freeze-dried gels was carried out by scanning electron microscopy (SEM). The above results indicate that weak hydrogel having large molecular network structure transformed into strong gel with densely packed network structure by increasing n and decreasing freezing rate.

  14. Production of BCG alginate-PLL microcapsules by emulsification/internal gelation.

    Science.gov (United States)

    Esquisabel, A; Hernández, R M; Igartua, M; Gascón, A R; Calvo, B; Pedraz, J L

    1997-01-01

    A biocompatible emulsification method for microencapsulation of live cells and enzymes within a calcium alginate matrix applied to Bacillus Calmette-Guérin (BCG) has been developed. Small-diameter alginate beads (microcapsules) were formed via internal gelation of an alginate solution emulsified within vegetable oil. Five different oils (sesame, sweet almond, perhydrosqualene, camomile and jojoba) were used. The rheological analysis of the oils showed a Newtonian behaviour, with viscosities = 30.0, 37.7, 51.2, 59.3 and 67.1 mPa.s for perhydrosqualene, jojoba, camomile, sesame and sweet almond oil respectively. The particle size of the microcapsules obtained ranged from 30.3 microns for the microcapsules prepared with sweet almond oil to 57.0 microns for those made with perhydrosqualene. The mean particle diameter obtained was found to be dependent on the viscosity of the oil employed, according to the equation: phi (micron) = 76.6-0.628 eta (mPa.s) (r2 = 0.943). The encapsulated BCG was identified by the Difco TB stain set K, followed by observation under optical microscopy. Freeze-drying of the microcapsules was carried out to ensure their stability during storage. Two batches of microcapsules (those prepared with sesame and jojoba oil) and four types of cryoprotectors (glucose, trehalose, mannitol and sorbitol), at three concentration levels (5, 10 and 20% w/v) were studied. The parameters evaluated were particle size, physical appearance, reconstitution of lyophilizates and microscopical evaluation. For both batches of microcapsules the best results were obtained with trehalose 5%, showing particle sizes of 42.1 microns in the case of the microcapsules prepared with sesame oil, and of 45.3 microns for those prepared with jojoba.

  15. Role of ionotropic GABA, glutamate and glycine receptors in the tonic and reflex control of cardiac vagal outflow in the rat

    Directory of Open Access Journals (Sweden)

    Goodchild Ann K

    2010-10-01

    Full Text Available Abstract Background Cardiac vagal preganglionic neurons (CVPN are responsible for the tonic, reflex and respiratory modulation of heart rate (HR. Although CVPN receive GABAergic and glutamatergic inputs, likely involved in respiratory and reflex modulation of HR respectively, little else is known regarding the functions controlled by ionotropic inputs. Activation of g-protein coupled receptors (GPCR alters these inputs, but the functional consequence is largely unknown. The present study aimed to delineate how ionotropic GABAergic, glycinergic and glutamatergic inputs contribute to the tonic and reflex control of HR and in particular determine which receptor subtypes were involved. Furthermore, we wished to establish how activation of the 5-HT1A GPCR affects tonic and reflex control of HR and what ionotropic interactions this might involve. Results Microinjection of the GABAA antagonist picrotoxin into CVPN decreased HR but did not affect baroreflex bradycardia. The glycine antagonist strychnine did not alter HR or baroreflex bradycardia. Combined microinjection of the NMDA antagonist, MK801, and AMPA antagonist, CNQX, into CVPN evoked a small bradycardia and abolished baroreflex bradycardia. MK801 attenuated whereas CNQX abolished baroreceptor bradycardia. Control intravenous injections of the 5-HT1A agonist 8-OH-DPAT evoked a small bradycardia and potentiated baroreflex bradycardia. These effects were still observed following microinjection of picrotoxin but not strychnine into CVPN. Conclusions We conclude that activation of GABAA receptors set the level of HR whereas AMPA to a greater extent than NMDA receptors elicit baroreflex changes in HR. Furthermore, activation of 5-HT1A receptors evokes bradycardia and enhances baroreflex changes in HR due to interactions with glycinergic neurons involving strychnine receptors. This study provides reference for future studies investigating how diseases alter neurochemical inputs to CVPN.

  16. Discovery of a New Class of Ionotropic Glutamate Receptor Antagonists by the Rational Design of (2S,3R)-3-(3-Carboxyphenyl)-pyrrolidine-2-carboxylic Acid

    DEFF Research Database (Denmark)

    Larsen, Ann Møller; Venskutonyte, Raminta; Valadés, Elena Antón;

    2011-01-01

    -5. In this article, we present the discovery of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid (1) based on a rational design process. Target compound 1 was synthesized by a stereoselective strategy in 10 steps from commercially available starting materials. Binding affinities of 1 at native ionotropic......The kainic acid (KA) receptors belong to the class of glutamate (Glu) receptors in the brain and constitute a promising target for the treatment of neurological and/ or psychiatric diseases such as schizophrenia, major depression, and epilepsy. Five KA subtypes have been identified and named GluK1...

  17. 4,4-Dimethyl- and diastereomeric 4-hydroxy-4-methyl-(2S)-glutamate analogues display distinct pharmacological profiles at ionotropic glutamate receptors and excitatory amino acid transporters

    DEFF Research Database (Denmark)

    Bunch, Lennart; Pickering, Darryl S; Gefflaut, Thierry;

    2009-01-01

    this approach has provided important insight into the structure-activity relationships (SAR) for ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), as well as the excitatory amino acid transporters (EAATs). In this work, three 4,4-disubstituted Glu analogues 1-3, which are hybrid structures......Subtype-selective ligands are of great interest to the scientific community, as they provide a tool for investigating the function of one receptor or transporter subtype when functioning in its native environment. Several 4-substituted (S)-glutamate (Glu) analogues were synthesized, and altogether...

  18. Structure-activity relationship studies of N-methylated and N-hydroxylated spider polyamine toxins as inhibitors of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Nørager, Niels G; Poulsen, Mette H; Jensen, Anna G

    2014-01-01

    Polyamine toxins from spiders and wasps are potent open-channel blockers of ionotropic glutamate (iGlu) receptors. It is well-established that secondary amino groups in the polyamine moiety of these toxins are key to both selectivity and potency at iGlu receptors, still some native spider polyamine...... toxins comprise both N-methyl and N-hydroxy functionalities. Here, we investigate the effect of both N-methylation and N-hydroxylation of spider polyamine toxins by the synthesis and biological evaluation of the naturally occurring N-methylated argiopinines and pseudoargiopinines I and II, N...

  19. Influence of substitution on the rheological properties and gelation of hydroxyethyl cellulose solution in NaOH-water solvent.

    Science.gov (United States)

    Wang, Wencong; Li, Faxue; Yu, Jianyong; Navard, Patrick; Budtova, Tatiana

    2015-06-25

    The rheological properties of hydroxyethyl cellulose (HEC) with a low molar substitution (MS) dissolved in 8wt% NaOH-water were studied as a function of solution temperature, polymer concentration and molar substitution. Special attention was paid to gelation kinetics. Similar to cellulose dissolved in alkali or ionic liquids, the intrinsic viscosity of HEC decreased with temperature increase, indicating a decrease of solvent thermodynamic quality. The gelation time of HEC solutions decreased exponentially with temperature but the kinetics is much slower than the gelation of microcrystalline cellulose solutions in the same solvent. Higher molar substitution leads to slower gelation. The small amount of introduced hydroxyethyl groups prevented cellulose aggregation thus increasing solution stability.

  20. Structure-property relationships of symmetrical and asymmetrical azobenzene derivatives as gelators and their self-assemblies.

    Science.gov (United States)

    Balamurugan, Rathinam; Kai-Ming, Wu; Chien, Chih-Chieh; Liu, Jui Hsiang

    2014-11-28

    Two different series of symmetrical and asymmetrical azobenzenes containing terminal cholesteryl/adamantyl derivatives (SAC/SAA and AAC) with varying spacer lengths (alkyl chains) have been developed. The gelation and aggregation of these derivatives were studied relative to structural motifs, spacer lengths, solvent affinity, temperatures and light conditions. Among these derivatives, the cholesteryl derivatives that have short alkyl chains (derivatives with longer alkyl chains (11 spacer) and adamantyl derivatives did not possess this ability. Self-assembled fibrous structures were constructed by gelators with short alkyl chains (derivatives, respectively. However, the cholesteryl derivative without a spacer (AAC0) did not exhibit any liquid crystalline phase but acted as an efficient gelator relative to the other gelators in this study.

  1. Synthesis and structural analysis of a series of D-glucose derivatives as low molecular weight gelators.

    Science.gov (United States)

    Cheuk, Sherwin; Stevens, Edwin D; Wang, Guijun

    2009-03-10

    Low molecular weight gelators are an interesting new type of compounds that are important in supramolecular chemistry and advanced materials. Previously, we had synthesized several acyl derivatives of methyl 4,6-O-benzylidene-alpha-D-glucopyranoside and found that a number of terminal acetylene-containing esters are good gelators. To understand the structure requirement of the acyl chains, we synthesized a series of analogs containing different functional groups including aryl, alkenyl, and halogen derivatives. X-ray crystal structures of a monoester and a diester derivative were also obtained to help understand the relationship between structure and gelation. For good gelation properties, the carboxyl derivatives should possess alkyl groups containing a terminal acetylene group and aryl derivatives.

  2. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Caracciolo

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  3. Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Achiral diacetylene 10,12-pentacosadinoic acid (PCDA) and a chiral low-molecular-weight organogelator could form co-gel in organic solvent and it could be polymerized in the presence of Zn(II) ion or in the corresponding xerogel under UV-irradiation. Optically active polydiacetylene (PDA) were subsequently obtained. Supramolecular chirality of PDA could be controlled by the chirality of gelators. Left-handed and right-handed helical fibers were obtained by using Land D-gelators in xerogels respectively, and CD spectra exhibited mirror-image circular dichroism. The PDA in xerogel exhibited typical blue-to-red transition responsive to the temperature and pH, while the supramolecular chirality of PDA showed a corresponding change.

  4. Supramolecular ionogel lubricants with imidazolium-based ionic liquids bearing the urea group as gelator.

    Science.gov (United States)

    Yu, Qiangliang; Wu, Yang; Li, DongMei; Cai, Meirong; Zhou, Feng; Liu, Weimin

    2017-02-01

    A new class of ionic liquid gels (ionogels) is prepared through the supramolecular self-assembly of imidazolium-based ionic liquids (ILs) bearing the urea group as gelators in normal ILs. The ILs gelator can self-assemble through hydrogen bonding and hydrophobic interaction to form analogous lamellar structures and solidify base ILs. The obtained ionogels exhibit superior anticorrosion and conductivity characteristics. Moreover, ionogels show fully thermoreversible and favorable thixotropic characteristics, such that they can be used as high-performance semisolid conductive lubricants. The tribological tests reveal that these ionogels lubricants can effectively reduce the friction of sliding pairs effectively and have better tribological performance than the pure ILs under harsh conditions. Ionogel lubricants not only maintain the excellent tribological properties and conductivity of ILs, but also prevent base liquids from creeping and leakage. Therefore, ionogel lubricants can be potentially used in the conductive parts of electrical equipments.

  5. Different additives to enhance the gelation of surimi gel with reduced sodium content.

    Science.gov (United States)

    Cando, Deysi; Herranz, Beatriz; Borderías, A Javier; Moreno, Helena M

    2016-04-01

    This study tested the effect of adding tetra-sodium pyrophosphate, cystine and lysine as surimi gelation enhancers (Alaska Pollock) in order to reduce the sodium content of gels up to 0.3%. These gels were compared with others that contained 3% NaCl content (the amount typically used for surimi processing). To induce protein gelation, gels were first heated and then set at 5 °C/24 h. Once the physicochemical and rheological properties of the gels were determined, cystine and lysine were found to be the most effective additives improving the characteristics of low NaCl surimi gels. The action of these additives is mainly based on the induction of myofibrillar protein unfolding thus facilitating the formation of the types of bonds needed to establish an appropriate network. It was found that a setting period was needed for gel processing to maximize the effect of the additives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of nano-scaled fish bone on the gelation properties of Alaska pollock surimi.

    Science.gov (United States)

    Yin, Tao; Park, Jae W

    2014-05-01

    Gelation properties of Alaska pollock surimi as affected by addition of nano-scaled fish bone (NFB) at different levels (0%, 0.1%, 0.25%, 0.5%, 1% and 2%) were investigated. Breaking force and penetration distance of surimi gels after setting increased significantly as NFB concentration increased up to 1%. The first peak temperature and value of storage modulus (G'), which is known to relate to the unfolding and aggregation of light meromyosin, increased as NFB concentration increased. In addition, 1% NFB treatment demonstrated the highest G' after gelation was completed. The activity of endogenous transglutaminase (TGase) in Alaska pollock surimi increased as NFB calcium concentration increased. The intensity of myosin heavy chain cross-links also increased as NFB concentration increased indicating the formation of more ε-(γ-glutamyl) lysine covalent bond by endogenous TGase and calcium ions from NFB. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Modulation of the gelation efficiency of fibrillar and spherical aggregates by means of thiolation.

    Science.gov (United States)

    Munialo, Claire D; de Jongh, Harmen H J; Broersen, Kerensa; van der Linden, Erik; Martin, Anneke H

    2013-11-27

    Fibrillar and spherical aggregates were prepared from whey protein isolate (WPI). These aggregates were thiolated to a substantial degree to observe any impact on functionality. Sulfur-containing groups were introduced on these aggregates which could be converted to thiol groups by deblocking. Changes on a molecular and microstructural level were studied using tryptophan fluorescence, transmission electron microscopy, and particle size analysis. The average size (nm) of spherical aggregates increased from 38 to 68 nm (blocked variant) and 106 nm (deblocked variant) after thiolation, whereas the structure of fibrillar aggregates was not affected. Subsequently, gels containing these different aggregates were prepared. Rheological measurements showed that thiolation decreased the gelation concentration and increased gel strength for both WPI fibrillar and spherical aggregates. This effect was more pronounced upon thiolation of preformed fibrillar aggregates. The findings suggest that thiolation at a protein aggregate level is a promising strategy to increase gelation efficiency.

  8. Importance of salt and temperature in myosin polymerization during surimi gelation.

    Science.gov (United States)

    Núñez-Flores, Ruth; Cando, Deysi; Borderías, A Javier; Moreno, Helena M

    2018-01-15

    To address the effect of absence of NaCl on myosin heavy chain polymerization during two-step surimi gelation (different setting temperatures/times -5°C/24h and 30°C/30min-followed by heating at 90°C/30min) were considered. In gel samples made without salt (Lot A), no myosin heavy chain (MHC) polymerization was observed, only aggregation, as indicated by the electrophoresis in polyacrylamide/agarose gel profile. Moreover, these gels were characterized by weakly stabilized protein networks as denoted by the dynamic oscillatory measurement and FTIR analysis, resulting in poor quality gels. On the other hand, in gels made with added salt, MHC polymerization occurred, as evidenced by the electrophoresis, and the gelation resulted in a well-stabilized protein network with good physicochemical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Plasmin activity in UHT milk: relationship between proteolysis, age gelation, and bitterness.

    Science.gov (United States)

    Rauh, Valentin M; Johansen, Lene B; Ipsen, Richard; Paulsson, Marie; Larsen, Lotte B; Hammershøj, Marianne

    2014-07-16

    Plasmin, the major indigenous protease in milk, is linked to quality defects in dairy products. The specificity of plasmin on caseins has previously been studied using purified caseins and in the indigenous peptide profile of milk. We investigated the specificity and proteolytic pathway of plasmin in directly heated UHT milk (>150 °C for gelation and bitter peptides. Sixty-six peptides from αS- and β-caseins could be attributed to plasmin activity during the storage period, of which 23 were potentially bitter. Plasmin exhibited the highest affinity for the hydrophilic regions in the caseins that most probably were exposed to the serum phase and the least affinity for hydrophobic or phosphorylated regions. The proteolytic pattern observed suggests that plasmin destabilizes the casein micelle by hydrolyzing casein-casein and casein-calcium phosphate interaction sites, which may subsequently cause age gelation in UHT milk.

  10. Cation Tuning toward the Inference of the Gelation Behavior of Supramolecular Gels

    Science.gov (United States)

    Xue, Peng; Wu, Huiqiong; Wang, Xiaojuan; He, Ting; Shen, Rujuan; Yue, Fan; Wang, Jide; Zhang, Yi

    2016-01-01

    We serendipitously discovered that the tripeptide Asp–Phe–Phe trifluoroacetic acid salt (hereafter abbreviated as β-AspFF) formed a reversible thermotropic gel in chloroform solution (at temperatures higher than the boiling point of chloroform), and a stable gel in toluene solution (at equal to or lower than the room temperature). Experimental results indicate that doping metal ions into β-AspFF toluene gels can trigger morphological variations in the gel skeleton, thereby increasing gel volume and inducing the collapse of organogels. Investigation on the cation-tuned gelation behavior of β-AspFF can be used to elucidate heating-induced gel collapse (of normal gel) or reverse thermotropic gelation as well as select carbamide and acetamide as activators of β-AspFF gels in chloroform solution at room temperature. PMID:27138527

  11. Cation Tuning toward the Inference of the Gelation Behavior of Supramolecular Gels

    Science.gov (United States)

    Xue, Peng; Wu, Huiqiong; Wang, Xiaojuan; He, Ting; Shen, Rujuan; Yue, Fan; Wang, Jide; Zhang, Yi

    2016-05-01

    We serendipitously discovered that the tripeptide Asp–Phe–Phe trifluoroacetic acid salt (hereafter abbreviated as β-AspFF) formed a reversible thermotropic gel in chloroform solution (at temperatures higher than the boiling point of chloroform), and a stable gel in toluene solution (at equal to or lower than the room temperature). Experimental results indicate that doping metal ions into β-AspFF toluene gels can trigger morphological variations in the gel skeleton, thereby increasing gel volume and inducing the collapse of organogels. Investigation on the cation-tuned gelation behavior of β-AspFF can be used to elucidate heating-induced gel collapse (of normal gel) or reverse thermotropic gelation as well as select carbamide and acetamide as activators of β-AspFF gels in chloroform solution at room temperature.

  12. Dispersion, agglomeration, and gelation of LiFePO4 in water-based slurry

    Science.gov (United States)

    Tsai, Feng-Yen; Jhang, Jia-Hao; Hsieh, Han-Wei; Li, Chia-Chen

    2016-04-01

    The gelation of commercially available lithium iron phosphate (LiFePO4) in water-based slurry and its corresponding mechanism are studied. Based on surface chemistry analyses using zeta potential measurements and Fourier transform infrared spectroscopy, it is found that the key factor that causes LiFePO4 gelation in the aqueous slurry is the quality of the surface carbon coating on powder. When the surface carbon exhibits functional derivatives, such as carboxyl, hydroxyl, and carbonyl polar functional groups, LiFePO4 tends to form a three-dimensional, gel-like structure via hydrogen bonding. Moreover, the presence of the derivatives reduces the amount of conduction-favorable sp2-bonded carbon to LiFePO4, resulting in an electric resistance increase of the as-prepared electrode and the deterioration of the specific capacity of the as-constructed cell.

  13. A Mechanistic Investigation of Gelation. The Sol-Gel Polymerization of Bridged Silsesquioxane Monomers

    Energy Technology Data Exchange (ETDEWEB)

    SHEA,KENNETH J.; LOY,DOUGLAS A.

    2000-07-14

    The study of a homologous series of silsesquioxane monomers has uncovered striking discontinuities in gelation behavior. An investigation of the chemistry during the early stages of the polymerization has provided a molecular basis for these observations. Monomers containing from one to four carbon atoms exhibit a pronounced tendency to undergo inter or intramolecular cyclization. The cyclic intermediates have been characterized by {sup 29}Si NMR, chemical ionization mass spectrometry and isolation from the reaction solution. These carbosiloxanes are local thermodynamic sinks that produce kinetic bottlenecks in the production of high molecular weight silsesquioxanes. The formation of cyclics results in slowing down or in some cases completely shutting down gelation. An additional finding is that the cyclic structures are incorporated intact into the final xerogel. Since cyclization alters the structure of the building block that eventually makes up the xerogel network, it is expected that this will contribute importantly to the bulk properties of the xerogel as well.

  14. Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix

    OpenAIRE

    Selin Kanyas; Derya Aydın; Riza Kizilel; A Levent Demirel; Seda Kizilel

    2014-01-01

    Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix Selin Kanyas1, Derya Aydın2, Riza Kizilel3, A. Levent Demirel1,4, Seda Kizilel1,2* 1 Material Science and Engineering, Koc University, Sariyer, Istanbul, Turkey, 2 Department of Chemical and Biological Engineering, Koc University, Sariyer, Istanbul, Turkey, 3 Koc University-TUPRAS Energy Center (KUTEM), Koc University, Sariyer, Istanbul, Turkey, 4 Department of Chemistry,...

  15. Theoretical Predictions of Temperature-Induced Gelation in Aqueous Dispersions Containing PEO-Grafted Particles.

    Science.gov (United States)

    Xie, Fei; Woodward, Clifford E; Forsman, Jan

    2016-04-28

    In this work, we utilize classical polymer density functional theory (DFT) to study gelation in systems containing colloidal particles onto which polymers are grafted. The solution conditions are such that the corresponding bulk system displays a lower critical solution temperature (LCST). We specifically compare our predictions with experimental results by Shay et al. (J. Rheol. 2001, 45, 913-927), who investigated temperature response in aqueous dispersions containing polystyrene particles (PS), with grafted 45-mer poly(ethylene oxide) (PEO) chains. Our DFT treatment is based on a model for aqueous PEO solutions that was originally developed by Karlström for bulk solutions. In this model, monomers are assumed to be in either of two classes of states, labeled A and B, where B is more solvophobic than A. On the other hand, the degeneracy of B exceeds that of A, causing the population of solvophobic monomers to increase with temperature. In agreement with experimental findings by Shay et al., we locate gelation at temperatures considerably below TΘ, and far below the LCST for such chain lengths. This gelation occurs also without any dispersion interactions between the PS particles. Interestingly, the polymer-induced interaction free energy displays a nonmonotonic dependence on the grafting density. At high grafting densities, bridging attractions between grafted layers take place (considerably below TΘ). At low grafting densities, on the other hand, the polymers are able to bridge across to the other particle surface. Shay et al. conducted their experiments at very low ionic strength, using deionized water as a solvent. We demonstrate that even minute amounts of adsorbed charge on the surface of the particles, can lead to dramatic changes of the gelation temperature, especially at high grafting densities. Another interesting prediction is the existence of elongated (chainlike) equilibrium structures, at low particle concentrations. We emphasize that our model

  16. Rheological signatures of gelation and effect of shear melting on aging colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Jatav, Shweta; Joshi, Yogesh M, E-mail: joshi@iitk.ac.in [Department of Chemical Engineering, Indian Institute of Technology, Kanpur (India)

    2014-09-01

    Colloidal suspensions that are out of thermodynamic equilibrium undergo physical aging wherein their structure evolves to lower the free energy. In aqueous suspension of Laponite, physical aging accompanies increases of elastic and viscous moduli as a function of time. In this work, we study temporal evolution of elastic and viscous moduli at different frequencies and observe that freshly prepared aqueous suspension of Laponite demonstrates identical rheological behavior reported for the crosslinking polymeric materials undergoing chemical gelation. Consequently at a certain time, tan δ is observed to be independent of frequency. However, for samples preserved under rest condition for longer duration before applying the shear melting, the liquid to solid transition subsequent to shear melting shows greater deviation from classical gelation. We also obtain continuous relaxation time spectra from the frequency dependence of viscous modulus. We observe that, with an increase in the rest time, continuous relaxation time spectrum shows gradual variation from negative slope, describing dominance of fast relaxation modes to positive slope representing dominance of slow relaxation modes. We propose that the deviation from gelation behavior for the shear melted suspensions originates from inability of shear melting to completely break the percolated structure thereby creating unbroken aggregates. The volume fraction of such unbroken aggregates increases with the rest time. For small rest times presence of fewer number of unbroken aggregates cause deviation from the classical gelation. On the other hand, at high rest times presence of greater fraction of unbroken aggregates subsequent to shear melting demonstrate dynamic arrest leading to inversion of relaxation time spectra.

  17. Gelation mechanism of cellulose nanofibre gels: A colloids and interfacial perspective.

    Science.gov (United States)

    Mendoza, Llyza; Batchelor, Warren; Tabor, Rico F; Garnier, Gil

    2017-09-01

    Nanocellulose gels form a new category of sustainable soft materials of industrial interest for a wide range of applications. There is a need to map the rheological properties and understand the mechanism which provides the colloidal stability and gelation of these nanofibre suspensions. TEMPO (2,2,6,6,-tetramethylpiperidine-1-oxyl)-oxidised cellulose nanofibre gels were investigated at different fibre concentrations, pH and ionic strength. Dynamic and cyclic rheological studies was performed to quantify gel behaviour and properties. Gels were produced at different pH and salt contents to map and understand colloidal stability of the nanocellulose gel. Rheology indicates gelation asa transitionary state starting at a fibre concentration of 0.1wt.%. The colloidal stability of the nanocellulose gel network is controlled by pH and salt, whereas fibre concentration mainly dictates the dynamic rheological properties. Decreasing pH and adding salt destabilises the gel network by eluting bound water which is correlated with the decrease in electrostatic repulsion between fibres. The gelation and colloidal stability of these nanocellulose gels is driven by electrostatic forces and the entanglement ability of the fibrous system to overlap. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Comparison between a modified ethanol gelation test and protamine sulfate test. Experimental studies.

    Science.gov (United States)

    Zielinsky, A; Altman, R; Rouvier, J

    1976-08-31

    A comparative experimental study has been made to correlate the protamine sulfate test and a modified ethanol gelation test, based on clinical observations of the solubility of a gel formed at 20 degrees C (Godal and Abildgaard procedure) when it was transferred to a bath at 37 degrees C. Two different results were obtained: the gel remained insoluble at 37 degrees C or it became completely soluble, with intermediate degrees of partial solubility. Our studies indicate that this is due to the amount of fibrin monomers formed and the level of fibrinogen: the first are responsible for the insolubility of the gel and the second for its solubility. This furnishes us with useful information for diagnostic purposes. We found the protamine sulfate test more sensitive than the ethanol gelation test, and its sensitivity increased when fibrinogen level decreased. An insoluble gelation test is a sure indication of the presence of fibrin monomers, but a soluble gel calls for the protamine sulfate test to confirm this or the existence of high fibrinogen level.

  19. Concentration effects on irreversible colloid cluster aggregation and gelation of silica dispersions.

    Science.gov (United States)

    Schantz Zackrisson, Anna; Martinelli, Anna; Matic, Aleksandar; Bergenholtz, Johan

    2006-09-01

    Effects of particle concentration on the irreversible aggregation of colloidal silica are studied using in situ destabilization via the ionic strength increase derived from the enzymatic hydrolysis of urea by urease. Aggregation is monitored by time-resolved optical density and dynamic light scattering measurements. It terminates at a gel boundary, signaled by a prominent increase of the optical density and incipient non-ergodicity. Raman scattering is used to demonstrate that the enzymatic reaction continues, well beyond gelation for the compositions studied here, until the urea is consumed. Calibration of the ionic conductivity permits for constructing stability diagrams in terms of particle and salt concentration. As with reversible gelation, the process exhibits a collective character in that lower ionic strengths are required for gelation of concentrated dispersions and vice versa. However, light scattering demonstrates that the gel boundary is preceded here by a line marking the transition from reversible to irreversible cluster formation, with the two transition boundaries tracking each other. Comparisons are made with dispersions destabilized by direct addition of salt solutions, which gel under very different conditions.

  20. Influence of ultrasound on chemically induced gelation of micellar casein systems.

    Science.gov (United States)

    Chandrapala, Jayani; Zisu, Bogdan; Kentish, Sandra; Ashokkumar, Muthupandian

    2013-05-01

    Gelation is a significant operation in dairy processing. Protein gelation can be affected by several factors such as temperature, pH, or enzyme addition. Recently, the use of ultrasonication has been shown to have a significant impact on the formation of whey protein gels. In this work, the effect of ultrasonication on the gelation of casein systems was investigated. Gels were formed by the addition of 7.6 mm Tetra Sodium Pyro Phosphate (TSPP) to 5 wt% micellar casein (MC) solutions. Sonication at 20 KHz and 31 W for up to 30 min changed the surface hydrophobicity of the proteins, whereas surface charge was unaltered. Sonication before the addition of TSPP formed a firm gel with a fine protein network and low syneresis. Conversely, sonication after TSPP addition led to an inconsistent weak-gel-like structure with high syneresis. Gel strength in both cases increased significantly after short sonication times, while the viscoelastic properties were less affected. Overall, the results showed that ultrasonication can have a significant effect on the final gel properties of casein systems.

  1. Gelation of Na-alginate aqueous solution: A study of sodium ion dynamics via NMR relaxometry.

    Science.gov (United States)

    Zhao, Congxian; Zhang, Chao; Kang, Hongliang; Xia, Yanzhi; Sui, Kunyan; Liu, Ruigang

    2017-08-01

    Sodium alginate (SA) hydrogels have a wide range of applications including tissue engineering, drug delivery and formulations for preventing gastric reflux. The dynamics of sodium ions during the gelation process of SA solution is critical for clarification of the gelation procedure. In this work, nuclear magnetic resonance (NMR) relaxometry and pulsed-field-gradient (PFG) NMR diffusometry were used to investigate the dynamics of the sodium ions during the gelation of SA alginate. We find that sodium ions are in two different states with the addition of divalent calcium ions, corresponding to Ca(2+) crosslinked and un-crosslinked regions in the hydrogels. The sodium ions within the un-crosslinked regions are those released from the alginate chains without Ca(2+) crosslinking. The relative content of sodium ions within the Ca(2+) crosslinked regions decreased with the increase in the content of calcium ions in the system. The relaxation time T2 of sodium ions within the Ca(2+) crosslinked and un-crosslinked regions shift to shorter and longer relaxation time with the increase in concentration of calcium ion, which indicates the closer package of SA chains and the larger space for the diffusion of free sodium ions. This work clarifies the dynamics of (23)Na(+) in a calcium alginate gel at the equilibrium state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Gelation, oxygen permeability, and mechanical properties of mammalian and fish gelatin films.

    Science.gov (United States)

    Avena-Bustillos, R J; Chiou, B; Olsen, C W; Bechtel, P J; Olson, D A; McHugh, T H

    2011-09-01

    The objective of this study was to evaluate the gelation, thermal, mechanical, and oxygen permeability properties of different mammalian, warm- and cold-water fish gelatin solutions and films. Mammalian gelatin solutions had the highest gel set temperatures, followed by warm-water fish and then cold-water fish gelatin solutions. These differences were related to concentrations of imino acids present in each gelatin, with mammalian gelatin having the highest and cold-water fish gelatin having the lowest concentrations. Mammalian and warm-water fish gelatin films contained helical structures, whereas cold-water fish gelatin films were amorphous. This was due to the films being dried at room temperature (23 °C), which was below or near the gelation temperatures of mammalian and warm-water fish gelatin solutions and well above the gelation temperature of cold-water fish gelatin solutions. Tensile strength, percent elongation, and puncture deformation were highest in mammalian gelatin films, followed by warm-water fish gelatin film and then by cold-water fish gelatin films. Oxygen permeability values of cold-water fish gelatin films were significantly lower than those for mammalian gelatin films. These differences were most likely due to higher moisture sorption in mammalian gelatin films, leading to higher oxygen diffusivity. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.

  3. A hydro/organo/hybrid gelator: a peptide lipid with turning aspartame head groups.

    Science.gov (United States)

    Mukai, Masaru; Minamikawa, Hiroyuki; Aoyagi, Masaru; Asakawa, Masumi; Shimizu, Toshimi; Kogiso, Masaki

    2013-04-01

    This work presents a novel bola-type peptide lipid which can gelate water, organic solvents, and water/organic-solvent mixtures. In its molecular structure, an amphiphilic dipeptide aspartame (L-α-aspartyl-L-phenylalanine methyl ester) is connected at both ends of an alkylene linker. The different morphologies in the hydrogel (helical nanotapes) and the organogel (tape-like nanostructures) were visualized by energy-filtering transmission electron microscopy (EF-TEM) and energy-filtering scanning electron microscopy (FE-SEM), and the molecular arrangement was examined using X-ray diffraction (XRD), infrared (IR) spectroscopy, and circular dichroism (CD) spectroscopy. Possessing a hydrophilic aspartic acid group and a (relatively) hydrophobic phenylalanine methyl ester group, the dipeptide head group can turn about in response to solvent polarity. As a consequence, the solvent condition changed the molecular packing of the gelator and affected the overall supramolecular structure of the gel. It is noted that the peptide lipid gelated mixed solvents of water and organic solvents such as dichloromethane, liquid-paraffin, olive-oil, silicone-oils, and so on. The present hybrid gel can simultaneously hold hydrophilic and hydrophobic functional materials.

  4. Speckle-correlation analysis of the dynamic scatterers in temperature-governed gelation

    Science.gov (United States)

    Zimnyakov, D. A.; Isaeva, A. A.; Isaeva, E. A.; Ushakova, O. V.

    2016-04-01

    This study focuses on the analysis of the temperature-dependent dynamics of scatterers in aqueous solutions of gelatin with added scattering centers (submicron particles of titanium dioxide), whose characterized by high scattering efficiency, during the process of gelation. The technique of full field speckle-correlometry with a localized source of probing radiation and the spatial filtering of the speckle-modulated images of the medium surface was applied to investigate systems with different values of the volume fraction of scatterers. It was shown that the Arrhenius equations with significantly different values of the activation energy can describe the temperature dependencies of the correlation time of speckle intensity fluctuations for temperature ranges above and below the gelation characteristic temperature. Note that the correlation time of speckle intensity fluctuations is determined by the mobility of the scattering centers in the medium. This suggests the existence of transition between two different regimes of spatially limited diffusion of scattering centers in the probed medium under the condition of "sol-gel" transition. The estimated values of activation energy of spatially limited scatter diffusion in the studied systems at low temperatures correlate with the published values of the gelation activation energy for gelatin aqueous solutions.

  5. Viscosity-Reducing Bulky-Salt Excipients Prevent Gelation of Protein, but Not Carbohydrate, Solutions.

    Science.gov (United States)

    Kumar, Awanish; Klibanov, Alexander M

    2017-01-23

    The problem of gelation of concentrated protein solutions, which poses challenges for both downstream protein processing and liquid formulations of pharmaceutical proteins, is addressed herein by employing previously discovered viscosity-lowering bulky salts. Procainamide-HCl and the salt of camphor-10-sulfonic acid with L-arginine (CSA-Arg) greatly retard gelation upon heating and subsequent cooling of the model proteins gelatin and casein in water: Whereas in the absence of additives the proteins form aqueous gels within several hours at room temperature, procainamide-HCl for both proteins and also CSA-Arg for casein prevent gel formation for months under the same conditions. The inhibition of gelation by CSA-Arg stems exclusively from the CSA moiety: CSA-Na was as effective as CSA-Arg, while Arg-HCl was marginally or not effective. The tested bulky salts did not inhibit (and indeed accelerated) temperature-induced gel formation in aqueous solutions of all examined carbohydrates-starch, agarose, alginate, gellan gum, and carrageenan.

  6. Ultraviolet Light Catalyzed Gelation of 3-Methacryloxypropyltrimethoxysilane via Altered Silicate Spatial Structure.

    Science.gov (United States)

    Wei, Li; Yonggang, Wu; Shukun, Shen; Shaofei, Song; Daodao, Hu

    2016-09-08

    The gelation of 3-methacryloxypropyltrimethoxysilane (MAPTMS) is much more difficult to achieve in conventional conditions. This article describes a novel and concise approach to acquire transparent and firm hybrid gel material by one step promptly without photoinitiator or other tetraalkoxysilane. MAPTMS was hydrolyzed in acidified aqueous solution, which became homogeneous sol in 3 min, and then the sol was irradiated with UV light for a few minutes to form gel. The experimental results indicated that MAPTMS sol gelled in the presence of UV-irradiation was mainly attributed to altering Si-O-Si skeleton structure through hydroxyl radicals, and the gelation originated from the hydrolytic polycondensation of MAPTMS rather than the polymerization of methacryloxy substituent groups. The hydroxyl radicals could break the Si-O-Si ring structure to form cross-linker like species, and these cross-linkers chemically joined linear chains together to form the gel network. This investigation offers not only the photoinduced gelation strategy for MAPTMS sol but also the new insight into the effect of UV-irradiation on the sol-gel process of organotrialkoxysilanes.

  7. Reversible Plasmonic Circular Dichroism via Hybrid Supramolecular Gelation of Achiral Gold Nanorods.

    Science.gov (United States)

    Jin, Xue; Jiang, Jian; Liu, Minghua

    2016-12-27

    The fabrication of chiroptical plasmonic nanomaterials such as chiral plasmonic gold nanorods (GNRs) has been attracting great interest. Generally, in order to realize the plasmonic circular dichroism (PCD) from achiral GNRs, it is necessary to partially replace the surface-coated cetyltrimethylammonium bromide with chiral molecules. Here, we present a supramolecular approach to generate and modulate the PCD of GNRs through the hybrid gelation of GNRs with an amphiphilic chiral dendron gelator. Upon gelation, the PCD could be produced and further regulated depending on the ratio of the dendrons to GNRs. It was revealed that the wrapping of the self-assembled nanofibers around the GNRs is crucial for generating the PCD. Furthermore, the hybrid gel underwent a thermotriggered gel-sol and sol-gel transformation, during which the PCD can disappear (solution) and reappear (gel), respectively, and such process can be repeated many times. In addition, the hybrid gel could also undergo shrinkage upon addition of a slight amount of Mg(2+) ions, during which the PCD disappeared also. Thus, through the gel formation and subsequent metal ion- or temperature-triggered phase transition, PCD can be reversibly modulated. The results not only clarified the generation mechanism of PCD from the achiral GNRs without the chiral modification on the surface but also offered a simple and efficient way to modulate the PCD.

  8. Gelation mechanism of resorcinol-formaldehyde gels investigated by dynamic light scattering.

    Science.gov (United States)

    Taylor, Stewart J; Haw, Mark D; Sefcik, Jan; Fletcher, Ashleigh J

    2014-09-02

    Xerogels and porous materials for specific applications such as catalyst supports, CO2 capture, pollutant adsorption, and selective membrane design require fine control of pore structure, which in turn requires improved understanding of the chemistry and physics of growth, aggregation, and gelation processes governing nanostructure formation in these materials. We used time-resolved dynamic light scattering to study the formation of resorcinol-formaldehyde gels through a sol-gel process in the presence of Group I metal carbonates. We showed that an underlying nanoscale phase transition (independent of carbonate concentration or metal type) controls the size of primary clusters during the preaggregation phase; while the amount of carbonate determines the number concentration of clusters and, hence, the size to which clusters grow before filling space to form the gel. This novel physical insight, based on a close relationship between cluster size at the onset of gelation and average pore size in the final xerogel results in a well-defined master curve, directly linking final gel properties to process conditions, facilitating the rational design of porous gels with properties specifically tuned for particular applications. Interestingly, although results for lithium, sodium, and potassium carbonate fall on the same master curve, cesium carbonate gels have significantly larger average pore size and cluster size at gelation, providing an extended range of tunable pore size for further adsorption applications.

  9. The Effect of Illumination on the Gelation Process of Optoelectronic Materials

    Science.gov (United States)

    Morgan, Brian; Dadmun, Mark

    2015-03-01

    A tremendous amount of insight into the functionality of conjugated polymers in optoelectronic devices can be gained by the study of these materials as they progress through the gelation process. The nature of the percolated network structures formed directly affects exciton transport and device efficiency, thus precise knowledge of the evolution of structures provides crucial information towards improving device efficiency via processing techniques. Additionally, select optoelectronic polymers have exhibited reversibly altered physical properties such as viscosity upon exposure to white light, potentially indicative of temporary conformation changes. We have conducted a series of small angle neutron scattering experiments to probe the temperature-driven gelation process of the conjugated photoactive polymer poly(3-hexylthiophene-2,5-diyl) (P3HT) in both the presence and complete absence of white light. Fitting the resultant data indicates the creation and steady growth of cylindrical aggregates formed by the agglomeration of free chain P3HT as the growth process. Furthermore, clear differences between illuminated and non-illuminated gels are observed across multiple length scales, pointing towards an optically-induced variation in the gelation process.

  10. Spectral insights into gelation microdynamics of PNIPAM in an ionic liquid.

    Science.gov (United States)

    Wang, Zhangwei; Wu, Peiyi

    2011-09-15

    The gelation microdynamic mechanism of PNIPAM in a ionic liquid, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C(2)mim][NTf(2)]), is investigated by FTIR spectroscopy in combination with two-dimensional correlation spectroscopy (2Dcos) and perturbation correlation moving window (PCMW) technique for the first time. Appreciable changes in band frequencies and shapes are observed in the ν(N-H) and ν(C═O) regions, indicating the formation of new interactions between the ionic liquid and PNIPAM and the transformation of interior interaction between polymer chains during gelation. In particular, the variation of the ion environment with the relative change of the isolated and associated components of [C(2)mim][NTf(2)] on the sol-to-gel transition of PNIPAM is revealed by 2DIR analysis to the ν(C-H) region of imidazole ring. Upon cooling, the side chains of PNIPAM experience a changing process from dissociation of the interaction with ionic liquid to formation of N-H···O═C hydrogen bonding, then polymer shrinks from the side chains to backbone, followed by the final immobilization of the associated species in polymer network. Meanwhile, the gelation is actually a desolvation process upon the variation of ion environment.

  11. Thermal gelation of chitosan in an aqueous alkali-urea solution.

    Science.gov (United States)

    Li, Chong; Han, Qiuyan; Guan, Ying; Zhang, Yongjun

    2014-11-07

    Chitosan can readily dissolve in a precooled aqueous alkali-urea solution, a solvent that has previously been developed to dissolve cellulose. Upon heating, the resulting solutions quickly become a gel. The thermal gelling of the chitosan solutions was studied by rheology. Initially, a temperature ramp test was used to determine the gelation temperatures (Tgel). It was found that Tgel does not significantly change with chitosan concentration. The in situ formed gels liquefy on cooling, but the liquefication temperature (Tliq) is considerably lower than Tgel, indicating a large hysteresis in the cooling process. In addition, Tliq decreases with increasing polymer concentration. The kinetics of thermal gelation was then studied by isothermal curing. The solution gels were cured not only at temperatures above the Tgel, which was determined in the temperature ramp test, but also at temperatures far below the Tgel, provided that the solution is cured at the temperature for a long enough time. The solutions become gel faster when cured at higher temperatures. When cured at the same temperature, higher concentration solutions become gel faster. The apparent activation energy for the thermal gelation of the chitosan solutions was determined to be ∼200 kJ mol(-1). Physical gels of pure chitosan were obtained by repeated soaking the in situ formed gels in water. Preliminary test shows that new gels are highly biocompatible.

  12. Gelation and state diagram for a model nanoparticle system with adhesive hard sphere interactions

    Science.gov (United States)

    Wagner, Norman; Aaron, Eberle

    2012-02-01

    We provide the first comprehensive state diagram of thermoreversible gelation in a model nanoparticle system from dilute concentrations to the attractive driven glass. We show the temperature dependence of the interparticle potential is related to a surface molecular phase transition of the brush layer using neutron reflectivity (NR) and small-angle neutron scattering (SANS) [1]. We establish the temperature dependence of the interparticle potential using SANS, dynamic light scattering (DLS), and rheology. The potential parameters extracted from SANS suggest that, for this system, gelation is an extension of the Mode Coupling Theory (MCT) attractive driven glass line (ADG) to lower volume fractions and follows the percolation transition. Below the critical concentration, gelation proceeds without competition for phase separation [2]. These results are used to develop a complete state diagram for the sticky hard sphere reference system. [4pt] [1] A.P.R. Eberle, N.J. Wagner, B. Akgun, S.K. Satija, Langmuir 26 3003 (2010).[0pt] [2] A.P.R. Eberle, N.J. Wagner, R. Castaneda-Priego, Phys. Rev. Let. 105704 (2011).

  13. Insights into organogelation and its kinetics from Hansen solubility parameters. Toward a priori predictions of molecular gelation.

    Science.gov (United States)

    Diehn, Kevin K; Oh, Hyuntaek; Hashemipour, Reza; Weiss, Richard G; Raghavan, Srinivasa R

    2014-04-21

    Many small molecules can self-assemble by non-covalent interactions into fibrous networks and thereby induce gelation of organic liquids. However, no capability currently exists to predict whether a molecule in a given solvent will form a gel, a low-viscosity solution (sol), or an insoluble precipitate. Gelation has been recognized as a phenomenon that reflects a balance between solubility and insolubility; however, the distinction between these regimes has not been quantified in a systematic fashion. In this work, we focus on a well-known gelator, 1,3:2,4-dibenzylidene sorbitol (DBS), and study its self-assembly in various solvents. From these data, we build a framework for DBS gelation based on Hansen solubility parameters (HSPs). While the HSPs for DBS are not known a priori, the HSPs are available for each solvent and they quantify the solvent's ability to interact via dispersion, dipole-dipole, and hydrogen bonding interactions. Using the three HSPs, we construct three-dimensional plots showing regions of solubility (S), slow gelation (SG), instant gelation (IG), and insolubility (I) for DBS in the different solvents at a given temperature and concentration. Our principal finding is that the above regions radiate out as concentric shells: i.e., a central solubility (S) sphere, followed in order by spheres corresponding to SG, IG, and I regions. The distance (R0) from the origin of the central sphere quantifies the incompatibility between DBS and a solvent-the larger this distance, the more incompatible the pair. The elastic modulus of the final gel increases with R0, while the time required for a super-saturated sol to form a gel decreases with R0. Importantly, if R0 is too small, the gels are weak, but if R0 is too large, insolubility occurs-thus, strong gels fall within an optimal window of incompatibility between the gelator and the solvent. Our approach can be used to design organogels of desired strength and gelation time by judicious choice of a

  14. Diffusion of Acetic Acid Across Oil/Water Interface in Emulsification-Internal Gelation Process for Preparation of Alginate Gel Beads

    Institute of Scientific and Technical Information of China (English)

    LIU Xiu-dong; YU Wei-ting; LIN Jun-zhang; MA Xiao-jun; YUAN Quan

    2007-01-01

    Alginate has been widely used in cell microencapsulation and drug delivery systems in the form of gel beads or microcapsules. Although an alternative novel emulsification-internal gelation technology has been established and both the properties and the potential applications of the beads in drug delivery systems have been studied, the mechanism has not been well understood compared with the traditional droplet method( external gelation technology). On the basis of our previous knowledge that the novel technology is composed of complicatedly consecutive processes with multistep diffusion and re action, and the diffusion of acetic acid across oil/water interface being the prerequisite that determines the occurrence and rate for the reactions and the structures and properties of final produced gel beads, a special emphasis was placed on the diffusion process. With the aid of diffusion modeling and simple experimental design, the diffusion rate constant and diffusion coefficient of acetic acid across oil/water interface were determined to be in the orders of magnitude of 10-6 and 10-16, respectively. This knowledge will be of particular importance in understanding and interpreting the formation, structure of the gel beads and the relationship between the structure and properties and guiding the preparation and quality control of the gel beads.

  15. Formulation and Mathematical Optimization of Controlled Release Calcium Alginate Micro Pellets of Frusemide

    OpenAIRE

    Amitava Ghosh; Prithviraj Chakraborty

    2013-01-01

    Objective. Frusemide loaded calcium alginate micropellets, an oral microparticulate delivery system, was statistically optimized exhibiting prolonged therapeutic action minimizing its adverse effects. Methods. Ionotropic Gelation technique was adopted employing 32 Factorial designs and keeping the entire process free from organic solvents. Physicochemical and the release characteristics of the prepared formulations were studied, keeping variations only in sodium alginate (primary polymer) and...

  16. Partial calcium depletion during membrane filtration affects gelation of reconstituted milk protein concentrates.

    Science.gov (United States)

    Eshpari, H; Jimenez-Flores, R; Tong, P S; Corredig, M

    2015-12-01

    Milk protein concentrate powders (MPC) with improved rehydration properties are often manufactured using processing steps, such as acidification and high-pressure processing, and with addition of other ingredients, such as sodium chloride, during their production. These steps are known to increase the amount of serum caseins or modify the mineral equilibrium, hence improving solubility of the retentates. The processing functionality of the micelles may be affected. The aim of this study was to investigate the effects of partial acidification by adding glucono-δ-lactone (GDL) to skim milk during membrane filtration on the structural changes of the casein micelles by observing their chymosin-induced coagulation behavior, as such coagulation is affected by both the supramolecular structure of the caseins and calcium equilibrium. Milk protein concentrates were prepared by preacidification with GDL to pH 6 using ultrafiltration (UF) and diafiltration (DF) followed by spray-drying. Reconstituted UF and DF samples (3.2% protein) treated with GDL showed significantly increased amounts of soluble calcium and nonsedimentable caseins compared with their respective controls, as measured by ion chromatography and sodium dodecyl sulfate-PAGE electrophoresis, respectively. The primary phase of chymosin-induced gelation was not significantly different between treatments as measured by the amount of caseino-macropeptide released. The rheological properties of the reconstituted MPC powders were determined immediately after addition of chymosin, both before and after dialysis against skim milk, to ensure similar serum composition for all samples. Reconstituted samples before dialysis showed no gelation (defined as tan δ=1), and after re-equilibration only control UF and DF samples showed gelation. The gelation properties of reconstituted MPC powders were negatively affected by the presence of soluble casein, and positively affected by the amount of both soluble and insoluble

  17. Evaluation of polyacrylamide gels with accelerator ammonium salts for water shutoff in ultralow temperature reservoirs: Gelation performance and application recommendations

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2016-03-01

    Full Text Available Water shutoff in ultralow temperature reservoirs has received great attention in recent years. In previous study, we reported a phenol-formaldehyde-based gel formula with ammonium salt which can provide a gelation time between 2 hrs and 2 days at 25 °C. However, systematic evaluation and field recommendations of this gel formula when encountering complex reservoirs environment are not addressed. In this paper, how and why such practical considerations as water composition, temperature, pH, weight ratio of formaldehyde to resorcinol and contaminant Fe3+ to affect the gelation performance are examined. Brookfield DV-III and scanning electron microscopy (SEM are employed respectively for viscosity measurement and microstructure analysis. SEM results further illustrate the mechanism of the effect of salinity on gelation performance. It reveals that crosslinking done by covalent bond has great advantage for gel stability under high salinity environment. The target gel formula can provide desirable gelation time below 60 °C, perfect for 15–45 °C, while it is unfeasible to use high salinity to delay gelation at 60 °C. We summarized the effect of salinity on gelation performance of different gel formulas from the present study and published literature. The summarized data can provide important guideline for gel formula design before conducting any kinds of experiments. The variation of gelation performance at different salinity may be dominated by the interaction between crosslinker-salt-polymer, not only limited to “charge-screening effect” and “ion association” proposed by several authors. We hope the analysis encouraging further investigations. Some recommendations for field application of this gel are given in the end of this paper.

  18. A new class of organogelators based on triphenylmethyl derivatives of primary alcohols: hydrophobic interactions alone can mediate gelation

    Directory of Open Access Journals (Sweden)

    Wangkhem P. Singh

    2017-01-01

    Full Text Available In the present work, we have explored the use of the triphenylmethyl group, a commonly used protecting group for primary alcohols as a gelling structural component in the design of molecular gelators. We synthesized a small library of triphenylmethyl derivatives of simple primary alcohols and studied their gelation properties in different solvents. Gelation efficiency for some of the derivatives was moderate to excellent with a minimum gelation concentration ranging between 0.5–4.0% w/v and a gel–sol transition temperature range of 31–75 °C. 1,8-Bis(trityloxyoctane, the ditrityl derivative of 1,8-octanediol was the most efficient organogelator. Detailed characterizations of the gel were carried out using scanning electron microscopy, FTIR spectroscopy, rheology and powder XRD techniques. This gel also showed a good absorption profile for a water soluble dye. Given the non-polar nature of this molecule, gel formation is likely to be mediated by hydrophobic interactions between the triphenylmethyl moieties and alkyl chains. Possible self-assembled packing arrangements in the gel state for 1,8-bis(trityloxyoctane and (hexadecyloxymethanetriyltribenzene are presented. Results from this study strongly indicate that triphenylmethyl group is a promising gelling structural unit which may be further exploited in the design of small molecule based gelators.

  19. Influence of pre-cooking protein paste gelation conditions and post-cooking gel storage conditions on gel texture.

    Science.gov (United States)

    Paker, Ilgin; Matak, Kristen E

    2016-01-15

    Gelation conditions affect the setting of myofibrillar fish protein gels. Therefore the impact of widely applied pre-cooking gelation time/temperature strategies and post-cooking period on the texture and color of final protein gels was determined. Four pre-cooking gelation strategies (no setting time, 30 min at 25 °C, 1 h at 40 °C or 24 h at 4 °C) were applied to protein pastes (fish protein concentrate and standard functional additives). After cooking, texture and color were analyzed either directly or after 24 h at 4 °C on gels adjusted to 25 °C. No-set gels were harder, gummier and chewier (P gelation strategy. Pre-cooking gelation conditions will affect final protein gel texture and color, with gel stability benefiting from a gel-setting period. However, post-cooking storage may have a greater impact on final gels, with textural attributes becoming more consistent between all samples. © 2015 Society of Chemical Industry.

  20. A new class of organogelators based on triphenylmethyl derivatives of primary alcohols: hydrophobic interactions alone can mediate gelation.

    Science.gov (United States)

    Singh, Wangkhem P; Singh, Rajkumar S

    2017-01-01

    In the present work, we have explored the use of the triphenylmethyl group, a commonly used protecting group for primary alcohols as a gelling structural component in the design of molecular gelators. We synthesized a small library of triphenylmethyl derivatives of simple primary alcohols and studied their gelation properties in different solvents. Gelation efficiency for some of the derivatives was moderate to excellent with a minimum gelation concentration ranging between 0.5-4.0% w/v and a gel-sol transition temperature range of 31-75 °C. 1,8-Bis(trityloxy)octane, the ditrityl derivative of 1,8-octanediol was the most efficient organogelator. Detailed characterizations of the gel were carried out using scanning electron microscopy, FTIR spectroscopy, rheology and powder XRD techniques. This gel also showed a good absorption profile for a water soluble dye. Given the non-polar nature of this molecule, gel formation is likely to be mediated by hydrophobic interactions between the triphenylmethyl moieties and alkyl chains. Possible self-assembled packing arrangements in the gel state for 1,8-bis(trityloxy)octane and (hexadecyloxymethanetriyl)tribenzene are presented. Results from this study strongly indicate that triphenylmethyl group is a promising gelling structural unit which may be further exploited in the design of small molecule based gelators.

  1. A new class of organogelators based on triphenylmethyl derivatives of primary alcohols: hydrophobic interactions alone can mediate gelation

    Science.gov (United States)

    Singh, Wangkhem P

    2017-01-01

    In the present work, we have explored the use of the triphenylmethyl group, a commonly used protecting group for primary alcohols as a gelling structural component in the design of molecular gelators. We synthesized a small library of triphenylmethyl derivatives of simple primary alcohols and studied their gelation properties in different solvents. Gelation efficiency for some of the derivatives was moderate to excellent with a minimum gelation concentration ranging between 0.5–4.0% w/v and a gel–sol transition temperature range of 31–75 °C. 1,8-Bis(trityloxy)octane, the ditrityl derivative of 1,8-octanediol was the most efficient organogelator. Detailed characterizations of the gel were carried out using scanning electron microscopy, FTIR spectroscopy, rheology and powder XRD techniques. This gel also showed a good absorption profile for a water soluble dye. Given the non-polar nature of this molecule, gel formation is likely to be mediated by hydrophobic interactions between the triphenylmethyl moieties and alkyl chains. Possible self-assembled packing arrangements in the gel state for 1,8-bis(trityloxy)octane and (hexadecyloxymethanetriyl)tribenzene are presented. Results from this study strongly indicate that triphenylmethyl group is a promising gelling structural unit which may be further exploited in the design of small molecule based gelators. PMID:28228855

  2. Effect of acidification on the protection of alginate-encapsulated probiotic based on emulsification/internal gelation.

    Science.gov (United States)

    Qu, Fangning; Zhao, Meng; Fang, Yapeng; Nishinari, Katsuyoshi; Phillips, Glyn O; Wu, Zhengjun; Chen, Chen

    2016-10-01

    The method of emulsification/internal gelation is commonly used to prepare alginate microspheres for lactic acid bacteria (LAB). This paper focused on the influence of acidification parameters, i.e. acid/Ca molar ratio and acidification time, on the physical properties and cell protection efficiency of microspheres and their correlations. With increasing acid/Ca molar ratio and acidification time, the average diameter of microspheres decreased and their mechanical strength increased. Interestingly, wet alginate microspheres shrank in simulated gastric juice (SGJ) while they swelled in bile salts solution (BS). The shrinkage or swelling ratio decreased with increasing mechanical strength. Correlation analysis showed that the encapsulated cell survivals in both SGJ and BS were positively correlated with the mechanical strength of microspheres but negatively with the shrinkage or swelling ratio. BacLight LIVE/DEAD assay suggested that the viability of encapsulated cells in fresh, SGJ-treated and BS-treated microspheres was closely related to cell membrane integrity. Acidification is a key step during microsphere preparation, which strongly affected the physical properties of alginate microspheres, resulting in different cell protection efficiency. The resulting well-protected LAB can be applied in probiotics foods. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Effect of protease inhibitors on thermal gelation of squid (Illex argentinus. mantle paste

    Directory of Open Access Journals (Sweden)

    Maria Elida Paredi

    2014-04-01

    Full Text Available The characteristics of the thermal gelation of squid mantle paste and the effect of protease inhibitors on them were investigated. Pastes in the absence and presence the protease inhibitors, ethylendiaminetetracetic acid (EDTA and phenylmethylsulfonyl fluoride (PMSF, were formulated. Pastes were made by the respective one or two step thermal treatments: direct heating at 85°C for 20 min and preincubation at 27 or 40 °C for 3 or 2 hours, followed by heating at 85 °C for 20 min. The gel strength, water holding capacity (WHC and whiteness of gelled pastes were analyzed. The tricloroacetic acid (TCA soluble peptides in homogenate of the muscle were determined. Gel strength decreased when heating was made in two steps. EDTA and PMSF were effective in avoiding that decrease when pre-incubation was made at 40 °C. Maximum gel strength was observed for the gels in presence of EDTA, giving values of 255 and 219 g x cm for the samples made by direct heating and pre-incubated at 40 °C  respectively. TCA soluble peptides increased between 20 and 60 °C, with maximum values reached at 30 and 60 °C. No significant differences (p>0.05 were observed in gel whiteness, neither with the thermal treatment nor with the inhibitors. The WHC was higher (p<0.05 in the gelated paste formulated with EDTA. These results show a good gelation capacity of I argentinus pastes and improvements with protease inhibitors. 

  4. Encapsulation of brewers yeast in chitosan coated carrageenan microspheres by emulsification/thermal gelation.

    Science.gov (United States)

    Raymond, Marie-Christine; Neufeld, Ronald J; Poncelet, Denis

    2004-05-01

    Brewers yeast was encapsulated in kappa-carrageenan microspheres using an emulsification-thermal gelation approach. Due to heat sensitivity of the yeast at temperatures in excess of 36 degrees C, mixtures of low and high gelation temperature carrageenans were tested to obtain a blend yielding a gelation temperature under 40 degrees C. A 20:80 dispersion of 2% carrageenan sol containing cells, in warm canola oil, produced microspheres upon cooling, with a mean diameter of 450 microm and narrow size dispersion (span of 1.2). Application of a chitosan membrane coat to minimize cell release, increased the mean microsphere diameter to 700 microm, due to the coat thickness and swelling of the microspheres. This diameter was designed so as to minimize mass transfer limitations. Batch fermentations were carried out in a 3 L reactor on a commercial wort medium. Cell loading was 10(7) cells mL(-1) microspheres, and cell "burst" release was observed upon inoculation into fresh medium, whether microspheres were coated or not. The kinetics of intra- and extracapsular cell growth were determined. Increased concentrations of extracapsular free cells could be accounted for by growth in the wort medium, and by ongoing release from the gel microspheres, whether coated or not. Cell release from chitosan-coated carrageenan microspheres was less than that from uncoated microspheres, likely due to retention by the membrane coat. Growth kinetics and alpha-amino nitrogen consumption of encapsulated yeast were higher than that of free cells, and differences in alcohol and ester profiles were also observed, likely due to modified metabolism of the encapsulated yeast.

  5. Asymmetrical phase separation and gelation in binary mixtures of oppositely charged colloids

    Science.gov (United States)

    Zong, Yiwu; Yuan, Guangcui; Han, Charles C.

    2016-07-01

    Two types of colloidal particles, which are nearly the same in chemical composition but carry opposite surface charges, are mixed in water. Depending on the relative proportion of the oppositely charged particles, the process of aggregation leads to the formation of discrete clusters of various sizes in dilute dispersions, and to the development of particle gel networks in more concentrated systems. Due to the significant difference in the absolute values of surface charges (negative particle: -48 mV, positive particle: +24 mV), the phase separation and the gelation behaviors are asymmetric with respect to the mixing ratio. Mixtures with excess negative particles are more stable, while mixtures with excess positive particles are easily affected by phase separation. The hetero-aggregation triggered by the addition of microscopically large macro-ions is similar to what is often observed in a mono-component charged colloidal system, i.e., phase separation occurs through addition of small electrolyte ions. Within the concentration region investigated here, it is clear that the gel line is buried inside the phase separation region. Gelation occurs only when the number and size of the clusters are large and big enough to connect up into a space-spanning network. Our results indicate that, in this binary mixture of oppositely charged colloids, although the interaction between unlike species is attractive and that between like species is repulsive, the onset of gelation is in fact governed by the equilibrium phase separation, as in the case of purely attractive systems with short-range isotropic interaction.

  6. Determining the gelation temperature of β-lactoglobulin using in situ microscopic imaging.

    Science.gov (United States)

    Woo, Hee-Dong; Moon, Tae-Wha; Gunasekaran, Sundaram; Ko, Sanghoon

    2013-09-01

    Evolution of microstructure during heat-induced gelation of β-lactoglobulin (β-LG) was investigated in situ using confocal laser scanning microscopy at various gel-preparation conditions: pH=2, 5, and 7; protein content=5, 10, and 15%; and salt (NaCl) content=0, 0.1, and 0.3 M. The number and area of evolving β-LG clusters were observed as a function of time and temperature and the data were fitted to a log-normal model and sigmoid model, respectively. The gelation temperature (Tgel) of the β-LG system was determined from both the number (Tgel/N) and total area (Tgel/A) of β-LG clusters versus temperature data. The range of Tgel/N and Tgel/A values for all the cases was 68 to 87°C. The effect of pH was the most dominant on Tgel/N and Tgel/A, whereas the effects of β-LG and salt contents were also statistically significant. Therefore, the combined effect of protein concentration, pH, and salt content is critical to determine the overall gel microstructure and Tgel. The Tgel/N and Tgel/A generally agreed well with Tgel determined by dynamic rheometry (Tgel/R). The correlations between Tgel/N and Tgel/A versus Tgel/R were 0.85 and 0.72, respectively. In addition, Tgel/N and Tgel/A values compared well with Tgel/R values reported in the literature. Based on these results, Tgel/N determined via in situ microscopy appears to be a fairly good representative of the traditionally measured gelation temperature, Tgel/R.

  7. Integrated Channel Selector for Directing Fluid Flow Using Thermoreversible Gelation Controlled by a Digital Mirror Device

    Directory of Open Access Journals (Sweden)

    Yoshitaka Shirasaki

    2013-01-01

    Full Text Available An integrated channel selector system employing thermoreversible gelation of a polymer was developed. Here, we show a system with 3×3 arrayed microchannels having nine crossing points. Infrared laser irradiation was used to form gel areas at several crossing points in arranging a flow path from the inlet to one of the nine outlets passing through certain junctions and channels. The multipoint irradiation by the infrared laser was realized using a personal-computer-controlled digital mirror device. The system was demonstrated to be able to direct flow to all nine outlets. Finally, we achieved to produce flexible paths for flowing particles including side trips.

  8. Pinning of phase separation of aqueous solution of hydroxypropylmethylcellulose by gelation

    Science.gov (United States)

    Kita, Rio; Kaku, Takeshi; Kubota, Kenji; Dobashi, Toshiaki

    1999-08-01

    Opalescence of the aqueous solution of hydroxypropylmethylcellulose (HPMC) induced by heating has been studied in terms of the phase diagram and the phase separation dynamics. The cloud point curve and the sol-to-gel transition curve intersected with each other at about 55 °C. Just above the cloud-point curve at which the spinodal curve has its minimum, a ring-like scattering pattern appeared corresponding to the spinodal decomposition. Temporal growth of the scattering function in the course of phase separation was studied by a time-resolved light scattering technique. The gelation pinned the phase separation (spinodal decomposition) of the aqueous HPMC solution.

  9. Evaluation of thermal gelation behavior of different cellulose ether polymers by rheology

    Science.gov (United States)

    Balaghi, S.; Edelby, Y.; Senge, B.

    2014-05-01

    Hydroxypropylmethylcellulose (HPMC) and Methylcellulose (MC) are cellulose ethers which can be dispersed in water and used as thickeners, emulsifiers, binders, film formers, and water-retention agents due to their hydrophilic and hydrophobic characteristics. In this study, various types of HPMCs, in comparison with two types of MCs were examined. The formed gels of the different cellulose ethers showed specific and various structural formation and network properties. The degree of methylation (Meth.) and hydroxypropylation (HyPr.) affected drastically the heat-induced gelation of the examined cellulose ethers.

  10. Synthesis and characterization of sugar based low molecular weight gelators and the preparation of chiral sulfinamides

    Science.gov (United States)

    Mangunuru, Hari Prasad Reddy

    Low molecular weight gelators (LMWGs) have received considerable attention in the field of chemistry from last few decades. These compounds form self-assembled fibrous networks like micelles, cylindrical, sheets, fibers, layers and so on. The fibrous network entraps the solvent and forms gel, because of the self-assembly phenomenon and their demonstrated potential uses in a variety of areas, ranging from environmental to medicinal applications. Sugars are good starting materials to synthesize the new class of LMWG's, because these are different from some expensive materials, these are natural products. We have synthesized and characterized the LMGS's based on D-glucose and D-glucosamine. D-glucosamine is the versatile starting material to make different peptoids and triazoles. Several series of compounds were synthesized using compounds 1-3 as starting material and studied the gelation behavior all the compounds. We have studied the self-assembling properties of a new class of tripeptoids, synthesized by one-pot Ugi reaction from simple starting materials. Among the focused library of tripeptoids synthesized, we found that several efficient low molecular weight organogelators were obtained for aqueous DMSO and ethanol mixtures. We have also synthesized and characterized a series of monosaccharide triazole derivatives. These compounds were synthesized from N-acetyl glucosamine and D-glucose via a Cu(I) catalyzed azide/alkyne cycloaddition reaction (CuAAc). The compounds have been screened for their gelation properties and several efficient low molecular weight organo/hydro gelators were obtained, among these compounds, five per-acetyl glucosamine derivatives and one peracetyl glucose derivative were able to form gels in water. These new molecules are expected to be useful in drug delivery and tissue engineering.*. Asymmetric synthesis of chiral amines is a challenging in synthetic organic chemistry. The development of new catalysts for asymmetric organic

  11. Temperature-dependent gelation process in colloidal dispersions by diffusing wave spectroscopy.

    Science.gov (United States)

    Liu, Jiaxue; Boyko, Volodymyr; Yi, Zhiyong; Men, Yongfeng

    2013-11-19

    Temperature-dependent microrheology of a concentrated charge-stabilized poly(methyl methacrylate) colloidal dispersion with different salt concentrations was investigated by diffusing wave spectroscopy in backscattering mode. The critical temperature where the system undergoes aggregation and gelation depends upon the particle volume fraction or salt concentration. The viscoelastic properties of the systems have been discussed using Maxwell and Kelvin-Voigt models. Temperature-dependent crossover (G' = G″) frequency has been used to calculate activation energies representing a critical energy of interaction of gel formation.

  12. The effect of solvent choice on the gelation and final hydrogel properties of Fmoc–diphenylalanine

    OpenAIRE

    Raeburn, Jaclyn; Mendoza-Cuenca, Cristina; Cattoz, Beatrice N; Little, Marc A.; Terry, Ann E.; Zamith Cardoso, Andre; Griffiths, Peter C; Adams, Dave J.

    2014-01-01

    Gels can be formed by dissolving Fmoc–diphenylalanine (Fmoc–PhePhe or FmocFF) in an organic solvent and adding water. We show here that the choice and amount of organic solvent allows the rheological properties of the gel to be tuned. The differences in properties arise from the microstructure of the fibre network formed. The organic solvent can then be removed post-gelation, without significant changes in the rheological properties. Gels formed using acetone are meta-stable and crystals of F...

  13. Improving paper strength by gelation of native starch and borax in the presence of fibers

    Directory of Open Access Journals (Sweden)

    Jie Shen

    2012-11-01

    Full Text Available This paper puts forward a novel non-ionic augmentation system, namely, gelation of native starch in the presence of borax and papermaking fibers. Native starch was blended with high concentration pulp and auxiliary agents. After pasting, the starch gel adhered onto fiber surfaces. However, an excess dosage of agents led to a rigid structure and poor gel strength. Starch became gelatinized and then cross-linked by borax and cured as an adhesive layer through the process of pressing and drying under a high temperature. This provided close and uniform contact between starch and fibers. As a result, the strength of the paper was increased after forming.

  14. Enzyme-induced gelation of extensively hydrolyzed whey proteins by alcalase: comparison with the plastein reaction and characterization of interactions.

    Science.gov (United States)

    Doucet, Dany; Gauthier, Sylvie F; Otter, Don E; Foegeding, E Allen

    2003-09-24

    Extensive hydrolysis of whey protein isolate by Alcalase 2.4L produces a gel. The objectives of this study were to compare enzyme-induced gelation with the plastein reaction by determining the types of interactions involved in gelation. The average chain length of the peptides did not increase during hydrolysis and reached a plateau after 30 min to be approximately 4 residues, suggesting that the gel was formed by small molecular weight peptides held together by non-covalent interactions. The enzyme-induced gel network was stable over a wide range of pH and ionic strength and, therefore, showed some similarities with the plastein reaction. Disulfide bonds were not involved in the gel network. The gelation seems to be caused by physical aggregation, mainly via hydrophobic interactions with hydrogen bonding and electrostatic interactions playing a minor role.

  15. A NOVEL EOR POLYMER (Ⅱ) INVESTIGATION ON IN-SITU GELATION OF SMRF SYSTEM IN BEREA CORE

    Institute of Scientific and Technical Information of China (English)

    ZHUANG Yinfeng; Stanley McCool; G. Paul Willhite; Don W. Green

    1995-01-01

    In-situ gelation of aqueous sulfomethylated resorcinol formaldehyde (SMRF) system in Berea core has been investigated. Two sets of displacement experiments were conducted with this system (containing 5% NaCl, 0.036% CaCl2 · 2H2O). The brine permeabilities of the cores were reduced significantly from about 600 to 0.1 md. The in-situ gelation in Berea core-occurred a little bit earlier than gelation anticipated from bulk test in the experiments. The gel time was easier to control at initial pH between 6 and 8. During injection of SMRF system, the apparent viscosity was less than 1 mpa · s at 41℃.

  16. Effects of inulin/oligofructose on the thermal stability and acid-induced gelation of soy proteins.

    Science.gov (United States)

    Tseng, Y-C; Xiong, Y L; Boatright, W L

    2008-03-01

    Differential scanning calorimetry (DSC) and dynamic oscillatory shear testing were performed to study the influence of inulin (Raftiline HP-gel and Raftiline ST-gel) and oligofructose (Raftilose P95) on the thermal stability and gelation (using glucono-delta-lactone [GDL] as a coagulant) of soy protein isolate (SPI) dispersions. Addition of 10% (w/v) inulin/oligofructose or sucrose increased (P gelation, and the gel rheology was affected by both the pH decline and the specific temperature of heating. Addition of inulin/oligofructose (8%, w/v) improved the gelling properties of preheated SPI dispersion (8%, w/v) coagulated with GDL, showing 14.4 to 45.6% increase (P gelation than oligofructose, suggesting that the degree of fructose polymerization in the fructans was of thermal and rheological importance.

  17. Phase behaviors involved in surimi gel system: Effects of phase separation on gelation of myofibrillar protein and kappa-carrageenan.

    Science.gov (United States)

    Zhang, Tao; Xu, Xiaoqi; Ji, Lei; Li, Zhaojie; Wang, Yuming; Xue, Yong; Xue, Changhu

    2017-10-01

    Phase behaviors of mixtures of myofibrillar protein and κ-carrageenan at different mixing ratios and temperatures were examined by digital images and confocal scanning laser microscopy, showing that that the extent of phase separation was enhanced as the ratio of polysaccharides and temperature increased. The zeta potential of the mixtures became less negative as the protein ratio increased, and the complex became saturated at or above the protein/κ-carrageenan ratio of R4 (3.2%:0.8%). Gelation process performed by dynamic rheological analysis demonstrated that the presence of carrageenan decreased the gelation temperature but increased the storage modulus. Analysis of the microstructures of the mixed gels showed that the networks were significantly influenced by the concentrations of κ-carrageenan. The present work could be applied to evaluate the mechanism of competition between phase separation and gelation in mixtures of proteins and polysaccharides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effect of rainbow trout (Oncorhynchus mykiss) plasma protein on the gelation of Alaska pollock (Theragra chalcogramma) Surimi.

    Science.gov (United States)

    Li, D K; Lin, H; Kim, S M

    2008-05-01

    The effect of rainbow trout plasma protein (RPP) on the gelation of Alaska pollock surimi was determined to evaluate the possibility of its commercialization as a new protein additive. For modori gel, the breaking force, deformation, whiteness, and water holding capacity increased as the addition amount of RPP (0 to 0.75 mg/g) increased, and decreased at higher concentration of RPP (0.75 to 1.50 mg/g) (P gelation of Alaska pollock surimi. An RPP of 0.75 mg/g was the optimal concentration to prevent the gel weakening of Alaska pollock surimi. Compounds with molecular weights less than 10 kDa in RPP had no significant effect on the gelation of Alaska pollock surimi based on the result of the dialyzed RPP.

  19. Determination of Ideal Broth Formulations Needed to Prepare Hydrous Cerium Oxide Microspheres via the Internal Gelation Process

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Jack Lee [ORNL; Chi, Anthony [ORNL

    2009-02-01

    A simple test tube methodology was used to determine optimum process parameters for preparing hydrous cerium oxide microspheres via the internal gelation process.1 Broth formulations of cerium ammonium nitrate [(NH4)2Ce(NO3)6], hexamethylenetetramine, and urea were found that can be used to prepare hydrous cerium oxide gel spheres in the temperature range of 60 to 90 C. A few gel-forming runs were made in which microspheres were prepared with some of these formulations to be able to equate the test-tube gelation times to actual gelation times. These preparations confirmed that the test-tube methodology is reliable for determining the ideal broth formulations.

  20. Chiral Hexa- and Nonamethylene-Bridged Bis(L-Leu-oxalamide) Gelators : The First Oxalamide Gels Containing Aggregates with a Chiral Morphology

    NARCIS (Netherlands)

    Vujicic, Natasa Sijakovic; Glasovac, Zoran; Zweep, Niek; van Esch, Jan H.; Vinkovic, Marijana; Popovic, Jasminka; Zinic, Mladen

    2013-01-01

    Chiral amino acid- and amino alcohol-oxalamides are well-known as versatile and efficient gelators of various lipophilic and polar organic solvents and water. To further explore the capacity of the amino acid/oxalamide structural fragment as a gelation-generating motif, the dioxalamide dimethyl este

  1. Amino acid catalyzed bulk-phase gelation of organoalkoxysilanes via a transient co-operative self-assembly.

    Science.gov (United States)

    Shen, Shukun; Hu, Daodao; Sun, Peipei; Zhang, Xiaoru; Parikh, Atul N

    2009-10-15

    We report acceleration in the rate of bulk phase gelation of an organoalkoxysilane, 3-methacryloxypropyltrimethoxysilane (MAPTMS), in the presence of an amphiphilic additive, N-phenyl glycine (NPG). The MAPTMS gelation occurs within 30 min in the presence of 0.5 wt % NPG, which took several months in the absence of NPG. Using a combination of ATR-FT IR, (29)Si NMR, (1)H NMR, viscosity analysis, SEM, UV-vis, and pi-A isotherm measurements, we elucidate the molecular-level details of the structural changes during NPG-catalyzed MPTMS gelation rate. On the basis of these results, we propose a gelation mechanism in which a transient cooperative self-assembly process fosters hydrolysis and retards early condensation thereby promoting the formation of extended three-dimensionally cross-linked gels. Specifically, the amphiphilic character of the hydrolysis product of MAPTMS, consisting of a hydrophobic tail R = -CH(2)CH(2)CH(2)O(CO)C(CH(3)) horizontal lineCH(2) and a hydrophilic Si-OH headgroup, promotes micelle formation at high MAPTMS/water ratio. NPG readily inserts within these micelles thus retarding the topotactic condensation of silanols at the micellar surface. This in turn allows for a more complete hydrolysis of Si-OCH(3) groups prior to condensation in MAPTMS. With increased silanol concentration at the micellar periphery, a delayed condensation phase initiates. This formation of a covalently bonded Si-O-Si framework (and possibly also the formation of the methanol byproduct) likely destabilizes the micellar motif thus promoting its transformation into condensed mesophases (e.g., lamellar microstructure) upon gelation. Because of the generality of this transient and co-operative organic-inorganic self-assembly between hydrolyzed amphiphilic organoalkoxysilanes and surfactant-like amino acid additives, we envisage applications in controlling bulk phase gelation of many chain-substituted organoalkoxysilanes.

  2. Gelation behaviour of a bent-core dihydrazide derivative: effect of incubation temperature in chloroform and toluene.

    Science.gov (United States)

    Zhang, Chunxue; Zhang, Tianren; Ji, Nan; Zhang, Yan; Bai, Binglian; Wang, Haitao; Li, Min

    2016-02-01

    In this work, a new kind of gelator, 1,3-bis[(3,4-dioctyloxy phenyl) hydrazide]phenylene (BP8-C), containing two dihydrazide units as the rigid bent-core, has been synthesized and investigated. It was demonstrated that BP8-C is an efficient gelator which can gel various organic solvents, such as ethanol, benzene, toluene, chloroform, etc. Both an opaque gel (O-gel) and a transparent gel (T-gel), which is more stable, were obtained with BP8-C in chloroform at different incubation temperatures. Kinetic data based on fluorescence spectra revealed that the T-gels showed a larger Avrami parameter (n = 1.44 at 20 °C) than that of the O-gels (n = 1.21 for gelation at temperatures below 0 °C). While BP8-C did form the opaque gel in toluene, gelation took longer at lower incubation temperatures and even precipitated out below 0 °C. The kinetic Avrami analysis on sols of BP8-C with different concentrations shows a two-phrase mechanism, i.e. the n values are between 0.88 and 1.74 followed by 1.69 and 3.01 throughout the temperature range of 5 °C and 35 °C for 5.34 mg mL(-1) BP8-C in toluene, indicating that the fibers formed first and then bundled to produce compact networks. We propose that supersaturation governs the formation of gel in chloroform and that the diffusion process denominates gelation in toluene. XRD and FT-IR measurements confirmed that the xerogels prepared at different temperatures in different solvents exhibited a Col(h) structure and that there are three molecules in one columnar slice. Our results indicate that the gelation process, morphology of the gels and thus the final properties of the gels depend strongly on the preparation conditions such as temperature, solvent, concentration, etc.

  3. Combination of high-performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, U; Philipp, M; Gervais, P-C; Sanctuary, R; Krueger, J K [Laboratoire de Physique des Materiaux, Universite du Luxembourg, 162A avenue de la faiencerie, L-1511 Luxembourg (Luxembourg); Possart, W; Wehlack, C [Fachbereich Werkstoffwissenschaften, Universitaet des Saarlandes, D-66123 Saarbruecken (Germany); Kieffer, J, E-mail: ulrich.mueller@uni.l [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI (United States)

    2010-08-15

    A combination of infrared spectroscopy and high-performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight into the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, an unexpected excess polarizability observed during the gelation is attributed to cooperative dipole-dipole interactions.

  4. Temperature-Responsive Gelation of Type I Collagen Solutions Involving Fibril Formation and Genipin Crosslinking as a Potential Injectable Hydrogel

    OpenAIRE

    Shunji Yunoki; Yoshimi Ohyabu; Hirosuke Hatayama

    2013-01-01

    We investigated the temperature-responsive gelation of collagen/genipin solutions using pepsin-solubilized collagen (PSC) and acid-solubilized collagen (ASC) as substrates. Gelation occurred in the PSC/genipin solutions at genipin concentrations 0–2 mM under moderate change in temperature from 25 to 37°C. The PSC/genipin solutions exhibited fluidity at room temperature for at least 30 min, whereas the ASC/genipin solutions rapidly reached gel points. In specific cases PSC would be preferred o...

  5. Influence of curing agents on gelation and exotherm behaviour of an unsaturated polyester resin

    Indian Academy of Sciences (India)

    Raghu Raja Pandiyan Kuppusamy; Swati Neogi

    2013-12-01

    A judicious choice of curing agents such as initiator and promoter and their ratio to the resin can avoid reduced gel-time and shortened exothermic reactions in applications such as liquid compositemoulding processes. In this study, effects of different ratio of initiator and promoter to the unsaturated polyester resin on curing of the resin were investigated by measuring gel-time and peak exotherm using ASTM D2471 standards. Methyl ethyl ketone peroxide (MEKP) was used as an initiator and a cobalt salt was employed as an accelerator for the free radical polymerization of curing resin at ambient temperatures. It was observed that the resin gelation starts closely with the initial rise in exotherm temperature and time of gelation decreases with the increase in initiator or accelerator volume proportions. It was also found that the exotherm-peak and rate of temperature rise indicating that the curing rate increases with the initiator or accelerator proportions also increased. A nonlinear regression analysis of all geltime and cure data were performed to quantify the dependence of curing parameters on the volume proportions of accelerator and initiator. Thus, for this polymerization initiation system, the gel-time and cure parameters can be predicted for any initiator and cobalt levels within the ranges studied.

  6. Protein polymer hydrogels by in situ, rapid and reversible self-gelation.

    Science.gov (United States)

    Asai, Daisuke; Xu, Donghua; Liu, Wenge; Garcia Quiroz, Felipe; Callahan, Daniel J; Zalutsky, Michael R; Craig, Stephen L; Chilkoti, Ashutosh

    2012-07-01

    Protein-based biomaterials are an important class of materials for applications in biotechnology and medicine. The exquisite control of their composition, stereochemistry, and chain length offers unique opportunities to engineer biofunctionality, biocompatibility, and biodegradability into these materials. Here, we report the synthesis of a thermally responsive peptide polymer-based hydrogel composed of a recombinant elastin-like polypeptide (ELP) that rapidly forms a reversibly cross-linked hydrogel by the formation of intermolecular disulfide cross-links. To do so, we designed and synthesized ELPs that incorporate periodic cysteine residues (cELPs), and show that cELPs are thermally responsive protein polymers that display rapid gelation under physiologically relevant, mild oxidative conditions. Gelation of cELPs, at concentrations as low as 2.5 wt%, occurs in ≈ 2.5 min upon addition a low concentration of hydrogen peroxide (0.3 wt%). We show the utility of these hydrogels for the sustained release of a model protein in vitro, and demonstrate the ability of this injectable biomaterial to pervade tumors to maximize tumor coverage and retention time upon intratumoral injection. cELPs represent a new class of injectable reversibly cross-linked hydrogels with properties intermediate between ELP coacervates and chemically cross-linked ELP hydrogels that will find useful applications in drug delivery and tissue engineering.

  7. Purification from Acanthamoeba castellanii of proteins that induce gelation and syneresis of F-actin.

    Science.gov (United States)

    Maruta, H; Korn, E D

    1977-01-10

    From Acanthamoeba castellanii, we have purified four proteins each of which alone causes a solution of F-actin to gel. The four active proteins have subunit molecular weights of about 23,000, 28,000, 32,000 and 38,000, respectively; the last three may be dimers in their native proteins. Together, these four proteins account for about 97% of the gelation activity of the whole extract; not more than about 3% of the total activity of the unfractionated extract can be due to a 250,000-dalton polypeptide. Another protein fraction, purified by agarose chromatography, induces shrinking (syneresis) of gels formed from F-actin and any of the gelation factors. That fraction contains a high Ca2+-, low (K+,EDTA)-ATPase and a major polypeptide of 170,000 daltons both of which bind to actin in the shrunken gel pellet. The active fraction does not contain the previously described Acanthamoeba myosin (Pollard, T. D., and Korn, E. D. (1973) J. Biol. Chem. 248, 4682-4690).

  8. A smart gelator as a chemosensor: application to integrated logic gates in solution, gel, and film.

    Science.gov (United States)

    Xue, Pengchong; Lu, Ran; Jia, Junhui; Takafuji, Makoto; Ihara, Hirotaka

    2012-03-19

    A gelator that consisted of one benzimidazole moiety and four amide units was used as a chemosensor. We found that its absorption and emission spectra in solution were sensitive to two complementary chemical stimuli: protons and anions. Thus, YES and INH logic gates were obtained when absorbance was defined as an output. A combination gate of XNOR and AND with an emission output was also obtained. Moreover, wet gels in two solvents were used to construct two more-complicated three-input-three-output gates, owing to the existence of the gel phase as an additional output. Finally, in xerogel films that were formed from two kinds of wet gels, reversible changes in their emission spectra were observed when they were sequentially exposed to volatile acid and NH(3). Another combination two-output logic gate was obtained for xerogel films. Finally, three states of the gelator were used to construct not only basic logic gate, but also some combination gates because of their response to multiple chemical stimuli and their multiple output signals, in which one chemical input could erase the effect of another chemical input. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Solid state NMR studies of gels derived from low molecular mass gelators.

    Science.gov (United States)

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples.

  10. Gelation kinetics and characterization of enzymatically enhanced fish scales gelatin-pectin coacervate.

    Science.gov (United States)

    Huang, Tao; Tu, Zong-Cai; Shangguan, Xinchen; Wang, Hui; Hainan-Zhang; Zhang, Lu; Sha, Xiaomei

    2017-07-18

    Protein - polysaccharide complex coacervations have been considered extensively for the development of functional foods. The main problem of the complex coacervates is high unstable under different conditions and that cross-linking is necessary to stabilize them. In this study, the effects of pectin at different concentrations on the gel and structural properties of fish scales gelatin (FSG) - high methoxyl citrus pectin (HMP) coacervate enhanced by microbial-transglutanminase (MTGase) were studied. The gelation rates and gel strength of the MTGase enhanced FSG - HMP coacervate gels decreased with increasing HMP concentration. However, the enhanced coacervate gels exhibited better thermal behavior and mechanical properties compared with the original gels. And TG-P8 exhibited the highest melting point (27.15±0.12 (o) C), gelation point (15.65±0.01 (o) C) and stress (15.36±0.48 kPa). Particle size distribution, fluorescence emission, and UV absorbance spectra indicated that MTGase and HMP could make FSG form large aggregates. Moreover, confocal laser scanning microscopy of treated coacervate gels showed a continuous protein phase at low HMP concentrations. FSG and HMP could form soluble coacervate, and MTGase could improve the thermal and mechanical properties of coacervate gels. This article is protected by copyright. All rights reserved.

  11. Thermally induced coupling of phase separation and gelation in an aqueous solution of hydroxypropylmethylcellulose (HPMC)

    Science.gov (United States)

    Kita, Rio; Kaku, Takeshi; Ohashi, Hitoshi; Kurosu, Tateki; Iida, Masamori; Yagihara, Shin; Dobashi, Toshiaki

    2003-03-01

    Thermally induced coupling of gelation and phase separation in polysaccharide aqueous solutions has a complex feature because of critical and tricritical phenomena, thermally induced hydrophobic interaction, and molecular-weight distribution of the polysaccharide. To elucidate the process, the criticality of a hydroxypropylmethylcellulose (HPMC) aqueous solution was assessed, and then dielectric relaxation and fluorescence intensity experiments were carried out. The diffusion coefficient of the solution with a weight fraction of HPMC being 0.06 could be extrapolated to zero at the cloud-point curve which showed the criticality of the solution. The fluorescence intensity increased at a temperature much lower than the cloud point and the gel point, especially for concentrated solutions, indicating the hydrophobic interaction as the driving force of the gelation coupled by the phase separation. Dielectric relaxation measurements by time-domain reflectometry revealed two characteristic relaxations of chain motions around 100 MHz and orientation of free water around 20 GHz, which is accompanied by a low-frequency tail reflecting hydration water.

  12. Cyclic voltammetry investigation of diffusion of ferrocene within propylene carbonate organogel formed by gelator

    Energy Technology Data Exchange (ETDEWEB)

    Feng Guilong; Xiong Yun; Wang Hong [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074 (China); Yang Yajiang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan 430074 (China)], E-mail: yjyang@mail.hust.edu.cn

    2008-11-30

    Propylene carbonate organogel containing LiClO{sub 4} was formed in the presence of gelator bis-(4-stearoylaminophenyl) methane (BSAPM). The electrochemical behavior and diffusion of ferrocene (Fc) and ferricenium (Fc{sup +}) entrapped within the organogel was investigated by cyclic voltammetry. The Fc molecules still show redox activity within the organogels in comparison with corresponding solutions of propylene carbonate containing LiClO{sub 4}. The shape of the cyclic voltammograms of the Fc electrooxidation in organogel was similar to that in corresponding solutions. The results indicated that redox reactions of Fc/Fc{sup +} were a quasi-reversible process of diffusion-controlled single electron transfer in organogels. The diffusion coefficients of Fc and Fc{sup +} in organogels decreased with an increase of the concentration of gelator BSAPM, but increased with an increase of temperature. The temperature dependence of the diffusion coefficient in organogels followed classical Arrhenius equation. The activation energy in organogels was found of no difference from that in corresponding solutions.

  13. Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin.

    Science.gov (United States)

    Jo, Yoon Nam; Park, Byung-Dae; Um, In Chul

    2015-11-01

    Owing to unique properties, including the wound healing effect, sericin gel and films have attracted significant attention in the biomedical and cosmetic fields. The structural characteristics and properties of sericin gels and films are especially important owing to their effect on the performance of sericin in biomedical and cosmetic applications. In the present study, the effect of temperature on the gelation behavior, gel disruption, and sol-gel transition of sericin was examined using rheometry. In addition, the effect of the drying temperature on the structural characteristics of the sericin film was determined via Fourier transform infrared (FTIR) spectroscopy. The strength of the sericin gel increased and the gelation process was prolonged with decreasing storage temperatures. FTIR and differential scanning calorimetry (DSC) results also revealed that the crystallinity and the thermal decomposition temperature of the sericin film increased with decreasing drying temperature. The sericin gels were disrupted at a storage time of 40min when they were stored at temperatures higher than 50°C, and the corresponding gel strength decreased with increasing temperature. Furthermore, the thermo-reversible nature of gel-sol transition of sericin was confirmed by rheological and FTIR measurements.

  14. Supercooling Suppression of Microencapsulated n-Alkanes by Introducing an Organic Gelator

    Institute of Scientific and Technical Information of China (English)

    ZHU Kong-ying; WANG Shuang; QI Heng-zhi; LI Hui; ZHAO Yun-hui; YUAN Xiao-yan

    2012-01-01

    Supercooling of the microencapsulated phase change materials(PCMs) during cooling usually happens.This phenomenon can interfere with heat transfer and is necessary to further overcome.In this study,melamine-formaldehyde microcapsules containing two n-alkane PCMs,namely,n-dodecane(C12) or n-tetradecane(C14)were prepared by in situ polymerization.A small amount of n-hexatriacontane(C36) was introduced as an organic gelator into the core of microcapsules to cope with the supercooling problem.Analyses demonstrate that supcrcooling of the microencapsulated C12 or C14 was significantly suppressed by adding 3%(mass fraction) C36,without changing the spherical morphology and dispersibility.It could be also found that the enthalpy of microencapsulated C12 or C14 containing C36 was similar to that of microencapsulated n-alkanes without C36,whereas the difference between onsets of crystallization and melting(degree of supercooling) is similar to that of those of pure n-alkanes,suggesting the remarkable suppression ability of the organic gelator on supercooling.

  15. Synthesis and Properties of Gelators Derived from Tetraphenylethylene and Gallic Acid with Aggregation-Induced Emission

    Science.gov (United States)

    Luo, Miao; Zhou, Xie; Chi, Zhenguo; Ma, Chunping; Zhang, Yi; Liu, Siwei; Xu, Jiarui

    2013-09-01

    Two novel organogelators (TEG and TAG) based on tetraphenylethylene and 3,4,5-tris(dodecyloxy) benzoic acid were synthesized through ester bond and amido bond linkages, respectively. Compounds TEG and TAG were able to induce gelation in ethanol. Aggregation-induced enhanced emission was observed in these organogelator molecules, with increased fluorescence intensity from the solutions to the gels. The completely thermoreversible gelation occurred due to the aggregation of the organogelators. In the process, a fibrous network was formed by a combination of intermolecular hydrogen bonding, π-π stacking and van der Waals interactions. These phenomena were observed in the xerogels by field-emission scanning electron microscopy and Fourier-transform infrared spectroscopy. The results of differential scanning calorimetry and polarized optical microscopy indicated that compound TAG exhibited stable liquid crystalline phases over a wide temperature range. The linking groups have severe influence on the properties of the organogelators, which was mainly attributed to the hydrogen bonding interaction in compound TAG.

  16. Controlled Gelation of Particle Suspensions Using Controlled Solvent Removal in Picoliter Droplets

    Science.gov (United States)

    Vuong, Sharon; Walker, Lynn; Anna, Shelley

    2013-11-01

    Droplets in microfluidic devices have proven useful as uniform picoliter reactors for nanoparticle synthesis and as components in tunable emulsions. However, there can be significant transport between the component phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to monitor gelation of aqueous suspensions of spherical silica particles (Ludox) and disk-shaped clay particles (Laponite). Droplets are generated in a microfluidic device containing small wells that trap the droplets. We monitor the concentration process through size and shape changes of these droplets as a function of time in tens of droplets and use the large number of individual reactors to generate statistics regarding the gelation process. We also examine changes in suspension viscosity through fluorescent particle tracking as a function of dehydration rate, initial suspension concentration and initial droplet volume, and added salt, and compare the results with the Krieger-Dougherty model in which viscosity increases dramatically with particle volume fraction.

  17. An Injectable Hydrogel Prepared Using a PEG/Vitamin E Copolymer Facilitating Aqueous-Driven Gelation.

    Science.gov (United States)

    Zhang, Jianfeng; Muirhead, Ben; Dodd, Megan; Liu, Lina; Xu, Fei; Mangiacotte, Nicole; Hoare, Todd; Sheardown, Heather

    2016-11-14

    Hydrogels have been widely explored for biomedical applications, with injectable hydrogels being of particular interest for their ability to precisely deliver drugs and cells to targets. Although these hydrogels have demonstrated satisfactory properties in many cases, challenges still remain for commercialization. In this paper, we describe a simple injectable hydrogel based on poly(ethylene glycol) (PEG) and a vitamin E (Ve) methacrylate copolymer prepared via simple free radical polymerization and delivered in a solution of low molecular weight PEG and Ve as the solvent instead of water. The hydrogel formed immediately in an aqueous environment with a controllable gelation time. The driving force for gelation is attributed to the self-assembly of hydrophobic Ve residues upon exposure to water to form a physically cross-linked polymer network via polymer chain rearrangement and subsequent phase separation, a spontaneous process with water uptake. The hydrogels can be customized to give the desired water content, mechanical strength, and drug release kinetics simply by formulating the PEGMA-co-Ve polymer with an appropriate solvent mixture or by varying the molecular weight of the polymer. The hydrogels exhibited no significant cytotoxicity in vitro using fibroblasts and good tissue compatibility in the eye and when injected subcutaneously. These polymers thus have the potential to be used in a variety of applications where injection of a drug or cell containing depot would be desirable.

  18. Rheological properties of wheat starch influenced by amylose-lysophosphatidylcholine complexation at different gelation phases.

    Science.gov (United States)

    Ahmadi-Abhari, S; Woortman, A J J; Hamer, R J; Loos, K

    2015-05-20

    Amylose is able to form helical inclusion complexes with lysophosphatidylcholine (LPC). This complexation influences the functional and rheological properties of wheat starch; however it is well known that the formation of these complexes lead the starchy systems to a slower enzymatic hydrolysis. Based on this, to benefit from both the structuring properties of starch and also lower digestibility of the inclusion complexes, the objective of this study is the formation of amylose-LPC inclusion complexes while developing a firm network providing the desired functional properties in a starchy system. To investigate the influence of amylose-LPC complex formation at different stages of starch gelation on the viscosity behavior of wheat starch, 3% (w/w) LPC was added at three different points of the viscosity profile, obtained by rapid visco analyzer (RVA). LPC addition at all points affected the gelation behavior of wheat starch as compared with the reference. LPC addition at half-peak and peak of the viscosity profile resulted in a viscosity increase during cooling. Measuring the dynamic rheological properties of the freshly prepared gelatinized samples showed a decrease of storage modulus (G') and loss modulus (G") in the presence of LPC. During storage, in the presence of LPC, a lower elasticity was observed which indicates a lower rate of amylose retrogradation due to complexation with LPC.

  19. Microrheological Study of the Time Dependent Gelation of Single Wall Carbon Nanotube Suspensions

    Science.gov (United States)

    Chen, D. T. N.; Hough, L. A.; Islam, M. F.; Yodh, A. G.

    2006-03-01

    Single wall carbon nanotubes (SWNTs) dispersed in water using an anionic surfactant, sodium dodecylbenzene sulfonate (NaDDBS) form reversible gels because of the bonding between the individual nanotubes (L.A. Hough, M.F. Islam, P.A. Janmey and A. G. Yodh Phys. Rev. Lett. 93, 168102 (2004)). We study the time dependence of this reversible gelation using particle tracking microrheology. We empirically collapse the mean square displacement onto a single master curve that extends over several decades in time using a time-cure superposition. The frequency scaling exhibited by the viscoelastic moduli obtained from the master curve is remarkably similar to that of semiflexible polymer networks. By comparing the results from a range of initial SWNT concentrations below and above the rigidity percolation threshold, we gain insight into the evolution of structure during gelation. This work has been partially supported by the NSF through Grants DMR 05-20020 (MRSEC) and DMR-0505048, and by NASA grant NAG8-2172.

  20. Studies on fish and pork paste gelation by dynamic rheology and circular dichroism.

    Science.gov (United States)

    Liu, R; Zhao, S-M; Xiong, S-B; Xie, B-J; Liu, H-M

    2007-09-01

    The muscle paste of fish, pork, and their mixtures were prepared to study the gelling characteristics by dynamic rheological measurement. The gelation mechanisms of muscle paste were also investigated by circular dichroism. Gel formation of fish paste occurred in 2 steps of 5 to 35 and 51 to 90 degrees C respectively, while pork paste mainly in 1 step of 49 to 72 degrees C. Gel formation was relative to the alpha-helix unfolding of myosin, which responded the melting temperatures of 40 and 50 degrees C for fish myosin and 50 and 60 degrees C for pork myosin, respectively. Alpha-helix unfolding of myosin was beneficial for gel formation. During gel formation, G' of muscle paste was linearly related to alpha-helical content of myosin. The interactions of fish and pork proteins at high temperature (>35 degrees C) could change the gel forming characteristics of muscle paste. Mixed paste exhibited a similar gelation pattern to individual fish paste with 2 visible increases in G'. Addition of pork could suppress the breakdown of fish gel structure at approximately 50 degrees C. Mixing pork and silver carp in a certain ratio could improve the gel properties of silver carp products.

  1. Low molecular weight gelators based on biosurfactants, cellobiose lipids by Cryptococcus humicola.

    Science.gov (United States)

    Imura, Tomohiro; Kawamura, Daisuke; Ishibashi, Yuko; Morita, Tomotake; Sato, Shun; Fukuoka, Tokuma; Kikkawa, Yoshihiro; Kitamoto, Dai

    2012-01-01

    Cellobiose lipids (CLs) are bolaform glycolipid biosurfactants, which are produced from natural resources by a yeast strain and show fungicidal activity. In this study, the gelation properties of CL in solvents were investigated by several techniques including rheology and atomic force microscopy (AFM). The yeast CL was found to gelate 6 out of 26 solvents. Although it did not provide gels in ethanol or 1, 3-butanediol which are widely used for cosmetic industries, we succeeded in producing gels by mixing ethanol or 1, 3-butanediol with water. AFM observation of the gels on a silicon substrate provided 3D supramolecular structures with an entangled fibrous network. Moreover, it was also found that some of fibrous structures were twisted helical ribbons. This should be due to the cellobiose backbone having several chiral functional groups. The sol-gel phase transition temperatures for gels in mixed ethanol/water and 1, 3-butanediol/water systems were below 100°C, indicating that the gels can be obtained with rather mild preparation conditions. The present CL gels would be useful for novel multifunctional materials applicable to various industries.

  2. Development of a nutraceutical nano-delivery system through emulsification/internal gelation of alginate.

    Science.gov (United States)

    Mokhtari, Samira; Jafari, Seid Mahdi; Assadpour, Elham

    2017-08-15

    Alginate nano/microspheres are produced by emulsification/internal gelation of sodium alginate dispersed within vegetable oils containing surfactant, followed by CaCl2 addition resulting in hardened particles. In this work, the impact was evaluated of alginate, CaCl2, oil and surfactant content on the size and encapsulation efficiency of nanocarriers containing peppermint phenolic extract and prepared by a low energy internal gelation technique. The results revealed that size of nanoparticles decreased at higher oil and surfactant contents, higher molarity of CaCl2 and lower alginate concentrations. Also, it was found that the encapsulation efficiency was inversely proportional to the size of nanoparticles, and the impact of alginate concentration and surfactant content was markedly higher than the other two factors. The composition of 0.5% alginate, 400ml oil, 0.05M CaCl2 and 100ml surfactant was recognized as the optimized treatment with a reasonable encapsulation efficiency of 5.6% and a nanoparticle size of 785nm. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Novel Self-Assembly-Induced Gelation for Nanofibrous Collagen/Hydroxyapatite Composite Microspheres

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2017-09-01

    Full Text Available This study demonstrates the utility of the newly developed self-assembly-induced gelation technique for the synthesis of porous collagen/hydroxyapatite (HA composite microspheres with a nanofibrous structure. This new approach can produce microspheres of a uniform size using the droplets that form at the nozzle tip before gelation. These microspheres can have a highly nanofibrous structure due to the immersion of the droplets in a coagulation bath (water/acetone, in which the collagen aggregates in the solution can self-assemble into fibrils due to pH-dependent precipitation. Bioactive HA particles were incorporated into the collagen solutions, in order to enhance the bioactivity of the composite microspheres. The composite microspheres exhibited a well-defined spherical morphology and a uniform size for all levels of HA content (0 wt %, 10 wt %, 15 wt %, and 20 wt %. Collagen nanofibers—several tens of nanometers in size—were uniformly present throughout the microspheres and the HA particles were also well dispersed. The in vitro apatite-forming ability, assessed using the simulated body fluid (SBF solution, increased significantly with the incorporation of HA into the composite microspheres.

  4. Solid state NMR studies of gels derived from low molecular mass gelators

    Science.gov (United States)

    Kolehmainen, E.

    2016-01-01

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  5. Rheological and physical properties of camel and cow milk gels enriched with phosphate and calcium during acid-induced gelation.

    Science.gov (United States)

    Kamal, Mohammad; Foukani, Mohammed; Karoui, Romdhane

    2017-02-01

    The rheological properties of acid-induced coagulation of camel and cow milk gels following the addition of calcium chloride (CaCl2) and hydrogen phosphate dehydrate (Na2HPO4*2H2O) were investigated using a dynamic low amplitude oscillatory rheology. For a considered condition, the final values of storage modulus (G') and loss modulus (G″) of camel milk gels were significantly lower than those of cow milk gels. The increase of the added CaCl2 levels improved significantly the gelation properties of camel and cow milk gels, since a reduction in the gelation time and an increase in the gel firmness were observed. Following the addition of Na2HPO4*2H2O at 10 and 20 mM, no significant effect on the gelation rate and the firmness of camel milk gels was observed, while, a significant decrease in the gelation rate and firmness were observed for cow milk gels.

  6. Acid-Induced Cold Gelation of Globular Proteins: Effects of Protein Aggregate Characteristics and Disulfide Bonding on Rheological Properties

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, E.H.A. de; Pijpekamp, A.M. van de; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, C.G. de; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked mono

  7. Transglutaminase-induced gelation properties of soy protein isolate and wheat gluten mixtures with high intensity ultrasonic pretreatment.

    Science.gov (United States)

    Qin, Xin-Sheng; Luo, Shui-Zhong; Cai, Jing; Zhong, Xi-Yang; Jiang, Shao-Tong; Zhao, Yan-Yan; Zheng, Zhi

    2016-07-01

    Soy protein isolate (SPI) and wheat gluten (WG) are widely used in commercial food applications in Asia for their nutritional value and functional properties. However, individually each exhibits poor gelation. In this study, we examined the microbial transglutaminase (MTGase)-induced gelation properties of SPI and WG mixtures with high intensity ultrasonic pretreatment. Ultrasonic treatment reduced the particle size of SPI/WG molecules, which led to improvements in surface hydrophobicity (Ho) and free sulfhydryl (SH) group content. However, MTGase crosslinking facilitated the formation of disulfide bonds, markedly decreasing the content of free SH groups. Ultrasonic treatment improved the gel strength, water holding capacity, and storage modulus and resulted in denser and more homogeneous networks of MTGase-induced SPI/WG gels. In addition, ultrasonic treatment changed the secondary structure of the gel samples as determined by Fourier transform infrared spectroscopic analysis, with a reduction in α-helices and β-turns and an increase in β-sheets and random coils. Thus, ultrasound is useful in facilitating the gelation properties of MTGase-induced SPI/WG gels and might expand their utilization in the food protein gelation industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In Situ Observations of Thermoreversible Gelation and Phase Separation of Agarose and Methylcellulose Solutions under High Pressure.

    Science.gov (United States)

    Kometani, Noritsugu; Tanabe, Masahiro; Su, Lei; Yang, Kun; Nishinari, Katsuyoshi

    2015-06-04

    Thermoreversible sol-gel transitions of agarose and methylcellulose (MC) aqueous solutions on isobaric cooling or heating under high pressure up to 400 MPa have been investigated by in situ observations of optical transmittance and falling-ball experiments. For agarose, which undergoes the gelation on cooling, the application of pressure caused a gradual rise in the cloud-point temperature over the whole pressure range examined, which is almost consistent with the pressure dependence of gelling temperature estimated by falling-ball experiments, suggesting that agarose gel is stabilized by compression and that the gelation occurs nearly in parallel with phase separation under ambient and high-pressure conditions. For MC, which undergoes the gelation on heating, the cloud-point temperature showed a slight rise with an initial elevation of pressure up to ∼150 MPa, whereas it showed a marked depression above 200 MPa. In contrast, the gelling temperature of MC, which is nearly identical to the cloud-point temperature at ambient pressure, showed a monotonous rise with increasing pressure up to 350 MPa, which means that MC undergoes phase separation prior to gelation on heating under high pressure above 200 MPa. Similar results were obtained for the melting process of MC gel on cooling. The unique behavior of the sol-gel transition of MC under high pressure has been interpreted in terms of the destruction of hydrophobic hydration by compression.

  9. Photo-activated ionic gelation of alginate hydrogel: real-time rheological monitoring of the two-step crosslinking mechanism.

    Science.gov (United States)

    Higham, Alina K; Bonino, Christopher A; Raghavan, Srinivasa R; Khan, Saad A

    2014-07-21

    We examine the gelation of alginate undergoing ionic crosslinking upon ultraviolet (UV) irradiation using in situ dynamic rheology. Hydrogels are formed by combining alginate with calcium carbonate (CaCO3) particles and a photoacid generator (PAG). The PAG is photolyzed upon UV irradiation, resulting in the release of free calcium ions for ionic crosslinking. The viscous and elastic moduli during gelation are monitored as a function of the UV irradiation intensity, exposure time, alginate concentration, and the ratio between alginate and calcium carbonate. Gel time decreases as irradiation intensity increases because a larger concentration of PAG is photolyzed. Interestingly, dark curing, the continuing growth of microstructure in the absence of UV light, is observed. In some instances, the sample transitions from a solution to a gel during the dark curing phase. Additionally, when exposed to constant UV irradiation after the dark curing phase, samples reach the same plateau modulus as samples exposed to constant UV without dark curing, implying that dark curing does not affect the gelation mechanism. We believe the presence of dark curing is the result of the acidic environment persisting within the sample, allowing CaCO3 to dissociate, thereby releasing free Ca(2+) ions capable of binding with the available appropriate ionic blocks of the polymer chains. The growth of microstructure is then detected if the activation barrier has been crossed to release sufficient calcium ions. In this regard, we calculate a value of 30 J that represents the activation energy required to initiate gelation.

  10. Chitosan microparticles: influence of the gelation process on the release profile and oral bioavailability of albendazole, a class II compound.

    Science.gov (United States)

    Piccirilli, Gisela N; García, Agustina; Leonardi, Darío; Mamprin, María E; Bolmaro, Raúl E; Salomón, Claudio J; Lamas, María C

    2014-11-01

    Encapsulation of albendazole, a class II compound, into polymeric microparticles based on chitosan-sodium lauryl sulfate was investigated as a strategy to improve drug dissolution and oral bioavailability. The microparticles were prepared by spray drying technique and further characterized by means of X-ray powder diffractometry, infrared spectroscopy and scanning electron microscopy. The formation of a novel polymeric structure between chitosan and sodium lauryl sulfate, after the internal or external gelation process, was observed by infrared spectroscopy. The efficiency of encapsulation was found to be between 60 and 85% depending on the internal or external gelation process. Almost spherically spray dried microparticles were observed using scanning electron microscopy. In vitro dissolution results indicated that the microparticles prepared by internal gelation released 8% of the drug within 30 min, while the microparticles prepared by external gelation released 67% within 30 min. It was observed that the AUC and Cmax values of ABZ from microparticles were greatly improved, in comparison with the non-encapsulated drug. In conclusion, the release properties and oral bioavailability of albendazole were greatly improved by using spraydried chitosan-sodium lauryl sulphate microparticles.

  11. Acid-induced cold gelation of globular proteins: effects of protein aggregate characteristics ans disulfide bonding on Rheological properties.

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, de E.H.A.; Pijpekamp, A.M.; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, de C.G.; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked mono

  12. Acid-Induced Cold Gelation of Globular Proteins: Effects of Protein Aggregate Characteristics and Disulfide Bonding on Rheological Properties

    NARCIS (Netherlands)

    Alting, A.C.; Weijers, M.; Hoog, E.H.A. de; Pijpekamp, A.M. van de; Cohen Stuart, M.A.; Hamer, R.J.; Kruif, C.G. de; Visschers, R.W.

    2004-01-01

    The process of cold gelation of ovalbumin and the properties of the resulting cold-set gels were compared to those of whey protein isolate. Under the chosen heating conditions, most protein was organized in aggregates. For both protein preparations, the aggregates consisted of covalently linked mono

  13. Organogels based on 12-hydroxy stearic acid as a leitmotif: Dependence of gelation properties on chemical modifications.

    Science.gov (United States)

    Burkhardt, Markus; Noirez, Laurence; Gradzielski, Michael

    2016-03-15

    Various compounds based on the structural leitmotif of 12-hydroxy stearic acid (HSA) were studied with respect to their ability to form organogels. They were modified by ethoxylation in order to avoid the acid group of HSA, which is unwanted for many of the applications of organogels. In this paper, it is shown that the rheological performance of organogels depends strongly on the extent of ethoxylation, exhibiting an optimum at intermediate degrees of ethoxylation. Furthermore, we reveal that the ability for gelation as well as the mechanical properties are substantially reduced by the presence of stearic acid (SA) in the original reaction mixture, which is a typical contamination of HSA. This is quantified by the amount of gelator required for gelation and the elastic moduli observed for the gels. At the same time the mesoscopic structure, as probed by small-angle neutron scattering (SANS), is almost unchanged for different degrees of ethoxylation or the addition of SA--and similarly thick fibres are observed, while the viscoelastic parameters evolve. Accordingly the elastic efficiency of the individual structural units is responsible for the observed changes in the gelation properties. These findings are relevant for the application of such low molecular weight organogelators in practical formulations, as one can optimise the rheological properties of organogelators by appropriately choosing the degree of ethoxylation.

  14. Supramolecular synthons in designing low molecular mass gelling agents: L-amino acid methyl ester cinnamate salts and their anti-solvent-induced instant gelation.

    Science.gov (United States)

    Sahoo, Pathik; Kumar, D Krishna; Raghavan, Srinivasa R; Dastidar, Parthasarathi

    2011-04-04

    Easy access to a class of chiral gelators has been achieved by exploiting primary ammonium monocarboxylate (PAM), a supramolecular synthon. A combinatorial library comprising of 16 salts, derived from 5 L-amino acid methyl esters and 4 cinnamic acid derivatives, has been prepared and scanned for gelation. Remarkably, 14 out of 16 salts prepared (87.5 % of the salts) show moderate to good gelation abilities with various solvents, including commercial fuels, such as petrol. Anti-solvent induced instant gelation at room temperature has been achieved in all the gelator salts, indicating that the gelation process is indeed an aborted crystallization phenomenon. Rheology, optical and scanning electron microscopy, small angle neutron scattering, and X-ray powder diffraction have been used to characterize the gels. A structure-property correlation has been attempted, based on these data, in addition to the single-crystal structures of 5 gelator salts. Analysis of the FT-IR and (1)H NMR spectroscopy data reveals that some of these salts can be used as supramolecular containers for the slow release of certain pest sex pheromones. The present study clearly demonstrates the merit of crystal engineering and the supramolecular synthon approach in designing new materials with multiple properties.

  15. A study of alcohol-induced gelation of beta-lactoglobulin with small-angle neutron scattering, neutron spin echo, and dynamic light scattering measurements.

    Science.gov (United States)

    Yoshida, Koji; Yamaguchi, Toshio; Osaka, Noboru; Endo, Hitoshi; Shibayama, Mitsuhiro

    2010-04-07

    Gelation of beta-lactoglobulin (beta-Lg) in various alcohol-water mixtures with 0.1 M (M = mol L(-1)) hydrochloric acid was investigated with small-angle neutron scattering (SANS), neutron spin echo (NSE), and time-resolved dynamic light scattering (TRDLS) measurements. The beta-Lg in alcohol-water solutions undergoes gelation at specific alcohol concentrations where the alcohol-induced alpha-helical structure of beta-Lg is stabilized. The SANS profiles showed that beta-Lg exists as a single molecule at a low alcohol concentration. With increasing alcohol concentration, the profiles indicate a power law behavior of approximately 1.7 when the samples gelate. These behaviors were observed in all alcohol-water mixtures used, but the alcohol concentrations where the SANS profiles change shift to a lower alcohol concentration region with an increase in the size of the hydrophobic group of the alcohols. Apparent diffusion constants, obtained from the intermediate scattering function (ISF) of NSE and the intensity time correlation function (ITCF) of TRDLS, mainly depend on the viscosity of alcohol-water mixtures before gelation. After gelation, on the other hand, the ISFs of gels do not change appreciably in the range of the NSE time scale, indicating the microscopically rigid structure of beta-Lg gel. The ITCF functions obtained from TRDLS follow a double exponential decay type before gelation, but a logarithmic one (exponent alpha = 0.7) after gelation. It is most likely that the alcohol-induced gelation undergoes a similar mechanism to that for the heat-induced one at pH = 7 where beta-Lg aggregates stick together to form a fractal network, although the gelation time is faster in the former than in the latter.

  16. Effect of surfactants on shear-induced gelation and gel morphology of soft strawberry-like particles.

    Science.gov (United States)

    Xie, Delong; Arosio, Paolo; Wu, Hua; Morbidelli, Massimo

    2011-06-07

    The role of surfactant type in the aggregation and gelation of strawberry-like particles induced by intense shear without any electrolyte addition is investigated. The particles are composed of a rubbery core, partially covered by a plastic shell, and well stabilized by fixed (sulfate) charges in the end group of the polymer chains originating from the initiator. In the absence of any surfactant, after the system passes through a microchannel at a Peclet number equal to 220 and a particle volume fraction equal to 0.15, not only shear-induced gelation but also partial coalescence among the particles occurs. The same shear-induced aggregation/gelation process has been carried out in the presence of an ionic (sulfonate) surfactant or a nonionic (Tween 20) steric surfactant. It is found that for both surfactants shear-induced gelation does occur at low surfactant surface density but the conversion of the primary particles to the clusters constituting the gel decreases as the surfactant surface density increases. When the surfactant surface density increases above certain critical values, shear-induced gelation and eventually even aggregation do not occur any longer. For the sulfonate surfactant, this was explained in the literature by the non-DLVO, short-range repulsive hydration forces generated by the adsorbed surfactant layer. In this work, it is shown that the steric repulsion generated by the adsorbed Tween 20 layer can also protect particles from aggregation under intense shear. Moreover, the nonionic steric surfactant can also protect the strawberry-like particles from coalescence. This implies a decrease in the fractal dimension of the clusters constituting the gel from 2.76 to 2.45, which cannot be achieved using the ionic sulfonate surfactant.

  17. An Internal Gelation Method for Forming Multilayer Microspheres and Product Thereof.

    Science.gov (United States)

    1995-12-26

    phase of the emulsion was composed of canola oil 21 to which 0.1% by weight of a mixed soy lecithin was added as an 22 emulsifier . The organic/aqueous...diameters (50-200 /xm) were obtained 9 by addition of either 1.0 or 10.0 g purified soy bean lecithin as 10 an emulsifying agent. In these cases...the retained 20 viability of the bacteria following entrapment within the alginate 21 matrix using the lecithin extract as an emulsifying agent was

  18. Structure, dynamics and folding of an immunoglobulin domain of the gelation factor (ABP-120) from Dictyostelium discoideum.

    Science.gov (United States)

    Hsu, Shang-Te Danny; Cabrita, Lisa D; Fucini, Paola; Dobson, Christopher M; Christodoulou, John

    2009-05-15

    We have carried out a detailed structural and dynamical characterisation of the isolated fifth repeat of the gelation factor (ABP-120) from Dictyostelium discoideum (ddFLN5) by NMR spectroscopy to provide a basis for studies of co-translational folding on the ribosome of this immunoglobulin-like domain. The isolated ddFLN5 can fold autonomously in solution into a structure that resembles very closely the crystal structure of the domain in a construct in which the adjacent sixth repeat (ddFLN6) is covalently linked to its C-terminus in tandem but deviates locally from a second crystal structure in which ddFLN5 is flanked by ddFLN4 and ddFLN6 at both N- and C-termini. Conformational fluctuations were observed via (15)N relaxation methods and are primarily localised in the interstrand loops that encompass the C-terminal hemisphere. These fluctuations are distinct in location from the region where line broadening is observed in ddFLN5 when attached to the ribosome as part of a nascent chain. This observation supports the conclusion that the broadening is associated with interactions with the ribosome surface [Hsu, S. T. D., Fucini, P., Cabrita, L. D., Launay, H., Dobson, C. M. & Christodoulou, J. (2007). Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 104, 16516-16521]. The unfolding of ddFLN5 induced by high concentrations of urea shows a low population of a folding intermediate, as inferred from an intensity-based analysis, a finding that differs from that of ddFLN5 as a ribosome-bound nascent chain. These results suggest that interesting differences in detail may exist between the structure of the domain in isolation and when linked to the ribosome and between protein folding in vitro and the folding of a nascent chain as it emerges from the ribosome.

  19. Synergistic Interaction and Gelation in Cationic Guar Gum-Sodium Alginate System

    Institute of Scientific and Technical Information of China (English)

    He Dong-bao; Li Li-hua; Li Qing; Yang Xiao-zhen

    2004-01-01

    The synergistic interaction between the cationic guar gum (the ammonium hydroxy-propyl-trimethyl chloride of guar gum) and sodium alginate has been studied. The effects of the mass ratio of them, mixed temperature, balk salt ion concentration, incubation time and pH value on gelation were investigated. It has been observed that there was a gel strength maximum when the mass ratio was 0.6, the mixed temperature was 70℃, the balk salt ion concentration was 1.0 mol·L-1,the incubation time was 30 min and the pH value was 8. Interaction between molecules of these two polysaccharides was investigated by FT-IR spectrometry.

  20. Development of alginate microspheres containing thyme essential oil using ionic gelation.

    Science.gov (United States)

    Benavides, Sergio; Cortés, Pablo; Parada, Javier; Franco, Wendy

    2016-08-01

    Essential oils are a good antimicrobial and antioxidant agent alternative in human or animal feed. However, their direct use has several disadvantages such as volatilization or oxidation. The development of essential oil microspheres may help to avoid these problems. The objective of the present research was to microencapsulate thyme essential oil by generating emulsions with different dispersion degrees. The emulsions were encapsulated in calcium-alginate microspheres by ionic gelation. The microspheres were evaluated regarding size, shape, encapsulation efficiency, loading capacity and antimicrobial properties. The results indicate that encapsulation efficiency and loading capacity are dependent on concentration and degree of dispersion. The best encapsulation conditions were obtained at 2% v/v of thyme essential oil with a high dispersion degree (18,000rpm/5min), which was achieved with an efficiency of 85%. Finally, the microspheres obtained showed significant antimicrobial effect, especially in gram-positive bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Capillary break-up, gelation and extensional rheology of hydrophobically modified cellulose ethers

    Science.gov (United States)

    Sharma, Vivek; Haward, Simon; Pessinet, Olivia; Soderlund, Asa; Threlfall-Holmes, Phil; McKinley, Gareth

    2012-02-01

    Cellulose derivatives containing associating hydrophobic groups along their hydrophilic polysaccharide backbone are used extensively in the formulations for inks, water-borne paints, food, nasal sprays, cosmetics, insecticides, fertilizers and bio-assays to control the rheology and processing behavior of multi-component dispersions. These complex dispersions are processed and used over a broad range of shear and extensional rates. The presence of hydrophobic stickers influences the linear and nonlinear rheology of cellulose ether solutions. In this talk, we systematically contrast the difference in the shear and extensional rheology of a cellulose ether: ethy-hydroxyethyl-cellulose (EHEC) and its hydrophobically-modified analog (HMEHEC) using microfluidic shear rheometry at deformation rates up to 10^6 inverse seconds, cross-slot flow extensional rheometry and capillary break-up during jetting as a rheometric technique. Additionally, we provide a constitutive model based on fractional calculus to describe the physical gelation in HMEHEC solutions.

  2. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates

    Science.gov (United States)

    Ioannidou, Katerina; Kanduč, Matej; Li, Lunna; Frenkel, Daan; Dobnikar, Jure; Del Gado, Emanuela

    2016-07-01

    Gelation and densification of calcium-silicate-hydrate take place during cement hydration. Both processes are crucial for the development of cement strength, and for the long-term evolution of concrete structures. However, the physicochemical environment evolves during cement formation, making it difficult to disentangle what factors are crucial for the mechanical properties. Here we use Monte Carlo and Molecular Dynamics simulations to study a coarse-grained model of cement formation, and investigate the equilibrium and arrested states. We can correlate the various structures with the time evolution of the interactions between the nano-hydrates during the preparation of cement. The novel emerging picture is that the changes of the physicochemical environment, which dictate the evolution of the effective interactions, specifically favour the early gel formation and its continuous densification. Our observations help us understand how cement attains its unique strength and may help in the rational design of the properties of cement and related materials.

  3. Gelation and Swelling Behavior of Oxidized Konjac Glucomannan/Chitosan Hydrogel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The gelating and swelling mechanisms of the hydrogel formed from oxidized konjac glucomannan (OKGM) and chitosan (CS) were studied by Fourier transform infrared (FT-IR) spectrometry. FT-IR spectra illustrate that the interaction of polysaccharides forms the hydrogen bonds and interchain salt bonds and the dissociation of which dominates the swelling behavior in buffer solutions of different pH. The concentration of salt ion has effect on swelling behavior through the difference of salt ion concentration between in solution and in network of hydrogel, which causes penetrating pressure. Moreover, the Swelling degree and hydrogel strength could be modulated by varying conditions. It is indicated that the hydrogel has pH-sensitive and salt ion sensitive properties. The prepared optimum condition selected by varying conditions is that r = 0.2; t =30 min; Tp=343 K and I =1.6.

  4. Ionic gelation controlled drug delivery systems for gastric-mucoadhesive microcapsules of captopril

    Directory of Open Access Journals (Sweden)

    Altaf M

    2008-01-01

    Full Text Available A new oral drug delivery system was developed utilizing both the concepts of controlled release and mucoadhesiveness, in order to obtain a unique drug delivery system which could remain in stomach and control the drug release for longer period of time. Captopril microcapsules were prepared with a coat consisting of alginate and a mucoadhesive polymer such as hydroxy propyl methyl cellulose, carbopol 934p, chitosan and cellulose acetate phthalate using emulsification ionic gelation process. The resulting microcapsules were discrete, large, spherical and free flowing. Microencapsulation efficiency was 41.7-89.7% and high percentage efficiency was observed with (9:1 alginate-chitosan microcapsules. All alginate-carbopol 934p microcapsules exhibited good mucoadhesive property in the in vitro wash off test. Drug release pattern for all formulation in 0.1 N HCl (pH 1.2 was diffusion controlled, gradually over 8 h and followed zero order kinetics.

  5. Production of small uranium dioxide microspheres for cermet nuclear fuel using the internal gelation process

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Robert T [ORNL; Collins, Jack Lee [ORNL; Hunt, Rodney Dale [ORNL; Ladd-Lively, Jennifer L [ORNL; Patton, Kaara K [ORNL; Hickman, Robert [NASA Marshall Space Flight Center, Huntsville, AL

    2014-01-01

    The U.S. National Aeronautics and Space Administration (NASA) is developing a uranium dioxide (UO2)/tungsten cermet fuel for potential use as the nuclear cryogenic propulsion stage (NCPS). The first generation NCPS is expected to be made from dense UO2 microspheres with diameters between 75 and 150 m. Previously, the internal gelation process and a hood-scale apparatus with a vibrating nozzle were used to form gel spheres, which became UO2 kernels with diameters between 350 and 850 m. For the NASA spheres, the vibrating nozzle was replaced with a custom designed, two-fluid nozzle to produce gel spheres in the desired smaller size range. This paper describes the operational methodology used to make 3 kg of uranium oxide microspheres.

  6. Evolution of polyvinylidene fluoride (PVDF) hierarchical morphology during slow gelation process and its superhydrophobicity.

    Science.gov (United States)

    Li, Xianfeng; Zhou, Chong; Du, Runhong; Li, Nana; Han, Xutong; Zhang, Yufeng; An, Shulin; Xiao, Changfa

    2013-06-26

    In the paper, we proposed an evolution process of polyvinylidene fluoride (PVDF) macromolecular aggregation in a mixed solvent through the simple and slow gelation process at room temperature. The mixed solvent is prepared with a room-temperature solvent and a high-temperature solvent. The evolution process can be terminated by quenching and exchanging with nonsolvent in a nonsolvent coagulation bath properly, and then the vivid petal-like nanostructure and microspherulite is formed simultaneously. This hierarchical morphology endows PVDF with superhydrophobic and self-cleaning properties, which is useful to PVDF coating and membrane materials. The evolution processes are investigated through the measurements of differential scanning calorimetry (DSC), X-ray diffraction (XRD). In addition, the rheological properties of solution, dry gel and wet gel, are explored.

  7. Thermo-Gelation of Surface-Modified Polyethylene Microgels from Fragmentation and Immiscible Blends

    Science.gov (United States)

    Ling, Gerald H.; Shaw, Montgomery T.

    2008-07-01

    Polyethylene microgels were created by swollen-state grinding and ultrasonic fragmentation of bulk crosslinked polyethylene (XLPE) suspended in squalane, and by the extraction of crosslinked-polyethylene micro-domains from an immiscible blend of polyethylene (PE) and polystyrene (PS). Crosslinking of the polyethylene micro-domains in the blend was achieved by exposure to an electron beam. Suspensions of both microgels in squalane exhibit thermal gelation upon cooling where both G' and G″ increase by up to five-orders in magnitude when probed using small-angle oscillatory shear. We propose that this phenomenon is attributed to weak short-range interactions among the particles whereby surface terminal chains on the microgels can co-crystallize forming inter-particle bonds. However, these interactions are mild enough that the systems may be reverted to its original state by applying higher shear stresses at elevated temperatures.

  8. Nature of protein-protein interactions during the gelation of canola protein isolate networks.

    Science.gov (United States)

    Kim, Jae He; Varankovich, Natallia V; Stone, Andrea K; Nickerson, Michael T

    2016-11-01

    The nature of interactions involved during the gelation of a canola protein isolate was investigated using rheology and fractal imaging at neutral pH as a function of protein concentration (5.0-9.0% w/w). The onset of denaturation and the denaturation temperature by differential scanning calorimetry for canola protein isolate (CPI; 98.2% protein) was 78.6°C and 87.1°C, respectively. Rheological testing determined the gelation temperature (Tgel) to be ~87-90°C for all concentrations. The log % strain at break increased from 1.70 to 1.80 as CPI concentration increased from 5.0 to 7.0% (w/w). Rheological testing of CPI in the presence of destabilizing agents, NaCl (0.1 and 0.5M), urea (0.1, 0.5, 1 and 5M) and 2-β-mercaptoethanol (0.1 and 2%), was performed. Samples with NaCl and urea (0.1-1M) had similar temperature profiles and Tgel values to CPI alone whereas no gel was formed with the addition of 5M urea and 2-β-mercaptoethanol reduced the strength of the gel network. Fractal dimension and lacunarity was analyzed using CLSM imaging. The fractal dimension value for all CPI concentrations was ~1.5. The lacunarity of the gel decreased from 0.62 to 0.41 as the concentration of CPI increased from 5 to 7% (w/w). Mechanistic understanding of CPI aggregation and network formation will enable the food industry to better tailor food structure when CPI is present as ingredient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gelation of fibrinogen in plasma. A kinetic study by turbidity measurement.

    Science.gov (United States)

    Regañon, E; Vila, V; Aznar, J

    1984-01-01

    Studies of the turbidity profiles of diluted (1/55, v/v) normal plasma, thrombin activity free serum plus commercial fibrinogen, and 0.15 M NaCl, pH 7.4, plus commercial fibrinogen, activated by thrombin or reptilase and measured at 350 nm, have shown that the latency time (LT) hardly varies for the fibrinogen concentration within limits of 0.03-0.15 mg/ml; however, it does vary for the thrombin concentration. The rate of gelation (RG) varies linearly with the fibrinogen (FG) concentration, conforming to the equation RG = 0.027 (FG)1.8; it hardly varies for thrombin concentrations greater than 0.50 NIH U/ml. On the other hand, RG values obtained for 0.46 NIH U/ml of thrombin or 0.92 BU/ml of reptilase show no significant differences. The variation in LT for the thrombin or reptilase concentration allows the rate of activation to be estimated, giving values of 5.9 X 10(-12) and 3.2 X 10(-12) mol/U/s, respectively, for a fibrinogen concentration in plasma of 1.1 X 10(-10) mol/ml. The mean value estimated for the ratio LT/FG in normal plasma is 35.76 +/- 18.3 and 85.62 +/- 18.3 s mg-1 ml for activation by thrombin and reptilase, respectively. We have studied in normal plasma the parameters that define the gelation of fibrin as measured by turbidity curves and their variation according to the fibrinogen concentration. This permits us to establish the kinetics of fibrin gel formation and normal range values.

  10. Dynamic high pressure-induced gelation in milk protein model systems.

    Science.gov (United States)

    Venir, E; Marchesini, G; Biasutti, M; Innocente, N

    2010-02-01

    The structure-functional properties of milk proteins are relevant in food formulation. Recently, there has been growing interest in dynamic high-pressure homogenization effects on the rheological-structural properties of food macromolecules and proteins. The aim of this work was to evaluate the effects of different homogenization pressures on rheological properties of milk protein model systems. For this purpose, sodium caseinate (SC) and whey protein concentrate (WPC) were dispersed at different concentrations (1, 2, and 4%), pasteurized, and then homogenized at 0, 18MPa (conventional pressure, CP), 100MPa (high pressure, HP), and 150MPa (HP+). Differences in viscosity were observed between WPC and casein dispersions according to concentration, heat treatment, and homogenization pressure. Mechanical spectra described the characteristic behavior of solutions except for the WPC 4% pasteurized sample, in which a network formed but was broken after homogenization. Dispersions with different ratios of WPC and SC were also made. In these systems, pasteurization alone did not determine network formation, whereas homogenization alone promoted cold gelation. A total concentration of at least 4% was required for homogenization-induced gelation in pasteurized and unpasteurized samples. Gels with higher elastic modulus (G') were obtained in more concentrated samples, and a bell-shaped behavior with the maximum value at HP was observed. The HP treatment produced stronger gels than the CP treatment. Similar G' values were obtained when different concentrations, pasteurization conditions, and homogenization pressures were combined. Therefore, by setting appropriate process conditions, systems or gels with tailored characteristics may be obtained from dispersions of milk proteins. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Ionotropic glutamate receptors and glutamate transporters are involved in necrotic neuronal cell death induced by oxygen-glucose deprivation of hippocampal slice cultures.

    Science.gov (United States)

    Bonde, C; Noraberg, J; Noer, H; Zimmer, J

    2005-01-01

    Organotypic hippocampal slice cultures represent a feasible model for studies of cerebral ischemia and the role of ionotropic glutamate receptors in oxygen-glucose deprivation-induced neurodegeneration. New results and a review of existing data are presented in the first part of this paper. The role of glutamate transporters, with special reference to recent results on inhibition of glutamate transporters under normal and energy-failure (ischemia-like) conditions is reviewed in the last part of the paper. The experimental work is based on hippocampal slice cultures derived from 7 day old rats and grown for about 3 weeks. In such cultures we investigated the subfield neuronal susceptibility to oxygen-glucose deprivation, the type of induced cell death and the involvement of ionotropic glutamate receptors. Hippocampal slice cultures were also used in our studies on glutamate transporters reviewed in the last part of this paper. Neurodegeneration was monitored and/or shown by cellular uptake of propidium iodide, loss of immunocytochemical staining for microtubule-associated protein 2 and staining with Fluoro-Jade B. To distinguish between necrotic vs. apoptotic neuronal cell death we used immunocytochemical staining for active caspase-3 (apoptosis indicator) and Hoechst 33342 staining of nuclear chromatin. Our experimental studies on oxygen-glucose deprivation confirmed that CA1 pyramidal cells were the most susceptible to this ischemia-like condition. Judged by propidium iodide uptake, a selective CA1 lesion, with only minor affection on CA3, occurred in cultures exposed to oxygen-glucose deprivation for 30 min. Nuclear chromatin staining by Hoechst 33342 and staining for active caspase-3 showed that oxygen-glucose deprivation induced necrotic cell death only. Addition of 10 microM of the N-methyl-D-aspartate glutamate receptor antagonist MK-801, and 20 microM of the non-N-methyl-D-aspartate glutamate receptor antagonist 2,3-dihyroxy-6-nitro-7-sulfamoyl

  12. The low binding affinity of D-serine at the ionotropic glutamate receptor GluD2 can be attributed to the hinge region

    Science.gov (United States)

    Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm

    2017-04-01

    Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.

  13. Distribution of Vesicular Glutamate Transporter 2 and Ionotropic Glutamate Receptors in the Auditory Ganglion and Cochlear Nuclei of Pigeons (Columba livia).

    Science.gov (United States)

    Karim, M R; Atoji, Y

    2016-02-01

    Glutamate is a principal excitatory neurotransmitter in the auditory system. Our previous studies revealed localization of glutamate receptor mRNAs in the pigeon cochlear nuclei, suggesting the existence of glutamatergic input from the auditory nerve to the brainstem. This study demonstrated localization of mRNAs for vesicular glutamate transporter 2 (vGluT2) and ionotropic glutamate receptors (AMPA, kainate and NMDA) in the auditory ganglion (AG) and cochlear nuclei (magnocellular, angular and laminar nuclei). VGluT2 mRNA was intensely expressed in AG and intensely or moderately in the cochlear nuclei. The AG and cochlear nuclei showed intense-to-moderate mRNA signals for GluA2, GluA3, GluA4, GluK4 and GluN1. These results suggest that the pigeon AG neurons receives glutamatergic input from hair cells and in turn projects to the magnocellular and angular nuclei. Glutamate may play a pivotal role in the excitatory synapse transmission in the peripheral auditory pathway of birds.

  14. L-Asp is a useful tool in the purification of the ionotropic glutamate receptor A2 ligand-binding domain

    DEFF Research Database (Denmark)

    Krintel, Christian; Frydenvang, Karla; Ceravalls de Rabassa, Anna;

    2014-01-01

    In purification of the ionotropic glutamate receptor A2 (GluA2) ligand-binding domain (LBD), L-Glu supplemented buffers have previously been used for protein stabilization during the procedure. This sometimes hampers structural studies of low affinity ligands because L-Glu is difficult to displace...... despite extensive dialysis. Here, we show that L-Asp binds to full-length GluA2 with low affinity (Ki = 0.63 mM) and to GluA2 LBD with even lower affinity (Ki = 2.6 mM), and we use differential scanning differential scanning fluorimetry to show that L-Asp is able to stabilize the isolated GluA2 LBD. We...... mode observed for L-Asp at the GluA2 LBD is very similar to that described for L-Glu. Taken together, we have shown that L-Asp can be used instead of L-Glu for ligand-dependent stabilization of the GluA2 LBD during purification. This will enable structural studies of low affinity ligands for lead...

  15. Synthesis and Characterization of N-palmityl-L-phenylalanine Methyl Ester Gelator%棕榈酰-苯丙氨酸甲酯凝胶因子的制备及其性质考察

    Institute of Scientific and Technical Information of China (English)

    王晓明; 秦凌浩; 陈秋玲; 吴进锐; 陈小媛; 胡巧红

    2014-01-01

    Objective To synthesize N-palmityl-L-phenylalanine methyl ester (C1 6-L-Phe-OMe)a kind of self-assembled supramolecular gelator, and characterize its structure and property. Methods Using L-phenylalanine methyl ester and palmityl chloride as materials, gelator of C1 6-L-Phe-OMe was synthesized. Its structure was characterized by IR,1 H-NMR and MS. Its melting point, minimal gelation concentration and phase transition temperature in some kinds of vegetable oil were determined. Results The results of IR,1 H-NMR and MS showed that C1 6-L-Phe-OMe was successfully synthesized. The productivity was 7 3.4 0 % . The melting point was 7 1.5-7 2.3 ℃ and the minimal gelation concentration in olive oil, refined soybean oil, sunflower oil, soybean oil and peanut oil was 1 5 0 , 1 6 0 , 1 6 0 , 1 7 0 and 1 9 0 g· L-1 , respectively at room temperature. The phase transition temperature increased with increasing concentration of C1 6-L-Phe-OMe.Conclusion The preparation process of C1 6-L-Phe-OMe was flexible. The gelation ability of C1 6-L-Phe-OMe was very good in olive oil, refined soybean oil and sunflower oil. It was a good organogel gelator and a suitable controlled release drug carrier.%目的:合成一种自组装超分子有机凝胶因子---棕榈酰-苯丙氨酸甲酯(C16-L-Phe-OMe),并对其进行结构表征和性质考察。方法以 L-苯丙氨酸甲酯盐酸盐为母核、棕榈酰氯为酰化剂,合成棕榈酰-苯丙氨酸甲酯凝胶因子,采用 IR、1 H-NMR、MS 等手段对其结构进行表征,并考察其熔点、在各种植物油中的最低胶凝浓度、相转变温度等凝胶行为。结果 IR、1 H-NMR、MS 等分析结果表明合成物质的结构为棕榈酰-苯丙氨酸甲酯,产率为73.40%,熔程为71.5~72.3℃,室温下在橄榄油、一级大豆油、葵花油、大豆油、花生油中的最低胶凝浓度分别为150、160、160、170、190 g·L-1,相转变温度随凝胶因子浓度的增加而升高。结论 C16-L-Phe-OMe 的制备工

  16. FINITE ELEMENT ANALYSIS OF THE PHYSICAL GELATION PROCESS OF PVC PLASTISOL DURING ROTATIONAL MOLDING%旋转模塑过程中PVC溶胶物理凝胶化转变的有限元分析

    Institute of Scientific and Technical Information of China (English)

    王菲; 姚卫国; 乔从德; 贾玉玺

    2012-01-01

    The physical gelation of PVC plastisol is an important procedure in rotational molding processes, at the early stage of which the variation characteristics of plastisol viscosity determine its distribution on the mold surface, then affect the quality of products. On the basis of the unsteady temperature fields of the nickel mould and PVC material simulated by finite element method, the evolution and distribution of PVC material structures are calculated according to a theoretical model fitting well with experimental results, and then the plastisol viscosity and its evolution characteristics are obtained by the material structure-performance relationship. Hence the effect of different plasticizers on the physical gelation process of PVC materials is compared and analyzed. The results show the that PVC plastisol close to a mold surface, gets faster heating rate and earlier gel transition because of its smaller heat resistance. During the heating process, the viscosity of the PVC material is first reduced to a minimum, then increases rapidly due to the start of the gel transition. The micro mechanism of the gelation process is that the solution of PVC in the plasticizer and the swelling of PVC particles by the plasticizer are both strengthened, while the macro picture is a sharp increase in viscosity which makes the material stop flowing. Different plasticizers have different impacts on the evolution of material structure and plastisol viscosity, which is mainly due to their different lengths of chains. For the rotational molding process, the PVC thickness distribution depends on three important factors appeared during the physical gelation process of PVC plastisol: the minimum viscosity determined by the plastisol, the rate of the gelation process and the gelation temperature.%采用有限元法,数值模拟了成型过程中镍制模具和PVC材料的非稳态温度场,进而得到了PVC材料结构参数的时间演变和空间分布规律,再由结构-性能关

  17. Investigating cold gelation properties of recombined highly concentrated micellar casein concentrate and cream for use in cheese making.

    Science.gov (United States)

    Lu, Y; McMahon, D J; Vollmer, A H

    2016-07-01

    Highly concentrated micellar casein concentrate (HC-MCC), a potential ingredient for cheese making, contains ~20% casein with ~70% of serum proteins removed by microfiltration and diafiltration of skim milk, followed by vacuum evaporation. Our objective was to investigate cold gelation properties of recombined concentrated milk (RCM) by mixing thawed frozen HC-MCC and cream under different casein levels, pH, and protein-to-fat ratios, and with addition of sodium citrate or calcium. The HC-MCC was recombined with cream using low shear at 50°C for 30 min, and rheological measurements were conducted. Cold-gelling temperature [the temperature at which storage modulus (G')=loss modulus (G″)] was linearly correlated with casein levels from 8.6 to 11.5% (R(2)=0.71), pH from 6.6 to 7.0 (R(2)=0.96), and addition of sodium citrate from 0 to 0.36mmol/g of casein (R(2)=0.80). At pH 7.0, gelation occurred at 12, 26, and 38°C with 9, 10, and 11% casein, respectively. At pH 6.6, 6.8, and 7.0, RCM with 12% casein gelled at a mean temperature of 12, 26, and 37°C, respectively. Adding calcium chloride at 0.17mmol/g of casein significantly increased cold-gelling temperature from 18 to ≥50°C, whereas no significant change was observed at levels up to 0.12mmol/g of casein. Different protein to fat ratios ranging from 0.8 to 1.2 did not significantly influence gelling temperature. In transmission electron micrographs of RCM with 12% casein, casein micelles were nonspherical and partially dissociated into small protein strands. Upon addition of calcium chloride at 0.21mmol/g of casein, casein micelles were more spherical and retained colloidal structure with the presence of aggregated casein micelles. These gelation processes of RCM with or without addition of trisodium citrate were both reversible. We propose that cold gelation of RCM occurs when protein strands that have been partially released from the casein micelles entangle, restrict their mobility, and form a fine

  18. Nanoengineering of a Supramolecular Gel by Copolymer Incorporation: Enhancement of Gelation Rate, Mechanical Property, Fluorescence, and Conductivity.

    Science.gov (United States)

    Chakraborty, Priyadarshi; Das, Sujoy; Mondal, Sanjoy; Bairi, Partha; Nandi, Arun K

    2016-02-23

    In the quest to engineer the nanofibrillar morphology of folic acid (F) gel, poly(4-vinylpyridine-co-styrene) (PVPS) is judiciously integrated as a polymeric additive because of its potential to form H-bonding and π-stacking with F. The hybrid gels are designated as F-PVPSx gels, where x denotes the amount of PVPS (mg) added in 2 mL of F gel (0.3%, w/v). The assistance of PVPS in the gelation of F is manifested from the drop in critical gelation concentration and increased fiber diameter and branching of F-PVPSx gels compared to that of F gel. PVPS induces a magnificent improvement of mechanical properties: a 500 times increase of storage modulus and ∼62 times increase of yield stress in the F-PVPS5 gel compared to the F gel. The complex modulus also increases with increasing PVPS concentration with a maximum in F-PVPS5 gel. Creep recovery experiments suggest PVPS induced elasticity in the otherwise viscous F gel. The fluorescence intensity of F-PVPSx gels at first increases with increasing PVPS concentration showing maxima at F-PVPS5 gel and then slowly decreases. Gelation is monitored by time-dependent fluorescence spectroscopy, and it is observed that F and F-PVPSx gels exhibit perfectly opposite trend; the former shows a sigmoidal decrease in fluorescence intensity during gelation, but the latter shows a sigmoidal increase. The gelation rate constants calculated from Avrami treatment on the time-dependent fluorescence data manifest that PVPS effectively enhances the gelation rate showing a maximum for F-PVPS5 gel. The hybrid gel exhibit 5 orders increase of dc conductivity than that of F-gel showing semiconducting nature in the current-voltage plot. The Nyquist plot in impedance spectra of F-PVPS5 xerogel exhibit a depressed semicircle with a spike at lower frequency region, and the equivalent circuit represents a complex combination of resistance-capacitance circuits attributed to the hybrid morphology of the gel fibers.

  19. Enzyme-triggered self-assembly of a small molecule: a supramolecular hydrogel with leaf-like structures and an ultra-low minimum gelation concentration

    Energy Technology Data Exchange (ETDEWEB)

    Wang Huaimin; Yang Zhimou [Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ren Chunhua; Wang Ling [College of Pharmacy, Nankai University, Tianjin 300071 (China); Song Zhijian; Chen Xuemei, E-mail: yangzm@nankai.edu.cn [School of Chemical and Materials Engineering, College of Chemical Engineering, Huangshi Institute of Technology, Huangshi 435003 (China)

    2010-06-04

    We report on the use of a phosphatase to assist the formation of leaf-like structures and a supramolecular hydrogel with an ultra-low minimum gelation concentration. The compound can gel water at a minimum gelation concentration of 0.01 wt%, which is the lowest gelation concentration reported up to now. The images obtained by transmission electron microscopy (TEM) reveal the existence of leaf-like structures serving as the matrix of the hydrogels. The stability of the hydrogels was studied and emission spectra were used to get information about the molecular packing in the leaf-like structures. Since lowering the concentration of the gelator decreases the toxicity of the resulting hydrogels, ultra-low concentration gels have potential uses as biocompatible biomaterials for, e.g., cell cultures, tissue engineering, and drug delivery.

  20. Enzyme-induced gelation of extensively hydrolyzed whey proteins by Alcalase: peptide identification and determination of enzyme specificity.

    Science.gov (United States)

    Doucet, Dany; Otter, Don E; Gauthier, Sylvie F; Foegeding, E Allen

    2003-10-08

    Extensive hydrolysis of whey protein isolate by Alcalase was shown to induce gelation mainly via hydrophobic interactions. The aim of this work was to characterize the peptides released in order to better understand this phenomenon. The apparent molecular mass distribution indicated that aggregates were formed by small molecular mass peptides (<2000 Da). One hundred and thirty peptides with various lengths were identified by reversed-phase high-performance liquid chromatography coupled with electrospray ionization mass spectrometry. Alcalase was observed to have a high specificity for aromatic (Phe, Trp, and Tyr), acidic (Glu), sulfur-containing (Met), aliphatic (Leu and Ala), hydroxyl (Ser), and basic (Lys) residues. Most peptides had an average hydrophobicity of 1-1.5 kcal/residue and a net charge of 0 at the pH at which gelation occurred (6.0). Therefore, an intermolecular attractive force such as hydrophobic interaction suggests the formation of aggregates that further leads to the formation of a gel.

  1. Rational construction of gel-based supramolecular logic gates by using a functional gelator with multiple-stimuli responsive properties.

    Science.gov (United States)

    Fan, Kaiqi; Yang, Jun; Wang, Xiaobo; Song, Jian

    2014-11-07

    A gelator containing a sorbitol moiety and a naphthalene-based salicylideneaniline group exhibits macroscopic gel-sol behavior in response to four complementary input stimuli: temperature, UV light, OH(-), and Cu(2+). On the basis of its multiple-stimuli responsive properties, we constructed a rational gel-based supramolecular logic gate that performed OR and INH types of reversible stimulus responsive gel-sol transition in the presence of various combinations of the four stimuli when the gel state was defined as an output. Moreover, a combination two-output logic gate was obtained, owing to the existence of the naked eye as an additional output. Hence, gelator 1 could construct not only a basic logic gate, but also a two-input-two-output logic gate because of its response to multiple chemical stimuli and multiple output signals, in which one input could erase the effect of another input.

  2. Effect of chain length of PEO on the gelation and micellization of the pluronic F127 copolymer aqueous system.

    Science.gov (United States)

    Pragatheeswaran, Abhinav Maheswaran; Chen, Shing Bor

    2013-08-06

    The effect of adding homopolymer poly(ethylene oxide) (PEO) on the sol/gel behavior of amphiphilic triblock copolymer Pluronic F127 ((EO)98(PO)67(EO)98) in aqueous media is explored. Emphasis is placed on the influence of the PEO molecular weight and concentration on micellization and gelation and the exploration of their correlation. PEO is always found to lower the critical micellization temperature modestly. However, short PEO chains promote the gelation of F127, and long chains delay or even curb gel formation. Micelle size measurements and cryo-TEM micrographs provide evidence for micellar aggregation via the bridging of long PEO chains or depletion flocculation, thereby impeding the ordering of micelles for gel formation.

  3. From curdlan powder to the triple helix gel structure: an attenuated total reflection-infrared study of the gelation process.

    Science.gov (United States)

    Gagnon, Marc-André; Lafleur, Michel

    2007-04-01

    Infrared spectroscopy was used to probe the hydration and gelation of curdlan, a linear polysaccharide built from repeating units of (1-->3)-beta-D-glucose. The spectra have been recorded using a temperature-controlled attenuated total reflection (ATR) device. Thermal gelation of curdlan could therefore be followed in situ and in real time. The transformation of the low-set gel, mainly formed with single helices, into a high-set gel, associated with a triple helix structure, could be directly observed. The relative intensities and positions of characteristic absorption bands in the C-O region (1200-850 cm-1) were found to be representative of the gel structure, as they are believed to be sensitive to the helical conformation of the polymer chains. Infrared (IR) spectroscopy is shown to be a useful tool for rapid and efficient characterization of curdlan gels.

  4. Porous CdTe nanocrystal assemblies: ligation effects on the gelation process and the properties of resultant aerogels.

    Science.gov (United States)

    Yao, Qinghong; Brock, Stephanie L

    2011-10-17

    Highly porous CdTe nanoarchitectures (aerogels) were prepared by sol-gel assembly of discrete nanocrystals followed by supercritical CO(2) drying. CdTe nanocrystal surface functionalization (either phosphine oxide or thiolate) is found to be immaterial to oxidation induced gel formation suggesting that the standard thiolate capping procedure is not a necessary step in the gelation process. On the basis of this observation, and reduction induced dispersion of the gel network, the exposure of reactive sites and the subsequent surface oxidation reaction to form polychalcogenide linkages are key steps in the gelation mechanism. Consequently, CdTe aerogels exhibit similar physicochemical properties, regardless of original ligating functionality. The aerogels are mesoporous, with surface area >100 m(2)/g, and exhibit an optical bandgap of 1.92 eV, consistent with quantum confinement within the 3-D linked network. Photoluminescence is suppressed in the aerogels, but can be partially recovered upon heating.

  5. In situ gelation properties of a collagen-genipin sol with a potential for the treatment of gastrointestinal ulcers.

    Science.gov (United States)

    Narita, Takefumi; Yunoki, Shunji; Ohyabu, Yoshimi; Yahagi, Naohisa; Uraoka, Toshio

    2016-01-01

    We investigated the potential of collagen-genipin sols as biomaterials for treating artificial ulcers following endoscopic submucosal dissection. Collagen sol viscosity increased with condensation, allowing retention on tilted ulcers before gelation and resulting in collagen gel deposition on whole ulcers. The 1.44% collagen sols containing genipin as a crosslinker retained sol fluidity at 23°C for >20 min, facilitating endoscopic use. Collagen sols formed gel depositions on artificial ulcers in response to body temperature, and high temperature responsiveness of gelation because of increased neutral phosphate buffer concentration allowed for thick gel deposition on tilted ulcers. Finally, histological observations showed infiltration of gels into submucosal layers. Taken together, the present data show that genipin-induced crosslinking significantly improves the mechanical properties of collagen gels even at low genipin concentrations of 0.2-1 mM, warranting the use of in situ gelling collagen-genipin sols for endoscopic treatments of gastrointestinal ulcers.

  6. Influence of galactomannans with different molecular weights on the gelation of whey proteins at neutral pH.

    Science.gov (United States)

    Monteiro, Sónia R; Tavares, Cláudia; Evtuguin, Dmitry V; Moreno, Nuno; Lopes da Silva, J A

    2005-01-01

    The effect of locust bean gum, a galactomannan, with different molecular weights on the microstructure and viscoelastic properties of heat-induced whey protein gels has been studied using confocal laser scanning microscopy and small-deformation rheology. The results obtained clearly showed that differences in the molecular weight of the polysaccharide have a significant influence on the gel microstructure. Homogeneous mixtures and phase-separated systems, with dispersed droplet and bicontinuous morphologies, were observed by changing the polysaccharide/protein ratio and/or the molecular weight. At 11% whey protein, below the gelation threshold of the protein alone, the presence of the nongelling polysaccharide induces gelation to occur. At higher protein concentration, the main effect of the polysaccharide was a re-enforcement of the gel. However, at the higher molecular weight and concentration of the nongelling polymer, the protein network starts to lose elastic perfection, probably due to the formation of bicontinuous structures with lower connectivity.

  7. Combination of high performance refractometry and infrared spectroscopy as a probe for chemically induced gelation and vitrification of epoxies

    OpenAIRE

    Müller, Ulrich; Philipp, Martine; Gervais, P. C.; Possart, Prof Dr Wulff; Wehlack, C.; Kieffer, J.; Sanctuary, Roland; Krüger, Jan-Kristian

    2010-01-01

    A combination of infrared spectroscopy and high performance refractometry was used to investigate the chemically induced sol-gel and glass transition during the polymerization of epoxies. Representations of the refractive index versus chemical conversion reveal an interesting insight in the optical properties accompanying gelation and vitrification. Whereas the electronic polarizability of the liquid state of small average molecular mass and the glassy state is dominated by the mass density, ...

  8. Multiple patterns of polymer gels in microspheres due to the interplay among phase separation, wetting, and gelation.

    Science.gov (United States)

    Yanagisawa, Miho; Nigorikawa, Shinpei; Sakaue, Takahiro; Fujiwara, Kei; Tokita, Masayuki

    2014-11-11

    We report the spontaneous patterning of polymer microgels by confining a polymer blend within microspheres. A poly(ethylene glycol) (PEG) and gelatin solution was confined inside water-in-oil (W/O) microdroplets coated with a layer of zwitterionic lipids: dioleoylphosphatidylethanolamine (PE) and dioleoylphosphatidylcholine (PC). The droplet confinement affected the kinetics of the phase separation, wetting, and gelation after a temperature quench, which determined the final microgel pattern. The gelatin-rich phase completely wetted to the PE membrane and formed a hollow microcapsule as a stable state in the PE droplets. Gelation during phase separation varied the relation between the droplet size and thickness of the capsule wall. In the case of the PC droplets, phase separation was completed only for the smaller droplets, wherein the microgel partially wetted the PC membrane and had a hemisphere shape. In addition, the temperature decrease below the gelation point increased the interfacial tension between the PEG/gelatin phases and triggered a dewetting transition. Interestingly, the accompanying shape deformation to minimize the interfacial area was only observed for the smaller PC droplets. The critical size decreased as the gelatin concentration increased, indicating the role of the gel elasticity as an inhibitor of the deformation. Furthermore, variously patterned microgels with spherically asymmetric shapes, such as discs and stars, were produced as kinetically trapped states by regulating the incubation time, polymer composition, and droplet size. These findings demonstrate a way to regulate the complex shapes of microgels using the interplay among phase separation, wetting, and gelation of confined polymer blends in microdroplets.

  9. Spin-echo small-angle neutron scattering (SESANS) measurements of needle-like crystallites of gelator compounds

    Energy Technology Data Exchange (ETDEWEB)

    Coumou, Pieter-Jan C J J; Brizard, Aurelie M A; Esch, Jan H van; Schepper, Ignatz M de; Bouwman, Wim G, E-mail: w.g.bouwman@tudelft.nl

    2010-11-01

    From dibenzoyl cystine, a low molecular weight gelator, we have prepared needle shaped crystals at relatively high concentrations. For the first time SESANS measurements are performed on objects with this geometry. From the measurements the average diameter can be seen directly. From a more careful analysis the width distribution is determined. The gel phase itself prepared at lower concentrations did not show any signal, in contrast to what one observes with conventional SANS. This shows the complementarity of SESANS and SANS.

  10. Comparative self-assembly studies and self-sorting of two structurally isomeric naphthalene-diimide (NDI)-gelators

    Indian Academy of Sciences (India)

    Anindita Das; Mijanur Rahaman Molla; Suhrit Ghosh

    2011-11-01

    We have reported here a comparative self-assembly and gelation studies of two isomeric bis-amide functionalized NDI-derivatives. In one case (NDI-1) the two amide groups were placed symmetrically on either side of the chromophore while for the other system (NDI-2) they were located on same side. In non-polar solvent both isomers formed self-assembled structures by synergistic effect of -stacking and hydrogen-bonding. The propensity for self-assembly of NDI-1 was greater due to symmetrical placement of two amide groups on either arms of this chromophore which allowed -stacking in tandem with hydrogen-bonding, while NDI-2 formed thermally more stable self-assembled fibres possibly due to location of two amide groups in close proximity along single arm of this chromophore. The structural difference in these two isomers lead to distinctly different morphology of their respective self-assembled structures which was further reflected on their gelation properties. Morphology of the self-assembled array of NDI-1 showed organized and regular entangled bundles of nanorods which imparted better gelation ability to this chromophore while the self-assembled fibres of NDI-2 showed less ordered and irregular fibres. We also probed self- assembly of these two chromophores in their mixture which revealed orthogonal assembly of the individual chromophores and no molecular mixing was noticed.

  11. Determination of heat-set gelation capacity of a quinoa protein isolate (Chenopodium quinoa) by dynamic oscillatory rheological analysis.

    Science.gov (United States)

    Kaspchak, Elaine; Oliveira, Marco Aurelio Schüler de; Simas, Fernanda Fogagnoli; Franco, Célia Regina Cavicchiolo; Silveira, Joana Léa Meira; Mafra, Marcos Rogério; Igarashi-Mafra, Luciana

    2017-10-01

    This work aimed to study the influence of pH (3.5 and 7.0) and CaCl2 and MgCl2 addition on heat-set gelation of a quinoa protein isolate at 10% and 15% (w/w). The protein isolate obtained was composed mainly of 11S globulin as was observed by electrophoresis and mass spectrometry analysis. Heat-set gelation occurred at both pH values studied. Nevertheless, the gels formed at pH 3.5 were more viscoelastic and denser than those formed at pH 7.0, that was coarser and presented syneresis. The CaCl2 and MgCl2 addition increased the gel strength during rheological analysis at pH 3.5, possibly due to the formation of fiber-like connections in the gel network. At pH 7.0, the divalent salts resulted in weaker gels formed by agglomerates, suggesting a neutralization of the protein surface charges. The differences in quinoa protein gelation were attributed to solubility, and the flexibility of proteins secondary structure at the pH studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Acid induced gelation of soymilk, comparison between gels prepared with lactic acid bacteria and glucono-δ-lactone.

    Science.gov (United States)

    Grygorczyk, A; Corredig, M

    2013-12-01

    The objective of this work was to compare the gelation of soymilk particles induced by the acidification of a commercial starter culture with that resulting by addition of glucono-δ-lactone (GDL). Structure formation was followed using rheology, and the microstructure was observed by confocal microscopy. Acidification of lactic acid bacteria resulted in a higher gelation pH (pH 6.29±0.05) compared to that of a gel induced by GDL (pH 5.9±0.04). This difference was attributed to the longer time available for rearrangements of the soymilk particles in soymilk with starter cultures compared to the fast acidification by GDL. In spite of the earlier gelation pH, there were no observed differences in the final gel stiffness measured at pH 5.1, the value of tan δ, the frequency dependence and the linear viscoelastic range of the gels measured at the final pH. Microstructural observations also showed a similar protein network structure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates.

    Science.gov (United States)

    Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard

    2015-08-03

    The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures.

  14. Water-Regulated Self-Assembly Structure Transformation and Gelation Behavior Prediction Based on a Hydrazide Derivative.

    Science.gov (United States)

    Li, Yajie; Ran, Xia; Li, Qiuyue; Gao, Qiongqiong; Guo, Lijun

    2016-08-05

    Herein, we report the water-regulated supramolecular self-assembly structure transformation and the predictability of the gelation ability based on an azobenzene derivative bearing a hydrazide group, namely, N-(3,4,5-tributoxyphenyl)-N'-4-[(4-hydroxyphenyl)azophenyl] benzohydrazide (BNB-t4). The regulation effects are demonstrated in the morphological transformation from spherical to lamellar particles then back to spherical in different solvent ratios of n-propanol/water. The self-assembly behavior of BNB-t4 was characterized by minimum gelation concentration, microstructure, thermal, and mechanical stabilities. From the spectroscopy studies, it is suggested that gel formation of BNB-t4 is mainly driven by intermolecular hydrogen bonding, accompanied with the contribution from π-π stacking as well as hydrophobic interactions. The successfully established correlation between the self-assembly behavior and solubility parameters yields a facile way to predict the gelation performance of other molecules in other single or mixed solvents.

  15. Studies on plutonium-zirconium co-precipitation and carbothermal reduction in the internal gelation process for nitride fuel preparation

    Science.gov (United States)

    Hedberg, Marcus; Ekberg, Christian

    2016-10-01

    Sol-gel based techniques are one way to lower the handling of highly radioactive powders when producing transuranium-containing fuel. In this work inert matrix (Zr0.6,Pu0.4)N fuel has been produced by internal gelation followed by carbothermal reduction. No co-gelation was observed during internal gelation and a two phase material could be detected by scanning electron microscopy in the nitrided microspheres. Sintering has been performed in both Ar and N2. X-ray diffraction revealed that sintering in N2 produced a solid solution, while sintering in Ar did not. The final metal composition in the microspheres was determined by ICP-MS to be about 41% Pu and 59% Zr. Vegard's law was applied to estimate the nitride purity in the solid solution pellet to be Zr0.6Pu0.4N0.87C0.13 making the final material more of a carbonitride than a pure nitride.

  16. Formation of artificial granules for proving gelation as the main mechanism of aerobic granulation in biological wastewater treatment.

    Science.gov (United States)

    Li, Yun; Yang, Shu-Fang; Zhang, Jian-Jun; Li, Xiao-Yan

    2014-01-01

    In this study, gelation-facilitated biofilm formation as a new mechanism is proposed for the phenomenon of aerobic granulation in biological wastewater treatment. To obtain an experimental proof for the gelation-based theory, the granulation process was simulated in a chemical system using latex particles for bacterial cells and organic polymers (alginate and peptone) for extracellular polymeric substances (EPS) in a solution with the addition of cations (Ca²⁺, Mg²⁺ and Fe³⁺). The results showed that at a low alginate content (70 mg g⁻¹ mixed liquid suspended solids (MLSS)) flocculation was observed in the suspension with loose flocs. At a higher alginate content (180 mg g⁻¹ MLSS), together with discharge of small flocs, formation of artificial gel granules was successfully achieved leading to granulation. The artificial granules show a morphological property similar to that of actual microbial granules. However, if the protein content increased, granulation became difficult with little gel formation. The experimental work demonstrates the importance of the bonding interactions between EPS functional groups and cations in gel formation and granulation. The laboratory results on the formation of artificial granules provide a sound proof for the theory of gelation-facilitated biofilm formation as the main mechanism for aerobic granulation in sludge suspensions.

  17. Effect of co-solute and gelation temperature on milk protein and gum tragacanth interaction in acidified gels.

    Science.gov (United States)

    Hatami, Masoud; Nejatian, Mohammad; Mohammadifar, Mohammad Amin

    2012-05-01

    The aim of this study was to investigate the role of process conditions and system composition on the acid-induced gelation of a mixture of milk protein and gum tragacanth. This was studied by determining the effects of co-solute (lactose) addition (3, 5 and 7%) and gelation temperature (25, 37 and 45°C) on the mixture's rheological properties and microstructure using a combination of techniques including small-deformation rheology and scanning electron microscopy. The presence of lactose played an important role in the microstructure formation of gels but did not change most rheological properties. The microstructure of gels formed in the presence of lactose was coarser and more particulate, but less interconnected; this can be explained by lactose's role in improving protein aggregation. Gels prepared at a lower temperature had a high structure strength, as indicated by their high storage modulus, τ(f) and G(f) values. Low gelation temperature also caused a more branched and homogenous microstructure.

  18. Alkyl bicarbamates supramolecular organogelators with effective selective gelation and high oil recovery from oil/water mixtures.

    Science.gov (United States)

    Wang, Yongzhen; Wu, Songquan; Yan, Xingru; Ma, Tao; Shao, Lu; Liu, Yuyan; Guo, Zhanhu

    2017-01-01

    A series of alkyl bicarbamates supramolecular organogelators were synthesized with different structures and lengths of alkyl chains. The driving forces for the self-assembly of small molecules, including the intermolecular H bonding, π-π stacking and van der Waals interactions, played an important role in the formation of different 3D network structures, i.e., fibers, ribbons, sheets, and prisms. And a probable formation process of the gel networks was proposed. Furthermore, the phase-selective gelling performances were investigated for oil removal from aqueous solution. Interestingly, the gelling properties were found to be affected by the length and structure of alkyl chains, while some gelators with intermediate alkyl chain lengths could effectively gel all the tested oils from water surface within 15 min, such as Russian crude oil, diesel, gasoline, soybean oil, peanut oil, olive oil, cyclohexane, hexane and ethyl acetate. Advantageously, fast gelation, high rate of oil removal (>95%) and excellent oil retention rate (close to 100%) were realized in the recovery of oil spills from water surface. This kind of supramolecular gelators demonstrates good potential applications in the delivery or removal of organic pollution from oil/water mixtures.

  19. Smart gelation of chitosan solution in the presence of NaHCO3 for injectable drug delivery system.

    Science.gov (United States)

    Liu, Li; Tang, Ximin; Wang, Yuanyuan; Guo, Shengrong

    2011-07-29

    In situ gelling systems are attractive as injectable vehicles for drug delivery. The present work described a novel gelation process of acidic chitosan solution in the presence of sodium bicarbonate (NaHCO(3)). The NaHCO(3) concentration played an important role in this gelling system. When it came within the appropriate range, the chitosan/NaHCO(3) system would stay at sol state in certain condition and showed sol-gel transition from the top to the bottom after heating. The rheological properties of the gelling system, as well as the morphology and erosion behavior of the formed chitosan hydrogels were evaluated as a function of the NaHCO(3) concentration in sols. The hydrogels showed porous morphologies with some diversification depending on the NaHCO(3) concentration, which also affected their erosion behaviors and drug release rates. Moreover, the gelation mechanism of such chitosan/NaHCO(3) system was studied and proposed as the formation of three-dimensional chitosan network with physical junctions thanks to the deprotonation of -NH(3)(+) in chitosan accompanying with the gradual neutralization between HCO(3)(-) and acid. In vivo gelation test was also performed by the dorsal subcutaneous injection of chitosan/NaHCO(3) solution in rat. The formation of in situ gels suggested such system promising applications in injectable drug delivery system.

  20. Temperature-Responsive Gelation of Type I Collagen Solutions Involving Fibril Formation and Genipin Crosslinking as a Potential Injectable Hydrogel

    Directory of Open Access Journals (Sweden)

    Shunji Yunoki

    2013-01-01

    Full Text Available We investigated the temperature-responsive gelation of collagen/genipin solutions using pepsin-solubilized collagen (PSC and acid-solubilized collagen (ASC as substrates. Gelation occurred in the PSC/genipin solutions at genipin concentrations 0–2 mM under moderate change in temperature from 25 to 37°C. The PSC/genipin solutions exhibited fluidity at room temperature for at least 30 min, whereas the ASC/genipin solutions rapidly reached gel points. In specific cases PSC would be preferred over ASC as an injectable gel system. The temperature-responsive gelation of PSC/genipin solutions was due to temperature responses to genipin crosslinking and collagen fibril formation. The elastic modulus of the 0.5% PSC/genipin gel system could be adjusted in a range of 2.5 to 50 kPa by the PSC and genipin concentrations, suggesting that a PSC/genipin solution is a potential injectable gel system for drug and cell carriers, with mechanical properties matching those of living tissues.

  1. Use of boiled hexamethylenetetramine and urea to increase the porosity of cerium dioxide microspheres formed in the internal gelation process

    Science.gov (United States)

    Hunt, R. D.; Collins, J. L.; Cowell, B. S.

    2017-08-01

    Cerium dioxide (CeO2) is a commonly used simulant for plutonium dioxide and for plutonium (Pu) in uranium (U) and Pu oxide [(U, Pu)O2] mixtures used in nuclear fuel development. This effort developed CeO2 microspheres with a various porosities and diameters. The internal gelation technique has only been used to produce CeO2 microspheres with limited initial porosity. Previous studies have shown that the crystallite size and porosity of mixed U and thorium oxide microspheres and the (U, Pu)O2 microspheres from the internal gelation process increased when an equal molar solution of hexamethylenetetramine (HMTA) and urea is gently boiled for 1 h prior to its use in the gelation process. In this study with cerium, the combination of ammonium cerium nitrate and 1-h boiled HMTA-urea failed to produce a stable feed broth. However, when the 1-h heated HMTA-urea was combined with unheated HMTA-urea in 1-3 vol ratio or the boiling time of the HMTA-urea was reduced to 15-20 min, a stable solution of HMTA, urea, and Ce was formed at 273 K. This new Ce solution produced very porous CeO2 microspheres, which are suitable simulants for uranium microspheres.

  2. Implication of ionotropic glutamate receptors in the release of noradrenaline in hippocampal CA1 and CA3 subregions under oxygen and glucose deprivation.

    Science.gov (United States)

    Milusheva, E A; Baranyi, M

    2003-11-01

    A strong linkage between adrenergic and glutamatergic systems exists in the CNS but it is still unclear whether the excessive release of noradrenaline under ischemic conditions is modulated by excitatory amino acids. We studied the effect of selective glutamate receptor antagonists on the release of [3H]noradrenaline evoked by glucose and oxygen deprivation in hippocampal CA1, CA3 and dentate gyrus subregions. The release of glutamate, aspartate and GABA was measured by HPLC. Omission of oxygen and glucose increased the release of [3H]noradrenaline as well as the release of amino acids. Maximum effect on noradrenaline release was observed in CA1 region. The relative increase of the release after 30 min energy deprivation (R(2)) versus the basal release under normal conditions (R(1)), i.e. the R(2)/R(1) ratio was 7.1+/-1.0, 3.87+/-0.4 and 3.26+/-0.27 for CA1, CA3 and dentate gyrus, respectively. The [3H]noradrenaline outflow in response to glucose and oxygen deprivation was abolished at low temperature, but not by Ca(2+) removal, suggesting a cytoplasmic release process. In CA1 and CA3 [3H]noradrenaline release was significantly attenuated by MK-801, an NMDA receptor antagonist. The AMPA receptor antagonist GYKI-53784 had no effect in CA3, but partly reduced noradrenaline release in CA1. Our results suggest that ionotropic glutamate receptors seem to be implicated in the massive cytoplasmic release of noradrenaline in CA1 what may contribute to its selective vulnerability.

  3. Protection from inorganic mercury effects on the in vivo dopamine release by ionotropic glutamate receptor antagonists and nitric oxide synthase inhibitors.

    Science.gov (United States)

    Vidal, Lucía; Durán, Rafael; Faro, Lilian F; Campos, Francisco; Cervantes, Rosa C; Alfonso, Miguel

    2007-09-05

    The possible role of ionotropics glutamate receptors on the HgCl(2)-induced dopamine (DA) release from rat striatum was investigated by using in vivo brain microdialysis technique after administration of selective NMDA and AMPA/Kainate receptors antagonists dizocilpine (MK-801), D (-)-2-amino-5-phoshonopentanoic acid (AP5), and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Moreover, we have also studied the effects of nitric oxide synthase (NOS) inhibitors L-nitro-arginine methyl ester (L-NAME) and 7-nitro-indazol (7-NI) on HgCl(2)-induced DA release. Intraestriatal infusion of 1mM HgCl(2) increased striatal DA to 1717.2+/-375.4% respect to basal levels. Infusion of 1mM HgCl(2) in 400 microM MK-801 pre-treated animals produced an increase on striatal DA levels 61% smaller than that induced in non-pre-treated animals. In the case of AP5, this treatment reduced 92% the increase produced by HgCl(2) as compared to non-pre-treated rats. Nevertheless, the administration of CNQX did not produce any effect on HgCl(2)-induced dopamine release. Intrastriatal infusion of 1mM HgCl(2) in 100 microM L-NAME pre-treated animals produced an increase on extracellular DA levels 82% smaller than produced by HgCl(2) alone. In addition, the pre-treatment with 7-NI reduced 90% the increase produced by infusion of HgCl(2) alone in rats. Thus, HgCl(2)-induced DA release could be produced at last in part, by overstimulation of NMDA receptors with NO production, since administration of NMDA receptor antagonists and NOS inhibitors protected against HgCl(2) effects on DA release.

  4. Neurotoxins from snake venoms and α-conotoxin ImI inhibit functionally active ionotropic γ-aminobutyric acid (GABA) receptors.

    Science.gov (United States)

    Kudryavtsev, Denis S; Shelukhina, Irina V; Son, Lina V; Ojomoko, Lucy O; Kryukova, Elena V; Lyukmanova, Ekaterina N; Zhmak, Maxim N; Dolgikh, Dmitry A; Ivanov, Igor A; Kasheverov, Igor E; Starkov, Vladislav G; Ramerstorfer, Joachim; Sieghart, Werner; Tsetlin, Victor I; Utkin, Yuri N

    2015-09-11

    Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Neurotoxins from Snake Venoms and α-Conotoxin ImI Inhibit Functionally Active Ionotropic γ-Aminobutyric Acid (GABA) Receptors*

    Science.gov (United States)

    Kudryavtsev, Denis S.; Shelukhina, Irina V.; Son, Lina V.; Ojomoko, Lucy O.; Kryukova, Elena V.; Lyukmanova, Ekaterina N.; Zhmak, Maxim N.; Dolgikh, Dmitry A.; Ivanov, Igor A.; Kasheverov, Igor E.; Starkov, Vladislav G.; Ramerstorfer, Joachim; Sieghart, Werner; Tsetlin, Victor I.; Utkin, Yuri N.

    2015-01-01

    Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1β3γ2 receptor; and at 10 μm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1β2γ2 ≈ α2β2γ2 > α5β2γ2 > α2β3γ2 and α1β3δ GABAARs. The α1β3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the β/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors. PMID:26221036

  6. Safety, tolerability, pharmacokinetics, and effects on human experimental pain of the selective ionotropic glutamate receptor 5 (iGluR5) antagonist LY545694 in healthy volunteers.

    Science.gov (United States)

    Petersen, Karin L; Iyengar, Smriti; Chappell, Amy S; Lobo, Evelyn D; Reda, Haatem; Prucka, William R; Verfaille, Steven J

    2014-05-01

    The objective of this study was to establish in healthy volunteers the maximally tolerated multiple dose (MTMD) of the ionotropic glutamate receptor 5 antagonist LY545694 (part A), and to investigate whether that dose had analgesic or antihyperalgesic effects in the brief thermal stimulation (BTS) pain model (Part B). Part A was a double-blind, placebo-controlled study in 3 groups of 10 healthy men. To simulate an extended-release formulation, study drug was administered orally over 6hours (12 equally divided aliquots at 30-minute intervals). Part B was a double-blind, placebo-controlled, double-dummy, 3-way crossover study in 27 healthy men. At each of the 3 study periods, subjects received either LY545694 (MTMD; as determined during part A) as a simulated, twice daily extended-release formulation for 4 doses over 3days, gabapentin (600mg 8hours apart; 6 doses over 3days; positive control), or matching placebo. The BTS model was induced twice with a 1-hour interval on each of the 2 study days, before drug administration and at the time of expected peak analgesia of LY545694. Plasma exposure for LY545694 was approximately linear over the 25- to 75-mg dose range. The MTMD of LY545694 was 25mg twice daily. Areas of secondary hyperalgesia were significantly smaller after administration of LY545694 and gabapentin compared with placebo (Ppainfulness of skin heating during BTS model induction. The most common treatment-emergent adverse event was dizziness. The results of this study suggest that LY545694 should be explored further as a potential treatment for chronic pain involving neuronal sensitization.

  7. Computational study of the evolutionary relationships of the ionotropic receptors NMDA, AMPA and kainate in four species of primates.

    OpenAIRE

    Moreno-Pedraza, Francy Johanna; Grupo de Bioquímica Molecular Computacional y Bioinformática, Departamento de Bioquímica, Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 No. 43-82 Ed. 52, Bogotá,; Lareo, Leonardo René; Grupo de Bioquímica Molecular Computacional y Bioinformática, Departamento de Bioquímica, Facultad de Ciencias. Pontificia Universidad Javeriana, Carrera 7 No. 43-82 Ed. 52, Bogotá,; Reyes-Montaño, Edgar Antonio; Grupo de Investigación en Proteínas (GRIP) Departamento de Química, Universidad Nacional de Colombia, Ciudad Universitaria, Edificio 451, Bogotá

    2010-01-01

    Objective. To identify the influence of changes on the secondary structure and evolutionary relationship of NMDA, AMPA and kainate receptors in Homo sapiens, Pan troglodytes, Pongo pygmaeus and Macaca mulatta. Materials and methods. We identified 91 sequences for NMDA, AMPA and kainate receptors and analyzed with software for predicting secondary structure, phosphorylation sites, multiple alignments, selection of protein evolution models and phylogenetic prediction. Results. We found that s...

  8. Simulation modeling of ligand receptor interactions at non-equilibrium conditions: processing of noisy inputs by ionotropic receptors.

    Science.gov (United States)

    Qazi, Sanjive; Beltukov, Aleksei; Trimmer, Barry A

    2004-01-01

    The first event in signal transduction at a synapse is the binding of transmitters to receptors. Because of rapidly changing transmitter levels this binding is unlikely to occur at equilibrium. We describe a mathematical approach that models complex receptor interactions in which the timing and amplitude of transmitter release are noisy. We show that exact solutions for simple bimolecular interactions and receptor transitions can be used to model complex reaction schemes by expressing them in sets of difference equations. Results from the difference equation method to describe binding and channel opening at extended time points compare well with standard solutions using ordinary differential equations. Because it is applicable to noisy systems we used the difference method to investigate the information processing capabilities of GABA receptors and predict how pharmacological agents may modify these properties. As previously demonstrated, the response to a single pulse of GABA is prolonged through entry into a desensitized state. During trains of stimuli the signal to noise ratio can change, and even increase progressively, but the overall transmitted fidelity of the signal decreases with increased driving frequency. The GABA modulator chlorpromazine (primarily affects agonist on and off rates) is predicated to increase receptor signal to noise ratio at all frequencies whereas pregnenolone sulfate (affects receptor desensitization) completely inhibits information transfer.

  9. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties.

    Science.gov (United States)

    Moreira, Helena R; Munarin, Fabiola; Gentilini, Roberta; Visai, Livia; Granja, Pedro L; Tanzi, Maria Cristina; Petrini, Paola

    2014-03-15

    The production of injectable pectin hydrogels by internal gelation with calcium carbonate is proposed. The pH of pectin was increased with NaOH or NaHCO3 to reach physiological values. The determination of the equivalence point provided evidence that the pH can be more precisely modulated with NaHCO3 than with NaOH. Degradation and inability to gel was observed for pectin solutions with pH 5.35 or higher. Therefore, pectin solutions with pH values varying from 3.2 (native pH) to 3.8 were chosen to produce the gels. The increase of the pH for the crosslinked hydrogels, as well as the reduction of the gelling time and their thickening, was dependent upon the amount of calcium carbonate, as confirmed by rheology. Hydrogel extracts were not cytotoxic for L-929 fibroblasts. On the overall, the investigated formulations represent interesting injectable systems providing an adequate microenvironment for cell, drug or bioactive molecules delivery.

  10. Combined effects of presalted prerigor and postrigor batter mixtures on chicken breast gelation.

    Science.gov (United States)

    Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Hun; Jeong, Tae-Jun; Jeon, Ki-Hong; Kim, Young-Boong; Kim, Cheon-Jei

    2015-04-01

    We examined the combined effects of prerigor and postrigor batter mixtures on protein gelation. The postrigor batter was prepared with 2% salt, whereas the prerigor meat at 5 min postmortem was used to prepare postrigor batters at different salt levels. For 5 treatments, prerigor batters were mixed with postrigor batter that had 2% salt (control) as follows: T1: ground presalted (1%) hot-boned breast with 1% salt for 50% total batch; T2: ground presalted (2%) hot-boned breast for 50% total batch; T3: ground presalted (3%) hot-boned breast for 30% total batch that was mixed with cold-boned batter for 50% total batch; T4: ground presalted (4%) hot-boned breast for 25% total batch that was mixed with cold-boned batter for 50% total batch; and T5: ground presalted (5%) hot-boned breast for 20% total batch that was mixed with cold-boned batter for 50% total batch. Treatments with both presalted prerigor and postrigor muscle showed less cooking loss and lower emulsion stability than the control, except T5. The protein solubility and apparent viscosity of the control was the lowest. Thus, presalted hot-boned muscle combined with cold-boned muscle positively affected physicochemical properties. © 2015 Poultry Science Association Inc.

  11. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    Energy Technology Data Exchange (ETDEWEB)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  12. Tuning gelation time and morphology of injectable hydrogels using ketone-hydrazide cross-linking.

    Science.gov (United States)

    Patenaude, Mathew; Campbell, Scott; Kinio, Dennis; Hoare, Todd

    2014-03-10

    Injectable, covalently in situ forming hydrogels based on poly(N-isopropylacrylamide) have been designed on the basis of mixing hydrazide-functionalized nucleophilic precursor polymers with electrophilic precursor polymers functionalized with a combination of ketone (slow reacting) and aldehyde (fast reacting) functional groups. By tuning the ratio of aldehyde:ketone functional groups as well as the total number of ketone groups in the electrophilic precursor polymer, largely independent control over hydrogel properties including gelation time (from seconds to hours), degradation kinetics (from hours to months), optical transmission (from 1 to 85%), and mechanics (over nearly 1 order of magnitude) can be achieved. In addition, ketone-functionalized precursor polymers exhibit improved cytocompatibility at even extremely high concentrations relative to polymers functionalized with aldehyde groups, even at 4-fold higher functional group densities. Overall, increasing the ketone content of the precursor copolymers can result in in situ-gellable hydrogels with improved transparency and biocompatibility and equivalent mechanics and stimuli-responsiveness while only modestly sacrificing the speed of gel formation.

  13. Preparation and evaluation of mucoadhesive simvastatin microcapsules using orifice gelation technique

    Directory of Open Access Journals (Sweden)

    Trishna Bal

    2012-01-01

    Full Text Available Preparation and characterization of Simvastatin/ Hydroxy propyl beta cyclodextrin (HPBCD (SV/HPBCD binary systems by co-grinding technique and formulating the binary system in oral mucoadhesive microcapsules by using hydrophilic sodium alginate (SA and another plant seed mucilage dillenia (obtained from Dillenia indica, Family, Dilleniaceae using orifice gelation technique and systematically evaluating in vitro by using scanning electron microscopy (SEM, fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, and X-ray diffractometer (XRD. The microcapsules were smooth and elegant in appearance showed no visible cracks as confirmed by SEM; and extended drug release of 72.682% upto 12 hours in phosphate buffer of pH 6.8; showing particle size within the range of 371.5-457 μm, and less angle of repose, Hausner′s ratio and Carr′s consolidation index; and showed encapsulation efficiency of 63.068 ± 0.002 to 99.083 ± 0.017%. The in vitro release data of optimized batch of microcapsules were plotted in various kinetic equations to understand the mechanisms and kinetics of drug release, which followed zero order kinetics and value of "n," is calculated to be 0.505 and drug release was diffusion controlled. The in vivo antihyperlipidemic activity of formulations in mice was carried out developing hyperlipidemia in mice and then administering the optimized formulations orally, and the formulation showed promising results.

  14. Ultrasonication of reconstituted whole milk and its effect on acid gelation.

    Science.gov (United States)

    Nguyen, Nguyen H A; Anema, Skelte G

    2017-02-15

    Ultrasonication (US) of whole milk at 22.5kHz and 50W homogenized fat globules. Extended US without temperature control (attaining >90°C at longest times), or with control at temperatures ⩾60°C caused denaturation of the whey proteins and aggregation of the fat globules and proteins. Acidification of US milk produced gels with increased firmness and reduced gelation times compared to untreated milk. Below 60°C, US of milk produced acid gels with very high firmness without whey protein denaturation; the firmness was similar to gels from heated whole milk. Extensive US without temperature control or with control at ⩾60°C decreased acid gel firmness compared to shorter times or lower temperatures. Higher acid gel firmness could be achieved by subjecting the milk to separate heat (80°C/30min) and US treatment (at 20°C) before acidification when compared with either heating or US alone. This was independent of the order of heating and US treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Gelation properties of myofibrillar protein under malondialdehyde-induced oxidative stress.

    Science.gov (United States)

    Wang, Lin; Zhang, Min; Fang, Zhongxiang; Bhandari, Bhesh

    2017-01-01

    The structure of myofibrillar protein (MP) can be readily altered by oxidation, leading to the unfolding of MP structure, which further promotes protein-protein interactions, and thus influences the MP gelling properties. The objective of the study was to investigate the effect of malondialdehyde-induced oxidative stress on the gelation properties of myofibrillar protein (MP). Structural changes of the oxidised MPs were evaluated by the contents of carbonyl and total sulfhydryls, surface hydrophobicity, SDS-PAGE and Fourier transform infrared spectroscopy. The oxidative stability of the MP gels as indicated by lipid hydroperoxide was also determined. With the addition of an MDA concentration less than 10 mmol L(-1) , the MP gels showed an improved elasticity, gel strength, water holding capacity, and oxidative stability. Nevertheless, higher MDA concentration (25-50 mmol L(-1) ) significantly reduced the gel quality, probably due to the formation of excessive covalent bonds in the system. Results suggested that protein aggregation occurred in the oxidised system. Myosin was involved in gel formation through non-disulfide covalent bond. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Effect of carrageenan addition on the rennet-induced gelation of skim milk.

    Science.gov (United States)

    Wang, Fang; Zhang, Wei; Ren, Fazheng

    2016-09-01

    Carrageenan (CG) (κ-CG, ι-CG and λ-CG) was added to skim milk and the rennet-induced aggregation was studied. Caseinomacropeptide (CMP) release, diffusing wave spectroscopy (DWS) and rheology were used to follow the structural dynamics of casein micelles during gelation. The influence of carrageenan on the nature of protein interactions in the gels was investigated using a combination of ultracentrifugation and specific dissociating agents. For the recombined samples containing κ-CG and low concentrations of ι-CG and λ-CG, the CMP release was slowed down; however, the development of DWS and rheological parameters was similar to that of the control sample, and the increase in the incorporation of proteins through calcium bridges and hydrophobic interactions may be the most likely contributors. For the recombined samples containing high concentrations of ι-CG and λ-CG, other factors may impede the gel formation process. High concentrations of ι-CG and λ-CG strongly interfered with the rennet-induced aggregation, interrupted the interaction of caseins and therefore may contribute to good quality of low-fat cheese. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  17. Protein denaturation of whey protein isolates (WPIs) induced by high intensity ultrasound during heat gelation.

    Science.gov (United States)

    Frydenberg, Rikke P; Hammershøj, Marianne; Andersen, Ulf; Greve, Marie T; Wiking, Lars

    2016-02-01

    In this study, the impact of high intensity ultrasound (HIU) on proteins in whey protein isolates was examined. Effects on thermal behavior, secondary structure and nature of intra- and intermolecular bonds during heat-induced gelling were investigated. Ultrasonication (24 kHz, 300 W/cm(2), 2078 J/mL) significantly reduced denaturation enthalpies, whereas no change in secondary structure was detected by circular dichroism. The thiol-blocking agent N-ethylmaleimide was applied in order to inhibit formation of disulfide bonds during gel formation. Results showed that increased contents of α-lactalbumin (α-La) were associated with increased sensitivity to ultrasonication. The α-La:β-lactoglobulin (β-Lg) ratio greatly affected the nature of the interactions formed during gelation, where higher amounts of α-La lead to a gel more dependent on disulfide bonds. These results contribute to clarifying the mechanisms mediating the effects of HIU on whey proteins on the molecular level, thus moving further toward implementing HIU in the processing chain in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Colloidal Gelation-2 and Colloidal Disorder-Order Transition-2 Investigations Conducted on STS-95

    Science.gov (United States)

    Hoffmann, Monica T.

    2000-01-01

    The Colloidal Gelation-2 (CGEL 2) and Colloidal Disorder-Order Transition-2 (CDOT 2) investigations flew on Space Shuttle Discovery mission STS-95 (also known as the John Glenn Mission). These investigations were part of a series of colloid experiments designed to help scientists answer fundamental science questions and reduce the trial and error involved in developing new and better materials. Industries dealing with semiconductors, electro-optics, ceramics, and composites are just a few that may benefit from this knowledge. The goal of the CGEL 2 investigation was to study the fundamental properties of colloids to help scientists better understand their nature and make them more useful for technology. Colloids consist of very small (submicron) particles suspended in a fluid. They play a critical role in the technology of this country, finding uses in materials ranging from paints and coatings to drugs, cosmetics, food, and drink. Although these products are routinely produced and used, there are still many aspects of their behavior about which scientists know little. Understanding their structures may allow scientists to manipulate the physical properties of colloids (a process called "colloidal engineering") to produce new materials and products. Colloid research may even improve the processing of known products to enhance their desirable properties.

  19. Correlated changes in structure and viscosity during gelatinization and gelation of tapioca starch granules

    Directory of Open Access Journals (Sweden)

    Hsien-Kai Huang

    2014-11-01

    Full Text Available Melting of native tapioca starch granules in aqueous pastes upon heating is observed in situ using simultaneous small- and wide-angle X-ray scattering (SAXS/WAXS and solution viscometry. Correlated structure and viscosity changes suggest closely associated amylose and amylopectin chains in the semicrystalline layers, and the release of amylose chains for enhanced solution viscosity occurs largely after melting of the semicrystalline structure. Before melting, WAXS results reveal mixed crystals of A- and B-types (∼4:1 by weight, whereas SAXS results indicate that the semicrystalline layers are composed of lamellar blocklets of ca 43 nm domain size, with polydisperse crystalline (≃7.5 nm and amorphous (≃1.1 nm layers alternatively assembled into a lamellar spacing of ≃8.6 nm with 20% polydispersity. Upon melting, the semicrystalline lamellae disintegrate into disperse and molten amylopectin nanoclusters with dissolved and partially untangled amylose chains in the aqueous matrix which leads to increased solution viscosity. During subsequent cooling, gelation starts at around 347 K; successively increased solution viscosity coincides with the development of nanocluster aggregation to a fractal dimension ≃2.3 at 303 K, signifying increasing intercluster association through collapsed amylose chains owing to decreased solvency of the aqueous medium with decreasing temperature.

  20. Charge-assisted bond N(+)H mediates the gelation of amorphous lurasidone hydrochloride during dissolution.

    Science.gov (United States)

    Qian, Shuai; Wang, Shanshan; Li, Zhen; Wang, Xiaojie; Ma, Di; Liang, Shujun; Gao, Yuan; Zhang, Jianjun; Wei, Yuanfeng

    2017-02-25

    Lurasidone hydrochloride (LH), the hydrochloride form of lurasidone with a charge-assisted bond N(+)H, is an atypical antipsychotropic agent for the treatment of schizophrenia. As a BCS class II drug, LH has a low oral bioavailability mainly due to its poor water solubility and low dissolution. In order to improve its solubility, amorphization of LH was performed and characterized. Unexpectedly, the dissolution rate of amorphous LH was much lower than that of crystalline LH. In addition, the amorphous LH powders quickly aggregated when contacting the dissolution media (water, 37°C), and formed a sticky gel adhering on the paddle. The follow-up polarized light microscope, XRPD, DSC, and FTIR analysis found that amorphous LH transformed to crystalline LH during dissolution. On the other hand, no such gelation phenomenon of amorphous lurasidone was observed under the same dissolution condition. However, the gel would reform when dropping concentrated hydrochloric acid slowly into the bottom of the medium during the dissolution of amorphous lurasidone, and XRPD/DSC/FTIR results indicated that the regenerated gel was consisted of crystalline LH, suggesting that the charge-assisted bond N(+)H in the structure of LH mediated the gel formation of amorphous LH during its dissolution process.