WorldWideScience

Sample records for ionization efficiency enhancement

  1. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    International Nuclear Information System (INIS)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT + colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references

  2. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  3. Resonantly enhanced collisional ionization measurements of radionuclides

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1986-01-01

    The authors developed a new laser technique to analyze for radionuclides at extremely low levels. The technique, called resonantly enhanced collisional ionization (RECI), uses two nitrogen-laser pumped dye lasers to excite the target isotope to a high-energy Rydberg state. Atoms in these Rydberg states (within a few hundred wavenumbers in energy from the ionization threshold) efficiently ionize upon colliding with an inert gas and the ions can be detected by conventional means. The principal advantage of resonantly-enhanced collisional ionization is the extreme sensitivity coupled with its relative simplicity and low cost. Actinides typically have an ionization potential of about 6eV (uranium I.P. = 6.2 eV, plutonium I.P. = 5.7 eV). Two-step laser excitation to a state just below threshold requires wavelengths in the blue region of the visible spectrum. They showed that when both steps in the excitation process are resonant steps, relatively low-power lasers can populate the Rydberg state with almost unit efficiency. This is because the resonant excitations have much larger cross-sections than do photoionization processes. They also demonstrated that a few torr of a buffer gas will cause most of the excited-state atoms to be ionized

  4. Note: a novel vacuum ultraviolet light source assembly with aluminum-coated electrodes for enhancing the ionization efficiency of photoionization mass spectrometry.

    Science.gov (United States)

    Zhu, Zhixiang; Wang, Jian; Qiu, Keqing; Liu, Chengyuan; Qi, Fei; Pan, Yang

    2014-04-01

    A novel vacuum ultraviolet (VUV) light source assembly (VUVLSA) for enhancing the ionization efficiency of photoionization mass spectrometer has been described. The VUVLSA composes of a Krypton lamp and a pair of disk electrodes with circular center cavities. The two interior surfaces that face the photoionization region were aluminum-coated. VUV light can be reflected back and forth in the photoionization region between the electrodes, thus the photoionization efficiency can be greatly enhanced. The performances of two different shaped electrodes, the coated double flat electrodes (DFE), and double conical electrodes, were studied. We showed that the signal amplification of coated DFE is around 4 times higher than that of uncoated electrodes without VUV light reflection. The relationship between the pressure of ionization chamber and mass signal enhancement has also been studied.

  5. Radionuclide measurements using resonantly enhanced collisional ionization

    International Nuclear Information System (INIS)

    Whitaker, T.J.; Bushaw, B.A.; Gerke, G.K.

    1987-01-01

    This report describes development of a laser-enhanced collisional ionization method for direct radionuclide measurements that are independent of radioactive decay. The technique uses two nitrogen-laser-pumped dye lasers to selectively excite the target isotope to an electronic state near the ionization threshold. The excited actinide atoms then undergo collisions with a buffer gas and are efficiently ionized. The resulting ions can be detected by conventional methods. The attributes of this approach include highly sensitive isotope analysis with relatively inexpensive lasers and a simple vacuum system. 9 refs., 3 figs

  6. Ionization efficiency calculations for cavity thermoionization ion source

    International Nuclear Information System (INIS)

    Turek, M.; Pyszniak, K.; Drozdziel, A.; Sielanko, J.; Maczka, D.; Yuskevich, Yu.V.; Vaganov, Yu.A.

    2009-01-01

    The numerical model of ionization in a thermoionization ion source is presented. The review of ion source ionization efficiency calculation results for various kinds of extraction field is given. The dependence of ionization efficiency on working parameters like ionizer length and extraction voltage is discussed. Numerical simulations results are compared to theoretical predictions obtained from a simplified ionization model

  7. Ionization Efficiency in the Dayside Martian Upper Atmosphere

    Science.gov (United States)

    Cui, J.; Wu, X.-S.; Xu, S.-S.; Wang, X.-D.; Wellbrock, A.; Nordheim, T. A.; Cao, Y.-T.; Wang, W.-R.; Sun, W.-Q.; Wu, S.-Q.; Wei, Y.

    2018-04-01

    Combining the Mars Atmosphere and Volatile Evolution measurements of neutral atmospheric density, solar EUV/X-ray flux, and differential photoelectron intensity made during 240 nominal orbits, we calculate the ionization efficiency, defined as the ratio of the secondary (photoelectron impact) ionization rate to the primary (photon impact) ionization rate, in the dayside Martian upper atmosphere under a range of solar illumination conditions. Both the CO2 and O ionization efficiencies tend to be constant from 160 km up to 250 km, with respective median values of 0.19 ± 0.03 and 0.27 ± 0.04. These values are useful for fast calculation of the ionization rate in the dayside Martian upper atmosphere, without the need to construct photoelectron transport models. No substantial diurnal and solar cycle variations can be identified, except for a marginal trend of reduced ionization efficiency approaching the terminator. These observations are favorably interpreted by a simple scenario with ionization efficiencies, as a first approximation, determined by a comparison between relevant cross sections. Our analysis further reveals a connection between regions with strong crustal magnetic fields and regions with high ionization efficiencies, which are likely indicative of more efficient vertical transport of photoelectrons near magnetic anomalies.

  8. Laser-enhanced ionization spectroscopy around the ionization limit

    International Nuclear Information System (INIS)

    Axner, O.; Berglind, T.; Sjoestroem, S.

    1986-01-01

    Laser-induced photoionization and Laser-Enhanced collision Ionization (LEI) of Na, Tl, and Li in flames are detected by measuring the production of charges following a laser excitation. The ionization signal is investigated for excitations of the atoms from lower lying states both to Rydberg states close to the ionization limit, as well as to continuum states, i.e. the process of collision ionization is compared with that of photoionization. The qualitative behaviour of the ionization signal when scanning across the ionization limit is studied. It is shown that the ionization signal has a smooth behaviour when passing from bound states into continuum states. The laser-induced photoionization signal strength of atoms in flames is both calculated and measured and a good agreement is obtained. A calculation of wavelength dependent photoionization signal strengths for a number of elements is also presented. Photoionization is used to determine flame- and geometry-dependent parameters. An implication of photoionization in connection with LEI spectrometry for trace element analysis is that there will be a significant increase in background noise if the sample contains high concentrations of easily photoionizing elements and short wavelength light is used. (orig.)

  9. Robust enhancement of high harmonic generation via attosecond control of ionization.

    Science.gov (United States)

    Bruner, Barry D; Krüger, Michael; Pedatzur, Oren; Orenstein, Gal; Azoury, Doron; Dudovich, Nirit

    2018-04-02

    High-harmonic generation (HHG) is a powerful tool to generate coherent attosecond light pulses in the extreme ultraviolet. However, the low conversion efficiency of HHG at the single atom level poses a significant practical limitation for many applications. Enhancing the efficiency of the process defines one of the primary challenges in the application of HHG as an advanced XUV source. In this work, we demonstrate a new mechanism, which in contrast to current methods, enhances the HHG conversion efficiency purely on a single particle level. We show that using a bichromatic driving field, sub-optical-cycle control and enhancement of the tunnelling ionization rate can be achieved, leading to enhancements in HHG efficiency by up to two orders of magnitude. Our method advances the perspectives of HHG spectroscopy, where isolating the single particle response is an essential component, and offers a simple route toward scalable, robust XUV sources.

  10. Efficient ionizer for polarized H- formation

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1985-01-01

    An ionizer is under development for a polarized H - source based on the resonant charge exchange reaction polarized H 0 + D - → polarized H - + D 0 . The polarized H 0 beam passes through the center of a magnetron surface-plasma source having an annular geometry, where it crosses a high current (approx.0.5 A), 200 eV D - beam. Calculations predict an H 0 → H - ionization efficiency of approx.7%, more than an order of magnitude higher than that obtained on present ground state atomic beam sources. In initial experiments using an unpolarized H 0 beam, H - currents in excess of 100 μA have been measured. While the ionization efficiency is now only about the same as other methods (Cs beam, for example), the results are encouraging since it appears that by injecting positive ions to improve the space-charge neutralization, and by improving the extraction optics, considerable gains in intensity will be made. We will then use this ionizer with a polarized H 0 beam, and measure the polarization of the resulting H - beam. If no depolarization is observed this ionizer will be combined with an atomic beam, cooled to 5 to 6 K, to give a polarized H - beam expected to be in the milliampere range for use in the AGS

  11. Efficient ionizer for polarized H/sup -/ formation

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.G.

    1985-01-01

    An ionizer is under development for a polarized H/sup -/ source based on the resonant charge exchange reaction polarized H/sup 0/ + D/sup -/ ..-->.. polarized H/sup -/ + D/sup 0/. The polarized H/sup 0/ beam passes through the center of a magnetron surface-plasma source having an annular geometry, where it crosses a high current (approx.0.5 A), 200 eV D/sup -/ beam. Calculations predict an H/sup 0/ ..-->.. H/sup -/ ionization efficiency of approx.7%, more than an order of magnitude higher than that obtained on present ground state atomic beam sources. In initial experiments using an unpolarized H/sup 0/ beam, H/sup -/ currents in excess of 100 ..mu..A have been measured. While the ionization efficiency is now only about the same as other methods (Cs beam, for example), the results are encouraging since it appears that by injecting positive ions to improve the space-charge neutralization, and by improving the extraction optics, considerable gains in intensity will be made. We will then use this ionizer with a polarized H/sup 0/ beam, and measure the polarization of the resulting H/sup -/ beam. If no depolarization is observed this ionizer will be combined with an atomic beam, cooled to 5 to 6 K, to give a polarized H/sup -/ beam expected to be in the milliampere range for use in the AGS.

  12. A high-efficiency positive (negative) surface ionization source for radioactive ion beam (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ≡5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ≡1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of this technique for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing considerably the efficiency for negative surface ionization of atoms and molecules with intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the Holifield radioactive beam facility. The design features and operational principles of the source will be described in this report. copyright 1996 American Institute of Physics

  13. Quantitative analysis of copolymers : influence of the structure of the monomer on the ionization efficiency in electrospray ionization FTMS

    NARCIS (Netherlands)

    Koster, S.; Mulder, B.; Duursma, M.C.; Boon, J.J.; Philipsen, H.J.A.; Velde, J.W.; Nielen, M.W.F.; Koster, de C.G.; Heeren, R.M.A.

    2002-01-01

    The influence of the ionization efficiency on the measured copolymer sequence distribution is presented. Large differences in ionization efficiency were observed for mixtures of homopolyesters containing dipropoxylated bisphenol A/adipic acid and dipropoxylated bisphenol A/isophthalic acid and the

  14. Ion collection efficiency of ionization chambers in electron beams

    International Nuclear Information System (INIS)

    Garcia, S.; Cecatti, E.R.

    1984-01-01

    When ionization chambers are used in pulsed radiation beams the high-density of ions produced per pulse permits ion recombination, demanding the use of a correction factor. An experimental technique using the charge collected at two different voltages permits the calculation of the ion collection efficiency. The ion collection efficiency of some common ionization chambers in pulsed electron beams were studied as a function of electron energy, dose rate and depth. Accelerators with magnetic scanning system, in which the instantaneous dose rate is much greater than the average dose rate, present a smaller collection efficiency than accelerators with scattering foil. The results lead to the introduction of a correction factor for ion recombination that is the reciprocal of the ion collection efficiency. It is also suggested a simple technique to connect an external variable DC power supply in a Baldwin Farmer dosemeter. (Author) [pt

  15. Enhanced Responsivity of Photodetectors Realized via Impact Ionization

    Directory of Open Access Journals (Sweden)

    De-Zhen Shen

    2012-01-01

    Full Text Available To increase the responsivity is one of the vital issues for a photodetector. By employing ZnO as a representative material of ultraviolet photodetectors and Si as a representative material of visible photodetectors, an impact ionization process, in which additional carriers can be generated in an insulating layer at a relatively large electric field, has been employed to increase the responsivity of a semiconductor photodetector. It is found that the responsivity of the photodetectors can be enhanced by tens of times via this impact ionization process. The results reported in this paper provide a general route to enhance the responsivity of a photodetector, thus may represent a step towards high-performance photodetectors.

  16. Non-Liouvillean ion injection via resonantly enhanced two-photon ionization

    Directory of Open Access Journals (Sweden)

    B. A. Knyazev

    2004-03-01

    Full Text Available The charge-exchange method is now one of the main techniques for ion injection into accelerators and storage rings. The disadvantages of conventional methods, based on the atom or ion stripping in a material target, are emittance growth, energy straggling, and production of ions in many charge states. Recently suggested stripping methods based on direct photoionization require employment of hard-UV lasers, which still do not exist and must obviously be very bulky and expensive. An alternative method, suggested for injection of proton beams, employs excitation of the atom to 3p intermediate state with subsequent Lorentz ionization in a magnetic field gradient. This technique applies rigid requirements to laser characteristic and is not free of growing of the beam divergence. In this paper a variant of the stripping technique based on the resonantly enhanced two-photon ionization (RETPI is considered. The technique allows ionization of singly charged ions of the elements from helium to bismuth. A variant of the technique can be used for proton injection. RETPI can be applied for both ion injection and stacking, as well as for diagnostics of ion beam characteristics on the orbit. Stripping efficiency can be about 100% for the singly charged ions having the singlet ground state and decreases for the other ions. Special methods for “cleaning” unwanted atomic states in such ions, that can provide high stripping efficiency, are discussed. Excimer lasers with very moderate parameters can be employed for implementation of this technique for almost all elements. Numerical examples show that for most of the singly charged ions and for hydrogen atom necessary laser-beam energy density is merely 0.5–8  J/cm^{2} for a 1 m interaction region, and is 10 times higher for several light ions.

  17. Laser-enhanced ionization of mercury atoms in an inert atmosphere with avalanche amplification of the signal.

    Science.gov (United States)

    Clevenger, W L; Matveev, O I; Cabredo, S; Omenetto, N; Smith, B W; Winefordner, J D

    1997-07-01

    A new method for laser-enhanced ionization detection of mercury atoms in an inert gas atmosphere is described. The method, which is based on the avalanche amplification of the signal resulting from the ionization from a selected Rydberg level reached by a three-step laser excitation of mercury vapor in a simple quartz cell, can be applied to the determination of this element in various matrices by the use of conventional cold atomization techniques. The overall (collisional + photo) ionization efficiency is investigated at different temperatures, and the avalanche amplification effect is reported for Ar and P-10 gases at atmospheric pressure. It is shown that the amplified signal is related to the number of charges produced in the laser-irradiated volume. Under amplifier noise-limited conditions, a detection limit of ∼15 Hg atoms/laser pulse in the interaction region is estimated.

  18. Adaptation hypothesis of biological efficiency of ionizing radiation

    International Nuclear Information System (INIS)

    Kudritskij, Yu.K.; Georgievskij, A.B.; Karpov, V.I.

    1992-01-01

    Adaptation hypothesis of biological efficiency of ionizing radiation is based on acknowledgement of invariance of fundamental laws and principles of biology related to unity of biota and media, evolution and adaptation for radiobiology. The basic arguments for adaptation hypothesis validity, its correspondence to the requirements imposed on scientific hypothes are presented

  19. Performance appraisal studies of laser-enhanced ionization in flames - the determination of nickel in petroleum products

    International Nuclear Information System (INIS)

    Turk, G.C.; Harvilla, G.J.; Webb, J.D.; Forster, A.R.; Shell Development Co., Houston, TX; The Standard Oil Co., Cleveland, OH)

    1984-01-01

    Laser-enhanced ionization (LEI) in flames is an ultrasensitive atomic flame spectrometric technique based on the efficient thermal ionization of atomic species which have been selectively excited by tunable laser radiation. The performance of LEI for real sample analysis is presently being evaluated. A successful determination of trace Ni concentrations in heavy oil flash distillate and Standard Reference Material Fuel Oil has been performed. One gram samples were diluted into 100 to 700 mL volumes of a xylene/n-butanol solvent mixture and aspirated directly into an air-acetylene flame. Stepwise laser excitation of Ni was performed using a Nd:YAG pumped dual-dye laser system. Accurate and reproducible results were obtained. 17 refs., 1 fig., 1 tab

  20. Resonantly-enhanced two-photon ionization and mass-analyzed threshold ionization (MATI) spectroscopy of 2-hydroxypyridine

    CERN Document Server

    Lee, D H; Choi, K W; Choi, Y S; Kim, S K

    2002-01-01

    Mass-analyzed threshold ionization (MATI) spectra of 2-hydroxypyridines existing as lactims (2-pyridionl) in a molecular beam are obtained via (1+1') two-photon process to give accurate ionization energies of 8.9344 +- 0.0005 and 8.9284 +- 0.0005 eV for 2-pyridinol (2Py-OH) and its deuterated analogue (2Py-OD), respectively. Resonantly-enhanced two-photon ionization spectra of these compounds are also presented to give vibrational structures of their S sub 1 states. Vibrational frequencies of 2Py-OH and 2Py-OD in ionic ground states are accurately determined from MATI spectra taken via various S sub 1 intermediate states, and associated vibrational modes are assigned with the aid of ab initio calculations.

  1. Fitting methods for constructing energy-dependent efficiency curves and their application to ionization chamber measurements

    International Nuclear Information System (INIS)

    Svec, A.; Schrader, H.

    2002-01-01

    An ionization chamber without and with an iron liner (absorber) was calibrated by a set of radionuclide activity standards of the Physikalisch-Technische Bundesanstalt (PTB). The ionization chamber is used as a secondary standard measuring system for activity at the Slovak Institute of Metrology (SMU). Energy-dependent photon-efficiency curves were established for the ionization chamber in defined measurement geometry without and with the liner, and radionuclide efficiencies were calculated. Programmed calculation with an analytical efficiency function and a nonlinear regression algorithm of Microsoft (MS) Excel for fitting was used. Efficiencies from bremsstrahlung of pure beta-particle emitters were calibrated achieving a 10% accuracy level. Such efficiency components are added to obtain the total radionuclide efficiency of photon emitters after beta decay. The method yields differences of experimental and calculated radionuclide efficiencies for most of the photon-emitting radionuclides in the order of a few percent

  2. Development of resonance-enhanced multiphoton ionization system

    International Nuclear Information System (INIS)

    Naik, P.D.; Upadhyaya, Hari P.; Kumar, Awadhesh; Bajaj, P.N.; Sinha, A.K.; Bhatt, S.; Gupta, M.D.P.

    2009-05-01

    Radiation and Photochemistry Division has developed a Molecular Beam-Resonance Enhanced Multiphoton Ionization-Time-of-Flight spectrometer, a highly sensitive and selective analytical detection system, for investigation of photodissociation dynamics of isolated molecules. In this system, the molecular beam is intersected in the extraction region of a Wiley-McLaren type Time-of-Flight mass spectrometer by the photolysis laser beam, propagating perpendicular to both the molecular beams and the Time-of-Flight tube. The probe (ionization) laser beam counter propagating to the photolysis beam, ionizes the stable products and the radicals produced on photodissociation. The important features of the system, namely, the resolution and the detection limit, have been determined from the studies of aniline molecular beam, generated by seeding 1% aniline in helium. For the present configuration, using one metre long flight tube, the resolution has been found to be about 400, and detection limit is better than 106 species per cm 3 . The integrity of the set-up is obtained from the photodissociation dynamics studies of bromoform. (author)

  3. F--Ray: A new algorithm for efficient transport of ionizing radiation

    Science.gov (United States)

    Mao, Yi; Zhang, J.; Wandelt, B. D.; Shapiro, P. R.; Iliev, I. T.

    2014-04-01

    We present a new algorithm for the 3D transport of ionizing radiation, called F2-Ray (Fast Fourier Ray-tracing method). The transfer of ionizing radiation with long mean free path in diffuse intergalactic gas poses a special challenge to standard numerical methods which transport the radiation in position space. Standard methods usually trace each individual ray until it is fully absorbed by the intervening gas. If the mean free path is long, the computational cost and memory load are likely to be prohibitive. We have developed an algorithm that overcomes these limitations and is, therefore, significantly more efficient. The method calculates the transfer of radiation collectively, using the Fast Fourier Transform to convert radiation between position and Fourier spaces, so the computational cost will not increase with the number of ionizing sources. The method also automatically combines parallel rays with the same frequency at the same grid cell, thereby minimizing the memory requirement. The method is explicitly photon-conserving, i.e. the depletion of ionizing photons is guaranteed to equal the photoionizations they caused, and explicitly obeys the periodic boundary condition, i.e. the escape of ionizing photons from one side of a simulation volume is guaranteed to be compensated by emitting the same amount of photons into the volume through the opposite side. Together, these features make it possible to numerically simulate the transfer of ionizing photons more efficiently than previous methods. Since ionizing radiation such as the X-ray is responsible for heating the intergalactic gas when first stars and quasars form at high redshifts, our method can be applied to simulate thermal distribution, in addition to cosmic reionization, in three-dimensional inhomogeneous cosmological density field.

  4. Pretreatment of grass waste using combined ionizing radiation-acid treatment for enhancing fermentative hydrogen production.

    Science.gov (United States)

    Yang, Guang; Wang, Jianlong

    2018-05-01

    In this study, the combined ionizing radiation-acid pretreatment process was firstly applied to enhance hydrogen fermentation of grass waste. Results showed that the combined pretreatment synergistically enhanced hydrogen fermentation of grass waste. The SCOD and soluble polysaccharide contents of grass waste increased by 1.6 and 2.91 times after the combined pretreatment, respectively. SEM observation and crystallinity test showed the combined pretreatment effectively disrupted the grass structure. Owing to the more favorable substrate conditions, the hydrogen yield achieved 68 mL/g-dry grass added after the combined pretreatment, which was 161.5%, 112.5% and 28.3% higher than those from raw, ionizing radiation pretreated and acid pretreated grass waste, respectively. The VS removal also increased from 13.9% to 25.6% by the combined pretreatment. Microbial community analysis showed that the abundance of dominant hydrogen producing genus Clostridium sensu stricto 1 increased from 37.9% to 69.4% after the combined pretreatment, which contributed to more efficient hydrogen fermentation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Resonant-enhanced above-threshold ionization of atoms by XUV short laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, V.D. [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina)], E-mail: vladimir@df.uba.ar; Macri, P.A. [Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Departamento de Fisica, FCEyN, Universidad Nacional de Mar del Plata, CONICET, Funes 3350, 7600 Mar del Plata (Argentina); Arbo, D.G. [Instituto de Astronomia y Fisica del Espacio, UBA-CONICET, CC 67 Suc 28 Buenos Aires (Argentina)

    2009-01-15

    Above-threshold ionization of atoms by XUV short laser pulses is investigated close to the resonant 1s-2p transitions. Both ab initio TDSE and a theoretical Coulomb-Volkov like theory are used to study the enhancement in the ionization probabilities. Our modified Coulomb-Volkov theory, fully accounting for the important 1s-2p transition is able to explain the spectrum as well as the total ionization cross sections.

  6. Optimum conditions for the determination of ionization potentials, appearance potentials and fine structure in ionization efficiency curves using edd technique

    International Nuclear Information System (INIS)

    Selim, Ezzat T.; El-Kholy, S.B.; Zahran, Nagwa F.

    1978-01-01

    The optimum conditions for determining ionization potentials as well as fine structure in electron impact ionization efficiency curves are studied using energy distribution difference technique. Applying these conditions to Ar + , Kr + , CO + 2 and N + from N 2 , very good agreement is obtained when compared with results determined by other techniques including UV spectroscopy. The merits and limitation of the technique are also discussed

  7. Application of pyrolysis–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Stefan [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Streibel, Thorsten, E-mail: thorsten.streibel@uni-rostock.de [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Erdmann, Sabrina [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Sklorz, Martin [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany); Schulz-Bull, Detlef [Marine Chemistry, Leibniz Institute for Baltic Sea Research, Warnemünde, Seestrasse 15, 18119 Rostock (Germany); Zimmermann, Ralf [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg (Germany)

    2015-01-15

    Highlights: • Gas chromatography setup with two MS detectors applying different ionization methods. • In parallel structural information and sensitive detection of aromatic species. • Characterization of setup and application for crude oil samples. • Detection of polycyclic aromatic hydrocarbons next to sulfur containing aromatics. - Abstract: A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1 + 1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI–ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a

  8. Application of pyrolysis–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils

    International Nuclear Information System (INIS)

    Otto, Stefan; Streibel, Thorsten; Erdmann, Sabrina; Sklorz, Martin; Schulz-Bull, Detlef; Zimmermann, Ralf

    2015-01-01

    Highlights: • Gas chromatography setup with two MS detectors applying different ionization methods. • In parallel structural information and sensitive detection of aromatic species. • Characterization of setup and application for crude oil samples. • Detection of polycyclic aromatic hydrocarbons next to sulfur containing aromatics. - Abstract: A novel analytical system for gas-chromatographic investigation of complex samples has been developed, that combines the advantages of several analytical principles to enhance the analytical information. Decomposition of high molecular weight structures is achieved by pyrolysis and a high separation capacity due to the chromatographic step provides both an universal as well as a selective and sensitive substance detection. The latter is achieved by simultaneously applying electron ionization quadrupole mass spectrometry (EI-QMS) for structural elucidation and [1 + 1]-resonance-enhanced-multi-photon ionization (REMPI) combined with time-of-flight mass spectrometry (ToFMS). The system has been evaluated and tested with polycyclic aromatic hydrocarbon (PAH) standards. It was applied to crude oil samples for the first time. In such highly complex samples several thousands of compounds are present and the identification especially of low concentrated chemical species such as PAH or their polycyclic aromatic sulfur containing heterocyclic (PASH) derivatives is often difficult. Detection of unalkylated and alkylated PAH together with PASH is considerably enhanced by REMPI–ToFMS, at times revealing aromatic structures which are not observable by EI-QMS due to their low abundance. On the other hand, the databased structure proposals of the EI-QMS analysis are needed to confirm structural information and isomers distinction. The technique allows a complex structure analysis as well as selective assessment of aromatic substances in one measurement. Information about the content of sulfur containing compounds plays a

  9. Iron oxide nanomatrix facilitating metal ionization in matrix-assisted laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Obena, Rofeamor P; Lin, Po-Chiao; Lu, Ying-Wei; Li, I-Che; del Mundo, Florian; Arco, Susan dR; Nuesca, Guillermo M; Lin, Chung-Chen; Chen, Yu-Ju

    2011-12-15

    The significance and epidemiological effects of metals to life necessitate the development of direct, efficient, and rapid method of analysis. Taking advantage of its simple, fast, and high-throughput features, we present a novel approach to metal ion detection by matrix-functionalized magnetic nanoparticle (matrix@MNP)-assisted MALDI-MS. Utilizing 21 biologically and environmentally relevant metal ion solutions, the performance of core and matrix@MNP against conventional matrixes in MALDI-MS and laser desorption ionization (LDI) MS were systemically tested to evaluate the versatility of matrix@MNP as ionization element. The matrix@MNPs provided 20- to >100-fold enhancement on detection sensitivity of metal ions and unambiguous identification through characteristic isotope patterns and accurate mass (<5 ppm), which may be attributed to its multifunctional role as metal chelator, preconcentrator, absorber, and reservoir of energy. Together with the comparison on the ionization behaviors of various metals having different ionization potentials (IP), we formulated a metal ionization mechanism model, alluding to the role of exciton pooling in matrix@MNP-assisted MALDI-MS. Moreover, the detection of Cu in spiked tap water demonstrated the practicability of this new approach as an efficient and direct alternative tool for fast, sensitive, and accurate determination of trace metal ions in real samples.

  10. Target-ion source unit ionization efficiency measurement by method of stable ion beam implantation

    CERN Document Server

    Panteleev, V.N; Fedorov, D.V; Moroz, F.V; Orlov, S.Yu; Volkov, Yu.M

    The ionization efficiency is one of the most important parameters of an on-line used target-ion source system exploited for production of exotic radioactive beams. The ionization efficiency value determination as a characteristic of a target-ion source unit in the stage of its normalizing before on-line use is a very important step in the course of the preparation for an on-line experiment. At the IRIS facility (Petersburg Nuclear Physics Institute, Gatchina) a reliable and rather precise method of the target-ion source unit ionization efficiency measurement by the method of stable beam implantation has been developed. The method worked out exploits an off-line mass-separator for the implantation of the ion beams of selected stable isotopes of different elements into a tantalum foil placed inside the Faraday cup in the focal plane of the mass-separator. The amount of implanted ions has been measured with a high accuracy by the current integrator connected to the Faraday cup. After the implantation of needed a...

  11. A compact neutron generator using a field ionization source.

    Science.gov (United States)

    Persaud, Arun; Waldmann, Ole; Kapadia, Rehan; Takei, Kuniharu; Javey, Ali; Schenkel, Thomas

    2012-02-01

    Field ionization as a means to create ions for compact and rugged neutron sources is pursued. Arrays of carbon nano-fibers promise the high field-enhancement factors required for efficient field ionization. We report on the fabrication of arrays of field emitters with a density up to 10(6) tips∕cm(2) and measure their performance characteristics using electron field emission. The critical issue of uniformity is discussed, as are efforts towards coating the nano-fibers to enhance their lifetime and surface properties.

  12. The Application of Resonance-Enhanced Multiphoton Ionization Technique in Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Adan Li

    2014-01-01

    Full Text Available Gas chromatography resonance-enhanced multiphoton ionization time-of-flight mass spectrometry (GC/REMPI-TOFMS using a nanosecond laser has been applied to analyze the 16 polycyclic aromatic hydrocarbons (PAHs. The excited-state lifetime, absorption characters, and energy of electronic states of the 16 PAHs were investigated to optimize the ionization yield. A river water sample pretreated by means of solid phase extraction was analyzed to evaluate the performance of the analytical instrument. The results suggested that REMPI is superior to electron impact ionization method for soft ionization and suppresses the background signal due to aliphatic hydrocarbons. Thus, GC/REMPI-TOFMS is a more reliable method for the determination of PAHs present in the environment.

  13. Ionizing radiation changes the electronic properties of melanin and enhances the growth of melanized fungi.

    Science.gov (United States)

    Dadachova, Ekaterina; Bryan, Ruth A; Huang, Xianchun; Moadel, Tiffany; Schweitzer, Andrew D; Aisen, Philip; Nosanchuk, Joshua D; Casadevall, Arturo

    2007-05-23

    Melanin pigments are ubiquitous in nature. Melanized microorganisms are often the dominating species in certain extreme environments, such as soils contaminated with radionuclides, suggesting that the presence of melanin is beneficial in their life cycle. We hypothesized that ionizing radiation could change the electronic properties of melanin and might enhance the growth of melanized microorganisms. Ionizing irradiation changed the electron spin resonance (ESR) signal of melanin, consistent with changes in electronic structure. Irradiated melanin manifested a 4-fold increase in its capacity to reduce NADH relative to non-irradiated melanin. HPLC analysis of melanin from fungi grown on different substrates revealed chemical complexity, dependence of melanin composition on the growth substrate and possible influence of melanin composition on its interaction with ionizing radiation. XTT/MTT assays showed increased metabolic activity of melanized C. neoformans cells relative to non-melanized cells, and exposure to ionizing radiation enhanced the electron-transfer properties of melanin in melanized cells. Melanized Wangiella dermatitidis and Cryptococcus neoformans cells exposed to ionizing radiation approximately 500 times higher than background grew significantly faster as indicated by higher CFUs, more dry weight biomass and 3-fold greater incorporation of (14)C-acetate than non-irradiated melanized cells or irradiated albino mutants. In addition, radiation enhanced the growth of melanized Cladosporium sphaerospermum cells under limited nutrients conditions. Exposure of melanin to ionizing radiation, and possibly other forms of electromagnetic radiation, changes its electronic properties. Melanized fungal cells manifested increased growth relative to non-melanized cells after exposure to ionizing radiation, raising intriguing questions about a potential role for melanin in energy capture and utilization.

  14. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  15. Resonance-enhanced multiphoton ionization photoelectron spectroscopy of even-parity autoionizing Rydberg states of atomic sulphur

    NARCIS (Netherlands)

    Woutersen, S.; de Milan, J.B.; de Lange, C.A.; Buma, W.J.

    1997-01-01

    Several previously unobserved Rydberg states of the sulphur atom above the lowest ionization threshold are identified and assigned using (2 + 1) resonance-enhanced multiphoton-ionization photoelectron spectroscopy. All states were accessed by two-photon transitions from either the 3P ground or the

  16. Experimental REMPI [Resonance Enhanced Multiphoton Ionization] studies of small molecules

    International Nuclear Information System (INIS)

    Dehmer, J.L.; Dehmer, P.M.; Pratt, S.T.; O'Halloran, M.A.; Tomkins, F.S.

    1986-01-01

    Resonance Enhanced Multiphoton Ionization (REMPI) utilizes tunable dye lasers to ionize an atom or molecule by first preparing an excited state by multiphoton absorption and then ionizing that state before it can decay. This process is highly selective with respect to both the initial and resonant intermediate states of the target, and it can be extremely sensitive. In addition, the products of the REMPI process can be detected as needed by analyzing the resulting electrons, ions, fluorescence, or by additional REMPI. This points to a number of exciting opportunities for both basic and applied science. On the applied side, REMPI has great potential as an ultrasensitive, highly selective detector for trace, reactive, or transient species. On the basic side, REMPI affords an unprecedented means of exploring excited state physics and chemistry at the quantum-state-specific level. We shall give an overview together with examples of current studies of excited molecular states to illustrate the principles of and prospects for REMPI. 27 refs., 3 figs

  17. Derivatization reagents in liquid chromatography/electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Santa, Tomofumi

    2011-01-01

    Liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) is one of the most prominent analytical techniques owing to its inherent selectivity and sensitivity. In LC/ESI-MS/MS, chemical derivatization is often used to enhance the detection sensitivity. Derivatization improves the chromatographic separation, and enhances the mass spectrometric ionization efficiency and MS/MS detectability. In this review, an overview of the derivatization reagents which have been applied to LC/ESI-MS/MS is presented, focusing on the applications to low molecular weight compounds. 2010 John Wiley & Sons, Ltd.

  18. Collection efficiency of charges in ionization chambers in presence of constant or variable radiation intensity

    International Nuclear Information System (INIS)

    Decuyper, J.

    1970-01-01

    The theoretical and experimental study of the collection of carriers built up by ionization in standard chambers, is made by varying the value of different acting parameters. In the presence of constant ionization intensity and under a D.C. and A.C. voltage, the effect of geometry, recombination, diffusion and attachment is analyzed. The compensation of thermal neutron D.C. chambers is equally considered. Under a time dependent ionization intensity and D.C. voltage, is then studied the effect of recombination on current response, and on the collection efficiency of all formed charges. (author) [fr

  19. Enhanced sensitivity of the RET proto-oncogene to ionizing radiation in vitro.

    Science.gov (United States)

    Volpato, Claudia Béu; Martínez-Alfaro, Minerva; Corvi, Raffaella; Gabus, Coralie; Sauvaigo, Sylvie; Ferrari, Pietro; Bonora, Elena; De Grandi, Alessandro; Romeo, Giovanni

    2008-11-01

    Exposure to ionizing radiation is a well-known risk factor for a number of human cancers, including leukemia and thyroid cancer. It has been known for a long time that exposure of cells to radiation results in extensive DNA damage; however, a small number of studies have tried to explain the mechanisms of radiation-induced carcinogenesis. The high prevalence of RET/PTC rearrangements in patients who have received external radiation, and the evidence of in vitro induction of RET rearrangements in human cells, suggest an enhanced sensitivity of the RET genomic region to damage by ionizing radiation. To assess whether RET is indeed more sensitive to radiations than other genomic regions, we used a COMET assay coupled with fluorescence in situ hybridization, which allows the measurement of DNA fragmentation in defined genomic regions of single cells. We compared the initial DNA damage of the genomic regions of RET, CXCL12/SDF1, ABL, MYC, PLA2G2A, p53, and JAK2 induced by ionizing radiation in both a lymphoblastoid and a fetal thyroid cell line. In both cell lines, RET fragmentation was significantly higher than in other genomic regions. Moreover, a differential distribution of signals within the COMET was associated with a higher percentage of RET fragments in the tail. RET was more susceptible to fragmentation in the thyroid-derived cells than in lymphoblasts. This enhanced susceptibility of RET to ionizing radiation suggests the possibility of using it as a radiation exposure marker.

  20. Peak quantification in surface-enhanced laser desorption/ionization by using mixture models

    NARCIS (Netherlands)

    Dijkstra, Martijn; Roelofsen, Han; Vonk, Roel J.; Jansen, Ritsert C.

    2006-01-01

    Surface-enhanced laser desorption/ionization (SELDI) time of flight (TOF) is a mass spectrometry technology for measuring the composition of a sampled protein mixture. A mass spectrum contains peaks corresponding to proteins in the sample. The peak areas are proportional to the measured

  1. Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of p-chlorofluorobenzene

    Science.gov (United States)

    Tuttle, William D.; Gardner, Adrian M.; Wright, Timothy G.

    2017-09-01

    The S1 ← S0 (A˜1 B2 ← X˜1 A1) electronic transition of para-chlorofluorobenzene has been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy. Assignment of the vibrational structure has been achieved by comparison with corresponding spectra of related molecules, via quantum chemical calculations, and via shifts in bands between the spectra of the 35Cl and 37Cl isotopologues. In addition, we have also partially reassigned a previously-published spectrum of para-dichlorobenzene.

  2. Enhancement of strong-field multiple ionization in the vicinity of the conical intersection in 1,3-cyclohexadiene ring opening

    International Nuclear Information System (INIS)

    Petrovic, Vladimir S.; Kim, Jaehee; Schorb, Sebastian; White, James; Cryan, James P.; Zipp, Lucas; Glownia, J. Michael; Broege, Douglas; Miyabe, Shungo; Tao, Hongli; Martinez, Todd; Bucksbaum, Philip H.

    2013-01-01

    Nonradiative energy dissipation in electronically excited polyatomic molecules proceeds through conical intersections, loci of degeneracy between electronic states. We observe a marked enhancement of laser-induced double ionization in the vicinity of a conical intersection during a non-radiative transition. We measured double ionization by detecting the kinetic energy of ions released by laser-induced strong-field fragmentation during the ring-opening transition between 1,3-cyclohexadiene and 1,3,5-hexatriene. The enhancement of the double ionization correlates with the conical intersection between the HOMO and LUMO orbitals

  3. Effect of ionizing radiation on DNA-mediated gene transfer efficiency

    International Nuclear Information System (INIS)

    Rubin, J.S.; Hall, E.J.; Hei, T.K.

    1986-01-01

    Ionizing radiation causes a number of molecular changes in cells including DNA damage and gene amplification. In this study the authors examined whether radiation can effect the efficiency of integration and expression of exogenous DNA sequences. They examined both 137 Cs γ rays and various monoenergetic neutron beams. This enabled them to test whether the LET or RBE of the radiation had any effect. Rat2 cells were transfected with various amounts of the bacterial plasmid pSV2-GPT along with carrier DNA for 24 hours

  4. A Versatile Integrated Ambient Ionization Source Platform

    Science.gov (United States)

    Ai, Wanpeng; Nie, Honggang; Song, Shiyao; Liu, Xiaoyun; Bai, Yu; Liu, Huwei

    2018-04-01

    The pursuit of high-throughput sample analysis from complex matrix demands development of multiple ionization techniques with complementary specialties. A versatile integrated ambient ionization source (iAmIS) platform is proposed in this work, based on the idea of integrating multiple functions, enhancing the efficiency of current ionization techniques, extending the applications, and decreasing the cost of the instrument. The design of the iAmIS platform combines flowing atmospheric pressure afterglow (FAPA) source/direct analysis in real time (DART), dielectric barrier discharge ionization (DBDI)/low-temperature plasma (LTP), desorption electrospray ionization (DESI), and laser desorption (LD) technique. All individual and combined ionization modes can be easily attained by modulating parameters. In particular, the FAPA/DART&DESI mode can realize the detection of polar and nonpolar compounds at the same time with two different ionization mechanisms: proton transfer and charge transfer. The introduction of LD contributes to the mass spectrometry imaging and the surface-assisted laser desorption (SALDI) under ambient condition. Compared with other individual or multi-mode ion source, the iAmIS platform provides the flexibility of choosing different ionization modes, broadens the scope of the analyte detection, and facilitates the analysis of complex samples. [Figure not available: see fulltext.

  5. Full Product Pattern Recognition in β-Carotene Thermal Degradation through Ionization Enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiaoyin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Lance Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bernstein, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hochrein, James M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    The full product pattern including both volatile and nonvolatile compounds was presented for the first time for β-Carotene thermal degradation at variable temperatures up to 600°C. Solvent-enhanced ionization was used to confirm and distinguish between the dissociation mechanisms that lead to even and odd number mass products.

  6. Heavy component of spent nuclear fuel: Efficiency of model-substance ionization by electron-induced discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P. [Russian Academy of Sciences, High Energy Density Research Center, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3}, the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.

  7. RILIS-ionized mercury and tellurium beams at ISOLDE CERN

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN (Switzerland); Billowes, J. [The University of Manchester, School of Physics and Astronomy (United Kingdom); Chrysalidis, K. [CERN (Switzerland); Fedorov, D. V. [Petersburg Nuclear Physics Institute (Russian Federation); Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Molkanov, P. L. [Petersburg Nuclear Physics Institute (Russian Federation); Rossel, R. E.; Rothe, S.; Seiffert, C. [CERN (Switzerland); Wendt, K. D. A. [Johannes Gutenberg Universität, Institut für Physik (Germany)

    2017-11-15

    This paper presents the results of ionization scheme development for application at the ISOLDE Resonance Ionization Laser Ion Source (RILIS). Two new ionization schemes for mercury are presented: a three-step three-resonance ionization scheme, ionizing via an excitation to a Rydberg level and a three-step two-resonance ionization scheme, with a non-resonant final step to the ionization continuum that corresponded to a factor of four higher ionization efficiency. The efficiency of the optimal mercury ionization scheme was measured, together with the efficiency of a new three-step three resonance ionization scheme for tellurium. The efficiencies of the mercury and tellurium ionization schemes were determined to be 6 % and >18 % respectively.

  8. Increased ionization rate in laser enrichment

    International Nuclear Information System (INIS)

    Janes, G.S.; Pike, G.T.

    1977-01-01

    A system employing multiple, upper excitation levels in a technique for isotopically selective ionization to improve the ionization efficiency is described. Laser radiation is employed to excite particles with isotopic selectivity. Excitation is produced to a plurality of excited states below the ionization level with the result of increasing the number of available excited particles for ionization and thereby increasing the ionization cross section for improved system efficiency

  9. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, O-Mi [Quarantine Technology Center, Animal and Plant Quarantine Agency Plant, 175 Anyangro, Manan-Gu, Anyang-Si, Gyeonggi-Do 480-757 (Korea, Republic of); Kim, Hyun Young; Park, Wooshin; Kim, Tae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, Jeonbuk 580-185 (Korea, Republic of); Yu, Seungho, E-mail: seunghoyu68@gmail.com [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, Jeonbuk 580-185 (Korea, Republic of)

    2015-09-15

    Highlights: • The ionizing radiation was applied to inactivate microorganisms and the critical dose to prevent the regrowth was determined. • The seasonal variation of disinfection efficiency observed in on-site UV treatment system was influenced by suspended solid, temperature, and precipitation, whereas, stable values were observed in ionizing radiation. • The electrical power consumption for disinfection using UV and ozone requires higher energy than ionizing radiation. - Abstract: Ionizing radiation technology was suggested as an alternative method to disinfection processes, such as chlorine, UV, and ozone. Although many studies have demonstrated the effectiveness of irradiation technology for microbial disinfection, there has been a lack of information on comparison studies of disinfection techniques and a regrowth of each treatment. In the present study, an ionizing radiation was investigated to inactivate microorganisms and to determine the critical dose to prevent the regrowth. As a result, it was observed that the disinfection efficiency using ionizing radiation was not affected by the seasonal changes of wastewater characteristics, such as temperature and turbidity. In terms of bacterial regrowth after disinfection, the ionizing radiation showed a significant resistance of regrowth, whereas, on-site UV treatment is influenced by the suspended solid, temperature, or precipitation. The electric power consumption was also compared for the economic feasibility of each technique at a given value of disinfection efficiency of 90% (1-log), showing 0.12, 36.80, and 96.53 Wh/(L/day) for ionizing radiation, ozone, and UV, respectively. The ionizing radiation requires two or three orders of magnitude lower power consumption than UV and ozone. Consequently, ionizing radiation can be applied as an effective and economical alternative technique to other conventional disinfection processes.

  10. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process

    International Nuclear Information System (INIS)

    Lee, O-Mi; Kim, Hyun Young; Park, Wooshin; Kim, Tae-Hun; Yu, Seungho

    2015-01-01

    Highlights: • The ionizing radiation was applied to inactivate microorganisms and the critical dose to prevent the regrowth was determined. • The seasonal variation of disinfection efficiency observed in on-site UV treatment system was influenced by suspended solid, temperature, and precipitation, whereas, stable values were observed in ionizing radiation. • The electrical power consumption for disinfection using UV and ozone requires higher energy than ionizing radiation. - Abstract: Ionizing radiation technology was suggested as an alternative method to disinfection processes, such as chlorine, UV, and ozone. Although many studies have demonstrated the effectiveness of irradiation technology for microbial disinfection, there has been a lack of information on comparison studies of disinfection techniques and a regrowth of each treatment. In the present study, an ionizing radiation was investigated to inactivate microorganisms and to determine the critical dose to prevent the regrowth. As a result, it was observed that the disinfection efficiency using ionizing radiation was not affected by the seasonal changes of wastewater characteristics, such as temperature and turbidity. In terms of bacterial regrowth after disinfection, the ionizing radiation showed a significant resistance of regrowth, whereas, on-site UV treatment is influenced by the suspended solid, temperature, or precipitation. The electric power consumption was also compared for the economic feasibility of each technique at a given value of disinfection efficiency of 90% (1-log), showing 0.12, 36.80, and 96.53 Wh/(L/day) for ionizing radiation, ozone, and UV, respectively. The ionizing radiation requires two or three orders of magnitude lower power consumption than UV and ozone. Consequently, ionizing radiation can be applied as an effective and economical alternative technique to other conventional disinfection processes

  11. New mechanism for enhancing ash removal efficiency and reducing tritium inventory

    International Nuclear Information System (INIS)

    Li Chengyue; Deng Baiquan; Yan Jiancheng

    2007-01-01

    A new mechanism is suggested to suppress ash particle back streams in the divertor region of our fusion experimental breeder (FEB) reactor for enhancing the ash removal efficiency and reducing the tritium inventory by applications of the nonlinear effect of high power rf ponderomotive force potential which reflects the plate-released and re-ionized He + back to the plate. Meanwhile, the potential does not hinder α particles, which are coming from scraping of the layer, flowing to the target plate. However, it does stop tritium ions flowing to the target. Based on the FEB design parameters, our calculations have shown that the ash removal efficiency can be improved by as much as 40% if the parallel component of rf field 150-200 V/cm is applied to the location at a perpendicular distance L=20 cm apart from the plate and the plate-recycling neutral helium atom energy is about 0.75 eV, at the same time, the tritium inventory can be reduced to some extent. (authors)

  12. Resonance-enhanced two-photon ionization of ions by Lyman alpha radiation in gaseous nebulae.

    Science.gov (United States)

    Johansson, S; Letokhov, V

    2001-01-26

    One of the mysteries of nebulae in the vicinity of bright stars is the appearance of bright emission spectral lines of ions, which imply fairly high excitation temperatures. We suggest that an ion formation mechanism, based on resonance-enhanced two-photon ionization (RETPI) by intense H Lyman alpha radiation (wavelength of 1215 angstroms) trapped inside optically thick nebulae, can produce these spectral lines. The rate of such an ionization process is high enough for rarefied gaseous media where the recombination rate of the ions formed can be 10(-6) to 10(-8) per second for an electron density of 10(3) to 10(5) per cubic centimeter in the nebula. Under such conditions, the photo-ions formed may subsequently undergo further RETPI, catalyzed by intense He i and He ii radiation, which also gets enhanced in optically thick nebulae that contain enough helium.

  13. General collection efficiency in liquid iso-octane and tetramethylsilane used as sensitive media in a thimble ionization chamber

    International Nuclear Information System (INIS)

    Johansson, B.E.; Bahar-Gogani, J.; Wickman, G.

    1999-01-01

    The general collection efficiency in the dielectric liquids iso-octane (C 8 H 18 ; 2-2-4 trimethylpentane) and tetramethylsilane (Si(CH 3 ) 4 ), used as sensitive media in a thimble liquid ionization chamber (LIC) with a liquid layer thickness of 1 mm, has been studied. Measurements were made for continuous radiation at varying dose rates using 140 keV photons from the decay of 99m Tc for chamber polarizing voltages of 50, 100 and 500 V. The maximum dose rate in each measurement session was about 150 mGy min -1 . The experimental results were compared with theoretical general collection efficiencies calculated by the equation for the general collection efficiency in gases. The results show that the general collection efficiency in a thimble LIC for continuous radiation can be calculated with the equation for the general collection efficiency in gas ionization chambers, using the same chamber geometry correction factors and analogous characteristic ion recombination parameters for the dielectric liquids. (author)

  14. Ionization efficiency of a COMIC ion source equipped with a quartz plasma chamber

    International Nuclear Information System (INIS)

    Suominen, P.; Stora, T.; Sortais, P.; Medard, J.

    2012-01-01

    Increased ionization efficiencies of light noble gases and molecules are required for new physics experiments in present and future radioactive ion beam facilities. In order to improve these beams, a new COMIC-type ion source with fully quartz made plasma chamber was tested. The beam current stability is typically better than 1 % and beams are easily reproducible. The highest efficiency for xenon is about 15 %. However, the main goal is to produce molecular beam including radioactive carbon (in CO or CO 2 ), in which case the efficiency was measured to be only about 0.2%. This paper describes the experimental prototype and its performance and provides ideas for future development. This paper is followed by the associated poster. (authors)

  15. Multivariate correction in laser-enhanced ionization with laser sampling

    International Nuclear Information System (INIS)

    Popov, A.M.; Labutin, T.A.; Sychev, D.N.; Gorbatenko, A.A.; Zorov, N.B.

    2007-01-01

    The opportunity of normalizing laser-enhanced ionization (LEI) signals by several reference signals (RS) measured simultaneously has been examined in view of correcting variations of laser parameters and matrix interferences. Opto-acoustic, atomic emission and non-selective ionization signals and their paired combination were used as RS for Li determination in aluminum alloys (0-6% Mg, 0-5% Cu, 0-1% Sc, 0-1% Ag). The specific normalization procedure in case of RS essential multicollinearity has been proposed. LEI and RS for each definite ablation pulse energy were plotted in Cartesian co-ordinates (x and y axes - the RS values, z axis - LEI signal). It was found that in the three-dimensional space the slope of the correlation line to the plane of RS depends on the analyte content in the solid sample. The use of this slope has therefore been proposed as a multivariate corrected analytical signal. Multivariate correlative normalization provides analytical signal free of matrix interferences for Al-Mg-Cu-Li alloys. The application of this novel approach to the determination of Li allows plotting unified calibration curves for Al-alloys of different matrix composition

  16. Multivariate correction in laser-enhanced ionization with laser sampling

    Energy Technology Data Exchange (ETDEWEB)

    Popov, A.M. [Department of Chemistry, M. V. Lomonosov Moscow State University, 119992 Russia Moscow GSP-2, Leninskie Gory 1 build.3 (Russian Federation); Labutin, T.A. [Department of Chemistry, M. V. Lomonosov Moscow State University, 119992 Russia Moscow GSP-2, Leninskie Gory 1 build.3 (Russian Federation)], E-mail: timurla@laser.chem.msu.ru; Sychev, D.N.; Gorbatenko, A.A.; Zorov, N.B. [Department of Chemistry, M. V. Lomonosov Moscow State University, 119992 Russia Moscow GSP-2, Leninskie Gory 1 build.3 (Russian Federation)

    2007-03-15

    The opportunity of normalizing laser-enhanced ionization (LEI) signals by several reference signals (RS) measured simultaneously has been examined in view of correcting variations of laser parameters and matrix interferences. Opto-acoustic, atomic emission and non-selective ionization signals and their paired combination were used as RS for Li determination in aluminum alloys (0-6% Mg, 0-5% Cu, 0-1% Sc, 0-1% Ag). The specific normalization procedure in case of RS essential multicollinearity has been proposed. LEI and RS for each definite ablation pulse energy were plotted in Cartesian co-ordinates (x and y axes - the RS values, z axis - LEI signal). It was found that in the three-dimensional space the slope of the correlation line to the plane of RS depends on the analyte content in the solid sample. The use of this slope has therefore been proposed as a multivariate corrected analytical signal. Multivariate correlative normalization provides analytical signal free of matrix interferences for Al-Mg-Cu-Li alloys. The application of this novel approach to the determination of Li allows plotting unified calibration curves for Al-alloys of different matrix composition.

  17. Storm-time ionization enhancements at the topside low-latitude ionosphere

    Directory of Open Access Journals (Sweden)

    A. Dmitriev

    2008-05-01

    Full Text Available Ion density enhancements at the topside low-latitude ionosphere during a Bastille storm on 15–16 July 2000 and Halloween storms on 29–31 October 2003 were studied using data from ROCSAT-1/IPEI experiment. Prominent ion density enhancements demonstrate similar temporal dynamics both in the sunlit and in the nightside hemispheres. The ion density increases dramatically (up to two orders of magnitude during the main phase of the geomagnetic storms and reaches peak values at the storm maximum. The density enhancements are mostly localized in the region of a South Atlantic Anomaly (SAA, which is characterized by very intense fluxes of energetic particles. The dynamics of near-Earth radiation was studied using SAMPEX/LEICA data on >0.6 MeV electrons and >0.8 MeV protons at around 600 km altitude. During the magnetic storms the energetic particle fluxes in the SAA region and in its vicinity increase more than three orders of magnitude. The location of increased fluxes overlaps well with the regions of ion density enhancements. Two mechanisms were considered to be responsible for the generation of storm-time ion density enhancements: prompt penetration of the interplanetary electric field and abundant ionization of the ionosphere by enhanced precipitation of energetic particles from the radiation belt.

  18. Resonance Ionization Mass Spectrometry (RIMS): applications in spectroscopy and chemical dynamics

    International Nuclear Information System (INIS)

    Naik, P.D.; Kumar, Awadhesh; Upadhyaya, Hari; Bajaj, P.N.

    2009-01-01

    Resonance ionization is a photophysical process wherein electromagnetic radiation is used to ionize atoms, molecules, transient species, etc., by exciting them through their quantum states. The number of photons required to ionize depends on the species being investigated and energy of the photon. Once a charged particle is produced, it is easy to detect it with high efficiency. With the advent of narrow band high power pulsed and cw tunable dye lasers, it has blossomed into a powerful spectroscopic and analytical technique, commonly known as resonance ionization spectroscopy (RIS)/resonance enhanced multiphoton ionization (REMPI). The alliance of resonance ionization with mass spectrometry has grown into a still more powerful technique, known as resonance ionization mass spectrometry (RIMS), which has made significant contributions in a variety of frontier areas of research and development, such as spectroscopy, chemical dynamics, analytical chemistry, cluster science, surface science, radiochemistry, nuclear physics, biology, environmental science, material science, etc. In this article, we shall describe the application of resonance ionization mass spectrometry to spectroscopy of uranium and chemical dynamics of polyatomic molecules

  19. Interpreting closed-loop learning control of molecular fragmentation in terms of wave-packet dynamics and enhanced molecular ionization

    International Nuclear Information System (INIS)

    Cardoza, David; Baertschy, Mark; Weinacht, Thomas

    2005-01-01

    We interpret a molecular fragmentation experiment using shaped, ultrafast laser pulses in terms of enhanced molecular ionization during dissociation. A closed-loop learning control experiment was performed to maximize the CF 3 + /CH 3 + production ratio in the dissociative ionization of CH 3 COCF 3 . Using ab inito molecular structure calculations and quasistatic molecular ionization calculations along with data from pump-probe experiments, we identify the primary control mechanism which is quite general and should be applicable to a broad class of molecules

  20. Development of a surface ionization source for the production of radioactive alkali ion beams in SPIRAL

    International Nuclear Information System (INIS)

    Eleon, C.; Jardin, P.; Gaubert, G.; Saint-Laurent, M.-G.; Alcantara-Nunez, J.; Alves Conde, R.; Barue, C.; Boilley, D.; Cornell, J.; Delahaye, P.; Dubois, M.; Jacquot, B.; Leherissier, P.; Leroy, R.; Lhersonneau, G.; Marie-Jeanne, M.; Maunoury, L.; Pacquet, J.Y.; Pellemoine, F.; Pierret, C.

    2008-01-01

    In the framework of the production of radioactive alkali ion beams by the isotope separation on-line (ISOL) method in SPIRAL I, a surface ionization source has been developed at GANIL to produce singly-charged ions of Li, Na and K. This new source has been designed to work in the hostile environment whilst having a long lifetime. This new system of production has two ohmic heating components: the first for the target oven and the second for the ionizer. The latter, being in carbon, offers high reliability and competitive ionization efficiency. This surface ionization source has been tested on-line using a 48 Ca primary beam at 60.3 A MeV with an intensity of 0.14 pA. The ionization efficiencies obtained for Li, Na and K are significantly better than the theoretical values of the ionization probability per contact. The enhanced efficiency, due to the polarization of the ionizer, is shown to be very important also for short-lived isotopes. In the future, this source will be associated with the multicharged electron-cyclotron-resonance (ECR) ion source NANOGAN III for production of multicharged alkali ions in SPIRAL. The preliminary tests of the set up are also presented in this contribution.

  1. Electron impact ionization of B-like ion N2+. Resonance enhancement of the single-channel cross section

    International Nuclear Information System (INIS)

    Li Guohe; Qian Xingzhong; Pan Soufu

    1998-01-01

    The electron impact ionization cross sections of B-like ion N 2+ are calculated in the Coulomb-Born no exchange approximation by using R-matrix method, and the single differential cross section is given. The calculated results exhibit the Rydberg series of resonances. The resonance enhancement of the single-channel cross section is significantly greater than direct ionization cross section. It is agreement with that of Chidichimo

  2. Mutation induction in plants by ionizing radiation

    International Nuclear Information System (INIS)

    1985-01-01

    This training film deals with the use of x-rays, gamma rays and fast neutrons for mutation induction in plants. Specific features of different types of ionizing radiation and of biological materials are outlined and methods demonstrated which control modifying factors and warrant an efficient physical mutagenesis. The first step of mutation breeding aims at an enhanced level of genetic variation which forms the basis for mutant selection and use in plant breeding

  3. Investigation of optimal photoionization schemes for Sm by multi-step resonance ionization

    International Nuclear Information System (INIS)

    Cha, H.; Song, K.; Lee, J.

    1997-01-01

    Excited states of Sm atoms are investigated by using multi-color resonance enhanced multiphoton ionization spectroscopy. Among the ionization signals one observed at 577.86 nm is regarded as the most efficient excited state if an 1-color 3-photon scheme is applied. Meanwhile an observed level located at 587.42 nm is regarded as the most efficient state if one uses a 2-color scheme. For 2-color scheme a level located at 573.50 nm from this first excited state is one of the best second excited state for the optimal photoionization scheme. Based on this ionization scheme various concentrations of standard solutions for samarium are determined. The minimum amount of sample which can be detected by a 2-color scheme is determined as 200 fg. The detection sensitivity is limited mainly due to the pollution of the graphite atomizer. copyright 1997 American Institute of Physics

  4. Signal enhancement due to high-Z nanofilm electrodes in parallel plate ionization chambers with variable microgaps.

    Science.gov (United States)

    Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2017-12-01

    We developed a method for measuring signal enhancement produced by high-Z nanofilm electrodes in parallel plate ionization chambers with variable thickness microgaps. We used a laboratory-made variable gap parallel plate ionization chamber with nanofilm electrodes made of aluminum-aluminum (Al-Al) and aluminum-tantalum (Al-Ta). The electrodes were evaporated on 1 mm thick glass substrates. The interelectrode air gap was varied from 3 μm to 1 cm. The gap size was measured using a digital micrometer and it was confirmed by capacitance measurements. The electric field in the chamber was kept between 0.1 kV/cm and 1 kV/cm for all the gap sizes by applying appropriate compensating voltages. The chamber was exposed to 120 kVp X-rays. The current was measured using a commercial data acquisition system with temporal resolution of 600 Hz. In addition, radiation transport simulations were carried out to characterize the dose, D(x), high-energy electron current, J(x), and deposited charge, Q(x), as a function of distance, x, from the electrodes. A deterministic method was selected over Monte Carlo due to its ability to produce results with 10 nm spatial resolution without stochastic uncertainties. Experimental signal enhancement ratio, SER(G) which we defined as the ratio of signal for Al-air-Ta to signal for Al-air-Al for each gap size, was compared to computations. The individual contributions of dose, electron current, and charge deposition to the signal enhancement were determined. Experimental signals matched computed data for all gap sizes after accounting for several contributions to the signal: (a) charge carrier generated via ionization due to the energy deposited in the air gap, D(x); (b) high-energy electron current, J(x), leaking from high-Z electrode (Ta) toward low-Z electrode (Al); (c) deposited charge in the air gap, Q(x); and (d) the decreased collection efficiency for large gaps (>~500 μm). Q(x) accounts for the electrons below 100 eV, which are

  5. Numerical study of laser-induced blast wave coupled with unsteady ionization processes

    International Nuclear Information System (INIS)

    Ogino, Y; Ohnishi, N; Sawada, K

    2008-01-01

    We present the results of the numerical simulation of laser-induced blast wave coupled with rate equations to clarify the unsteady property of ionization processes during pulse heating. From comparison with quasi-steady computations, the plasma region expands more widely, which is sustained by the inverse-bremsstrahlung since an ionization equilibrium does not establish at the front of the plasma region. The delayed relaxation leads to the rapid expansion of the driving plasma and enhances the energy conversion efficiency from a pulse heating laser to the blast wave

  6. The vitamin-like dietary supplement para-aminobenzoic acid enhances the antitumor activity of ionizing radiation

    International Nuclear Information System (INIS)

    Xavier, Sandhya; MacDonald, Shannon; Roth, Jennifer; Caunt, Maresa; Akalu, Abebe; Morais, Danielle; Buckley, Michael T.; Liebes, Leonard; Formenti, Silvia C.; Brooks, Peter C.

    2006-01-01

    Purpose: To determine whether para-aminobenzoic acid (PABA) alters the sensitivity of tumor cells to ionizing radiation in vitro and in vivo. Methods and Materials: Cellular proliferation was assessed by WST-1 assays. The effects of PABA and radiation on tumor growth were examined with chick embryo and murine models. Real-time reverse transcriptase-polymerase chain reaction and Western blotting were used to quantify p21 CIP1 and CDC25A levels. Results: Para-aminobenzoic acid enhanced (by 50%) the growth inhibitory activity of radiation on B16F10 cells, whereas it had no effect on melanocytes. Para-aminobenzoic acid enhanced (50-80%) the antitumor activity of radiation on B16F10 and 4T1 tumors in vivo. The combination of PABA and radiation therapy increased tumor apoptosis. Treatment of tumor cells with PABA increased expression of CDC25A and decreased levels of p21 CIP1 . Conclusions: Our findings suggest that PABA might represent a compound capable of enhancing the antitumor activity of ionizing radiation by a mechanism involving altered expression of proteins known to regulate cell cycle arrest

  7. Mass spectrometric characterization of a pyrolytic radical source using femtosecond ionization

    Energy Technology Data Exchange (ETDEWEB)

    Frey, H M; Beaud, P; Mischler, B; Radi, P P; Tzannis, A P; Gerber, T [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Radicals play, as reactive species, an important role in the chemistry of combustion. In contrast to atmospheric flames where spectra are congested due to high vibrational and rotational excitation, experiments in the cold environment of a molecular beam (MB) yield clean spectra that can be easily attributed to one species by Resonantly Enhanced Multi Photon Ionization (REMP). A pyrolytic radical source has been set up. To characterize the efficiency of the source `soft` ionization with femto second pulses is applied which results in less fragmentation, simplifying the interpretation of the mass spectrum. (author) figs., tabs., refs.

  8. THE IMPLICATIONS OF A HIGH COSMIC-RAY IONIZATION RATE IN DIFFUSE INTERSTELLAR CLOUDS

    International Nuclear Information System (INIS)

    Indriolo, Nick; Fields, Brian D.; McCall, Benjamin J.

    2009-01-01

    Diffuse interstellar clouds show large abundances of H + 3 which can only be maintained by a high ionization rate of H 2 . Cosmic rays are the dominant ionization mechanism in this environment, so the large ionization rate implies a high cosmic-ray flux, and a large amount of energy residing in cosmic rays. In this paper, we find that the standard propagated cosmic-ray spectrum predicts an ionization rate much lower than that inferred from H + 3 . Low-energy (∼10 MeV) cosmic rays are the most efficient at ionizing hydrogen, but cannot be directly detected; consequently, an otherwise unobservable enhancement of the low-energy cosmic-ray flux offers a plausible explanation for the H + 3 results. Beyond ionization, cosmic rays also interact with the interstellar medium by spalling atomic nuclei and exciting atomic nuclear states. These processes produce the light elements Li, Be, and B, as well as gamma-ray lines. To test the consequences of an enhanced low-energy cosmic-ray flux, we adopt two physically motivated cosmic-ray spectra which by construction reproduce the ionization rate inferred in diffuse clouds, and investigate the implications of these spectra on dense cloud ionization rates, light-element abundances, gamma-ray fluxes, and energetics. One spectrum proposed here provides an explanation for the high ionization rate seen in diffuse clouds while still appearing to be broadly consistent with other observables, but the shape of this spectrum suggests that supernovae remnants may not be the predominant accelerators of low-energy cosmic rays.

  9. Resonance enhanced multiphoton ionization spectra of molecules and molecular fragments. Annual progress report, March 1992 - February 1993

    International Nuclear Information System (INIS)

    1993-01-01

    In this report, the author will review the progress made in his studies of ion rotational distributions resulting from resonance enhanced multiphoton ionization of excited electronic states and from single-photon ionization of ground electronic states of jet-cooled molecules by coherent VUV and XUV radiation. To do so he will select a few examples from his studies which serve to highlight his progress and to identify the background and significance of the specific spectral features and systems he has chosen to study

  10. Efficiency in development and implementation of safety regulations for the use of ionizing radiation

    International Nuclear Information System (INIS)

    1992-08-01

    This report addresses the effective and efficient organization of the work of regulatory authorities responsible to the public for assuring regulatory control of the use of ionizing radiation consistent with rational policies and objectives. Its purpose is to outline parameters that influence decisions about the structure of regulatory programmes, to explore combinations of approaches to structure such programmes, and to present available cost-saving techniques. 7 refs, 1 tab

  11. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    International Nuclear Information System (INIS)

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-01-01

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10 –7 ) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10 –6 -1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H 2 , or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks

  12. Protonation enhancement by dichloromethane doping in low-pressure photoionization.

    Science.gov (United States)

    Shu, Jinian; Zou, Yao; Xu, Ce; Li, Zhen; Sun, Wanqi; Yang, Bo; Zhang, Haixu; Zhang, Peng; Ma, Pengkun

    2016-12-01

    Doping has been used to enhance the ionization efficiency of analytes in atmospheric pressure photoionization, which is based on charge exchange. Compounds with excellent ionization efficiencies are usually chosen as dopants. In this paper, we report a new phenomenon observed in low-pressure photoionization: Protonation enhancement by dichloromethane (CH 2 Cl 2 ) doping. CH 2 Cl 2 is not a common dopant due to its high ionization energy (11.33 eV). The low-pressure photoionization source was built using a krypton VUV lamp that emits photons with energies of 10.0 and 10.6 eV and was operated at ~500-1000 Pa. Protonation of water, methanol, ethanol, and acetaldehyde was respectively enhanced by 481.7 ± 122.4, 197.8 ± 18.8, 87.3 ± 7.8, and 93.5 ± 35.5 times after doping 291 ppmv CH 2 Cl 2 , meanwhile CH 2 Cl 2 almost does not generate noticeable ions itself. This phenomenon has not been documented in the literature. A new protonation process involving in ion-pair and H-bond formations was proposed to expound the phenomenon. The observed phenomenon opens a new prospect for the improvement of the detection efficiency of VUV photoionization.

  13. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    KAUST Repository

    Efimov, D K

    2016-05-18

    We consider Penning ionization of Rydberg atom pairs as an Auger-type process induced by the dipole-dipole interaction and employ semiclassical formulae for dipole transitions to calculate the autoionization width as a function of the principal quantum numbers, n d, n i, of both atoms. While for symmetric atom pairs with the well-known increase of the autoionization width with increasing n 0 is obtained, the result for asymmetric pairs is counterintuitive - for a fixed n i of the ionizing atom of the pair, the autoionization width strongly increases with decreasing n d of the de-excited atom. For H Rydberg atoms this increase reaches two orders of magnitude at the maximum of the n d dependence, and the same type of counterintuitive behavior is exhibited also by Na, Rb and Cs atoms. This is a purely quantum-mechanical effect, which points towards existence of optimal (we call them \\'Tom\\' and \\'Jerry\\' for \\'big\\' and \\'small\\') pairs of Rydberg atoms with respect to autoionization efficiency. Building on the model of population redistribution in cold Rydberg gases proposed in [1], we demonstrate that population evolution following the initial laser excitation of Rydberg atoms in state n 0 would eventually lead to the formation of such Tom-Jerry pairs with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate of Tom-Jerry pairs can be substantially larger than the blackbody radiation-induced photoionization rate. © 2016 IOP Publishing Ltd.

  14. Ionization of EPA contaminants in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2015-06-01

    Seventy-seven EPA priority environmental pollutants were analyzed using gas chromatography-mass spectrometry (GC-MS) equipped with an optimized atmospheric pressure photoionization (APPI) and an atmospheric pressure laser ionization (APLI) interface with and without dopants. The analyzed compounds included e.g., polycyclic aromatic hydrocarbons (PAHs), nitro compounds, halogenated compounds, aromatic compounds with phenolic, acidic, alcohol, and amino groups, phthalate and adipatic esters, and aliphatic ethers. Toluene, anisole, chlorobenzene, and acetone were tested as dopants. The widest range of analytes was ionized using direct APPI (66/77 compounds). The introduction of dopants decreased the amount of compounds ionized in APPI (e.g., 54/77 with toluene), but in many cases the ionization efficiency increased. While in direct APPI the formation of molecular ions via photoionization was the main ionization reaction, dopant-assisted (DA) APPI promoted ionization reactions, such as charge exchange and proton transfer. Direct APLI ionized a much smaller amount of compounds than APPI (41/77 compounds), showing selectivity towards compounds with low ionization energies (IEs) and long-lived resonantly excited intermediate states. DA-APLI, however, was able to ionize a higher amount of compounds (e.g. 51/77 with toluene), as the ionization took place entirely through dopant-assisted ion/molecule reactions similar to those in DA-APPI. Best ionization efficiency in APPI and APLI (both direct and DA) was obtained for PAHs and aromatics with O- and N-functionalities, whereas nitro compounds and aliphatic ethers were the most difficult to ionize. Halogenated aromatics and esters were (mainly) ionized in APPI, but not in APLI.

  15. Analysis of femtogram-sized plutonium samples by thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Smith, D.H.; Duckworth, D.C.; Bostick, D.T.; Coleman, R.M.; McPherson, R.L.; McKown, H.S.

    1994-01-01

    The goal of this investigation was to extend the ability to perform isotopic analysis of plutonium to samples as small as possible. Plutonium ionizes thermally with quite good efficiency (first ionization potential 5.7 eV). Sub-nanogram sized samples can be analyzed on a near-routine basis given the necessary instrumentation. Efforts in this laboratory have been directed at rhenium-carbon systems; solutions of carbon in rhenium provide surfaces with work functions higher than pure rhenium (5.8 vs. ∼ 5.4 eV). Using a single resin bead as a sample loading medium both concentrates the sample nearly to a point and, due to its interaction with rhenium, produces the desired composite surface. Earlier work in this area showed that a layer of rhenium powder slurried in solution containing carbon substantially enhanced precision of isotopic measurements for uranium. Isotopic fractionation was virtually eliminated, and ionization efficiencies 2-5 times better than previously measured were attained for both Pu and U (1.7 and 0.5%, respectively). The other side of this coin should be the ability to analyze smaller samples, which is the subject of this report

  16. Microwave ionization of hydrogen atoms below the classical chaos border

    Energy Technology Data Exchange (ETDEWEB)

    Bluemel, R; Smilansky, U

    1987-01-01

    We present and discuss theoretical predictions for the occurrence of radiation induced ionization of hydrogen atoms in fields which are well below the classical ionization threshold. Strong ionization occurs due to enhanced population of a band of high n states which ionize easily. This enhancement happens only at rather narrowly defined field values, and is explained in terms of avoided crossings of Floquet levels.

  17. First successful ionization of Lr (Z = 103) by a surface-ionization technique

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tetsuya K., E-mail: sato.tetsuya@jaea.go.jp; Sato, Nozomi; Asai, Masato; Tsukada, Kazuaki; Toyoshima, Atsushi; Ooe, Kazuhiro; Miyashita, Sunao; Schädel, Matthias [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Kaneya, Yusuke; Nagame, Yuichiro [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Graduate School of Science and Engineering, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512 (Japan); Osa, Akihiko [Department of Research Reactor and Tandem Accelerator, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Ichikawa, Shin-ichi [Advanced Science Research Center, Japan Atomic Energy Agency (JAEA), 2-4 Shirakata-shirane, Tokai-mura, Ibaraki 319-1195 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Stora, Thierry [ISOLDE, CERN, CH-1211 Geneva 23 (Switzerland); Kratz, Jens Volker [Institut für Kernchemie, Universität Mainz, D-55099 Mainz (Germany)

    2013-02-15

    We have developed a surface ionization ion-source as part of the JAEA-ISOL (Isotope Separator On-Line) setup, which is coupled to a He/CdI{sub 2} gas-jet transport system to determine the first ionization potential of the heaviest actinide lawrencium (Lr, Z = 103). The new ion-source is an improved version of the previous source that provided good ionization efficiencies for lanthanides. An additional filament was newly installed to give better control over its operation. We report, here, on the development of the new gas-jet coupled surface ion-source and on the first successful ionization and mass separation of 27-s {sup 256}Lr produced in the {sup 249}Cf + {sup 11}B reaction.

  18. Escape of ionizing radiation from high redshift dwarf galaxies: role of AGN feedback

    Science.gov (United States)

    Trebitsch, Maxime; Volonteri, Marta; Dubois, Yohan; Madau, Piero

    2018-05-01

    While low mass, star forming galaxies are often considered as the primary driver of reionization, their actual contribution to the cosmic ultraviolet background is still uncertain, mostly because the escape fraction of ionizing photons is only poorly constrained. Theoretical studies have shown that efficient supernova feedback is a necessary condition to create paths through which ionizing radiation can escape into the intergalactic medium. We investigate the possibility that accreting supermassive black holes in early dwarf galaxies may provide additional feedback and enhance the leakage of ionizing radiation. We use a series of high resolution cosmological radiation hydrodynamics simulations where we isolate the different sources of feedback. We find that supernova feedback prevents the growth of the black hole, thus quenching its associated feedback. Even in cases where the black hole can grow, the structure of the interstellar medium is strongly dominated by supernova feedback. We conclude that, in the dwarf galaxy regime, supermassive black holes do not appear to play a significant role in enhancing the escape fraction and in contributing to the early UV background.

  19. Preliminary Ionization Efficiencies of 11C and 14O with the LBNL ECR Ion Sources

    International Nuclear Information System (INIS)

    Xie, Z.Q.; Cerny, J.; Guo, F.Q.; Joosten, R.; Larimer, R.M.; Lyneis, C.M.; McMahan, P.; Norman, E.B.; O'Neil, J.P.; Powell, J.; Rowe, M.W.; VanBrocklin, H.F.; Wutte, D.; Xu, X.J.; Haustein, P.

    1998-01-01

    High charge states, up to fully stripped 11 C and 14 O ion, beams have been produced with the electron cyclotron resonance ion sources (LBNL, ECR and AECR-U) at Lawrence Berkeley National Laboratory. The radioactive atoms of 11 C and 14 O were collected in batch mode with an LN 2 trap and then bled into the ECR ion sources. Ionization efficiency as high as 11% for 11 C 4+ was achieved

  20. Electroluminescence Efficiency Enhancement using Metal Nanoparticles

    National Research Council Canada - National Science Library

    Soref, Richard A; Khurgin, J. B; Sun, G

    2008-01-01

    We apply the "effective mode volume" theory to evaluate enhancement of the electroluminescence efficiency of semiconductor emitters placed in the vicinity of isolated metal nanoparticles and their arrays...

  1. Charge collection efficiency in ionization chambers operating in the recombination and saturation regimes

    International Nuclear Information System (INIS)

    Chabod, Sebastien P.

    2009-01-01

    We solve the electric charge transport equations in the recombination and saturation regimes using an iterative perturbation method. We then calculate the charge collection efficiencies of ionization chambers. The formulae obtained are presented in the form of series for which we calculate the first coefficients. Our approach allows to account for the spatial as well as the temporal variations of the primary charge density N(r,t) in the calculations. Finally, we apply our method to study different density patterns, N, including the textbook case N=N 0 δ(t) and the charge clusters and columns.

  2. Liquid ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    Liquid ionization chambers [1] (LICs) have have been used in the last decades as background dosemeters. Since a few years LICs are also commercially available for dosimetry and are used for measurements of dose distributions where a high spatial distribution is necessary. Also in the last decades...... a differential equation applying several simplifications and approximations leading to discrepancies between theory and experiments [3]. The theory predicts the collection efficiency as a function of the electrical field and was applied for both air filled ionization chambers and liquid filled ionization...... chambers. For liquids the LET can be roughly deduced from the collection efficiency dependency on the electrical field inside a liquid ionization chambers [4] using an extrapolation method. We solved the fundamental differential equation again presented by Jaffe numerically, but now taking into account...

  3. The efficiency of superficially active compounds on the process of decontamination in animals exposed to various doses of ionizing radiation

    International Nuclear Information System (INIS)

    Kossakowski, S.

    1977-01-01

    The efficiency of some superficially active compounds on the process of decontamination was investigated in swine exposed to various doses of ionizing radiation (300, 600 R), and then contaminated with 90 Sr, 131 I, 137 Cs, and 144 Ce. The results revealed that the time factor after irradiation was more important for the efficiency of decontamination than the doses of radiation. (author)

  4. Resonance ionization spectroscopy in dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Studer, D., E-mail: dstuder@uni-mainz.de; Dyrauf, P.; Naubereit, P.; Heinke, R.; Wendt, K. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany)

    2017-11-15

    We report on resonance ionization spectroscopy (RIS) of high-lying energy levels in dysprosium. We developed efficient excitation schemes and re-determined the first ionization potential (IP) via analysis of Rydberg convergences. For this purpose both two- and three-step excitation ladders were investigated. An overall ionization efficiency of 25(4) % could be demonstrated in the RISIKO mass separator of Mainz University, using a three-step resonance ionization scheme. Moreover, an extensive analysis of the even-parity 6sns- and 6snd-Rydberg-series convergences, measured via two-step excitation was performed. To account for strong perturbations in the observed s-series, the approach of multichannel quantum defect theory (MQDT) was applied. Considering all individual series limits we extracted an IP-value of 47901.76(5) cm{sup −1}, which agrees with the current literature value of 47901.7(6) cm{sup −1}, but is one order of magnitude more precise.

  5. Virtual quantification of metabolites by capillary electrophoresis-electrospray ionization-mass spectrometry: predicting ionization efficiency without chemical standards.

    Science.gov (United States)

    Chalcraft, Kenneth R; Lee, Richard; Mills, Casandra; Britz-McKibbin, Philip

    2009-04-01

    A major obstacle in metabolomics remains the identification and quantification of a large fraction of unknown metabolites in complex biological samples when purified standards are unavailable. Herein we introduce a multivariate strategy for de novo quantification of cationic/zwitterionic metabolites using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) based on fundamental molecular, thermodynamic, and electrokinetic properties of an ion. Multivariate calibration was used to derive a quantitative relationship between the measured relative response factor (RRF) of polar metabolites with respect to four physicochemical properties associated with ion evaporation in ESI-MS, namely, molecular volume (MV), octanol-water distribution coefficient (log D), absolute mobility (mu(o)), and effective charge (z(eff)). Our studies revealed that a limited set of intrinsic solute properties can be used to predict the RRF of various classes of metabolites (e.g., amino acids, amines, peptides, acylcarnitines, nucleosides, etc.) with reasonable accuracy and robustness provided that an appropriate training set is validated and ion responses are normalized to an internal standard(s). The applicability of the multivariate model to quantify micromolar levels of metabolites spiked in red blood cell (RBC) lysates was also examined by CE-ESI-MS without significant matrix effects caused by involatile salts and/or major co-ion interferences. This work demonstrates the feasibility for virtual quantification of low-abundance metabolites and their isomers in real-world samples using physicochemical properties estimated by computer modeling, while providing deeper insight into the wide disparity of solute responses in ESI-MS. New strategies for predicting ionization efficiency in silico allow for rapid and semiquantitative analysis of newly discovered biomarkers and/or drug metabolites in metabolomics research when chemical standards do not exist.

  6. X-RAY SIGNATURES OF NON-EQUILIBRIUM IONIZATION EFFECTS IN GALAXY CLUSTER ACCRETION SHOCK REGIONS

    International Nuclear Information System (INIS)

    Wong, Ka-Wah; Sarazin, Craig L.; Ji Li

    2011-01-01

    The densities in the outer regions of clusters of galaxies are very low, and the collisional timescales are very long. As a result, heavy elements will be under-ionized after they have passed through the accretion shock. We have studied systematically the effects of non-equilibrium ionization for relaxed clusters in the ΛCDM cosmology using one-dimensional hydrodynamic simulations. We found that non-equilibrium ionization effects do not depend on cluster mass, but depend strongly on redshift which can be understood by self-similar scaling arguments. The effects are stronger for clusters at lower redshifts. We present X-ray signatures such as surface brightness profiles and emission lines in detail for a massive cluster at low redshift. In general, soft emission (0.3-1.0 keV) is enhanced significantly by under-ionization, and the enhancement can be nearly an order of magnitude near the shock radius. The most prominent non-equilibrium ionization signature we found is the O VII and O VIII line ratio. The ratios for non-equilibrium ionization and collisional ionization equilibrium models are different by more than an order of magnitude at radii beyond half of the shock radius. These non-equilibrium ionization signatures are equally strong for models with different non-adiabatic shock electron heating efficiencies. We have also calculated the detectability of the O VII and O VIII lines with the future International X-ray Observatory (IXO). Depending on the line ratio measured, we conclude that an exposure of ∼130-380 ks on a moderate-redshift, massive regular cluster with the X-ray Microcalorimeter Spectrometer (XMS) on the IXO will be sufficient to provide a strong test for the non-equilibrium ionization model.

  7. COFFEE - Coherent Optical System Field Trial for Spectral Efficiency Enhancement

    DEFF Research Database (Denmark)

    Imran, Muhammad; Fresi, Francesco; Rommel, Simon

    2016-01-01

    The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented.......The scope, aims, and contributions of the COFFEE project for spectral efficiency enhancement and market exposure are presented....

  8. Enhanced counting efficiency of Cerenkov radiation from bismuth-210

    International Nuclear Information System (INIS)

    Peck, G.A.; Smith, J.D.

    1998-01-01

    This paper describes the measurement of 210 Bi by Cerenkov counting in a commercial liquid scintillation counter. The counting efficiency in water is 0.17 counts per second per Becquerel (17%). When the enhancers Triton X-100 (15% v/v) and sodium salicylate (1% m/v) are added to the solution the counting efficiency for 210 Bi increases from 17% to 75%. The 210 Po daughter of 210 Bi causes interference of 0.85 counts per second per Becquerel in the presence of the enhancers but not in water. When 210 Bi and 210 Po are present in secular equilibrium the total counting efficiency is 160%. When 210 Bi and 210 Po are not in secular equilibrium the 210 Po can be removed immediately before counting by plating onto silver foil. The use of the enhancers gives a substantial increase in counting efficiency compared to counting in water. Compared with solutions used in liquid scintillation counting the enhancer solution is inexpensive and can be disposed of without environmental hazard. (author)

  9. Strong enhancement of Penning ionization for asymmetric atom pairs in cold Rydberg gases: the Tom and Jerry effect

    KAUST Repository

    Efimov, D K; Miculis, K; Bezuglov, N N; Ekers, Aigars

    2016-01-01

    with which feature autoionization widths that are enhanced by several orders of magnitude compared to that of two atoms in the initial laser-excited state n 0. We also show that in the high-density regime of cold Rydberg gas experiments the ionization rate

  10. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    KAUST Repository

    Ou, Yiyu

    2017-09-09

    We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW) samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extraction efficiency. The size-dependent strain relaxation effect was characterized by photoluminescence, Raman spectroscopy and time-resolved photoluminescence measurements. In addition, the light extraction efficiency of different MQW samples was studied by finite-different time-domain simulations. Compared to the as-grown sample, the nanopillar amber MQW sample with a diameter of 300 nm has demonstrated an emission enhancement by a factor of 23.8.

  11. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    KAUST Repository

    Ou, Yiyu; Iida, Daisuke; Liu, Jin; Wu, Kaiyu; Ohkawa, Kazuhiro; Boisen, Anja; Petersen, Paul Michael; Ou, Haiyan

    2017-01-01

    We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW) samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extraction efficiency. The size-dependent strain relaxation effect was characterized by photoluminescence, Raman spectroscopy and time-resolved photoluminescence measurements. In addition, the light extraction efficiency of different MQW samples was studied by finite-different time-domain simulations. Compared to the as-grown sample, the nanopillar amber MQW sample with a diameter of 300 nm has demonstrated an emission enhancement by a factor of 23.8.

  12. Enhanced adsorption of ionizable antibiotics on activated carbon fiber under electrochemical assistance in continuous-flow modes.

    Science.gov (United States)

    Wang, Sitan; Li, Xiaona; Zhao, Huimin; Quan, Xie; Chen, Shuo; Yu, Hongtao

    2018-05-01

    Ionizable antibiotics have attracted serious concerns because of their variable dissociation forms and thereby rendering unique toxicity and microorganism resistance. Developing an efficient and environmentally friendly method for removing these micropollutants from environmental media remains very challenging. Here, electro-assisted adsorption onto activated carbon fiber in continuous-flow mode was used to remove three ionizable antibiotics, sulfadimethoxine (SDM), ciprofloxacin (CIP), and clarithromycin (CLA), from water. Benefiting from strengthened electrostatic interactions, the adsorption capacities for the target antibiotics (10 mg/L) in flow mode (70.9-202.2 mg/g) increased by ∼5 times under a potential of 1.0 V (SDM) or -1.0 V (CIP and CLA) relative to those of open circuit (OC) adsorption. Meanwhile, effluent concentration decreased from >100 μg/L to 9.6 μg/L with removal efficiency increasing from 99.0% to 99.9%. Moreover, high recovery efficiency of ACF up to 96.35 ± 0.65% was achieved by imposing a reverse potential (-1.0 V) relative to that used for SDM adsorption. In addition, trace levels of antibiotics (364-580 ng/L) in surface water could be removed effectively to achieve low effluent concentration (0.4-1.2 ng/L) and high removal efficiency (99.9%) upon treating up to ∼1560 bed volumes (BVs), demonstrating the potential of electro-assisted adsorption for practical application in water treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Chemical vapor deposition of aminopropyl silanes in microfluidic channels for highly efficient microchip capillary electrophoresis-electrospray ionization-mass spectrometry.

    Science.gov (United States)

    Batz, Nicholas G; Mellors, J Scott; Alarie, Jean Pierre; Ramsey, J Michael

    2014-04-01

    We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.

  14. In-Source Laser Resonance Ionization at ISOL Facilities

    CERN Document Server

    Marsh, Bruce; Feddosseev, Valentin

    Resonance ionization laser ion source development has been carried out at two radioactive ion beam facilities: ISOLDE (CERN, Switzerland) and the IGISOL facility (Jyvaskyla, Finland). The scope of the Resonance Ionization Laser Ion Source has been extended to 27 elements with the development of new three-step ionization schemes for Sb, Sc, Dy, Y and Au. The efficiencies were determined to be in the range of 2 - 20 %. Additionally, a new two-step ionization scheme has been developed for bismuth in an off-line atomic beam unit. The scheme relies on ionization via a strong and broad auto-ionizing resonance at an energy of 63196.79 cm$^{−1}$. This scheme may offer an improvement over the existing RILIS efficiency and will be more convenient for use during resonance ionization spectroscopy of Bi isotopes. The RILIS can be used as a spectroscopic tool to probe features such as the hyperfine structures and the isotope-shifts of radioisotopes with low production rates. By coupling a laser scanning process that dire...

  15. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    Directory of Open Access Journals (Sweden)

    Ou Yiyu

    2018-01-01

    Full Text Available We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extraction efficiency. The size-dependent strain relaxation effect was characterized by photoluminescence, Raman spectroscopy and time-resolved photoluminescence measurements. In addition, the light extraction efficiency of different MQW samples was studied by finite-different time-domain simulations. Compared to the as-grown sample, the nanopillar amber MQW sample with a diameter of 300 nm has demonstrated an emission enhancement by a factor of 23.8.

  16. Molecular design for improved photovoltaic efficiency: band gap and absorption coefficient engineering

    KAUST Repository

    Mondal, Rajib; Ko, Sangwon; Norton, Joseph E.; Miyaki, Nobuyuki; Becerril, Hector A.; Verploegen, Eric; Toney, Michael F.; Bré das, Jean-Luc; McGehee, Michael D.; Bao, Zhenan

    2009-01-01

    Removing the adjacent thiophene groups around the acceptor core in low band gap polymers significantly enhances solar cell efficiency through increasing the optical absorption and raising the ionization potential of the polymer. © 2009 The Royal Society of Chemistry.

  17. Efficiency enhancement of InGaN amber MQWs using nanopillar structures

    DEFF Research Database (Denmark)

    Ou, Yiyu; Iida, Daisuke; Liu, Jin

    2018-01-01

    We have investigated the use of nanopillar structures on high indium content InGaN amber multiple quantum well (MQW) samples to enhance the emission efficiency. A significant emission enhancement was observed which can be attributed to the enhancement of internal quantum efficiency and light extr...

  18. Plasmon-enhanced phonon and ionized impurity scattering in doped silicon

    International Nuclear Information System (INIS)

    Chen, Ming-Jer; Hsieh, Shang-Hsun; Chen, Chuan-Li

    2015-01-01

    Historically, two microscopic electron scattering calculation methods have been used to fit macroscopic electron mobility data in n-type silicon. The first method was performed using a static system that included long-range electron-plasmon scattering; however, the well-known Born approximation fails in this case when dealing with electron-impurity scattering. In the second method, sophisticated numerical simulations were developed around plasmon-excited potential fluctuations and successfully reproduced the mobility data at room temperature. In this paper, we propose a third method as an alternative to the first method. First, using a fluctuating system, which was characterized on the basis of our recently experimentally extracted plasmon-excited potential fluctuations, the microscopic calculations reveal enhanced short-range scattering of electrons by phonons and ionized impurities due to increased electron temperature and increased screening length, respectively. The increased hot electron population makes the Born approximation hold, which eases the overall calculation task substantially. Then, we return to the static system while incorporating plasmon-enhanced impurity scattering. The resulting macroscopic electron mobility shows fairly good agreement with data over wide ranges of temperatures (200–400 K) and doping concentrations (10 15 –10 20  cm −3 ). Application of the proposed method to strained silicon is also demonstrated

  19. Historical survey of resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1984-04-01

    We have recently celebrated the 10th birthday of Resonance Ionization Spectroscopy (RIS), and this seems an appropriate time to review the history of its development. Basically, RIS is a photophysics process in which tunable light sources are used to remove a valence electron from an atom of selected atomic number, Z. If appropriate lasers are used as the light source, one electron can be removed from each atom of the selected Z in the laser pulse. This implies that RIS can be a very efficient, as well as selective, ionization process. In what we normally call RIS, laser schemes are employed which preserve both of these features. In contrast, multiphoton ionization (MPI) is more general, although not necessarily Z selective or very efficient because resonances are often not used. Early research completed in the USSR and described as selective two-step photoionization, employed resonances to ionize the rubidium atom and served to guide work on laser isotope separation. 29 references, 8 figures

  20. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    Energy Technology Data Exchange (ETDEWEB)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch [Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel (Switzerland)

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structure that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.

  1. Studies of Flow in Ionized Gas: Historical Perspective, Contemporary Experiments, and Applications

    International Nuclear Information System (INIS)

    Popovic, S.; Vuskovic, L.

    2007-01-01

    Since the first observations that a very small ionized fraction (order of 1 ppm) could strongly affect the gas flow, numerous experiments with partially or fully wall-free discharges have demonstrated the dispersion of shock waves, the enhancement of lateral forces in the flow, the prospects of levitation, and other aerodynamic effects with vast potential of application. A review of physical effects and observations are given along with current status of their interpretation. Special attention will be given to the physical problems of energy efficiency in generating wall-free discharges and the phenomenology of filamentary discharges. Comments and case examples are given on the current status of availability of necessary data for modelling and simulation of the aerodynamic phenomena in weakly ionized gas

  2. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures.

    Science.gov (United States)

    Semple, S C; Klimuk, S K; Harasym, T O; Dos Santos, N; Ansell, S M; Wong, K F; Maurer, N; Stark, H; Cullis, P R; Hope, M J; Scherrer, P

    2001-02-09

    Typical methods used for encapsulating antisense oligodeoxynucleotides (ODN) and plasmid DNA in lipid vesicles result in very low encapsulation efficiencies or employ cationic lipids that exhibit unfavorable pharmacokinetic and toxicity characteristics when administered intravenously. In this study, we describe and characterize a novel formulation process that utilizes an ionizable aminolipid (1,2-dioleoyl-3-dimethylammonium propane, DODAP) and an ethanol-containing buffer system for encapsulating large quantities (0.15--0.25 g ODN/g lipid) of polyanionic ODN in lipid vesicles. This process requires the presence of up to 40% ethanol (v/v) and initial formulation at acidic pH values where the DODAP is positively charged. In addition, the presence of a poly(ethylene glycol)-lipid was required during the formulation process to prevent aggregation. The 'stabilized antisense-lipid particles' (SALP) formed are stable on adjustment of the external pH to neutral pH values and the formulation process allows encapsulation efficiencies of up to 70%. ODN encapsulation was confirmed by nuclease protection assays and (31)P NMR measurements. Cryo-electron microscopy indicated that the final particles consisted of a mixed population of unilamellar and small multilamellar vesicles (80--140 nm diameter), the relative proportion of which was dependent on the initial ODN to lipid ratio. Finally, SALP exhibited significantly enhanced circulation lifetimes in mice relative to free antisense ODN, cationic lipid/ODN complexes and SALP prepared with quaternary aminolipids. Given the small particle sizes and improved encapsulation efficiency, ODN to lipid ratios, and circulation times of this formulation compared to others, we believe SALP represent a viable candidate for systemic applications involving nucleic acid therapeutics.

  3. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multi-photon ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photo-electron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photo-ionization signal. For both ns and np states the ''field induced'' MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength

  4. Enhanced asymmetry in few-cycle attosecond pulse ionization of He in the vicinity of autoionizing resonances

    International Nuclear Information System (INIS)

    Djiokap, J M Ngoko; Starace, Anthony F; Hu, S X; Jiang Weichao; Peng Liangyou

    2012-01-01

    By solving the two-active-electron, time-dependent Schrödinger equation in its full dimensionality, we investigate the carrier-envelope phase (CEP) dependence of single ionization of He to the He + (1s) state triggered by an intense few-cycle attosecond pulse with carrier frequency ω corresponding to the energy ℏω = 36 eV. Effects of electron correlations are probed by comparing projections of the final state of the two-electron wave packet onto field-free highly correlated Jacobi matrix wave functions with projections onto uncorrelated Coulomb wave functions. Significant differences are found in the vicinity of autoionizing resonances. Owing to the broad bandwidths of our 115 and 230 as pulses and their high intensities (1–2 PW cm −2 ), asymmetries are found in the differential probability for ionization of electrons parallel and antiparallel to the linear polarization axis of the laser pulse. These asymmetries stem from interference of the one- and two-photon ionization amplitudes for producing electrons with the same momentum along the linear polarization axis. Whereas these asymmetries generally decrease with increasing ionized electron kinetic energy, we find a large enhancement of the asymmetry in the vicinity of two-electron doubly excited (autoionizing) states on an energy scale comparable to the widths of the autoionizing states. The CEP dependence of the energy-integrated asymmetry agrees very well with the predictions of time-dependent perturbation theory (Pronin et al 2009 Phys. Rev. A 80 063403). (paper)

  5. Two-step laser ionization schemes for in-gas laser ionization and spectroscopy of radioactive isotopesa

    OpenAIRE

    Kudryavtsev, Yuri; Ferrer, Rafael; Huyse, Mark; Van den Bergh, Paul; Van Duppen, Piet; Vermeeren, L.

    2014-01-01

    The in-gas laser ionization and spectroscopy technique has been developed at the Leuven isotope separator on-line facility for the production and in-source laser spectroscopy studies of short-lived radioactive isotopes. In this article, results from a study to identify efficient optical schemes for the two-step resonance laser ionization of 18 elements are presented. © 2013 AIP Publishing LLC.

  6. Lectin enhancement of the lipofection efficiency in human lung carcinoma cells.

    Science.gov (United States)

    Yanagihara, K; Cheng, P W

    1999-10-18

    Poor transfection efficiency of human lung carcinoma cells by lipofection begs further development of more efficient gene delivery strategies. The purpose of this study was to determine whether lectins can improve the lipofection efficiency in lung carcinoma cells. A549, Calu3, and H292 cells grown to 90% confluence were transfected for 18 h with a plasmid DNA containing a beta-galactosidase reporter gene (pCMVlacZ) using lipofectin plus a lectin as the vector. Ten different lectins, which exhibit a wide range of carbohydrate-binding specificities, were examined for their abilities to enhance the efficiency of lipofection. The transfected cells were assessed for transfection efficiency by beta-galactosidase activity (units/microg protein) and % blue cells following X-Gal stain. Lipofectin supplemented with Griffonia simplicifolia-I (GS-I) yields largest enhancement of the lipofection efficiency in A549 and Calu3 cells (5.3- and 28-fold, respectively). Maackia amurensis gives the largest enhancement (6.5-fold) of lipofection efficiency in H292 cells. The transfection efficiency correlates with the amounts of DNA delivered to the nucleus. Binding of FITC-labeled GS-I and the enhancement of the lipofection efficiency by GS-I were inhibited by alpha-methyl-D-galactopyranoside, indicating an alpha-galactoside-mediated gene transfer to lung carcinoma cells. We conclude that lectin-facilitated lipofection is an efficient gene delivery strategy. Employment of cell type-specific lectins may allow for efficient cell type-specific gene targeting.

  7. Ionizing and non-ionizing radiations

    International Nuclear Information System (INIS)

    1994-01-01

    The monograph is a small manual to get a knowledge of ionizing and non-ionizing radiations. The main chapters are: - Electromagnetic radiations - Ionizing and non-ionizing radiations - Non-ionizing electromagnetic radiations - Ionizing electromagnetic radiation - Other ionizing radiations - Ionizing radiation effects - The Nuclear Safety Conseil

  8. An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization

    International Nuclear Information System (INIS)

    Tang Yin; Cai Qing; Chen Dun-Jun; Lu Hai; Zhang Rong; Zheng You-Dou; Yang Lian-Hong; Dong Ke-Xiu

    2017-01-01

    To enhance the avalanche ionization, we designed a new separate absorption and multiplication AlGaN solar-blind avalanche photodiode (APD) by using a high/low-Al-content AlGaN heterostructure as the multiplication region instead of the conventional AlGaN homogeneous layer. The calculated results show that the designed APD with Al 0.3 Ga 0.7 N/Al 0.45 Ga 0.55 N heterostructure multiplication region exhibits a 60% higher gain than the conventional APD and a smaller avalanche breakdown voltage due to the use of the low-Al-content Al 0.3 Ga 0.7 N which has about a six times higher hole ionization coefficient than the high-Al-content Al 0.45 Ga 0.55 N. Meanwhile, the designed APD still remains a good solar-blind characteristic by introducing a quarter-wave AlGaN/AlN distributed Bragg reflectors structure at the bottom of the device. (paper)

  9. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation

    Science.gov (United States)

    2017-01-01

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384

  10. Hot-cavity studies for the Resonance Ionization Laser Ion Source

    International Nuclear Information System (INIS)

    Henares, J.L.; Lecesne, N.; Hijazi, L.; Bastin, B.; Kron, T.; Lassen, J.; Le Blanc, F.; Leroy, R.; Osmond, B.; Raeder, S.; Schneider, F.; Wendt, K.

    2016-01-01

    The Resonance Ionization Laser Ion Source (RILIS) has emerged as an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability, and ability to ionize target elements efficiently and element selectively. GISELE is an off-line RILIS test bench to study the implementation of an on-line laser ion source at the GANIL separator facility. The aim of this project is to determine the best technical solution which combines high selectivity and ionization efficiency with small ion beam emittance and stable long term operation. The ion source geometry was tested in several configurations in order to find a solution with optimal ionization efficiency and beam emittance. Furthermore, a low work function material was tested to reduce the contaminants and molecular sidebands generated inside the ion source. First results with ZrC ionizer tubes will be presented. Furthermore, a method to measure the energy distribution of the ion beam as a function of the time of flight will be discussed.

  11. Properties of multiple field ion emitters of tungsten and a simple method for improving their ionization efficiency

    International Nuclear Information System (INIS)

    Okuyama, F.; Beckey, H.D.

    1978-01-01

    The ion emission properties of the multiple tungsten emitters developed recently for field ionization mass spectrometry were investigated with the aid of a sector type mass spectrometer at emitter-cathode voltages of 10-15 kV using acetone, n-heptane and benzene as test substances. The emitters, which comprised a 10-μm tungsten filament bearing thickly arrayed microneedles of tungsten, produced very weak and unstable signals at voltages of about 10 kV, but increasing the voltage to 14 kV led to intensifying ion currents high enough to yield mass spectra of satisfactory quality. During the course of the experiments, it was observed that nucleating tungsten carbide particles on the emitter surface by means of a high-field chemical reaction with benzene vapours can significanlty promote the field ionization of gas molecules, presumably as a result of the field enhancement resulting from roughening of the surface. (Auth.)

  12. Theory of the effect of third-harmonic generation on three-photon resonantly enhanced multiphoton ionization in focused beams

    International Nuclear Information System (INIS)

    Payne, M.G.; Garrett, W.R.

    1983-01-01

    Multiphoton ionization in the region near a three-photon resonance is treated for focused, plane-polarized Gaussian beams with diffraction-limited beam divergence. In this situation, a third-harmonic field is generated within the laser beam. At, and very near, three-photon resonance the driving rate for the upper-state probability amplitude due to one-photon absorption of third-harmonic light becomes nearly equal to the corresponding three-photon rate due to the laser field, but these effects are 180 0 out of phase. As a consequence of this cancellation between two pumping terms, the three-photon resonance line essentially disappears at moderate concentrations and the observed ionization has a line shape that is close to the phase-matching curve for third-harmonic generation. The ionization signal, near but not on the resonance, is due almost entirely to absorption of third-harmonic photons plus other laser photons; three-photon resonantly enhanced multiphoton ionization by the laser is much weaker. This is particularly true on the blue side of the three-photon resonance at detunings where phase matching occurs. The problem is treated quite generally with predictions of the full line shape for n-photon ionization and third-harmonic light generation near three-photon resonance, including the rather strong influences of positively dispersive buffer gases. We also show that the cancellation between the one-photon and the three-photon process is partially spoiled in the presence of a counterpropagating beam at the same frequency

  13. HemoHIM enhances the therapeutic efficacy of ionizing radiation treatment in tumor-bearing mice.

    Science.gov (United States)

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho

    2010-02-01

    Although radiotherapy is commonly used for a variety of cancers, radiotherapy alone does not achieve a satisfactory therapeutic outcome. In this study, we examined the possibility that HemoHIM can enhance the anticancer effects of ionizing radiation (IR) in melanoma-bearing mice. The HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs-Angelica Radix, Cnidium Rhizoma, and Paeonia Radix. Anticancer effects of HemoHIM were evaluated in melanoma-bearing mice exposed to IR. IR treatment (5 Gy at 7 days after melanoma cell injection) reduced the weight of the solid tumors, and HemoHIM supplementation with IR enhanced the decreases in tumor weight (P HemoHIM administration also increased the activity of natural killer cells and cytotoxic T cells, although the proportions of these cells in spleen were not different. In addition, HemoHIM administration increased the interleukin-2 and tumor necrosis factor-alpha secretion from lymphocytes stimulated with concanavalin A, which seemed to contribute to the enhanced efficacy of HemoHIM in tumor-bearing mice treated with IR. In conclusion, HemoHIM may be a beneficial supplement during radiotherapy for enhancing the antitumor efficacy.

  14. First ECR-Ionized Noble Gas Radioisotopes at ISOLDE

    CERN Document Server

    Wenander, F; Gaubert, G; Jardin, P; Lettry, Jacques

    2004-01-01

    The production of light noble gas radioisotopes with high ionization potentials has been hampered by modest ionization efficiencies for standard plasma ion-sources. However, the decay losses are minimal as the lingering time of light noble gases within plasma ion-sources is negligible when compared to its diffusion out of the target material. Previous singly charged ECRIS have shown a higher efficiency but also a lingering time of the order of 1 s and a total weight that prevents remote handling by the ISOLDE robot. The compact MINIMONO efficiently addressed the lingering time and weight issues. In addition, the MINIMONO maintained the high off-line ionization efficiency for light noble gases. This paper describes a standard ISOLDE target unit equipped with a MINIMONO ion-source and the first tests. The ion-source has been tested off-line and equipped with a CaO target for on-line tests. Valuable information was gained about high current (100-500 muA) transport through the ISOLDE mass separators designed for ...

  15. Toward single-cell analysis by plume collimation in laser ablation electrospray ionization mass spectrometry.

    Science.gov (United States)

    Stolee, Jessica A; Vertes, Akos

    2013-04-02

    Ambient ionization methods for mass spectrometry have enabled the in situ and in vivo analysis of biological tissues and cells. When an etched optical fiber is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass spectrometry, the analysis of large single cells becomes possible. However, because in this arrangement the ablation plume expands in three dimensions, only a small portion of it is ionized by the electrospray. Here we show that sample ablation within a capillary helps to confine the radial expansion of the plume. Plume collimation, due to the altered expansion dynamics, leads to greater interaction with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of ~13, reaching 600 amol for verapamil), and extended dynamic range (6 orders of magnitude) compared to conventional LAESI. This enhanced sensitivity enables the analysis of a range of metabolites from small cell populations and single cells in the ambient environment. This technique has the potential to be integrated with flow cytometry for high-throughput metabolite analysis of sorted cells.

  16. COLLISIONLESS SHOCKS IN A PARTIALLY IONIZED MEDIUM. III. EFFICIENT COSMIC RAY ACCELERATION

    Energy Technology Data Exchange (ETDEWEB)

    Morlino, G.; Blasi, P.; Bandiera, R.; Amato, E. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5, I-50125 Firenze (Italy); Caprioli, D. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2013-05-10

    In this paper, we present the first formulation of the theory of nonlinear particle acceleration in collisionless shocks in the presence of neutral hydrogen in the acceleration region. The dynamical reaction of the accelerated particles, the magnetic field amplification, and the magnetic dynamical effects on the shock are also included. The main new aspect of this study, however, consists of accounting for charge exchange and the ionization of a neutral hydrogen, which profoundly change the structure of the shock, as discussed in our previous work. This important dynamical effect of neutrals is mainly associated with the so-called neutral return flux, namely the return of hot neutrals from the downstream region to upstream, where they deposit energy and momentum through charge exchange and ionization. We also present the self-consistent calculation of Balmer line emission from the shock region and discuss how to use measurements of the anomalous width of the different components of the Balmer line to infer cosmic ray acceleration efficiency in supernova remnants showing Balmer emission: the broad Balmer line, which is due to charge exchange of hydrogen atoms with hot ions downstream of the shock, is shown to become narrower as a result of the energy drainage into cosmic rays, while the narrow Balmer line, due to charge exchange in the cosmic-ray-induced precursor, is shown to become broader. In addition to these two well-known components, the neutral return flux leads to the formation of a third component with an intermediate width: this too contains information on ongoing processes at the shock.

  17. Aerodynamic Effects in Weakly Ionized Gas: Phenomenology and Applications

    International Nuclear Information System (INIS)

    Popovic, S.; Vuskovic, L.

    2006-01-01

    Aerodynamic effects in ionized gases, often neglected phenomena, have been subject of a renewed interest in recent years. After a brief historical account, we discuss a selected number of effects and unresolved problems that appear to be relevant in both aeronautic and propulsion applications in subsonic, supersonic, and hypersonic flow. Interaction between acoustic shock waves and weakly ionized gas is manifested either as plasma-induced shock wave dispersion and acceleration or as shock-wave induced double electric layer in the plasma, followed by the localized increase of the average electron energy and density, as well as enhancement of optical emission. We describe the phenomenology of these effects and discuss several experiments that still do not have an adequate interpretation. Critical for application of aerodynamic effects is the energy deposition into the flow. We classify and discuss some proposed wall-free generation schemes with respect to the efficiency of energy deposition and overall generation of the aerodynamic body force

  18. III. Penning ionization, associative ionization and chemi-ionization processes

    International Nuclear Information System (INIS)

    Cermak, V.

    1975-01-01

    Physical mechanisms of three important ionization processes in a cold plasma and the methods of their experimental study are discussed. An apparatus for the investigation of the Penning ionization using ionization processes of long lived metastable rare gas atoms is described. Methods of determining interaction energies and ionization rates from the measured energy spectra of the originating electrons are described and illustrated by several examples. Typical associative ionization processes are listed and the ionization rates are compared with those of the Penning ionization. Interactions with short-lived excited particles and the transfer of excitation without ionization are discussed. (J.U.)

  19. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunwei, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com [College of Engineering and Technology, Northeast Forestry University, Harbin 150040 (China); State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China); Tian, Xiubo, E-mail: lcwnefu@126.com, E-mail: xiubotian@163.com [State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001 (China)

    2016-08-15

    The high power impulse magnetron sputtering (HIPIMS) technique is a novel highly ionized physical vapor deposition method with a high application potential. However, the electron utilization efficiency during sputtering is rather low and the metal particle ionization rate needs to be considerably improved to allow for a large-scale industrial application. Therefore, we enhanced the HIPIMS technique by simultaneously applying an electric field (EF-HIPIMS). The effect of the electric field on the discharge process was studied using a current sensor and an optical emission spectrometer. Furthermore, the spatial distribution of the electric potential and electric field during the EF-HIPIMS process was simulated using the ANSYS software. The results indicate that a higher electron utilization efficiency and a higher particle ionization rate could be achieved. The auxiliary anode obviously changed the distribution of the electric potential and the electric field in the discharge region, which increased the plasma density and enhanced the degree of ionization of the vanadium and argon gas. Vanadium films were deposited to further compare both techniques, and the morphology of the prepared films was investigated by scanning electron microscopy. The films showed a smaller crystal grain size and a denser growth structure when the electric field was applied during the discharge process.

  20. High-efficiency thermal ionization sources for mass spectrometry

    International Nuclear Information System (INIS)

    Olivares, Jose A.

    1996-01-01

    A version of the thermal ionization cavity (TIC) source developed specifically for use in mass spectrometry is presented. The performance of this ion source has been characterized extensively both with the use of an isotope separator and a quadrupole mass spectrometer. A detailed description of the TIC source for mass spectrometry is given along with the performance characteristics observed

  1. Heating of the solar chromosphere by ionization pumping

    Science.gov (United States)

    Lindsey, C. A.

    1981-01-01

    A new theory is proposed to explain the heating of the solar chromosphere, and possibly the corona, by the dissipation of hydrodynamic compression waves. The basis of the dissipative mechanism, here referred to as ionization pumping, is hysteresis caused by irreversible relaxation of the chromospheric medium to ionization equilibrium following pressure perturbations. In the middle chromosphere, where hydrogen is partially ionized, it is shown that ionization pumping will cause strong dissipation of waves whose periods are 200s or less. This could cause heating of the chromosphere sufficient to compensate for the radiative losses. The mechanism retains a high efficiency for waves of arbitrarily small amplitude and, thus, can be more efficient than shock dissipation for small perturbations in pressure. The formation of shocks therefore is not required for the dissipation of waves whose periods are several minutes or less.

  2. Heating of the solar chromosphere by ionization pumping

    International Nuclear Information System (INIS)

    Lindsey, C.A.

    1981-01-01

    A new theory is proposed to explain the heating of the solar chromosphere, and possibly the corona, by the dissipation of hydrodynamic compression waves. The basis of the disspative mechanism, here referred to as ''ionization pumping,'' is hysteresis caused by irresversible relaxation of the chromospheric medium to ionization equilibrium following pressure perturbations. In the middle chromosphere, where hydrogen is partially ionized, it is shown that ionization pumping will cause strong dissipation of waves whose periods are approx.200 s or less. This could cause heating of the chromosphere sufficient to compensate for the radiative losses. The mechanism retains a high efficiency for waves of arbitrarily small amplitude and, thus, can be more efficient than shock dissipation for small perturbations in pressure. The formation of shocks therefore is not required for the dissipation of waves whose periods are several minutes or less

  3. Radiochemical methods to enhance efficiency of α-spectral measurements

    International Nuclear Information System (INIS)

    Silkina, G.P.; Artem'ev, O.I.

    2001-01-01

    The paper describes possible ways to improve a plutonium radiochemical separation technique developed in the Khlopin Radium Institute and modify it to account for the site-specific features of samples from the former Semipalatinsk test site (STS) and enhance the alpha spectrometry efficiency.The paper describes possible ways to improve a plutonium radiochemical separation technique developed in the Khlopin Radium Institute and modify it to account for the site-specific features of samples from the former Semipalatinsk test site (STS) and enhance the alpha spectrometry efficiency. (author)

  4. Biological optimization systems for enhancing photosynthetic efficiency and methods of use

    Science.gov (United States)

    Hunt, Ryan W.; Chinnasamy, Senthil; Das, Keshav C.; de Mattos, Erico Rolim

    2012-11-06

    Biological optimization systems for enhancing photosynthetic efficiency and methods of use. Specifically, methods for enhancing photosynthetic efficiency including applying pulsed light to a photosynthetic organism, using a chlorophyll fluorescence feedback control system to determine one or more photosynthetic efficiency parameters, and adjusting one or more of the photosynthetic efficiency parameters to drive the photosynthesis by the delivery of an amount of light to optimize light absorption of the photosynthetic organism while providing enough dark time between light pulses to prevent oversaturation of the chlorophyll reaction centers are disclosed.

  5. Stark-shift induced resonances in multiphoton ionization

    International Nuclear Information System (INIS)

    Potvliege, R M; Vuci, Svetlana

    2006-01-01

    The resonance enhancements marking the ATI spectrum of argon are discussed in the light of a recently compiled map of the quasienergies of this atom. Many of the dressed excited states of interest shift nonponderomotively in complicated ways, but keep an ionization width narrow enough to produce sharp substructures of both low and high ATI peaks through Stark-shift induced resonances. The most prominent enhancement observed in the high-order ATI peaks originates from ionization from the dressed ground state perturbed by the influence of neighbouring resonant dressed states

  6. Average energy expended per ion pair, exciton enhanced ionization (Jesse effect), electron drift velocity, average electron energy and scintillation in rare gas liquids

    International Nuclear Information System (INIS)

    Doke, T.; Hitachi, A.; Hoshi, Y.; Masuda, K.; Hamada, T.

    1977-01-01

    Precise measurements of W-values, the average energy expended per electron-hole pair in liquid Ar and Xe, were made by the electron-pulse method, and that in liquid Kr by the steady conduction current method. The results showed that the W-values were clearly smaller than those in gaseous Ar, Xe and Kr as predicted by Doke. The results can be explained by the conduction bands which exist in these rare gas liquids as well as in the solid state. The enhanced ionization yield was observed for Xe-doped liquid Ar, and it was attributed to the ionizing excitation transfer process from Ar excitons to doped Xe. This is very similar to the Jesse effect in the gas phase. The saturated value of the enhanced ionization was in good agreement with the theoretical value, and it provides strong evidence for the existence of the exciton states in liquid Ar. Fano factors in liquid Ar, Kr, Xe and Xe-doped liquid Ar have been estimated from the Fano Formula, and they were smaller than those in the gas phase. The drift velocity of electrons in liquid Ar, liquid Ar-gas mixtures and liquid Xe have been measured with gridded ionization chambers. The average electron energy in liquid Ar has been measured. The electron-induced scintillations of liquid Xe and Ar have been studied. (Kato, T.)

  7. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  8. Multiphoton ionization of atomic cesium

    International Nuclear Information System (INIS)

    Compton, R.N.; Klots, C.E.; Stockdale, J.A.D.; Cooper, C.D.

    1984-01-01

    We describe experimental studies of resonantly enhanced multiphoton ionization (MPI) of cesium atoms in the presence and absence of an external electric field. In the zero-field studies, photoelectron angular distributions for one- and two-photon resonantly enhanced MPI are compared with the theory of Tang and Lambropoulos. Deviations of experiment from theory are attributed to hyperfine coupling effects in the resonant intermediate state. The agreement between theory and experiment is excellent. In the absence of an external electric field, signal due to two-photon resonant three-photon ionization of cesium via np states is undetectable. Application of an electric field mixes nearby nd and ns levels, thereby inducing excitation and subsequent ionization. Signal due to two-photon excitation of ns levels in field-free experiments is weak due to their small photoionization cross section. An electric field mixes nearby np levels which again allows detectable photoionization signal. For both ns and np states the field induced MPI signal increases as the square of the electric field for a given principal quantum number and increases rapidly with n for a given field strength. Finally, we note that the classical two-photon field-ionization threshold is lower for the case in which the laser polarization and the electric field are parallel than it is when they are perpendicular. 22 references, 11 figures

  9. On the SIMS Ionization Probability of Organic Molecules.

    Science.gov (United States)

    Popczun, Nicholas J; Breuer, Lars; Wucher, Andreas; Winograd, Nicholas

    2017-06-01

    The prospect of improved secondary ion yields for secondary ion mass spectrometry (SIMS) experiments drives innovation of new primary ion sources, instrumentation, and post-ionization techniques. The largest factor affecting secondary ion efficiency is believed to be the poor ionization probability (α + ) of sputtered material, a value rarely measured directly, but estimated to be in some cases as low as 10 -5 . Our lab has developed a method for the direct determination of α + in a SIMS experiment using laser post-ionization (LPI) to detect neutral molecular species in the sputtered plume for an organic compound. Here, we apply this method to coronene (C 24 H 12 ), a polyaromatic hydrocarbon that exhibits strong molecular signal during gas-phase photoionization. A two-dimensional spatial distribution of sputtered neutral molecules is measured and presented. It is shown that the ionization probability of molecular coronene desorbed from a clean film under bombardment with 40 keV C 60 cluster projectiles is of the order of 10 -3 , with some remaining uncertainty arising from laser-induced fragmentation and possible differences in the emission velocity distributions of neutral and ionized molecules. In general, this work establishes a method to estimate the ionization efficiency of molecular species sputtered during a single bombardment event. Graphical Abstract GRAPHICAL ABSTRACT TEXT HERE] -->.

  10. Aerodynamic Efficiency Enhancements for Air Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft are...

  11. Relative effectiveness of ionizing radiations in relation to LET and the influence of oxygen

    International Nuclear Information System (INIS)

    Barendsen, G.W.

    1966-01-01

    For the investigation of the mechanism by which effects of ionizing radiations in living cells are initiated an important consideration is the comparison of responses caused by radiations which differ with regard to their ionization density. Many biological effects of ionizing radiations on living cells and organisms are produced more efficiently by radiations with a high as compared with a low linear energy transfer (LET). The assumption has generally been made that the nature and yield of ionizations and excitations produced by ionizing particles in biological material depend only to a relatively small extent on the charge and energy of the particles. Consequently differences in effectiveness per unit dose between various radiations must be due to differences in the spatial distributions of the ionizations produced in the irradiated objects. he high relative effectiveness of densely as compared with sparsely ionizing radiations, observed for various biological systems, implies that interaction occurs between primary effects of ionizations, e. g. chemical changes of various molecules produced close together, and that this interaction is required for, or at least enhances, the production of biological damage. As discussed previously by Pollard, Howard-Flanders and Brustad for inactivation of enzymes and reproductive death of bacteria and yeast cells, investigations of the relation between the relative biological effectiveness (RBE) and LET may provide information about the number of ionizations which are required and the dimensions of the value in which the effects must be produced to initiate the sequence of biophysical, biochemical and biological changes which finally results in the observed effect, e.g. death of a cell. This type of analysis has also been applied to data obtained from irradiations of cultured human cells with α-particles and deuterons of different energies (Barendsen). An important characteristic of any interpretation of radiobiological

  12. Hydrazinonicotinic acid derivatization for selective ionization and improved glycan structure characterization by MALDI-MS.

    Science.gov (United States)

    Jiao, Jing; Yang, Lijun; Zhang, Ying; Lu, Haojie

    2015-08-21

    The analysis of glycan is important for understanding cell biology and disease processes because the glycans play a key role in many important biological behaviors, such as cell division, cellular localization, tumor immunology and inflammation. Nevertheless, it is still hard work to analyze glycans by MALDI-MS, which generally stems from the inherent low abundance and the low ionization efficiency of glycans. Moreover, the difficulty in generating informative fragmentations further hinders glycans structure characterization. In this work, hydrazinonicotinic acid (HYNIC) was used as a novel derivatized reagent for improved and selective detection of glycans. Through tagging the reducing terminus of glycans with the diazanyl group of HYNIC, significant enhancement of the ionization efficiency of glycans was achieved. After derivatization, the signal to noise ratio (S/N) of the maltoheptaose was improved by more than one order of magnitude in positive mode. HYNIC derivatization also allowed the sensitive detection of sialylated glycan in negative mode, with a 15 fold enhancement of S/N. Interestingly, it is noteworthy that the HYNIC reagent not only effectively labeled the reducing end of glycans in the presence of tryptic peptides, but also suppressed the ionization of peptides, enabling the direct detection of glycans from glycoprotein without separation. Therefore, analysis of glycans became easier due to the omission of a pre-separation step. Importantly, by using different acid reagents as the catalyst, derivatized product signals corresponding to [M + Na](+) or [M + H](+) were obtained respectively, which yield complementary fragmentation patterns for the structure elucidation of glycans. Finally, more than 40 N-glycans were successfully detected in 10 μL human serum using this method.

  13. Novel Electrosorption-Enhanced Solid-Phase Microextraction Device for Ultrafast In Vivo Sampling of Ionized Pharmaceuticals in Fish.

    Science.gov (United States)

    Qiu, Junlang; Wang, Fuxin; Zhang, Tianlang; Chen, Le; Liu, Yuan; Zhu, Fang; Ouyang, Gangfeng

    2018-01-02

    Decreasing the tedious sample preparation duration is one of the most important concerns for the environmental analytical chemistry especially for in vivo experiments. However, due to the slow mass diffusion paths for most of the conventional methods, ultrafast in vivo sampling remains challenging. Herein, for the first time, we report an ultrafast in vivo solid-phase microextraction (SPME) device based on electrosorption enhancement and a novel custom-made CNT@PPY@pNE fiber for in vivo sampling of ionized acidic pharmaceuticals in fish. This sampling device exhibited an excellent robustness, reproducibility, matrix effect-resistant capacity, and quantitative ability. Importantly, the extraction kinetics of the targeted ionized pharmaceuticals were significantly accelerated using the device, which significantly improved the sensitivity of the SPME in vivo sampling method (limits of detection ranged from 0.12 ng·g -1 to 0.25 ng·g -1 ) and shorten the sampling time (only 1 min). The proposed approach was successfully applied to monitor the concentrations of ionized pharmaceuticals in living fish, which demonstrated that the device and fiber were suitable for ultrafast in vivo sampling and continuous monitoring. In addition, the bioconcentration factor (BCF) values of the pharmaceuticals were derived in tilapia (Oreochromis mossambicus) for the first time, based on the data of ultrafast in vivo sampling. Therefore, we developed and validated an effective and ultrafast SPME sampling device for in vivo sampling of ionized analytes in living organisms and this state-of-the-art method provides an alternative technique for future in vivo studies.

  14. Adaptive response to ionizing radiation in normal human skin fibroblasts. Enhancement of DNA repair rate and modulation of gene expression

    International Nuclear Information System (INIS)

    Toledo, S.M. de; Mitchel, R.E.J.; Azzam, E.; Ottawa Univ., ON; Raaphorst, G.P.

    1994-01-01

    Low doses and dose rates of ionizing radiation enhance the rate of DNA repair in human fibroblasts and protect the cells against radiation-induced micronucleus formation. Chronic exposures reduce the mRNA levels of the genes topoisomerase II and FACC-1 (Fanconi's anemia, group C). (authors). 11 refs., 1 tab., 2 figs

  15. Enhanced efficiency of internal combustion engines by employing spinning gas.

    Science.gov (United States)

    Geyko, V I; Fisch, N J

    2014-08-01

    The efficiency of the internal combustion engine might be enhanced by employing spinning gas. A gas spinning at near sonic velocities has an effectively higher heat capacity, which allows practical fuel cycles, which are far from the Carnot efficiency, to approach more closely the Carnot efficiency. A remarkable gain in fuel efficiency is shown to be theoretically possible for the Otto and Diesel cycles. The use of a flywheel, in principle, could produce even greater increases in efficiency.

  16. The theory of ionizing shock waves in a magnetic field

    International Nuclear Information System (INIS)

    Liberman, M.A.; Velikovich, A.L.

    1981-01-01

    The general theory of ionizing shock waves in a magnetic field is constructed. The theory takes into account precursor ionization of a neutral gas ahead of the shock wave front, caused by photo-ionization, as well as by the impact ionization with electrons accelerated by a transverse electric field induced by the shock front in the incident flow of a neutral gas. The concept of shock wave ionization stability, being basic in the theory of ionizing shock waves in a magnetic field, is introduced. The ionizing shock wave structures are shown to transform from the GD regime at a low shock velocity to the MHD regime at an enhanced intensity of the shock wave. The abruptness of such a transition is determined by precursor photo-ionization. (author)

  17. Enhanced ionized impurity scattering in nanowires

    Science.gov (United States)

    Oh, Jung Hyun; Lee, Seok-Hee; Shin, Mincheol

    2013-06-01

    The electronic resistivity in silicon nanowires is investigated by taking into account scattering as well as the donor deactivation from the dielectric mismatch. The effects of poorly screened dopant atoms from the dielectric mismatch and variable carrier density in nanowires are found to play a crucial role in determining the nanowire resistivity. Using Green's function method within the self-consistent Born approximation, it is shown that donor deactivation and ionized impurity scattering combined with the charged interface traps successfully to explain the increase in the resistivity of Si nanowires while reducing the radius, measured by Björk et al. [Nature Nanotech. 4, 103 (2009)].

  18. Resonance Ionization Laser Ion Sources

    CERN Document Server

    Marsh, B

    2013-01-01

    The application of the technique of laser resonance ionization to the production of singly charged ions at radioactive ion beam facilities is discussed. The ability to combine high efficiency and element selectivity makes a resonance ionization laser ion source (RILIS) an important component of many radioactive ion beam facilities. At CERN, for example, the RILIS is the most commonly used ion source of the ISOLDE facility, with a yearly operating time of up to 3000 hours. For some isotopes the RILIS can also be used as a fast and sensitive laser spectroscopy tool, provided that the spectral resolution is sufficiently high to reveal the influence of nuclear structure on the atomic spectra. This enables the study of nuclear properties of isotopes with production rates even lower than one ion per second and, in some cases, enables isomer selective ionization. The solutions available for the implementation of resonance laser ionization at radioactive ion beam facilities are summarized. Aspects such as the laser r...

  19. Thermal conductivity engineering in width-modulated silicon nanowires and thermoelectric efficiency enhancement

    Science.gov (United States)

    Zianni, Xanthippi

    2018-03-01

    Width-modulated nanowires have been proposed as efficient thermoelectric materials. Here, the electron and phonon transport properties and the thermoelectric efficiency are discussed for dimensions above the quantum confinement regime. The thermal conductivity decreases dramatically in the presence of thin constrictions due to their ballistic thermal resistance. It shows a scaling behavior upon the width-modulation rate that allows for thermal conductivity engineering. The electron conductivity also decreases due to enhanced boundary scattering by the constrictions. The effect of boundary scattering is weaker for electrons than for phonons and the overall thermoelectric efficiency is enhanced. A ZT enhancement by a factor of 20-30 is predicted for width-modulated nanowires compared to bulk silicon. Our findings indicate that width-modulated nanostructures are promising for developing silicon nanostructures with high thermoelectric efficiency.

  20. Carbon dioxide efficiency of terrestrial enhanced weathering.

    Science.gov (United States)

    Moosdorf, Nils; Renforth, Phil; Hartmann, Jens

    2014-05-06

    Terrestrial enhanced weathering, the spreading of ultramafic silicate rock flour to enhance natural weathering rates, has been suggested as part of a strategy to reduce global atmospheric CO2 levels. We budget potential CO2 sequestration against associated CO2 emissions to assess the net CO2 removal of terrestrial enhanced weathering. We combine global spatial data sets of potential source rocks, transport networks, and application areas with associated CO2 emissions in optimistic and pessimistic scenarios. The results show that the choice of source rocks and material comminution technique dominate the CO2 efficiency of enhanced weathering. CO2 emissions from transport amount to on average 0.5-3% of potentially sequestered CO2. The emissions of material mining and application are negligible. After accounting for all emissions, 0.5-1.0 t CO2 can be sequestered on average per tonne of rock, translating into a unit cost from 1.6 to 9.9 GJ per tonne CO2 sequestered by enhanced weathering. However, to control or reduce atmospheric CO2 concentrations substantially with enhanced weathering would require very large amounts of rock. Before enhanced weathering could be applied on large scales, more research is needed to assess weathering rates, potential side effects, social acceptability, and mechanisms of governance.

  1. ICT applications enhancing energy efficiency

    Directory of Open Access Journals (Sweden)

    A. G. Matani

    2016-06-01

    Full Text Available Computers, laptops and mobile devices – information technology (IT accounts for 2% of human greenhouse gas emissions worldwide, as evidenced in a study by Global Action Plan, a UK based environmental organization. This figure can be reduced if the green segment, or Green IT, continues to grow. Energy can also be saved through cloud computing, namely the principle of outsourcing the programs and functions of one’s own computer to service providers over the internet. This also means sharing storage capacity with others. This paper highlights the impact of information technology applications towards enhancing energy efficiency of the systems.

  2. Guided ionization waves: Theory and experiments

    International Nuclear Information System (INIS)

    Lu, X.; Naidis, G.V.; Laroussi, M.; Ostrikov, K.

    2014-01-01

    This review focuses on one of the fundamental phenomena that occur upon application of sufficiently strong electric fields to gases, namely the formation and propagation of ionization waves–streamers. The dynamics of streamers is controlled by strongly nonlinear coupling, in localized streamer tip regions, between enhanced (due to charge separation) electric field and ionization and transport of charged species in the enhanced field. Streamers appear in nature (as initial stages of sparks and lightning, as huge structures—sprites above thunderclouds), and are also found in numerous technological applications of electrical discharges. Here we discuss the fundamental physics of the guided streamer-like structures—plasma bullets which are produced in cold atmospheric-pressure plasma jets. Plasma bullets are guided ionization waves moving in a thin column of a jet of plasma forming gases (e.g., He or Ar) expanding into ambient air. In contrast to streamers in a free (unbounded) space that propagate in a stochastic manner and often branch, guided ionization waves are repetitive and highly-reproducible and propagate along the same path—the jet axis. This property of guided streamers, in comparison with streamers in a free space, enables many advanced time-resolved experimental studies of ionization waves with nanosecond precision. In particular, experimental studies on manipulation of streamers by external electric fields and streamer interactions are critically examined. This review also introduces the basic theories and recent advances on the experimental and computational studies of guided streamers, in particular related to the propagation dynamics of ionization waves and the various parameters of relevance to plasma streamers. This knowledge is very useful to optimize the efficacy of applications of plasma streamer discharges in various fields ranging from health care and medicine to materials science and nanotechnology

  3. Ionization chambers for LET determination

    DEFF Research Database (Denmark)

    Kaiser, Franz-Joachim; Bassler, Niels; Tölli, Heikki

    2010-01-01

    resolution and high sensitivity are necessary. For exact dosimetry which is done using ionization chambers (ICs), the recombination taking place in the IC has to be known. Up to now, recombination is corrected phenomenologically and more practical approaches are currently used. Nevertheless, Jaff´e's theory...... of columnar recombination was designed to model the detector efficiency of an ionization chamber. Here, we have shown that despite the approximations and simplification made, the theory is correct for the LETs typically found in clinical radiotherapy employing particles from protons to carbon ions...

  4. Enhancing crystalline silicon solar cell efficiency with SixGe1-x layers

    Science.gov (United States)

    Ali, Adnan; Cheow, S. L.; Azhari, A. W.; Sopian, K.; Zaidi, Saleem H.

    Crystalline silicon (c-Si) solar cell represents a cost effective, environment-friendly, and proven renewable energy resource. Industrially manufacturing of c-Si solar has now matured in terms of efficiency and cost. Continuing cost-effective efficiency enhancement requires transition towards thinner wafers in near term and thin-films in the long term. Successful implementation of either of these alternatives must address intrinsic optical absorption limitation of Si. Bandgap engineering through integration with SixGe1-x layers offers an attractive, inexpensive option. With the help of PC1D software, role of SixGe1-x layers in conventional c-Si solar cells has been intensively investigated in both wafer and thin film configurations by varying Ge concentration, thickness, and placement. In wafer configuration, increase in Ge concentration leads to enhanced absorption through bandgap broadening with an efficiency enhancement of 8% for Ge concentrations of less than 20%. At higher Ge concentrations, despite enhanced optical absorption, efficiency is reduced due to substantial lowering of open-circuit voltage. In 5-25-μm thickness, thin-film solar cell configurations, efficiency gain in excess of 30% is achievable. Therefore, SixGe1-x based thin-film solar cells with an order of magnitude reduction in costly Si material are ideally-suited both in terms of high efficiency and cost. Recent research has demonstrated significant improvement in epitaxially grown SixGe1-x layers on nanostructured Si substrates, thereby enhancing potential of this approach for next generation of c-Si based photovoltaics.

  5. Application of Ionizing Radiations to Produce New Polysaccharides and Proteins with Enhanced Functionality

    International Nuclear Information System (INIS)

    Al Assaf, S.

    2006-01-01

    Treatment of polysaccharides with ionizing radiation either in the solid state or in aqueous solution leads to degradation, whereas application of radiation to process synthetic polymers to introduce structural changes and special performance characteristics is now a thriving industry. Using a mediating gas associated during the radiation treatment prevents the degradation of natural polymers and enables the introduction of different molecular and functional characteristics, as previously achieved with synthetic polymers. For example, the molecular weight can be increased and standardised, protein distribution reorganised and modified to ensure better emulsification, viscosity and viscoelasticity enhanced, leading when required to hydrogel formation. More than one hydrocolloid can also be integrated into a single matrix using this process. Protein, within demineralised bone, too can be modified to give enhanced osteoinductive capacity. This experience has led to additional patented and proprietary processes, using standard food processing techniques, to promote changes in a wide range of hydrocolloids which emulates and extend those which occur naturally. The lecture will describe these structural changes and their functional role by reference to several hydrocolloids, including acacia gums, pectin, ispaghula and hyaluronan, bone morphogenic protein. Applications in food products, dietary fibre and medical products will be illustrated

  6. Study of surface ionization and LASER ionization processes using the SOMEIL ion source: application to the Spiral 2 laser ion source development

    Energy Technology Data Exchange (ETDEWEB)

    Bajeat, O., E-mail: bajeat@ganil.fr; Lecesne, N.; Leroy, R.; Maunoury, L.; Osmond, B.; Sjodin, M. [GANIL (France); Maitre, A.; Pradeilles, N. [Laboratoire Science des Procedes Ceramiques et de Traitements de Surface (SPCTS) 12 (France)

    2013-04-15

    SPIRAL2 is the new project under construction at GANIL to provide radioactive ion beams to the Nuclear Physics Community and in particular neutron rich ion beams. For the production of condensable radioactive elements, a resonant ionization laser ion source is under development at GANIL. In order to generate the ions of interest with a good selectivity and purity, our group is studying the way to minimize surface ionization process by using refractory materials with low work function as ionizer tube. To do those investigations a dedicated ion source, called SOMEIL (Source Optimisee pour les Mesures d'Efficacite d'Ionisation Laser) is used. Numerous types of ionizer tubes made in various materials and geometry are tested. Surface ionization and laser ionization efficiencies can be measured for each of them.

  7. Efficient 3M PBS enhancing miniature projection optics

    Science.gov (United States)

    Yun, Zhisheng; Nevitt, Timothy; Willett, Stephen; Mortenson, Dave; Le, John; McDowell, Erin; Kent, Susan; Wong, Timothy; Beniot, Gilles J.; Ouderkirk, Andrew

    2016-09-01

    Over the past decade, 3M has developed a number of mobile projectors, with a goal towards providing the world's smallest, most efficient projection systems. Compact size and efficiency are required characteristics for projection systems used in mobile devices and more lately, in augmented reality systems. In this paper we summarize the main generations of 3M light engine optical designs. We present the optical architectures of four light engines, including the rationale behind the illumination designs and the projection systems. In particular, we describe various configurations relating to the 3M polarizing beam splitter (PBS) which is key to enhanced efficiency of the miniature projection systems.

  8. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  9. Antibacterial Ag/a-C nanocomposite coatings: The influence of nano-galvanic a-C and Ag couples on Ag ionization rates

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, N.K., E-mail: nora.sousa@dem.uc.pt [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Calderon, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); Carvalho, I. [GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal); CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Henriques, M. [CEB—Centre of Biological Engineering, LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga (Portugal); Cavaleiro, A. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Carvalho, S. [SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); GRF-CFUM, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães (Portugal)

    2016-07-30

    Highlights: • Amorphous carbon (a-C), Ag/a-C and Ag coatings were deposited by magnetron sputtering. • a-C/Ag coating shows antibacterial activity against S. epidermidis. • The formation of nano-galvanic couples in a-C/Ag enhances the Ag{sup +} ionization rate. • The Ag{sup +} ionization occurs along with Ag nanoparticles agglomeration in 0.9% NaCl. - Abstract: Biofilm formation has been pointed as a major concern in different industrial applications, namely on biomedical implants and surgical instruments, which has prompted the development of new strategies for production of efficient antimicrobial surfaces. In this work, nano-galvanic couples were created to enhance the antibacterial properties of silver, by embedding it into amorphous carbon (a-C) matrix. The developed Ag/a-C nanocomposite coatings, deposited by magnetron sputtering, revealed an outstanding antibacterial activity against Staphylococcus epidermidis, promoting a total reduction in biofilm formation with no bacteria counts in all dilution. The open circuit potential (OCP) tests in 0.9% NaCl confirmed that a-C shows a positive OCP value, in contrast to Ag coating, thus enhancing the ionization of biocidal Ag{sup +} due to the nano-galvanic couple activation. This result was confirmed by the inductively coupled plasma-optical emission spectroscopy (ICP-OES), which revealed a higher Ag ionization rate in the nanocomposite coating in comparison with the Ag coating. The surface of Ag/a-C and Ag coatings immersed in 0.9% NaCl were monitored by scanning electron microscopy (SEM) over a period of 24 h, being found that the Ag ionization determined by ICP-OES was accompanied by an Ag nanoparticles coalescence and agglomeration in Ag/a-C coating.

  10. Spectral efficiency enhancement with interference cancellation for wireless relay network

    DEFF Research Database (Denmark)

    Yomo, Hiroyuki; De Carvalho, Elisabeth

    The introduction of relaying into wireless communication system for coverage enhancement can cause severe decrease of spectral efficiency due to the requirement on extra radio resource. In this paper, we propose a method to increase spectral efficiency in such a wireless relay network by employing...... an interference cancellation technique. We focus on a typical scenario of relaying in a cellular system, where a mobile station (MS) requires the help of a relay station (RS) to communicate with the base station (BS). In such a case, interference cancellation can be used to achieve a small reuse distance...... of identical radio resource. We analyze a simple scenario with BS, single RS, and 2 MSs, and show that the proposed method has significant potential to enhance spectral efficiency in wireless relay networks....

  11. Modern state of the application of ionizing radiation for protection of environment. 1. Ionizing radiation sources. Purification of natural and drinking water (review)

    International Nuclear Information System (INIS)

    Pikaev, AK.

    2000-01-01

    Review of modern state of the application of ionizing radiations for protection of environment and natural and drinking water purification is presented. Building of installations with electron accelerators with summarized power of beam ∼0.6 MW signifies that application of ionizing radiation for ecological needs increase. It is pointed out that extensible application of electron accelerators is explained by their safety and efficiency as compared with gamma-sources. New information about ionizing radiation sources, radiation-chemical purification of polluted natural and drinking water, mechanisms of processes taking place during treatment by ionizing radiations are generalized [ru

  12. Efficient OCT Image Enhancement Based on Collaborative Shock Filtering.

    Science.gov (United States)

    Liu, Guohua; Wang, Ziyu; Mu, Guoying; Li, Peijin

    2018-01-01

    Efficient enhancement of noisy optical coherence tomography (OCT) images is a key task for interpreting them correctly. In this paper, to better enhance details and layered structures of a human retina image, we propose a collaborative shock filtering for OCT image denoising and enhancement. Noisy OCT image is first denoised by a collaborative filtering method with new similarity measure, and then the denoised image is sharpened by a shock-type filtering for edge and detail enhancement. For dim OCT images, in order to improve image contrast for the detection of tiny lesions, a gamma transformation is first used to enhance the images within proper gray levels. The proposed method integrating image smoothing and sharpening simultaneously obtains better visual results in experiments.

  13. Target Plate Material Influence on Fullerene-C60 Laser Desorption/Ionization Efficiency

    Science.gov (United States)

    Zeegers, Guido P.; Günthardt, Barbara F.; Zenobi, Renato

    2016-04-01

    Systematic laser desorption/ionization (LDI) experiments of fullerene-C60 on a wide range of target plate materials were conducted to gain insight into the initial ion formation in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The positive and negative ion signal intensities of precursor, fragment, and cluster ions were monitored, varying both the laser fluence (0-3.53 Jcm-2) and the ion extraction delay time (0-950 ns). The resulting species-specific ion signal intensities are an indication for the ionization mechanisms that contribute to LDI and the time frames in which they operate, providing insight in the (MA)LDI primary ionization. An increasing electrical resistivity of the target plate material increases the fullerene-C60 precursor and fragment anion signal intensity. Inconel 625 and Ti90/Al6/V4, both highly electrically resistive, provide the highest anion signal intensities, exceeding the cation signal intensity by a factor ~1.4 for the latter. We present a mechanism based on transient electrical field strength reduction to explain this trend. Fullerene-C60 cluster anion formation is negligible, which could be due to the high extraction potential. Cluster cations, however, are readily formed, although for high laser fluences, the preferred channel is formation of precursor and fragment cations. Ion signal intensity depends greatly on the choice of substrate material, and careful substrate selection could, therefore, allow for more sensitive (MA)LDI measurements.

  14. Hyperthermal surface ionization mass spectrometry of organic molecules: monoterpenes

    International Nuclear Information System (INIS)

    Kishi, Hiroshi; Fujii, Toshihiro.

    1997-01-01

    This paper describes an experimental study on the influence of kinetic energy of fast monoterpene molecules on the surface ionization efficiency and on the mass spectral patterns, using rhenium oxide (ReO 2 ) surface. Molecular kinetic energy, given to the molecules through the acceleration in the seeded supersonic molecular beam, ranged from 1 to 10 eV. Hyperthermal surface ionization mass spectra (HSIMS) were taken for various incident kinetic energies and surface temperatures. The observed mass spectra were interpreted in a purely empirical way, by means of evidence from the previous investigations, and they were compared with conventional EI techniques and with the thermal energy surface ionization technique (SIOMS; Surface Ionization Organic Mass Spectrometry). Ionization efficiency (β) was also studied. Under hyperthermal surface ionization (HSI) conditions, many kinds of fragment ions, including quite abundant odd electron ions (OE +· ) are observed. HSIMS patterns of monoterpenes are different among 6-isomers, contrary to those of SIOMS and EIMS, where very similar patterns for isomers are observed. HSIMS patterns are strongly dependent on the molecular kinetic energies. The surface temperature does not affect much the spectral patterns, but it controls the total amount of ion formation. We conclude from these mass spectral findings, HSI-mechanism contains an impulsive process of ion formation, followed by the fragmentation process as a results of the internal energies acquired through the collision processes. (author)

  15. Envelope matching for enhanced backward Raman amplification by using self-ionizing plasmas

    International Nuclear Information System (INIS)

    Zhang, Z. M.; Zhang, B.; Hong, W.; Teng, J.; He, S. K.; Gu, Y. Q.; Yu, M. Y.

    2014-01-01

    Backward Raman amplification (BRA) in plasmas has been promoted as a means for generating ultrapowerful laser pulses. For the purpose of achieving the maximum intensities over the shortest distances, an envelope matching between the seed pulse and the amplification gain is required, i.e., the seed pulse propagates at the same velocity with the gain such that the peak of the seed pulse can always enjoy the maximum gain. However, such an envelope matching is absent in traditional BRA because in the latter the amplification gain propagates at superluminous velocity while the seed pulse propagates at the group velocity, which is less than the speed of light. It is shown here that, by using self-ionizing plasmas, the speed of the amplification gain can be well reduced to reach the envelope matching regime. This results in a favorable BRA process, in which higher saturated intensity, shorter interaction length and higher energy-transfer efficiency are achieved

  16. Bystander cells enhance NK cytotoxic efficiency by reducing search time.

    Science.gov (United States)

    Zhou, Xiao; Zhao, Renping; Schwarz, Karsten; Mangeat, Matthieu; Schwarz, Eva C; Hamed, Mohamed; Bogeski, Ivan; Helms, Volkhard; Rieger, Heiko; Qu, Bin

    2017-03-13

    Natural killer (NK) cells play a central role during innate immune responses by eliminating pathogen-infected or tumorigenic cells. In the microenvironment, NK cells encounter not only target cells but also other cell types including non-target bystander cells. The impact of bystander cells on NK killing efficiency is, however, still elusive. In this study we show that the presence of bystander cells, such as P815, monocytes or HUVEC, enhances NK killing efficiency. With bystander cells present, the velocity and persistence of NK cells were increased, whereas the degranulation of lytic granules remained unchanged. Bystander cell-derived H 2 O 2 was found to mediate the acceleration of NK cell migration. Using mathematical diffusion models, we confirm that local acceleration of NK cells in the vicinity of bystander cells reduces their search time to locate target cells. In addition, we found that integrin β chains (β1, β2 and β7) on NK cells are required for bystander-enhanced NK migration persistence. In conclusion, we show that acceleration of NK cell migration in the vicinity of H 2 O 2 -producing bystander cells reduces target cell search time and enhances NK killing efficiency.

  17. Anisotropic metamaterial for efficiency enhancement of mid-range wireless power transfer under coil misalignment

    International Nuclear Information System (INIS)

    Ranaweera, A L A K; Moscoso, Carlos Arriola; Lee, Jong-Wook

    2015-01-01

    In a wireless power transfer (WPT) system, misalignment between transmitter and receiver coils is one of the key factors affecting efficiency. Recently, metamaterials have shown great potential to enhance electromagnetic propagation in various environments. In this work, we apply a metamaterial to enhance the WPT in a more general environment where misalignment is considered. Using an anisotropic metamaterial, we obtain a significant efficiency enhancement. Therefore, we propose that the metamaterial is an effective means to mitigate the decreased efficiency caused by misalignment. In addition, we investigate the effect of coil misalignment on the threshold distance beyond which the metamaterial enhances the performance of WPT. (paper)

  18. Resonantly-enhanced, four-photon ionization of krypton at laser intensities exceeding 1013 W/cm2

    International Nuclear Information System (INIS)

    Perry, M.D.; Landen, O.L.; Campbell, E.M.

    1987-12-01

    The yield of singly- and multiply- charged ions of krypton and xenon is presented as a function of laser intensity and frequency. The measurements were performed using the second harmonic output of a well-characterized, tunable picosecond dye laser in the range 285 to 310 nm at laser intensities from 1 x 10 12 to 10 14 W/cm 2 . Enhancement of the Kr + yield by two orders of magnitude by three-photon resonant, four-photon ionization is observed in the vicinity of the 4d'[5/2] 3 and the 4d[3/2] 1 intermediate states. A model incorporating line shifts and widths scaling linearly with intensity is in good agreement with the experimental results

  19. Materials That Enhance Efficiency and Radiation Resistance of Solar Cells

    Science.gov (United States)

    Sun, Xiadong; Wang, Haorong

    2012-01-01

    A thin layer (approximately 10 microns) of a novel "transparent" fluorescent material is applied to existing solar cells or modules to effectively block and convert UV light, or other lower solar response waveband of solar radiation, to visible or IR light that can be more efficiently used by solar cells for additional photocurrent. Meanwhile, the layer of fluorescent coating material remains fully "transparent" to the visible and IR waveband of solar radiation, resulting in a net gain of solar cell efficiency. This innovation alters the effective solar spectral power distribution to which an existing cell gets exposed, and matches the maximum photovoltaic (PV) response of existing cells. By shifting a low PV response waveband (e.g., UV) of solar radiation to a high PV response waveband (e.g. Vis-Near IR) with novel fluorescent materials that are transparent to other solar-cell sensitive wavebands, electrical output from solar cells will be enhanced. This approach enhances the efficiency of solar cells by converting UV and high-energy particles in space that would otherwise be wasted to visible/IR light. This innovation is a generic technique that can be readily implemented to significantly increase efficiencies of both space and terrestrial solar cells, without incurring much cost, thus bringing a broad base of economical, social, and environmental benefits. The key to this approach is that the "fluorescent" material must be very efficient, and cannot block or attenuate the "desirable" and unconverted" waveband of solar radiation (e.g. Vis-NIR) from reaching the cells. Some nano-phosphors and novel organometallic complex materials have been identified that enhance the energy efficiency on some state-of-the-art commercial silicon and thin-film-based solar cells by over 6%.

  20. Using quartz sand to enhance the removal efficiency of M. aeruginosa by inorganic coagulant and achieve satisfactory settling efficiency.

    Science.gov (United States)

    Pei, Haiyan; Jin, Yan; Xu, Hangzhou; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2017-10-19

    In this study, low-cost and non-polluting quartz sand was respectively mixed with AlCl 3 , FeCl 3 and PAFC to synergistically remove Microcystis aeruginosa. Results showed that quartz sand could markedly increase the algae removal efficiency and decrease the coagulant doses. The increase of removal efficiency with AlCl 3 and FeCl 3 was only due to the enhancement of floc density by the quartz sand. However, the removal efficiency with PAFC was increased not only by the enhanced floc density, but also by the enlarged floc size. Flocs from 50 mg/L sand addition were larger than that with other sand doses, which was on account of the appropriate enhancement of collision efficiency at this dose. After coagulation, the extracellular organic matter (EOM) and microcystins (MCs) in system with quartz sand was remarkably reduced. That's because quartz sand can enhance the coagulation so as to improve capping the EOM and MCs in flocs during coagulation process. Owing to 200 mg/L quartz sand could damage the cell's membrane during coagulation proces, algal cells in the system lysed two days earlier than with 50 mg/L sand during flocs storage. In addition, cells with PAFC incurred relatively moderate cellular oxidative damage and could remain intact for longer time.

  1. Efficiency enhancement of liquid crystal projection displays using light recycle technology

    Science.gov (United States)

    Wang, Y.

    2002-01-01

    A new technology developed at JPL using low absorption color filters with polarization and color recycle system, is able to enhance efficiency of a single panel liquid crytal display (LCD) projector to the same efficiency of a 3 panel LCD projector.

  2. Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer.

    Science.gov (United States)

    Li, Hao; Tao, Leiming; Huang, Feihong; Sun, Qiang; Zhao, Xiaojuan; Han, Junbo; Shen, Yan; Wang, Mingkui

    2017-11-08

    Perovskite solar cells have been demonstrated as promising low-cost and highly efficient next-generation solar cells. Enhancing V OC by minimization the interfacial recombination kinetics can further improve device performance. In this work, we for the first time reported on surface passivation of perovskite layers with chemical modified graphene oxides, which act as efficient interlayer to reduce interfacial recombination and enhance hole extraction as well. Our modeling points out that the passivation effect mainly comes from the interaction between functional group (4-fluorophenyl) and under-coordinated Pb ions. The resulting perovskite solar cells achieved high efficient power conversion efficiency of 18.75% with enhanced high open circuit V OC of 1.11 V. Ultrafast spectroscopy, photovoltage/photocurrent transient decay, and electronic impedance spectroscopy characterizations reveal the effective passivation effect and the energy loss mechanism. This work sheds light on the importance of interfacial engineering on the surface of perovskite layers and provides possible ways to improve device efficiency.

  3. Ionization of nitrogen cluster beam

    International Nuclear Information System (INIS)

    Yano, Katsuki; Be, S.H.; Enjoji, Hiroshi; Okamoto, Kosuke

    1975-01-01

    A nitrogen cluster beam (neutral particle intensity of 28.6 mAsub(eq)) is ionized by electron collisions in a Bayard-Alpert gauge type ionizer. The extraction efficiency of about 65% is obtained at an electron current of 10 mA with an energy of 50 eV. The mean cluster size produced at a pressure of 663 Torr and temperature of 77.3 K is 2x10 5 molecules per cluster. By the Coulomb repulsion force, multiply ionized cluster ions are broken up into smaller fragments and the cluster ion size reduces to one-fourth at an electron current of 15 mA. Mean neutral cluster sizes depend strongly on the initial degree of saturation PHI 0 and are 2x10 5 , 7x10 4 and 3x10 4 molecules per cluster at PHI 0 's of 0.87, 0.66 and 0.39, respectively. (auth.)

  4. Acceleration of Vaporization, Atomization, and Ionization Efficiencies in Inductively Coupled Plasma by Merging Laser-Ablated Particles with Hydrochloric Acid Gas.

    Science.gov (United States)

    Nakazawa, Takashi; Izumo, Saori; Furuta, Naoki

    2016-01-01

    To accelerate the vaporization, atomization, and ionization efficiencies in laser ablation inductively coupled plasma mass spectrometry, we merged HCl gas with laser-ablated particles before introduction into the plasma, to convert their surface constituents from oxides to lower-melting chlorides. When particles were merged with HCl gas generated from a HCl solution at 200°C, the measured concentrations of elements in the particles were 135% higher on average than the concentrations in particles merged with ultrapure water vapor. Particle corrosion and surface roughness were observed by scanning electron microscopy, and oxide conversion to chlorides was confirmed by X-ray photoelectron spectroscopy. Under the optimum conditions, the recoveries of measured elements improved by 23% on average, and the recoveries of elements with high-melting oxides (Sr, Zr, and Th) improved by as much as 36%. These results indicate that vaporization, atomization, and ionization in the ICP improved when HCl gas was merged with the ablated particles.

  5. Multiphoton ionization/dissociation of osmium tetroxide

    International Nuclear Information System (INIS)

    Ding, D.; Puretzky, A.A.; Compton, R.N.

    1993-01-01

    The mechanisms leading to laser multiphoton ionization and dissociation (MPI/MPD) of osmium tetroxide (OsO 4 ) have been investigated from measurements of the kinetic energies of product ions (Os + , Os 2+ , OsO + , O 2 + , O + ) and photoelectrons as a function of the laser wavelength. Neutral channels, intermediate to the dominant Os + ionization channel, such as OsO 4 →OsO 4-n +nO are examined using resonance-enhanced multiphoton ionization (REMPI) of the fast O atoms. Equipartition of the available photon energy among the fragments is observed. The wavelength dependence of the Os + ion signal suggests that one or more of the steps leading to Os + ions involve molecular ions and/or excited neutral atoms. The observed preponderance of very slow ( 2+ is shown to result primarily from REMPI of Os +

  6. Optically-ionized plasma recombination x-ray lasers

    International Nuclear Information System (INIS)

    Amendt, P.; Eder, D.C.; Wilks, S.C.; Dunning, M.J.; Keane, C.J.

    1991-01-01

    Design studies for recombination x-ray lasers based on plasmas ionized by high intensity, short pulse optical lasers are presented. Transient lasing on n = 3 to n = 2 transitions in Lithium-like Neon allows for moderately short wavelengths (≤ 100 angstrom) without requiring ionizing intensities associated with relativistic electron quiver energies. The electron energy distribution following the ionizing pulse affects directly the predicted gains for this resonance transition. Efficiencies of 10 -6 or greater are found for plasma temperatures in the vicinity of 40 eV. Simulation studies of parametric heating phenomena relating to stimulated Raman and Compton scattering are presented. For electron densities less than about 2.5 x 10 20 cm -3 and peak driver intensity of 2 x 10 17 W/cm 2 at 0.25 μm with pulse length of 100 fsec, the amount of electron heating is found to be marginally significant. For Lithium-like Aluminum, the required relativistic ionizing intensity gives excessive electron heating and reduced efficiency, thereby rendering this scheme impractical for generating shorter wavelength lasing (≤ 50 angstrom) in the transient case. Following the transient lasing phase, a slow hydrodynamic expansion into the surrounding cool plasma is accompanied by quasi-static gain on the n = 4 to n = 3 transition in Lithium-like Neon. Parametric heating effects on gain optimization in this regime are also discussed. 18 refs., 6 figs

  7. An intense polarized beam by a laser ionization injection

    International Nuclear Information System (INIS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi.

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of (1)producing the neutral hydrogen beam by Lorentz stripping, (2)excitation of the neutral hydrogen beam with a laser, and (3)ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98% and a polarization of 80% can be expected by an intense laser beam from a FEL(Free Electron Laser). (author)

  8. Internal quantum efficiency enhancement of GaInN/GaN quantum-well structures using Ag nanoparticles

    DEFF Research Database (Denmark)

    Iida, Daisuke; Fadil, Ahmed; Chen, Yuntian

    2015-01-01

    We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density on the enhance......We report internal quantum efficiency enhancement of thin p-GaN green quantumwell structure using self-assembled Ag nanoparticles. Temperature dependent photoluminescence measurements are conducted to determine the internal quantum efficiency. The impact of excitation power density...

  9. Enhancement in Photoelectrochemical Efficiency by Fabrication of BiVO4@MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2011-01-01

    Full Text Available An enormous enhancement in the photo-to-current conversion efficiency over the nanocomposite material composed by BiVO4 on the surface of MWCNTs, with respect to electrode of pure BiVO4, was observed. The heterojunction formed between MWCNTs and nano-BiVO4 is beneficial for the separation of photogenerated electrons and holes, resulting in more electrons that are able to transport efficiently to the surface and therefore enhance the photoefficiency.

  10. Characterization of foot- and mouth disease virus antigen by surface-enhanced laser desorption ionization-time of flight-mass spectrometry in aqueous and oil-emulsion formulations

    NARCIS (Netherlands)

    Harmsen, M.M.; Jansen, J.; Westra, D.F.; Coco-Martin, J.M.

    2010-01-01

    We have used a novel method, surface-enhanced laser desorption ionization-time of flight-mass spectrometry (SELDI-TOF-MS), to characterize foot-and-mouth disease virus (FMDV) vaccine antigens. Using specific capture with FMDV binding recombinant antibody fragments and tryptic digestion of FMDV

  11. Ionizing radiation enhances immunogenicity of cells expressing a tumor-specific T-cell epitope

    International Nuclear Information System (INIS)

    Ciernik, Ilja F.; Romero, Pedro; Berzofsky, Jay A.; Carbone, David P.

    1999-01-01

    Background: p53 point mutations represent potential tumor-specific cytolytic T lymphocyte (CTL) epitopes. Whether ionizing radiation (IR) alters the immunological properties of cells expressing mutant p53 in respect of the CTL epitope generated by a defined point mutation has not been evaluated. Methods: Mutant p53-expressing syngeneic, nontumor forming BALB/c 3T3 fibroblasts, tumor forming ras-transfected BALB/c 3T3 sarcomas, and DBA/2-derived P815 mastocytoma cells, which differ at the level of minor histocompatibility antigens, were used as cellular vaccines. Cells were either injected with or without prior IR into naive BALB/c mice. Cellular cytotoxicity was assessed after secondary restimulation of effector spleen cells in vitro. Results: Injection of P815 mastocytoma cells expressing the mutant p53 induced mutation-specific CTL in BALB/c mice irrespective of prior irradiation. However, syngeneic fibroblasts or fibrosarcomas endogenously expressing mutant p53 were able to induce significant mutation-specific CTL only when irradiated prior to injection into BALB/c mice. IR of fibroblasts did not detectably alter the expression of cell surface molecules involved in immune response induction, nor did it alter the short-term in vitro viability of the fibroblasts. Interestingly, radioactively-labeled fibroblasts injected into mice after irradiation showed altered organ distribution, suggesting that the in vivo fate of these cells may play a crucial role in their immunogenicity. Conclusions: These findings indicate that IR can alter the immunogenicity of syngeneic normal as well as tumor forming fibroblasts in vivo, and support the view that ionizing radiation enhances immunogenicity of cellular tumor vaccines

  12. IONIZED GAS KINEMATICS AT HIGH RESOLUTION. V. [Ne ii], MULTIPLE CLUSTERS, HIGH EFFICIENCY STAR FORMATION, AND BLUE FLOWS IN HE 2–10

    International Nuclear Information System (INIS)

    Beck, Sara; Turner, Jean; Lacy, John; Greathouse, Thomas

    2015-01-01

    We measured the 12.8 μm [Ne ii] line in the dwarf starburst galaxy He 2–10 with the high-resolution spectrometer TEXES on the NASA IRTF. The data cube has a diffraction-limited spatial resolution of ∼1″ and a total velocity resolution, including thermal broadening, of ∼5 km s −1 . This makes it possible to compare the kinematics of individual star-forming clumps and molecular clouds in the three dimensions of space and velocity, and allows us to determine star formation efficiencies. The kinematics of the ionized gas confirm that the starburst contains multiple dense clusters. From the M/R of the clusters and the ≃30%–40% star formation efficiencies, the clusters are likely to be bound and long lived, like globulars. Non-gravitational features in the line profiles show how the ionized gas flows through the ambient molecular material, as well as a narrow velocity feature, which we identify with the interface of the H ii region and a cold dense clump. These data offer an unprecedented view of the interaction of embedded H ii regions with their environment

  13. Biological effects of the ionizing radiation. Press breakfast

    International Nuclear Information System (INIS)

    Flury-Herard, A.; Boiteux, S.; Dutrillaux, B.; Toledano, M.

    2000-06-01

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  14. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    Science.gov (United States)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn; Xiao, Sanshui; Mortensen, N. Asger; Dong, Jianji; Ding, Yunhong

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light–matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally demonstrate an energy-efficient graphene microheater with a tuning efficiency of 1.07 nmmW−1 and power consumption per free spectral range of 3.99 mW. The rise and decay times (10–90%) are only 750 and 525 ns, which, to the best of our knowledge, are the fastest reported response times for microheaters in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines for enhancing the tuning efficiency of the graphene microheater. PMID:28181531

  15. Optimising the Use of TRIzol-extracted Proteins in Surface Enhanced Laser Desorption/ Ionization (SELDI Analysis

    Directory of Open Access Journals (Sweden)

    Perlaky Laszlo

    2006-03-01

    Full Text Available Abstract Background Research with clinical specimens is always hampered by the limited availability of relevant samples, necessitating the use of a single sample for multiple assays. TRIzol is a common reagent for RNA extraction, but DNA and protein fractions can also be used for other studies. However, little is known about using TRIzol-extracted proteins in proteomic research, partly because proteins extracted from TRIzol are very resistant to solubilization. Results To facilitate the use of TRIzol-extracted proteins, we first compared the ability of four different common solubilizing reagents to solubilize the TRIzol-extracted proteins from an osteosarcoma cell line, U2-OS. Then we analyzed the solubilized proteins by Surface Enhanced Laser Desorption/ Ionization technique (SELDI. The results showed that solubilization of TRIzol-extracted proteins with 9.5 M Urea and 2% CHAPS ([3-[(3-cholamidopropyl-dimethylammonio]propanesulfonate] (UREA-CHAPS was significantly better than the standard 1% SDS in terms of solubilization efficiency and the number of detectable ion peaks. Using three different types of SELDI arrays (CM10, H50, and IMAC-Cu, we demonstrated that peak detection with proteins solubilized by UREA-CHAPS was reproducible (r > 0.9. Further SELDI analysis indicated that the number of ion peaks detected in TRIzol-extracted proteins was comparable to a direct extraction method, suggesting many proteins still remain in the TRIzol protein fraction. Conclusion Our results suggest that UREA-CHAPS performed very well in solubilizing TRIzol-extracted proteins for SELDI applications. Protein fractions left over after TRIzol RNA extraction could be a valuable but neglected source for proteomic or biochemical analysis when additional samples are not available.

  16. Ionizing radiation interactions with DNA: nanodosimetry

    International Nuclear Information System (INIS)

    Bug, Marion; Nettelbeck, Heidi; Hilgers, Gerhard; Rabus, Hans

    2011-01-01

    The metrology of ionizing radiation is based on measuring values that are averaged over macroscopic volume elements, for instance the energy dose is defined as ratio of the energy deposited on the absorber and the absorber mass. For biological or medical radiation effects the stochastic nature of radiation interaction id of main importance, esp. the interaction of ionizing radiation with the DNA as the genetic information carrier. For radiotherapy and risk evaluation purposes a comprehensive system of radiation weighing factors and other characteristics, like radiation quality or relative biological efficacy was developed. The nanodosimetry is aimed to develop a metrological basis relying on physical characteristics of the microscopic structure of ionizing radiation tracks. The article includes the development of experimental nanodosimetric methods, the respective calibration techniques, Monte-Carlo simulation of the particle track microstructure and the correlation nanodosimetry and biological efficiency.

  17. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang [CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China); Dummi Mahadevan, Gurumurthy [CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China); Zhao, Feng, E-mail: fzhao@iue.ac.cn [CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021 (China)

    2016-12-15

    Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media.

  18. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar

    International Nuclear Information System (INIS)

    Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang; Dummi Mahadevan, Gurumurthy; Zhao, Feng

    2016-01-01

    Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media.

  19. Enhanced bioleaching efficiency of metals from E-wastes driven by biochar.

    Science.gov (United States)

    Wang, Shuhua; Zheng, Yue; Yan, Weifu; Chen, Lixiang; Dummi Mahadevan, Gurumurthy; Zhao, Feng

    2016-12-15

    Electronic wastes (E-wastes) contain a huge amount of valuable metals that are worth recovering. Bioleaching has attracted widespread attention as an environment-friendly and low-cost technology for the recycling of E-wastes. To avoid the disadvantages of being time-consuming or having a relatively low efficiency, biochar with redox activity was used to enhance bioleaching efficiency of metals from a basic E-waste (i.e., printed circuit boards in this study). The role of biochar was examined through three basic processes: Carbon-mediated, Sulfur-mediated and Iron-mediated bioleaching pathways. Although no obvious enhancement of bioleaching performance was observed in the C-mediated and S-mediated systems, Fe-mediated bioleaching was significantly promoted by the participation of biochar, and its leaching time was decreased by one-third compared with that of a biochar-free system. By mapping the dynamic concentration of Fe(II) and Cu(II), biochar was proved to facilitate the redox action between Fe(II) to Fe(III), which resulted in effective leaching of Cu. Two dominant functional species consisting of Alicyclobacillus spp. and Sulfobacillus spp. may cooperate in the Fe-mediated bioleaching system, and the ratio of these two species was regulated by biochar for enhancing the efficiency of bioleaching. Hence, this work provides a method to improve bioleaching efficiency with low-cost solid redox media. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The MOSDEF Survey: Direct Observational Constraints on the Ionizing Photon Production Efficiency, ξ ion, at z ∼ 2

    Science.gov (United States)

    Shivaei, Irene; Reddy, Naveen A.; Siana, Brian; Shapley, Alice E.; Kriek, Mariska; Mobasher, Bahram; Freeman, William R.; Sanders, Ryan L.; Coil, Alison L.; Price, Sedona H.; Fetherolf, Tara; Azadi, Mojegan; Leung, Gene; Zick, Tom

    2018-03-01

    We combine Hα and Hβ spectroscopic measurements and UV photometry for a sample of 673 galaxies from the MOSDEF survey to constrain hydrogen-ionizing photon production efficiencies ({ξ }ion}) at z = 1.4–2.6. We find = 25.06 (25.34), assuming the Calzetti (SMC) curve for the UV dust correction and a scatter of 0.28 dex in the {ξ }ion} distribution. After accounting for observational uncertainties and variations in dust attenuation, we conclude that the remaining scatter in {ξ }ion} is likely dominated by galaxy-to-galaxy variations in stellar populations, including the slope and upper-mass cutoff of the initial mass function, stellar metallicity, star formation burstiness, and stellar evolution (e.g., single/binary star evolution). Moreover, {ξ }ion} is elevated in galaxies with high ionization states (high [O III]/[O II]) and low oxygen abundances (low [N II]/Hα and high [O III]/Hβ) in the ionized ISM. However, {ξ }ion} does not correlate with the offset from the z ∼ 0 star-forming locus in the BPT diagram, suggesting no change in the hardness of the ionizing radiation accompanying the offset from the z ∼ 0 sequence. We also find that galaxies with blue UV spectral slopes ( =-2.1) have {ξ }ion} elevated by a factor of ∼2 relative to the average {ξ }ion} of the sample ( =-1.4). If these blue galaxies are similar to those at z > 6, our results suggest that a lower Lyman-continuum escape fraction is required for galaxies to maintain reionization, compared to the canonical {ξ }ion} predictions from stellar population models. Furthermore, we demonstrate that even with robustly dust-corrected Hα, the UV dust attenuation can cause on average a ∼0.3 dex systematic uncertainty in {ξ }ion} calculations.

  1. A model for electric field enhancement in lightning leader tips to levels allowing X-ray and γ ray emissions

    DEFF Research Database (Denmark)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2015-01-01

    A model is proposed capable of accounting for the local electric field increase in front of the lightning stepped leader up to magnitudes allowing front electrons to overcome the runaway energy threshold and thus to initiate relativistic runaway electron avalanches capable of generating X......-ray and ray bursts observed in negative lightning leader. The model is based on an idea that an ionization wave, propagating in a preionized channel, is being focused, such that its front remains narrow and the front electric field is being enhanced. It is proposed that when a space leader segment, formed...... that the ionization channels of streamers limit the lateral expansion of the ionization wave, thereby enhancing the peak electric field to values allowing an acceleration of low-energy electrons into the runaway regime where electrons efficiently generate bremsstrahlung. The results suggest that the inhomogeneous...

  2. Trace analysis of actinides in the environment using resonance ionization mass spectrometry

    International Nuclear Information System (INIS)

    Raeder, Sebastian

    2011-01-01

    In this work the resonant ionization of neutral atoms using laser radiation was applied and optimized for ultra-trace analysis of the actinides thorium, uranium, neptunium and plutonium. The sensitive detection of these actinides is a challange for the monitoring and quantification of radioactive releases from nuclear facilities. Using resonance ionization spectroscopy combined with a newly developed quadrupole-mass-spectrometer, numerous energy levels in the atomic structure of these actinides could be identified. With this knowledge efficient excitation schemes for the mentioned actinides could be identified and characterised. The applied in-source-ionization ensures for a high detection efficiency due to the good overlap of laser radiation with the atomic beam and allows therefore for a low sample consumption which is required for the analysis of radio nuclides. The selective excitation processes in the resonant ionization method supresses unwanted contaminations and was optimized for analytical detection of ultra-trace amounts in environmental samples as well as for determination of isotopic compositions. The efficient in-source-ionization combined with high power pulsed laser radiation allows for detections efficiency up to 1%. For plutonium detection limits in the range of 10 4 -10 5 atoms could be demonstrated for synthetic samples as well as for first environmental samples. The usage of narrow bandwidth continuous wave lasers in combination with a transversal overlap of the laser radiation and the free propagating atomic beam enable for resolving individual isotopic shifts of the resonant transitions. This results in a high selectivity against dominant neighboring isotopes but with a significant loss in detection efficiency. For the ultra-trace isotope 236 U a detection limit down to 10 -9 for the isotope ratio N ( 236 U)/N ( 238 U) could be determined.

  3. Air ionization as a control technology for off-gas emissions of volatile organic compounds.

    Science.gov (United States)

    Kim, Ki-Hyun; Szulejko, Jan E; Kumar, Pawan; Kwon, Eilhann E; Adelodun, Adedeji A; Reddy, Police Anil Kumar

    2017-06-01

    High energy electron-impact ionizers have found applications mainly in industry to reduce off-gas emissions from waste gas streams at low cost and high efficiency because of their ability to oxidize many airborne organic pollutants (e.g., volatile organic compounds (VOCs)) to CO 2 and H 2 O. Applications of air ionizers in indoor air quality management are limited due to poor removal efficiency and production of noxious side products, e.g., ozone (O 3 ). In this paper, we provide a critical evaluation of the pollutant removal performance of air ionizing system through comprehensive review of the literature. In particular, we focus on removal of VOCs and odorants. We also discuss the generation of unwanted air ionization byproducts such as O 3 , NOx, and VOC oxidation intermediates that limit the use of air-ionizers in indoor air quality management. Copyright © 2017. Published by Elsevier Ltd.

  4. Electronic structure and spectroscopy of nucleic acid bases: Ionization energies, ionization-induced structural changes, and photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bravaya, Ksenia B.; Kostko, Oleg; Dolgikh, Stanislav; Landau, Arie; Ahmed, Musahid; Krylov, Anna I.

    2010-08-02

    We report high-level ab initio calculations and single-photon ionization mass spectrometry study of ionization of adenine (A), thymine (T), cytosine (C) and guanine (G). For thymine and adenine, only the lowest-energy tautomers were considered, whereas for cytosine and guanine we characterized five lowest-energy tautomeric forms. The first adiabatic and several vertical ionization energies were computed using equation-of-motion coupled-cluster method for ionization potentials with single and double substitutions. Equilibrium structures of the cationic ground states were characterized by DFT with the {omega}B97X-D functional. The ionization-induced geometry changes of the bases are consistent with the shapes of the corresponding molecular orbitals. For the lowest-energy tautomers, the magnitude of the structural relaxation decreases in the following series G > C > A > T, the respective relaxation energies being 0.41, 0.32, 0.25 and 0.20 eV. The computed adiabatic ionization energies (8.13, 8.89, 8.51-8.67 and 7.75-7.87 eV for A,T,C and G, respectively) agree well with the onsets of the photoionization efficiency (PIE) curves (8.20 {+-} 0.05, 8.95 {+-} 0.05, 8.60 {+-} 0.05 and 7.75 {+-} 0.05 eV). Vibrational progressions for the S{sub 0}-D{sub 0} vibronic bands computed within double-harmonic approximation with Duschinsky rotations are compared with previously reported experimental photoelectron spectra.

  5. Determination of the fine structure in the ionization plots obtained from a mass spectrometer with a large energy dispersion

    International Nuclear Information System (INIS)

    Deruaz, Daniel.

    1974-01-01

    The precise determination of ionization potentials, fragment ion appearance potentials and different excited state levels of the positive ions formed, together with phenomena due to an electron impact, were studied from ionization efficiency curves obtained by mass spectrometry. A standard ion source and an analytical method of electron energy dispersion reduction were used to study fine structures of ionization efficiency curves. Since the mass spectrometer was not adapted for the acquisition of ionization efficiency curve data an electronic system was designed to record these curves automatically. A precise stepwise potential variation of 45+-0.04mV was obtained, and for each step an intensity proportional to the number of ions created by the fragment considered, the additional gain being 4.4 and the linearity greater than 1% over a 13-volt region. Before each set of measurements the scattering was determined by calculation of the second derivative of a logistic function deduced from the cubic regression of the experimental helium function ionization efficiency curve values. The precision, given by the variance analysis SNEDECOR F test, is higher than 1/1000. For each series of recordings the numerical values were processed by a computer to raise by twenty the signal to noise ratio and calculate the ionization efficiency curve values by the energy difference method and the iterative unfolding method. In this way a high sensitivity was obtained for the determination of the curves near the ionization threshold, and a precision below 50MeV (at least equivalent to that given by ionization cells with quasi-monoenergetic electron beams) for the values of the ionization potentials, the appearance potentials and the excited state energy levels. In order to judge the reliability of the technique the ionization potentials of a set of eleven complex molecules were determined and compared with the results obtained by photoionization and photoelectron spectrometry [fr

  6. A Study of the r-Process Path Nuclides,$^{137,138,139}$Sb using the Enhanced Selectivity of Resonance Ionization Laser Ionization

    CERN Multimedia

    Walters, W

    2002-01-01

    The particular features of the r-process abundances with 100 < A < 150 have demonstrated the close connection between knowledge of nuclear structure and decay along the r-process path and the astrophysical environement in which these elements are produced. Key to this connection has been the measurement of data for nuclides (mostly even-N nuclides) that lie in the actual r-process path. Such data are of direct use in r-process calculations and they also serve to refine and test the predictive power of nuclear models where little or no data now exist. In this experiment we seek to use the newly developed ionization scheme for the Resonance Ionization Laser Ion Source (RILIS) to achieve selective ionization of neutron-rich antimony isotopes in order to measure the decay properties of r-process path nuclides $^{137,138,139}$Sb. These properties include the half-lives, delayed neutron branches, and daughter $\\gamma$-rays. The new nuclear structure data for the daughter Te nuclides is also of considerable in...

  7. Preanalytical and analytical variation of surface-enhanced laser desorption-ionization time-of-flight mass spectrometry of human serum

    DEFF Research Database (Denmark)

    Albrethsen, Jakob; Bøgebo, Rikke; Olsen, Jesper

    2006-01-01

    BACKGROUND: Surface-enhanced laser desorption-ionization time-of-flight (SELDI-TOF) mass spectrometry of human serum is a potential diagnostic tool in human diseases. In the present study, the preanalytical and analytical variation of SELDI-TOF mass spectrometry of serum was assessed in healthy...... was 18% (6%-34%, n=4) for 16 peaks, and inter-individual CV was 38% (16%-56%, n=16) for 20 peaks. CONCLUSIONS: The pre-analytical and analytical conditions of SELDI-TOF mass spectrometry of serum have a significant impact on the protein peaks, with the number of peaks low and the assay variation high...

  8. Ionization and Coulomb explosion of small uranium oxide clusters

    International Nuclear Information System (INIS)

    Ross, Matt W; Castleman, A W Jr

    2012-01-01

    Femtosecond pulses are used to study the strong-field ionization and subsequent Coulomb explosion of small uranium oxide clusters. The resulting high atomic charge states are explored as a function of laser intensity and compared to ionization rates calculated using semi-classical tunneling theory with sequential ionization potential values. The gap in laser intensity between saturation intensity values for the 7s, 6d, and 5f orbitals are identified and quantified. Extreme charge states of oxygen up to O 4+ are observed indicating multiple ionization enhancement processes occurring within the clusters. The peak splittings of the atomic charge states are explored and compared to previous results on transition metal oxide species. Participation of the 5f orbitals in bonding is clearly identified based on the saturation intensity dependence of oxygen to uranium metal.

  9. Multi-pulse enhanced laser ion acceleration using plasma half cavity targets

    International Nuclear Information System (INIS)

    Scott, G. G.; Brenner, C. M.; Neely, D.; Green, J. S.; Robinson, A. P. L.; Spindloe, C.; Bagnoud, V.; Brabetz, C.; Zielbauer, B.; Carroll, D. C.; MacLellan, D. A.; McKenna, P.; Roth, M.; Wagner, F.

    2012-01-01

    We report on a plasma half cavity target design for laser driven ion acceleration that enhances the laser to proton energy conversion efficiency and has been found to modify the low energy region of the proton spectrum. The target design utilizes the high fraction of laser energy reflected from an ionized surface and refocuses it such that a double pulse interaction is attained. We report on numerical simulations and experimental results demonstrating that conversion efficiencies can be doubled, compared to planar foil interactions, when the secondary pulse is delivered within picoseconds of the primary pulse.

  10. Multi-pulse enhanced laser ion acceleration using plasma half cavity targets

    Energy Technology Data Exchange (ETDEWEB)

    Scott, G. G.; Brenner, C. M.; Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, OX11 0QX Didcot (United Kingdom); Department of Physics SUPA, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Green, J. S.; Robinson, A. P. L.; Spindloe, C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, OX11 0QX Didcot (United Kingdom); Bagnoud, V.; Brabetz, C.; Zielbauer, B. [PHELIX Group, Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Carroll, D. C.; MacLellan, D. A.; McKenna, P. [Department of Physics SUPA, University of Strathclyde, G4 0NG Glasgow (United Kingdom); Roth, M. [Fachbereich Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Wagner, F. [PHELIX Group, Gesellschaft fuer Schwerionenforschung, D-64291 Darmstadt (Germany); Fachbereich Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany)

    2012-07-09

    We report on a plasma half cavity target design for laser driven ion acceleration that enhances the laser to proton energy conversion efficiency and has been found to modify the low energy region of the proton spectrum. The target design utilizes the high fraction of laser energy reflected from an ionized surface and refocuses it such that a double pulse interaction is attained. We report on numerical simulations and experimental results demonstrating that conversion efficiencies can be doubled, compared to planar foil interactions, when the secondary pulse is delivered within picoseconds of the primary pulse.

  11. Operational Efficiency And Customer Satisfaction of Restaurants: Basis For Business Operation Enhancement

    Directory of Open Access Journals (Sweden)

    Annie Gay Barlan-Espino

    2017-02-01

    Full Text Available Restaurants’ primary objective is to provide comfort and satisfaction to guest without compromising the operational efficiency of the business. This research aimed to determine the operational efficiency and customer satisfaction of restaurants as a basis for business operation enhancement. Specifically to determine the operational efficiency of the restaurant in terms of kitchen operations and dining operations and the level of customer satisfaction of the restaurant business in terms of: Product, Policies, People, Processes and Proactivity as well as the problems encountered by the restaurant in their operation and customer service. Descriptive research design was used with managers and customers as respondents of the study. It was concluded that majority of the restaurants are operating for more than a year with sufficient number of employees having enough seating capacity that accommodate large volume of customers. Restaurants are efficient on the aspect of kitchen and dining operations and sometimes encountered problems. Customers are satisfied in terms of 5 P’s. It was found out that there is no significant difference in the operational efficiency of restaurant when grouped according to profile variables. An action plan for continuous business operation enhancement on operational efficiency and customer satisfaction was proposed.

  12. Current developments with TRIUMF’s titanium-sapphire laser based resonance ionization laser ion source

    Energy Technology Data Exchange (ETDEWEB)

    Lassen, J., E-mail: LASSEN@triumf.ca; Li, R. [TRIUMF (Canada); Raeder, S. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Zhao, X.; Dekker, T. [TRIUMF (Canada); Heggen, H. [GSI Helmholtzzentrum für Schwerionenforschung GmbH (Germany); Kunz, P.; Levy, C. D. P.; Mostanmand, M.; Teigelhöfer, A.; Ames, F. [TRIUMF (Canada)

    2017-11-15

    Developments at TRIUMF’s isotope separator and accelerator (ISAC) resonance ionization laser ion source (RILIS) in the past years have concentrated on increased reliability for on-line beam delivery of radioactive isotopes to experiments, as well as increasing the number of elements available through resonance ionization and searching for ionization schemes with improved efficiency. The current status of these developments is given with a list of two step laser ionization schemes implemented recently.

  13. Energy Efficient Clustering Protocol to Enhance Performance of Heterogeneous Wireless Sensor Network: EECPEP-HWSN

    Directory of Open Access Journals (Sweden)

    Santosh V. Purkar

    2018-01-01

    Full Text Available Heterogeneous wireless sensor network (HWSN fulfills the requirements of researchers in the design of real life application to resolve the issues of unattended problem. But, the main constraint faced by researchers is the energy source available with sensor nodes. To prolong the life of sensor nodes and thus HWSN, it is necessary to design energy efficient operational schemes. One of the most suitable approaches to enhance energy efficiency is the clustering scheme, which enhances the performance parameters of WSN. A novel solution proposed in this article is to design an energy efficient clustering protocol for HWSN, to enhance performance parameters by EECPEP-HWSN. The proposed protocol is designed with three level nodes namely normal, advanced, and super, respectively. In the clustering process, for selection of cluster head we consider different parameters available with sensor nodes at run time that is, initial energy, hop count, and residual energy. This protocol enhances the energy efficiency of HWSN and hence improves energy remaining in the network, stability, lifetime, and hence throughput. It has been found that the proposed protocol outperforms than existing well-known LEACH, DEEC, and SEP with about 188, 150, and 141 percent respectively.

  14. Flexible organic solar cells including efficiency enhancing grating structures

    International Nuclear Information System (INIS)

    De Oliveira Hansen, Roana Melina; Liu Yinghui; Madsen, Morten; Rubahn, Horst-Günter

    2013-01-01

    In this work, a new method for the fabrication of organic solar cells containing functional light-trapping nanostructures on flexible substrates is presented. Polyimide is spin-coated on silicon support substrates, enabling standard micro- and nanotechnology fabrication techniques, such as photolithography and electron-beam lithography, besides the steps required for the bulk-heterojunction organic solar cell fabrication. After the production steps, the solar cells on polyimide are peeled off the silicon support substrates, resulting in flexible devices containing nanostructures for light absorption enhancement. Since the solar cells avoid using brittle electrodes, the performance of the flexible devices is not affected by the peeling process. We have investigated three different nanostructured grating designs and conclude that gratings with a 500 nm pitch distance have the highest light-trapping efficiency for the selected active layer material (P3HT:PCBM), resulting in an enhancement of about 34% on the solar cell efficiency. The presented method can be applied to a large variety of flexible nanostructured devices in future applications. (paper)

  15. Electret ionization chamber: a new method for detection and dosimetry of thermal neutrons

    International Nuclear Information System (INIS)

    Ghilardi, A.J.P.

    1988-01-01

    An electret ionization chamber with boron coated walls is presented as a new method for detecting thermal neutrons. The efficiency of electret ionization chambers with different wall materials for the external electrode was inferred from the results. Detection of slow neutrons with discrimination against the detection of γ-rays and energetic neutrons was shown to depend on the selection of these materials. The charge stability over a long period of time and the charge decay owing to natural radiation were also studied. Numerical analysis was developed by the use of a micro-computer PC-XT. Both the experimental and numerical results show that the sensitivity of the electret ionization chamber for detection of thermal neutrons is comparable with that of the BF 3 ionization chamber and that new technologies for deposition of the boron layer will produce higher efficiency detectors. (author). 102 refs, 32 fig, 10 tabs

  16. Electron ionization and dissociation of aliphatic amino acids

    Science.gov (United States)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  17. A high efficiency thermal ionization source adapted to mass spectrometers

    International Nuclear Information System (INIS)

    Chamberlin, E.P.; Olivares, J.A.

    1996-01-01

    A tungsten crucible thermal ionization source mounted on a quadrupole mass spectrometer is described. The crucible is a disposable rod with a fine hole bored in one end; it is heated by electron bombardment. The schematic design of the assembly, including water cooling, is described and depicted. Historically, the design is derived from that of ion sources used on ion separators at Los Alamos and Dubna, but the crucible is made smaller and simplified. 10 refs., 4 figs

  18. Enhanced efficiency of a fluorescing nanoparticle with a silver shell

    Energy Technology Data Exchange (ETDEWEB)

    Choy, Wallace C H; Chen Xuewen [Department of Electrical and Electronic Engineering, University of Hong Kong, Pokfulam Road (Hong Kong); He Sailing [Centre for Optical and Electromagnetic Research, Zhejiang University, Zhijingang campus, Hangzhou 310058 (China)], E-mail: chchoy@eee.hku.hk

    2009-09-01

    Spontaneous emission (SE) rate and the fluorescence efficiency of a bare fluorescing nanoparticle (NP) and the NP with a silver nanoshell are analyzed rigorously by using a classical electromagnetic approach with the consideration of the nonlocal effect of the silver nano-shell. The dependences of the SE rate and the fluorescence efficiency on the core-shell structure are carefully studied and the physical interpretations of the results are addressed. The results show that the SE rate of a bare NP is much slower than that in the infinite medium by almost an order of magnitude and consequently the fluorescence efficiency is usually low. However, by encapsulating the NP with a silver shell, highly efficient fluorescence can be achieved as a result of a large Purcell enhancement and high out-coupling efficiency (OQE) for a well-designed core-shell structure. We also show that a higher SE rate may not offer a larger fluorescence efficiency since the fluorescence efficiency not only depends on the internal quantum yield but also the OQE.

  19. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation

    DEFF Research Database (Denmark)

    Larsen, Erik Huusfeldt; Sturup, Stefan

    1994-01-01

    Addition of carbon as methanol or ammonium carbonate to the aqueous analyte solutions in combination with increased plasma power input enhanced the inductively coupled plasma mass spectrometry (ICP-MS) signal intensities of arsenic and selenium. In the presence of the optimum 3% v/v methanol...... (noise) was not increased. Therefore, the observed increase in analyte sensitivity led to a similar increase in signal-to-noise ratio. The addition of carbon as ammonium carbonate enhanced the arsenic signal by a similar factor but caused severe contamination of the ICP-MS instrument by carbon. In the 3....../nebulization efficiency. It is proposed that an increased population of carbon ions or carbon-containing ions in the plasma facilitates a more complete ionization of analytes lower in ionization energy than carbon itself. The enhanced detection power for arsenic was applied to arsenic speciation by high...

  20. Simulation of the saturation curve of the ionization chamber in overlapping pulsed radiation

    International Nuclear Information System (INIS)

    Park, Se Hwan; Kim, Yong Kyun; Kim, Han Soo; Kang, Sang Mook; Ha, Jang Ho

    2006-01-01

    Procedures for determination of collection efficiency in ionization chambers have been studied by numerous investigators. If the theoretical approach for air-filled ionization chambers exposed to continuous radiation is considered, the result in the near-saturation region is a linear relationship between ) (1/I(V) vs 1/V 2 , where I(V) is the current measured with the ionization chamber at a given polarization voltage V . For pulsed radiation beams, Boag developed a model and the resulted in a linear relationship between ) (1/I(V) and 1/V when the collection efficiency, f , is larger than 0.9. The assumption of the linear relationship of ) (1/I(V) with 1/V or 1/V 2 in the near-saturation region makes the determination of the saturation current simple, since the linear relationship may be determined with only two measured data points. The above discussion of the collection efficiency of the ionization chamber exposed to the pulsed radiation is valid only if each pulse is cleared before the next one occurs. The transit times of the ions in the chamber must be shorter than the time interval between the radiation pulses. Most of the previous works concerning the characteristics of the saturation curve of an ionization chamber in the pulsed beam were done for the case where the transit times of the ions were shorter than the interval between the radiation pulses. However, the experimental data for the intermediate case, where the ion transit time was comparable to the interval between the radiation pulses or the ion transit time was slightly longer than the interval between the radiation pulses, were rare. The saturation curves of the ionization chambers in the pulsed radiation were measured with the pulse beamed electron accelerator at the Korea Atomic Energy Research Institute (KAERI), where the ion transit times in the ionization chambers were longer than the time interval between the radiation pulses. We used two ionization chambers: one was a commercial thimble

  1. A novel MPPT method for enhancing energy conversion efficiency taking power smoothing into account

    International Nuclear Information System (INIS)

    Liu, Jizhen; Meng, Hongmin; Hu, Yang; Lin, Zhongwei; Wang, Wei

    2015-01-01

    Highlights: • We discuss the disadvantages of conventional OTC MPPT method. • We study the relationship between enhancing efficiency and power smoothing. • The conversion efficiency is enhanced and the volatility of power is suppressed. • Small signal analysis is used to verify the effectiveness of proposed method. - Abstract: With the increasing capacity of wind energy conversion system (WECS), the rotational inertia of wind turbine is becoming larger. And the efficiency of energy conversion is significantly reduced by the large inertia. This paper proposes a novel maximum power point tracking (MPPT) method to enhance the efficiency of energy conversion for large-scale wind turbine. Since improving the efficiency may increase the fluctuations of output power, power smoothing is considered as the second control objective. A T-S fuzzy inference system (FIS) is adapted to reduce the fluctuations according to the volatility of wind speed and accelerated rotor speed by regulating the compensation gain. To verify the effectiveness, stability and good dynamic performance of the new method, mechanism analyses, small signal analyses, and simulation studies are carried out based on doubly-fed induction generator (DFIG) wind turbine, respectively. Study results show that both the response speed and the efficiency of proposed method are increased. In addition, the extra fluctuations of output power caused by the high efficiency are reduced effectively by the proposed method with FIS

  2. Charge Exchange Reaction in Dopant-Assisted Atmospheric Pressure Chemical Ionization and Atmospheric Pressure Photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Kauppila, Tiina J; Kostiainen, Risto

    2016-08-01

    The efficiencies of charge exchange reaction in dopant-assisted atmospheric pressure chemical ionization (DA-APCI) and dopant-assisted atmospheric pressure photoionization (DA-APPI) mass spectrometry (MS) were compared by flow injection analysis. Fourteen individual compounds and a commercial mixture of 16 polycyclic aromatic hydrocarbons were chosen as model analytes to cover a wide range of polarities, gas-phase ionization energies, and proton affinities. Chlorobenzene was used as the dopant, and methanol/water (80/20) as the solvent. In both techniques, analytes formed the same ions (radical cations, protonated molecules, and/or fragments). However, in DA-APCI, the relative efficiency of charge exchange versus proton transfer was lower than in DA-APPI. This is suggested to be because in DA-APCI both dopant and solvent clusters can be ionized, and the formed reagent ions can react with the analytes via competing charge exchange and proton transfer reactions. In DA-APPI, on the other hand, the main reagents are dopant-derived radical cations, which favor ionization of analytes via charge exchange. The efficiency of charge exchange in both DA-APPI and DA-APCI was shown to depend heavily on the solvent flow rate, with best efficiency seen at lowest flow rates studied (0.05 and 0.1 mL/min). Both DA-APCI and DA-APPI showed the radical cation of chlorobenzene at 0.05-0.1 mL/min flow rate, but at increasing flow rate, the abundance of chlorobenzene M(+.) decreased and reagent ion populations deriving from different gas-phase chemistry were recorded. The formation of these reagent ions explains the decreasing ionization efficiency and the differences in charge exchange between the techniques. Graphical Abstract ᅟ.

  3. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    Energy Technology Data Exchange (ETDEWEB)

    Gotz, M; Karsch, L [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Pawelke, J [Oncoray - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitaet Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany); Helmholtz-Zentrum Dresden - Rossendorf, Dresden (Germany)

    2016-06-15

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fit of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future

  4. SU-C-201-03: Ionization Chamber Collection Efficiency in Pulsed Radiation Fields of High Pulse Dose

    International Nuclear Information System (INIS)

    Gotz, M; Karsch, L; Pawelke, J

    2016-01-01

    Purpose: To investigate the reduction of collection efficiency of ionization chambers (IC) by volume recombination and its correction in pulsed fields of very high pulse dose. Methods: Measurements of the collection efficiency of a plane-parallel advanced Markus IC (PTW 34045, 1mm electrode spacing, 300V nominal voltage) were obtained for collection voltages of 100V and 300V by irradiation with a pulsed electron beam (20MeV) of varied pulse dose up to approximately 600mGy (0.8nC liberated charge). A reference measurement was performed with a Faraday cup behind the chamber. It was calibrated for the liberated charge in the IC by a linear fit of IC measurement to reference measurement at low pulse doses. The results were compared to the commonly used two voltage approximation (TVA) and to established theories for volume recombination, with and without considering a fraction of free electrons. In addition, an equation system describing the charge transport and reactions in the chamber was solved numerically. Results: At 100V collection voltage and moderate pulse doses the established theories accurately predict the observed collection efficiency, but at extreme pulse doses a fraction of free electrons needs to be considered. At 300V the observed collection efficiency deviates distinctly from that predicted by any of the established theories, even at low pulse doses. However, the numeric solution of the equation system is able to reproduce the measured collection efficiency across the entire dose range of both voltages with a single set of parameters. Conclusion: At high electric fields (3000V/cm here) the existing theoretical descriptions of collection efficiency, including the TVA, are inadequate to predict pulse dose dependency. Even at low pulse doses they might underestimate collection efficiency. The presented, more accurate numeric solution, which considers additional effects like electric shielding by the charges, might provide a valuable tool for future

  5. Charge correlation effects on ionization of weak polyelectrolytes

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2009-01-01

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  6. DNA supercoiling enhances cooperativity and efficiency of an epigenetic switch

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Andersson, Magnus; Sneppen, Kim

    2013-01-01

    Bacteriophage λ stably maintains its dormant prophage state but efficiently enters lytic development in response to DNA damage. The mediator of these processes is the λ repressor protein, CI, and its interactions with λ operator DNA. This λ switch is a model on the basis of which epigenetic switch...... with relaxed DNA, the presence of supercoils greatly enhances juxtaposition probability. Also, the efficiency and cooperativity of the λ switch is significantly increased in the supercoiled system compared with a linear assay, increasing the Hill coefficient....

  7. Solitary wave evolution in a magnetized inhomogeneous plasma under the effect of ionization

    International Nuclear Information System (INIS)

    Jyoti; Malik, Hitendra K.

    2011-01-01

    A modified form of Korteweg-deVries (KdV) equation appropriate to nonlinear ion acoustic solitary waves in an inhomogeneous plasma is derived in the presence of an external magnetic field and constant ionization in the plasma. This equation differs from usual version of the KdV equation because of the inclusion of two terms arising due to ionization and density gradient present in the plasma. In this plasma, only the compressive solitary waves are found to propagate corresponding to the fast and slow modes. The amplitude of the solitary wave increases with an enhancement in the ionization for the fast mode as well as for the slow mode. The effect of magnetic field is to enhance the width of the solitary structure. The amplitude is found to increase (decrease) with an enhancement in charge number of the ions for the fast (slow) mode. The tailing structure becomes more (less) prominent with the rise in ion drift velocity for the case of fast (slow) mode.

  8. The efficiency of tyrosine kinase inhibitor therapy in patients with chronic myeloid leukemia exposed to ionizing radiation due to the Chornobyl nuclear power plant accident

    International Nuclear Information System (INIS)

    Dmitrenko, Yi.V.; Fedorenko, V.G.; Shlyakhtichenko, T.Yu.; And Others

    2014-01-01

    Additional chromosomal abnormalities as well as special pattern of BCR/ABL transcripts were not revealed in CML patients exposed to ionizing radiation. Complete cytogenetic response (CCR) was shown in 50 and 48.5 % of patients from study and comparison group, respectively. Major molecular response (MMR) was achieved in 20 % of patients with radiation exposure in anamnesis and in 27.6 % of patients from comparison group. The vast majority of CCR and MMR was reached in patients with the pretreatment term up to 6 months, when imatinib was used as a first line therapy. There were less cases of primary imatinib resistance in the same group of patients. In CML patients who had a history of radiation exposure, secondary resistance developed more frequently than in the comparison group and was 25 %. Laboratory monitoring based on the registration of CCR and MMR demonstrated high efficiency of TKI in the CML treatment of patients, exposed due to Chornobyl accident. Extension of pretreatment term leads to the loss of TKI therapy efficiency and increases the likelihood of primary resistance. CML patients exposed to ionizing radiation develop secondary resistance more often than CML patients without radiation exposure in anamnesis

  9. Enhancement of precision and accuracy by Monte-Carlo simulation of a well-type pressurized ionization chamber used in radionuclide metrology

    International Nuclear Information System (INIS)

    Kryeziu, D.

    2006-09-01

    The aim of this work was to test and validate the Monte-Carlo (MC) ionization chamber simulation method in calculating the activity of radioactive solutions. This is required when no or not sufficient experimental calibration figures are available as well as to improve the accuracy of activity measurements for other radionuclides. Well-type or 4π γ ISOCAL IV ionization chambers (IC) are widely used in many national standard laboratories around the world. As secondary standard measuring systems these radionuclide calibrators serve to maintain measurement consistency checks and to ensure the quality of standards disseminated to users for a wide range of radionuclide where many of them are with special interest in nuclear medicine as well as in different applications on radionuclide metrology. For the studied radionuclides the calibration figures (efficiencies) and their respective volume correction factors are determined by using the PENELOPE MC computer code system. The ISOCAL IV IC filled with nitrogen gas at approximately 1 MPa is simulated. The simulated models of the chamber are designed by means of reduced quadric equation and applying the appropriate mathematical transformations. The simulations are done for various container geometries of the standard solution which take forms of: i) sealed Jena glass 5 ml PTB standard ampoule, ii) 10 ml (P6) vial and iii) 10 R Schott Type 1+ vial. Simulation of the ISOCAL IV IC is explained. The effect of density variation of the nitrogen filling gas on the sensitivity of the chamber is investigated. The code is also used to examine the effects of using lead and copper shields as well as to evaluate the sensitivity of the chamber to electrons and positrons. Validation of the Monte-Carlo simulation method has been proved by comparing the Monte-Carlo simulation calculated and experimental calibration figures available from the National Physical Laboratory (NPL) England which are deduced from the absolute activity

  10. Charge Enhancement of Single-Stranded DNA in Negative Electrospray Ionization Using the Supercharging Reagent Meta-nitrobenzyl Alcohol

    Science.gov (United States)

    Brahim, Bessem; Alves, Sandra; Cole, Richard B.; Tabet, Jean-Claude

    2013-12-01

    Charge enhancement of single-stranded oligonucleotide ions in negative ESI mode is investigated. The employed reagent, meta-nitrobenzyl alcohol (m-NBA), was found to improve total signal intensity (Itot), increase the highest observed charge states (zhigh), and raise the average charge states (zavg) of all tested oligonucleotides analyzed in negative ESI. To quantify these increases, signal enhancement ratios (SER1%) and charge enhancement coefficients (CEC1%) were introduced. The SER1%, (defined as the quotient of total oligonucleotide ion abundances with 1 % m-NBA divided by total oligonucleotide abundance without m-NBA) was found to be greater than unity for every oligonucleotide tested. The CEC1% values (defined as the average charge state in the presence of 1 % m-NBA minus the average charge state in the absence of m-NBA) were found to be uniformly positive. Upon close inspection, the degree of charge enhancement for longer oligonucleotides was found to be dependent upon thymine density (i.e., the number and the location of phospho-thymidine units). A correlation between the charge enhancement induced by the presence of m-NBA and the apparent gas-phase acidity (largely determined by the sequence of thymine units but also by the presence of protons on other nucleobases) of multiply deprotonated oligonucleotide species, was thus established. Ammonium cations appeared to be directly involved in the m-NBA supercharging mechanism, and their role seems to be consistent with previously postulated ESI mechanisms describing desorption/ionization of single-stranded DNA into the gas phase.

  11. High-order multiphoton ionization photoelectron spectroscopy of NO

    International Nuclear Information System (INIS)

    Carman, H.S. Jr.; Compton, R.N.

    1987-01-01

    Photoelectron energy angular distributions of NO following three different high-order multiphoton ionization (MPI) schemes have been measured. The 3 + 3 resonantly enhanced multiphoton ionization (REMPI) via the A 2 Σ + (v=O) level yielded a distribution of electron energies corresponding to all accessible vibrational levels (v + =O-6) of the nascent ion. Angular distributions of electrons corresponding to v + =O and v + =3 were significantly different. The 3 + 2 REMPI via the A 2 Σ + (v=1) level produced only one low-energy electron peak (v + =1). Nonresonant MPI at 532 nm yielded a distribution of electron energies corresponding to both four- and five-photon ionization. Prominent peaks in the five-photon photoelectron spectrum (PES) suggest contributions from near-resonant states at the three-photon level. 4 refs., 3 figs

  12. Selective laser ionization for mass-spectral isotopic analysis

    International Nuclear Information System (INIS)

    Miller, C.M.; Nogar, N.S.; Downey, S.W.

    1983-01-01

    Resonant enhancement of the ionization process can provide a high degree of elemental selectivity, thus eliminating or drastically reducing the interference problem. In addition, extension of this method to isotopically selective ionization has the potential for greatly increasing the range of isotope ratios that can be determined experimentally. This gain can be realized by reducing or eliminating the tailing of the signal from the high-abundance isotope into that of the low-abundance isotope, augmenting the dispersion of the mass spectrometer. We briefly discuss the hardware and techniques used in both our pulsed and cw RIMS experiments. Results are presented for both cw ionization experiments on Lu/Yb mixtures, and spectroscopic studies of multicolor RIMS of Tc. Lastly, we discuss practical limits of cw RIMS analysis in terms of detection limits and measurable isotope ratios

  13. Enhanced malignant transformation is accompanied by increased survival recovery after ionizing radiation in Chinese hamster embryo fibroblasts

    International Nuclear Information System (INIS)

    Boothman, D.A.

    1994-01-01

    Transformed Chinese hamster embryo fibroblasts (CHEF), which gradually increase in tumor-forming ability in nude mice, were isolated from normal diploid CHEF/18 cells. Transformed CHEF cells (i.e., T30-4 > 21-2M3 > 21-2 > normal CHEF/18) showed gradual increases in potentially lethal damage (PLD) survival recovery. β-Lapachone and camptothecin, modulators of topoisomerase I (Topo I) activity, not only prevented survival recovery in normal as well as in tumor cells, but enhanced unscheduled DNA synthesis. These seemingly conflicting results are due to the fact that Topo I activity can be modulated by inhibitors to convert single-stranded DNA lesions into double-stranded breaks. Increases in unscheduled DNA synthesis may result from a continual supply of free ends, on which DNA repair processes may act. Altering Topo I activity with modulators appears to increase X-ray lethality via a DNA lesion modification suicide pathway. Cells down-regulate Topo I immediately after ionizing radiation to prevent Topo I-mediated lesion modification and to enhance survival recovery. 16 refs., 3 figs., 1 tab

  14. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency

    Directory of Open Access Journals (Sweden)

    Fan Qiuling

    2012-05-01

    Full Text Available Abstract Background Whole plants or plant cell cultures can serve as low cost bioreactors to produce massive amounts of a specific protein for pharmacological or industrial use. To maximize protein expression, translation of mRNA must be optimized. Many plant viral RNAs harbor extremely efficient translation enhancers. However, few of these different translation elements have been compared side-by-side. Thus, it is unclear which are the most efficient translation enhancers. Here, we compare the effects of untranslated regions (UTRs containing translation elements from six plant viruses on translation in wheat germ extract and in monocotyledenous and dicotyledenous plant cells. Results The highest expressing uncapped mRNAs contained viral UTRs harboring Barley yellow dwarf virus (BYDV-like cap-independent translation elements (BTEs. The BYDV BTE conferred the most efficient translation of a luciferase reporter in wheat germ extract and oat protoplasts, while uncapped mRNA containing the BTE from Tobacco necrosis virus-D translated most efficiently in tobacco cells. Capped mRNA containing the Tobacco mosaic virus omega sequence was the most efficient mRNA in tobacco cells. UTRs from Satellite tobacco necrosis virus, Tomato bushy stunt virus, and Crucifer-infecting tobamovirus (crTMV did not stimulate translation efficiently. mRNA with the crTMV 5′ UTR was unstable in tobacco protoplasts. Conclusions BTEs confer the highest levels of translation of uncapped mRNAs in vitro and in vivo, while the capped omega sequence is most efficient in tobacco cells. These results provide a basis for understanding mechanisms of translation enhancement, and for maximizing protein synthesis in cell-free systems, transgenic plants, or in viral expression vectors.

  15. A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging

    Science.gov (United States)

    Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih

    2018-02-01

    Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.

  16. Graphene oxide membrane as an efficient extraction and ionization substrate for spray-mass spectrometric analysis of malachite green and its metabolite in fish samples.

    Science.gov (United States)

    Wei, Shih-Chun; Fan, Shen; Lien, Chia-Wen; Unnikrishnan, Binesh; Wang, Yi-Sheng; Chu, Han-Wei; Huang, Chih-Ching; Hsu, Pang-Hung; Chang, Huan-Tsung

    2018-03-20

    A graphene oxide (GO) nanosheet-modified N + -nylon membrane (GOM) has been prepared and used as an extraction and spray-ionization substrate for robust mass spectrometric detection of malachite green (MG), a highly toxic disinfectant in liquid samples and fish meat. The GOM is prepared by self-deposition of GO thin film onto an N + -nylon membrane, which has been used for efficient extraction of MG in aquaculture water samples or homogenized fish meat samples. Having a dissociation constant of 2.17 × 10 -9  M -1 , the GOM allows extraction of approximately 98% of 100 nM MG. Coupling of the GOM-spray with an ion-trap mass spectrometer allows quantitation of MG in aquaculture freshwater and seawater samples down to nanomolar levels. Furthermore, the system possesses high selectivity and sensitivity for the quantitation of MG and its metabolite (leucomalachite green) in fish meat samples. With easy extraction and efficient spray ionization properties of GOM, this membrane spray-mass spectrometry technique is relatively simple and fast in comparison to the traditional LC-MS/MS methods for the quantitation of MG and its metabolite in aquaculture products. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Efficiency enhancement of GT-MHRs applied on ship propulsion plants

    Energy Technology Data Exchange (ETDEWEB)

    Ferreiro Garcia, Ramon, E-mail: ferreiro@udc.es [Dept. Industrial Engineering, University of A Coruna, ETSNM, C/Paseo de Ronda, 51, 15011 A Coruna (Spain); Carril, Jose Carbia; Catoira, Alberto DeMiguel; Romero Gomez, Javier [Dept. Energy and Propulsion, University of A Coruna ETSNM, C/Paseo de Ronda, 51, 15011 A Coruna (Spain)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Efficient ship propulsion system powered by HTRs. Black-Right-Pointing-Pointer A conventional Rankine cycle renders high efficiency. Black-Right-Pointing-Pointer The intermediate heat exchanger isolates the nuclear reactor from the process heat application. Black-Right-Pointing-Pointer An intermediate heat exchanger allows the system to be built to non-nuclear standards. - Abstract: High temperature reactors including gas cooled fast reactors and gas turbine modular helium reactors (GT-MHR) may operate as electric power suppliers to be applied on ship propulsion plants. In such propulsion systems performance enhancement can be achieved at effective cost under safety conditions using alternative cycles to the conventional Brayton cycle. Mentioned improvements concern the implementation of an ultra supercritical Rankine cycle, in which water is used as working fluid. The proposed study is carried out in order to achieve performance enhancement on the basis of turbine temperature increasing. The helium cooled high temperature reactor supplies thermal energy to the Rankine cycle via an intermediate heat exchanger (IHE) under safety conditions. The results of the study show that the efficiency of the propulsion plant using a multi-reheat Rankine cycle is significantly improved (from actual 48% to more than 55%) while keeping safety standards.

  18. A combination thermal dissociation/electron impact ionization source for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Cui, B.; Welton, R.F.

    1996-01-01

    The flourishing interest in radioactive ion beams (RIBs) with intensities adequate for astrophysics and nuclear physics research place a premium on targets that will swiftly release trace amounts of short lived radio-nuclei in the presence of bulk quantities of target material and ion sources that have the capability of efficiently ionizing the release products. Because of the low probability of simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecules containing the element of interest with conventional, hot-cathode, electron-impact ion sources, the species of interest is often distributed in several mass channels in the form of molecular sideband beams and, consequently, the intensity is diluted. The authors have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high efficiency characteristics of an electron impact ionization source to address these problems. If the concept proves to be a viable option, the source will be used as a complement to the electron beam plasma ion sources already in use at the HRIBF. The design features and principles of operation of the source are described in this article

  19. Chemical protection against ionizing radiation. Final report

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references

  20. Chemical protection against ionizing radiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Livesey, J.C.; Reed, D.J.; Adamson, L.F.

    1984-08-01

    The scientific literature on radiation-protective drugs is reviewed. Emphasis is placed on the mechanisms involved in determining the sensitivity of biological material to ionizing radiation and mechanisms of chemical radioprotection. In Section I, the types of radiation are described and the effects of ionizing radiation on biological systems are reviewed. The effects of ionizing radiation are briefly contrasted with the effects of non-ionizing radiation. Section II reviews the contributions of various natural factors which influence the inherent radiosensitivity of biological systems. Inlcuded in the list of these factors are water, oxygen, thiols, vitamins and antioxidants. Brief attention is given to the model describing competition between oxygen and natural radioprotective substances (principally, thiols) in determining the net cellular radiosensitivity. Several theories of the mechanism(s) of action of radioprotective drugs are described in Section III. These mechanisms include the production of hypoxia, detoxication of radiochemical reactive species, stabilization of the radiobiological target and the enhancement of damage repair processes. Section IV describes the current strategies for the treatment of radiation injury. Likely areas in which fruitful research might be performed are described in Section V. 495 references.

  1. Innovative alpha radioactivity monitor for clearance level inspection based on ionized air transport technology (2). CFD-simulated and experimental ion transport efficiencies for uranium-attached pipes

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Nakahara, Katsuhiko; Sano, Akira; Sato, Mitsuyoshi; Aoyama, Yoshio; Miyamoto, Yasuaki; Yamaguchi, Hiromi; Nanbu, Kenichi; Takahashi, Hiroyuki; Oda, Akinori

    2007-01-01

    An innovative alpha radioactivity monitor for clearance level inspection has been developed. This apparatus measures an ion current resulting from air ionization by alpha particles. Ions generated in the measurement chamber of about 1 m 3 in volume are transported by airflow to a sensor and measured. This paper presents computational estimation of ion transport efficiencies for two pipes with different lengths, the inner surfaces of which were covered with a thin layer of uranium. These ion transport efficiencies were compared with those experimentally obtained for the purpose of our model validation. Good agreement was observed between transport efficiencies from simulations and those experimentally estimated. Dependence of the transport efficiencies on the region of uranium coating was also examined, based on which anticipated errors arising from unclear positions of contamination are also discussed. (author)

  2. Ionization-induced rearrangement of defects in silicon

    International Nuclear Information System (INIS)

    Vinetskij, V.L.; Manojlo, M.A.; Matvijchuk, A.S.; Strikha, V.I.; Kholodar', G.A.

    1988-01-01

    Ionizing factor effect on defect rearrangement in silicon including centers with deep local electron levels in the p-n-transition region is considered. Deep center parameters were determined using non-steady-state capacity spectroscopy of deep levels (NCDLS) method. NCDLS spectrum measurement was performed using source p + -n - diodes and after their irradiation with 15 keV energy electrons or laser pulses. It is ascertained that in silicon samples containing point defect clusters defect rearrangement under ionizing factor effect takes place, i.e. deep level spectra are changed. This mechanism is efficient in case of silicon irradiation with subthreshold energy photons and electrons and can cause degradation of silicon semiconducting structures

  3. [Ionizing and non-ionizing radiation (comparative risk estimations)].

    Science.gov (United States)

    Grigor'ev, Iu G

    2012-01-01

    The population has widely used mobile communication for already more than 15 years. It is important to note that the use of mobile communication has sharply changed the conditions of daily exposure of the population to EME We expose our brain daily for the first time in the entire civilization. The mobile phone is an open and uncontrollable source of electromagnetic radiation. The comparative risk estimation for the population of ionizing and non-ionizing radiation was carried out taking into account the real conditions of influence. Comparison of risks for the population of ionizing and non-ionizing radiation leads us to a conclusion that EMF RF exposure in conditions of wide use of mobile communication is potentially more harmful than ionizing radiation influence.

  4. Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    Science.gov (United States)

    Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases. PMID:21887385

  5. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    Full Text Available Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK and serine/threonine kinase 11(LKB1-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  6. After-installation service, a contribution to enhanced economic efficiency of reactors

    International Nuclear Information System (INIS)

    Bilger, H.

    1996-01-01

    After-installation service agreements are concluded in general for the following plant systems or tasks: power operation, inspection and repair during outages, plant enhancements (retrofitting), instrumentation and control (software). The paper gives various examples selected from power plant practice in Germany, showing that service contracts are a major factor contributing to maintaining economic efficiency, or enhancing it. Examples of nuclear power plant management abroad relying on service contracts are also given (USA, France, Japan). (orig./HP) [de

  7. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency.

    Science.gov (United States)

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y Eugene; Zhang, Jifeng

    2016-01-28

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells.

  8. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency

    Science.gov (United States)

    Song, Jun; Yang, Dongshan; Xu, Jie; Zhu, Tianqing; Chen, Y. Eugene; Zhang, Jifeng

    2016-01-01

    Zinc-finger nuclease, transcription activator-like effector nuclease and CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) are becoming major tools for genome editing. Importantly, knock-in in several non-rodent species has been finally achieved thanks to these customizable nucleases; yet the rates remain to be further improved. We hypothesize that inhibiting non-homologous end joining (NHEJ) or enhancing homology-directed repair (HDR) will improve the nuclease-mediated knock-in efficiency. Here we show that the in vitro application of an HDR enhancer, RS-1, increases the knock-in efficiency by two- to five-fold at different loci, whereas NHEJ inhibitor SCR7 has minimal effects. We then apply RS-1 for animal production and have achieved multifold improvement on the knock-in rates as well. Our work presents tools to nuclease-mediated knock-in animal production, and sheds light on improving gene-targeting efficiencies on pluripotent stem cells. PMID:26817820

  9. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  10. GENOMIC ANALYSIS OF PLANT-ASSOCIATED BACTERIA AND THEIR POTENTIAL IN ENHANCING PHYTOREMEDIATION EFFICIENCY

    Directory of Open Access Journals (Sweden)

    Artur Piński

    2017-07-01

    Full Text Available Phytoremediation is an emerging technology that uses plants in order to cleanup pollutants including xenobiotics and heavy metals from soil, water and air. Inoculation of plants with plant growth promoting endophytic and rhizospheric bacteria can enhance efficiency of phytoremediation. Genomic analysis of four plant-associated strains belonging to the Stenotrophomonas maltophilia species revealed the presence of genes encoding proteins involved in plant growth promotion, biocontrol of phytopathogens, biodegradation of xenobiotics, heavy metals resistance and plant-bacteria-environment interaction. The results of this analysis suggest great potential of bacteria belonging to Stenotrophomonas maltophilia species in enhancing phytoremediation efficiency.

  11. Thermal power plant efficiency enhancement with Ocean Thermal Energy Conversion

    International Nuclear Information System (INIS)

    Soto, Rodrigo; Vergara, Julio

    2014-01-01

    In addition to greenhouse gas emissions, coastal thermal power plants would gain further opposition due to their heat rejection distressing the local ecosystem. Therefore, these plants need to enhance their thermal efficiency while reducing their environmental offense. In this study, a hybrid plant based on the principle of Ocean Thermal Energy Conversion was coupled to a 740 MW coal-fired power plant project located at latitude 28°S where the surface to deepwater temperature difference would not suffice for regular OTEC plants. This paper presents the thermodynamical model to assess the overall efficiency gained by adopting an ammonia Rankine cycle plus a desalinating unit, heated by the power plant condenser discharge and refrigerated by cold deep seawater. The simulation allowed us to optimize a system that would finally enhance the plant power output by 25–37 MW, depending on the season, without added emissions while reducing dramatically the water temperature at discharge and also desalinating up to 5.8 million tons per year. The supplemental equipment was sized and the specific emissions reduction was estimated. We believe that this approach would improve the acceptability of thermal and nuclear power plant projects regardless of the plant location. -- Highlights: • An Ocean Thermal Energy Conversion hybrid plant was designed. • The waste heat of a power plant was delivered as an OTEC heat source. • The effect of size and operating conditions on plant efficiency were studied. • The OTEC implementation in a Chilean thermal power plant was evaluated. • The net efficiency of the thermal power plant was increased by 1.3%

  12. Atmospheric fate of non volatile and ionizable compounds

    DEFF Research Database (Denmark)

    Franco, Antonio; Hauschild, Michael Zwicky; Jolliet, Olivier

    2011-01-01

    , and the parameters describing air–water partitioning (KAW and temperature) and ionization (pKa and pH) are the key parameters determining the potential for long range transport. Wet deposition is an important removal process, but its efficiency is limited, primarily by the duration of the dry period between...... simulations describing the uncertainty of substance and environmental input properties were run to evaluate the impact of atmospheric parameters, ionization and air–water (or air–ice) interface enrichment. The rate of degradation and the concentration of OH radicals, the duration of dry and wet periods...... precipitation events. Given the underlying model assumptions, the presence of clouds contributes to the higher persistence in the troposphere because of the capacity of cloud water to accumulate and transport non-volatile (e.g.2,4-D) and surface-active chemicals (e.g. PFOA). This limits the efficiency of wet...

  13. The influence of low doses of ionizing radiation on biological systems

    International Nuclear Information System (INIS)

    Kwiecinska, T.

    1986-11-01

    Recent results concerning possible beneficial effects of low doses of ionizing radiation on biological systems are summarized. It is also pointed out on the basis of existing evidence that harmful effects on living organisms take place not only in the case of excess but also in the case of deficiency of ionizing radiation. Possibility of using radio-enhanced ultralow luminescence for studying hormesis phenomena is discussed. 24 refs., 4 figs. (author)

  14. Resonance ionization and time-of-flight mass spectrometry for the analysis of trace substances in complex gas mixtures

    International Nuclear Information System (INIS)

    Nagel, Holger; Weickhardt, Christian; Boesl, Ulrich; Frey, Ruediger

    1995-01-01

    The analysis of mixtures of technical gases still comprises a lot of problems: the large number of components with very different and often rapidly varying concentrations makes great demands on analytical methods. By use of conventional analytical methods, signals of trace substances may interfere with signals of main components, whereas small signals representing low concentrations are covered by signals of main substances.The resonant-enhanced multiphoton ionization (REMPI) makes use of excited intermediate states of molecules. As these states are characteristic of each substance, one or more components of interest can be ionized with high efficiency without interference of other molecules by using a special laser-wavelength. The combination of the above mentioned ionization method with a reflectron time-of-flight mass spectrometer permits a very fast and sensitive detection of preselected trace substances.As ionization processes of higher order strongly depend on the laser intensity, there is no direct relation between ion signals and concentrations of exhaust components. Quantitative assessments are based on an especially developed calibration technique that makes use of internal standards. Applied under environmental aspects, this new analytical method helps to analyze a large number of components extracted from exhaust gases of combustion engines with high time resolution (<20 ms motor synchronously), high sensitivity (1 ppm) and high quantitative accuracy (more than 10%). A preliminary list of detectable compounds contains 30 substances

  15. A positive (negative) surface ionization source concept for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1995-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ∼ = 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered to φ ∼ = 1.43 eV by continually feeding cesium vapor through the ionizer matrix. The use of Cs to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for RIB applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in use at the HRIBF The design features and operational principles of the source will be described in this report

  16. Enhanced optical-to-THz conversion efficiency of photoconductive antenna using dielectric nano-layer encapsulation

    Science.gov (United States)

    Gupta, Abhishek; Rana, Goutam; Bhattacharya, Arkabrata; Singh, Abhishek; Jain, Ravikumar; Bapat, Rudheer D.; Duttagupta, S. P.; Prabhu, S. S.

    2018-05-01

    Photoconductive antennas (PCAs) are among the most conventional devices used for emission as well as detection of terahertz (THz) radiation. However, due to their low optical-to-THz conversion efficiencies, applications of these devices in out-of-laboratory conditions are limited. In this paper, we report several factors of enhancement in THz emission efficiency from conventional PCAs by coating a nano-layer of dielectric (TiO2) on the active area between the electrodes of a semi-insulating GaAs-based device. Extensive experiments were done to show the effect of thicknesses of the TiO2 layer on the THz power enhancement with different applied optical power and bias voltages. Multiphysics simulations were performed to elucidate the underlying physics behind the enhancement of efficiency of the PCA. Additionally, this layer increases the robustness of the electrode gaps of the PCAs with high electrical insulation as well as protect it from external dust particles.

  17. Multiple ionization effects in M X-ray emission induced by heavy ions

    International Nuclear Information System (INIS)

    Wang, Xing; Zhao, Yongtao; Cheng, Rui; Zhou, Xianming; Xu, Ge; Sun, Yuanbo; Lei, Yu; Wang, Yuyu; Ren, Jieru; Yu, Yang; Li, Yongfeng; Zhang, Xiaoan; Li, Yaozong; Liang, Changhui; Xiao, Guoqing

    2012-01-01

    M-shell ionization of tungsten by Ar 12+ ions were investigated in the energy range of 1.2–3.0 MeV. The measurements were also implemented for H, He and Xe ions as a comparative study. A significant shift of the M X-ray lines to the higher energy side caused by multiple ionizations, which was verified by the analysis of the intensity ratios of M γ and M αβ , was observed. The total experimental cross sections of tungsten were compared with the PWBA and ECPSSR theoretical predictions, which are based on two extreme assumptions, namely, single ionization and full ionization. -- Highlights: ► Projectiles with low velocity (near Bohr velocity). ► A significant shift of the M X-ray lines to the higher energy side. ► A large enhancement in the M 3 fluorescence yield. ► Theoretical predictions based on single ionization and full ionization.

  18. Formation of molecules in interstellar clouds from singly and multiply ionized atoms

    International Nuclear Information System (INIS)

    Langer, W.D.; and NASA, Institute for Space Studies, Goddard Space Flight Center, New York)

    1978-01-01

    Soft X-ray and cosmic rays produce multiply ionized atoms which may initiate molecule production in interstellar clouds. This molecule production can occur via ion-molecule reactions with H 2 , either directly from the multiply ionized atom (e.g.,C ++ + H 2 →CH + + H + ), or indirectly from the singly ionized atoms (e.g., N + + H 2 →NH + + H) that are formed from the recombination or charge transfer of the highly ionized atom (e.g., N ++ + e→N + + hv). We investigate the contribution of these reactions to the abundances of carbon-, nitrogen-, and oxygen-bearing molecules in isobaric models of diffuse clouds. In the presence of the average flux estimated for the diffuse soft X-ray background, multiply ionized atoms contribute only minimally (a few percent) to carbon-bearing molecules such as CH. In the neighborhood of diffuse structures or discrete sources, however, where the X-ray flux is enhanced, multiple ionization is considerably more important for molecule production

  19. Specificity enhancement by electrospray ionization multistage mass spectrometry--a valuable tool for differentiation and identification of 'V'-type chemical warfare agents.

    Science.gov (United States)

    Weissberg, Avi; Tzanani, Nitzan; Dagan, Shai

    2013-12-01

    The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic 'V'-type chemical weapons [O-alkyl S-(2-dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine-containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization-MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five 'V'-type agents, including O-ethyl S-(2-diisopropylamino)ethyl methylphosphonothiolate (VX), O-isobutyl S-(2-diethylamino)ethyl methylphosphonothiolate (RVX) and O-ethyl S-(2-diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS(3) experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of 'V'-type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information-rich spectra, although many of the product ions obtained were at low abundance. Employing MS(3) experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group-specific ions elucidated in this work are also useful for screening unknown 'V'-type agents and related

  20. Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures

    Directory of Open Access Journals (Sweden)

    Qingyang Yue

    2012-01-01

    Full Text Available The out-coupling efficiency of planar organic light emitting diodes (OLEDs is only about 20% due to factors, such as, the total internal reflection, surface plasmon coupling, and metal absorption. Two-dimensional periodic nanostructures, such as, photonic crystals (PhCs and microlenses arrays offer a potential method to improve the out-coupling efficiency of OLEDs. In this work, we employed the finite-difference time-domain (FDTD method to explore different mechanisms that embedded PhCs and surface PhCs to improve the out-coupling efficiency. The effects of several parameters, including the filling factor, the depth, and the lattice constant were investigated. The result showed that embedded PhCs play a key role in improving the out-coupling efficiency, and an enhancement factor of 240% was obtained in OLEDs with embedded PhCs, while the enhancement factor of OLEDs with surface PhCs was only 120%. Furthermore, the phenomena was analyzed using the mode theory and it demonstrated that the overlap between the mode and PhCs was related to the distribution of vertical mode profiles. The enhancement of the extraction efficiency in excess of 290% was observed for the optimized OLEDs structure with double PhCs. This proposed structure could be a very promising candidate for high extraction efficiency OLEDs.

  1. Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Turney, Kevin [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States); Harrison, W.W. [Department of Chemistry, University of Florida, Gainesville, Florida 32611 (United States)]. E-mail: harrison@chem.ufl.edu

    2006-06-15

    Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately.

  2. Corona discharge secondary ionization of laser desorbed neutral molecules from a liquid matrix at atmospheric pressure

    International Nuclear Information System (INIS)

    Turney, Kevin; Harrison, W.W.

    2006-01-01

    Matrix assisted laser desorption/ionization (MALDI) is studied at atmospheric pressure using liquid sampling methods. A time-of-flight mass spectrometer couples to an open sample stage accessed by a UV laser for desorption and ionization. Also coupled to the sampling state is a corona discharge for auxiliary ionization of desorbed neutral molecules. The interaction of the laser desorption and corona ionization is studied for a range of desorption conditions, showing enhanced analyte ionization, but the effect is analytically advantageous only at low desorption rates. The effect of corona discharge voltage was also explored. The decoupling of neutral molecule formation and subsequent ionization provides an opportunity to study each process separately

  3. Ionization effects in electronic inner-shells of ionized atoms

    International Nuclear Information System (INIS)

    Shchornak, G.

    1983-01-01

    A review of the atomic physics of ionization atoms has been presented. Interaction and structure effects in atomic shells, correlated to the occurrence of vacancies in several subshells of the atom have been considered. The methods of calculations of atomic states and wave functions have been reviewed. The energy shift of characteristic X-rays is discussed as a function of the ionization stage of the atom. The influence of inner and outer-shell vacancies on the energy of the X-rays is shown in detail. The influence of chemical effects on the parameters of X-rays is also taken into account. Further on, the change of transition probabilities in radiative and non-radiative transitions by changing stage of ionization is discussed; and among them the leading part of Auger and Coster-Kronig transitions by the arearrangement of the atomic states is shown. The influence of non-radiative electronic transitions on ionization cross-sections for multiple ionization is discussed. Using these results, ionization cross-sections for direct and indirect processes for several ionization stages are given

  4. Enhancing the efficiency of polymerase chain reaction using graphene nanoflakes.

    Science.gov (United States)

    Abdul Khaliq, R; Kafafy, Raed; Salleh, Hamzah Mohd; Faris, Waleed Fekry

    2012-11-16

    The effect of the recently developed graphene nanoflakes (GNFs) on the polymerase chain reaction (PCR) has been investigated in this paper. The rationale behind the use of GNFs is their unique physical and thermal properties. Experiments show that GNFs can enhance the thermal conductivity of base fluids and results also revealed that GNFs are a potential enhancer of PCR efficiency; moreover, the PCR enhancements are strongly dependent on GNF concentration. It was found that GNFs yield DNA product equivalent to positive control with up to 65% reduction in the PCR cycles. It was also observed that the PCR yield is dependent on the GNF size, wherein the surface area increases and augments thermal conductivity. Computational fluid dynamics (CFD) simulations were performed to analyze the heat transfer through the PCR tube model in the presence and absence of GNFs. The results suggest that the superior thermal conductivity effect of GNFs may be the main cause of the PCR enhancement.

  5. A combined thermal dissociation and electron impact ionization source for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1995-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for RIB applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article

  6. Surface ionization mass spectrometry of opiates

    International Nuclear Information System (INIS)

    Usmanov, D.T.

    2009-07-01

    Key words: surface ionization, adsorption, heterogeneous reactions, surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy, thermoemitter, opiates, extracts of biosamples. Subjects of study. The mass - spectrometric study of thermal - ion emission: surface ionization of opiates by on the surface of oxidized refractory metals. Purpose of work is to establish the regularities of surface ionization (SI) of multi-atomic molecule opiates and their mixtures develop the scientific base of SI methods for high sensitive and selective detection and analysis of these substances in the different objects, including biosamples. Methods of study: surface ionization mass spectrometry, thermodesorption surface ionization spectroscopy. The results obtained and their novelty. For the first time, SI of molecule opiates on the oxidized tungsten surface has been studied and their SI mass-spectra and temperature dependences of ion currents have been obtained, the characteristic heterogeneous reactions of an adsorbed molecules and the channels of monomolecular decays vibrationally-excited ions on their way in mass-spectrometry have been revealed, sublimation energy has been defined, the activation energy of E act , of these decays has been estimated for given period of time. Additivity of the SI mass-spectra of opiate mixtures of has been established under conditions of joint opiate adsorption. High selectivity of SI allows the extracts of biosamples to be analyzed without their preliminary chromatographic separation. The opiates are ionized by SI with high efficiency (from 34 C/mol to 112 C/mol), which provides high sensitivity of opiate detection by SI/MS and APTDSIS methods from - 10 -11 g in the samples under analysis. Practical value. The results of these studies create the scientific base for novel SI methods of high sensitive detection and analysis of the trace amounts of opiates in complicated mixtures, including biosamples without their preliminary

  7. Enhancement of CNT-based filters efficiency by ion beam irradiation

    Science.gov (United States)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Shemukhin, A. A.; Motaweh, H. A.

    2018-05-01

    It is shown in the report that disorder produced by ion beam irradiation can enhance the functionality of the carbon nanotubes. The filters of pressed multiwalled carbon nanotubes (MWNTs) were irradiated by He+ ions of the energy E = 80 keV with the fluence 2 × 1016 ion/cm2. The removal of manganese from aqueous solutions by using pristine and ion beam irradiated MWNTs filters was studied as a function of pH, initial concentration of manganese in aqueous solution, MWNT mass and contact time. The filters before and after filtration were characterized by Raman (RS) and energy dispersive X-ray spectroscopy (EDS) techniques to investigate the deposition content in the filter and defect formation in the MWNTs. The irradiated samples showed an enhancement of removal efficiency of manganese up to 97.5% for 10 ppm Mn concentration, suggesting that irradiated MWNT filter is a better Mn adsorbent from aqueous solutions than the pristine one. Radiation-induced chemical functionalization of MWNTs due to ion beam irradiation, suggesting that complexation between the irradiated MWNTs and manganese ions is another mechanism. This conclusion is supported by EDS and RS and is correlated with a larger disorder in the irradiated samples as follows from RS. The study demonstrates that ion beam irradiation is a promising tool to enhance the filtration efficiency of MWNT filters.

  8. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  9. Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa–Dye ISOLDE RILIS

    CERN Document Server

    Day Goodacre, T.; Fedosseev, V.N.; Forster, L.; Marsh, B.A.; Rossel, R.E.; Rothe, S.; Veinhard, M.

    2016-01-01

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.

  10. Laser resonance ionization scheme development for tellurium and germanium at the dual Ti:Sa–Dye ISOLDE RILIS

    Energy Technology Data Exchange (ETDEWEB)

    Day Goodacre, T., E-mail: thomas.day.goodacre@cern.ch [CERN, CH-1211 Geneva 23 (Switzerland); School of Physics and Astronomy, The University of Manchester, Manchester M13 9PL (United Kingdom); Fedorov, D. [Petersburg Nuclear Physics Institute, 188350 Gatchina (Russian Federation); Fedosseev, V.N.; Forster, L.; Marsh, B.A. [CERN, CH-1211 Geneva 23 (Switzerland); Rossel, R.E. [CERN, CH-1211 Geneva 23 (Switzerland); Institut für Physik, Johannes Gutenberg Universität, D-55099 Mainz (Germany); Faculty of Design, Computer Science and Media, Hochschule RheinMain, Wiesbaden (Germany); Rothe, S.; Veinhard, M. [CERN, CH-1211 Geneva 23 (Switzerland)

    2016-09-11

    The resonance ionization laser ion source (RILIS) is the principal ion source of the ISOLDE radioactive beam facility based at CERN. Using the method of in-source laser resonance ionization spectroscopy, a transition to a new autoionizing state of tellurium was discovered and applied as part of a three-step, three-resonance, photo-ionization scheme. In a second study, a three-step, two-resonance, photo-ionization scheme for germanium was developed and the ionization efficiency was measured at ISOLDE. This work increases the range of ISOLDE RILIS ionized beams to 31 elements. Details of the spectroscopy studies are described and the new ionization schemes are summarized.

  11. Valuing uncertain cash flows from investments that enhance energy efficiency.

    Science.gov (United States)

    Abadie, Luis M; Chamorro, José M; González-Eguino, Mikel

    2013-02-15

    There is a broad consensus that investments to enhance energy efficiency quickly pay for themselves in lower energy bills and spared emission allowances. However, investments that at first glance seem worthwhile usually are not undertaken. One of the plausible, non-excluding explanations is the numerous uncertainties that these investments face. This paper deals with the optimal time to invest in an energy efficiency enhancement at a facility already in place that consumes huge amounts of a fossil fuel (coal) and operates under carbon constraints. We follow the Real Options approach. Our model comprises three sources of uncertainty following different stochastic processes which allows for application in a broad range of settings. We assess the investment option by means of a three-dimensional binomial lattice. We compute the trigger investment cost, i.e., the threshold level below which immediate investment would be optimal. We analyze the major drivers of this decision thus aiming at the most promising policies in this regard. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Storm-enhanced plasma density and polar tongue of ionization development during the 15 May 2005 superstorm

    Science.gov (United States)

    Horvath, Ildiko; Lovell, Brian C.

    2015-06-01

    We investigate the ionosphere's global response to the 15 May 2005 superstorm in terms of storm evolution and ionospheric electrodynamics. Our aim is to study the global distribution of plasma and the resultant large-scale ionospheric features including the equatorial ionization anomaly (EIA), storm-enhanced density (SED), and polar tongue of ionization (TOI). We have combined multi-instrument ionospheric data, solar and terrestrial magnetic data, and polar convection maps. Results reveal the prompt penetration of the interplanetary electric field to the polar region and then to the equator with a dusk-to-dawn polarity during the initial phase and with a dawn-to-dusk polarity during the main phase. This drove during the initial phase a weak eastward equatorial electrojet (EEJ) in the American sector at nighttime and a weak westward EEJ in the Indian-Australian sector at daytime. During the main phase, these EEJs intensified and changed polarities. SED and polar TOI development was observed prior to and during the initial phase at evening-premidnight hours over North America and during the main phase in the south at afternoon-evening hours in the Australian sector. During the main phase and early in the recovery phase, the EIA-SED structure was well formed in the Asian longitude sector. Then, polar TOI development was absent in the north because of the long distance from the magnetic pole but was supported in the south because of the closeness of daytime cusp and magnetic pole. Thus, the EIA-SED-TOI structure developed twice but each time in a different longitude sector and with different characteristics.

  13. Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

    CERN Document Server

    Flanagan, K T; Ruiz, R F Garcia; Budincevic, I; Procter, T J; Fedosseev, V N; Lynch, K M; Cocolios, T E; Marsh, B A; Neyens, G; Strashnov, I; Stroke, H H; Rossel, R E; Heylen, H; Billowes, J; Rothe, S; Bissell, M L; Wendt, K D A; de Groote, R P; De Schepper, S

    2013-01-01

    The magnetic moments and isotope shifts of the neutron-deficient francium isotopes Fr202-205 were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1\\% was measured for Fr-202. The background from nonresonant and collisional ionization was maintained below one ion in 10(5) beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to Fr-205, with a departure observed in Fr-203 (N = 116).

  14. Understanding the atmospheric pressure ionization of petroleum components: The effects of size, structure, and presence of heteroatoms

    International Nuclear Information System (INIS)

    Huba, Anna Katarina; Huba, Kristina; Gardinali, Piero R.

    2016-01-01

    Understanding the composition of crude oil and its changes with weathering is essential when assessing its provenience, fate, and toxicity. High-resolution mass spectrometry (HRMS) has provided the opportunity to address the complexity of crude oil by assigning molecular formulae, and sorting compounds into “classes” based on heteroatom content. However, factors such as suppression effects and discrimination towards certain components severely limit a truly comprehensive mass spectrometric characterization, and, despite the availability of increasingly better mass spectrometers, a complete characterization of oil still represents a major challenge. In order to fully comprehend the significance of class abundances, as well as the nature and identity of compounds detected, a good understanding of the ionization efficiency of the various compound classes is indispensable. The current study, therefore, analyzed model compounds typically found in crude oils by high-resolution mass spectrometry with atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI), in order to provide a better understanding of benefits and drawbacks of each source. The findings indicate that, overall, APPI provides the best results, being able to ionize the broadest range of compounds, providing the best results with respect to ionization efficiencies, and exhibiting the least suppression effects. However, just like in the other two sources, in APPI several factors have shown to affect the ionization efficiency of petroleum model compounds. The main such factor is the presence or absence of functional groups that can be easily protonated/deprotonated, in addition to other factors such as size, methylation level, presence of heteroatoms, and ring structure. Overall, this study evidences the intrinsic limitations and benefits of each of the three sources, and should provide the fundamental knowledge required to expand the

  15. Understanding the atmospheric pressure ionization of petroleum components: The effects of size, structure, and presence of heteroatoms

    Energy Technology Data Exchange (ETDEWEB)

    Huba, Anna Katarina; Huba, Kristina [Department of Chemistry & Biochemistry, Florida International University, 3000 NE 151 Street, Biscayne Bay Campus, North Miami, Florida 33181 (United States); Gardinali, Piero R. [Department of Chemistry & Biochemistry, Florida International University, 3000 NE 151 Street, Biscayne Bay Campus, North Miami, Florida 33181 (United States); Southeast Environmental Research Center (SERC), Florida International University, 3000 NE 151 Street, Biscayne Bay Campus, North Miami, Florida 33181 (United States)

    2016-10-15

    Understanding the composition of crude oil and its changes with weathering is essential when assessing its provenience, fate, and toxicity. High-resolution mass spectrometry (HRMS) has provided the opportunity to address the complexity of crude oil by assigning molecular formulae, and sorting compounds into “classes” based on heteroatom content. However, factors such as suppression effects and discrimination towards certain components severely limit a truly comprehensive mass spectrometric characterization, and, despite the availability of increasingly better mass spectrometers, a complete characterization of oil still represents a major challenge. In order to fully comprehend the significance of class abundances, as well as the nature and identity of compounds detected, a good understanding of the ionization efficiency of the various compound classes is indispensable. The current study, therefore, analyzed model compounds typically found in crude oils by high-resolution mass spectrometry with atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI), in order to provide a better understanding of benefits and drawbacks of each source. The findings indicate that, overall, APPI provides the best results, being able to ionize the broadest range of compounds, providing the best results with respect to ionization efficiencies, and exhibiting the least suppression effects. However, just like in the other two sources, in APPI several factors have shown to affect the ionization efficiency of petroleum model compounds. The main such factor is the presence or absence of functional groups that can be easily protonated/deprotonated, in addition to other factors such as size, methylation level, presence of heteroatoms, and ring structure. Overall, this study evidences the intrinsic limitations and benefits of each of the three sources, and should provide the fundamental knowledge required to expand the

  16. Efficient Hardware Implementation For Fingerprint Image Enhancement Using Anisotropic Gaussian Filter.

    Science.gov (United States)

    Khan, Tariq Mahmood; Bailey, Donald G; Khan, Mohammad A U; Kong, Yinan

    2017-05-01

    A real-time image filtering technique is proposed which could result in faster implementation for fingerprint image enhancement. One major hurdle associated with fingerprint filtering techniques is the expensive nature of their hardware implementations. To circumvent this, a modified anisotropic Gaussian filter is efficiently adopted in hardware by decomposing the filter into two orthogonal Gaussians and an oriented line Gaussian. An architecture is developed for dynamically controlling the orientation of the line Gaussian filter. To further improve the performance of the filter, the input image is homogenized by a local image normalization. In the proposed structure, for a middle-range reconfigurable FPGA, both parallel compute-intensive and real-time demands were achieved. We manage to efficiently speed up the image-processing time and improve the resource utilization of the FPGA. Test results show an improved speed for its hardware architecture while maintaining reasonable enhancement benchmarks.

  17. Enhancing the Efficiency of Silicon-Based Solar Cells by the Piezo-Phototronic Effect.

    Science.gov (United States)

    Zhu, Laipan; Wang, Longfei; Pan, Caofeng; Chen, Libo; Xue, Fei; Chen, Baodong; Yang, Leijing; Su, Li; Wang, Zhong Lin

    2017-02-28

    Although there are numerous approaches for fabricating solar cells, the silicon-based photovoltaics are still the most widely used in industry and around the world. A small increase in the efficiency of silicon-based solar cells has a huge economic impact and practical importance. We fabricate a silicon-based nanoheterostructure (p + -Si/p-Si/n + -Si (and n-Si)/n-ZnO nanowire (NW) array) photovoltaic device and demonstrate the enhanced device performance through significantly enhanced light absorption by NW array and effective charge carrier separation by the piezo-phototronic effect. The strain-induced piezoelectric polarization charges created at n-doped Si-ZnO interfaces can effectively modulate the corresponding band structure and electron gas trapped in the n + -Si/n-ZnO NW nanoheterostructure and thus enhance the transport process of local charge carriers. The efficiency of the solar cell was improved from 8.97% to 9.51% by simply applying a static compress strain. This study indicates that the piezo-phototronic effect can enhance the performance of a large-scale silicon-based solar cell, with great potential for industrial applications.

  18. Motor reactivity of animals exposed to ionizing radiation and treated with psychotropic drugs

    International Nuclear Information System (INIS)

    Szwaja, S.

    1978-01-01

    The influence of ionizing radiation on motor reactivity of animals and the influence of selected psychotropic drugs (fenactil, haloperidol, relanium) on the changes invoked by ionizing radiation were studied experimentally in rats whose motor reactivity was assessed on the basis of conditional reflexes. In unirradiated rats, fenactil and haloperidol, but not relanium, disordered positive conditional reactions. Roentgen irradiation of the rats with a single dose on the whole body caused a drop in positive conditional reactions. Relanium and fenactil enhanced psychomotor activity of rats after exposure to ionizing radiation. (author)

  19. Motor reactivity of animals exposed to ionizing radiation and treated with psychotropic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Szwaja, S [Uniwersytet Jagiellonski, Krakow (Poland)

    1978-01-01

    The influence of ionizing radiation on motor reactivity of animals and the influence of selected psychotropic drugs (fenactil, haloperidol, relanium) on the changes invoked by ionizing radiation were studied experimentally in rats whose motor reactivity was assessed on the basis of conditional reflexes. In unirradiated rats, fenactil and haloperidol, but not relanium, disordered positive conditional reactions. Roentgen irradiation of the rats with a single dose on the whole body caused a drop in positive conditional reactions. Relanium and fenactil enhanced psychomotor activity of rats after exposure to ionizing radiation.

  20. Noble-gas ionization in the ion source with Penning effect

    International Nuclear Information System (INIS)

    Monchka, D.; Lyatushinskij, A.; Vasyak, A.

    1982-01-01

    By additional use of that the ion source efficiency can be increased the Penning ionization. The results of estimates of certain coefficients for the processes taking place in the plasma ion sources are presented

  1. Ionic rotational branching ratios in resonant enhanced multiphoton ionization of NO via the A 2Σ+(3sσ) and D 2Σ+(3pσ) states

    International Nuclear Information System (INIS)

    Rudolph, H.; Dixit, S.N.; McKoy, V.; Huo, W.M.

    1988-01-01

    We present the results of ab initio calculations of the ionic rotational branching ratios in NO for a (1+1) REMPI (resonant enhanced multiphoton ionization) via the A 2 Σ + (3sσ) state and a (2+1) REMPI via the D 2 Σ + (3pσ) state. Despite the atomic-like character of the bound 3sσ and 3pσ orbitals in these resonant states, the photoelectron continuum exhibits strong l mixing. The selection rule ΔN+l = odd (ΔNequivalentN/sub +/-N/sub i/) implies that the peaks in the photoelectron spectrum corresponding to ΔN = odd ( +- 1, +- 3) are sensitive to even partial waves while those corresponding to even ΔN probe the odd partial waves in the photoelectron continuum. Recent experimental high resolution photoelectron studies have shown a strong ΔN = 0 peak for ionization via the A 2 Σ + and the D 2 Σ + states, indicating a dominance of odd-l partial waves. While this seems natural for ionization out of the 3sσ orbital, it is quite anomalous for 3pσ ionization. Based on extensive bound calculations, Viswanathan et al. [J. Phys. Chem. 90, 5078 (1986)] attribute this anomaly to a strong l mixing in the electronic continuum caused by the nonspherical molecular potential

  2. Gas chromatography/chemical ionization triple quadrupole mass spectrometry analysis of anabolic steroids: ionization and collision-induced dissociation behavior.

    Science.gov (United States)

    Polet, Michael; Van Gansbeke, Wim; Van Eenoo, Peter; Deventer, Koen

    2016-02-28

    The detection of new anabolic steroid metabolites and new designer steroids is a challenging task in doping analysis. Switching from electron ionization gas chromatography triple quadrupole mass spectrometry (GC/EI-MS/MS) to chemical ionization (CI) has proven to be an efficient way to increase the sensitivity of GC/MS/MS analyses and facilitate the detection of anabolic steroids. CI also extends the possibilities of GC/MS/MS analyses as the molecular ion is retained in its protonated form due to the softer ionization. In EI it can be difficult to find previously unknown but expected metabolites due to the low abundance or absence of the molecular ion and the extensive (and to a large extent unpredictable) fragmentation. The main aim of this work was to study the CI and collision-induced dissociation (CID) behavior of a large number of anabolic androgenic steroids (AAS) as their trimethylsilyl derivatives in order to determine correlations between structures and CID fragmentation. Clarification of these correlations is needed for the elucidation of structures of unknown steroids and new metabolites. The ionization and CID behavior of 65 AAS have been studied using GC/CI-MS/MS with ammonia as the reagent gas. Glucuronidated AAS reference standards were first hydrolyzed to obtain their free forms. Afterwards, all the standards were derivatized to their trimethylsilyl forms. Full scan and product ion scan analyses were used to examine the ionization and CID behavior. Full scan and product ion scan analyses revealed clear correlations between AAS structure and the obtained mass spectra. These correlations were confirmed by analysis of multiple hydroxylated, methylated, chlorinated and deuterated analogs. AAS have been divided into three groups according to their ionization behavior and into seven groups according to their CID behavior. Correlations between fragmentation and structure were revealed and fragmentation pathways were postulated. Copyright © 2016 John Wiley

  3. One-photon mass-analyzed threshold ionization (MATI) spectroscopy of pyridine: Determination of accurate ionization energy and cationic structure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Ran; Kang, Do Won; Kim, Hong Lae, E-mail: chkwon@kangwon.ac.kr, E-mail: hlkim@kangwon.ac.kr; Kwon, Chan Ho, E-mail: chkwon@kangwon.ac.kr, E-mail: hlkim@kangwon.ac.kr [Department of Chemistry and Institute for Molecular Science and Fusion Technology, College of Natural Sciences, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2014-11-07

    Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73 570 ± 6 cm{sup −1} (9.1215 ± 0.0007 eV). The observed spectrum was almost completely assigned by utilizing Franck-Condon factors and vibrational frequencies calculated through adjustments of the geometrical parameters of cationic pyridine at the B3LYP/cc-pVTZ level. A unique feature unveiled through rigorous analysis was the prominent progression of the 10 vibrational mode, which corresponds to in-plane ring bending, and the combination of other totally symmetric fundamentals with the ring bending overtones, which contribute to the geometrical change upon ionization. Notably, the remaining peaks originate from the upper electronic state ({sup 2}A{sub 2}), as predicted by high-resolution photoelectron spectroscopy studies and symmetry-adapted cluster configuration interaction calculations. Based on the quantitatively good agreement between the experimental and calculated results, it was concluded that upon ionization the pyridine cation in the ground electronic state should have a planar structure of C{sub 2v} symmetry through the C-N axis.

  4. Multiphoton ionization for hydrogen plasma diagnostics

    International Nuclear Information System (INIS)

    Bonnie, J.H.M.

    1987-01-01

    In this thesis the processes leading to the formation of negative ions (H - ) in hydrogen discharges are studied. These ions enable efficient production of a beam of fast neutral particles. Such beams are applied in nuclear fusion research. A model has been generally accepted in which H - is formed by means of dissociative attachment (DA) of electrons to vibrationally excited hydrogen molecules [H 2 (υ'')] molecule: when υ'' is low, electron emission is most probable, but when υ'' is high, H - production dominates. A necessary preliminary to the DA process is the presence of sufficient [H 2 (υ'')] molecules with υ'' > 4. By determining the densities of hydrogen molecules in the various vibrational levels as a function of the various discharge parameters (scaling laws), insight can be gained into the extent to which the DA process contributes to H - formation. Since the de-excitation of [H 2 (υ'')] molecules by H atoms is expected to have a large cross section, it is also relevant to determine the scaling laws for atomic hydrogen. This thesis gives an account of the development of an experimental setup for obtaining such measurements, and reports the first results achieved. In view of the anticipated density of the vibrationally excited molecules and the detection limit considered feasible, the diagnostic chosen was resonance-enhanced multiphoton ionization (REMPI). The principle is based on state-selective ionization with REMPI of particles effusing from the discharge chamber through an aperture in the wall. The ions produced in the REMPI-process are then detected. The use of both an electric and a magnetic field makes it possible to distinguish the REMPI ions from those originating elsewhere, such as plasma ions or photodesorption ions. 145 refs.; 25 figs.; 6 tabs

  5. Determination of Nerve Agent Metabolites by Ultraviolet Femtosecond Laser Ionization Mass Spectrometry.

    Science.gov (United States)

    Hamachi, Akifumi; Imasaka, Tomoko; Nakamura, Hiroshi; Li, Adan; Imasaka, Totaro

    2017-05-02

    Nerve agent metabolites, i.e., isopropyl methylphosphonic acid (IMPA) and pinacolyl methylphosphonic acid (PMPA), were derivatized by reacting them with 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr) and were determined by mass spectrometry using an ultraviolet femtosecond laser emitting at 267 and 200 nm as the ionization source. The analytes of the derivatized compounds, i.e., IMPA-PFB and PMPA-PFB, contain a large side-chain, and molecular ions are very weak or absent in electron ionization mass spectrometry. The use of ultraviolet femtosecond laser ionization mass spectrometry, however, resulted in the formation of a molecular ion, even for compounds such as these that contain a highly bulky functional group. The signal intensity was larger at 200 nm due to resonance-enhanced two-photon ionization. In contrast, fragmentation was suppressed at 267 nm (nonresonant two-photon ionization) especially for PMPA-PFB, thus resulting in a lower background signal. This favorable result can be explained by the small excess energy in ionization at 267 nm and by the low-frequency vibrational mode of a bulky trimethylpropyl group in PMPA.

  6. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    Energy Technology Data Exchange (ETDEWEB)

    Gadelshin, V., E-mail: gadelshin@uni-mainz.de [University of Mainz, Institute of Physics (Germany); Cocolios, T. [KU Leuven, Institute for Nuclear and Radiation Physics (Belgium); Fedoseev, V. [CERN, EN Department (Switzerland); Heinke, R.; Kieck, T. [University of Mainz, Institute of Physics (Germany); Marsh, B. [CERN, EN Department (Switzerland); Naubereit, P. [University of Mainz, Institute of Physics (Germany); Rothe, S.; Stora, T. [CERN, EN Department (Switzerland); Studer, D. [University of Mainz, Institute of Physics (Germany); Duppen, P. Van [KU Leuven, Institute for Nuclear and Radiation Physics (Belgium); Wendt, K. [University of Mainz, Institute of Physics (Germany)

    2017-11-15

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  7. Laser resonance ionization spectroscopy on lutetium for the MEDICIS project

    Science.gov (United States)

    Gadelshin, V.; Cocolios, T.; Fedoseev, V.; Heinke, R.; Kieck, T.; Marsh, B.; Naubereit, P.; Rothe, S.; Stora, T.; Studer, D.; Van Duppen, P.; Wendt, K.

    2017-11-01

    The MEDICIS-PROMED Innovative Training Network under the Horizon 2020 EU program aims to establish a network of early stage researchers, involving scientific exchange and active cooperation between leading European research institutions, universities, hospitals, and industry. Primary scientific goal is the purpose of providing and testing novel radioisotopes for nuclear medical imaging and radionuclide therapy. Within a closely linked project at CERN, a dedicated electromagnetic mass separator system is presently under installation for production of innovative radiopharmaceutical isotopes at the new CERN-MEDICIS laboratory, directly adjacent to the existing CERN-ISOLDE radioactive ion beam facility. It is planned to implement a resonance ionization laser ion source (RILIS) to ensure high efficiency and unrivaled purity in the production of radioactive ions. To provide a highly efficient ionization process, identification and characterization of a specific multi-step laser ionization scheme for each individual element with isotopes of interest is required. The element lutetium is of primary relevance, and therefore was considered as first candidate. Three two-step excitation schemes for lutetium atoms are presented in this work, and spectroscopic results are compared with data of other authors.

  8. Ring magnetron ionizer

    International Nuclear Information System (INIS)

    Alessi, J.G.

    1986-01-01

    A ring magnetron D - charge exchange ionizer has been built and tested. An H - current of 500 μA was extracted with an estimated H 0 density in the ionizer of 10 12 cm -3 . This exceeds the performance of ionizers presently in use on polarized H - sources. The ionizer will soon be tested with a polarized atomic beam

  9. Simultaneous ionization and analysis of 84 anabolic androgenic steroids in human urine using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry.

    Science.gov (United States)

    Kim, So-Hee; Cha, Eun-Ju; Lee, Kang Mi; Kim, Ho Jun; Kwon, Oh-Seung; Lee, Jaeick

    2014-01-01

    Metal ion coordination ionspray (M(+) CIS) ionization is a powerful technique to enhance ionization efficiency and sensitivity. In this study, we developed and validated an analytical method for simultaneous ionization and analysis of 84 anabolic androgenic steroids (65 exogenous and 19 endogenous) using liquid chromatography-silver ion coordination ionspray/triple-quadrupole mass spectrometry (LC-Ag(+) CIS/MS/MS). The concentrations of silver ions and organic solvents have been optimized to increase the amount of silver ion coordinated complexes. A combination of 25 μM of silver ions and methanol showed the best sensitivity. The validation results showed the intra- (0.8-9.2%) and inter-day (2.5-14.9%) precisions, limits of detection (0.0005-5.0 ng/mL), and matrix effect (71.8-100.3%) for the screening analysis. No significant ion suppression was observed. In addition, this method was successfully applied to analysis of positive samples from suspected abusers and useful for the detection of the trace levels of anabolic steroids in human urine samples. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  11. Selective isotope determination of lanthanum by diode-laser-initiated resonance-ionization mass spectrometry

    International Nuclear Information System (INIS)

    Young, J.P.; Shaw, R.W.

    1995-01-01

    A diode-laser step has been incorporated into a resonance-ionization mass spectrometry optical excitation process to enhance the isotopic selectivity of the technique. Lanthanum isotope ratio enhancements as high as 10 3 were achieved by use of a single-frequency cw diode laser tuned to excite the first step of a three-step excitation--ionization optical process; the subsequent steps were excited by use of a pulsed dye laser. Applying the same optical technique, we measured atomic hyperfine constants for the high-lying even-parity 4 D 5/2 state of lanthanum at 30 354 cm --1 . The general utility of this spectral approach is discussed

  12. Evaluation of a plane-parallel ionization chamber for low-energy radiotherapy beams

    International Nuclear Information System (INIS)

    Perini, Ana Paula; Neves, Lucio Pereira; Santos, William de Souza; Caldas, Linda V.E.

    2014-01-01

    A plane-parallel ionization chamber, with a sensitive volume of 6.3 cm 3 , developed at the Calibration Laboratory of IPEN (LCI), was utilized to verify the possibility of its application in low-energy X-ray beam qualities for radiotherapy (T-qualities). This homemade ion chamber was manufactured using polymethyl methacrylate (PMMA) coated with graphite, and co-axial cables. In order to evaluate the performance of this ionization chamber, some characterization tests were performed: short- and medium-term stability, leakage current, saturation, ion collection efficiency, polarity effect and linearity of response. The maximum value obtained in the short-term stability test was 0.2%, in accordance with the limit value of 0.3% provided by the IEC 60731 standard. The saturation curve was obtained varying the applied voltage from -400 V to +400 V, in steps of 50 V, using the charge collecting time of 20 s. From the saturation curve two other characteristics were analyzed: the polarity effect and the ion collection efficiency, with results within the international recommendations. The leakage current of the ionization chamber was measured in time intervals of 20 minutes, before and after its irradiations, and all the results obtained were in agreement with the IEC 60731 standard. The linearity of response was verified utilizing the T-50(b) radiation quality, and the ionization chamber was exposed to different air kerma rates. The response of the ionization chamber presented a linear behavior. Therefore, all results were considered satisfactory, within international recommendations, indicating that this homemade ionization chamber presents potential routine use in dosimetry of low-energy radiotherapy beams. (author)

  13. Enhancing dye-sensitized solar cell efficiency by anode surface treatments

    International Nuclear Information System (INIS)

    Chang, Chao-Hsuan; Lin, Hsin-Han; Chen, Chin-Cheng; Hong, Franklin C.-N.

    2014-01-01

    In this study, titanium substrates treated with HF solution and KOH solution sequentially forming micro- and nano-structures were used for the fabrication of flexible dye-sensitized solar cells (DSSCs). After wet etching treatments, the titanium substrates were then exposed to the O 2 plasma treatment and further immersed in titanium tetrachloride (TiCl 4 ) solution. The process conditions for producing a very thin TiO 2 blocking layer were studied, in order to avoid solar cell current leakage for increasing the solar cell efficiency. Subsequently, TiO 2 nanoparticles were spin-coated on Ti substrates with varied thickness. The dye-sensitized solar cells on the titanium substrates were subjected to simulate AM 1.5 G irradiation of 100 mW/cm 2 using backside illumination mode. Surface treatments of Ti substrate and TiO 2 anode were found to play a significant role in improving the efficiency of DSSC. The efficiencies of the backside illumination solar cells were raised from 4.6% to 7.8% by integrating these surface treatments. - Highlights: • The flexible dye-sensitized solar cell (DSSC) device can be fabricated. • Many effective surface treatment methods to improve DSSC efficiency are elucidated. • The efficiency is dramatically enhanced by integrating surface treatment methods. • The back-illuminated DSSC efficiency was raised from 4.6% to 7.8%

  14. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    International Nuclear Information System (INIS)

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-01-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable “normal-glow” mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O 2 at C 3 Π(v = 2)←X 3 Σ(v′ = 0) transitions. The Boltzmann plots from analyses of the O 2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ∼1150 K to ∼1350 K within the discharge area. The measurements had an accuracy of ∼±50 K.

  15. O2 rotational temperature measurements in an atmospheric air microdischarge by radar resonance-enhanced multiphoton ionization

    Science.gov (United States)

    Sawyer, Jordan; Wu, Yue; Zhang, Zhili; Adams, Steven F.

    2013-06-01

    Nonintrusive spatially resolved rotational temperature measurements in an atmospheric air microdischarge are presented. The measurements were based on coherent microwave Rayleigh scattering (Radar) from resonance-enhanced multiphoton ionization of molecular oxygen. The open air DC microdischarge source operated in a stable "normal-glow" mode and pin-to-pin electrodes spaced 1.3 mm apart. The second harmonic of a tunable dye laser beam was focused between the two electrodes and scanned between 286 and 288 nm. Coherent microwave Rayleigh scattering was used to collect the two-photon rotational spectra of O2 at C3Π(v = 2)←X3Σ(v' = 0) transitions. The Boltzmann plots from analyses of the O2 rotational lines determined local rotational temperatures at various axial locations between the electrodes. The molecular oxygen rotational temperature varied from ˜1150 K to ˜1350 K within the discharge area. The measurements had an accuracy of ˜±50 K.

  16. In situ liquid-liquid extraction as a sample preparation method for matrix-assisted laser desorption/ionization MS analysis of polypeptide mixtures

    DEFF Research Database (Denmark)

    Kjellström, Sven; Jensen, Ole Nørregaard

    2003-01-01

    A novel liquid-liquid extraction (LLE) procedure was investigated for preparation of peptide and protein samples for matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). LLE using ethyl acetate as the water-immiscible organic solvent enabled segregation of hydrophobic...... matrix to the organic solvent enhanced the efficiency of the LLE-MALDI MS method for analysis of hydrophobic peptides and proteins. LLE-MALDI MS enabled the detection of the hydrophobic membrane protein bacteriorhodopsin as a component in a simple protein mixture. Peptide mixtures containing...... phosphorylated, glycosylated, or acylated peptides were successfully separated and analyzed by the in situ LLE-MALDI MS technique and demonstrate the potential of this method for enhanced separation and structural analysis of posttranslationally modified peptides in proteomics research....

  17. Wavefunction effects in inner shell ionization of light atoms by protons

    International Nuclear Information System (INIS)

    Aashamar, K.; Amundsen, P.A.

    An efficient computer code for calculating the impact parameter distribution of atomic ionization probabilities caused by charged particle impact, has been developed. The programme is based on the semiclassical approximation, and it allows the use of an arbitrary atomic central potential for deriving the one-electron orbitals that form the basis for the description of the atomic states. Extensive calculations are reported for proton induced K-shell ionization in carbon and neon, covering energies in the range 0.1-10 MeV. Some calculations on proton-argon L-shell ionization are also reported. Comparison of the results obtained using (screened) hydrogenic potentials and the recently reported energy- optimized effective atomic central potentials, respectively demonstrates that wavefunction effects are generally important for inner-shell ionization of light atoms. The agreement between theory and experiment in the K-shell case is improved for fast collisions upon using better wavefunctions. (Auth.)

  18. Efficiency enhancement of InP nanowire solar cells by surface cleaning

    NARCIS (Netherlands)

    Cui, Y.; Wang, J.; Plissard, S.R.; Cavalli, A.; Vu, T.T.T.; Veldhoven, van P.J.; Gao, L.; Trainor, M.J.; Verheijen, M.A.; Haverkort, J.E.M.; Bakkers, E.P.A.M.

    2013-01-01

    We demonstrate an efficiency enhancement of an InP nanowire (NW) axial p–n junction solar cell by cleaning the NW surface. NW arrays were grown with in situ HCl etching on an InP substrate patterned by nanoimprint lithography, and the NWs surfaces were cleaned after growth by piranha etching. We

  19. Ionizing radiation and a wood-based biorefinery

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Stipanovic, Arthur J.; Cheng, Kun; Barber, Vincent A.; Manning, Mellony; Smith, Jennifer L.; Sundar, Smith

    2014-01-01

    Woody biomass is widely available around the world. Cellulose is the major structural component of woody biomass and is the most abundant polymer synthesized by nature, with hemicellulose and lignin being second and third. Despite this great abundance, woody biomass has seen limited application outside of the paper and lumber industries. Its use as a feedstock for fuels and chemicals has been limited because of its highly crystalline structure, inaccessible morphology, and limited solubility (recalcitrance). Any economic use of woody biomass for the production of fuels and chemicals requires a “pretreatment” process to enhance the accessibility of the biomass to enzymes and/or chemical reagents. Electron beams (EB), X-rays, and gamma rays produce ions in a material which can then initiate chemical reactions and cleavage of chemical bonds. Such ionizing radiation predominantly scissions and degrades or depolymerizes both cellulose and hemicelluloses, less is known about its effects on lignin. This paper discusses how ionizing radiation can be used to make a wood-based biorefinery more environmentally friendly and profitable for its operators. - Highlights: • Ionizing radiation reduces the crystallinity of cellulose. • Ionizing radiation reduces cellulose's degree of polymerization. • The amount and rate of enzymatic hydrolysis of lignocellulosic materials, including wood, are increased with increasing radiation dose. • Wood and other lignocellulosic materials have the potential to be a renewable material for the production of chemicals and fuels

  20. Surface-ionization field mass-spectrometry studies of nonequilibrium surface ionization

    International Nuclear Information System (INIS)

    Blashenkov, Nikolai M; Lavrent'ev, Gennadii Ya

    2007-01-01

    The ionization of polyatomic molecules on tungsten and tungsten oxide surfaces is considered for quasiequilibrium or essentially nonequilibrium conditions (in the latter case, the term nonequilibrium surface ionization is used for adsorbate ionization). Heterogeneous reactions are supposed to proceed through monomolecular decay of polyatomic molecules or fragments of multimolecular complexes. The nonequilibrium nature of these reactions is established. The dependences of the current density of disordered ions on the surface temperature, electric field strength, and ionized particle energy distribution are obtained in analytical form. Heterogeneous dissociation energies, the ionization potentials of radicals, and the magnitude of reaction departure from equilibrium are determined from experimental data, as are energy exchange times between reaction products and surfaces, the number of molecules in molecular complexes, and the number of effective degrees of freedom in molecules and complexes. In collecting the data a new technique relying on surface-ionization field mass-spectrometry was applied. (instruments and methods of investigation)

  1. A highly efficient electric additive for enhancing photovoltaic performance of dye-sensitized solar cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    N-cetylpyridinium iodide (N-CPI) as a new electric additive for enhancing photovoltaic performance of the dye-sensitized solar cell (DSSC) was studied.It showed high efficiency for enhancing both the open-circuit voltage and the short-circuit current density of DSSC when the suitable amount of N-CPI as 0.02 M was added in liquid electrolyte.The energy conversion effi- ciency of DSSC increased from 4.429% to 6.535%,with 47.55% enhancement.Therefore,it is a highly efficient electric addi- tive for DSSC.The intrinsic reason is owing to the special molecular structure of N-CPI,which contains two different polarity groups.As a surfactant,N-CPI could form ordered arrangement in liquid electrolyte,which affects the diffusing ability and the redox reaction of I-/I3-,and further affects the photovoltaic performance of DSSC.

  2. Areas of enhanced ionization in the deep nightside ionosphere of Mars

    Czech Academy of Sciences Publication Activity Database

    Němec, František; Morgan, D. D.; Gurnett, D. A.; Brain, D. A.

    2011-01-01

    Roč. 116, č. 6 (2011), č. článku E06006. ISSN 0148-0227 Institutional support: RVO:68378289 Keywords : echo sounding * ionization * ionosphere * magnetic field * Mars * observational method * planetary atmosphere * spacecraft Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 3.021, year: 2011 http://onlinelibrary.wiley.com/doi/10.1029/2011JE003804/epdf

  3. Enhancement of efficiency and stability of phosphorescent OLEDs based on heterostructured light-emitting layers

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Byung Doo, E-mail: bdchin@dankook.ac.kr [Department of Polymer Science and Engineering and Center for Photofunctional Energy Materials, Dankook University, Jukjeon-dong, Suji-gu, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2011-03-23

    The light-emitting efficiency and stability of a phosphorescent organic light-emitting device (OLED), whose emission characteristics are strongly dominated not only by the energy transfer but also by the charge carrier trapping influenced by heterostructured emissive layers, are studied. The variation of the material combination of the heterostructured emitter, both for mixed and double layer configuration, affects the charge injection behaviour, luminous efficiency and stability. Both double and mixed emitter configurations yield low-voltage and high-efficiency behaviour (51 lm W{sup -1} at 1000 cd m{sup -2}; 30 lm W{sup -1} at 10 000 cd m{sup -2}). Such an improvement in power efficiency at elevated brightness is sufficiently universal, while the enhancement of device half-lifetime is rather sensitive to the circumstantial layout of heterostructural emitters. With an optimal mixture of hole-transport type and electron-transport type, a half-lifetime of more than 2500 h at 4000 cd m{sup -2} is obtained, which is 8 times the half-lifetime of control devices with a single emitter structure. The origin and criterion for enhancement of efficiency and lifetime are discussed in terms of the carrier transport behaviour with a specific device architecture.

  4. X-ray heating and ionization of broad-emission-line regions in QSO's and active galaxies

    International Nuclear Information System (INIS)

    Weisheit, J.C.; Shields, G.A.; Tarter, C.B.

    1980-07-01

    Absorption of x-rays deep within the broad-line emitting clouds in QSO's and the nuclei of active galaxies creates extensive zones of warm (T approx. 10 4 K), partially ionized N/sub e//N approx. 0.1) gas. Because Lyman alpha photons are trapped in these regions, the x-ray energy is efficiently channeled into Balmer lines collisionally excited from the n = 2 level. The HI regions plus the HII regions created by ultraviolet photons illuminating the surfaces of the clouds give rise to integrated Lα/Hα line emission ratios between 1 and 2. Enhanced MgII line emission from the HI regions gives rise to integrated MgII/Hα ratios near 0.5. The OI line lambda 8446 is efficiently pumped by trapped Hα photons and in the x-ray heated zone an intensity ratio I (lambda 8446)/I(Hα) approx. < 0.1 is calculated. All of these computed ratios now are in agreement with observations

  5. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    International Nuclear Information System (INIS)

    Fendt, Alois; Geissler, Robert; Streibel, Thorsten

    2013-01-01

    Highlights: ► First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. ► Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. ► Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. ► The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. ► The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  6. Internuclear Separation Dependent Ionization of the Valence Orbitals of I2 by Strong Laser Fields

    Science.gov (United States)

    Chen, H.; Tagliamonti, V.; Gibson, G. N.

    2012-11-01

    Using a pump-dump-probe technique and Fourier-transform spectroscopy, we study the internuclear separation R dependence and relative strength of the ionization rates of the π and σ electrons of I2, whose valence orbitals are σg2πu4πg4σu0. We find that ionization of the highest occupied molecular orbital (HOMO)-2 (σg) has a strong dependence on R while the HOMO and HOMO-1 do not. Surprisingly, the ionization rate of the HOMO-2 exceeds the combined ionization rate of the less bound orbitals and this branching ratio increases with R. Since our technique produces target molecules that are highly aligned with the laser polarization, the σ orbitals will be preferentially ionized and undergo enhanced ionization at larger R compared to the π orbitals. Nevertheless, it is highly unusual that an inner orbital provides the dominant strong field ionization pathway in a small molecule.

  7. Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50.

    Science.gov (United States)

    Guo, Qiang; Liu, Hao; Shi, Zhenzhen; Wang, Fuzhi; Zhou, Erjun; Bian, Xingming; Zhang, Bing; Alsaedi, Ahmed; Hayat, Tasawar; Tan, Zhan'ao

    2018-02-15

    Enhancing the light-harvesting activity is an effective way to improve the power conversion efficiency of solar cells. Although rapid enhancement in the PCE up to a value of 22.1% has been achieved for perovskite solar cells, only part of the sunlight, i.e., with wavelengths below 800-850 nm is utilized due to the limited bandgap of the perovskite materials, resulting in most of the near infrared light being wasted. To broaden the photoresponse of perovskite solar cells, we demonstrate an efficient perovskite/organic integrated solar cell containing both CH 3 NH 3 PbI 3 perovskite and PBDTTT-E-T:IEICO organic photoactive layers. By integrating a low band gap PBDTTT-E-T:IEICO active layer on a perovskite layer, the maximum wavelength for light harvesting of the ISC increased to 930 nm, sharply increasing the utilization of near infrared radiation. In addition, the external quantum efficiency of the integrated device exceeded 50% in the near infrared range. The MAPbI 3 /PBDTTT-E-T:IEICO ISCs show an enhanced short-circuit current density of over 24 mA cm -2 , which is the highest existing value among perovskite/organic integrated solar cells and much higher than the traditional MAPbI 3 based perovskite solar cells. The results reveal that a perovskite/organic integrated structure is a promising strategy to extend and enhance sunlight utilization for perovskite solar cells.

  8. Nanoparticle assisted laser desorption/ionization mass spectrometry for small molecule analytes.

    Science.gov (United States)

    Abdelhamid, Hani Nasser

    2018-03-01

    Nanoparticle assisted laser desorption/ionization mass spectrometry (NPs-ALDI-MS) shows remarkable characteristics and has a promising future in terms of real sample analysis. The incorporation of NPs can advance several methods including surface assisted LDI-MS, and surface enhanced LDI-MS. These methods have advanced the detection of many thermally labile and nonvolatile biomolecules. Nanoparticles circumvent the drawbacks of conventional organic matrices for the analysis of small molecules. In most cases, NPs offer a clear background without interfering peaks, absence of fragmentation of thermally labile molecules, and allow the ionization of species with weak noncovalent interactions. Furthermore, an enhancement in sensitivity and selectivity can be achieved. NPs enable straightforward analysis of target species in a complex sample. This review (with 239 refs.) covers the progress made in laser-based mass spectrometry in combination with the use of metallic NPs (such as AuNPs, AgNPs, PtNPs, and PdNPs), NPs consisting of oxides and chalcogenides, silicon-based NPs, carbon-based nanomaterials, quantum dots, and metal-organic frameworks. Graphical abstract An overview is given on nanomaterials for use in surface-assisted laser desorption/ionization mass spectrometry of small molecules.

  9. H TO Zn IONIZATION EQUILIBRIUM FOR THE NON-MAXWELLIAN ELECTRON κ-DISTRIBUTIONS: UPDATED CALCULATIONS

    International Nuclear Information System (INIS)

    Dzifčáková, E.; Dudík, J.

    2013-01-01

    New data for the calculation of ionization and recombination rates have been published in the past few years, most of which are included in the CHIANTI database. We used these data to calculate collisional ionization and recombination rates for the non-Maxwellian κ-distributions with an enhanced number of particles in the high-energy tail, which have been detected in the solar transition region and the solar wind. Ionization equilibria for elements H to Zn are derived. The κ-distributions significantly influence both the ionization and recombination rates and widen the ion abundance peaks. In comparison with the Maxwellian distribution, the ion abundance peaks can also be shifted to lower or higher temperatures. The updated ionization equilibrium calculations result in large changes for several ions, notably Fe VIII-Fe XIV. The results are supplied in electronic form compatible with the CHIANTI database.

  10. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin

    2015-12-16

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  11. Efficiency Enhancement of Silicon Heterojunction Solar Cells via Photon Management Using Graphene Quantum Dot as Downconverters

    KAUST Repository

    Tsai, Meng-Lin; Tu, Wei-Chen; Tang, Libin; Wei, Tzu-Chiao; Wei, Wan-Rou; Lau, Shu Ping; Chen, Lih-Juann; He, Jr-Hau

    2015-01-01

    By employing graphene quantum dots (GQDs), we have achieved a high efficiency of 16.55% in n-type Si heterojunction solar cells. The efficiency enhancement is based on the photon downconversion phenomenon of GQDs to make more photons absorbed in the depletion region for effective carrier separation, leading to the enhanced photovoltaic effect. The short circuit current and the fill factor are increased from 35.31 to 37.47 mA/cm2 and 70.29% to 72.51%, respectively. The work demonstrated here holds the promise for incorporating graphene-based materials in commercially available solar devices for developing ultra-high efficiency photovoltaic cells in the future.

  12. Alkali suppression within laser ion-source cavities and time structure of the laser ionized ion-bunches

    CERN Document Server

    Lettry, Jacques; Köster, U; Georg, U; Jonsson, O; Marzari, S; Fedosseev, V

    2003-01-01

    The chemical selectivity of the target and ion-source production system is an asset for Radioactive Ion-Beam (RIB) facilities equipped with mass separators. Ionization via laser induced multiple resonant steps Ionization has such selectivity. However, the selectivity of the ISOLDE Resonant Ionization Laser Ion-Source (RILIS), where ionization takes place within high temperature refractory metal cavities, suffers from unwanted surface ionization of low ionization potential alkalis. In order to reduce this type of isobaric contaminant, surface ionization within the target vessel was used. On-line measurements of the efficiency of this method is reported, suppression factors of alkalis up to an order of magnitude were measured as a function of their ionization potential. The time distribution of the ion bunches produced with the RILIS was measured for a variety of elements and high temperature cavity materials. While all ions are produced within a few nanoseconds, the ion bunch sometimes spreads over more than 1...

  13. Numerical Study on Blast Wave Propagation Driven by Unsteady Ionization Plasma

    International Nuclear Information System (INIS)

    Ogino, Yousuke; Sawada, Keisuke; Ohnishi, Naofumi

    2008-01-01

    Understanding the dynamics of laser-produced plasma is essential for increasing the available thrust and energy conversion efficiency from a pulsed laser to a blast wave in a gas-driven laser-propulsion system. The performance of a gas-driven laser-propulsion system depends heavily on the laser-driven blast wave dynamics as well as on the ionizing and/or recombining plasma state that sustains the blast wave. In this study, we therefore develop a numerical simulation code for a laser-driven blast wave coupled with time-dependent rate equations to explore the formation of unsteady ionizing plasma produced by laser irradiation. We will also examine the various properties of blast waves and unsteady ionizing plasma for different laser input energies

  14. MAGNETOHYDRODYNAMIC WAVES IN A PARTIALLY IONIZED FILAMENT THREAD

    International Nuclear Information System (INIS)

    Soler, R.; Oliver, R.; Ballester, J. L.

    2009-01-01

    Oscillations and propagating waves are commonly seen in high-resolution observations of filament threads, i.e., the fine-structures of solar filaments/prominences. Since the temperature of prominences is typically of the order of 10 4 K, the prominence plasma is only partially ionized. In this paper, we study the effect of neutrals on the wave propagation in a filament thread modeled as a partially ionized homogeneous magnetic flux tube embedded in an homogeneous and fully ionized coronal plasma. Ohmic and ambipolar magnetic diffusion are considered in the basic resistive magnetohydrodynamic (MHD) equations. We numerically compute the eigenfrequencies of kink, slow, and Alfven linear MHD modes and obtain analytical approximations in some cases. We find that the existence of propagating modes is constrained by the presence of critical values of the longitudinal wavenumber. In particular, the lower and upper frequency cutoffs of kink and Alfven waves owe their existence to magnetic diffusion parallel and perpendicular to magnetic field lines, respectively. The slow mode only has a lower frequency cutoff, which is caused by perpendicular magnetic diffusion and is significantly affected by the ionization degree. In addition, ion-neutral collision is the most efficient damping mechanism for short wavelengths, while ohmic diffusion dominates in the long-wavelength regime.

  15. The multiphoton ionization of uranium hexafluoride

    International Nuclear Information System (INIS)

    Armstrong, D.P.

    1992-05-01

    Multiphoton ionization (MPI) time-of-flight mass spectroscopy and photoelectron spectroscopy studies of UF 6 have been conducted using focused light from the Nd:YAG laser fundamental (λ=1064 nm) and its harmonics (λ=532, 355, or 266 nm), as well as other wavelengths provided by a tunable dye laser. The MPI mass spectra are dominated by the singly and multiply charged uranium ions rather than by the UF x + fragment ions even at the lowest laser power densities at which signal could be detected. The laser power dependence of U n+ ions signals indicates that saturation can occur for many of the steps required for their ionization. In general, the doubly-charged uranium ion (U 2+ ) intensity is much greater than that of the singly-charged uranium ion (U + ). For the case of the tunable dye laser experiments, the U n+ (n = 1- 4) wavelength dependence is relatively unstructured and does not show observable resonance enhancement at known atomic uranium excitation wavelengths. The dominance of the U 2+ ion and the absence or very small intensities of UF x + fragments, along with the unsaturated wavelength dependence, indicate that mechanisms may exist other than ionization of bare U atoms after the stepwise photodissociation of F atoms from the parent molecule

  16. A positive (negative) surface ionization source concept for radioactive ion beam generation

    International Nuclear Information System (INIS)

    Alton, G.D.; Mills, G.D.

    1996-01-01

    A novel, versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed and fabricated which will have the capability of generating both positive- and negative-ion beams without mechanical changes to the source. The source utilizes a highly permeable, high-work-function Ir ionizer (φ ≅ 5.29 eV) for ionizing highly electropositive atoms/molecules; while for negative-surface ionization, the work function is lowered by continually feeding a highly electropositive vapor through the ionizer matrix. The use of this technique to effect low work function surfaces for negative ion beam generation has the potential of overcoming the chronic poisoning effects experienced with LaB 6 while enhancing the probability for negative ion formation of atomic and molecular species with low to intermediate electron affinities. The flexibility of operation in either mode makes it especially attractive for radioactive ion beam (RIB) applications and, therefore, the source will be used as a complementary replacement for the high-temperature electron impact ionization sources presently in the use at the Holifield radioactive ion beam facility (HRIBF). The design features and operational principles of the source are described in this report. (orig.)

  17. Surface-ionization ion source designed for in-beam operation with the BEMS-2 isotope separator

    International Nuclear Information System (INIS)

    Bogdanov, D.D.; Voboril, J.; Demyanov, A.V.; Karnaukhov, V.A.; Petrov, L.A.

    1976-01-01

    A surface-ionization ion source designed to operate in combination with the BEMS-2 isotope separator in a heavy ion beam is described. The ion source is adjusted for the separation of rare-earth elements. The separation efficiency for 150 Dy is determined to be equal to about 20% at the ionizer temperature of 2600 deg K. The hold-up times for praseodymium, promethium and dysprosium in the ion source range from 5 to 10 sec at the ionizer temperature of 2500-2700 deg K

  18. Classification algorithm of Web document in ionization radiation

    International Nuclear Information System (INIS)

    Geng Zengmin; Liu Wanchun

    2005-01-01

    Resources in the Internet is numerous. It is one of research directions of Web mining (WM) how to mine the resource of some calling or trade more efficiently. The paper studies the classification of Web document in ionization radiation (IR) based on the algorithm of Bayes, Rocchio, Widrow-Hoff, and analyses the result of trial effect. (authors)

  19. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    International Nuclear Information System (INIS)

    Wu, Qingyang; Zhang, Shiming; Yue, Shouzhen; Zhang, Zhensong; Xie, Guohua; Zhao, Yi; Liu, Shiyong

    2013-01-01

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C 2′ )acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C 2− ] (FIrpic) and PO-01 into the same wide band-gap host of N,N ′ -dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices

  20. Enhanced efficiency in single-host white organic light-emitting diode by triplet exciton conversion

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingyang, E-mail: wqy1527@163.com [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Zhang, Shiming [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Département of Chemical Engineering, École Polytechnique de Montréal, Montréal, Québec, Canada H3C3J7 (Canada); Yue, Shouzhen; Zhang, Zhensong [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China); Xie, Guohua [Institut für Angewandte Photophysik, Technische Universtität Dresden, Dresden 01062 (Germany); Zhao, Yi; Liu, Shiyong [State Key laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2013-11-15

    The authors observe that the external quantum efficiency (EQE) of the Iridium (III) bis(4-phenylthieno [3,2-c]pyridinato-N,C{sup 2′})acetylacetonate (PO-01) based yellow organic light-emitting diode (OLED) is significantly increased by uniformly co-doping Iridium (III)bis[(4,6-difluorophenyl)-pyridinato-N,C{sup 2−}] (FIrpic) and PO-01 into the same wide band-gap host of N,N{sup ′}-dicarbazolyl-3, 5-benzene (mCP). Detailed investigation indicates that the efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. Compared to the control device, which has maximum EQE of 10.5%, an improved maximum EQE of 13.2% is obtained in the optimization white device based on FIrpic and PO-01 emission according to this principle. This work makes it easier for a single host white OLED to simultaneously harvest high efficiency in both blue and yellow units. Comprehensive experimental results show that this phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices. -- Highlights: • This work makes easier for a single host white OLED to harvest high efficiency in both blue and yellow units. • Efficiency enhancement is ascribed to effective triplet exciton gathering by FIrpic, followed by energy transfer to PO-01. • This phenomenon can also be found and utilized in other popular hosts to realize more efficient white devices.

  1. Ionization

    International Nuclear Information System (INIS)

    2002-01-01

    This document reprints the text of the French by-law from January 8, 2002 relative to the approval and to the controls and verifications of facilities devoted to the ionizing of food products for human beings and animals. The by-law imposes the operators of such facilities to perform measurements and dosimetric verifications all along the ionization process. (J.S.)

  2. Ionizing radiation

    International Nuclear Information System (INIS)

    Kruger, J.

    1989-01-01

    Ionizing radiation results in biological damage that differs from other hazardous substances and is highly dangerous to man. Ionizing radiation cannot be perceived by man's sense organs and the biological damage cannot be detected immediately afterwards (except in very high doses). Every human being is exposed to low doses of radiation. The structure of the atom; sources of ionizing radiation; radiation units; biological effects; norms for radiation protection; and the national control in South Africa are discussed. 1 fig., 5 refs

  3. New Proton-Ionizable, Calixarene-Based Ligands for Selective Metal Ion Separations

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, Richard A.

    2012-06-04

    The project objective was the discovery of new ligands for performing metal ion separations. The research effort entailed the preparation of new metal ion complexing agents and polymers and their evaluation in metal ion separation processes of solvent extraction, synthetic liquid membrane transport, and sorption. Structural variations in acyclic, cyclic, and bicyclic organic ligands were used to probe their influence upon the efficiency and selectivity with which metal ion separations can be performed. A unifying feature of the ligand structures is the presence of one (or more) side arm with a pendent acidic function. When a metal ion is complexed within the central cavity of the ligand, ionization of the side arm(s) produces the requisite anion(s) for formation of an overall electroneutral complex. This markedly enhances extraction/transport efficiency for separations in which movement of aqueous phase anions of chloride, nitrate, or sulfate into an organic medium would be required. Through systematic structural variations, new ligands have been developed for efficient and selective separations of monovalent metal ions (e.g., alkali metal, silver, and thallium cations) and of divalent metal ion species (e.g., alkaline earth metal, lead, and mercury cations). Research results obtained in these fundamental investigations provide important insight for the design and development of ligands suitable for practical metal ion separation applications.

  4. Cationic polyacrylamide enhancing cellulase treatment efficiency of hardwood kraft-based dissolving pulp.

    Science.gov (United States)

    Wang, Qiang; Liu, Shanshan; Yang, Guihua; Chen, Jiachuan; Ni, Yonghao

    2015-05-01

    Cellulase treatment for decreasing viscosity and increasing Fock reactivity of dissolving pulp is a promising approach to reduce the use of toxic chemicals, such as hypochlorite in the dissolving pulp manufacturing process in the industry. Improving the cellulase treatment efficiency during the process is of practical interest. In the present study, the concept of using cationic polyacrylamide (CPAM) to enhance the cellulase treatment efficiency was demonstrated. This was mainly attributed to the increased cellulase adsorption onto cellulose fibers based on the patching/bridging mechanism. Results showed that the cellulase adsorption was increased by about 20% with the addition of 250 ppm of CPAM under the same conditions as those of the control. It was found that the viscosity decrease and Fock reactivity increase for the cellulase treatment was enhanced from using CPAM. The CPAM-assisted cellulase treatment concept may provide a practical alternative to the present hypochlorite-based technology for viscosity control in the industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Electron ionization and the Compton effect in double ionization of helium

    International Nuclear Information System (INIS)

    Samson, J.

    1994-01-01

    The author discusses ionization phenomena in helium, both photoionization and electron ionization. In particular he compares double ionization cross sections with total cross sections, as a function of electron energy, and photon energy. Data is discussed over the energy range up to 10 keV

  6. Hyphenation of two simultaneously employed soft photo ionization mass spectrometers with thermal analysis of biomass and biochar

    Energy Technology Data Exchange (ETDEWEB)

    Fendt, Alois [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Geissler, Robert [Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); Analytical Chemistry, Institute of Physics, University of Augsburg, 86159 Augsburg (Germany); Streibel, Thorsten, E-mail: thorsten.streibel@uni-rostock.de [Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock (Germany); Joint Mass Spectrometry Centre, Cooperation Group for Analysis of Complex Molecular Systems, Institute of Ecological Chemistry, Helmholtz Zentrum Muenchen - German Research Center for Environmental Health (GmbH), IngolstaedterLandstr. 1, 85764 Neuherberg (Germany); and others

    2013-01-10

    Highlights: Black-Right-Pointing-Pointer First simultaneous hyphenation of two time-of-flight mass spectrometers with different soft photo ionization techniques (SPI and REMPI) to Thermal Analysis using a newly developed prototype for EGA is presented. Black-Right-Pointing-Pointer Resonance enhanced multi-photon ionization (REMPI) enables sensitive and selective analysis of aromatic species. Black-Right-Pointing-Pointer Single photon ionization (SPI) using VUV light supplied by an innovative electron-beam pumped excimer light source (EBEL) comprehensively ionizes (nearly) all organic molecules. Black-Right-Pointing-Pointer The resulting mass spectra show distinct patterns for the evolved gases of the miscellaneous biomasses and chars thereof. Black-Right-Pointing-Pointer The potential for detailed kinetic studies is apparent on account of the complex pyrolysis gas compositions. - Abstract: Evolved gas analysis (EGA) is a powerful and complementary tool for Thermal Analysis. In this context, two time-of-flight mass spectrometers with different soft photo-ionization techniques are simultaneously hyphenated to a thermo balance and applied in form of a newly developed prototype for EGA of pyrolysis gases from biomass and biochar. Resonance enhanced multi-photon ionization (REMPI) is applied for selective analysis of aromatic species. Furthermore, single photon ionization (SPI) using VUV light supplied by an electron-beam pumped excimer light source (EBEL) was used to comprehensively ionize (nearly) all organic molecules. The soft ionization capability of photo-ionization techniques allows direct and on-line analysis of the evolved pyrolysis gases. Characteristic mass spectra with specific patterns could be obtained for the miscellaneous biomass feeds used. Temperature profiles of the biochars reveal a desorption step, followed by pyrolysis as observed for the biomasses. Furthermore, the potential for kinetic studies is apparent for this instrumental setup.

  7. A multi purpose 4 π counter spherical ionization chamber type

    International Nuclear Information System (INIS)

    Calin, Marian Romeo; Calin, Adrian Cantemir

    2004-01-01

    A pressurized ionization chamber detector able to measure radioactive sources in internal 2π or 4π geometry was built in order to characterize alpha and beta radioactive sources, i.e. to calibrate these sources by relative method and to test the behavior of gas mixtures in pressurized-gas radiation detectors. The detector we made is of spherical shape and works by collecting in a uniform electric field the ionization charges resulting from the interaction of ionizing radiation with gas in the sensitive volume of the chamber. An ionizing current proportional to the activity of the radioactive source to be measured is obtained. In this paper a gas counter with a spherical symmetry is described. This detector can work in a very satisfactory manner, either as a flow counter or as a ionization chamber reaching in the latter case a good α pulse height resolution, even with large emitting sources. Calculations are made in order to find the dependence of the pulse shape on the direction of emission of an α-particle by a point source in the chamber (finite track). A good agreement is found between these calculations and the experimental tests performed, which show that this dependence can be employed in high efficiency measurements of angular α-γ correlations. (authors)

  8. Mechanism of plasmon-mediated enhancement of photovoltaic efficiency

    International Nuclear Information System (INIS)

    Jacak, W; Jacak, J; Donderowicz, W; Jacak, L; Krasnyj, J

    2011-01-01

    Metallic nanospheres (Au, Ag, Cu) deposited on a photovoltaic (PV)-active semiconductor surface can act as light converters, collecting energy of incident photons in plasmon oscillations. This energy can be next transferred to a semiconductor substrate via a near-field channel, in a more efficient manner in comparison with the direct photo-effect. We explain this enhancement by inclusion of indirect interband transitions in a semiconductor layer due to the near-field coupling with plasmon radiation in nanoscale of the metallic components, where the momentum is not conserved as the system is not translationally invariant. The model of the nanosphere plasmons is developed (random phase approximation, analytical version, adjusted to description of large metallic clusters, with a radius of 10-60 nm) including surface and volume modes. Damping of plasmons is analysed via Lorentz friction, and irradiation losses in the far- and near-field regimes. Resulting resonance shifts are verified experimentally for Au and Ag colloidal water solutions with respect to particle size. Probability of the electron interband transition (within the Fermi golden rule) in the substrate semiconductor induced by coupling to plasmons in the near-field regime turns out to be significantly larger than for coupling of electrons to planar-wave photons. This is of practical importance for enhancement of thin-film solar cell efficiency, both for semiconductor type (such as III-V semiconductor based cells) and for conjugate-polymer-based or dye organic plastic cells, intensively developed at present. We have described also a non-dissipative collective mode of surface plasmons in a chain of near-field-coupled metallic nanospheres, for particular size, separation parameters and wavelengths. This would find an application in sub-diffraction electro-photonic circuit arrangement and for possible energy transport in solar cells, in particular in organic materials with low mobility of carriers.

  9. Recombination in liquid-filled ionization chambers beyond the Boag limit

    International Nuclear Information System (INIS)

    Brualla-González, L.; Roselló, J.; Aguiar, P.; González-Castaño, D. M.; Gómez, F.; Pombar, M.; Pardo-Montero, J.

    2016-01-01

    Purpose: The high mass density and low mobilities of charge carriers can cause important recombination in liquid-filled ionization chambers (LICs). Saturation correction methods have been proposed for LICs. Correction methods for pulsed irradiation are based on Boag equation. However, Boag equation assumes that the charge ionized by one pulse is fully collected before the arrival of the next pulse. This condition does not hold in many clinical beams where the pulse repetition period may be shorter than the charge collection time, causing overlapping between charge carriers ionized by different pulses, and Boag equation is not applicable there. In this work, the authors present an experimental and numerical characterization of collection efficiencies in LICs beyond the Boag limit, with overlapping between charge carriers ionized by different pulses. Methods: The authors have studied recombination in a LIC array for different dose-per-pulse, pulse repetition frequency, and polarization voltage values. Measurements were performed in a Truebeam Linac using FF and FFF modalities. Dose-per-pulse and pulse repetition frequency have been obtained by monitoring the target current with an oscilloscope. Experimental collection efficiencies have been obtained by using a combination of the two-dose-rate method and ratios to the readout of a reference chamber (CC13, IBA). The authors have also used numerical simulation to complement the experimental data. Results: The authors have found that overlap significantly increases recombination in LICs, as expected. However, the functional dependence of collection efficiencies on the dose-per-pulse does not change (a linear dependence has been observed in the near-saturation region for different degrees of overlapping, the same dependence observed in the nonoverlapping scenario). On the other hand, the dependence of collection efficiencies on the polarization voltage changes in the overlapping scenario and does not follow that of Boag

  10. Characteristics of light reflected from a dense ionization wave with a tunable velocity.

    Science.gov (United States)

    Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-11-20

    An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  11. Classical electron ionization mass spectra in gas chromatography/mass spectrometry with supersonic molecular beams.

    Science.gov (United States)

    Gordin, Alexander; Fialkov, Alexander B; Amirav, Aviv

    2008-09-01

    A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources. In classical EI-SMB mode, the relative abundance of the molecular ion can be tuned and, as a result, excellent identification probabilities and very good matching factors to the NIST MS library are obtained. Classical EI-SMB with the fly-through dual cage ion source has analyte sensitivity similar to that of the standard EI ion source of a basic GC/MS system. The fly-through EI ion source in combination with the SMB interface can serve for cold EI, classical EI-SMB, and cluster chemical ionization (CCI) modes of operation, all easily exchangeable through a simple and quick change (not involving hardware). Furthermore, the fly-through ion source eliminates sample scattering from the walls of the ion source, and thus it offers full sample inertness, tailing-free operation, and no ion-molecule reaction interferences. It is also robust and enables increased column flow rate capability without affecting the sensitivity.

  12. Determination of first ionization potential of samarium atom using Rydberg series convergence

    International Nuclear Information System (INIS)

    Jayasekharan, T.; Razvi, M.A.N.; Bhale, G.L.

    1999-01-01

    The study of Rydberg states has recently received more attention partially because an efficient isotope selective ionization is possible via these states. In addition, their investigation provides useful information on the atomic structure. An electron in a shell with a high principal quantum number is a sensitive probe for the interaction with the ionic core of the atom. Measurements of these Rydberg levels give valuable data on quantum defects, anomalies in fine structure splitting, polarizabilities, configuration interactions, ionization potentials etc

  13. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rezaee, Mohammad, E-mail: Mohammad.Rezaee@USherbrooke.ca; Hunting, Darel John; Sanche, Léon

    2013-11-15

    Purpose: To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials: Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure–response curves. Results: The presence of an average of 2 Pt-drug–DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10{sup −4} Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Conclusion: Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances.

  14. New Insights into the Mechanism Underlying the Synergistic Action of Ionizing Radiation With Platinum Chemotherapeutic Drugs: The Role of Low-Energy Electrons

    International Nuclear Information System (INIS)

    Rezaee, Mohammad; Hunting, Darel John; Sanche, Léon

    2013-01-01

    Purpose: To investigate the efficiencies of platinum chemotherapeutic drugs (Pt-drugs) in the sensitization of DNA to the direct effects of ionizing radiation and to determine the role of low-energy electrons (LEEs) in this process. Methods and Materials: Complexes of supercoiled plasmid DNA covalently bound to either cisplatin, carboplatin, or oxaliplatin were prepared in different molar ratios. Solid films of DNA and DNA modified by Pt-drugs were irradiated with either 10-KeV or 10-eV electrons. Damages to DNA were quantified by gel electrophoresis, and the yields for damage formation were obtained from exposure–response curves. Results: The presence of an average of 2 Pt-drug–DNA adducts (Pt-adducts) in 3199-bp plasmid DNA increases the probability of a double-strand break by factors of 3.1, 2.5, and 2.4 for carboplatin, cisplatin, and oxaliplatin, respectively. Electrons with energies of 10 eV and 10 KeV interact with Pt-adducts to preferentially enhance the formation of cluster lesions. The maximum increase in radiosensitivity per Pt-adduct is found at ratios up to 3.1 × 10 −4 Pt-adducts per nucleotide, which is equivalent to an average of 2 adducts per plasmid. Carboplatin and oxaliplatin show higher efficiencies than cisplatin in the radiosensitization of DNA. Because carboplatin and cisplatin give rise to identical reactive species that attach to DNA, carboplatin must be considered as a better radiosensitizer for equal numbers of Pt-adducts. Conclusion: Platinum chemotherapeutic drugs preferentially enhance the formation of cluster damage to DNA induced by the direct effect of ionizing radiation, and LEEs are the main species responsible for such an enhancement via the formation of electron resonances

  15. Enhanced Solar Photoelectrochemical Conversion Efficiency of ZnO:Cu Electrodes for Water-Splitting Application

    Directory of Open Access Journals (Sweden)

    Rekha Dom

    2013-01-01

    Full Text Available n-type ZnO:Cu photoanodes were fabricated by simple spray pyrolysis deposition technique. Influence of low concentration (range ~10−4–10−1% of Cu doping in hexagonal ZnO lattice on its photoelectrochemical performance has been investigated. The doped photoanodes displayed 7-time enhanced conversion efficiencies with respect to their undoped counterpart, as estimated from the photocurrents generated under simulated solar radiation. This is the highest enhancement in the solar conversion efficiency reported so far for the Cu-doped ZnO. This performance is attributed to the red shift in the band gap of the Cu-doped films and is in accordance with the incident-photon-current-conversion efficiency (IPCE measurements. Electrochemical studies reveal an n-type nature of these photoanodes. Thus, the study indicates a high potential of doped ZnO films for solar energy applications, in purview of the development of simple nanostructuring methodologies.

  16. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generationa

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  17. Efficient and robust gradient enhanced Kriging emulators.

    Energy Technology Data Exchange (ETDEWEB)

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  18. Localization of ionization-induced trapping in a laser wakefield accelerator using a density down-ramp

    CERN Document Server

    Hansson, M.; Ekerfelt, H.; Aurand, B.; Gallardo Ganzalez, I.; Desforges, F. G.; Davoine, X.; Maitrallain, A.; Reymond, S.; Monot, P.; Persson, A.; Dobosz Dufrénoy S.; Wahlström C-G.; Cros, B.; Lundh, O.

    2016-01-01

    We report on a study on controlled trapping of electrons, by field ionization of nitrogen ions, in laser wakefield accelerators in variable length gas cells. In addition to ionization-induced trapping in the density plateau inside the cells, which results in wide, but stable, electron energy spectra, a regime of ionization-induced trapping localized in the density down-ramp at the exit of the gas cells, is found. The resulting electron energy spectra are peaked, with 10% shot-to-shot fluctuations in peak energy. Ionization-induced trapping of electrons in the density down-ramp is a way to trap and accelerate a large number of electrons, thus improving the efficiency of the laser-driven wakefield acceleration.

  19. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  20. On the ionization scintillation calorimeter based on KMgF3 crystal

    International Nuclear Information System (INIS)

    Buzulutskov, A.F.

    1990-01-01

    The development of the ionization scintillation calorimeter, using KMgF 3 crystals and high efficiency photocathodes, is proposed. Some characteristics of such calorimeter are compared with those of the high pressure gas one. 6 refs.; 2 figs.; 2 tabs

  1. Ionizing radiation in environment

    International Nuclear Information System (INIS)

    Jandl, J.; Petr, I.

    1988-01-01

    The basic terms are explained such as the atom, radioactivity, nuclear reaction, interaction of ionizing radiation with matter, etc. The basic dosimetric variables and units and properties of radionuclides and ionizing radiation are given. Natural and artificial sources of ionizing radiation are discussed with regard to the environment and the propagation and migration of radionuclides is described in the environment to man. The impact is explained of ionizing radiation on the cell and the somatic and genetic effects of radiation on man are outlined. Attention is devoted to protection against ionizing radiation and to radiation limits, also to the detection, dosimetry and monitoring of ionizing radiation in the environment. (M.D.). 92 figs., 40 tabs. 74 refs

  2. Sequence specific DNA binding by P53 is enhanced by ionizing radiation and is mediated via DNA-PK activity

    International Nuclear Information System (INIS)

    Kachnic, L.A.; Wunsch, H.; Mekeel, K.L.; De Frank, J.S.; Powell, S.N.

    1996-01-01

    Purpose: P53 is known to be involved in the cellular response to DNA damage. It mediates many of its effects by acting as a transcription factor via sequence-specific DNA binding. The half-life of p53 is prolonged following DNA damage, and this results in elevated levels of p53 for a period of 2-8 hours. The increase in p53 is often relatively small, but this produces significant stimulation of a downstream gene such as p21(WAF1/cip1). We investigated post-translational modification of p53 following ionizing radiation damage. Materials and Methods: The response of normal Balb-C mouse fibroblasts (FC) to ionizing radiation (IR, 8 Gy) was measured at 0,3,6,9 and 24 hours, by the levels of p53, p21, flow cytometry and the electrophoretic mobility shift assay (EMSA). EMSA utilized a 26 bp consensus sequence end-labeled oligonucleotide to measure sequence-specific p53 binding. P53 specificity was confirmed by an enhanced mobility shift (retardation) when using p53 antibody. Comparison was made with scid fibroblasts (FS) and FC cells transfected with a plasmid (CX3) containing mutant p53 (alanine-143) or infected with a retrovirus containing the E6 protein of human papilloma virus type 16. Results: The response of p53 to DNA damage shows a 3-fold increase at 3-6 hours, and was not significantly different between FC and FS. FC-CX3 showed detectable basal levels of p53, and a 2-fold further induction of p53 after IR. FC-E6 showed no detectable levels of p53 before or after IR. No induction of p21 or G1/S arrest was seen in FC-CX3 or FC-E6, as has been observed previously. The induction of p21 in FS cells was attenuated and delayed: a 2-3-fold increase seen maximally at 9 hours, compared with a 5-fold increase seen maximally at 3-6 hours in FC cells. The accumulation of cells at the G1/S junction after IR showed the same kinetics as p21 induction: the peak of cells in G1 occurs at 3-6 hours in FC, but not until 9-24 hours in FS. The response is reminiscent of that seen in

  3. High concentration tritium gas measurement with small volume ionization chambers for fusion fuel gas monitors

    International Nuclear Information System (INIS)

    Uda, Tatsuhiko; Okuno, Kenji; Matsuda, Yuji; Naruse, Yuji

    1991-01-01

    To apply ionization chambers to fusion fuel gas processing systems, high concentration tritium gas was experimentally measured with small volume 0.16 and 21.6 cm 3 ionization chambers. From plateau curves, the optimum electric field strength was obtained as 100∼200 V/cm. Detection efficiency was confirmed as dependent on the ionization ability of the filled gas, and moreover on its stopping power, because when the range of the β-rays was shortened, the probability of energy loss by collisions with the electrode and chamber wall increased. Loss of ions by recombination was prevented by using a small volume ionization chamber. For example the 0.16 cm 3 ionization chamber gave measurement with linearity to above 40% tritium gas. After the tritium gas measurements, the concentration levels inside the chamber were estimated from their memory currents. Although more than 1/4,000 of the maximum, current was observed as a memory effect, the smaller ionization chamber gave a smaller memory effect. (author)

  4. Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix

    Science.gov (United States)

    Hou, Junjie; Xie, Zhensheng; Xue, Peng; Cui, Ziyou; Chen, Xiulan; Li, Jing; Cai, Tanxi; Wu, Peng; Yang, Fuquan

    2010-01-01

    Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP) and diammonium hydrogen citrate (DAHC), and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1) by MALDI-TOF/TOF MS. PMID:20339515

  5. Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix

    Directory of Open Access Journals (Sweden)

    Junjie Hou

    2010-01-01

    Full Text Available Selecting an appropriate matrix solution is one of the most effective means of increasing the ionization efficiency of phosphopeptides in matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS. In this study, we systematically assessed matrix combinations of 2, 6-dihydroxyacetophenone (DHAP and diammonium hydrogen citrate (DAHC, and demonstrated that the low ratio DHAP/DAHC matrix was more effective in enhancing the ionization of phosphopeptides. Low femtomole level of phosphopeptides from the tryptic digests of α-casein and β-casein was readily detected by MALDI-TOF-MS in both positive and negative ion mode without desalination or phosphopeptide enrichment. Compared with the DHB/PA matrix, the optimized DHAP/DAHC matrix yielded superior sample homogeneity and higher phosphopeptide measurement sensitivity, particularly when multiple phosphorylated peptides were assessed. Finally, the DHAP/DAHC matrix was applied to identify phosphorylation sites from α-casein and β-casein and to characterize two phosphorylation sites from the human histone H1 treated with Cyclin-Dependent Kinase-1 (CDK1 by MALDI-TOF/TOF MS.

  6. Analysis of 3-panel and 4-panel microscale ionization sources

    International Nuclear Information System (INIS)

    Natarajan, Srividya; Parker, Charles B.; Glass, Jeffrey T.; Piascik, Jeffrey R.; Gilchrist, Kristin H.; Stoner, Brian R.

    2010-01-01

    Two designs of a microscale electron ionization (EI) source are analyzed herein: a 3-panel design and a 4-panel design. Devices were fabricated using microelectromechanical systems technology. Field emission from carbon nanotube provided the electrons for the EI source. Ion currents were measured for helium, nitrogen, and xenon at pressures ranging from 10 -4 to 0.1 Torr. A comparison of the performance of both designs is presented. The 4-panel microion source showed a 10x improvement in performance compared to the 3-panel device. An analysis of the various factors affecting the performance of the microion sources is also presented. SIMION, an electron and ion optics software, was coupled with experimental measurements to analyze the ion current results. The electron current contributing to ionization and the ion collection efficiency are believed to be the primary factors responsible for the higher efficiency of the 4-panel microion source. Other improvements in device design that could lead to higher ion source efficiency in the future are also discussed. These microscale ion sources are expected to find application as stand alone ion sources as well as in miniature mass spectrometers.

  7. Traveling-Wave Tube Efficiency Enhancement

    Science.gov (United States)

    Dayton, James A., Jr.

    2011-01-01

    Traveling-wave tubes (TWT's) are used to amplify microwave communication signals on virtually all NASA and commercial spacecraft. Because TWT's are a primary power user, increasing their power efficiency is important for reducing spacecraft weight and cost. NASA Glenn Research Center has played a major role in increasing TWT efficiency over the last thirty years. In particular, two types of efficiency optimization algorithms have been developed for coupled-cavity TWT's. The first is the phase-adjusted taper which was used to increase the RF power from 420 to 1000 watts and the RF efficiency from 9.6% to 22.6% for a Ka-band (29.5 GHz) TWT. This was a record efficiency at this frequency level. The second is an optimization algorithm based on simulated annealing. This improved algorithm is more general and can be used to optimize efficiency over a frequency bandwidth and to provide a robust design for very high frequency TWT's in which dimensional tolerance variations are significant.

  8. Cellular Response to Ionizing Radiation: A MicroRNA Story

    Science.gov (United States)

    Halimi, Mohammad; Asghari, S. Mohsen; Sariri, Reyhaneh; Moslemi, Dariush; Parsian, Hadi

    2012-01-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They play a crucial role in diverse cellular pathways. Ionizing radiation (IR) is one of the most important treatment protocols for patients that suffer from cancer and affects directly or indirectly cellular integration. Recently it has been discovered that microRNA-mediated gene regulation interferes with radio-related pathways in ionizing radiation. Here, we review the recent discoveries about miRNAs in cellular response to IR. Thoroughly understanding the mechanism of miRNAs in radiation response, it will be possible to design new strategies for improving radiotherapy efficiency and ultimately cancer treatment. PMID:24551775

  9. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    International Nuclear Information System (INIS)

    Hong, Sung-Ha; Jenkins, A Toby A; Szili, Endre J; Short, Robert D

    2014-01-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine. (fast track communication)

  10. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    Science.gov (United States)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  11. RUNAWAY STARS AND THE ESCAPE OF IONIZING RADIATION FROM HIGH-REDSHIFT GALAXIES

    International Nuclear Information System (INIS)

    Conroy, Charlie; Kratter, Kaitlin M.

    2012-01-01

    Approximately 30% of all massive stars in the Galaxy are runaways with velocities exceeding 30 km s –1 . Their high speeds allow them to travel ∼0.1-1 kpc away from their birthplace before they explode at the end of their several Myr lifetimes. At high redshift, when galaxies were much smaller than in the local universe, runaways could venture far from the dense inner regions of their host galaxies. From these large radii, and therefore low column densities, much of their ionizing radiation is able to escape into the intergalactic medium. Runaways may therefore significantly enhance the overall escape fraction of ionizing radiation, f esc , from small galaxies at high redshift. We present simple models of the high-redshift runaway population and its impact on f esc as a function of halo mass, size, and redshift. We find that the inclusion of runaways enhances f esc by factors of ≈1.1-8, depending on halo mass, galaxy geometry, and the mechanism of runaway production, implying that runaways may contribute 50%-90% of the total ionizing radiation escaping from high-redshift galaxies. Runaways may therefore play an important role in reionizing the universe.

  12. Characterization of ionization chambers in double face for X-ray detection systems

    International Nuclear Information System (INIS)

    Costa, Alessandro M. da; Caldas, Linda V.O.

    2000-01-01

    Two identical parallel-plate ionization chambers with collecting electrodes of different materials (in order to obtain different energy dependences), developed at Instituto de Pesquisas Energeticas e Nucleares, were tested in low energy X-radiation beams, simulating a special ionization chamber, of double face, in a Tandem system. The purpose of this work is to justify a project of a double face detection system utilizing ionization chambers in Tandem. In relation to conventional methods, this kind of system will provide more efficient and precise absorbed dose in air measurements and radiation effective energy determinations. The results obtained in relation to characteristics of short- and long-term stabilities and angular and energy dependence show that the project is feasible and very appropriate. (author)

  13. Thermodynamic comparison and efficiency enhancement mechanism of coal to alternative fuel systems

    International Nuclear Information System (INIS)

    Ji, Xiaozhou; Li, Sheng; Gao, Lin; Jin, Hongguang

    2016-01-01

    Highlights: • Energy and exergy analysis are presented to three coal-to-alternative-fuels systems. • Internal reasons for performance differences for different systems are disclosed. • The temperature and heat release of synthesis reactions are key to plant efficiency. • The distillation unit and purge gas recovery are important to efficiency enhancement. - Abstract: Coal to alternative fuels is an important path to enforce energy security and to provide clean energy. In this paper, we use exergy analysis and energy utilization diagram (EUD) methods to disclose the internal reasons for performance differences in typical coal to alternative fuel processes. ASPEN plus software is used to simulate the coal-based energy systems, and the simulation results are verified with engineering data. Results show that coal to substitute natural gas (SNG) process has a higher exergy efficiency of 56.56%, while the exergy efficiency of traditional coal to methanol process is 48.65%. It is indicated that three key factors impact the performance enhancement of coal to alternative fuel process: (1) whether the fuel is distillated, (2) the synthesis temperature and the amount of heat release from reactions, and (3) whether the chemical purge gases from synthesis and distillation units are recovered. Distillation unit is not recommended and synthesis at high temperature and with large heat release is preferable for coal to alternative fuel systems. Gasification is identified as the main source of exergy destruction, and thereby how to decrease its destruction is the key direction of plant efficiency improvement in the future. Also, decreasing the power consumption in air separation unit by seeking for advanced technologies, i.e. membrane, or using another kind of oxidant is another direction to improve plant performance.

  14. An aptamer cocktail-functionalized photocatalyst with enhanced antibacterial efficiency towards target bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Song, Min Young [Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Jurng, Jongsoo [Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Park, Young-Kwon [School of Environmental Engineering, University of Seoul, Seoulsiripdae-ro 163, Dongdaemun-gu, Seoul 02504 (Korea, Republic of); Kim, Byoung Chan, E-mail: bchankim@kist.re.kr [Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of); Department of Energy and Environmental Engineering, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792 (Korea, Republic of)

    2016-11-15

    Highlights: • Aptamer-conjugated TiO{sub 2} was developed for target-specific bacterial inactivation. • TiO{sub 2}-aptamer cocktail can enhance inactivation of target bacteria faster than TiO{sub 2}. • TiO{sub 2}-aptamer cocktail can enhance inactivation of target bacteria in mixed culture. • Efficient ROS transfer to the bacteria is caused by close contact of TiO{sub 2}-aptamer. - Abstract: We developed TiO{sub 2} particles conjugated with an Escherichia coli surface-specific ssDNA aptamer cocktail (composed of three different aptamers isolated from E. coli) for targeted and enhanced disinfection of E. coli. We examined the target-specific and enhanced inactivation of this composite (TiO{sub 2}-Apc), which were compared to those of TiO{sub 2} conjugated with a single aptamer (one of the three different aptamers, TiO{sub 2}-Aps) and non-modified TiO{sub 2}. We found that TiO{sub 2}-Apc enhanced the inactivation of targeted E. coli under UV irradiation compared to both the non-modified TiO{sub 2} and TiO{sub 2}-Aps. A higher number of TiO{sub 2}-Apc than TiO{sub 2}-Aps particles was observed on the surface of E. coli. The amount of TiO{sub 2}-Apc required to inactivate ∼99.9% of E. coli (10{sup 6} CFU/ml) was 10 times lower than that of non-modified TiO{sub 2}. The close proximity of functionalized particles with E. coli resulting from the interaction between the target surface and the aptamer induced the efficient and fast transfer of reactive oxygen species to the cells. In a mixed culture of different bacteria (E. coli and Staphylococcus epidermidis), TiO{sub 2}-Apc enhanced the inactivation of only E. coli. Taken together, these results support the use of aptamer cocktail-conjugated TiO{sub 2} for improvement of the target-specific inactivation of bacteria.

  15. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    International Nuclear Information System (INIS)

    Stoyanov, D G

    2007-01-01

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained

  16. Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization

    Energy Technology Data Exchange (ETDEWEB)

    Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)

    2007-08-15

    The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.

  17. Specific primary ionization induced by minimum ionizing electrons in CH4, C2H6, C3H8, i-C4H10, Ar, DME,TEA and TMAE

    International Nuclear Information System (INIS)

    Melamud, G.; Breskin, A.; Chechik, R.; Pansky, A.

    1992-10-01

    Specific primary ionization induced by minimum ionizing electrons has been measured in several gases and vapors. Charges deposited by β-electrons in a low pressure gas, were collected, amplified by a multistep gaseous electron multiplier and counted. The high counting efficiency of the multiplier provided results of systematically higher values as compared to existing data. The respective values of the specific primary ionization in CH 4 C 2 H 6 , C 3 H 8 ,i-C 4 H 10 , Argon, Dimethylether, Triethylamine and Tetrakis(dimethylamino) ethylene are: 0.034, 0.065, 0.095, 0.12, 0.03, 0.082, 0.0195 and 0.370 clusters/cm*Torr. We present the experimental method and discuss the results and their accuracy. (authors)

  18. Ionization Collection in Detectors of the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, Arran T.J. [Univ. of California, Berkeley, CA (United States)

    2016-01-01

    Determining the composition of dark matter is at the forefront of modern scientific research. There is compelling evidence for the existence of vast quantities of dark matter throughout the universe, however it has so-far eluded all direct detection efforts and its identity remains a mystery. Weakly interacting massive particles (WIMPs) are a favored dark matter candidate and have been the primary focus of direct detection for several decades. The Cryogenic Dark Matter Search (CDMS) has developed the Z-dependent Ionization and Phonon (ZIP) detector to search for such particles. Typically made from germanium, these detectors are capable of distinguishing between electromagnetic background and a putative WIMP signal through the simultaneous measurement of ionization and phonons produced by scattering events. CDMS has operated several arrays of these detectors at the Soudan Underground Laboratory (Soudan, MN, USA) resulting in many competitive (often world-leading) WIMP exclusion limits. This dissertation focuses on ionization collection in these detectors under the sub-Kelvin, low electric field, and high crystal purity conditions unique to CDMS. The design and performance of a fully cryogenic HEMT-based amplifier capable of achieving the SuperCDMS SNOLAB ionization energy resolution goal of 100 eVee is presented. The experimental apparatus which has been used to record electron and hole properties under CDMS conditions is described. Measurements of charge transport, trapping, and impact ionization as a function of electric field in two CDMS detectors are shown, and the ionization collection efficiency is determined. The data is used to predict the error in the nuclear recoil energy scale under both CDMSlite and iZIP operating modes. A two species, two state model is developed to describe how ionization collection and space charge generation in CDMS detectors are controlled by the presence of “overcharged” D- donor and A+ acceptor impurity states. The thermal

  19. High-efficiency intracavity second-harmonic enhancement for a few-cycle laser pulse train

    International Nuclear Information System (INIS)

    Cai, Yi; Xu, Shixiang; Zeng, Xuanke; Zou, Da; Li, Jingzhen

    2012-01-01

    This paper presents an intracavity second-harmonic (SH) enhancement technology without the need of input impedance-matching for optimal coupling between the cavity and its input frequency comb. More than 10% SH energy conversion efficiency is available, thus the power of the SH frequency comb can be enhanced beyond 100 relative to single-pass SH generation. Compared with a conventional passive enhancing cavity, for the purpose of high power enhancement, our scheme can operate at much lower finesse and thus broader bandwidth so that it can support several-optical-cycle pulses more easily. If they have the same finesse, both methods perform with similar operating stability. The results show that our novel design is suitable for some applications which need a short wavelength, high intensity, and ultra-broad bandwidth pulse train. (paper)

  20. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization

    Energy Technology Data Exchange (ETDEWEB)

    Neustetter, M.; Jabbour Al Maalouf, E.; Denifl, S., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Limão-Vieira, P., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt [Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica (Portugal)

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO){sub 6}) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO){sub 6} clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO){sub n}{sup +} (0 ≤ n ≤ 6) and W{sub 2}(CO){sub n}{sup +} (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO){sub n}{sup +} (0 ≤ n ≤ 3) and W{sub 2}C(CO){sub n}{sup +} (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

  1. Development of alpha radioactivity monitor using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki

    2008-01-01

    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'Clearance Level' for uranium and TRU radioactive waste. We carried out optimum design and realized two kinds of practical alpha activity monitor, combining with radiation detector technology, ionized air physics and computational fluid dynamics. The results will bring paradigm shift on the alpha-ray measurement such as converting 'closely contacting and scanning measurement' to 'remotely measurement in the block', and drastically improve the efficiency of measurement operation. We hope that this technology will be widely endorsed as the practical method for the alpha clearance measurement in future. (author)

  2. The adoption of energy efficiency enhancing technologies. Market Performance and Policy Strategies in Case of Heterogeneous Firms

    Energy Technology Data Exchange (ETDEWEB)

    Verhoef, E.; Nijkamp, P. [Department of Spatial Economics, Free University Amsterdam, Amsterdam (Netherlands)

    1997-07-01

    The adoption of energy-efficiency enhancing technologies by heterogeneous firms is analyzed. The fact that energy use does not only cause external environmental costs through pollution, but also directly affects the profitability of the firm and hence its behaviour on input and output markets is taken for granted. It is demonstrated that the consideration of such market processes may have important implications for the efficiency of environmental policies concerned with energy use. The analysis focuses in particular on the efficiency of the market-led adoption and diffusion process under various policy regimes. It is shown that the promotion of energy-efficiency enhancing technologies might have unexpected effects in that it could lead to an increase in energy use, while the use of energy taxes might actually reduce the attractiveness of energy-saving technologies. 22 refs.

  3. Biological Effects of Ionizing Radiation

    Science.gov (United States)

    Ingram, M.; Mason, W. B.; Whipple, G. H.; Howland, J. W.

    1952-04-07

    This report presents a review of present knowledge and concepts of the biological effects of ionizing radiations. Among the topics discussed are the physical and chemical effects of ionizing radiation on biological systems, morphological and physiological changes observed in biological systems subjected to ionizing radiations, physiological changes in the intact animal, latent changes following exposure of biological systems to ionizing radiations, factors influencing the biological response to ionizing radiation, relative effects of various ionizing radiations, and biological dosimetry.

  4. Ionization chambers

    International Nuclear Information System (INIS)

    Boag, J.W.

    1987-01-01

    Although a variety of solid-state and chemical methods for measuring radiation dose have been developed in recent decades and calorimetry can now provide an absolute standard of reference, ionization dosimetry retains its position as the most widely used, most convenient, and, in most situations, most accurate method of measuring either exposure or absorbed dose. The ionization chamber itself is the central element in this system of dosimetry. In this chapter the principles governing the construction and operation of ionization chambers of various types are examined. Since the ionization chambers now in general use are nearly all of commercial manufacture, the emphasis is on operating characteristics and interpretation of measurements rather than on details of construction, although some knowledge of the latter is often required when applying necessary corrections to the measured quantities. Examples are given of the construction of typical chambers designed for particular purposes, and the methods of calibrating them are discussed

  5. Time-resolved spectroscopy of nonequilibrium ionization in laser-produced plasmas

    International Nuclear Information System (INIS)

    Marjoribanks, R.S.

    1988-01-01

    The highly transient ionization characteristic of laser-produced plasmas at high energy densities has been investigated experimentally, using x-ray spectroscopy with time resolution of less than 20 ps. Spectroscopic diagnostics of plasma density and temperature were used, including line ratios, line profile broadening and continuum emission, to characterize the plasma conditions without relying immediately on ionization modeling. The experimentally measured plasma parameters were used as independent variables, driving an ionization code, as a test of ionization modeling, divorced from hydrodynamic calculations. Several state-of-the-art streak spectrographs, each recording a fiducial of the laser peak along with the time-resolved spectrum, characterized the laser heating of thin signature layers of different atomic numbers imbedded in plastic targets. A novel design of crystal spectrograph, with a conically curved crystal, was developed. Coupled with a streak camera, it provided high resolution (λ/ΔΛ > 1000) and a collection efficiency roughly 20-50 times that of planar crystal spectrographs, affording improved spectra for quantitative reduction and greater sensitivity for the diagnosis of weak emitters. Experimental results were compared to hydrocode and ionization code simulations, with poor agreement. The conclusions question the appropriateness of describing electron velocity distributions by a temperature parameter during the time of laser illumination and emphasis the importance of characterizing the distribution more generally

  6. Microscopic theory of warm ionized gases: equation of state and kinetic Schottky anomaly

    International Nuclear Information System (INIS)

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-01-01

    Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed.

  7. High-efficiency, 154  W CW, diode-pumped Raman fiber laser with brightness enhancement.

    Science.gov (United States)

    Glick, Yaakov; Fromzel, Viktor; Zhang, Jun; Ter-Gabrielyan, Nikolay; Dubinskii, Mark

    2017-01-20

    We demonstrate a high-power, high-efficiency Raman fiber laser pumped directly by laser diode modules at 978 nm. 154 W of CW power were obtained at a wavelength of 1023 nm with an optical to optical efficiency of 65%. A commercial graded-index (GRIN) core fiber acts as the Raman fiber in a power oscillator configuration, which includes spectral selection to prevent generation of the second Stokes. In addition, brightness enhancement of the pump beam by a factor of 8.4 is attained due to the Raman gain distribution profile in the GRIN fiber. To the best of our knowledge this is the highest power and highest efficiency Raman fiber laser demonstrated in any configuration allowing brightness enhancement (i.e., in either cladding-pumped configuration or with GRIN fibers, excluding step-index core pumped), regardless of pumping scheme (i.e., either diode pumped or fiber laser pumped).

  8. Methods for Creation and Detection of Ultra-Strong Artificial Ionization in the Upper Atmosphere (Invited)

    Science.gov (United States)

    Bernhardt, P. A.; Siefring, C. L.; Briczinski, S. J.; Kendall, E. A.; Watkins, B. J.; Bristow, W. A.; Michell, R.

    2013-12-01

    The High Frequency Active Auroral Research Program (HAARP) transmitter in Alaska has been used to produce localized regions of artificial ionization at altitudes between 150 and 250 km. High power radio waves tuned near harmonics of the electron gyro frequency were discovered by Todd Pederson of the Air Force Research Laboratory to produce ionosonde traces that looked like artificial ionization layers below the natural F-region. The initial regions of artificial ionization (AI) were not stable but had moved down in altitude over a period of 15 minutes. Recently, artificial ionization has been produced by the 2nd, 3rd, 4th and 6th harmonics transmissions by the HAARP. In march 2013, the artificial ionization clouds were sustained for more the 5 hours using HAARP tuned to the 4 fce at the full power of 3.6 Mega-Watts with a twisted-beam antenna pattern. Frequency selection with narrow-band sweeps and antenna pattern shaping has been employed for optimal generation of AI. Recent research at HAARP has produced the longest lived and denser artificial ionization clouds using HF transmissions at the harmonics of the electron cyclotron frequency and ring-shaped radio beams tailored to prevent the descent of the clouds. Detection of artificial ionization employs (1) ionosonde echoes, (2) coherent backscatter from the Kodiak SuperDARN radar, (3) enhanced ion and plasma line echoes from the HAARP MUIR radar at 400 MHz, (4) high resolution optical image from ground sites, and (5) unique stimulated electromagnetic emissions, and (6) strong UHF and L-Band scintillation induced into trans-ionospheric signals from satellite radio beacons. Future HAARP experiments will determine the uses of long-sustained AI for enhanced HF communications.

  9. Growth inhibition of human pancreatic cancer cells by lipofection mediated IGF-1R antisense oligodeoxynucletides in combination with ionizing radiation

    International Nuclear Information System (INIS)

    Pan Yaozhen; Sun Chengyi; Wang Yuzhi

    2004-01-01

    Objective: To study the growth inhibition of human pancreatic cancer cells (PC-3) by lipofection-mediated and ionizing radiation improving transfection of IGF-1R antisense oligodeoxynucletides (ASON) in vitro. Methods: Colonigenicity of PC-3 cells in vitro after 60 Co γ-radiation was observed for ascertaining their radiosensitivity and optimal radiation dose was selected according to the radiation sensitivity. PC-3 cells were transfected by two ways: 1) by lipofection-mediated IGF-1R ASON combined with ionizing radiation. 2) by lipo-ASON alone without ionizing radiation. Cell growth was assessed by MTT method. The expression of IGF-1R at mRNA level was examined by RT-PCR. Flow cytometry was used to demonstrate apoptotic changes in lipo-ASON-treated cells. Results: The inhibitory efficiency of lipo-ASON combined with ionizing radiation was higher than that without ionizing radiation (P < 0.05). The apoptotic efficiency and the decreased level of IGF-1R at mRNA were significantly improved (P < 0.05). Conclusion: Lipofection-mediated and ionizing radiation-promoted transfection of IGF-1R antisense oligodeoxynucletides (ASON) significantly decreases IGF-1R at mRNA level and induces apoptosis of human pancreatic cancer cells in vitro

  10. Hereditary syndromes with enhanced radiosensitivity

    International Nuclear Information System (INIS)

    Lohmann, D.

    2000-01-01

    Sensitivity to ionizing radiation is modified by heritable genetic factors. This is exemplified by heritable disorders that are characterized by predisposition to the development of neoplasms. Cells derived from patients with ataxia telangiectasia, Nijmegen breakage syndrome and ataxia telangiektasia-like disorder show a markedly changed reaction to exposure to ionizing radiation. Correspondingly, at least in patients with ataxia telangiectasia, an enhanced radiosensitivity that is of clinical importance has been observed. In addition to these recessive disorders, some autosomal dominant cancer predisposition syndromes are associated with increased radiosensitivity. As cells from these patients still have a normal allele (that is dominant over the mutant allele), the cellular phenotype is most often normal. Specifically, there is no overtly altered reaction in response to ionizing radiation. Nevertheless, two dominant cancer predisposition syndromes, namely hereditary retinoblastoma and naevoid basal cell carcinoma syndrome, are associated with a enhanced radiosensitivity as indicated by increased development of tumors following radiation therapy. (orig.) [de

  11. The blessings of energy efficiency in an enhanced EU sustainability scenario. Volume 1

    International Nuclear Information System (INIS)

    Lechtenboehmer, Stefan

    2007-01-01

    Although the anticipated 'end of cheap oil' has boosted the interest in energy efficiency as a cornerstone of energy and climate strategies, it is usually taken into account on the basis of rather narrowly defined cost-benefit considerations. As a consequence, substantial ancillary benefits are usually barely considered.In a recent study for the European Parliament (EP), the authors assessed two enhanced climate strategies compared to a more conventional strategy. One enhanced climate policy scenario relies, in particular, on raising the annual pace of energy efficiency improvement. The other aims at a radical boost of the market share of renewable energy forms, which, however, presupposes an equally radical improvement of energy efficiency.The present article presents the scenario results and places them in the context of risk characterisation of the considered climate policy scenarios. Risks of international turmoil and energy price hikes could be reduced if dependency rates for fossil fuel imports went down. A more ambitious climate policy can also strengthen the EU position in post-Kyoto global climate agreements and a moderated need for emission trading can, for example, reduce conflicting pressures on clean technology transfer. On the other hand, the implementation of the efficiency strategy will entail increased domestic risks because it will involve a re-prioritisation of resource allocation and will thus affect the current distribution of wealth in both the energy sector and some other closely related sectors.The article outlines the main drivers behind the ambitious energy efficiency scenario and it attaches tentative price tags to the ancillary effects, with special emphasis on the above sketched swapping of risks. It will, therefore, strongly argue for a more holistic view, which underscores the need for political action and the benefits of such proactive policies in favour of energy efficiency

  12. The ionizing treatment of food

    International Nuclear Information System (INIS)

    1998-01-01

    This book of proceedings contains the talks given by the members of the Society of chemical experts of France (SECF) and by various specialists of the ionizing treatment during the scientific days of September 25-26, 1997. The aim of this meeting was to reconsider the effects of ionization from a scientific point of view and apart from the polemics generated by this domain. The following topics were discussed successively: source and characterization of a ionizing treatment, biological effects of ionization on food and the expected consequences, the ionizing treatment and the reduction of the vitamin C content of fruits and vegetables, is it safe to eat irradiated food?, the organoleptic modifications of food after ionization, quality assurance of dosimetry measurements in an industrial installation of food ionization, the French and European regulations in food ionization, the detection of irradiated foodstuffs, processed food and complex lipid matrices, sterilization of dishes for immuno-depressed patients using ionization. (J.S.)

  13. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    OpenAIRE

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced t...

  14. Structure of electron tracks in water. 2. Distribution of primary ionizations and excitations in water radiolysis

    International Nuclear Information System (INIS)

    Pimblott, S.M.; Mozumder, A.

    1991-01-01

    A procedure for the calculation of entity-specific ionization and excitation probabilities for water radiolysis at low linear energy transfer (LET) has been developed. The technique pays due attention to the effects of the ionization threshold and the energy dependence of the ionization efficiency. The numbers of primary ionizations and excitations are not directly proportional to the spur energy. At a given spur energy, ionization follows a binomial distribution subject to an energetically possible maximum. The excitation distribution for a spur of given energy and with a given number of ionizations is given by a geometric series. The occurrence probabilities depend upon the cross sections of ionization, excitation, and other inferior processes. Following the low-LET radiolysis of liquid water the most probable spurs contain one ionization, two ionizations, or one ionization and one excitation, while in water vapor they contain either one ionization or one excitation. In liquid water the most probable outcomes for spurs corresponding to the most probable energy loss (22 eV) and to the mean energy loss (38 eV) are one ionization and one excitation, and two ionizations and one excitation, respectively. In the vapor, the most probable energy loss is 14 eV which results in one ionization or one excitation and the mean energy loss is 34 eV for which the spur of maximum probability contains one ionization and two excitations. The total calculated primary yields for low-LET radiolysis are in approximate agreement with experiment in both phases

  15. Characteristics of light reflected from a dense ionization wave with a tunable velocity

    OpenAIRE

    Zhidkov, A.; Esirkepov, T.; Fujii, T.; Nemoto, K.; Koga, J.; Bulanov, S. V.

    2009-01-01

    An optically-dense ionization wave (IW) produced by two femtosecond laser pulses focused cylindrically and crossing each other is shown to be an efficient coherent x-ray converter. The resulting velocity of a quasi-plane IW in the vicinity of pulse intersection increases with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing an easy tuning the wavelength of x-rays. The x-ray spectra of a converted, lower frequency coherent light change from the monoc...

  16. Cognitive Training Enhances Auditory Attention Efficiency in Older Adults

    Directory of Open Access Journals (Sweden)

    Jennifer L. O’Brien

    2017-10-01

    Full Text Available Auditory cognitive training (ACT improves attention in older adults; however, the underlying neurophysiological mechanisms are still unknown. The present study examined the effects of ACT on the P3b event-related potential reflecting attention allocation (amplitude and speed of processing (latency during stimulus categorization and the P1-N1-P2 complex reflecting perceptual processing (amplitude and latency. Participants completed an auditory oddball task before and after 10 weeks of ACT (n = 9 or a no contact control period (n = 15. Parietal P3b amplitudes to oddball stimuli decreased at post-test in the trained group as compared to those in the control group, and frontal P3b amplitudes show a similar trend, potentially reflecting more efficient attentional allocation after ACT. No advantages for the ACT group were evident for auditory perceptual processing or speed of processing in this small sample. Our results provide preliminary evidence that ACT may enhance the efficiency of attention allocation, which may account for the positive impact of ACT on the everyday functioning of older adults.

  17. 'Saddle-point' ionization

    International Nuclear Information System (INIS)

    Gay, T.J.; Hale, E.B.; Irby, V.D.; Olson, R.E.; Missouri Univ., Rolla; Berry, H.G.

    1988-01-01

    We have studied the ionization of rare gases by protons at intermediate energies, i.e., energies at which the velocities of the proton and the target-gas valence electrons are comparable. A significant channel for electron production in the forward direction is shown to be 'saddle-point' ionization, in which electrons are stranded on or near the saddle-point of electric potential between the receding projectile and the ionized target. Such electrons yield characteristic energy spectra, and contribute significantly to forward-electron-production cross sections. Classical trajectory Monte Carlo calculations are found to provide qualitative agreement with our measurements and the earlier measurements of Rudd and coworkers, and reproduce, in detail, the features of the general ionization spectra. (orig.)

  18. The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells

    Science.gov (United States)

    Zou, Yunlong; Holmes, Russell

    2015-03-01

    Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.

  19. Efficient optical absorption enhancement in organic solar cells by using a 2-dimensional periodic light trapping structure

    Energy Technology Data Exchange (ETDEWEB)

    Zu, Feng-Shuo [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China); Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Shi, Xiao-Bo; Liang, Jian; Xu, Mei-Feng; Wang, Zhao-Kui, E-mail: lsliao@suda.edu.cn, E-mail: zkwang@suda.edu.cn, E-mail: apcslee@cityu.edu.hk; Liao, Liang-Sheng, E-mail: lsliao@suda.edu.cn, E-mail: zkwang@suda.edu.cn, E-mail: apcslee@cityu.edu.hk [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China); Lee, Chun-Sing, E-mail: lsliao@suda.edu.cn, E-mail: zkwang@suda.edu.cn, E-mail: apcslee@cityu.edu.hk [Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China)

    2014-06-16

    We have investigated the effects induced by periodic nanosphere arrays on the performance of organic solar cells (OSCs). Two-dimensional periodic arrays of polystyrene nanospheres were formed by using a colloidal lithography method together with plasma etching to trim down the size to various degrees on the substrates of OSCs. It is found that the devices prepared on such substrates can have improved light harvesting, resulting in as high as 35% enhancement in power conversion efficiency over that of the reference devices. The measured external quantum efficiency and finite-difference time-domain simulation reveal that the controlled periodic morphology of the substrate can efficiently increase light scattering in the device and thus enhance the absorption of incident light.

  20. Heating and ionization in MHD shock waves propagating into partially ionized plasma

    International Nuclear Information System (INIS)

    Bighel, L.; Collins, A.R.; Cramer, N.F.; Watson-Munro, C.N.

    1975-09-01

    A model of the structure of MHD switch-on shocks propagating in a partially ionized plasma, in which the primary dissipation mechanism is friction between ions and neutrals, is here compared favourably with experimental results. Four degrees of upstream ionization were studied, ranging from almost complete to very small ionization. (author)

  1. Heating and ionization in MHD shock wave propagating into partially ionized plasma

    International Nuclear Information System (INIS)

    Bighel, L.; Collins, A.R.; Cramer, N.F.; Watson-Munro, C.N.

    1975-09-01

    A model of the structure of MHD switch-on shocks propagating in a partially ionized plasma, in which the primary dissipation mechanism is friction between ions and neutrals, is here compared favourably with experimental results. Four degrees of upstream ionization were studied, ranging from almost complete to very small ionization. (author)

  2. Five-photon ionization of atomic hydrogen at wavelengths around the threshold for four-photon ionization

    International Nuclear Information System (INIS)

    Gontier, Y.; Trahin, M.; Wolff-Rottke, B.; Rottke, H.; Welge, K.H.; Feldmann, D.

    1992-01-01

    Theoretical and experimental studies show the strong influence of the three-photon nearly resonant 2p state on four- and five-photon ionization of atomic hydrogen near the threshold for four-photon ionization. Changes in five-photon ionization occur when the four-photon ionization channel opens. The angular distributions of photoelectrons from five-photon ionization of H are studied at five wavelengths which cover the range from four-photon resonance with high-lying Rydberg states (n≥10) to direct four-photon ionization into the continuum. The role of resonances in this ionization process is discussed. A fair agreement is found in comparing experimental and theoretical results

  3. Determination of trace elements by resonant ionization mass spectrometry (RIMS)

    International Nuclear Information System (INIS)

    Ruster, W.; Ames, F.; Rehklau, D.; Mang, M.; Muehleck, C.; Rimke, H.; Sattelberger, P.; Herrmann, G.; Trautmann, N.; Kluge, H.J.; Otten, E.W.

    1988-01-01

    A resonant ionization mass spectrometer has been developed as an analytical tool for the detection of trace elements, especially of plutonium and other radionuclides. The sample, deposited on a rhenium filament, is evaporated by electrical heating and the atoms of the element under investigation are selectively ionized by laser light delivered from three dye lasers pumped by a copper vapour laser. The resulting photoions are detected in a time-of-flight spectrometer with a channelplate detector. For plutonium a mass resolution of M/ΔM=1500 was obtained and an overall detection efficiency of 4x10 -6 was determined for stepwise excitation and ionization via autoionizing states. With a laser light bandwidth of 3-5 GHz neighbouring isotopes could be suppressed by a factor of 20 due to isotope shifts in the excitation transitions. The isotope composition of synthetic samples was measured and good agreement was found with mass spectroscopic results. The influence of the hyperfine structure on the isotope ratios is discussed. (orig.)

  4. Equipment for handling ionization chamber

    International Nuclear Information System (INIS)

    Altmann, J.

    1988-01-01

    The device consists of an ionization channel with an ionization chamber, of a support ring, axial and radial bearings, a sleeve, a screw gear and an electric motor. The ionization chamber is freely placed on the bottom of the ionization channel. The bottom part of the channel deviates from the vertical axis. The support ring propped against the axial bearing in the sleeve is firmly fixed to the top part of the ionization channel. The sleeve is fixed to the reactor lid. Its bottom part is provided with a recess for the radial bearing which is propped against a screw wheel firmly connected to the ionization channel. In measuring neutron flux, the screw wheel is rotated by the motor, thus rotating the whole ionization channel such that the ionization chamber is displaced into the reactor core.(J.B.). 1 fig

  5. Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE.

    Science.gov (United States)

    Penescu, L; Catherall, R; Lettry, J; Stora, T

    2010-02-01

    We report here recent developments of Forced Electron Beam Induced Arc Discharge (FEBIAD) ion sources at the ISOLDE radioactive ion beam facility, hosted at the European Organization for Nuclear Research (CERN). As a result of the propositions to improve the ionization efficiency, two FEBIAD prototypes have been produced and successfully tested in 2008. Off-line studies showed that the 1+ ionization efficiencies for noble gases are 5-20 times larger than with the standard ISOLDE FEBIAD ion sources and reach 60% for radon, which allowed the identification at ISOLDE of (229)Rn, an isotope that had never previously been observed in the laboratory. A factor of 3 increase is also expected for the ionization efficiency of the other elements. The experimental and theoretical methodology is presented. The theoretical model, which gives precise insights on the processes affecting the ionization, is used to design optimal sources (grouped under the name of VADIS--Versatile Arc Discharge Ion Source) for the different chemical classes of the produced isotopes, as already demonstrated for the noble gases.

  6. Foodstuffs preservation by ionization

    International Nuclear Information System (INIS)

    1991-12-01

    This document contains all the papers presented at the meeting on foodstuffs preservation by ionization. These papers deal especially with the food ionization process, its development and the view of the food industry on ionization. Refs and figs (F.M.)

  7. Establishment of a Charge Reversal Derivatization Strategy to Improve the Ionization Efficiency of Limaprost and Investigation of the Fragmentation Patterns of Limaprost Derivatives Via Exclusive Neutral Loss and Survival Yield Method

    Science.gov (United States)

    Sun, Dong; Meng, Xiangjun; Ren, Tianming; Fawcett, John Paul; Wang, Hualu; Gu, Jingkai

    2018-04-01

    Sensitivity is generally an issue in bioassays of prostaglandins and their synthetic analogs due to their extremely low concentration in vivo. To improve the ionization efficiency of limaprost, an oral prostaglandin E1 (PGE1) synthetic analog, we investigated a charge reversal derivatization strategy in electrospray ionization mass spectrometry (ESI-MS). We established that the cholamine derivative exhibits much greater signal intensity in the positive-ion mode compared with limaprost in the negative ion mode. Collision-induced dissociation (CID) involved exclusive neutral mass loss and positive charge migration to form stable cationic product ions with the positive charge on the limaprost residue rather than on the modifying group. This has the effect of maintaining the efficiency and specificity of multiple reaction monitoring (MRM) and avoiding cross talk. CID fragmentation patterns of other limaprost derivatives allowed us to relate the dissociation tendency of different neutral leaving groups to an internal energy distribution scale based on the survival yield method. Knowledge of the energy involved in the production of stabilized positive ions will potentially assist the selection of suitable derivatization reagents for the analysis of a wide variety of lipid acids. [Figure not available: see fulltext.

  8. Population of vibrational levels of carbon dioxide by cylindrical fast ionization wave

    KAUST Repository

    Levko, Dmitry

    2017-09-08

    The population of vibrational levels of carbon dioxide (CO2) by a cylindrical fast ionization wave is analyzed using a one-dimensional Particle-in-Cell Monte Carlo collisions model. The model takes into account the inelastic electron-neutral collisions as well as the super-elastic collisions between electrons and excited species. We observe an efficient population of only the first two levels of the symmetric and asymmetric vibrational modes of CO2 by means of a fast ionization wave. The excitation of other higher vibrational modes by the fast ionization wave is inefficient. Additionally, we observe a strong influence of the secondary electron emission on the population of vibrational states of CO2. This effect is associated with the kinetics of high energy electrons generated in the cathode sheath.

  9. Ambient ionization mass spectrometry: A tutorial

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Shiea, Jentaie, E-mail: jetea@fac.nsysu.edu.tw [Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Cancer Center, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2011-09-19

    Highlights: {yields} Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. {yields} We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. {yields} The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  10. Ambient ionization mass spectrometry: A tutorial

    International Nuclear Information System (INIS)

    Huang, Min-Zong; Cheng, Sy-Chi; Cho, Yi-Tzu; Shiea, Jentaie

    2011-01-01

    Highlights: → Ambient ionization technique allows the direct analysis of sample surfaces with little or no sample pretreatment. → We sort ambient ionization techniques into three main analytical strategies, direct ionization, direct desorption/ionization, and two-step ionization. → The underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques are described and compared. - Abstract: Ambient ionization is a set of mass spectrometric ionization techniques performed under ambient conditions that allows the direct analysis of sample surfaces with little or no sample pretreatment. Using combinations of different types of sample introduction systems and ionization methods, several novel techniques have been developed over the last few years with many applications (e.g., food safety screening; detection of pharmaceuticals and drug abuse; monitoring of environmental pollutants; detection of explosives for antiterrorism and forensics; characterization of biological compounds for proteomics and metabolomics; molecular imaging analysis; and monitoring chemical and biochemical reactions). Electrospray ionization and atmospheric pressure chemical ionization are the two main ionization principles most commonly used in ambient ionization mass spectrometry. This tutorial paper provides a review of the publications related to ambient ionization techniques. We describe and compare the underlying principles of operation, ionization processes, detecting mass ranges, sensitivity, and representative applications of these techniques.

  11. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides

    DEFF Research Database (Denmark)

    Yan, Siqi; Zhu, Xiaolong; Frandsen, Lars Hagedorn

    2017-01-01

    Slow light has been widely utilized to obtain enhanced nonlinearities, enhanced spontaneous emissions and increased phase shifts owing to its ability to promote light-matter interactions. By incorporating a graphene on a slow-light silicon photonic crystal waveguide, here we experimentally...... in silicon photonics. The corresponding figure of merit of the device is 2.543 nW s, one order of magnitude better than results reported in previous studies. The influence of the length and shape of the graphene heater to the tuning efficiency is further investigated, providing valuable guidelines...

  12. Ionization of food products

    International Nuclear Information System (INIS)

    Vasseur, J.P.

    1991-01-01

    After general remarks on foods preservation, on international works and on ionization future prospects, main irradiation sources are described. Recalls on radioactivity, on radiation-matter interaction, on toxicology of ionized foods and on ionized foods detection are given. Ionization applications to various products are reviewed, especially in: - Poultry meat - Fishing products - Fresh fruits and vegetables - Dry fruits and vegetables - spices, tea, infusion - prepacked products... An evaluation of economics and sociocultural impacts is presented in connection with recent experiments [fr

  13. Formation of radical anions of radiosensitizers and related model compounds via electrospray ionization

    DEFF Research Database (Denmark)

    Feketeová, Linda; Albright, Abigail L; Sørensen, Brita Singers

    2014-01-01

    Radiosensitizers are used in radiotherapy to enhance tumour control of radioresistant hypoxic tumours. While the detailed mechanism of radiosensitization is still unknown, the formation of radical anions is believed to be a key step. Thus understanding the ionization reactions of radiosensitizers......, misonidazole and related compounds using a hybrid linear ion trap – Fourier Transform Ion Cyclotron Resonance mass spectrometer (Finnigan-LTQ-FT). A key finding is that negative electrospray ionization of these radiosensitizers leads to the formation of radical anions, allowing their fragmentation reactions...

  14. Hardware-efficient signal generation of layered/enhanced ACO-OFDM for short-haul fiber-optic links.

    Science.gov (United States)

    Wang, Qibing; Song, Binhuang; Corcoran, Bill; Boland, David; Zhu, Chen; Zhuang, Leimeng; Lowery, Arthur J

    2017-06-12

    Layered/enhanced ACO-OFDM is a promising candidate for intensity modulation and direct-detection based short-haul fiber-optic links due to its both power and spectral efficiency. In this paper, we firstly demonstrate a hardware-efficient real-time 9.375 Gb/s QPSK-encoded layered/enhanced asymmetrical clipped optical OFDM (L/E-ACO-OFDM) transmitter using a Virtex-6 FPGA. This L/E-ACO-OFDM signal is successfully transmitted over 20-km uncompensated standard single-mode fiber (S-SMF) using a directly modulated laser. Several methods are explored to reduce the FPGA's logic resource utilization by taking advantage of the L/E-ACO-OFDM's signal characteristics. We show that the logic resource occupation of L/E-ACO-OFDM transmitter is almost the same as that of DC-biased OFDM transmitter when they achieve the same spectral efficiency, proving its great potential to be used in a real-time short-haul optical transmission link.

  15. Irradiation spectrum and ionization-induced diffusion effects in ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J. [Oak Ridge National Lab., TN (United States)

    1997-08-01

    There are two main components to the irradiation spectrum which need to be considered in radiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on Al{sub 2}O{sub 3} and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, Al{sub 2}O{sub 3}, and MgAl{sub 2}O{sub 4} were irradiated with various ions ranging from 1 MeV H{sup +} to 4 MeV Zr{sup +} ions at temperatures between 25 and 650{degrees}C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructural of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl{sub 2}O{sub 4} and Al{sub 2}O{sub 3} are estimated to be {le}0.4 eV and {le}0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

  16. Coupling of gas chromatography and electrospray ionization high resolution mass spectrometry for the analysis of anabolic steroids as trimethylsilyl derivatives in human urine.

    Science.gov (United States)

    Cha, Eunju; Jeong, Eun Sook; Cha, Sangwon; Lee, Jaeick

    2017-04-29

    In this study, gas chromatography (GC) was interfaced with high resolution mass spectrometry (HRMS) with electrospray ionization source (ESI) and the relevant parameters were investigated to enhance the ionization efficiency. In GC-ESI, the distances (x-, y- and z) and angle between the ESI needle, GC capillary column and MS orifice were set to 7 (x-distance), 4 (y-distance), and 1 mm (z-distance). The ESI spray solvent, acid modifier and nebulizer gas flow were methanol, 0.1% formic acid and 5 arbitrary units, respectively. Based on these results, analytical conditions for GC-ESI/HRMS were established. In particular, the results of spray solvent flow indicated a concentration-dependent mechanism (peak dilution effect), and other parameters also greatly influenced the ionization performance. The developed GC-ESI/HRMS was then applied to the analysis of anabolic steroids as trimethylsilyl (TMS) derivatives in human urine to demonstrate its application. The ionization profiles of TMS-derivatized steroids were investigated and compared with those of underivatized steroids obtained from gas chromatography-electrospray ionization/mass spectrometry (GC-ESI/MS) and liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS). The steroids exhibited ionization profiles based on their structural characteristics, regardless of the analyte phase or derivatization. Groups I and II with conjugated or unconjugated keto functional groups at C3 generated the [M+H] + and [M+H-TMS] + ions, respectively. On the other hand, Groups III and IV gave rise to the characteristic fragment ions [M+H-TMS-H 2 O] + and [M+H-2TMS-H 2 O] + , corresponding to loss of a neutral TMS·H 2 O moiety from the protonated molecular ion by in-source dissociation. To the best of our knowledge, this is the first study to successfully ionize and analyze steroids as TMS derivatives using ESI coupled with GC. The present system has enabled the ionization of TMS derivatives under ESI conditions

  17. Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Weiping Diao

    2016-06-01

    Full Text Available As a critical subsystem in electric vehicles and smart grids, a battery energy storage system plays an essential role in enhancement of reliable operation and system performance. In such applications, a battery energy storage system is required to provide high energy utilization efficiency, as well as reliability. However, capacity inconsistency of batteries affects energy utilization efficiency dramatically; and the situation becomes more severe after hundreds of cycles because battery capacities change randomly due to non-uniform aging. Capacity mismatch can be solved by decomposing a cluster of batteries in series into several low voltage battery packs. This paper introduces a new analysis method to optimize energy utilization efficiency by finding the best number of batteries in a pack, based on capacity distribution, order statistics, central limit theorem, and converter efficiency. Considering both battery energy utilization and power electronics efficiency, it establishes that there is a maximum energy utilization efficiency under a given capacity distribution among a certain number of batteries, which provides a basic analysis for system-level optimization of a battery system throughout its life cycle. Quantitative analysis results based on aging data are illustrated, and a prototype of flexible energy storage systems is built to verify this analysis.

  18. Somatic mutations in leafs of tobacco seedlings induced by ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Shin, H. S.; Kim, J. K.; Song, H. S.; Lee, Y. I.

    2001-01-01

    Somatic mutations induced by the combined treatment of pesticide and ionizing radiation were analyzed in the leaves of tobacco seedlings. The pesticide (1,5 and 10 ppm of parathion) was sprayed directly onto the seedlings. The seedlings, with or without pretreatment of pesticide, were irradiated with 0.1 ∼10 Gy of gamma ray. The difference in the somatic mutation frequencies were not significant among groups treated with different concentration of pesticide. The somatic mutations in tobacco seedlings irradiated with gamma-ray showed a clear dose-response relationship in a range of 0.1 to 10 Gy. However, the combined treatment of pesticide and radiation did not cause any synergistic enhancement in the mutation frequencies. The highest efficiency in the induction of somatic mutations could be obtained by irradiating the seedlings with 5 Gy, 12 hours after 1 ppm of pesticide treatment, or 24 hours after 5 ppm of pesticide treatment

  19. Resonance ionization spectroscopy of argon, krypton, and xenon using vacuum ultraviolet light

    International Nuclear Information System (INIS)

    Kramer, S.D.

    1984-04-01

    Resonant, single-photon excitation of ground state inert gases requires light in the vacuum ultraviolet spectral region. This paper discusses methods for generating this light. Efficient schemes for ionizing argon, krypton, and xenon using resonant, stepwise single-photon excitation are presented

  20. Chemical data on ionizing and non-ionizing angiographic contrast materials

    International Nuclear Information System (INIS)

    Bonati, F.

    1980-01-01

    The cardiovascular effects of ionizing and non-ionizing contrast media are compared in experimental animals and in isolated heart preparations. The following parameters were recorded: peripheric arterial diastolic pressure, heart rate, duration of asystolic period, respiratory rate, contractility of the myocardium (dp/dt, LVSP, Vsub(max), EDV, ESV, SV). The observed changes are mainly due to the higher osmotic activity of the contrast media, as similar alterations were recorded after the injection of hyperosmotic glucose solution. It is concluded that administration of non-ionizing contrast media results in significantly less cardiovascular side effects. (L.E.)

  1. Structural mediation on polycation nanoparticles by sulfadiazine to enhance DNA transfection efficiency and reduce toxicity.

    Science.gov (United States)

    Long, Xingwen; Zhang, Zhihui; Han, Shangcong; Tang, Minjie; Zhou, Junhui; Zhang, Jianhua; Xue, Zhenyi; Li, Yan; Zhang, Rongxin; Deng, Liandong; Dong, Anjie

    2015-04-15

    Reducing the toxicity while maintaining high transfection efficiency is an important issue for cationic polymers as gene carriers in clinical application. In this paper, a new zwitterionic copolymer, polycaprolactone-g-poly(dimethylaminoethyl methyacrylate-co-sulfadiazine methacrylate) (PC-SDZ) with unique pH-sensitivity, was designed and prepared. The incorporation of sulfadiazine into poly(dimethylaminoethyl methacrylate) (PDMAEMA) chains successfully mediates the surface properties including compacter shell structure, lower density of positive charges, stronger proton buffer capability, and enhanced hydrophobicity, which lead to reduction in toxicity and enhancements in stability, cellular uptake, endosome escape, and transfection efficiency for the PC-SDZ2 nanoparticles (NPs)/DNA complexes. Excellent transfection efficiency at the optimal N/P ratio of 10 was observed for PC-SDZ2 NPs/DNA complexes, which was higher than that of the commercial reagent-branched polyethylenimine (PEI). The cytotoxicity was evaluated by CCK8 measurement, and the results showed significant reduction in cytotoxicity even at high concentration of complexes after sulfadiazine modification. Therefore, this work may demonstrate a new way of structural mediation of cationic polymer carriers for gene delivery with high efficiency and low toxicity.

  2. Ionizing radiations

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    This is an update about the radiological monitoring in base nuclear installations. A departmental order of the 23. march 1999 (J.O.28. april, p.6309) determines the enabling rules by the Office of Protection against Ionizing Radiations of person having at one's disposal the results with names of individual exposure of workers put through ionizing radiations. (N.C.)

  3. 'K' contribution to the biological effect of ionizing radiations

    International Nuclear Information System (INIS)

    Boissiere, Arnaud

    2004-01-01

    The aim of this work is to determine the importance of 'K' ionizations on DNA as critical physical events initiating the biological effects of ionizing radiation, in particular in human cells. Ultra-soft X-rays are used as a probe of core ionization events. A decisive test consists in comparing the biological effects at 250 eV and 350 eV (before and after the carbon K - threshold). The results show a sharp increase of the biological efficiency for both cellular inactivation and chromosomal exchange aberration above the carbon K-threshold, correlated with the one of core events occurring in DNA atoms. The heavy ion irradiation displays again the paradoxical behaviour of cellular inactivation cross sections as a function of LET. Finally, the 'K' event contribution to cellular inactivation of usual low LET radiation is estimated to be about 75%. (author) [fr

  4. A new concept positive (negative) surface ionization source for RIB applications

    International Nuclear Information System (INIS)

    Alton, G.D.; Welton, R.F.; Cui, B.

    1996-01-01

    A versatile, new concept, spherical-geometry, positive (negative) surface-ionization source has been designed. fabricated, and tests completed which can operate in either positive- or negative-ion beam generation modes without mechanical changes to the source. The highly permeable, composite Ir/C has an intrinsic work function of 0 = 5.29 eV and can be used directly for the generation of positive-ion beams of highly electropositive elements. For negative-surface ionization, the work function is lowered by dynamic flow of a highly electropositive adsorbate such as Cs through the ionizer matrix. The results of initial testing indicate that the source is reliable, stable and easy to operate, with efficiencies for Cs + estimated to exceed 60% and as high as ∼50% for F - generation. The design features, operational principles, and initial performance of the source for generating Cs + and F - , when operated with Cs, are discussed in this article

  5. Resonance ionization mass spectrometry system for measurement of environmental samples

    International Nuclear Information System (INIS)

    Pibida, L.; McMahon, C.A.; Noertershaeuser, W.; Bushaw, B.A.

    2002-01-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4x10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed

  6. Radiation hydrodynamical instabilities in cosmological and galactic ionization fronts

    Science.gov (United States)

    Whalen, Daniel J.; Norman, Michael L.

    2011-11-01

    Ionization fronts, the sharp radiation fronts behind which H/He ionizing photons from massive stars and galaxies propagate through space, were ubiquitous in the universe from its earliest times. The cosmic dark ages ended with the formation of the first primeval stars and galaxies a few hundred Myr after the Big Bang. Numerical simulations suggest that stars in this era were very massive, 25-500 solar masses, with H(II) regions of up to 30,000 light-years in diameter. We present three-dimensional radiation hydrodynamical calculations that reveal that the I-fronts of the first stars and galaxies were prone to violent instabilities, enhancing the escape of UV photons into the early intergalactic medium (IGM) and forming clumpy media in which supernovae later exploded. The enrichment of such clumps with metals by the first supernovae may have led to the prompt formation of a second generation of low-mass stars, profoundly transforming the nature of the first protogalaxies. Cosmological radiation hydrodynamics is unique because ionizing photons coupled strongly to both gas flows and primordial chemistry at early epochs, introducing a hierarchy of disparate characteristic timescales whose relative magnitudes can vary greatly throughout a given calculation. We describe the adaptive multistep integration scheme we have developed for the self-consistent transport of both cosmological and galactic ionization fronts.

  7. Propagation of electromagnetic waves in a weakly ionized dusty plasma

    International Nuclear Information System (INIS)

    Jia, Jieshu; Yuan, Chengxun; Gao, Ruilin; Wang, Ying; Liu, Yaoze; Gao, Junying; Zhou, Zhongxiang; Sun, Xiudong; Li, Hui; Wu, Jian; Pu, Shaozhi

    2015-01-01

    Propagation properties of electromagnetic (EM) waves in weakly ionized dusty plasmas are the subject of this study. Dielectric relation for EM waves propagating at a weakly ionized dusty plasma is derived based on the Boltzmann distribution law while considering the collision and charging effects of dust grains. The propagation properties of EM energy in dusty plasma of rocket exhaust are numerically calculated and studied, utilizing the parameters of rocket exhaust plasma. Results indicate that increase of dust radius and density enhance the reflection and absorption coefficient. High dust radius and density make the wave hardly transmit through the dusty plasmas. Interaction enhancements between wave and dusty plasmas are developed through effective collision frequency improvements. Numerical results coincide with observed results by indicating that GHz band wave communication is effected by dusty plasma as the presence of dust grains significantly affect propagation of EM waves in the dusty plasmas. The results are helpful to analyze the effect of dust in plasmas and also provide a theoretical basis for the experiments. (paper)

  8. Mutagenic action of non-ionizing radiations: its implication in radiation protection

    International Nuclear Information System (INIS)

    Madhvanath, U.; Subrahmanyam, P.; Sankaranarayanan, N.; Singh, D.R.

    1977-01-01

    Mutagenic effects of non-ionizing radiations except in the ultraviolet and near ultraviolet region are just not known. Results of the investigation carried out using a sensitive diploid yeast system, are presented. The arginine requiring mutant yeast strain BZ34 reverts to prototrophy following exposure to ionizing radiation. Reversion frequencies were determined following exposure to UV (254 nm), near ultraviolet (313, 353 nm) visible region (480 nm), neodymium laser (1.01 μm) and microwave (2450 MHz) radiations. An Aminco - Bowman Spectrophotofluorimeter was used to obtain wavelengths from UV to visible region. Yeast suspensions (concentration of 10 7 cells/ml) were irradiated to doses ranging from 10 7 to 10 9 erg/cm 3 as determined with potassium ferri-oxalate system. Exposure to laser pulses and microwave radiation ranged up to 45 J/cm 2 and 60 mW-h/cm 2 respectively. Results showed that the reversion induction efficiency decreased by six orders of magnitude from ionizing radiations to ultraviolet for the same absorbed dose and this efficiency has further decreased by a factor of fifteen when the wavelength is increased from 254 nm to 313 nm. Although killing could be effected with laser beams (45 J/cm 2 for 50% survival) no increase in the reversion was observed than the background level. It is concluded that radiation of wavelengths higher than 450 nm up to 12 cm studied is not mutagenic and with sufficient intensities of these radiations only killing of cells is possible due to thermal effects. This finding is compared with other known functional and morphological effects at cellular level due to low-level exposures of non-ionizing radiations

  9. A mechanistic understanding of processing additive-induced efficiency enhancement in bulk heterojunction organic solar cells

    KAUST Repository

    Schmidt, Kristin

    2013-10-31

    The addition of processing additives is a widely used approach to increase power conversion efficiencies for many organic solar cells. We present how additives change the polymer conformation in the casting solution leading to a more intermixed phase-segregated network structure of the active layer which in turn results in a 5-fold enhancement in efficiency. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Double and single ionization of He and H2 by slow protons and antiprotons

    International Nuclear Information System (INIS)

    Kimura, Mineo

    1994-01-01

    Double and single ionization of He and H 2 by proton (p) and antiproton (bar p)impact in the energy region below 50 keV was studied theoretically by using the semiclassical molecular picture. As the energy decreased, the ratio of the double- to the single-ionization cross section increased for impact and decreased for p impact for both He and H 2 . These trends are consistent with recent measurements for He. Ionization mechanisms differ distinctly for p impact and bar p impact. For p impact, the dominant mechanism for double ionization at the lower energies is sequential ladder climbing by the two electrons through various excited channels and finally into the continuum. For bar p impact, in contrast, the approaching negative charge distorts both the He and H 2 electron clouds toward the other side of the nucleus and decreases the electron binding energies. These effects enhance electron-electron interactions, increasing double ionization. For the H 2 , an effect of molecular orientation is an additional complication in determining the dynamics

  11. Laser resonance ionization for ultra-trace analysis on long-lived ...

    Indian Academy of Sciences (India)

    for producing pure beams of short-lived isotopes at on-line facilities. .... mental design is to develop a compact table-top RIS experiment which allows for. 1058 ... partial beams which are merged by dichroic mirrors and polarization beam splitter ... A quasi-cw 35 W CO2 laser is used for efficient non-resonant ionization of.

  12. A combined thermal dissociation and electron impact ionization source for radioactive ion beam generation (abstract)a

    International Nuclear Information System (INIS)

    Alton, G.D.; Williams, C.

    1996-01-01

    The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. copyright 1996 American Institute of Physics

  13. Simplification of the lead out system for an ionizing additive

    International Nuclear Information System (INIS)

    Val'dberg, A.Yu.; Dubinskaya, F.E.; Tkachenko, V.M.

    1975-01-01

    Two types of the ionizing addition K 2 CO 3 output MHD-generator systems are studied: the wet system with a Venture scrubber (for peak-load power stations with a MDH-generator (MHDPS)), and wet electrical filter systems (for base-load MHDPS), also the possibility of trapping the ionizing addition by a dry electrical filter. An experimental installation has been designed including a foam apparatus for cooling and humidifying gases, a Venturi tube in which deposition of potash particles on drops of liquid occurs, and a cyclone of a drop catcher. Spraying is performed with the addition solution circulating in a closed contour. The solution accumulates in a tank, is cleaned by a filter from where the solution is fed to the foam apparatus through a heat exchanger. To determine the influence of the temperature on the catching efficiency of the Venturi scrubber the spraying on the foam apparatus is switched off. The studies indicate that the elimination of the expensive and huge foam apparatus would result in an economy of about 1 ruble/KW of installed power. The efficiency of the electrical method of catching the ionizing addition from the exhaust gases of the MHD-generator is investigated by means of dry electrical filter. The possibility in principle is found of the exhaust gas scrubbing from additions at elevated temperatures (90-160degC), i.e. without preliminary gas treatment in wet-type apparatus. (author)

  14. Ionization asymmetry effects on the properties modulation of atmospheric pressure dielectric barrier discharge sustained by tailored voltage waveforms

    Science.gov (United States)

    Zhang, Z. L.; Nie, Q. Y.; Zhang, X. N.; Wang, Z. B.; Kong, F. R.; Jiang, B. H.; Lim, J. W. M.

    2018-04-01

    The dielectric barrier discharge (DBD) is a promising technology to generate high density and uniform cold plasmas in atmospheric pressure gases. The effective independent tuning of key plasma parameters is quite important for both application-focused and fundamental studies. In this paper, based on a one-dimensional fluid model with semi-kinetics treatment, numerical studies of ionization asymmetry effects on the properties modulation of atmospheric DBD sustained by tailored voltage waveforms are reported. The driving voltage waveform is characterized by an asymmetric-slope fundamental sinusoidal radio frequency signal superimposing one or more harmonics, and the effects of the number of harmonics, phase shift, as well as the fluctuation of harmonics on the sheath dynamics, impact ionization of electrons and key plasma parameters are investigated. The results have shown that the electron density can exhibit a substantial increase due to the effective electron heating by a spatially asymmetric sheath structure. The strategic modulation of harmonics number and phase shift is capable of raising the electron density significantly (e.g., nearly three times in this case), but without a significant increase in the gas temperature. Moreover, by tailoring the fluctuation of harmonics with a steeper slope, a more profound efficiency in electron impact ionization can be achieved, and thus enhancing the electron density effectively. This method then enables a novel alternative approach to realize the independent control of the key plasma parameters under atmospheric pressure.

  15. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    Science.gov (United States)

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Application of the two-dose-rate method for general recombination correction for liquid ionization chambers in continuous beams

    International Nuclear Information System (INIS)

    Andersson, Jonas; Toelli, Heikki

    2011-01-01

    A method to correct for the general recombination losses for liquid ionization chambers in continuous beams has been developed. The proposed method has been derived from Greening's theory for continuous beams and is based on measuring the signal from a liquid ionization chamber and an air filled monitor ionization chamber at two different dose rates. The method has been tested with two plane parallel liquid ionization chambers in a continuous radiation x-ray beam with a tube voltage of 120 kV and with dose rates between 2 and 13 Gy min -1 . The liquids used as sensitive media in the chambers were isooctane (C 8 H 18 ) and tetramethylsilane (Si(CH 3 ) 4 ). The general recombination effect was studied using chamber polarizing voltages of 100, 300, 500, 700 and 900 V for both liquids. The relative standard deviation of the results for the collection efficiency with respect to general recombination was found to be a maximum of 0.7% for isooctane and 2.4% for tetramethylsilane. The results are in excellent agreement with Greening's theory for collection efficiencies over 90%. The measured and corrected signals from the liquid ionization chambers used in this work are in very good agreement with the air filled monitor chamber with respect to signal to dose linearity.

  17. Transverse MHD shock waves in a partly ionized plasma

    International Nuclear Information System (INIS)

    Mathers, C.D.

    1980-01-01

    The structure of transverse MHD shock waves in a partly ionized hydrogen plasma is studied using a three-fluid model with collisional transport coefficients. The morphology of the various sublayers in the shock front is analyzed in detail and it is shown that strong shock waves have a characteristic viscous structure. Weak to moderate strength shock waves display a resistive structure in which the enhanced transverse resistivity due to ion-slip plays a significant role, leading to a pronounced peak in the ion temperature profile. Calculated shock structure profiles are also compared with experimental temperature data. Results in the form of tables and figures are presented for shock waves with fast Mach number ranging from 1-10 in hydrogen plasma with initial degree of ionization ranging from 5-100%. (author)

  18. Ionizing radiation interactions with DNA: nanodosimetry; Ionisierende Strahlungswechselwirkung mit der DNS. Nanodosimetrie

    Energy Technology Data Exchange (ETDEWEB)

    Bug, Marion; Nettelbeck, Heidi [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Biologische Wirksamkeit ionisierender Strahlung' ; Hilgers, Gerhard [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Arbeitsgruppe ' Nanodosimetrie' ; Rabus, Hans [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig (Germany). Fachbereich ' Grundlagen der Dosimetrie'

    2011-06-15

    The metrology of ionizing radiation is based on measuring values that are averaged over macroscopic volume elements, for instance the energy dose is defined as ratio of the energy deposited on the absorber and the absorber mass. For biological or medical radiation effects the stochastic nature of radiation interaction is of main importance, esp. the interaction of ionizing radiation with the DNA as the genetic information carrier. For radiotherapy and risk evaluation purposes a comprehensive system of radiation weighing factors and other characteristics, like radiation quality or relative biological efficacy was developed. The nanodosimetry is aimed to develop a metrological basis relying on physical characteristics of the microscopic structure of ionizing radiation tracks. The article includes the development of experimental nanodosimetric methods, the respective calibration techniques, Monte-Carlo simulation of the particle track microstructure and the correlation nanodosimetry and biological efficiency.

  19. Biological effects of low-level ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    1986-01-01

    Early in this century it was recognized that large doses of ionizing radiation could injure almost any tissue in the body, but small doses were generally thought to be harmless. By the middle of the century however it came to be suspected that even the smallest doses of ionizing radiation to the gonads might increase the risk of hereditary disease in subsequently-conceived offspring. Since then the hypothesis that carcinogenic and teratogenic effects also have no threshold has been adopted for purposes of radiological protection. It is estimated nevertheless that the risks that may be associated with natural background levels of ionizing irradiation are too small to be detectable. Hence validation of such risk estimates will depend on further elucidation of the dose-effect relationships and mechanisms of the effects in question, through studies at higher dose levels. In contrast to the situation with ionizing radiation, exposure to natural background levels of ultraviolet radiation has been implicated definitively in the etiology of skin cancers in fair-skinned individuals. Persons with inherited effects in DNA repair capacity are particularly susceptible. Non-ionizing radiations of other types can also affect health at high dose levels, but whether they can cause injury at low levels of exposure is not known

  20. Quantum mechanical calculations related to ionization and charge transfer in DNA

    International Nuclear Information System (INIS)

    Cauët, E; Liévin, J; Valiev, M; Weare, J H

    2012-01-01

    Ionization and charge migration in DNA play crucial roles in mechanisms of DNA damage caused by ionizing radiation, oxidizing agents and photo-irradiation. Therefore, an evaluation of the ionization properties of the DNA bases is central to the full interpretation and understanding of the elementary reactive processes that occur at the molecular level during the initial exposure and afterwards. Ab initio quantum mechanical (QM) methods have been successful in providing highly accurate evaluations of key parameters, such as ionization energies (IE) of DNA bases. Hence, in this study, we performed high-level QM calculations to characterize the molecular energy levels and potential energy surfaces, which shed light on ionization and charge migration between DNA bases. In particular, we examined the IEs of guanine, the most easily oxidized base, isolated and embedded in base clusters, and investigated the mechanism of charge migration over two and three stacked guanines. The IE of guanine in the human telomere sequence has also been evaluated. We report a simple molecular orbital analysis to explain how modifications in the base sequence are expected to change the efficiency of the sequence as a hole trap. Finally, the application of a hybrid approach combining quantum mechanics with molecular mechanics brings an interesting discussion as to how the native aqueous DNA environment affects the IE threshold of nucleobases.

  1. Matrix-assisted laser desorption/ionization mass spectrometry for the structural characterization of modified oligonucleotides

    International Nuclear Information System (INIS)

    Hurst, G.B.; Hettich, R.L.; Buchanan, M.V.; Stemmler, E.A.

    1993-01-01

    Matrix-assisted laser desorption ionization (MALDI) Fourier transform ion cyclotron resonance mass spectrometry (FTMS) and MALDI time-of-flight mass spectrometry (TOFMS) are being used to characterize conditions for the efficient desorption and ionization of normal and modified nucleic acid components. Basic and acidic matrix materials have been evaluated on the components. Basic and acidic matrix materials have been evaluated on the FTMS and TOFMS. Using MALDI-FTMS at 355 nm, less fragmentation has been observed using 2,5-dihydroxybenzoic acid, while more extensive fragmentation is observed for basic matrices, such as 1,5-diaminonaphthalene and 9-aminophenanthrene. Elevation of the cell pressure by the addition of Ar or CO 2 provides collisional cooling of desorbed ions, resulting in an enhancement of [M--H] - and structurally significant high-mass fragment ions. Using MALDI-TOFMS at 337 nm, fragmentation is significantly reduced relative to that observed on the FTMS, perhaps as a consequence of the longer times required for FTMS detection. On the FTMS and TOFMS, cluster ions have been observed in the negative ion mode when metal ions are present in the 2,5-dihydroxybenzoic acid matrix. Metal ion additions and clusters with matrix salts have also been observed for dinucleotides. Applications of MALDI-FTMS and MALDI-TOF to the detection of hydroxylated PAH nucleoside adducts are presented

  2. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    Science.gov (United States)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  3. Efficient Enhancement for Spatial Scalable Video Coding Transmission

    Directory of Open Access Journals (Sweden)

    Mayada Khairy

    2017-01-01

    Full Text Available Scalable Video Coding (SVC is an international standard technique for video compression. It is an extension of H.264 Advanced Video Coding (AVC. In the encoding of video streams by SVC, it is suitable to employ the macroblock (MB mode because it affords superior coding efficiency. However, the exhaustive mode decision technique that is usually used for SVC increases the computational complexity, resulting in a longer encoding time (ET. Many other algorithms were proposed to solve this problem with imperfection of increasing transmission time (TT across the network. To minimize the ET and TT, this paper introduces four efficient algorithms based on spatial scalability. The algorithms utilize the mode-distribution correlation between the base layer (BL and enhancement layers (ELs and interpolation between the EL frames. The proposed algorithms are of two categories. Those of the first category are based on interlayer residual SVC spatial scalability. They employ two methods, namely, interlayer interpolation (ILIP and the interlayer base mode (ILBM method, and enable ET and TT savings of up to 69.3% and 83.6%, respectively. The algorithms of the second category are based on full-search SVC spatial scalability. They utilize two methods, namely, full interpolation (FIP and the full-base mode (FBM method, and enable ET and TT savings of up to 55.3% and 76.6%, respectively.

  4. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    Science.gov (United States)

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  5. Trace analysis of actinides in the environment using resonance ionization mass spectrometry; Spurenanalyse von Aktiniden in der Umwelt mittels Resonanzionisations-Massenspektrometrie

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, Sebastian

    2011-04-12

    In this work the resonant ionization of neutral atoms using laser radiation was applied and optimized for ultra-trace analysis of the actinides thorium, uranium, neptunium and plutonium. The sensitive detection of these actinides is a challange for the monitoring and quantification of radioactive releases from nuclear facilities. Using resonance ionization spectroscopy combined with a newly developed quadrupole-mass-spectrometer, numerous energy levels in the atomic structure of these actinides could be identified. With this knowledge efficient excitation schemes for the mentioned actinides could be identified and characterised. The applied in-source-ionization ensures for a high detection efficiency due to the good overlap of laser radiation with the atomic beam and allows therefore for a low sample consumption which is required for the analysis of radio nuclides. The selective excitation processes in the resonant ionization method supresses unwanted contaminations and was optimized for analytical detection of ultra-trace amounts in environmental samples as well as for determination of isotopic compositions. The efficient in-source-ionization combined with high power pulsed laser radiation allows for detections efficiency up to 1%. For plutonium detection limits in the range of 10{sup 4}-10{sup 5} atoms could be demonstrated for synthetic samples as well as for first environmental samples. The usage of narrow bandwidth continuous wave lasers in combination with a transversal overlap of the laser radiation and the free propagating atomic beam enable for resolving individual isotopic shifts of the resonant transitions. This results in a high selectivity against dominant neighboring isotopes but with a significant loss in detection efficiency. For the ultra-trace isotope {sup 236}U a detection limit down to 10{sup -9} for the isotope ratio N ({sup 236}U)/N ({sup 238}U) could be determined.

  6. Simulation study of the ionizing front in the critical ionization velocity phenomenon

    International Nuclear Information System (INIS)

    Machida, S.; Goertz, C.K.; Lu, G.

    1988-01-01

    Simulations of the Critical Ionization Velocity (CIV) for a neutral gas cloud moving across the static magnetic field are made. We treat a low-β plasma and use a 2-1/2 D electrostatic code linked with our Plasma and Neutral Interaction Code (PANIC). Our study is focused on the understanding of the interface between the neutral gas cloud and the surrounding plasma where the strong interaction takes place. We assume the existence of some hot electrons in the ambient plasma to provide a seed ionization for CIV. When the ionization starts a sheath-like structure is formed at the surface of the neutral gas (Ionizing Front). In that region the crossfield component of the electric field causes the electron to E x B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. Thus the kinetic energy of the drifting electrons can be large enough for electron impact ionization. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the ionization front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating and additional ionization. The overall structure is studied by developing a simple analytic model as well as making simulation runs. (author)

  7. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Liu Rong; Jiang Li; Lu Xinxin; Zhu Tonghua

    2008-01-01

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  8. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    Science.gov (United States)

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  9. Effects of ionizing radiation in ginkgo and guarana

    International Nuclear Information System (INIS)

    Rabelo Soriani, Renata; Satomi, Lucilia Cristina; Pinto, Terezinha de Jesus A.

    2005-01-01

    Raw plant materials normally carry high bioburden due to their origin, offering potential hazards to consumers. The use of decontamination processes is therefore an important step towards the consumer safety and therapeutical efficiency. Several authors have reported the treatment of medicinal herbs with ionizing radiation. This work evaluated the effects of different radiation doses on the microbial burden and chemical constituents of ginkgo (Ginkgo biloba L.) and guarana (Paullinia cupana H.B.K.)

  10. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles

    Science.gov (United States)

    Ghalei, Behnam; Sakurai, Kento; Kinoshita, Yosuke; Wakimoto, Kazuki; Isfahani, Ali Pournaghshband; Song, Qilei; Doitomi, Kazuki; Furukawa, Shuhei; Hirao, Hajime; Kusuda, Hiromu; Kitagawa, Susumu; Sivaniah, Easan

    2017-07-01

    Mixed matrix membranes (MMMs) for gas separation applications have enhanced selectivity when compared with the pure polymer matrix, but are commonly reported with low intrinsic permeability, which has major cost implications for implementation of membrane technologies in large-scale carbon capture projects. High-permeability polymers rarely generate sufficient selectivity for energy-efficient CO2 capture. Here we report substantial selectivity enhancements within high-permeability polymers as a result of the efficient dispersion of amine-functionalized, nanosized metal-organic framework (MOF) additives. The enhancement effects under optimal mixing conditions occur with minimal loss in overall permeability. Nanosizing of the MOF enhances its dispersion within the polymer matrix to minimize non-selective microvoid formation around the particles. Amination of such MOFs increases their interaction with thepolymer matrix, resulting in a measured rigidification and enhanced selectivity of the overall composite. The optimal MOF MMM performance was verified in three different polymer systems, and also over pressure and temperature ranges suitable for carbon capture.

  11. Introduction to ionizing radiation physics

    International Nuclear Information System (INIS)

    Musilek, L.

    1979-01-01

    Basic properties are described of the atom, atomic nucleus and of ionizing radiation particles; nuclear reactions, ionizing radiation sources and ionizing radiation interaction with matter are explained. (J.P.)

  12. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures – Application to the petroleomic analysis of bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, Jasmine [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Carré, Vincent, E-mail: vincent.carre@univ-lorraine.fr [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Le Brech, Yann [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mackay, Colin Logan [SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland (United Kingdom); Dufour, Anthony [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mašek, Ondřej [UK Biochar Research Center, School of Geosciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JN (United Kingdom); and others

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C{sub x}H{sub y}O{sub z} with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. - Highlights: • Non-targeted mass spectrometry by combining electrospray ionization, atmospheric pressure photoionization and laser/desorption ionization. • Exhaustive description of pyrolytic bio-oil components. • Distinction of sugaric derivatives, lignin derivatives and lipids contained in a woody-based pyrolytic bio-oil.

  13. Collisional ionization

    International Nuclear Information System (INIS)

    Arnaud, M.

    1985-07-01

    In low density, thin plasmas (such as stellar coronae, interstellar medium, intracluster medium) the ionization process is governed by collision between electrons and ions in their ground state. In view of the recent improvements we thought an updating of ionization rates was really needed. The work is based on both experimental data and theoretical works and give separate estimates for the direct and autoionization rates

  14. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Yi, Jae-Youn [Laboratory of Modulation of Radiobiological Responses, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Hyun-Gyu [Department of Microbiology and Immunology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  15. Efficient mass-selective three-photon ionization of zirconium atoms

    Science.gov (United States)

    Page, Ralph H.

    1994-01-01

    In an AVLIS process, .sup.91 Zr is selectively removed from natural zirconium by a three-step photoionization wherein Zr atoms are irradiated by a laser beam having a wavelength .lambda..sub.1, selectively raising .sup.91 Zr atoms to an odd-parity E.sub.1 energy level in the range of 16000-19000 cm.sup.-1, are irradiated by a laser beam having a wavelength .lambda..sub.2 to raise the atoms from an E.sub.l level to an even-parity E.sub.2 energy level in the range of 35000-37000 cm.sup.-1 and are irradiated by a laser beam having a wavelength .lambda..sub.3 to cause a resonant transition of atoms from an E.sub.2 level to an autoionizing level above 53506 cm.sup.-1. .lambda..sub.3 wavelengths of 5607, 6511 or 5756 .ANG. will excite a zirconium atom from an E.sub.2 energy state of 36344 cm.sup.-1 to an autoionizing level; a .lambda..sub.3 wavelength of 5666 .ANG. will cause an autoionizing transition from an E.sub.2 level of 36068 cm.sup.-1 ; and a .lambda. .sub.3 wavelength of 5662 .ANG. will cause an ionizing resonance of an atom at an E.sub.2 level of 35904 cm.sup.-1.

  16. External quantum efficiency enhancement by photon recycling with backscatter evasion.

    Science.gov (United States)

    Nagano, Koji; Perreca, Antonio; Arai, Koji; Adhikari, Rana X

    2018-05-01

    The nonunity quantum efficiency (QE) in photodiodes (PD) causes deterioration of signal quality in quantum optical experiments due to photocurrent loss as well as the introduction of vacuum fluctuations into the measurement. In this paper, we report that the external QE enhancement of a PD was demonstrated by recycling the reflected photons. The external QE for an InGaAs PD was increased by 0.01-0.06 from 0.86-0.92 over a wide range of incident angles. Moreover, we confirmed that this technique does not increase backscattered light when the recycled beam is properly misaligned.

  17. Particle filters for object tracking: enhanced algorithm and efficient implementations

    International Nuclear Information System (INIS)

    Abd El-Halym, H.A.

    2010-01-01

    Object tracking and recognition is a hot research topic. In spite of the extensive research efforts expended, the development of a robust and efficient object tracking algorithm remains unsolved due to the inherent difficulty of the tracking problem. Particle filters (PFs) were recently introduced as a powerful, post-Kalman filter, estimation tool that provides a general framework for estimation of nonlinear/ non-Gaussian dynamic systems. Particle filters were advanced for building robust object trackers capable of operation under severe conditions (small image size, noisy background, occlusions, fast object maneuvers ..etc.). The heavy computational load of the particle filter remains a major obstacle towards its wide use.In this thesis, an Excitation Particle Filter (EPF) is introduced for object tracking. A new likelihood model is proposed. It depends on multiple functions: position likelihood; gray level intensity likelihood and similarity likelihood. Also, we modified the PF as a robust estimator to overcome the well-known sample impoverishment problem of the PF. This modification is based on re-exciting the particles if their weights fall below a memorized weight value. The proposed enhanced PF is implemented in software and evaluated. Its results are compared with a single likelihood function PF tracker, Particle Swarm Optimization (PSO) tracker, a correlation tracker, as well as, an edge tracker. The experimental results demonstrated the superior performance of the proposed tracker in terms of accuracy, robustness, and occlusion compared with other methods Efficient novel hardware architectures of the Sample Important Re sample Filter (SIRF) and the EPF are implemented. Three novel hardware architectures of the SIRF for object tracking are introduced. The first architecture is a two-step sequential PF machine, where particle generation, weight calculation and normalization are carried out in parallel during the first step followed by a sequential re

  18. Ceria nanocubic-ultrasonication assisted dispersive liquid-liquid microextraction coupled with matrix assisted laser desorption/ionization mass spectrometry for pathogenic bacteria analysis.

    Science.gov (United States)

    Abdelhamid, Hani Nasser; Bhaisare, Mukesh L; Wu, Hui-Fen

    2014-03-01

    A new ceria (CeO2) nanocubic modified surfactant is used as the basis of a novel nano-based microextraction technique for highly sensitive detection of pathogenic bacteria (Pseudomonas aeruginosa and Staphylococcus aureus). The technique uses ultrasound enhanced surfactant-assisted dispersive liquid-liquid microextraction (UESA-DLLME) with and without ceria (CeO2) followed by matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). In order to achieve high separation efficiency, we investigated the influential parameters, including extraction time of ultrasonication, type and volume of the extraction solvent and surfactant. Among various surfactants, the cationic surfactants can selectively offer better extraction efficiency on bacteria analysis than that of the anionic surfactants due to the negative charges of bacteria cell membranes. Extractions of the bacteria lysate from aqueous samples via UESA-DLLME-MALDI-MS were successfully achieved by using cetyltrimethyl ammonium bromide (CTAB, 10.0 µL, 1.0×10(-3) M) as surfactants in chlorobenzene (10.0 µL) and chloroform (10.0 µL) as the optimal extracting solvent for P. aeruginosa and S. aureus, respectively. Ceria nanocubic was synthesized, and functionalized with CTAB (CeO2@CTAB) and then characterized using transmission electron microscopy (TEM) and optical spectroscopy (UV and FTIR). CeO2@CTAB demonstrates high extraction efficiency, improve peaks ionization, and enhance resolution. The prime reasons for these improvements are due to the large surface area of nanoparticles, and its absorption that coincides with the wavelength of MALDI laser (337 nm, N2 laser). CeO2@CTAB-based microextraction offers lowest detectable concentrations tenfold lower than that of without nanoceria. The present approach has been successfully applied to detect pathogenic bacteria at low concentrations of 10(4)-10(5) cfu/mL (without ceria) and at 10(3)-10(4) cfu/mL (with ceria) from bacteria suspensions. Finally, the

  19. Genetic defects in DNA repair system and enhancement of intergenote transformation efficiency in Bacillus subtilis Marburg

    International Nuclear Information System (INIS)

    Matsumoto, K.; Takahashi, H.; Saito, H.; Ikeda, Y.

    1978-01-01

    Mechanisms of inefficiency in heterospecies transformation were studied with a transformation system consisting of Bacillus subtilis 168TI (trpC2thy) as recipient and of DNA prepared from partially hybrid strains of B. subtilis which had incorporated trp + DNA of B. amyloliquefaciens 203 (formerly, B. megaterium 203) in the chromosome (termed intergenote). The intergenote transformation was not so efficient as the corresponding homospecies transformation and the efficiency appeared to relate inversely with the length of heterologous portion in the intergenote. When a variety of ultraviolet light (UV) sensitive mutants, deficient in host-cell reactivation capacity, were used as recipients for the intergenote transformation, 2 out of 16 mutants exhibited significantly enhanced transformation efficiency of the trpC marker. Genetic studies by transformation showed that the trait relating to the enhancement of intergenote-transformation efficiency was always associated with the UV sensitivity, suggesting that these two traits are determined by a single gene. The efficiency of intergenote transformation was highly affected also by DNA concentration; the lower the concentration, the less the efficiency. When, however, the UV sensitive mutant was used as recipient, the effect of DNA concentration was largely diminished, suggesting the reduction of DNA-inactivating activity in the UV sensitive recipient. These results were discussed in relation to a possible excision-repair system selectively correcting the mismatched DNA in the course of intergenote transformation. (orig.) [de

  20. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment

    DEFF Research Database (Denmark)

    Terán Hilares, Ruly; Ramos, Lucas; da Silva, Silvio Silvério

    2018-01-01

    to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process...... was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction...... of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also...

  1. Dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Musilek, L.; Seda, J.; Trousil, J.

    1992-01-01

    The publication deals with a major field of ionizing radiation dosimetry, viz., integrating dosimetric methods, which are the basic means of operative dose determination. It is divided into the following sections: physical and chemical effects of ionizing radiation; integrating dosimetric methods for low radiation doses (film dosimetry, nuclear emulsions, thermoluminescence, radiophotoluminescence, solid-state track detectors, integrating ionization dosemeters); dosimetry of high ionizing radiation doses (chemical dosimetric methods, dosemeters based on the coloring effect, activation detectors); additional methods applicable to integrating dosimetry (exoelectron emission, electron spin resonance, lyoluminescence, etc.); and calibration techniques for dosimetric instrumentation. (Z.S.). 422 refs

  2. Augmenting the spectral efficiency of enhanced PAM-DMT-based optical wireless communications.

    Science.gov (United States)

    Islim, Mohamed Sufyan; Haas, Harald

    2016-05-30

    The energy efficiency of pulse-amplitude-modulated discrete multitone modulation (PAM-DMT) decreases as the modulation order of M-PAM modulation increases. Enhanced PAM-DMT (ePAM-DMT) was proposed as a solution to the reduced energy efficiency of PAM-DMT. This was achieved by allowing multiple streams of PAM-DMT to be superimposed and successively demodulated at the receiver side. In order to maintain a distortion-free unipolar ePAM-DMT system, the multiple time-domain PAM-DMT streams are required to be aligned. However, aligning the antisymmetry in ePAM-DMT is complex and results in efficiency losses. In this paper, a novel simplified method to apply the superposition modulation on M-PAM modulated discrete multitone (DMT) is introduced. Contrary to ePAM-DMT, the signal generation of the proposed system, termed augmented spectral efficiency discrete multitone (ASE-DMT), occurs in the frequency domain. This results in an improved spectral and energy efficiency. The analytical bit error rate (BER) performance bound of the proposed system is derived and compared with Monte-Carlo simulations. The system performance is shown to offer significant electrical and optical energy savings compared with ePAM-DMT and DC-biased optical orthogonal frequency division multiplexing (DCO-OFDM).

  3. The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system.

    Science.gov (United States)

    Xiao, Yunhua; Xu, YongDong; Dong, Weiling; Liang, Yili; Fan, Fenliang; Zhang, Xiaoxia; Zhang, Xian; Niu, Jiaojiao; Ma, Liyuan; She, Siyuan; He, Zhili; Liu, Xueduan; Yin, Huaqun

    2015-12-01

    This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed that microbial community structures and compositions dramatically changed with additions of pyrite or chalcopyrite during the sphalerite bioleaching process. Shannon diversity index showed a significantly increase in the SP (1.460), SC (1.476), and SPC (1.341) groups compared with control (sphalerite group, 0.624) on day 30, meanwhile, zinc leaching efficiencies were enhanced by about 13.4, 2.9, and 13.2%, respectively. Also, additions of pyrite or chalcopyrite could increase electric potential (ORP) and the concentrations of Fe3+ and H+, which were the main factors shaping microbial community structures by Mantel test analysis. Linear regression analysis showed that ORP, Fe3+ concentration, and pH were significantly correlated to zinc leaching efficiency and microbial diversity. In addition, we found that leaching efficiency showed a positive and significant relationship with microbial diversity. In conclusion, our results showed that the complicated substrates could significantly enhance microbial diversity and activity of function.

  4. Detection of single atoms by resonance ionization spectroscopy

    International Nuclear Information System (INIS)

    Hurst, G.S.

    1986-01-01

    Rutherford's idea for counting individual atoms can, in principle, be implemented for nearly any type of atom, whether stable or radioactive, by using methods of resonance ionization. With the RIS technique, a laser is tuned to a wavelength which will promote a valence electron in a Z-selected atom to an excited level. Additional resonance or nonresonance photoabsorption steps are used to achieve nearly 100% ionization efficiencies. Hence, the RIS process can be saturated for the Z-selected atoms; and since detectors are available for counting either single electrons or positive ions, one-atom detection is possible. Some examples are given of one-atom detection, including that of the noble gases, in order to show complementarity with AMS methods. For instance, the detection of 81 Kr using RIS has interesting applications for solar neutrino research, ice-cap dating, and groundwater dating. 39 refs., 7 figs., 2 tabs

  5. Biological effects of low-dose ionizing radiation exposure

    International Nuclear Information System (INIS)

    Reinoehl-Kompa, Sabine; Baldauf, Daniela; Heller, Horst

    2009-01-01

    The report on the meeting of the Strahlenschutzkommission 2007 concerning biological effects of low-dose ionizing radiation exposure includes the following contributions: Adaptive response. The importance of DNA damage mechanisms for the biological efficiency of low-energy photons. Radiation effects in mammography: the relative biological radiation effects of low-energy photons. Radiation-induced cataracts. Carcinomas following prenatal radiation exposure. Intercellular apoptosis induction and low-dose irradiation: possible consequences for the oncogenesis control. Mechanistic models for the carcinogenesis with radiation-induced cell inactivation: application to all solid tumors in the Japanese atomic bomb survivors. Microarrays at low radiation doses. Mouse models for the analysis of biological effects of low-dose ionizing radiation. The bystander effect: observations, mechanisms and implications. Lung carcinoma risk of Majak workers - modeling of carcinogenesis and the bystander effect. Microbeam studies in radiation biology - an overview. Carcinogenesis models with radiation-induced genomic instability. Application to two epidemiological cohorts.

  6. Efficiency enhancement in a single emission layer yellow organic light emitting device: Contribution of CIS/ZnS quantum dot

    International Nuclear Information System (INIS)

    Demir, Nuriye; Oner, Ilker; Varlikli, Canan; Ozsoy, Cihan; Zafer, Ceylan

    2015-01-01

    Electroluminescence (EL) efficiency from a single emission layer solution processed yellow emitting polymer, i.e. poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,10,3}-thiadiazole)] end-capped with dimethylphenyl (ADS233YE), is firstly enhanced by the optimization of stock polymer concentrations and the coating rates, and then with the addition of copper indium disulfide/zinc sulfide (CIS/ZnS) core/shell quantum dots (QDs). Using these bare core/shell QDs as the active layer in the studied device gave no EL at all. However, yellow EL with the maximum brightness of 56834 cd/m 2 , maximum current efficiency of 4.7 cd/A and maximum power efficiency of 2.3 lm/W is obtained from the device structure of indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/ADS233YE:0.4 wt.% CIS/ZnS QD/Ca/Al those of which correspond to approximately 4 and 2 folds of enhancements in the brightness and luminous and power efficiency values, respectively, compared to that of the device without CIS/ZnS. - Highlights: • Copper indium disulfide/zinc sulfide (CIS/ZnS) particles are synthesized. • Polymer light emitting diode performance of a yellow emitting polymer is enhanced. • The presence of CIS/ZnS in active layer enhanced the power efficiency two folds. • Optimum concentration of CIS/ZnS in polymer is 0.4 wt.%

  7. Efficiency enhancement in a single emission layer yellow organic light emitting device: Contribution of CIS/ZnS quantum dot

    Energy Technology Data Exchange (ETDEWEB)

    Demir, Nuriye; Oner, Ilker; Varlikli, Canan, E-mail: canan.varlikli@ege.edu.tr; Ozsoy, Cihan; Zafer, Ceylan

    2015-08-31

    Electroluminescence (EL) efficiency from a single emission layer solution processed yellow emitting polymer, i.e. poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-{2,10,3}-thiadiazole)] end-capped with dimethylphenyl (ADS233YE), is firstly enhanced by the optimization of stock polymer concentrations and the coating rates, and then with the addition of copper indium disulfide/zinc sulfide (CIS/ZnS) core/shell quantum dots (QDs). Using these bare core/shell QDs as the active layer in the studied device gave no EL at all. However, yellow EL with the maximum brightness of 56834 cd/m{sup 2}, maximum current efficiency of 4.7 cd/A and maximum power efficiency of 2.3 lm/W is obtained from the device structure of indium tin oxide/poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/ADS233YE:0.4 wt.% CIS/ZnS QD/Ca/Al those of which correspond to approximately 4 and 2 folds of enhancements in the brightness and luminous and power efficiency values, respectively, compared to that of the device without CIS/ZnS. - Highlights: • Copper indium disulfide/zinc sulfide (CIS/ZnS) particles are synthesized. • Polymer light emitting diode performance of a yellow emitting polymer is enhanced. • The presence of CIS/ZnS in active layer enhanced the power efficiency two folds. • Optimum concentration of CIS/ZnS in polymer is 0.4 wt.%.

  8. High-efficiency target-ion sources for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1993-01-01

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory

  9. Novel Laser Ignition Technique Using Dual-Pulse Pre-Ionization

    Science.gov (United States)

    Dumitrache, Ciprian

    Recent advances in the development of compact high power laser sources and fiber optic delivery of giant pulses have generated a renewed interest in laser ignition. The non-intrusive nature of laser ignition gives it a set of unique characteristics over the well-established capacitive discharge devices (or spark plugs) that are currently used as ignition sources in engines. Overall, the use of laser ignition has been shown to have a positive impact on engine operation leading to a reduction in NOx emission, fuel saving and an increased operational envelope of current engines. Conventionally, laser ignition is achieved by tightly focusing a high-power q-switched laser pulse until the optical intensity at the focus is high enough to breakdown the gas molecules. This leads to the formation of a spark that serves as the ignition source in engines. However, there are certain disadvantages associated with this ignition method. This ionization approach is energetically inefficient as the medium is transparent to the laser radiation until the laser intensity is high enough to cause gas breakdown. As a consequence, very high energies are required for ignition (about an order of magnitude higher energy than capacitive plugs at stoichiometric conditions). Additionally, the fluid flow induced during the plasma recombination generates high vorticity leading to high rates of flame stretching. In this work, we are addressing some of the aforementioned disadvantages of laser ignition by developing a novel approach based on a dual-pulse pre-ionization scheme. The new technique works by decoupling the effect of the two ionization mechanisms governing plasma formation: multiphoton ionization (MPI) and electron avalanche ionization (EAI). An UV nanosecond pulse (lambda = 266 nm) is used to generate initial ionization through MPI. This is followed by an overlapped NIR nanosecond pulse (lambda = 1064 nm) that adds energy into the pre-ionized mixture into a controlled manner until the

  10. Investigation of ionized metal flux in enhanced high power impulse magnetron sputtering discharges

    Czech Academy of Sciences Publication Activity Database

    Straňák, V.; Hubička, Zdeněk; Čada, Martin; Drache, S.; Tichý, M.; Hippler, R.

    2014-01-01

    Roč. 115, č. 15 (2014), "153301-1"-"153301-7" ISSN 0021-8979 R&D Projects: GA MŠk LH12043 Grant - others:AV ČR(CZ) M100101215 Institutional support: RVO:68378271 Keywords : electron-impact ionization * physical vapor-deposition * cross-sections * plasma parameters * rate coefficients * low-pressure * energy * atoms * films * ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.183, year: 2014

  11. Ionization chamber

    International Nuclear Information System (INIS)

    Jilbert, P.H.

    1975-01-01

    The invention concerns ionization chambers with particular reference to air-equivalent ionization chambers. In order to ensure that similar chambers have similar sensitivities and responses the surface of the chamber bounding the active volume carries a conducting material, which may be a colloidal graphite, arranged in the form of lines so that the area of the conducting material occupies only a small proportion of the area of said surface. (U.S.)

  12. Effective and efficient learning in the operating theater with intraoperative video-enhanced surgical procedure training

    OpenAIRE

    van Det, M.J.; Meijerink, W.J.; Hoff, C.; Middel, B.; Pierie, J.P.

    2013-01-01

    INtraoperative Video Enhanced Surgical procedure Training (INVEST) is a new training method designed to improve the transition from basic skills training in a skills lab to procedural training in the operating theater. Traditionally, the master-apprentice model (MAM) is used for procedural training in the operating theater, but this model lacks uniformity and efficiency at the beginning of the learning curve. This study was designed to investigate the effectiveness and efficiency of INVEST co...

  13. Plasma production via field ionization

    Directory of Open Access Journals (Sweden)

    C. L. O’Connell

    2006-10-01

    Full Text Available Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch, or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam’s bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  14. Ionization mechanisms in capillary supercritical fluid chromatography-chemical ionization mass spectrometry

    NARCIS (Netherlands)

    Houben, R.J.; Leclercq, P.A.; Cramers, C.A.M.G.

    1991-01-01

    Ionization mechanisms have been studied for supercritical fluid chromatography (SFC) with mass spectrometric (MS) detection. One of the problems associated with SFC-MS is the interference of mobile phase constituents in the ionization process, which complicates the interpretation of the resulting

  15. Enhancement of plasma generation in catalyst pores with different shapes

    Science.gov (United States)

    Zhang, Yu-Ru; Neyts, Erik C.; Bogaerts, Annemie

    2018-05-01

    Plasma generation inside catalyst pores is of utmost importance for plasma catalysis, as the existence of plasma species inside the pores affects the active surface area of the catalyst available to the plasma species for catalytic reactions. In this paper, the electric field enhancement, and thus the plasma production inside catalyst pores with different pore shapes is studied with a two-dimensional fluid model. The results indicate that the electric field will be significantly enhanced near tip-like structures. In a conical pore with small opening, the strongest electric field appears at the opening and bottom corners of the pore, giving rise to a prominent ionization rate throughout the pore. For a cylindrical pore, the electric field is only enhanced at the bottom corners of the pore, with lower absolute value, and thus the ionization rate inside the pore is only slightly enhanced. Finally, in a conical pore with large opening, the electric field is characterized by a maximum at the bottom of the pore, yielding a similar behavior for the ionization rate. These results demonstrate that the shape of the pore has a significantly influence on the electric field enhancement, and thus modifies the plasma properties.

  16. Effectiveness of projectile screening in single and multiple ionization of Ne by B{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, W.; Luna, H.; Santos, A. C. F.; Montenegro, E. C. [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, 21945-970 RJ (Brazil); DuBois, R. D. [Department of Physics, Missouri University of Science and Technology, Rolla, Missouri 65409 (United States); Montanari, C. C.; Miraglia, J. E. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, C1428EGA, Buenos Aires (Argentina)

    2011-10-15

    Pure multiple ionization cross sections of Ne by B{sup 2+} projectiles have been measured in the energy range of 0.75 to 4.0 MeV and calculated using the continuum distorted wave-eikonal initial state approximation. The experiment and calculations show that the ionization cross sections by B{sup 2+}, principally for the production of highly charged recoils, is strongly enhanced when compared to the bare projectile with the same charge state, He{sup 2+}, at the same velocities.

  17. A strategy for prioritising interactive measures for enhancing energy efficiency of air-conditioned buildings

    International Nuclear Information System (INIS)

    Lee, W.L.; Yik, F.W.H.; Jones, P.

    2003-01-01

    Within a given budget, selection of the optimal set of measures for enhancing the energy efficiency of a building is often based on the relative order of the feasible measures, prioritised according to either the life cycle cost saving or the economic benefit-cost ratio of the measures. A sensitivity analysis shows that, compared to the life cycle cost analysis, the benefit-cost ratio analysis is less susceptible to the influence of uncertainties in the estimates of the present value of the life cycle energy saving and cost. Where interactive measures are involved, the effects of some are dependent on the co-existence of other measures. The prioritisation determined according to the benefit-cost ratios of individual measures, each taken in the absence of all the others, can lead to the choice of a range of measures that is below optimal. Selection of the optimal set of energy efficiency enhancement measures requires a multistep approach, which is exemplified by the case study described in the paper

  18. Dental ergonomics: Basic steps to enhance work efficiency

    Directory of Open Access Journals (Sweden)

    Abdul Rahim Shaik

    2015-01-01

    Full Text Available The nature of the dental profession and the postures assumed by the dental surgeons during their professional work has a huge impact on the dental surgeon′s body and carries with it a high risk of musculoskeletal disorders (MSDs. To perform efficiently and effectively, they shall always like to attain a position that allows them to achieve optimum access, visibility, comfort, and control at all times. Good ergonomic design of the workplace is a basic requirement for facilitating the balanced musculoskeletal health that will enable longer, healthier career, enhance productivity, and minimize MSDs among dental surgeons. While treating the patients, they are concerned about patients′ comfort and pay little attention to their own health till they begin to experience discomfort in their body. With a little attention and creativity, dental surgeons can improve their comfort on the job during the course of their career.

  19. Ionizing radiation in hospitals

    International Nuclear Information System (INIS)

    Blok, K.; Ginkel, G. van; Leun, K. van der; Muller, H.; Oude Elferink, J.; Vesseur, A.

    1985-10-01

    This booklet dels with the risks of the use of ionizing radiation for people working in a hospital. It is subdivided in three parts. Part 1 treats the properties of ionizing radiation in general. In part 2 the various applications are discussed of ionizing radiation in hospitals. Part 3 indicates how a not completely safe situation may be improved. (H.W.). 14 figs.; 4 tabs

  20. A DSM-based “2.0” System for Human Intervention Planning and Scheduling in Facilities Emitting Ionizing Radiations

    CERN Document Server

    Baudin, M; De Jonghe, J

    2012-01-01

    To efficiently and safely plan, schedule and control its interventions in underground facilities, which are subject to ionizing radiations, CERN is currently developing a collaborative Web-based system. A similar project for maintenance management is also under way. On top of presenting their key requirements, this paper shows how the implementation of DSM can enhance a so-called Web 2.0 or collaborative dimension by bringing an intuitive and fair way of taking the dependencies between several activities into account. It is also discussed that the incoherencies brought in DSM by collaborative use (for instance regarding the time intervals) can be addressed by enlarging the binary DSM span of dependencies to ones of the Allen’s interval algebra or at least a subset of its dependencies.

  1. Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.

    Science.gov (United States)

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-10-01

    Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.

  2. Channel-closing effects in strong-field ionization by a bicircular field

    Science.gov (United States)

    Milošević, D. B.; Becker, W.

    2018-03-01

    Channel-closing effects, such as threshold anomalies and resonantlike intensity-dependent enhancements in strong-field ionization by a bicircular laser field are analyzed. A bicircular field consists of two coplanar corotating or counter-rotating circularly polarized fields having different frequencies. For the total detachment rate of a negative ion by a bicircular field we observe threshold anomalies and explain them using the Wigner threshold law and energy and angular momentum conservation. For the corotating bicircular case, these effects are negligible, while for the counter-rotating case they are pronounced and their position depends on the magnetic quantum number of the initial state. For high-order above-threshold ionization of rare-gas atoms by a counter-rotating bicircular laser field we observe very pronounced intensity-dependent enhancements. We find all four types of threshold anomalies known from collision theory. Contrary to the case of linear polarization, channel-closing effects for a bicircular field are visible also in the cutoff region of the electron energy spectrum, which is explained using quantum-orbit theory.

  3. Linearization and efficiency enhancement techniques for silicon power amplifiers from RF to mmW

    CERN Document Server

    Kerhervé, Eric

    2015-01-01

    This book provides an overview of current efficiency enhancement and linearization techniques for silicon power amplifier designs. It examines the latest state of the art technologies and design techniques to address challenges for RF cellular mobile, base stations, and RF and mmW WLAN applications. Coverage includes material on current silicon (CMOS, SiGe) RF and mmW power amplifier designs, focusing on advantages and disadvantages compared with traditional GaAs implementations. With this book you will learn: The principles of linearization and efficiency improvement techniquesThe arch

  4. Highly efficient construction of oriented sandwich structures for surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Guo Hongyun; Xu Weiqing; Xu Shuping; Zhou Ji; Lombardi, John R

    2013-01-01

    The purpose of this study is to solve the problem of low achievement in fabricating sandwich surface-enhanced Raman scattering (SERS) substrates. We demonstrated a highly efficient sandwich structure by the oriented assembly of metal nanoparticles (NPs) on a periodic hexagonal array of metal nanoprisms with 1,4-benzenedithiol (1,4-BDT) as linkers. The metal nanoprism array was prepared by vacuum deposition of metal on a close-packed polystyrene nanosphere pre-patterned substrate. The metal nanoprism array presents different surface properties from the pits left from the removal of polystyrene nanospheres, which causes linkers to selectively adsorb on the metal nanoprism array and sequentially leads to the oriented immobilization of the second-layer metal NPs, avoiding mismatched orientation. These sandwich SERS substrates were characterized by extinction spectroscopy and atomic force microscopy and their enhancement activity was evaluated under different excitation wavelengths. The sandwich structure greatly increases the achievement of ‘hot spots’ to almost 100% of all the metal nanoprisms and enables a large amplification of SERS signals by a factor of ten. This method has the advantages of simplicity, high efficiency, high throughput, controllability and high reproducibility. It has significance in both the study of SERS substrates and the development of plasmonic devices. (paper)

  5. Bystander Effects of Ionizing Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Little, John B. [Harvard T.H. Chan School of Public Health, Boston, MA (United States). Dept. of Genetics and Complex Diseases

    2017-01-17

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  6. Bystander Effects of Ionizing Radiation

    International Nuclear Information System (INIS)

    Little, John B.

    2017-01-01

    The objectives of this grant renewal are to provide administrative support and travel funds to allow the continued participation of the principal investigator (Dr. John B. Little) as an advisor to research initiated by several research fellows from his laboratory. The actual research will be carried out under the direction of Dr. Hatsumi Nagasawa with the collaboration of Dr. Joel Bedford at the Colorado State University, and by Drs. Edouard Azzam and Sonia de Toledo at the University of Medicine and Dentistry of New Jersey. Dr. Little will advise on the planning of experiments and development of experimental protocols, the analysis of data, and the preparation of manuscripts for publication. The Specific Aims for several of the planned experiments include: 1) to extend studies of the role of recombinational repair in the bystander effect by examining other genes in this pathway and cell lines deficient in excision repair; 2) to continue studies to determine the nature of the damage signal transmitted to bystander cells including the expression of several connexins in the bystander response, and the extent to which the enhanced oxidative metabolism observed in bystander cells may relate to the nature of the transmitted bystander signal; 3) to utilize a genome-wide approach to examine the genetic basis for the hypersensitivity to ionization we have observed in unaffected parents of patients with hereditary retinoblastoma, as well as from a group of apparently normal individuals that show similar radiosensitivity; 4) to complete studies concerning the induction of high frequencies of cells with massive chromosome damage in clonal derivatives of p53 and p21 knockout mouse cell lines; in particular to examine the role of telomere changes in this phenomenon. Overall, the results of these studies should enhance our understanding of the risk of low-dose exposures to ionizing radiation, including human populations to residential radon as well as occupational exposures.

  7. Effects of autoionizing states on two-photon double ionization of the H2 molecule

    International Nuclear Information System (INIS)

    Guan, Xiaoxu; Bartschat, Klaus; Schneider, Barry I; Koesterke, Lars

    2014-01-01

    Treating the effects of autoionizing intermediate states on two-photon double ionization (DI) of the H 2 molecule using time-dependent laser pulses is a significant computational challenge. Relatively long exposure times are critical to understanding the dynamics. Using the fixed-nuclei approximation, we demonstrate how the doubly excited states enhance the angle-integrated generalized cross sections in H 2 , and how they affect the angular distribution pattern of the ejected electrons. As the energy approaches the threshold for sequential DI, there is a sharp rise in the cross section due to virtual sequential ionization

  8. Enhanced quantum efficiency for CsI grown on a graphite-based substrate coating

    CERN Document Server

    Friese, J; Homolka, J; Kastenmüller, A; Maier-Komor, P; Peter, M; Zeitelhack, K; Kienle, P; Körner, H J

    1999-01-01

    Quantum efficiencies (QE) in the vacuum ultraviolet (VUV) wavelength region have been measured for solid CsI layers on various substrates. The CsI films were deposited applying electron beam evaporation. The QE measurements were performed utilizing synchrotron radiation as well as light from a deuterium lamp. A GaAsP diode with a sensitivity calibration traceable to a primary radiation standard was used for normalization. For CsI layers grown on resin-stabilized graphite films a significant enhancement of QE was observed. Substrates suitable for gas detector applications and aging properties were investigated. The procedures to prepare and reproduce high quantum efficient CsI layers are described.

  9. Small Molecules that Enhance the Catalytic Efficiency of HLA-DM

    International Nuclear Information System (INIS)

    Nicholson, M.; Moradi, B.; Seth, N.; Xing, X.; Cuny, G.; Stein, R.; Wucherpfenning, K.

    2006-01-01

    HLA-DM (DM) plays a critical role in Ag presentation to CD4 T cells by catalyzing the exchange of peptides bound to MHC class II molecules. Large lateral surfaces involved in the DM:HLA-DR (DR) interaction have been defined, but the mechanism of catalysis is not understood. In this study, we describe four small molecules that accelerate DM-catalyzed peptide exchange. Mechanistic studies demonstrate that these small molecules substantially enhance the catalytic efficiency of DM, indicating that they make the transition state of the DM:DR/peptide complex energetically more favorable. These compounds fall into two functional classes: two compounds are active only in the presence of DM, and binding data for one show a direct interaction with DM. The remaining two compounds have partial activity in the absence of DM, suggesting that they may act at the interface between DM and DR/peptide. A hydrophobic ridge in the DMβ1 domain was implicated in the catalysis of peptide exchange because the activity of three of these enhancers was substantially reduced by point mutations in this area

  10. Miniature ionization chamber

    International Nuclear Information System (INIS)

    Alexeev, V.I.; Emelyanov, I.Y.; Ivanov, V.M.; Konstantinov, L.V.; Lysikov, B.V.; Postnikov, V.V.; Rybakov, J.V.

    1976-01-01

    A miniature ionization chamber having a gas-filled housing which accommodates a guard electrode made in the form of a hollow perforated cylinder is described. The cylinder is electrically associated with the intermediate coaxial conductor of a triaxial cable used as the lead-in of the ionization chamber. The gas-filled housing of the ionization chamber also accommodates a collecting electrode shaped as a rod electrically connected to the center conductor of the cable and to tubular members. The rod is disposed internally of the guard electrode and is electrically connected, by means of jumpers passing through the holes in the guard electrode, to the tubular members. The tubular members embrace the guard electrode and are spaced a certain distance apart along its entire length. Arranged intermediate of these tubular members are spacers secured to the guard electrode and fixing the collecting electrode throughout its length with respect to the housing of the ionization chamber

  11. Efficient image enhancement using sparse source separation in the Retinex theory

    Science.gov (United States)

    Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik

    2017-11-01

    Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.

  12. Detection of polychlorinated biphenyls in transformer oils in Vietnam by multiphoton ionization mass spectrometry using a far-ultraviolet femtosecond laser as an ionization source.

    Science.gov (United States)

    Duong, Vu Thi Thuy; Duong, Vu; Lien, Nghiem Thi Ha; Imasaka, Tomoko; Tang, Yuanyuan; Shibuta, Shinpei; Hamachi, Akifumi; Hoa, Do Quang; Imasaka, Totaro

    2016-03-01

    Polychlorinated biphenyls (PCBs) in transformer and food oils were measured using gas chromatography combined with multiphoton ionization mass spectroscopy. An ultrashort laser pulse emitting in the far-ultraviolet region was utilized for efficient ionization of the analytes. Numerous signal peaks were clearly observed for a standard sample mixture of PCBs when the third and fourth harmonic emissions (267 and 200nm) of a femtosecond Ti:sapphire laser (800nm) were employed. The signal intensities were found to be greater when measured at 200nm compared with those measured at 267nm, providing lower detection limits especially for highly chlorinated PCBs at shorter wavelengths. After simple pretreatment using disposable columns, PCB congeners were measured and found to be present in the transformer oils used in Vietnam. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Silver nanostructures in laser desorption/ionization mass spectrometry and mass spectrometry imaging.

    Science.gov (United States)

    Sekuła, Justyna; Nizioł, Joanna; Rode, Wojciech; Ruman, Tomasz

    2015-09-21

    Silver nanoparticles have been successfully applied as a matrix replacement for the laser desorption/ionization time-of-flight mass spectrometry (LDI-ToF-MS). Nanoparticles, producing spectra with highly reduced chemical background in the low m/z region, are perfectly suited for low-molecular weight compound analysis and imaging. Silver nanoparticles (AgNPs) can efficiently absorb ultraviolet laser radiation, transfer energy to the analyte and promote analyte desorption, but also constitute a source of silver ions suitable for analyte cationisation. This review provides an overview of the literature on silver nanomaterials as non-conventional desorption and ionization promoters in LDI-MS and mass spectrometry imaging.

  14. Investigation of air bipolar ionization effects in cheese and kajmak craft production

    International Nuclear Information System (INIS)

    Pešić-Mikulec, D.; Puđa, P.D.; Blagić, G.S.; Miočinović, J.B.; Slović, M.D.

    2010-01-01

    Milk and dairy products are sustainable to the development of numerous microorganisms, especially pathogens. Therewith, it is necessary to achieve a high level of hygiene in dairy plants, in order to get safe and high quality products. Based on that, modern food production implies application of different air treatments. Microbiological status of air and working surfaces in the cheese and kajmak craft production, before and after air treatment by bipolar ionization, was investigated. It is concluded that bipolar ionization may be considered as an efficient method for improving of microbiological status of air, as well as surfaces that are in contact with the air

  15. Resonant quantum efficiency enhancement of midwave infrared nBn photodetectors using one-dimensional plasmonic gratings

    International Nuclear Information System (INIS)

    Nolde, Jill A.; Kim, Chul Soo; Jackson, Eric M.; Ellis, Chase T.; Abell, Joshua; Glembocki, Orest J.; Canedy, Chadwick L.; Tischler, Joseph G.; Vurgaftman, Igor; Meyer, Jerry R.; Aifer, Edward H.; Kim, Mijin

    2015-01-01

    We demonstrate up to 39% resonant enhancement of the quantum efficiency (QE) of a low dark current nBn midwave infrared photodetector with a 0.5 μm InAsSb absorber layer. The enhancement was achieved by using a 1D plasmonic grating to couple incident light into plasmon modes propagating in the plane of the device. The plasmonic grating is composed of stripes of deposited amorphous germanium overlaid with gold. Devices with and without gratings were processed side-by-side for comparison of their QEs and dark currents. The peak external QE for a grating device was 29% compared to 22% for a mirror device when the illumination was polarized perpendicularly to the grating lines. Additional experiments determined the grating coupling efficiency by measuring the reflectance of analogous gratings deposited on bare GaSb substrates

  16. DRIVING TURBULENCE AND TRIGGERING STAR FORMATION BY IONIZING RADIATION

    International Nuclear Information System (INIS)

    Gritschneder, Matthias; Naab, Thorsten; Walch, Stefanie; Burkert, Andreas; Heitsch, Fabian

    2009-01-01

    We present high-resolution simulations on the impact of ionizing radiation of massive O stars on the surrounding turbulent interstellar medium (ISM). The simulations are performed with the newly developed software iVINE which combines ionization with smoothed particle hydrodynamics (SPH) and gravitational forces. We show that radiation from hot stars penetrates the ISM, efficiently heats cold low-density gas and amplifies overdensities seeded by the initial turbulence. The formation of observed pillar-like structures in star-forming regions (e.g. in M16) can be explained by this scenario. At the tip of the pillars gravitational collapse can be induced, eventually leading to the formation of low-mass stars. Detailed analysis of the evolution of the turbulence spectra shows that UV radiation of O stars indeed provides an excellent mechanism to sustain and even drive turbulence in the parental molecular cloud.

  17. Effect of negative ions on current growth and ionizing wave propagation in air

    International Nuclear Information System (INIS)

    Kline, L.E.

    1975-01-01

    The spatiotemporal development of electron and ion densities, electric fields, and luminosity are calculated for electron pulse experiments in overvolted parallel-plane gaps by numerically solving continuity equations together with Poisson's equation. Experimental coefficients for primary ionization, cathode photoemission, photoionization, and luminosity are used. Unambiguous determination of the coefficients for attachment, detachment, and charge transfer is not possible from available experimental results. Therefore, the calculations are repeated for three sets of coefficients for these processes, corresponding to the following assumptions: unstable negative ions, stable negative ions, and no negative ions. The results of the calculations show, in each case, that the electron pulse initiates an avalanche which grows exponentially until the onset of space-charge effects. The calculated growth rate is strongly affected by the assumed attachment, detachment, and charge-transfer coefficients. When the total number of electrons in the avalanche reaches approx.10 8 , anode- and cathode-directed ionizing waves, or streamers, develop from the avalanche and produce a weakly ionized filamentary plasma. The calculated ionizing wave velocities are strongly increasing functions of the space-charge--enhanced electric field within the waves and are insensitive to the assumed attachment, detachment, and charge-transfer coefficients. The numerically calculated ionizing wave velocities are in approximate agreement with a simple analytical theory

  18. Long Term Stability Of Farmer Type Ionization Chamber Calibration Coefficient belonging To Local Radiotherapy Centres In Malaysia

    International Nuclear Information System (INIS)

    Mukhtar, A.M.; Samat, S.B.; Mohd Taufik Dolah

    2014-01-01

    The accuracy of the ionization chambers calibration coefficient is one of the factors that would contribute to efficient radiotherapy treatment. The IAEA therefore has recommended that an ionization chamber be calibrated every year, with a condition that the deviations between the previous and new calibration coefficients N D,w should not differ by ±1.5 %. It has been identified that Farmer type ionization chambers is the most popular ionization chamber among the radiotherapy centres in Malaysia. For this reason, the purpose of this work is to evaluate the calibration coefficients long term stability of the Farmer type ionization chambers. A total of 33 Farmer type ionization chambers were studied and the mean μ of the N D,w deviation together with its standard error SE were calculated. This μ ±SE will be used to measure stability of N D,w . Our results showed that most chambers have μ ±SE lies within the ±1.5 %. It is thus concluded that most of the Farmer type ionization chamber were stable in their N D,w and safe to be used for radiotherapy treatment. (author)

  19. Improved Efficiency of Miscible CO2 Floods and Enhanced Prospects for CO2 Flooding Heterogeneous Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, Reid B.; Schechter, David S.

    1999-10-15

    The goal of this project is to improve the efficiency of miscible CO2 floods and enhance the prospects for flooding heterogeneous reservoirs. This report provides results of the second year of the three-year project that will be exploring three principles: (1) Fluid and matrix interactions (understanding the problems). (2) Conformance control/sweep efficiency (solving the problems. 3) Reservoir simulation for improved oil recovery (predicting results).

  20. Resonant ionization by laser beams: application to ions sources and to study the nuclear structure of radioactive tellurium isotopes

    International Nuclear Information System (INIS)

    Sifi, R.

    2007-07-01

    The radioactive ion beams that are produced through current isotope separators are well separated according to the A mass but not according to the Z parameter. The resonant ionization through laser beams applied to ion sources allows the production of radioactive ion beam in a very selective and efficient way by eliminating the isobaric contamination. The first chapter is dedicated to the resonant ionization by laser beams, we describe the principle, the experimental setting, the lasers used, the ionization schemes and the domain of application. The second chapter deals with the application of resonant ionization to laser ion sources for the production of radioactive ion beams. We present experimental tests performed for getting copper ion beams. Resonant ionization through laser is also used in the spectroscopy experiments performed at the Isolde (isotope separation on-line device) installation in CERN where more than 20 elements are ionized very efficiently. The technique is based on a frequency scanning around the excitation transition of the atoms in order to probe the hyperfine structure. Laser spectroscopy allows the determination of the hyperfine structure as well as the isotopic shift of atoms. In the third chapter the method is applied to the spectroscopy of tellurium atoms. First, we define the 2 parameters on which the extraction is based: charge radius and nuclear moments, then we present several theoretical models that we have used to assess our experimental results. (A.C.)

  1. Electrospray ionization and matrix assisted laser desorption/ionization mass spectrometry: powerful analytical tools in recombinant protein chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens S.; Svensson, B; Roepstorff, P

    1996-01-01

    Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy is presen......Electrospray ionization and matrix assisted laser desorption/ionization are effective ionization methods for mass spectrometry of biomolecules. Here we describe the capabilities of these methods for peptide and protein characterization in biotechnology. An integrated analytical strategy...... is presented encompassing protein characterization prior to and after cloning of the corresponding gene....

  2. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Sissay, Adonay [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Lopata, Kenneth, E-mail: klopata@lsu.edu [Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2016-09-07

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  3. Angle-dependent strong-field molecular ionization rates with tuned range-separated time-dependent density functional theory

    International Nuclear Information System (INIS)

    Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J.; Lopata, Kenneth

    2016-01-01

    Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.

  4. Adaptation of the black yeast Wangiella dermatitidis to ionizing radiation: molecular and cellular mechanisms.

    Directory of Open Access Journals (Sweden)

    Kelly L Robertson

    Full Text Available Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS, increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and

  5. Protein profiling of single epidermal cell types from Arabidopsis thaliana using surface-enhanced laser desorption and ionization technology.

    Science.gov (United States)

    Ebert, Berit; Melle, Christian; Lieckfeldt, Elke; Zöller, Daniela; von Eggeling, Ferdinand; Fisahn, Joachim

    2008-08-25

    Here, we describe a novel approach for investigating differential protein expression within three epidermal cell types. In particular, 3000 single pavement, basal, and trichome cells from leaves of Arabidopsis thaliana were harvested by glass micro-capillaries. Subsequently, these single cell samples were joined to form pools of 100 individual cells and analyzed using the ProteinChip technology; SELDI: surface-enhanced laser desorption and ionization. As a result, numerous protein signals that were differentially expressed in the three epidermal cell types could be detected. One of these proteins was characterized by tryptical digestion and subsequent identification via tandem quadrupole-time of flight (Q-TOF) mass spectrometry. Down regulation of this sequenced small subunit precursor of ribulose-1,5 bisphosphate carboxylase(C) oxygenase(O) (RuBisCo) in trichome and basal cells indicates the sink status of these cell types that are located on the surface of A. thaliana source leaves. Based on the obtained protein profiles, we suggest a close functional relationship between basal and trichome cells at the protein level.

  6. Highly Enhanced Photoelectrochemical Water Oxidation Efficiency Based on Triadic Quantum Dot/Layered Double Hydroxide/BiVO 4 Photoanodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yanqun; Wang, Ruirui; Yang, Ye; Yan, Dongpeng; Xiang, Xu

    2016-08-03

    The water oxidation half-reaction is considered to be a bottleneck for achieving highly efficient solar-driven water splitting due to its multiproton-coupled four-electron process and sluggish kinetics. Herein, a triadic photoanode consisting of dual-sized CdTe quantum dots (QDs), Co-based layered double hydroxide (LDH) nanosheets, and BiVO4 particles, that is, QD@LDH@BiVO4, was designed. Two sets of consecutive Type-II band alignments were constructed to improve photogenerated electron-hole separation in the triadic structure. The efficient charge separation resulted in a 2-fold enhancement of the photocurrent of the QD@LDH@BiVO4 photoanode. A significantly enhanced oxidation efficiency reaching above 90% in the low bias region (i.e., E < 0.8 V vs RHE) could be critical in determining the overall performance of a complete photoelectrochemical cell. The faradaic efficiency for water oxidation was almost 90%. The conduction band energy of QDs is -1.0 V more negative than that of LDH, favorable for the electron injection to LDH and enabling a more efficient hole separation. The enhanced photon-to-current conversion efficiency and improved water oxidation efficiency of the triadic structure may result from the non-negligible contribution of hot electrons or holes generated in QDs. Such a band-matching and multidimensional triadic architecture could be a promising strategy for achieving high-efficiency photoanodes by sufficiently utilizing and maximizing the functionalities of QDs.

  7. Dominance of hole-boring radiation pressure acceleration regime with thin ribbon of ionized solid hydrogen

    Science.gov (United States)

    Psikal, J.; Matys, M.

    2018-04-01

    Laser-driven proton acceleration from novel cryogenic hydrogen target of the thickness of tens of microns irradiated by multiPW laser pulse is investigated here for relevant laser parameters accessible in near future. It is demonstrated that the efficiency of proton acceleration from relatively thick hydrogen solid ribbon largely exceeds the acceleration efficiency for a thinner ionized plastic foil, which can be explained by enhanced hole boring (HB) driven by laser ponderomotive force in the case of light ions and lower target density. Three-dimensional particle-in-cell (PIC) simulations of laser pulse interaction with relatively thick hydrogen target show larger energies of protons accelerated in the target interior during the HB phase and reduced energies of protons accelerated from the rear side of the target by quasistatic electric field compared with the results obtained from two-dimensional PIC calculations. Linearly and circularly polarized multiPW laser pulses of duration exceeding 100 fs show similar performance in terms of proton acceleration from both the target interior as well as from the rear side of the target. When ultrashort pulse (∼30 fs) is assumed, the number of accelerated protons from the target interior is substantially reduced.

  8. Gasdynamics of H II regions. V. The interaction of weak R ionization fronts with dense clouds

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, G; Bedijn, P J

    1981-06-01

    The interaction of weak R-type ionization fronts with a density enhancement is calculated numerically as a function of time within the framework of the champagne model of the evolution of H II regions. Calculations are performed under the assumption of plane-parallel geometry for various relative densities of the cloud in which the exciting star is formed and a second cloud with which an ionization front from the first cloud interacts. The supersonic ionization front representing the outer boundary of an H II region experiencing the champagne phase is found to either evolve into a D-type front or remain of type R, depending on the absolute number of photons leaving the H II region that undergoes the champagne phase. Recombinations in the ionized gas eventually slow the ionization front, however photon fluxes allow it to speed up again, resulting in oscillatory propagation of the front. Front-cloud interactions are also shown to lead to the development of a backward-facing shock, a forward-facing shock, and a density maximum in the ionized gas. The results can be used to explain the origin of bright rims in H II regions.

  9. Waveshifters and Scintillators for Ionizing Radiation Detection

    International Nuclear Information System (INIS)

    Baumgaugh, B.; Bishop, J.; Karmgard, D.; Marchant, J.; McKenna, M.; Ruchti, R.; Vigneault, M.; Hernandez, L.; Hurlbut, C.

    2007-01-01

    Scintillation and waveshifter materials have been developed for the detection of ionizing radiation in an STTR program between Ludlum Measurements, Inc. and the University of Notre Dame. Several new waveshifter materials have been developed which are comparable in efficiency and faster in fluorescence decay than the standard material Y11 (K27) used in particle physics for several decades. Additionally, new scintillation materials useful for fiber tracking have been developed which have been compared to 3HF. Lastly, work was done on developing liquid scintillators and paint-on scintillators and waveshifters for high radiation environments

  10. Interference effects in double ionization of spatially aligned hydrogen molecules by fast highly charged ions

    International Nuclear Information System (INIS)

    Landers, A.L.; Alnaser, A.S.; Tanis, J.A.; Wells, E.; Osipov, T.; Carnes, K.D.; Ben-Itzhak, I.; Cocke, C.L.; McGuire, J.H.

    2004-01-01

    Cross sections differential in target orientation angle were measured for 19 MeV F 8+ +D 2 collisions. Multihit position-sensitive detectors were used to isolate the double-ionization channel and determine a posteriori the full momentum vectors of both ejected D + fragments. A strong dependence of the double ionization cross section on the angle between the incident ion direction and the target molecular axis is observed with a ≅3.5:1 enhancement for molecules aligned perpendicular to the projectile axis. This clear asymmetry is attributed to interference effects, analogous to Young's two-slit experiment, arising from coherent contributions to the ionization from both atomic centers. The data are compared to a simple scattering model based on two center interference

  11. Photoelectron imaging spectroscopy for (2+1) resonance-enhanced multiphoton ionization of atomic bromine

    International Nuclear Information System (INIS)

    Kim, Yong Shin; Jung, Young Jae; Kang, Wee Kyung; Jung, Kyung Hoon

    2002-01-01

    Two-photon resonant third photon ionization of atomic bromine (4p 5 2 P 3/2 and 2 P 1/2 ) has been studied using a photoelectron imaging spectroscopy in the wavelength region 250-278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of Br + ( 3 P 2 , 3 P 0,1 and 1 D 2 ) with 4p 4 configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of Br + ( 3 P 2 ) and Br + ( 3 P 0,1 ) ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive A 2 anisotropy coefficient of 1.0 - 2.0 and negligible A 4 in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption

  12. Surface Ionization and Soft Landing Techniques in Mass Spectrometry

    International Nuclear Information System (INIS)

    Futrell, Jean H.; Laskin, Julia

    2010-01-01

    The advent of soft ionization techniques, notably electrospray and laser desorption ionization methods, has extended mass spectrometric methods to large molecules and molecular complexes. This both greatly expands applications of mass spectrometry and makes the activation and dissociation of complex ions an integral part of large molecule mass spectrometry. A corollary of the much greater number of internal degrees of freedom and high density of states associated with molecular complexity is that internal energies much higher than the dissociation energies for competing fragmentation processes are required for observable fragmentation in time scales sampled by mass spectrometers. This article describes the kinetics of surface-induced dissociation (SID), a particularly efficient activation method for complex ions. Two very important characteristics of SID are very rapid, sub-picosecond activation and precise control of ion internal energy by varying ion collision energy. The nature of the surface plays an important role in SID, determining both efficiency and mechanism of ion activation. Surface composition and morphology strongly influence the relative importance of competing reactions of SID, ion capture (soft-landing), surface reaction and neutralization. The important features of SID and ion soft-landing are described briefly in this review and more fully in the recommended reading list.

  13. Improved analytical sensitivity for uranium and plutonium in environmental samples: Cavity ion source thermal ionization mass spectrometry

    International Nuclear Information System (INIS)

    Ingeneri, Kristofer; Riciputi, L.

    2001-01-01

    Following successful field trials, environmental sampling has played a central role as a routine part of safeguards inspections since early 1996 to verify declared and to detect undeclared activity. The environmental sampling program has brought a new series of analytical challenges, and driven a need for advances in verification technology. Environmental swipe samples are often extremely low in concentration of analyte (ng level or lower), yet the need to analyze these samples accurately and precisely is vital, particularly for the detection of undeclared nuclear activities. Thermal ionization mass spectrometry (TIMS) is the standard method of determining isotope ratios of uranium and plutonium in the environmental sampling program. TIMS analysis typically employs 1-3 filaments to vaporize and ionize the sample, and the ions are mass separated and analyzed using magnetic sector instruments due to their high mass resolution and high ion transmission. However, the ionization efficiency (the ratio of material present to material actually detected) of uranium using a standard TIMS instrument is low (0.2%), even under the best conditions. Increasing ionization efficiency by even a small amount would have a dramatic impact for safeguards applications, allowing both improvements in analytical precision and a significant decrease in the amount of uranium and plutonium required for analysis, increasing the sensitivity of environmental sampling

  14. Quantitative Profiling of Major Neutral Lipid Classes in Human Meibum by Direct Infusion Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Chen, Jianzhong; Green, Kari B.; Nichols, Kelly K.

    2013-01-01

    Purpose. The purpose of this investigation was to better understand lipid composition in human meibum. Methods. Intact lipids in meibum samples were detected by direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis in positive detection mode using sodium iodide (NaI) as an additive. The peak intensities of all major types of lipid species, that is, wax esters (WEs), cholesteryl esters (CEs), and diesters (DEs) were corrected for peak overlapping and isotopic distribution; an additional ionization efficiency correction was performed for WEs and CEs, which was simplified by the observation that the corresponding ionization efficiency was primarily dependent on the specific lipid class and saturation degree of the lipids while independent of the carbon chain length. A set of WE and CE standards was spiked in meibum samples for ionization efficiency determination and absolute quantitation. Results. The absolute amount (μmol/mg) for each of 51 WEs and 31 CEs in meibum samples was determined. The summed masses for 51 WEs and 31 CEs accounted for 48 ± 4% and 40 ± 2%, respectively, of the total meibum lipids. The mass percentages of saturated and unsaturated species were determined to be 75 ± 2% and 25 ± 1% for CEs and 14 ± 1% and 86 ± 1% for WEs. The profiles for two types of DEs were also obtained, which include 42 α,ω Type II DEs, and 21 ω Type I-St DEs. Conclusions. Major neutral lipid classes in meibum samples were quantitatively profiled by ESI-MS analysis with NaI additive. PMID:23847307

  15. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  16. Multiple ionization and coupling effects in L-subshell ionization of heavy atoms by oxygen ions

    International Nuclear Information System (INIS)

    Pajek, M.; Banas, D.; Semaniak, J.; Braziewicz, J.; Majewska, U.; Chojnacki, S.; Czyzewski, T.; Fijal, I.; Jaskola, M.; Glombik, A.; Kretschmer, W.; Trautmann, D.; Lapicki, G.; Mukoyama, T.

    2003-01-01

    The multiple-ionization and coupling effects in L-shell ionization of atoms by heavy-ion impact have been studied by measuring the L x-ray production cross sections in solid targets of Au, Bi, Th, and U bombarded by oxygen ions in the energy range 6.4-70 MeV. The measured L x-ray spectra were analyzed using the recently proposed method accounting for the multiple-ionization effects, such as x-ray line shifting and broadening, which enables one to obtain the ionization probabilities for outer shells. The L-subshell ionization cross sections have been obtained from measured x-ray production cross sections for resolved Lα 1,2 , Lγ 1 , and Lγ 2,3 transitions using the L-shell fluorescence and Coster-Kronig yields being substantially modified by the multiple ionization in the M and N shells. In particular, the effect of closing of strong L 1 -L 3 M 4,5 Coster-Kronig transitions in multiple-ionized atoms was evidenced and discussed. The experimental ionization cross sections for the L 1 , L 2 , and L 3 subshells have been compared with the predictions of the semiclassical approximation (SCA) and the ECPSSR theory that includes the corrections for the binding-polarization effect within the perturbed stationary states approximation, the projecticle energy loss, and Coulomb deflection effects as well as the relativistic description of inner-shell electrons. These approaches were further modified to include the L-subshell couplings within the ''coupled-subshell model'' (CSM). Both approaches, when modified for the coupling effects, are in better agreement with the data. Particularly, the predictions of the SCA-CSM calculations reproduce the experimental L-subshell ionization cross section reasonably well. Remaining discrepancies are discussed qualitatively, in terms of further modifications of the L-shell decay rates caused by a change of electronic wave functions in multiple-ionized atoms

  17. Impact ionization dynamics in silicon by MV/cm THz fields

    DEFF Research Database (Denmark)

    Tarekegne, Abebe Tilahun; Hirori, Hideki; Tanaka, Koichiro

    2017-01-01

    We investigate the dynamics of the impact ionization (IMI) process in silicon in extremely high fields in the MV/cm range and at low initial carrier concentrations; conditions that are not accessible with conventional transport measurements. We use ultrafast measurements with high-intensity terah......We investigate the dynamics of the impact ionization (IMI) process in silicon in extremely high fields in the MV/cm range and at low initial carrier concentrations; conditions that are not accessible with conventional transport measurements. We use ultrafast measurements with high......-intensity terahertz pulses to show that IMI is significantly more efficient at lower than at higher initial carrier densities. Specifically, in the case of silicon with an intrinsic carrier concentration (∼1010 cm−3), the carrier multiplication process can generate more than 108 electrons from just a single free...

  18. Dual ionization chamber

    International Nuclear Information System (INIS)

    Mallory, J.; Turlej, Z.

    1981-01-01

    Dual ionization chambers are provided for use with an electronic smoke detector. The chambers are separated by electrically-conductive partition. A single radiation source extends through the partition into both chambers, ionizing the air in each. The mid-point current of the device may be balanced by adjusting the position of the source

  19. Resonance ionization scheme development for europium

    Energy Technology Data Exchange (ETDEWEB)

    Chrysalidis, K., E-mail: katerina.chrysalidis@cern.ch; Goodacre, T. Day; Fedosseev, V. N.; Marsh, B. A. [CERN (Switzerland); Naubereit, P. [Johannes Gutenberg-Universität, Institiut für Physik (Germany); Rothe, S.; Seiffert, C. [CERN (Switzerland); Kron, T.; Wendt, K. [Johannes Gutenberg-Universität, Institiut für Physik (Germany)

    2017-11-15

    Odd-parity autoionizing states of europium have been investigated by resonance ionization spectroscopy via two-step, two-resonance excitations. The aim of this work was to establish ionization schemes specifically suited for europium ion beam production using the ISOLDE Resonance Ionization Laser Ion Source (RILIS). 13 new RILIS-compatible ionization schemes are proposed. The scheme development was the first application of the Photo Ionization Spectroscopy Apparatus (PISA) which has recently been integrated into the RILIS setup.

  20. A Novel Highly Ionizing Particle Trigger using the ATLAS Transition Radiation Tracker

    CERN Document Server

    Penwell, J; The ATLAS collaboration

    2011-01-01

    The ATLAS Transition Radiation Tracker (TRT) is an important part of the experiment’s charged particle tracking system. It also provides the ability to discriminate electrons from pions efficiently using large signal amplitudes induced in the TRT straw tubes by transition radiation. This amplitude information can also be used to identify heavily ionizing particles, such as monopoles, or Q-balls, that traverse the straws. Because of their large ionization losses, these particles can range out before they reach the ATLAS calorimeter, making them difficult to identify by the experiment’s first level trigger. Much of this inefficiency could be regained by making use of a feature of the TRT electronics that allows fast access to information on whether large-amplitude signals were produced in regions of the detector. A modest upgrade to existing electronics could allow triggers sensitive to heavily ionizing particles at level-1 to be constructed by counting such large-amplitude signals in roads corresponding to...

  1. Plasma-assisted catalytic ionization using porous nickel plate

    International Nuclear Information System (INIS)

    Oohara, W.; Maeda, T.; Higuchi, T.

    2011-01-01

    Hydrogen atomic pair ions, i.e., H + and H - ions, are produced by plasma-assisted catalytic ionization using a porous nickel plate. Positive ions in a hydrogen plasma generated by dc arc discharge are irradiated to the porous plate, and pair ions are produced from the back of the irradiation plane. It becomes clear that the production quantity of pair ions mainly depends on the irradiation current of positive ions and the irradiation energy affects the production efficiency of H - ions.

  2. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    Science.gov (United States)

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  3. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV systems.

    Directory of Open Access Journals (Sweden)

    Bing Feng Ng

    Full Text Available The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  4. Biological effects of the ionizing radiation. Press breakfast; Effets biologiques des rayonnements ionisants. Petit dejeuner de presse

    Energy Technology Data Exchange (ETDEWEB)

    Flury-Herard, A [CEA, Direction des Sciences du Vivant, DSV, 75 - Paris (France); Boiteux, S; Dutrillaux, B [CEA/Fontenay-aux-Roses, Direction des Sciences du Vivant, DSV, 92 (France); Toledano, M [CEA Saclay, Direction des Sciences du Vivant, DSV, 91 - Gif-sur-Yvette (France)

    2000-06-01

    This document brings together the subjects discussed during the Press breakfast of 29 june 2000 on the biological effects of the ionizing radiations, with scientists of the CEA and the CNRS. It presents the research programs and provides inquiries on the NDA operating to introduce the NDA damages by ionizing radiations, the possible repairs and the repair efficiency facing the carcinogenesis. Those researches allow the scientists to define laws on radiation protection. (A.L.B.)

  5. K-shell ionization by antiprotons

    International Nuclear Information System (INIS)

    Mehler, G.; Mueller, B.; Greiner, W.; Soff, G.

    1987-01-01

    We present first calculations for the impact parameter dependence of K-shell ionization rates in anti pCu and in anti pAg collisions at various projectile energies. We show that the effect of the attractive Coulomb potential on the Rutherford trajectory and the anti-binding effect caused by the negative charge of the antiproton result in a considerable increase of the ionization probability. Total ionization cross-sections for proton and antiproton projectiles are compared with each other and with experimental ionization cross-sections for protons. (orig.)

  6. Observation of terahertz-radiation-induced ionization in a single nano island.

    Science.gov (United States)

    Seo, Minah; Kang, Ji-Hun; Kim, Hyo-Suk; Hyong Cho, Joon; Choi, Jaebin; Min Jhon, Young; Lee, Seok; Hun Kim, Jae; Lee, Taikjin; Park, Q-Han; Kim, Chulki

    2015-05-22

    Terahertz (THz) electromagnetic wave has been widely used as a spectroscopic probe to detect the collective vibrational mode in vast molecular systems and investigate dielectric properties of various materials. Recent technological advances in generating intense THz radiation and the emergence of THz plasmonics operating with nanoscale structures have opened up new pathways toward THz applications. Here, we present a new opportunity in engineering the state of matter at the atomic scale using THz wave and a metallic nanostructure. We show that a medium strength THz radiation of 22 kV/cm can induce ionization of ambient carbon atoms through interaction with a metallic nanostructure. The prepared structure, made of a nano slot antenna and a nano island located at the center, acts as a nanogap capacitor and enhances the local electric field by two orders of magnitudes thereby causing the ionization of ambient carbon atoms. Ionization and accumulation of carbon atoms are also observed through the change of the resonant condition of the nano slot antenna and the shift of the characteristic mode in the spectrum of the transmitted THz waves.

  7. Electron-Impact Ionization and Dissociative Ionization of Biomolecules

    Science.gov (United States)

    Huo, Winifred M.; Chaban, Galina M.; Dateo, Christopher E.

    2006-01-01

    It is well recognized that secondary electrons play an important role in radiation damage to humans. Particularly important is the damage of DNA by electrons, potentially leading to mutagenesis. Molecular-level study of electron interaction with DNA provides information on the damage pathways and dominant mechanisms. Our study of electron-impact ionization of DNA fragments uses the improved binary-encounter dipole model and covers DNA bases, sugar phosphate backbone, and nucleotides. An additivity principle is observed. For example, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3(sup prime)- and C5 (sup prime)-deoxyribose-phospate cross sections, differing by less than 5%. Investigation of tandem double lesion initiated by electron-impact dissociative ionization of guanine, followed by proton reaction with the cytosine in the Watson-Crick pair, is currently being studied to see if tandem double lesion can be initiated by electron impact. Up to now only OH-induced tandem double lesion has been studied.

  8. Enhancement of charge carrier recombination efficiency by utilizing a hole-blocking interlayer in white OLEDs

    International Nuclear Information System (INIS)

    Wang Qi; Yu Junsheng; Zhao Juan; Li Ming; Lu Zhiyun

    2013-01-01

    Charge carrier balance and recombination are essential factors relating to the performance of white organic light-emitting devices (WOLEDs). In this study, we discussed the contribution of charge carrier balance in the interlayer-based WOLEDs. By varying the interlayer thickness, the mechanisms of electroluminescent spectral alteration, energy transfer, and especially, charge carrier transport and balance in the devices were investigated and revealed in detail. With a 5 nm thick interlayer tailoring charge carrier transport and recombination, WOLEDs yielded a high power efficiency, current efficiency and external quantum efficiency of 36.1 lm W −1 , 47.1 cd A −1 and 18.3%, respectively. Additionally, single-carrier devices and quantitative analysis were subsequently carried out, demonstrating that the enhancement of carrier recombination efficiency corresponds to the optimization of device performance. (paper)

  9. Simultaneously Enhancing Light Emission and Suppressing Efficiency Droop in GaN Microwire-Based Ultraviolet Light-Emitting Diode by the Piezo-Phototronic Effect.

    Science.gov (United States)

    Wang, Xingfu; Peng, Wenbo; Yu, Ruomeng; Zou, Haiyang; Dai, Yejing; Zi, Yunlong; Wu, Changsheng; Li, Shuti; Wang, Zhong Lin

    2017-06-14

    Achievement of p-n homojuncted GaN enables the birth of III-nitride light emitters. Owing to the wurtzite-structure of GaN, piezoelectric polarization charges present at the interface can effectively control/tune the optoelectric behaviors of local charge-carriers (i.e., the piezo-phototronic effect). Here, we demonstrate the significantly enhanced light-output efficiency and suppressed efficiency droop in GaN microwire (MW)-based p-n junction ultraviolet light-emitting diode (UV LED) by the piezo-phototronic effect. By applying a -0.12% static compressive strain perpendicular to the p-n junction interface, the relative external quantum efficiency of the LED is enhanced by over 600%. Furthermore, efficiency droop is markedly reduced from 46.6% to 7.5% and corresponding droop onset current density shifts from 10 to 26.7 A cm -2 . Enhanced electrons confinement and improved holes injection efficiency by the piezo-phototronic effect are revealed and theoretically confirmed as the physical mechanisms. This study offers an unconventional path to develop high efficiency, strong brightness and high power III-nitride light sources.

  10. Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices.

    Science.gov (United States)

    Liu, Yueqin; Zhang, Genli; Sun, Huan; Sun, Xiangying; Jiang, Nisi; Rasool, Aamir; Lin, Zhanglin; Li, Chun

    2014-10-01

    In this study, thermo-tolerant devices consisting of heat shock genes from thermophiles were designed and introduced into Saccharomyces cerevisiae for improving its thermo-tolerance. Among ten engineered thermo-tolerant yeasts, T.te-TTE2469, T.te-GroS2 and T.te-IbpA displayed over 25% increased cell density and 1.5-4-fold cell viability compared with the control. Physiological characteristics of thermo-tolerant strains revealed that better cell wall integrity, higher trehalose content and enhanced metabolic energy were preserved by thermo-tolerant devices. Engineered thermo-tolerant strain was used to investigate the impact of thermo-tolerant device on pathway efficiency by introducing β-amyrin synthesis pathway, showed 28.1% increased β-amyrin titer, 28-35°C broadened growth temperature range and 72h shortened fermentation period. The results indicated that implanting heat shock proteins from thermophiles to S. cerevisiae would be an efficient approach to improve its thermo-tolerance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Response of GaAs charge storage devices to transient ionizing radiation

    Science.gov (United States)

    Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.

    Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.

  12. Electrostatics and quantum efficiency simulations of asymmetrically contacted carbon nanotube photodetector

    Directory of Open Access Journals (Sweden)

    Xiao Guo

    2017-10-01

    Full Text Available Electrostatic properties of asymmetrically contacted carbon nanotube barrier-free bipolar diode photodetector are studied by solving the Poisson equation self-consistently with equilibrium carrier statistics. For electric field parallel to tube’s axis, the maximum electric field occurs near contact but decays rapidly in a few nanometers, followed by a slowly increasing trend when it extends to the center of channel. By considering the field ionization and the diffusion effect of exciton, a model of estimation on quantum efficiency for the device is made. We find that the quantum efficiency increases with increasing exciton lifetime, decreasing diffusion constant and channel length. For devices with a channel length shorter than 50 nm, the contribution of field ionization to the quantum efficiency can reach 60%.

  13. The action of ionizing radiation on Bacillus subtilis spores in a dry and wet system

    International Nuclear Information System (INIS)

    Woizenko, E.

    1985-01-01

    The action of water in combination with ionizing radiation was examined using different strains of Bacillus subtilis spores. The parameter of the experiments was a modification of water content; maximal degree of desiccation was achieved by high vacuum. The Fricke-method for X-ray dosimetry was compared to the ionizing-chamber method. In the dry state spores of both wild and mutant strain appeared to be more sensitive than in the wet state. This contradicts to the opinion of dose enhancement by the indirect action of water. (orig.) [de

  14. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    Science.gov (United States)

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  15. Efficient and Security Enhanced Anonymous Authentication with Key Agreement Scheme in Wireless Sensor Networks.

    Science.gov (United States)

    Jung, Jaewook; Moon, Jongho; Lee, Donghoon; Won, Dongho

    2017-03-21

    At present, users can utilize an authenticated key agreement protocol in a Wireless Sensor Network (WSN) to securely obtain desired information, and numerous studies have investigated authentication techniques to construct efficient, robust WSNs. Chang et al. recently presented an authenticated key agreement mechanism for WSNs and claimed that their authentication mechanism can both prevent various types of attacks, as well as preserve security properties. However, we have discovered that Chang et al's method possesses some security weaknesses. First, their mechanism cannot guarantee protection against a password guessing attack, user impersonation attack or session key compromise. Second, the mechanism results in a high load on the gateway node because the gateway node should always maintain the verifier tables. Third, there is no session key verification process in the authentication phase. To this end, we describe how the previously-stated weaknesses occur and propose a security-enhanced version for WSNs. We present a detailed analysis of the security and performance of our authenticated key agreement mechanism, which not only enhances security compared to that of related schemes, but also takes efficiency into consideration.

  16. Multiphoton ionization of H+2 at critical internuclear separations: non-Hermitian Floquet analysis

    International Nuclear Information System (INIS)

    Likhatov, P V; Telnov, D A

    2009-01-01

    We present ab initio time-dependent non-Hermitian Floquet calculations of multiphoton ionization (MPI) rates of hydrogen molecular ions subject to an intense linearly polarized monochromatic laser field with a wavelength of 800 nm. The orientation of the molecular axis is parallel to the polarization vector of the laser field. The MPI rates are computed for a wide range of internuclear separations R with high resolution in R and reproduce resonance and near-threshold structures. We show that enhancement of ionization at critical internuclear separations is related to resonance series with higher electronic states. The effect of two-centre interference on the MPI signal is discussed.

  17. The non-easily ionized elements as spectrochemical buffers

    International Nuclear Information System (INIS)

    Tripkovic, M.; Radovanov, S.; Holclajtner-Antunovic, I.; Todorovic, M.

    1985-01-01

    A method is developed for determining trace elements (In, Ga, B, V, Mo, Mn, Pt, P, Be) in graphite with the aid of a low current d.c. arc. The method makes use of the enhancement of the radiation intensities of trace elements by non-easily ionized elements (NEIE). As a NEIE, this method uses Cd which is added up to a concentration of 150 mg/g sample. The absolute detection limits for all of the above mentioned elements are at the ng-level. (orig.) [de

  18. Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode

    OpenAIRE

    Wu, Jihuai; Li, Yan; Tang, Qunwei; Yue, Gentian; Lin, Jianming; Huang, Miaoliang; Meng, Lijian

    2014-01-01

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more ...

  19. Employing ionizing radiation to enhance food safety. A review

    International Nuclear Information System (INIS)

    Grolichova, M.; Dvorak, P.; Musilova, H.

    2004-01-01

    Food irradiation is employed to ensure food safety or food sterility, extend its shelf-life and reduce the losses due to sprouting, ripening or pests. In the Czech Republic mainly spices, mixed spices and dried vegetables are exposed to ionizing radiation. The leading suppliers of irradiated foodstuffs in Europe are Belgium, France and the Netherlands. In the USA, food irradiation is more common and there are also attempts to enforce irradiation not only for food safety, but also for technological purposes. Even though irradiation is a prospective technology, its application causes physico-chemical changes that may affect nutritional adequacy and sensory characteristics of irradiated food. In this paper, the chemical changes of basic food components (proteins, saccharides, fats) are reviewed. Some chemical changes lead to the formation of radiolytic products whose risks are still subject of scientific research. It is expected that the main use of gamma irradiation will be the treatment of diets for patients suffering from different disorders of the immune system, allergic patients or for the army and space flights. Irradiation may be a critical control point in the production of some types of foodstuffs

  20. Convection-type LH2 absorber R and D for muon ionization cooling

    International Nuclear Information System (INIS)

    Ishimoto, S.; Bandura, L.; Black, E.L.; Boghosian, M.; Cassel, K.W.; Cummings, M.A.; Darve, C.; Dyshkant, A.; Errede, D.; Geer, S.; Haney, M.; Hedin, D.; Johnson, R.; Johnstone, C.J.; Kaplan, D.M.; Kubik, D.; Kuno, Y.; Majewski, S.; Popovic, M.; Reep, M.; Summers, D.; Suzuki, S.; Yoshimura, K.

    2003-01-01

    A feasibility study on liquid hydrogen (LH 2 ) absorbers for muon ionization cooling is reported. In muon ionization cooling, an LH 2 absorber is required to have a high cooling power greater than 100 W to cool heat deposited by muons passing through. That heat in LH 2 can be removed at either external or internal heat exchangers, which are cooled by cold helium gas. As one of the internal heat exchanger types, a convection-type absorber is proposed. In the convection-type absorber, heat is taken away by the convection of LH 2 in the absorber. The heat exchanger efficiency for the convection-type absorber is calculated. A possible design is presented