WorldWideScience

Sample records for ionic liquid cations

  1. Protic Cationic Oligomeric Ionic Liquids of the Urethane Type

    DEFF Research Database (Denmark)

    Shevchenko, V. V.; Stryutsky, A. V.; Klymenko, N. S.

    2014-01-01

    Protic oligomeric cationic ionic liquids of the oligo(ether urethane) type are synthesized via the reaction of an isocyanate prepolymer based on oligo(oxy ethylene)glycol with M = 1000 with hexamethylene-diisocyanate followed by blocking of the terminal isocyanate groups with the use of amine...... derivatives of imidazole, pyridine, and 3-methylpyridine and neutralization of heterocycles with ethanesulfonic acid and p-toluenesulfonic acid. The structures and properties of the synthesized oligomeric ionic liquids substantially depend on the structures of the ionic groups. They are amorphous at room...... temperature, but ethanesulfonate imidazolium and pyridinium oligomeric ionic liquids form a low melting crystalline phase. The proton conductivities of the oligomeric ionic liquids are determined by the type of cation in the temperature range 80-120 degrees C under anhydrous conditions and vary within five...

  2. Cation symmetry effect on the volatility of ionic liquids.

    Science.gov (United States)

    Rocha, Marisa A A; Coutinho, João A P; Santos, Luís M N B F

    2012-09-06

    This work reports the first data for the vapor pressures at several temperatures of the ionic liquids, [C(N/2)C(N/2)im][NTf(2)] (N = 4, 6, 8, 10, 12) measured using a Knudsen effusion apparatus combined with a quartz crystal microbalance. The morphology and the thermodynamic parameters of vaporization derived from the vapor pressures, are compared with those for the 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide series, [C(N-1)C(1)im][NTf(2)] (N = 3 - 9, 11, and 13). It was found that the volatility of [C(N/2)C(N/2)im][NTf(2)] series is significantly higher than the asymmetric cation ILs with the same total number of carbons in the alkyl side chains, [C(N-1)C(1)im][NTf(2)]. The observed higher volatility is related with the lower enthalpy of vaporization. The symmetric cation, [C(N/2)C(N/2)im][NTf(2)], presents lower entropies of vaporization compared with the asymmetric [C(N-1)C(1)im][NTf(2)], indicating an increase of the absolute liquid entropy in the symmetric cation ILs, being a reflection of a change of the ion dynamics in the IL liquid phase. Moreover both the enthalpy and entropy of vaporization of the [C(N/2)C(N/2)im][NTf(2)] ILs, present a clear odd-even effect with higher enthalpies/entropies of vaporization for the odd number of carbons in each alkyl chain ([C(3)C(3)im][NTf(2)] and [C(5)C(5)im][NTf(2)]).

  3. Electrochemical functionalization of glassy carbon electrode by reduction of diazonium cations in protic ionic liquid

    International Nuclear Information System (INIS)

    Shul, Galyna; Ruiz, Carlos Alberto Castro; Rochefort, Dominic; Brooksby, Paula A.; Bélanger, Daniel

    2013-01-01

    Protic ionic liquid based on 2-methoxypyridine and trifluoroacetic acid was used as electrolyte for the functionalization of a glassy carbon electrode surface by electrochemical reduction of in situ generated 4-chlorobenzene diazonium and 4-nitrobenzene diazonium cations. The diazonium cations were synthesized in an electrochemical cell by reaction of the corresponding amines with NaNO 2 dissolved in protic ionic liquid. The resulting electrografted organic layers exhibit similar properties to those layers obtained by the derivatization from isolated diazonium salts dissolved in protic ionic liquid. Functionalized glassy carbon electrode surfaces were characterized by cyclic voltammetry, Fourier transform infrared and X-ray photoelectron spectroscopies. Atomic force microscopy thickness measurements revealed that, in our experimental conditions, the use of protic ionic liquid led to the formation of film with a thickness of about 1.5 nm. It is also demonstrated that the nitrobenzene chemisorbed on glassy carbon electrode or dissolved in protic ionic liquid undergoes electrochemical conversion to hydroxyaminobenzene

  4. Understanding the impact of the central atom on the ionic liquid behavior: Phosphonium vs ammonium cations

    International Nuclear Information System (INIS)

    Carvalho, Pedro J.; Ventura, Sónia P. M.; Batista, Marta L. S.; Schröder, Bernd; Coutinho, João A. P.; Gonçalves, Fernando; Esperança, José; Mutelet, Fabrice

    2014-01-01

    The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with ammonium-based ionic liquids presenting higher densities, viscosities, melting temperatures, and enthalpies. Activity coefficients at infinite dilution show the ammonium-based ionic liquids to present slightly higher infinite dilution activity coefficients for non-polar solvents, becoming slightly lower for polar solvents, suggesting that the ammonium-based ionic liquids present somewhat higher polarities. In good agreement these compounds present lower toxicities than the phosphonium congeners. To explain this behavior quantum chemical gas phase DFT calculations were performed on isolated ion pairs at the BP-TZVP level of theory. Electronic density results were used to derive electrostatic potentials of the identified minimum conformers. Electrostatic potential-derived CHelpG and Natural Population Analysis charges show the P atom of the tetraalkylphosphonium-based ionic liquids cation to be more positively charged than the N atom in the tetraalkylammonium-based analogous IL cation, and a noticeable charge delocalization occurring in the tetraalkylammonium cation, when compared with the respective phosphonium congener. It is argued that this charge delocalization is responsible for the enhanced polarity observed on the ammonium based ionic liquids explaining the changes in the thermophysical properties observed

  5. Does the cation really matter? The effect of modifying an ionic liquid cation on an SN2 process.

    Science.gov (United States)

    Tanner, Eden E L; Yau, Hon Man; Hawker, Rebecca R; Croft, Anna K; Harper, Jason B

    2013-09-28

    The rate of reaction of a Menschutkin process in a range of ionic liquids with different cations was investigated, with temperature-dependent kinetic data giving access to activation parameters for the process in each solvent. These data, along with molecular dynamics simulations, demonstrate the importance of accessibility of the charged centre on the cation and that the key interactions are of a generalised electrostatic nature.

  6. Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt

    Science.gov (United States)

    Chen, Fangfang; Kerr, Robert; Forsyth, Maria

    2018-05-01

    Ionic liquid electrolytes with high alkali salt concentrations have displayed some excellent electrochemical properties, thus opening up the field for further improvements to liquid electrolytes for lithium or sodium batteries. Fundamental computational investigations into these high concentration systems are required in order to gain a better understanding of these systems, yet they remain lacking. Small phosphonium-based ionic liquids with high concentrations of alkali metal ions have recently shown many promising results in experimental studies, thereby prompting us to conduct further theoretical exploration of these materials. Here, we conducted a molecular dynamics simulation on four small phosphonium-based ionic liquids with 50 mol. % LiFSI salt, focusing on the effect of cation structure on local structuring and ion diffusional and rotational dynamics—which are closely related to the electrochemical properties of these materials.

  7. Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions.

    Science.gov (United States)

    Song, Yingying; Cheng, Chen; Jing, Huanwang

    2014-09-26

    Aza-crown ether complex cation ionic liquids (aCECILs) were devised, fabricated, and characterized by using NMR spectroscopy, MS, thermogravimetric differential thermal analysis (TG-DTA), elemental analysis and physical properties. These new and room-temperature ILs were utilized as catalysts in various organic reactions, such as the cycloaddition reaction of CO2 to epoxides, esterification of acetic acid and alcohols, the condensation reaction of aniline and propylene carbonate, and Friedel-Crafts alkylation of indole with aldehydes were investigated carefully. In these reactions, the ionic liquid exhibited cooperative catalytic activity between the anion and cation. In addition, the aza-[18-C-6HK][HSO4]2 was the best acidic catalyst in the reactions of esterification and Friedel-Crafts alkylation under mild reaction conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    International Nuclear Information System (INIS)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-01-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids’ nanostructure. It is observed that as the cationic alkyl

  9. Hydrophobic ionic liquids based on the 1-butyl-3-methylimidazolium cation for lithium/seawater batteries

    Science.gov (United States)

    Zhang, Yancheng; Urquidi-Macdonald, Mirna

    Two hydrophobic ionic liquids (room temperature molten salts) based on 1-butyl-3-methylimidazolium cation (BMI +), BMI +PF 6- and BMI +Tf 2N -, were used in developing a highly efficient lithium anode system for lithium/seawater batteries. The lithium anode system was composed of lithium metal/ionic liquid/Celgard membrane. Both BMI +PF 6-and BMI +Tf 2N - maintained high apparent anodic efficiency (up to 100%) under potentiostatic polarization (at +0.5 V versus open-circuit potential (OCP)) in a 3% NaCl solution. Eventually, traces of water contaminated the ionic liquid and a bilayer film (LiH and LiOH) on the lithium surface was formed, decreasing the rate of lithium anodic reaction and hence the discharge current density. BMI +Tf 2N - prevented traces of water from reaching the lithium metal surface longer than BMI +PF 6- (60 h versus 7 h). However, BMI +PF 6- was better than BMI +Tf 2N - in keeping a constant current density (˜0.2 mA cm -2) before the traces of water contaminated the lithium surface due to the non-reactivity of BMI +PF 6- with the lithium metal that kept the bare lithium surface. During the discharge process, BMI +PF 6- and BMI +Tf 2N - acted as ion transport media of Li +, Cl -, OH - and H 2O, but did not react with them because of the excellent chemical stability, high conductivity, and high hydrophobicity of these two ionic liquids. Both BMI +PF 6- and BMI +Tf 2N - gels were tentative approaches used to delay the traces of water coming in contact with the lithium surface.

  10. The effect of the cation alkyl chain length on density and diffusion in dialkylpyrrolidinium bis(mandelato)borate ionic liquids.

    Science.gov (United States)

    Filippov, Andrei; Taher, Mamoun; Shah, Faiz Ullah; Glavatskih, Sergei; Antzutkin, Oleg N

    2014-12-28

    The physicochemical properties of ionic liquids are strongly affected by the selective combination of the cations and anions comprising the ionic liquid. In particular, the length of the alkyl chains of ions has a clear influence on the ionic liquid's performance. In this paper, we study the self-diffusion of ions in a series of halogen-free boron-based ionic liquids (hf-BILs) containing bis(mandelato)borate anions and dialkylpyrrolidinium cations with long alkyl chains CnH2n+1 with n from 4 to 14 within a temperature range of 293-373 K. It was found that the hf-BILs with n = 4-7 have very similar diffusion coefficients, while hf-BILs with n = 10-14 exhibit two liquid sub-phases in almost the entire temperature range studied (293-353 K). Both liquid sub-phases differ in their diffusion coefficients, while values of the slower diffusion coefficients are close to those of hf-BILs with shorter alkyl chains. To explain the particular dependence of diffusion on the alkyl chain length, we examined the densities of the hf-BILs studied here. It was shown that the dependence of the density on the number of CH2 groups in long alkyl chains of cations can be accurately described using a "mosaic type" model, where regions of long alkyl chains of cations (named 'aliphatic' regions) and the residual chemical moieties in both cations and anions (named 'ionic' regions) give additive contributions. Changes in density due to an increase in temperature and the number of CH2 groups in the long alkyl chains of cations are determined predominantly by changes in the free volume of the 'ionic' regions, while 'aliphatic' regions are already highly compressed by van der Waals forces, which results in only infinitesimal changes in their free volumes with temperature.

  11. Relation between heat of vaporization, ion transport, molar volume, and cation-anion binding energy for ionic liquids.

    Science.gov (United States)

    Borodin, Oleg

    2009-09-10

    A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.

  12. Pysico-chemical properties of hydrophobic ionic liquids containing1-octylpyridinium, 1-octyl-2-methylpyridinium or1-octyl-4-methylpyridinium cations

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Salminen, Justin; Lee, Jong-Min; Prausnitz, John M.

    2006-09-15

    This paper reports synthesis of some ionic liquids based on cations 1-octylpyridinium, 1-octyl-2-methylpyridinium or 1-octyl-4-methylpyridinium and anions dicyanamide [N(CN)2]-, bis(trifluoromethylsulfonyl)imide [Tf2N]-, bis(pentafluoroethylsulfonyl)imide [BETI]-, trifluoromethyl sulfonate [TfO]-, nonafluorobutyl sulfonate [NfO]-, tetrafluoroborate [BF4]-, trifluorophenylborate [BF3Ph]- or hexafluoroarsenate [AsF6]-. Melting points, decomposition temperatures, densities, mutual solubilities with water, and viscosities have been measured. Unlike similar ionic liquids containing imidazolium cations, pyridinium ionic liquids studied here are nearly immiscible in water. Viscosities are similar and water content is slightly lower than those for ionic liquids containing imidazolium cations.

  13. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors.

    Science.gov (United States)

    Dou, Qingyun; Liu, Lingyang; Yang, Bingjun; Lang, Junwei; Yan, Xingbin

    2017-12-19

    Supercapacitors based on activated carbon electrodes and ionic liquids as electrolytes are capable of storing charge through the electrosorption of ions on porous carbons and represent important energy storage devices with high power delivery/uptake. Various computational and instrumental methods have been developed to understand the ion storage behavior, however, techniques that can probe various cations and anions of ionic liquids separately remain lacking. Here, we report an approach to monitoring cations and anions independently by using silica nanoparticle-grafted ionic liquids, in which ions attaching to silica nanoparticle cannot access activated carbon pores upon charging, whereas free counter-ions can. Aided by this strategy, conventional electrochemical characterizations allow the direct measurement of the respective capacitance contributions and acting potential windows of different ions. Moreover, coupled with electrochemical quartz crystal microbalance, this method can provide unprecedented insight into the underlying electrochemistry.

  14. A Molecular Dynamics Study on Selective Cation Depletion from an Ionic Liquid Droplet under an Electric Field

    Science.gov (United States)

    Yang, Yudong; Ahn, Myungmo; Im, Dojin; Oh, Jungmin; Kang, Inseok

    2017-11-01

    General electrohydrodynamic behavior of ionic liquid droplets under an electric field is investigated using MD simulations. Especially, a unique behavior of ion depletion of an ionic liquid droplet under a uniform electric field is studied. Shape deformation due to electric stress and ion distributions inside the droplet are calculated to understand the ionic motion of imidazolium-based ionic liquid droplets with 200 ion pairs of 2 kinds of ionic liquids: EMIM-NTf2 and EMIM-ES. The intermolecular force between cations and anions can be significantly different due to the nature of the structure and charge distribution of the ions. Together with an analytical interpretation of the conducting droplet in an electric field, the MD simulation successfully explains the mechanism of selective ion depletion of an ionic liquid droplet in an electric field. The selective ion depletion phenomenon has been adopted to explain the experimentally observed retreating motion of a droplet in a uniform electric field. The effect of anions on the cation depletion phenomenon can be accounted for from a direct approach to the intermolecular interaction. This research was supproted by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. 2017R1D1A1B05035211).

  15. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Vasile Ostafe

    2007-08-01

    Full Text Available Within the recently launched the spectral-structure activity relationship (S-SARanalysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, alongwith the associated algebraic correlation factor in terms of the measured and predictedactivity norms. The reliability of the present scheme is tested by assessing the Hanschfactors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicityendpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium,choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, whileconfirming the cationic dominant influence when only lipophylicity is considered,demonstrate that the anionic effect dominates all other more specific interactions. It wasalso proved that the S-SAR vectorial model predicts considerably higher activity for theionic liquids than for its anionic and cationic subsystems separately, in all consideredcases. Moreover, through applying the least norm-correlation path principle, the completetoxicological hierarchies are presented, unfolding the ecological rules of combined cationicand anionic influences in ionic liquid toxicity.

  16. Application of Chromatographic and Electrophoretic Methods for the Analysis of Imidazolium and Pyridinium Cations as Used in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    P. Stepnowski

    2006-11-01

    Full Text Available Interest in ionic liquids for their potential in different chemical processes isconstantly increasing, as they are claimed to be environmentally benign – excellent, non-volatile solvents for a wide range of applications. The wide applicability of thesecompounds also demands reliable, relatively simple and reproducible analytical techniques.These methods must be applicable not only to different technical or natural matrices but alsoto the very low concentrations that are likely to be present in biological and environmentalsystems. In this review, therefore, methods for separating and analysing imidazolium- andpyridinium-type ionic liquids in aqueous matrices using high performance liquidchromatography (HPLC and capillary electrophoresis (CE are examined. The techniquesfor identifying ionic liquids are meant primarily to track the concentrations of ionic liquidsas residues not only in products and wastes but also in biological or environmental samples.The application of hyphenated techniques in this field is intended to selectively separate thequaternary entity from other cationic and non-ionic species present in the matrix, and toenable its fine-scale quantification. Nowadays, methods developed for cation analysis arebased mostly on reversed-phase high-performance liquid chromatography, ionchromatography, ion-pair chromatography and capillary electrophoresis, where variousbuffered mobile phases are used.

  17. Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation

    International Nuclear Information System (INIS)

    Meenatchi, Boominathan; Renuga, Velayutham; Manikandan, Ayyar

    2016-01-01

    Green synthesis of selenium (chalcogen) nanoparticles (SeNPs) has been successfully attained by simple wet chemical method that involves the reaction of six different protic ionic liquids with imidazolium cations and sodium hydrogen selenide (NaHSe) in the presence of poly ethylene glycol-600 (PEG-600) as an additional stabilizer. The obtained SeNPs were characterized using UV spectral (UV), Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM) with energy dispersive X-ray (EDX) and high resolution transmission electron microscope (TEM) analysis. The results illustrate that the synthesized SeNPs are spherical in shape with size ranging 19-24 nm and possess good optical property with greater band gap energy, high thermal stability up to 330 .deg. C, low melting point of 218-220 .deg. C comparing to precursor selenium. Using the synthesized SeNPs, two chalcogenides such as ZnSe and CdSe semiconductor nanoparticles were synthesized and characterized using XRD, SEM with EDX and TEM analysis. The fabricated CdSe and ZnSe nanoparticles appeared like pebble and cluster structure with particle size of 29.97 nm and 22.73 nm respectively.

  18. Connecting Structural and Transport Properties of Ionic Liquids with Cationic Oligoether Chains

    Energy Technology Data Exchange (ETDEWEB)

    Lall-Ramnarine, Sharon I.; Zhao, Man; Rodriguez, Chanele; Fernandez, Rahonel; Zmich, Nicole; Fernandez, Eddie D.; Dhiman, Surajdevprakash B.; Castner, Edward W.; Wishart, James F.

    2017-01-01

    X-ray diffraction and molecular dynamics simulations were used to probe the structures of two families of ionic liquids containing oligoether tails on the cations. Imidazolium and pyrrolidinium bis(trifluoromethylsulfonyl)amide ILs with side chains ranging from 4 to 10 atoms in length, including both linear alkyl and oligo-ethylene oxide tails, were prepared. Their physical properties, such as viscosity, conductivity and thermal profile, were measured and compared for systematic trends. Consistent with earlier literature, a single ether substituent substantially decreases the viscosity of pyrrolidinium and imidazolium ILs compared to their alkyl congeners. Remarkably, as the number of ether units in the pyrrolidinium ILs increases there is hardly any increase in the viscosity, in contrast to alkylpyrrolidinium ILs where the viscosity increases steadily with chain length. Viscosities of imidazolium ether ILs increase with chain length but always remain well below their alkyl congeners. To complement the experimentally determined properties, molecular dynamics simulations were run on the two ILs with the longest ether chains. The results point to specific aspects that could be useful for researchers designing ILs for specific applications.

  19. Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation

    Energy Technology Data Exchange (ETDEWEB)

    Meenatchi, Boominathan [Cauvery College for Women, Tamilnadu (India); Renuga, Velayutham [National College, Tamilnadu (India); Manikandan, Ayyar [Bharath Institute of Higher Education and Research, Bharath University, Tamilnadu (India)

    2016-03-15

    Green synthesis of selenium (chalcogen) nanoparticles (SeNPs) has been successfully attained by simple wet chemical method that involves the reaction of six different protic ionic liquids with imidazolium cations and sodium hydrogen selenide (NaHSe) in the presence of poly ethylene glycol-600 (PEG-600) as an additional stabilizer. The obtained SeNPs were characterized using UV spectral (UV), Fourier transform infra-red (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA), scanning electron microscope (SEM) with energy dispersive X-ray (EDX) and high resolution transmission electron microscope (TEM) analysis. The results illustrate that the synthesized SeNPs are spherical in shape with size ranging 19-24 nm and possess good optical property with greater band gap energy, high thermal stability up to 330 .deg. C, low melting point of 218-220 .deg. C comparing to precursor selenium. Using the synthesized SeNPs, two chalcogenides such as ZnSe and CdSe semiconductor nanoparticles were synthesized and characterized using XRD, SEM with EDX and TEM analysis. The fabricated CdSe and ZnSe nanoparticles appeared like pebble and cluster structure with particle size of 29.97 nm and 22.73 nm respectively.

  20. Ionic Liquids in Tribology

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2009-06-01

    Full Text Available Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  1. Ionic liquids in tribology.

    Science.gov (United States)

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  2. Substrate-dependent inhibition of human MATE1 by cationic ionic liquids.

    Science.gov (United States)

    Martínez-Guerrero, Lucy J; Wright, Stephen H

    2013-09-01

    The multidrug and toxin extruders 1- and 2-K (MATE1 and MATE2-K) are expressed in the luminal membrane of renal proximal tubule cells and provide the active step in the secretion of molecules that carry a net positive charge at physiologic pH, so-called organic cations. The present study tested whether structurally distinct MATE substrates can display different quantitative profiles of inhibition when interacting with structurally distinct ligands. The tested ligands were three structurally similar cationic ionic liquids (ILs, salts in the liquid state: N-butylpyridinium, NBuPy; 1-methyl-3-butylimidazolium, Bmim; and N-butyl-N-methylpyrrolidinium, BmPy). Uptake was measured using Chinese hamster ovary cells that stably expressed MATE1 or MATE2-K. By trans-stimulation, all three ILs were transported by both MATE transporters. The three ILs also inhibited uptake of three structurally distinct MATE substrates: 1-methyl-4-phenylpyridinium (MPP), triethylmethylammonium (TEMA), and N,N,N-trimethyl-2-[methyl(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)amino]ethanaminium (NBD-MTMA). MATE1 displayed a higher affinity for the pyridinium-based NBuPy (IC50 values, 2-4 µM) than for either the pyrrolidinium- (BmPy; 20-70 µM) or imidazolium-based ILs (Bmim; 15-60 µM). Inhibition of MPP, TEMA, and NBD-MTMA transport by NBuPy was competitive, with comparable Ki values against all substrates. Bmim also competitively blocked the three substrates but with Ki values that differed significantly (20 µM against MPP and 30 µM against NBD-MTMA versus 60 µM against TEMA). Together, these data indicate that renal secretion of ILs by the human kidney involves MATE transporters and suggest that the mechanism of transport inhibition is ligand-dependent, supporting the hypothesis that the binding of substrates to MATE transporters involves interaction with a binding surface with multiple binding sites.

  3. Solvation of ionic liquids based on N-methyl-N-alkyl morpholinium cations in dimethylsulfoxide – volumetric and compressibility studies

    International Nuclear Information System (INIS)

    Marcinkowski, Łukasz; Kloskowski, Adam; Czub, Jacek; Namieśnik, Jacek; Warmińska, Dorota

    2015-01-01

    Highlights: • In DMSO both volumes and compressibilities of ionic liquids were studied. • Molecular dynamics simulations were performed for all studied ionic liquids. • V Φ of DMSO solutions of [Mor 1,R ][TFSI] decrease with increasing IL concentration. • Results indicate that [Mor 1,R ][TFSI] are structure breakers in dimethylsulfoxide. • Obtained results are the consequence of the cation size of the ionic liquid. - Abstract: The density and sound velocity of the solutions of ionic liquids based on N-alkyl-N-methyl-morpholinium cations, N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, N-butyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, N-methyl-N-octyl-morpholinium bis(trifluoromethanesulfonyl)imide and N-decyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide in dimethylsulfoxide were measured at T = (298.15 to 318.15) K and at atmospheric pressure. The apparent molar volume and apparent molar compressibility values were evaluated from density and sound velocity values and fitted to the Masson equation from which the partial molar volume and partial molar isentropic compressibility of the ILs at infinite dilution were also calculated at working temperatures. By using the density values, the limiting apparent molar expansibilities were estimated. The effect of the alkyl chain length of the ILs and experimental temperature on these thermodynamic properties is discussed. In addition, molecular dynamics simulations were used to interpret the measured properties in terms of interactions of ILs with solvent molecules. Both, volumetric measurements results and molecular dynamics simulations for ionic liquids in dimethylsulfoxide were compared and discussed with results obtained for the same IL in acetonitrile

  4. Ionic liquids as electrolytes

    International Nuclear Information System (INIS)

    Galinski, Maciej; Lewandowski, Andrzej; Stepniak, Izabela

    2006-01-01

    Salts having a low melting point are liquid at room temperature, or even below, and form a new class of liquids usually called room temperature ionic liquids (RTIL). Information about RTILs can be found in the literature with such key words as: room temperature molten salt, low-temperature molten salt, ambient-temperature molten salt, liquid organic salt or simply ionic liquid. Their physicochemical properties are the same as high temperature ionic liquids, but the practical aspects of their maintenance or handling are different enough to merit a distinction. The class of ionic liquids, based on tetraalkylammonium cation and chloroaluminate anion, has been extensively studied since late 1970s of the XX century, following the works of Osteryoung. Systematic research on the application of chloroaluminate ionic liquids as solvents was performed in 1980s. However, ionic liquids based on aluminium halides are moisture sensitive. During the last decade an increasing number of new ionic liquids have been prepared and used as solvents. The general aim of this paper was to review the physical and chemical properties of RTILs from the point of view of their possible application as electrolytes in electrochemical processes and devices. The following points are discussed: melting and freezing, conductivity, viscosity, temperature dependence of conductivity, transport and transference numbers, electrochemical stability, possible application in aluminium electroplating, lithium batteries and in electrochemical capacitors

  5. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  6. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  7. Ion Dynamics in a Mixed-Cation Alkoxy-Ammonium Ionic Liquid Electrolyte for Sodium Device Applications.

    Science.gov (United States)

    Pope, Cameron R; Kar, Mega; MacFarlane, Douglas R; Armand, Michel; Forsyth, Maria; O'Dell, Luke A

    2016-10-18

    The ion dynamics in a novel sodium-containing room-temperature ionic liquid (IL) consisting of an ether-functionalised quaternary ammonium cation and bis(trifluoromethylsulfonyl)amide [NTf 2 ] anion with various concentrations of Na[NTf 2 ] have been characterised using differential scanning calorimetry, impedance spectroscopy, diffusometry and NMR relaxation measurements. The IL studied has been specifically designed to dissolve a relatively large concentration of Na[NTf 2 ] salt (over 2 mol kg -1 ) as this has been shown to improve ion transport and conductivity. Consistent with other studies, the measured ionic conductivity and diffusion coefficients show that the overall ionic mobility decreases with decreasing temperature and increasing salt content. NMR relaxation measurements provide evidence for correlated dynamics between the ether-functionalised ammonium and Na cations, possibly with the latter species acting as cross-links between multiple ammonium cations. Finally, preliminary cyclic voltammetry experiments show that this IL can undergo stable electrochemical cycling and could therefore be potentially useful as an electrolyte in a Na-based device. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Vibrational signatures of cation-anion hydrogen bonding in ionic liquids: a periodic density functional theory and molecular dynamics study.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2015-02-05

    Hydrogen bonding in alkylammonium based protic ionic liquids was studied using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. Normal-mode analysis within the harmonic approximation and power spectra of velocity autocorrelation functions were used as tools to obtain the vibrational spectra in both the gas phase and the crystalline phases of these protic ionic liquids. The hydrogen bond vibrational modes were identified in the 150-240 cm(-1) region of the far-infrared (far-IR) spectra. A blue shift in the far-IR mode was observed with an increasing number of hydrogen-bonding sites on the cation; the exact peak position is modulated by the cation-anion hydrogen bond strength. Sub-100 cm(-1) bands in the far-IR spectrum are assigned to the rattling motion of the anions. Calculated NMR chemical shifts of the acidic protons in the crystalline phase of these salts also exhibit the signature of cation-anion hydrogen bonding.

  9. Vibrational Spectroscopy of Ionic Liquids.

    Science.gov (United States)

    Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C

    2017-05-24

    Vibrational spectroscopy has continued use as a powerful tool to characterize ionic liquids since the literature on room temperature molten salts experienced the rapid increase in number of publications in the 1990's. In the past years, infrared (IR) and Raman spectroscopies have provided insights on ionic interactions and the resulting liquid structure in ionic liquids. A large body of information is now available concerning vibrational spectra of ionic liquids made of many different combinations of anions and cations, but reviews on this literature are scarce. This review is an attempt at filling this gap. Some basic care needed while recording IR or Raman spectra of ionic liquids is explained. We have reviewed the conceptual basis of theoretical frameworks which have been used to interpret vibrational spectra of ionic liquids, helping the reader to distinguish the scope of application of different methods of calculation. Vibrational frequencies observed in IR and Raman spectra of ionic liquids based on different anions and cations are discussed and eventual disagreements between different sources are critically reviewed. The aim is that the reader can use this information while assigning vibrational spectra of an ionic liquid containing another particular combination of anions and cations. Different applications of IR and Raman spectroscopies are given for both pure ionic liquids and solutions. Further issues addressed in this review are the intermolecular vibrations that are more directly probed by the low-frequency range of IR and Raman spectra and the applications of vibrational spectroscopy in studying phase transitions of ionic liquids.

  10. Evaporation Study of an Ionic Liquid with a Double-Charged Cation.

    Science.gov (United States)

    Chilingarov, Norbert S; Zhirov, Maksim S; Shmykova, Anna M; Martynova, Ekaterina A; Glukhov, Lev M; Chernikova, Elena A; Kustov, Leonid M; Markov, Vitaliy Yu; Ioutsi, Vitaliy A; Sidorov, Lev N

    2018-05-07

    The evaporation of a dicationic ionic liquid, 1,3-bis(3-methylimidazolium-1-yl)propane bis(trifluoromethanesulfonyl)amide ([C 3 (MIm) 2 2+ ][Tf 2 N - ] 2 ), was studied by Knudsen effusion mass spectrometry. Its evaporation is accompanied by a partial thermal decomposition producing monocationic ionic liquids, 1,3-dimethylimidazolium and 1-(2-propenyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)amides, as volatile products. This decomposition does not affect the vaporization characteristics of [C 3 (MIm) 2 2+ ][Tf 2 N - ] 2 , which were established to be as follows. The vaporization enthalpy (550 K) is equal to (155.5 ± 3.2) kJ·mol -1 ; the saturated vapor pressure is described by the equation ln( p/Pa) = -(18699 ± 381)/( T/K) + (30.21 ± 0.82) in the range of 508-583 K. 1,3-Bis(3-methylimidazolium-1-yl)propane bis(trifluoromethanesulfonyl)amide is the first dicationic ionic liquid, the vaporization characteristics of which were determined with an acceptable accuracy.

  11. Lewis Acidic Ionic Liquids.

    Science.gov (United States)

    Brown, Lucy C; Hogg, James M; Swadźba-Kwaśny, Małgorzata

    2017-08-21

    Until very recently, the term Lewis acidic ionic liquids (ILs) was nearly synonymous with halometallate ILs, with a strong focus on chloroaluminate(III) systems. The first part of this review covers the historical context in which these were developed, speciation of a range of halometallate ionic liquids, attempts to quantify their Lewis acidity, and selected recent applications: in industrial alkylation processes, in supported systems (SILPs/SCILLs) and in inorganic synthesis. In the last decade, interesting alternatives to halometallate ILs have emerged, which can be divided into two sub-sections: (1) liquid coordination complexes (LCCs), still based on halometallate species, but less expensive and more diverse than halometallate ionic liquids, and (2) ILs with main-group Lewis acidic cations. The two following sections cover these new liquid Lewis acids, also highlighting speciation studies, Lewis acidity measurements, and applications.

  12. An effect of cation functionalization on thermophysical properties of ionic liquids and solubility of glucose in them – Measurements and PC-SAFT calculations

    International Nuclear Information System (INIS)

    Paduszyński, Kamil; Okuniewski, Marcin; Domańska, Urszula

    2016-01-01

    Highlights: • Density, viscosity and DSC thermograms for four ionic liquids were measured. • New data on solubility of glucose in ionic liquids were presented. • An impact of cation functionalization on solubility was established. • Apparent thermodynamic functions of dissolution were determined. • Modeling of the studied systems with PC-SAFT equation of state was performed. - Abstract: This contribution is concerned with thermodynamic investigation on thermophysical properties of four ionic liquids based on dicyanamide anion. The ionic liquids under study differ in substituent attached to imidazolium cation, so that an impact of terminal functional groups on the considered properties is established. Discussion is presented in terms of molecular packing and interactions (polarity, hydrogen bonding) between molecules forming system. Differential scanning calorimetry thermograms, density and viscosity were the investigated properties of pure ionic liquids. Moreover, new data sets on solubility of glucose in ionic liquids are presented. Analysis of the temperature-dependent solubility data by means of modified Van’t Hoff equation is given and apparent thermodynamic functions of dissolution are calculated. Thermodynamic modeling of the (solid + liquid) equilibrium phase diagrams was carried out by means of perturbed-chain statistical associating fluid theory (PC-SAFT). It is evidenced that consistent and accurate thermodynamic description of complex cross-associating {ionic liquid + sugar} systems can be achieved by using simple (but physically grounded) molecular schemes, assuming that two adjustable binary corrections are introduced.

  13. Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation.

    Science.gov (United States)

    Mena, Ismael F; Cotillas, Salvador; Díaz, Elena; Sáez, Cristina; Mohedano, Ángel F; Rodrigo, Manuel A

    2017-12-06

    In this work, sono- and photoelectrolysis of synthetic wastewaters polluted with the ionic liquids 1-Butyl-3-methylimidazolium acetate (BmimAc) and chloride (BmimCl) were investigated with diamond anodes. The results were compared to those attained by enhancing bare electrolysis with irradiation by UV light or with the application of high-frequency ultrasound (US). Despite its complex heterocyclic structure, the Bmim + cation was successfully depleted with the three technologies that were tested and was mainly transformed into four different organic intermediates, an inorganic nitrogen species and carbon dioxide. Regardless of the technology that was evaluated, removal of the heterocyclic ring is much less efficient (and much slower) than oxidation of the counter ion. In turn, the counter ion influences the rate of removal of the ionic liquid cation. Thus, the electrolysis and photoelectrolysis of BmimAc are much less efficient than sonoelectrolysis, but their differences become much less important in the case of BmimCl. In this later case, the most efficient technology is photoelectrolysis. This result is directly related to the generation of free radicals in the solution by irradiation of the electrochemical system with UV light, which contributes significantly to the removal of Bmim + . Copyright © 2017 Elsevier B.V. All rights reserved.

  14. In situ SAXS study on cationic and non-ionic surfactant liquid crystals using synchrotron radiation.

    Science.gov (United States)

    Fritscher, C; Hüsing, N; Bernstorff, S; Brandhuber, D; Koch, T; Seidler, S; Lichtenegger, H C

    2005-11-01

    In situ synchrotron small-angle X-ray scattering was used to investigate various surfactant/water systems with hexagonal and lamellar structures regarding their structural behaviour upon heating and cooling. Measurements of the non-ionic surfactant Triton X-45 (polyethylene glycol 4-tert-octylphenyl ether) at different surfactant concentrations show an alignment of the lamellar liquid-crystalline structure close to the wall of the glass capillaries and also a decrease in d-spacing following subsequent heating/cooling cycles. Additionally, samples were subjected to a weak magnetic field (0.3-0.7 T) during heating and cooling, but no influence of the magnetic field was observed.

  15. POSS Ionic Liquid.

    Science.gov (United States)

    Tanaka, Kazuo; Ishiguro, Fumiyasu; Chujo, Yoshiki

    2010-12-22

    We report the synthesis of a stable room-temperature ionic liquid consisting of an octacarboxy polyhedral oligomeric silsesquioxane (POSS) anion and an imidazolium cation. The introduction of the POSS moiety enhances the thermal stability and reduces the melting temperature. From an evaluation of the thermodynamic parameters during the melting, it was found that the rigidity and cubic structure of POSS can contribute to the enhancement of these thermal properties.

  16. Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions.

    Science.gov (United States)

    Moyer, Preenaa; Smith, Micholas Dean; Abdoulmoumine, Nourredine; Chmely, Stephen C; Smith, Jeremy C; Petridis, Loukas; Labbé, Nicole

    2018-01-24

    The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIM]Acetate) has been widely used for biomass processing, i.e., to pretreat, activate, or fractionate lignocellulosic biomass to produce soluble sugars and lignin. However, this IL does not achieve high biomass solubility, therefore minimizing the efficiency of biomass processing. In this study, [EMIM]Acetate and three other ILs composed of different 3-methylimidazolium cations and carboxylate anions ([EMIM]Formate, 1-allyl-3-methylimidazolium ([AMIM]) formate, and [AMIM]Acetate) were analyzed to relate their physicochemical properties to their biomass solubility performance. While all four ILs are able to dissolve hybrid poplar under fairly mild process conditions (80 °C and 100 RPM stirring), [AMIM]Formate and [AMIM]Acetate have particularly increased biomass solubility of 40 and 32%, respectively, relative to [EMIM]Acetate. Molecular dynamics simulations suggest that strong interactions between IL and specific plant biopolymers may contribute to this enhanced solubilization, as the calculated second virial coefficients between ILs and hemicellullose are most favorable for [AMIM]Formate, matching the trend of the experimental solubility measurements. The simulations also reveal that the interactions between the ILs and hemicellulose are an important factor in determining the overall biomass solubility, whereas lignin-IL interactions were not found to vary significantly, consistent with literature. The combined experimental and simulation studies identify [AMIM]Formate as an efficient biomass solvent and explain its efficacy, suggesting a new approach to rationally select ionic liquid solvents for lignocellulosic deconstruction.

  17. Relationship between lignocellulosic biomass dissolution and physicochemical properties of ionic liquids composed of 3-methylimidazolium cations and carboxylate anions

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, Preenaa [Univ. of Tennessee, Knoxville, TN (United States). Center for Renewable Carbon. Dept. of Biosystems Engineering and Soil Science; Smith, Micholas Dean [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Molecular Biophysics; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry and Cellular and Molecular Biology; Abdoulmoumine, Nourredine [Univ. of Tennessee, Knoxville, TN (United States). Center for Renewable Carbon. Dept. of Biosystems Engineering and Soil Science; Chmely, Stephen C. [Univ. of Tennessee, Knoxville, TN (United States). Center for Renewable Carbon; Smith, Jeremy C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Molecular Biophysics; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry and Cellular and Molecular Biology; Petridis, Loukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Molecular Biophysics; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Biochemistry and Cellular and Molecular Biology; Labbé, Nicole [Univ. of Tennessee, Knoxville, TN (United States). Center for Renewable Carbon

    2018-01-02

    The ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIM]Acetate) has been widely used for biomass processing, i.e., to pretreat, activate, or fractionate lignocellulosic biomass to produce soluble sugars and lignin. However, this IL does not achieve high biomass solubility, therefore minimizing the efficiency of biomass processing. In this paper, [EMIM]Acetate and three other ILs composed of different 3-methylimidazolium cations and carboxylate anions ([EMIM]Formate, 1-allyl-3-methylimidazolium ([AMIM]) formate, and [AMIM]Acetate) were analyzed to relate their physicochemical properties to their biomass solubility performance. While all four ILs are able to dissolve hybrid poplar under fairly mild process conditions (80 °C and 100 RPM stirring), [AMIM]Formate and [AMIM]Acetate have particularly increased biomass solubility of 40 and 32%, respectively, relative to [EMIM]Acetate. Molecular dynamics simulations suggest that strong interactions between IL and specific plant biopolymers may contribute to this enhanced solubilization, as the calculated second virial coefficients between ILs and hemicellullose are most favorable for [AMIM]Formate, matching the trend of the experimental solubility measurements. The simulations also reveal that the interactions between the ILs and hemicellulose are an important factor in determining the overall biomass solubility, whereas lignin–IL interactions were not found to vary significantly, consistent with literature. Finally, the combined experimental and simulation studies identify [AMIM]Formate as an efficient biomass solvent and explain its efficacy, suggesting a new approach to rationally select ionic liquid solvents for lignocellulosic deconstruction.

  18. SO2 Solvation in the 1-Ethyl-3-Methylimidazolium Thiocyanate Ionic Liquid by Incorporation into the Extended Cation-Anion Network.

    Science.gov (United States)

    Firaha, Dzmitry S; Kavalchuk, Mikhail; Kirchner, Barbara

    We have carried out an ab initio molecular dynamics study on the sulfur dioxide (SO 2 ) solvation in 1-ethyl-3-methylimidazolium thiocyanate for which we have observed that both cations and anions play an essential role in the solvation of SO 2 . Whereas, the anions tend to form a thiocyanate- and much less often an isothiocyanate-SO 2 adduct, the cations create a "cage" around SO 2 with those groups of atoms that donate weak interactions like the alkyl hydrogen atoms as well as the heavy atoms of the [Formula: see text]-system. Despite these similarities between the solvation of SO 2 and CO 2 in ionic liquids, an essential difference was observed with respect to the acidic protons. Whereas CO 2 avoids accepting hydrogen bonds form the acidic hydrogen atoms of the cations, SO 2 can from O(SO 2 )-H(cation) hydrogen bonds and thus together with the strong anion-adduct it actively integrates in the hydrogen bond network of this particular ionic liquid. The fact that SO 2 acts in this way was termed a linker effect by us, because the SO 2 can be situated between cation and anion operating as a linker between them. The particular contacts are the H(cation)[Formula: see text]O(SO 2 ) hydrogen bond and a S(anion)-S(SO 2 ) sulfur bridge. Clearly, this observation provides a possible explanation for the question of why the SO 2 solubility in these ionic liquids is so high.

  19. Effect of anions and cations on liquid extraction of TcO{sub 4} - in ionic liquids; Vplyv anionov a kationov na kvapalinovu extrakciu TcO4 - v ionovych kvapalinach

    Energy Technology Data Exchange (ETDEWEB)

    Suchanek, P.; Galambos, M.; Meciarova, M.; Rajec, P [Univerzita Komenskeho, Prirodovedecka fakulta, Katedra jadrovej chemie, 84215 Bratislava (Slovakia)

    2013-04-16

    An influence of monovalent and divalent cations and anions on an liquid extraction of pertechnetate anion from aqueous media using ionic liquids solubilized in various organic solvents has been studied. Suppression of extraction percentage was obtained with a divalent cations in a compare with monovalent cations showing almost no influence on extraction percentage. In a case of anions, perchlorate anion suppressed the extraction percentage in a highest degree. (authors)

  20. Towards a molecular understanding of cellulose dissolution in ionic liquids: anion/cation effect, synergistic mechanism and physicochemical aspects.

    Science.gov (United States)

    Li, Yao; Wang, Jianji; Liu, Xiaomin; Zhang, Suojiang

    2018-05-07

    Cellulose is one of the most abundant bio-renewable materials on the earth and its conversion to biofuels provides an appealing way to satisfy the increasing global energy demand. However, before carrying out the process of enzymolysis to glucose or polysaccharides, cellulose needs to be pretreated to overcome its recalcitrance. In recent years, a variety of ionic liquids (ILs) have been found to be effective solvents for cellulose, providing a new, feasible pretreatment strategy. A lot of experimental and computational studies have been carried out to investigate the dissolution mechanism. However, many details are not fully understood, which highlights the necessity to overview the current knowledge of cellulose dissolution and identify the research trend in the future. This perspective summarizes the mechanistic studies and microscopic insights of cellulose dissolution in ILs. Recent investigations of the synergistic effect of cations/anions and the distinctive structural changes of cellulose microfibril in ILs are also reviewed. Besides, understanding the factors controlling the dissolution process, such as the structure of anions/cations, viscosity of ILs, pretreatment temperature, heating rate, etc. , has been discussed from a structural and physicochemical viewpoint. At the end, the existing problems are discussed and future prospects are given. We hope this article would be helpful for deeper understanding of the cellulose dissolution process in ILs and the rational design of more efficient and recyclable ILs.

  1. Ionic liquids containing symmetric quaternary phosphonium cations and phosphorus-containing anions, and their use as lubricant additives

    Science.gov (United States)

    Qu, Jun; Luo, Huimin

    2018-05-01

    An ionic liquid composition having the following generic structural formula: ##STR00001## wherein R1, R2, R3, and R4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X- is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto a mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.

  2. Thermotropic Ionic Liquid Crystals

    Science.gov (United States)

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed. PMID:28879986

  3. Thermotropic Ionic Liquid Crystals.

    Science.gov (United States)

    Axenov, Kirill V; Laschat, Sabine

    2011-01-14

    The last five years' achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  4. Thermotropic Ionic Liquid Crystals

    OpenAIRE

    Axenov, Kirill V.; Laschat, Sabine

    2011-01-01

    The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  5. Surface tension and density for members of four ionic liquid homologous series containing a pyridinium based-cation and the bis(trifluoromethylsulfonyl)imide anion

    Czech Academy of Sciences Publication Activity Database

    Klomfar, Jaroslav; Součková, Monika; Pátek, Jaroslav

    2017-01-01

    Roč. 431, January (2017), s. 24-33 ISSN 0378-3812 R&D Projects: GA ČR GA13-00145S Institutional support: RVO:61388998 Keywords : ionic liquid * pyridinium-based cation * bis(trifluoromethylsulfonyl)imide anion * density-temperature relation * surface tension-temperature relation * recommended property values Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 2.473, year: 2016

  6. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  7. Ionic Liquid Crystals: Versatile Materials.

    Science.gov (United States)

    Goossens, Karel; Lava, Kathleen; Bielawski, Christopher W; Binnemans, Koen

    2016-04-27

    This Review covers the recent developments (2005-2015) in the design, synthesis, characterization, and application of thermotropic ionic liquid crystals. It was designed to give a comprehensive overview of the "state-of-the-art" in the field. The discussion is focused on low molar mass and dendrimeric thermotropic ionic mesogens, as well as selected metal-containing compounds (metallomesogens), but some references to polymeric and/or lyotropic ionic liquid crystals and particularly to ionic liquids will also be provided. Although zwitterionic and mesoionic mesogens are also treated to some extent, emphasis will be directed toward liquid-crystalline materials consisting of organic cations and organic/inorganic anions that are not covalently bound but interact via electrostatic and other noncovalent interactions.

  8. Effect of ionic liquids with different cations and anions on photosystem and cell structure of Scenedesmus obliquus.

    Science.gov (United States)

    Xia, Yilu; Liu, Dingdong; Dong, Ying; Chen, Jiazheng; Liu, Huijun

    2018-03-01

    The rapid increase in the production and practical application of ionic liquids (ILs) could pose potential threats to aquatic systems. In this study, we investigated the effects of four ILs with different cations and anions, including 1-hexyl-3-methylimidazolium nitrate ([HMIM]NO 3 ), 1-hexyl-3-methylimidazolium chloride ([HMIM]Cl), N-hexyl-3-metylpyridinium chloride ([HMPy]Cl), and N-hexyl-3-metylpyridinium bromide ([HMPy]Br), on photosystem and cellular structure of Scenedesmus obliquus. The results indicated that ILs are phytotoxic to S. obliquus. The contents of chlorophyll a, chlorophyll b and total chlorophyll decreased with increasing ILs concentrations. The chlorophyll fluorescence parameters of photosynthetic system II (PSII), including minimal fluorescence yield (F 0 ), potential efficiency of PSII (F v /F o ), maximum quantum efficiency of PSII photochemistry (F v /F m ), yield of photochemical quantum [Y(II)], and non-photochemical quenching coefficient without measuring F 0 ' (NPQ), were all affected. This indicates that ILs could damage PSII, inhibit the primary reaction of photosynthesis, interdict the process of electron-transfer and lead to loss of heat-dissipating ability. ILs also increased cell membrane permeability of S. obliquus, influenced the cellular ultrastructure, changed the morphology of algae cells and destroyed the cell wall, cell membrane and organelles. The results indicated that imidazolium ILs had greater effect than pyridinium ILs, NO 3 - -IL and Br - -IL had greater effect than Cl - -IL. To minimize threats to the environment, the structure of ILs should be taken into consideration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thermotropic Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Sabine Laschat

    2011-01-01

    Full Text Available The last five years’ achievements in the synthesis and investigation of thermotropic ionic liquid crystals are reviewed. The present review describes the mesomorphic properties displayed by organic, as well as metal-containing ionic mesogens. In addition, a short overview on the ionic polymer and self-assembled liquid crystals is given. Potential and actual applications of ionic mesogens are also discussed.

  10. IMPROVED SYNTHESIS OF ROOM TEMPERATURE IONIC LIQUIDS

    Science.gov (United States)

    Room temperature ionic liquids (RTILs), molten salts comprised of N-alkylimidazolium cations and various anions, have received significant attention due to their commercial potential in a variety of chemical applications especially as substitutes for conventional volatile organic...

  11. The assessment of removing strontium and cesium cations from aqueous solutions based on the combined methods of ionic liquid extraction and electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Po-Yu [Faculty of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan (China)]. E-mail: pyc@kmu.edu.tw

    2007-05-05

    The extraction of Sr{sup 2+} and Cs{sup +} from aqueous solutions by using the ionophores dicyclohexano-18-crown-6 (DCH18C6) and calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6), respectively, was demonstrated in the hydrophobic, room-temperature ionic liquid (RTIL), tri-1-butylmethylammonium bis((trifluoromethyl)sulfonyl)imide (Bu{sub 3}MeN-TFSI). The water contents of several hydrophobic ionic liquids and the absorption/desorption reversibility of oxygen and moisture in the Bu{sub 3}MeN-TFSI ionic liquid were determined by electrochemical techniques. The relationship between the distribution coefficient, D{sub M}, and the concentration ratios of C{sub ionophore,IL}/C{sub metal{sub ion,aq}} were investigated. The values of D {sub M} increase with increasing the concentration ratios and they are also influenced with the counter ions of Sr{sup 2+} and Cs{sup +} in the aqueous solutions. In the previous study, it was demonstrated that the Sr{sup 2+} and Cs{sup +} cations in the Bu{sub 3}MeN-TFSI ionic liquid could be coordinated by DCH18C6 and BOBCalixC6, respectively, and formed the DCH18C6.Sr{sup 2+} and BOBCalixC6.2Cs{sup +} ions, which would be cathodically reduced to Sr- and Cs-amalgam at a mercury film electrode (MFE). In this study, the probability was evaluated if the Sr{sup 2+} and Cs{sup +} cations extracted from the aqueous solutions can be really reduced to respective amalgam.

  12. Epitope mapping of imidazolium cations in ionic liquid-protein interactions unveils the balance between hydrophobicity and electrostatics towards protein destabilisation.

    Science.gov (United States)

    Silva, Micael; Figueiredo, Angelo Miguel; Cabrita, Eurico J

    2014-11-14

    We investigated imidazolium-based ionic liquid (IL) interactions with human serum albumin (HSA) to discern the level of cation interactions towards protein stability. STD-NMR spectroscopy was used to observe the imidazolium IL protons involved in direct binding and to identify the interactions responsible for changes in Tm as accessed by differential scanning calorimetry (DSC). Cations influence protein stability less than anions but still significantly. It was found that longer alkyl side chains of imidazolium-based ILs (more hydrophobic) are associated with a higher destabilisation effect on HSA than short-alkyl groups (less hydrophobic). The reason for such destabilisation lies on the increased surface contact area of the cation with the protein, particularly on the hydrophobic contacts promoted by the terminus of the alkyl chain. The relevance of the hydrophobic contacts is clearly demonstrated by the introduction of a polar moiety in the alkyl chain: a methoxy or alcohol group. Such structural modification reduces the degree of hydrophobic contacts with HSA explaining the lesser extent of protein destabilisation when compared to longer alkyl side chain groups: above [C2mim](+). Competition STD-NMR experiments using [C2mim](+), [C4mim](+) and [C2OHmim](+) also validate the importance of the hydrophobic interactions. The combined effect of cation and anion interactions was explored using (35)Cl NMR. Such experiments show that the nature of the cation has no influence on the anion-protein contacts, still the nature of the anion modulates the cation-protein interaction. Herein we propose that more destabilising anions are likely to be a result of a partial contribution from the cation as a direct consequence of the different levels of interaction (cation-anion pair and cation-protein).

  13. Amperometric Ion-Selective Electrode for Alkali Metal Cations Based on a Room-Temperature Ionic Liquid Membrane

    Czech Academy of Sciences Publication Activity Database

    Langmaier, Jan; Trojánek, Antonín; Samec, Zdeněk

    2009-01-01

    Roč. 21, 17-18 (2009), s. 1977-1983 ISSN 1040-0397 R&D Projects: GA MŠk ME08098; GA AV ČR IAA400400704 Institutional research plan: CEZ:AV0Z40400503 Keywords : room-temperature ionic liquid * alkali metals * Crown ether * cyclic voltammetry * amperometric ion-selective elkectrode Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  14. The antagonistic role of chaotropic hexafluorophosphate anions and imidazolium cations composing ionic liquids applied as phase additives in the separation of tri-cyclic antidepressants.

    Science.gov (United States)

    Caban, Magda; Stepnowski, Piotr

    2017-05-15

    The main advantage of alkylimidazolium cation-based ionic liquids (ILs) as phase additives in RP-HPLC is believed to be the suppression of deleterious residual free silanols in chemically modified silica stationary phases. However, up to now, the influence of ILs was usually evaluated having in mind a particular IL salt as one compound, not as a specific mixture of cations and anions. This in fact led to some misinterpretation of observed results, very often related to the suppression effect, while in fact caused by the nature of IL anions, which contribute to the elevated chaotropicity of the separation phases. In the present study, we have attempted to consider the effect gained due to the presence of both ionic liquid entities in the mobile phase used for the separation of basic compounds. Tri-cyclic antidepressants (TCAs) were taken as representative analytes. The effect of ILs on the chromatographic separation of TCAs was investigated in comparison to common mobile phase additives and by the presentation of retention factors, tailing factors and theoretical plates. In addition, an overloading study was performed for the IL-based phases for the first time. In general, it was found that the effect of chaotropic hexafluorophosphate anions in ILs is much stronger and opposite to that caused by imidazolium cations. The overloading study gives interesting information on how imidazolium cations affect the separation of cationic analytes. Finally, the usefulness of imidazolium-based ILs as mobile phase modifiers in the RP-HPLC separation of basic compounds was discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Nanoscale Ionic Liquids

    Science.gov (United States)

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  16. Probing electron density of H-bonding between cation-anion of imidazolium-based ionic liquids with different anions by vibrational spectroscopy.

    Science.gov (United States)

    Gao, Yan; Zhang, Liqun; Wang, Yong; Li, Haoran

    2010-03-04

    Attenuated total reflection infrared spectroscopy and density functional theory calculation have been employed to study the spectral properties of imidazolium-based ionic liquids (ILs) with different anions. ILs based on 1-butyl-3-methylimidazolium cation with different anions, OH(-), CF(3)CO(2)(-), HSO(4)(-), H(2)PO(4)(-), Cl(-), PF(6)(-), and BF(4)(-), are investigated in the present work. It has been shown that the C(2)-H stretching vibration of the imidazolium ring is closely related to the electron density of H-bonding between the two closest cations and anions for pure ILs. The electron density of H-bonding between cation and anion with different anions decreases in the order [OH](-) > [H(2)PO(4)](-) > [HSO(4)](-) > [CF(3)CO(2)](-) > [Cl](-) > [BF(4)](-) > [PF(6)](-). For aqueous ILs, with increasing water content, the aromatic C-H stretching vibration of the imidazolium cation showed systematic blue-shifts. Especially for BmimOH, the nu(C(2))(-H) undergoes a drastic blue-shift by 58 cm(-1), suggesting that the formation of the strong hydrogen bonds O-H...O may greatly weaken the electron density of H-bonding between the cation and anion of ILs.

  17. Solvation of ionic liquids based on N-alkyl-N-methylmorpholinium cations in N,N-dimethylformamide and dimethyl sulfoxide – A volumetric and acoustic study

    International Nuclear Information System (INIS)

    Marcinkowski, Łukasz; Szepiński, Emil; Kloskowski, Adam; Namieśnik, Jacek; Warmińska, Dorota

    2017-01-01

    Highlights: • V ϕ of DMSO and DMF solutions of [Mor1,R][BF 4 ] increase with increasing IL concentration at all investigated temperatures. • Ion–ion interaction are stronger for DMF solutions than corresponding for DMSO. • DMSO interacts more effectively with ionic liquids studied than DMF. • Obtained results are the consequence of the cation size of the ionic liquid. - Abstract: Apparent molar volumes and molar isentropic compressibilities for N-ethyl-N-methylmorpholinium and N-decyl-N-methylmorpholinium tetrafluoroborates in N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) have been determined from density and speed of sound measurements over the temperature range T = (298.15, 303.15, 308.15, 313.15, 318.15 and 328.15) K at experimental pressure p = 0.1 MPa. This data has been used to calculate partial molar volumes and partial molar isentropic compressibilities at infinite dilution. The partial molar expansion coefficients and their secondary derivative have been estimated as well. The obtained results indicate that dimethyl sulfoxide interacts more effectively with ionic liquids studied than N,N-dimetylformamide and ion–ion interaction are stronger for N,N-dimetylformamide solutions than corresponding in dimethyl sulfoxide. Moreover the temperature dependence of the limiting apparent molar volumes and compressibilities is a result of temperature influence on the electrostriction effect, the ordering of a bulk solvent and number solvent molecules in the nearest presence of the salt.

  18. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  19. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  20. Effect of cation-anion interactions on the structural and vibrational properties of 1-buthyl-3-methyl imidazolium nitrate ionic liquid

    Science.gov (United States)

    Kausteklis, Jonas; Aleksa, Valdemaras; Iramain, Maximiliano A.; Brandán, Silvia Antonia

    2018-07-01

    The cation-anion interactions present in the 1-butyl-3-methylimidazolium nitrate ionic liquid [BMIm][NO3] were studied by using density functional theory (DFT) calculations and the experimental FT-Raman spectrum in liquid phase and its available FT-IR spectrum. For the three most stable conformers found in the potential energy surface and their 1-butyl-3-methylimidazolium [BMIm] cation, the atomic charges, molecular electrostatic potentials, stabilization energies, bond orders and topological properties were computed by using NBO and AIM calculations and the hybrid B3LYP level of theory with the 6-31G* and 6-311++G** basis sets. The force fields, force constants and complete vibrational assignments were also reported for those species by using their internal coordinates and the scaled quantum mechanical force field (SQMFF) approach. The dimeric species of [BMIm][NO3] were also considered because their presence could probably explain the most intense bands observed at 1344 and 1042 cm-1 in both experimental FT-IR and FT-Raman spectra, respectively. The geometrical parameters suggest monodentate cation-anion coordination while the studies by charges, NBO and AIM calculations support bidentate coordinations between those two species. Additionally several quantum chemical descriptors were also calculated in order to interpret various molecular properties such as electronic structure, reactivity of those species and predict their gas phase behaviours.

  1. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Science.gov (United States)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  2. Effects of alkyl chain length and solvents on thermodynamic dissociation constants of the ionic liquids with one carboxyl group in the alkyl chain of imidazolium cations.

    Science.gov (United States)

    Chen, Yuehua; Wang, Huiyong; Wang, Jianji

    2014-05-01

    Thermodynamic dissociation constants of the Brønsted acidic ionic liquids (ILs) are important for their catalytic and separation applications. In this work, a series of imidazolium bromides with one carboxylic acid substitute group in their alkyl chain ([{(CH2)nCOOH}mim]Br, n = 1,3,5,7) have been synthesized, and their dissociation constants (pKa) at different ionic strengths have been determined in aqueous and aqueous organic solvents at 0.1 mole fraction (x) of ethanol, glycol, iso-propanol, and dimethyl sulfoxide by potentiometric titrations at 298.2 K. The standard thermodynamic dissociation constants (pKa(T)) of the ILs in these solvents were calculated from the extended Debye-Hückel equation. It was found that the pKa values increased with the increase of ionic strength of the media and of the addition of organic solvent in water. The pKa(T) values also increased with the increase of the alkyl chain length of cations of the ILs. In addition, the effect of solvent nature on pKa(T) values is interpreted from solvation of the dissociation components and their Gibbs energy of transfer from water to aqueous organic solutions.

  3. Long-chain alkylimidazolium ionic liquids, a new class of cationic surfactants coated on ODS columns for anion-exchange chromatography.

    Science.gov (United States)

    Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang

    2008-08-01

    Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.

  4. Hydrogen bonding in ionic liquids.

    Science.gov (United States)

    Hunt, Patricia A; Ashworth, Claire R; Matthews, Richard P

    2015-03-07

    Ionic liquids (IL) and hydrogen bonding (H-bonding) are two diverse fields for which there is a developing recognition of significant overlap. Doubly ionic H-bonds occur when a H-bond forms between a cation and anion, and are a key feature of ILs. Doubly ionic H-bonds represent a wide area of H-bonding which has yet to be fully recognised, characterised or explored. H-bonds in ILs (both protic and aprotic) are bifurcated and chelating, and unlike many molecular liquids a significant variety of distinct H-bonds are formed between different types and numbers of donor and acceptor sites within a given IL. Traditional more neutral H-bonds can also be formed in functionalised ILs, adding a further level of complexity. Ab initio computed parameters; association energies, partial charges, density descriptors as encompassed by the QTAIM methodology (ρBCP), qualitative molecular orbital theory and NBO analysis provide established and robust mechanisms for understanding and interpreting traditional neutral and ionic H-bonds. In this review the applicability and extension of these parameters to describe and quantify the doubly ionic H-bond has been explored. Estimating the H-bonding energy is difficult because at a fundamental level the H-bond and ionic interaction are coupled. The NBO and QTAIM methodologies, unlike the total energy, are local descriptors and therefore can be used to directly compare neutral, ionic and doubly ionic H-bonds. The charged nature of the ions influences the ionic characteristics of the H-bond and vice versa, in addition the close association of the ions leads to enhanced orbital overlap and covalent contributions. The charge on the ions raises the energy of the Ylp and lowers the energy of the X-H σ* NBOs resulting in greater charge transfer, strengthening the H-bond. Using this range of parameters and comparing doubly ionic H-bonds to more traditional neutral and ionic H-bonds it is clear that doubly ionic H-bonds cover the full range of weak

  5. Novel Pyrrolinium-based Ionic Liquids for Lithium Ion Batteries: Effect of the Cation on Physicochemical and Electrochemical Properties

    International Nuclear Information System (INIS)

    Kim, Hyung-Tae; Kwon, Oh Min; Mun, Junyoung; Oh, Seung M.; Yim, Taeeun; Kim, Young Gyu

    2017-01-01

    Lithium ion batteries (LIBs) are one of the most promising energy conversion/storage systems, but the low thermal stability of the current electrolytes in LIBs should be improved to expand their potential applications. To enhance the safety properties of LIBs, novel pyrrolinium-based ionic liquids (ILs) were proposed as an alternative electrolyte to the current carbonate electrolyte, which have some task-specific functional groups, i.e., a planar C=N double bond, a C-O ether linkage, and no unstable C-H bond, designed to improve their electrochemical performances as well as the physicochemical properties. As a result, the pyrrolinium-based ILs exhibited much improved physicochemical and electrochemical properties compared to those of the known ILs. Among the prepared ILs, N-allyl-2-methoxypyrrolinium bis(fluorosulfonyl)imide (A(OMe)Pyrl-FSI, 4) showed the high ionic conductivity (10.2 mS cm −1 ), the very good cycling performance (99.3% of retention ratio after 50 cycles) with a LiFePO 4 electrode, and the much improved lithium ion transference number (0.19). IL 4 also had the remarkable rate capability at 5 C-rate with the retention ratio of 81.2% (124.8 mA h g −1 ), compared to the initial discharge capacity of 153.7 mA h g −1 at 0.1 C-rate. In addition, both their high thermal stability and non-flammability were also confirmed.

  6. Ionic liquid marbles.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2007-10-09

    Liquid marbles have been reported during this decade and have been argued to be potentially useful for microfluidic and lab-on-a-chip applications. The liquid marbles described to date have been composed of either water or glycerol as the liquid and hydrophobized lycopodium or silica as the stabilizing particles. Both of these components are potentially reactive and do not permit the use of organic chemistry; the liquids are volatile. We report the use of perfluoroalkyl particles (oligomeric (OTFE) and polymeric (PTFE) tetrafluoroethylene, which are unreactive) to support/stabilize a range of ionic liquid marbles. Ionic liquids are not volatile and have been demonstrated to be versatile solvents for chemical transformations. Water marbles prepared with OTFE are much more robust than those prepared with hydrophobized lycopodium or silica.

  7. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  8. Liquid-solid extraction of cationic metals by cationic amphiphiles

    International Nuclear Information System (INIS)

    Muller, W.

    2010-01-01

    In the field of selective separation for recycling of spent nuclear fuel, liquid-liquid extraction processes are widely used (PUREX, DIAMEX..) in industrial scale. In order to guarantee a sustainable nuclear energy for the forthcoming generations, alternative reprocessing techniques are under development. One of them bases on the studies from Heckmann et al in the 80's and consists in selectively precipitating actinides from aqueous waste solutions by cationic surfactants (liquid-solid extraction). This technique has some interesting advantages over liquid-liquid extraction techniques, because several steps are omitted like stripping or solvent washing. Moreover, the amount of waste is decreased considerably, since no contaminated organic solvent is produced. In this thesis, we have carried out a physico-chemical study to understand the specific interactions between the metallic cations with the cationic surfactant. First, we have analysed the specific effect of the different counter-ions (Cl - , NO 3 - , C 2 O 4 2- ) and then the effect of alkaline cations on the structural properties of the surfactant aggregation in varying thermodynamical conditions. Finally, different multivalent cations (Cu 2+ , Zn 2+ , UO 2 2+ , Fe 3+ , Nd 3+ , Eu 3+ , Th 4+ ) were considered; we have concluded that depending on the anionic complex of these metals formed in acidic media, we can observe either an adsorption at the micellar interface or not. This adsorption has a large influence of the surfactant aggregation properties and determines the limits of the application in term of ionic strength, temperature and surfactant concentration. (author) [fr

  9. Functional ionic liquids

    International Nuclear Information System (INIS)

    Baecker, Tobias

    2012-01-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U V O 2 + compounds. As well, ionic liquids with [FeCl 4 ] - and [Cl 3 FeOFeCl 3 ] 2- as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  10. Colloidal systems of silver nanoparticles and high-regioregular cationic polythiophene with ionic-liquid-like pendant groups: Optical properties and SERS.

    Science.gov (United States)

    Kazim, Samrana; Pfleger, Jiří; Procházka, Marek; Bondarev, Dmitrij; Vohlídal, Jiří

    2011-02-15

    We report tuning of structure dependent optical properties of colloidal systems of borate-stabilized silver nanoparticles (Ag NPs) and polythiophene-based cationic polyelectrolyte with ionic-liquid like side groups: poly{3-[6-(1-methylimidazolium-3-yl)hexyl]thiophene-2,5-diyl bromide} (PMHT-Br) towards obtaining local electromagnetic field enhancement effects. Surface-enhanced Raman scattering (SERS) studies showed that the strong electromagnetic field enhancement is related to the formation of aggregates of Ag NPs achieved at the components ratio providing the charge balance between Ag NPs and cationic polythiophene, at which Ag NPs are nearly single-polymer-layer coated, their zeta potential is close to zero and they easily form aggregates in which the mean inter-particle distance enables the occurrence of desired plasmonic effects. Fluorescence quenching is efficient only in the systems with low concentrations of PMHT-Br, in which almost all polymer chains directly interact with the Ag NPs surface. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation.

    Science.gov (United States)

    Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan

    2016-04-14

    Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

  12. Cationic amino acids specific biomimetic silicification in ionic liquid: a quest to understand the formation of 3-D structures in diatoms.

    Directory of Open Access Journals (Sweden)

    Rajesh Ramanathan

    Full Text Available The intricate, hierarchical, highly reproducible, and exquisite biosilica structures formed by diatoms have generated great interest to understand biosilicification processes in nature. This curiosity is driven by the quest of researchers to understand nature's complexity, which might enable reproducing these elegant natural diatomaceous structures in our laboratories via biomimetics, which is currently beyond the capabilities of material scientists. To this end, significant understanding of the biomolecules involved in biosilicification has been gained, wherein cationic peptides and proteins are found to play a key role in the formation of these exquisite structures. Although biochemical factors responsible for silica formation in diatoms have been studied for decades, the challenge to mimic biosilica structures similar to those synthesized by diatoms in their natural habitats has not hitherto been successful. This has led to an increasingly interesting debate that physico-chemical environment surrounding diatoms might play an additional critical role towards the control of diatom morphologies. The current study demonstrates this proof of concept by using cationic amino acids as catalyst/template/scaffold towards attaining diatom-like silica morphologies under biomimetic conditions in ionic liquids.

  13. Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

    OpenAIRE

    Kubiczek Artur; Kamiński Władysław

    2017-01-01

    Room-temperature ionic liquids (RTILs) are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties. For this reason, they have been termed as designer solvents and, as such, they are particularly promising for liquid-liquid extraction, which has been quite intensely studied over the last decade. This paper concentrates on the recent liquid-liquid extraction studies involving ionic liqu...

  14. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...... applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  15. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    Science.gov (United States)

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  16. Synthesis, Characterization and Study of Liquid Crystals Based on the Ionic Association of the Keplerate Anion [Mo132O372(CH3COO30(H2O72]42− and Imidazolium Cations

    Directory of Open Access Journals (Sweden)

    Nancy Watfa

    2015-06-01

    Full Text Available A series of eight new materials based on the ionic association between 1-methyl-3-alkylimidazolium cations and the nanometric anionic Keplerate [Mo132O372(CH3COO30(H2O72]42− has been prepared and characterized in the solid state. The liquid crystal properties of these materials were investigated by the combination of Polarized Optical Microscopy, Differential Scanning Calorimetry and Small-angle X-Ray Diffraction showing a self-organization in lamellar (L mesophases for the major part of them. From the interlamellar spacing h and the intercluster distance ahex, we demonstrated that the cations are not randomly organized around the anionic cluster and that the alkyl chains of the cations are certainly folded, which limits the van der Waals interactions between the cations within the liquid crystal phase and therefore harms the quality of the mesophases.

  17. Synthesis and properties of cationic polyelectrolyte with regioregular polyalkylthiophene backbone and ionic-liquid like side groups

    Czech Academy of Sciences Publication Activity Database

    Bondarev, D.; Zedník, J.; Šloufová, I.; Sharf, Ahmed; Procházka, M.; Pfleger, Jiří; Vohlídal, J.

    2010-01-01

    Roč. 48, č. 14 (2010), s. 3073-3081 ISSN 0887-624X R&D Projects: GA AV ČR KAN100500652 Institutional research plan: CEZ:AV0Z40500505 Keywords : conjugated polymers * ionic polythiophene * optical properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.894, year: 2010

  18. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    International Nuclear Information System (INIS)

    Ogihara, Wataru; Sun Jiazeng; Forsyth, Maria; MacFarlane, Douglas R.; Yoshizawa, Masahiro; Ohno, Hiroyuki

    2004-01-01

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10 -4 to 10 -3 S cm -1 at room temperature. Gelation was found to cause little change in the 7 Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids

  19. Infinite dilution activity coefficients of volatile organic compounds in two ionic liquids composed of the tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion and a functionalized cation

    International Nuclear Information System (INIS)

    Órfão, Eliana Fernandes; Dohnal, Vladimír; Blahut, Aleš

    2013-01-01

    Highlights: • Limiting activity coefficients and gas–liquid partition coefficients for 30 VOCs were determined by GLC. • Solution thermodynamic quantities were derived and analyzed. • [MO-EMPYR][FAP] and [HO-EMIM][FAP] were identified as ILs of very low and very high cohesivity, respectively. • [HO-EMIM][FAP] is an IL of extreme H-bond acidity exhibiting superior performance for petrochemical separations. • Both studied [FAP] ILs were indicated to separate some azeotropic mixtures of alcohols with aprotic oxygenates. -- Abstract: Interactions of volatile organic compounds with two ionic liquids (ILs) containing tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion and a functionalized cation, 1-(2-hydroxyethyl)-3-methylimidazolium ([HO-EMIM]) and 1-(2-methoxyethyl)-1-methylpyrrolidinium ([MO-EMPYR]), were explored through systematic GLC retention measurements. Infinite dilution activity coefficients γ 1 ∞ and gas–liquid partition coefficients K L of 30 selected solutes in [HO-EMIM][FAP] and [MO-EMPYR][FAP] were determined at five temperatures in the range from (318.15 to 353.15) K. Partial molar excess enthalpies and entropies at infinite dilution were derived from the temperature dependence of the γ 1 ∞ values. The Linear Free Energy Relationship (LFER) solvation model was used to correlate the K L values. The LFER correlation parameters and excess thermodynamic functions were analyzed to identify molecular interactions operating between the ILs and the individual solutes. By comparing the behaviors of the studied ILs and of their closely similar unfunctionalized analogs, net effects imparted by cation functionalization were also disclosed. The cohesivity of the two ILs was shown to differ dramatically: while [MO-EMPYR][FAP] ranks among ILs to the least cohesive, [HO-EMIM][FAP] belongs to the most cohesive ones. Both [HO-EMIM][FAP] and [MO-EMPYR][FAP] are capable of interacting with solutes specifically through dipolarity/polarizibility and

  20. (Liquid + liquid) equilibria of perfluorocarbons with fluorinated ionic liquids

    International Nuclear Information System (INIS)

    Martinho, S.; Araújo, J.M.M.; Rebelo, L.P.N.; Pereiro, A.B.; Marrucho, I.M.

    2013-01-01

    Highlights: • (Liquid + liquid) equilibria perfluorocarbons and fluorinated ionic liquids. • Non-Random Two Liquid model was successfully applied. • Thermodynamic functions that describe the solvation process were calculated. -- Abstract: In order to evaluate the feasibility of partially replace perfluorocarbons (PFCs) with fluorinated ionic liquids (FILs) in PFCs-in-water emulsions, usually used for biomedical purposes, herein the (liquid + liquid) phase equilibria of FILs containing fluorinated chains longer than four carbons with PFCs were carried out in a wide range of temperatures. With this goal in mind, two PFCs (perfluorooctane and perfluorodecalin) were selected and the (liquid + liquid) equilibria of the binary mixtures of these PFCs and FILs were studied at atmospheric pressure in a temperature range from T (293.15 to 343.15) K. For these studies, FILs containing ammonium, pyridinium and imidazolium cations and different anions with fluorocarbon alkyl chains between 4 and 8 were included. Additionally, Non-Random Two Liquid (NRTL) thermodynamic model was successfully applied to correlate the behaviour of the PFCs + FILs binary mixtures. Moreover, thermodynamic functions that describe the solvation process were calculated from the experimental data

  1. Graphene-ionic liquid composites

    Energy Technology Data Exchange (ETDEWEB)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  2. Synergistic extraction of europium(III) in ammonium ionic liquid

    International Nuclear Information System (INIS)

    Rout, Alok; Venkatesan, K.A.; Antony, M.P.

    2016-01-01

    Room temperature ionic liquids have been receiving increased attention for possible applications in the area of nuclear fuel reprocessing and waste management due to their fascinating properties such as good ionicity, high solvation capability, properties tunable etc. Most of the studies in the literature on the extraction of metal ions with molecular extractants dissolved in ionic liquid diluents are making use of the hydrophobic ionic liquids containing imidazolium cations such as the 1-alkyl-3-methylimidazolium ion. From an environmental point of view, such ionic liquids are not suitable as the primary mode of the metal extraction is by cation exchange mechanism wherein ionic liquid cation is lost to the aqueous phase leading to aqueous contamination and issue of recyclability of organic phase. However, there are some hydrophobic ionic liquids such as trioctylmethylammonium chloride ((N 1888 )(Cl)), and trihexyl(tetradecyl)phoshonium chloride (Cyphos IL 101) that exhibit no cation exchange in the aqueous phase during extraction. In this context, the extraction behavior of europium(III) using a neutral extractant, octyl, phenyl-N.N-diisobutylmethylcarbamoylphophinoxide (CMPO) and/or an acidic extractant bis(ethylhexyl)phosphoric acid (D2EHPA) dissolved in the ammonium ionic liquid diluent, trioctylmethylammonium bis(trifluoromethanesulfonyl)imide, (N 1888 )(NTf 2 ). The extraction behavior of CMPO (or D2EHPA)/(N 1888 )((Tf 2 ) system was investigated as a function of different extraction parameters such as feed acidity, extractant concentration, equilibration time etc.

  3. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Science.gov (United States)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  4. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  5. Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids

    International Nuclear Information System (INIS)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md. Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-01-01

    The stabilization energies for the formation (E form ) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G ** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E form for the [dema][CF 3 SO 3 ] and [dmpa][CF 3 SO 3 ] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF 3 SO 3 ] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl − , BF 4 − , TFSA − anions. The anion has contact with the N–H bond of the dema + or dmpa + cations in the most stable geometries of the dema + and dmpa + complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E form for the less stable geometries for the dema + and dmpa + complexes are close to those for the most stable etma + complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA − anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF 3 SO 3 ] ionic liquid

  6. Desulfurization of oxidized diesel using ionic liquids

    Science.gov (United States)

    Wilfred, Cecilia D.; Salleh, M. Zulhaziman M.; Mutalib, M. I. Abdul

    2014-10-01

    The extraction of oxidized sulfur compounds from diesel were carried out using ten types of ionic liquids consisting of different cation and anion i.e. 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazoium thiocyanate, 1-butyl-3-methylimidazoium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazoliumhexafluorophosphate, 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, trioctylmethylammonium chloride, 1-propionitrile-3-butylimidazolium thiocyanate, 1-propionitrile-3-butylimidazolium dicyanamide and 1-butyl-6-methylquinolinium dicyanamide. The oxidation of diesel was successfully done using phosphotungstic acid as the catalyst, hydrogen peroxide (H2O2) as the oxidant and trioctylmethylammonium chloride as the phase transfer agent. The oxidation of diesel changes the sulfur compounds into sulfone which increases its polarity and enhances the ionic liquid's extraction performance. Result showed that ionic liquid [C4mquin][N(CN)2] performed the highest sulfur removal (91% at 1:5 diesel:IL ratio) compared to the others.

  7. Manipulating the morphology and textural property of γ-AlOOH by modulating the alkyl chain length of cation in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhe, E-mail: tangzhe1983@163.com; Hu, Xiaofu, E-mail: hjj19850922@126.cn; Liang, Jilei, E-mail: liang.jilei_ttplan@126.com; Zhao, Jinchong, E-mail: Dr.zhaojc@gmail.com; Liu, Yunqi, E-mail: liuyq@upc.edu.cn; Liu, Chenguang, E-mail: cgliu@upc.edu.cn

    2013-06-01

    Graphical abstract: - Highlights: • γ-AlOOH was the only product in all experiments. • Different morphology of γ-AlOOH was obtained according to the alkyl chain length. • The textural property of γ-AlOOH was changed according to the alkyl chain length. • The possible formation mechanisms for hollow sphere and microflower were proposed. - Abstract: We demonstrated that the morphology and textural property of γ-AlOOH can be tuned by modulating the alkyl chain length of cation in [C{sub n}mim]{sup +}Cl{sup −} (n = 4, 8, 16). Using the short alkyl chain length-based [C{sub 4}mim]{sup +}Cl{sup −} as the structure-directed reagent, the morphology of γ-AlOOH was not changed and preserved as the hollow sphere structure in all experiments. The specific area and the number of small meso-pores of γ-AlOOH increased with the increase of [C{sub 4}mim]{sup +}Cl{sup −} dosage. While, using the larger alkyl chain length-based ionic liquids as the soft-template, such as [C{sub 8}mim]{sup +}Cl{sup −} and [C{sub 16}mim]{sup +}Cl{sup −}, the morphologies of γ-AlOOH were changed from initiative hollow spheres into the final microflowers. The specific areas of γ-AlOOH firstly increased then decreased with the increase of their dosage. The samples were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). Furthermore, the possible formation mechanisms of γ-AlOOH have been proposed.

  8. Hydrogen Bonding, (1)H NMR, and Molecular Electron Density Topographical Characteristics of Ionic Liquids Based on Amino Acid Cations and Their Ester Derivatives.

    Science.gov (United States)

    Rao, Soniya S; Bejoy, Namitha Brijit; Gejji, Shridhar P

    2015-08-13

    Amino acid ionic liquids (AAILs) have attracted significant attention in the recent literature owing to their ubiquitous applications in diversifying areas of modern chemistry, materials science, and biosciences. The present work focuses on unraveling the molecular interactions underlying AAILs. Electronic structures of ion pairs consisting of amino acid cations ([AA(+)], AA = Gly, Ala, Val, Leu, Ile, Pro, Ser, Thr) and their ester substituted derivatives [AAE(+)] interacting with nitrate anion [NO3(-)] have been obtained from the dispersion corrected M06-2x density functional theory. The formation of ion pair is accompanied by the transfer of proton from quaternary nitrogen to anion facilitated via hydrogen bonding. The [Ile], [Pro], [Ser], and [Thr] and their esters reveal relatively strong inter- as well as intramolecular hydrogen-bonding interactions. Consequently, the hierarchy in binding energies of [AA][NO3] ion pairs and their ester analogues turns out to be [Gly] > [Ala] > [Ser] ∼ [Val] ∼ [Ile] > [Leu] ∼ [Thr] > [Pro]. The work underlines how the interplay of intra- as well as intermolecular hydrogen-bonding interactions in [AA]- and [AAE]-based ILs manifest in their infrared and (1)H NMR spectra. Substitution of -OCH3 functional group in [AA][NO3] ILs lowers the melting point attributed to weaker hydrogen-bonding interactions, making them suitable for room temperature applications. As opposed to gas phase structures, the presence of solvent (DMSO) does not bring about any proton transfer in the ion pairs or their ester analogues. Calculated (1)H NMR chemical shifts of the solvated structures agree well with those from experiment. Correlations of decomposition temperatures in [AA]- and [AAE]-based ILs with binding energies and electron densities at the bond critical point(s) in molecular electron density topography, have been established.

  9. Effect of the structure of imidazolium cations in [BF4](-)-type ionic liquids on direct electrochemistry and electrocatalysis of horseradish peroxidase in Nafion films.

    Science.gov (United States)

    Lu, Lu; Huang, Xirong; Qu, Yinbo

    2011-10-01

    The direct electrochemistry and bioelectrocatalysis of horseradish peroxidase (HRP) in Nafion films at glassy carbon electrode (GCE) was investigated in three [BF(4)](-)-type room-temperature ionic liquids (ILs) to understand the structural effect of imidazolium cations. The three ILs are 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF(4)]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF(4)]) and 1-hexyl-3-methylimidazolium tetrafluoroborate ([Hmim][BF(4)]). A small amount of water in the three ILs is indispensable for maintaining the electrochemical activity of HRP in Nafion films, and the optimum water contents decrease with the increase of alkyl chain length on imidazole ring. Analysis shows that the optimum water contents are primarily determined by the hydrophilicity of ILs used. In contrast to aqueous medium, ILs media facilitate the direct electron transfer of HRP, and the electrochemical parameters obtained in different ILs are obviously related to the nature of ILs. The direct electron transfer between HRP and GCE is a surface-confined quasi-reversible single electron transfer process. The apparent heterogeneous electron transfer rate constant decreases gradually with the increase of alkyl chain length on imidazole ring, but the changing extent is relatively small. The electrocatalytic reduction current of H(2)O(2) at the present electrode decreases obviously with the increase of alkyl chain length, and the mass transfer of H(2)O(2) via diffusion in ILs should be responsible for the change. In addition, the modified electrode has good stability and reproducibility; the ability to tolerate high levels of F(-) has been greatly enhanced due to the use of Nafion film. When an appropriate mediator is included in the sensing layer, a sensitive nonaqueous biosensor could be fabricated. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Ionic liquids comprising heteraromatic anions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.; Mindrup, Elaine; Gurkan, Burcu; Price, Erica; Goodrich, Brett

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  11. Supercritical fluids in ionic liquids

    NARCIS (Netherlands)

    Kroon, M.C.; Peters, C.J.; Plechkova, N.V.; Seddon, K.R.

    2014-01-01

    Ionic liquids and supercritical fluids are both alternative environmentally benign solvents, but their properties are very different. Ionic liquids are non-volatile but often considered highly polar compounds, whereas supercritical fluids are non-polar but highly volatile compounds. The combination

  12. Spectral SAR Ecotoxicology of Ionic Liquids: The Daphnia magna Case

    International Nuclear Information System (INIS)

    Putz, M.V.; Lacrama, A.M.; Ostafe, V.; Lacrama, A.M.

    2007-01-01

    Aiming to provide a unified theory of ionic liquids eco toxicity, the recent spectral structure activity relationship (S-SAR) algorithm is employed for testing the two additive models of anionic-cationic interaction containing ionic liquid activity: the causal and the endpoint, |0+> and |1+> models, respectively. As a working system, the Daphnia magna eco toxicity was characterized through the formulated and applied spectral chemical-eco biological interaction principles. Specific anionic-cationic-ionic-liquid rules of interaction along the developed mechanistic hypersurface map of the main eco toxicity paths together with the so-called resonance limitation of the standard statistical correlation analysis were revealed.

  13. Liquid-solid extraction of metallic cations by cationic amphiphiles

    International Nuclear Information System (INIS)

    Mueller, Wolfram; Sievers, Torsten K.; Zemb, Thomas; Diat, Olivier; Sievers, Torsten K.; Dejugnat, Christophe

    2012-01-01

    In the field of selective metal ion separation, liquid-liquid extraction is usually conducted through an emulsion mixing of hydrophobic complexants dispersed in an organic phase and acidic water containing the ionic species. Recently, it has been shown that amphiphilic complexants could influence strongly extraction efficiency by enhancing the interfacial interaction between the metal ion in the aqueous and the complexant in the organic phase. Moreover, these amphiphiles can also substitute the organic phase if an appropriate aliphatic chain is chosen. The dispersion of such amphiphilic complexants in an aqueous solution of salt mixtures is not only attractive for studying specific interactions but also to better the understanding of complex formation in aqueous solution of multivalent metal ions, such as lanthanides and actinides. This understanding is of potential interest for a broad range of industries including purification of rare earth metals and pollute treatment e.g. of fission byproducts. This principle can also be applied to liquid-solid extraction, where the final state of the separation is a solid phase containing the selectively extracted ions. Indeed, a novel solid-liquid extraction method exploits the selective precipitation of metal ions from an aqueous salt mixture using a cationic surfactant, below its Krafft point (temperature below which the long aliphatic chains of surfactant crystallize). This technique has been proven to be highly efficient for the separation of actinides and heavy metal using long chain ammonium or pyridinium amphiphiles. The most important point in this process is the recognition of cationic metal ions by cationic surfactants. By computing the free energy of the polar head group per micelle as a function of the different counter-anions, we have demonstrated for the first time that different interactions exist between the micellar surface and the ions. These interactions depend on the nature of the cation but also on

  14. Thermoelectric Generators Based on Ionic Liquids

    Science.gov (United States)

    Laux, Edith; Uhl, Stefanie; Jeandupeux, Laure; López, Pilar Pérez; Sanglard, Pauline; Vanoli, Ennio; Marti, Roger; Keppner, Herbert

    2018-06-01

    Looking at energy harvesting using body or waste heat for portable electronic or on-board devices, Ionic liquids are interesting candidates as thermoactive materials in thermoelectric generators (TEGs) because of their outstanding properties. Two different kinds of ionic liquid, with alkylammonium and choline as cations, were studied, whereby different anions and redox couples were combined. This study focussed on the intention to find non-hazardous and environmentally friendly ionic liquids for TEGs to be selected among the thousands that can potentially be used. Seebeck coefficients (SEs) as high as - 15 mV/K were measured, in a particular case for an electrode temperature difference of 20 K. The bottleneck of our TEG device is still the abundance of negative SE liquids matching the internal resistance with the existing positive SE-liquids at series connections. In this paper, we show further progress in finding increased negative SE liquids. For current extraction from the TEG, the ionic liquid must be blended with a redox couple, allowing carrier exchange in a cyclic process under a voltage which is incuced by the asymmetry of the generator in terms of hot and cold electrodes. In our study, two types of redox pairs were tested. It was observed that a high SE of an ionic liquid/redox blend is not a sufficient condition for high power output. It appears that more complex effects between the ionic liquid and the electrode determine the magnitude of the final current/power output. The physico-chemical understanding of such a TEG cell is not yet available.

  15. Ionic liquids as dynamic templating agents for sol-gel silica systems: synergistic anion and cation effect on the silica structured growth

    Czech Academy of Sciences Publication Activity Database

    Donato, K. Z.; Donato, Ricardo Keitel; Lavorgna, M.; Ambrosio, L.; Matějka, Libor; Mauler, R. S.; Schrekker, H. S.

    2015-01-01

    Roč. 76, č. 2 (2015), s. 414-427 ISSN 0928-0707 R&D Projects: GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : silica * imidazolium ionic liquid * sol-gel Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.473, year: 2015

  16. Ionic liquid stationary phases for gas chromatography.

    Science.gov (United States)

    Poole, Colin F; Poole, Salwa K

    2011-04-01

    This article provides a summary of the development of ionic liquids as stationary phases for gas chromatography beginning with early work on packed columns that established details of the retention mechanism and established working methods to characterize selectivity differences compared with molecular stationary phases through the modern development of multi-centered cation and cross-linked ionic liquids for high-temperature applications in capillary gas chromatography. Since there are many reviews on ionic liquids dealing with all aspects of their chemical and physical properties, the emphasis in this article is placed on the role of gas chromatography played in the design of ionic liquids of low melting point, high thermal stability, high viscosity, and variable selectivity for separations. Ionic liquids provide unprecedented opportunities for extending the selectivity range and temperature-operating range of columns for gas chromatography, an area of separation science that has otherwise been almost stagnant for over a decade. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Excimer Formation Dynamics of Dipyrenyldecane in Structurally Different Ionic Liquids.

    Science.gov (United States)

    Yadav, Anita; Pandey, Siddharth

    2017-12-07

    Ionic liquids, being composed of ions alone, may offer alternative pathways for molecular aggregation. These pathways could be controlled by the chemical structure of the cation and the anion of the ionic liquids. Intramolecular excimer formation dynamics of a bifluorophoric probe, 1,3-bis(1-pyrenyl)decane [1Py(10)1Py], where the fluorophoric pyrene moieties are separated by a long decyl chain, is investigated in seven different ionic liquids in 10-90 °C temperature range. The long alkyl separator allows for ample interaction with the solubilizing milieu prior to the formation of the excimer. The ionic liquids are composed of two sets, one having four ionic liquids of 1-butyl-3-methylimidazolium cation ([bmim + ]) with different anions and the other having four ionic liquids of bis(trifluoromethylsulfonyl)imide anion ([Tf 2 N - ]) with different cations. The excimer-to-monomer emission intensity ratio (I E /I M ) is found to increase with increasing temperature in sigmoidal fashion. Chemical structure of the ionic liquid controls the excimer formation efficiency, as I E /I M values within ionic liquids with the same viscosities are found to be significantly different. The excited-state intensity decay kinetics of 1Py(10)1Py in ionic liquids do not adhere to a simplistic Birk's scheme, where only one excimer conformer forms after excitation. The apparent rate constants of excimer formation (k a ) in highly viscous ionic liquids are an order of magnitude lower than those reported in organic solvents. In general, the higher the viscosity of the ionic liquid, the more sensitive is the k a to the temperature with higher activation energy, E a . The trend in E a is found to be similar to that for activation energy of the viscous flow (E a,η ). Stokes-Einstein relationship is not followed in [bmim + ] ionic liquids; however, with the exception of [choline][Tf 2 N], it is found to be followed in [Tf 2 N - ] ionic liquids suggesting the cyclization dynamics of 1Py(10)1Py

  18. Fluctuating hydrodynamics for ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Konstantinos [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States); Wickham, Logan [Department of Computer Science, Washington State University, Richland, 99354 (United States); Voulgarakis, Nikolaos, E-mail: n.voulgarakis@wsu.edu [Department of Mathematics and Statistics, Washington State University, Pullman, 99163 (United States)

    2017-04-25

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau–Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids. - Highlights: • A new fluctuating hydrodynamics method for ionic liquids. • Description of ionic liquid morphology in bulk and near electrified surfaces. • Direct comparison with experimental measurements.

  19. Mechanical heterogeneity in ionic liquids

    Science.gov (United States)

    Veldhorst, Arno A.; Ribeiro, Mauro C. C.

    2018-05-01

    Molecular dynamics (MD) simulations of five ionic liquids based on 1-alkyl-3-methylimidazolium cations, [CnC1im]+, have been performed in order to calculate high-frequency elastic moduli and to evaluate heterogeneity of local elastic moduli. The MD simulations of [CnC1im][NO3], n = 2, 4, 6, and 8, assessed the effect of domain segregation when the alkyl chain length increases, and [C8C1im][PF6] assessed the effect of strength of anion-cation interaction. Dispersion curves of excitation energies of longitudinal and transverse acoustic, LA and TA, modes were obtained from time correlation functions of mass currents at different wavevectors. High-frequency sound velocity of LA modes depends on the alkyl chain length, but sound velocity for TA modes does not. High-frequency bulk and shear moduli, K∞ and G∞, depend on the alkyl chain length because of a density effect. Both K∞ and G∞ are strongly dependent on the anion. The calculation of local bulk and shear moduli was accomplished by performing bulk and shear deformations of the systems cooled to 0 K. The simulations showed a clear connection between structural and elastic modulus heterogeneities. The development of nano-heterogeneous structure with increasing length of the alkyl chain in [CnC1im][NO3] implies lower values for local bulk and shear moduli in the non-polar domains. The mean value and the standard deviations of distributions of local elastic moduli decrease when [NO3]- is replaced by the less coordinating [PF6]- anion.

  20. Understanding SO2 Capture by Ionic Liquids.

    Science.gov (United States)

    Mondal, Anirban; Balasubramanian, Sundaram

    2016-05-19

    Ionic liquids have generated interest for efficient SO2 absorption due to their low vapor pressure and versatility. In this work, a systematic investigation of the structure, thermodynamics, and dynamics of SO2 absorption by ionic liquids has been carried out through quantum chemical calculations and molecular dynamics (MD) simulations. MP2 level calculations of several ion pairs complexed with SO2 reveal its preferential interaction with the anion. Results of condensed phase MD simulations of SO2-IL mixtures manifested the essential role of both cations and anions in the solvation of SO2, where the solute is surrounded by the "cage" formed by the cations (primarily its alkyl tail) through dispersion interactions. These structural effects of gas absorption are substantiated by calculated Gibbs free energy of solvation; the dissolution is demonstrated to be enthalpy driven. The entropic loss of SO2 absorption in ionic liquids with a larger anion such as [NTf2](-) has been quantified and has been attributed to the conformational restriction of the anion imposed by its interaction with SO2. SO2 loading IL decreases its shear viscosity and enhances the electrical conductivity. This systematic study provides a molecular level understanding which can aid the design of task-specific ILs as electrolytes for efficient SO2 absorption.

  1. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  2. Performance analysis of absorption heat transformer cycles using ionic liquids based on imidazolium cation as absorbents with 2,2,2-trifluoroethanol as refrigerant

    International Nuclear Information System (INIS)

    Ayou, Dereje S.; Currás, Moisés R.; Salavera, Daniel; García, Josefa; Bruno, Joan C.; Coronas, Alberto

    2014-01-01

    Highlights: • TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) absorption heat transformer cycles are studied. • Influence of various operating conditions on cycle’s performance is investigated. • Performance comparisons with H 2 O + LiBr and TFE + TEGDME cycles are done. • Enthalpy data for TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) liquid mixtures are calculated. • TFE + [emim][BF 4 ] (or [bmim][BF 4 ]) cycles have higher gross temperature lift (GTL). - Abstract: A detailed thermodynamic performance analysis of a single-stage absorption heat transformer and double absorption heat transformer cycles using new working pairs composed of ionic liquids (1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF 4 ]) and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ])) as absorbent and 2,2,2-trifluoroethanol (TFE) as refrigerant has been studied. Several performance indicators were used to evaluate and compare the performance of the cycles using the TFE + [emim][BF 4 ] and TFE + [bmim][BF 4 ] working pairs with the conventional H 2 O + LiBr and organic TFE + TEGDME working pairs. The obtained results show that the ionic liquid based working pairs are suitable candidates to replace the conventional H 2 O + LiBr working pairs in order to avoid the disadvantages associated with it mainly crystallization and corrosion and also they perform better (higher gross temperature lift) than TFE + TEGDME working pair at several operating conditions considered in this work

  3. Structural analysis of zwitterionic liquids vs. homologous ionic liquids

    Science.gov (United States)

    Wu, Boning; Kuroda, Kosuke; Takahashi, Kenji; Castner, Edward W.

    2018-05-01

    Zwitterionic liquids (Zw-ILs) have been developed that are homologous to monovalent ionic liquids (ILs) and show great promise for controlled dissolution of cellulosic biomass. Using both high energy X-ray scattering and atomistic molecular simulations, this article compares the bulk liquid structural properties for novel Zw-ILs with their homologous ILs. It is shown that the significant localization of the charges on Zw-ILs leads to charge ordering similar to that observed for conventional ionic liquids with monovalent anions and cations. A low-intensity first sharp diffraction peak in the liquid structure factor S(q) is observed for both the Zw-IL and the IL. This is unexpected since both the Zw-IL and IL have a 2-(2-methoxyethoxy)ethyl (diether) functional group on the cationic imidazolium ring and ether functional groups are known to suppress this peak. Detailed analyses show that this intermediate range order in the liquid structure arises for slightly different reasons in the Zw-IL vs. the IL. For the Zw-IL, the ether tails in the liquid are shown to aggregate into nanoscale domains.

  4. Picosecond radiolysis of ionic liquids

    International Nuclear Information System (INIS)

    Funston, A.M.; Wishart, J.F.; Neta, P.; Lall, S.I.; Engel, R.

    2003-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Ionic liquids are completely nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. An understanding of the radiation chemistry of ionic liquids is important for development of their applications in radioactive material processing and for the application of pulse radiolysis techniques to the general study of chemical reactivity in ionic liquids. Kinetic studies with a picosecond electron accelerator, such as the BNL Laser-Electron Accelerator Facility (LEAF), allow one to observe primary radiation products and their reactions on short time scales. For example, the solvated electron lifetime in neat methyltributylammonium bis(trifluoromethylsulfonyl)imide is ∼300 ns and its absorption maximum is ∼1400 nm. Kinetic studies of primary radiolytic products and their reactivities will be described for several types of ionic liquids. Supported in part by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences, under contract DE-AC02-98-CH1088

  5. Thermophysical properties of ionic liquids.

    Science.gov (United States)

    Rooney, David; Jacquemin, Johan; Gardas, Ramesh

    2010-01-01

    Low melting point salts which are often classified as ionic liquids have received significant attention from research groups and industry for a range of novel applications. Many of these require a thorough knowledge of the thermophysical properties of the pure fluids and their mixtures. Despite this need, the necessary experimental data for many properties is scarce and often inconsistent between the various sources. By using accurate data, predictive physical models can be developed which are highly useful and some would consider essential if ionic liquids are to realize their full potential. This is particularly true if one can use them to design new ionic liquids which maximize key desired attributes. Therefore there is a growing interest in the ability to predict the physical properties and behavior of ionic liquids from simple structural information either by using group contribution methods or directly from computer simulations where recent advances in computational techniques are providing insight into physical processes within these fluids. Given the importance of these properties this review will discuss the recent advances in our understanding, prediction and correlation of selected ionic liquid physical properties.

  6. Removal of Na+ from Ionic Liquids by Zeolite for High Quality Electrolyte Manufacture

    International Nuclear Information System (INIS)

    Cho, Wonje; Seo, Yongseong; Jung, Soon Jae; Lee, Won Gil; Kim, Byung Chul; Yu, Kookhyun

    2013-01-01

    This study develops a novel method to remove the free cations created during the synthesis of ionic liquid. The cations are removed from the ionic liquid by size-selective adsorption onto chemically surface-modified Zeolite. The porous crystal nano-structure of Zeolite has several electron-rich Al sites to attract cations. While large cations of an ionic liquid cannot access the Zeolite nano-structure, small cations like Na + have ready access and are adsorbed. This study confirms that: Na + can be removed from ionic liquid effectively using Zeolite; and, in contrast to the conventional and extensively applied ion exchange resin method or solvent extraction methods, this can be done without changing the nature of the ionic liquid

  7. Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids.

    Science.gov (United States)

    Tröger-Müller, Steffen; Brandt, Jessica; Antonietti, Markus; Liedel, Clemens

    2017-09-04

    We report the synthesis of task-specific imidazolium ionic compounds and ionic liquids with key functionalities of organic molecules from electro-, polymer-, and coordination chemistry. Such products are highly functional and potentially suitable for technology applications even though they are formed without elaborate reactions and from cheap and potentially green reagents. We further demonstrate the versatility of the used synthetic approach by introducing different functional and green counterions to the formed ionic liquids directly during the synthesis or after metathesis reactions. The influence of different cation structures and different anions on the thermal and electrochemical properties of the resulting ionic liquids is discussed. Our goal is to make progress towards economically competitive and sustainable task-specific ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A rapid method to estimate uranium using ionic liquid as extracting agent from basic aqueous media

    International Nuclear Information System (INIS)

    Prabhath Ravi, K.; Sathyapriya, R.S.; Rao, D.D.; Ghosh, S.K.

    2016-01-01

    Room temperature ionic liquids, as their name suggests are salts with a low melting point typically less than 100 °C and exist as liquid at room temperature. The common cationic parts of ionic liquids are imidazolium, pyridinium, pyrrolidinium, quaternary ammonium, or phosphonium ions, and common anionic parts are chloride, bromide, boron tetrafluorate, phosphorous hexafluorate, triflimide etc. The physical properties of ionic liquids can be tuned by choosing appropriate cations with differing alkyl chain lengths and anions. Application of ionic liquids in organic synthesis, liquid-liquid extractions, electrochemistry, catalysis, speciation studies, nuclear reprocessing is being studied extensively in recent times. In this paper a rapid method to estimate the uranium content in aqueous media by extraction with room temperature ionic liquid tricaprylammoniumthiosalicylate ((A- 336)(TS)) followed by liquid scintillation analysis is described. Re-extraction of uranium from ionic liquid phase to aqueous phase was also studied

  9. Liquid-liquid extraction of plutonium(IV) in monoamide - ammonium ionic liquid mixture

    International Nuclear Information System (INIS)

    Rout, Alok; Venkatesan, K.A.; Antony, M.P.

    2016-01-01

    Room temperature ionic liquid (RTIL) can be regarded as a sustainable alternative to the conventional molecular diluent, n-dodecane (n-DD), in solvent extraction process. Replacement of volatile organic solvents by RTILs in solvent extraction could lead to inherently safer processes. As far as the cation is concerned, most of the studies reported in literature are focused on imidazolium-based ionic liquids. In contrast to imiadazolium ionic liquids, quarternary ammonium ionic liquids like trioctylmethylammonium chloride (Aliquat 336), trioctylmethylammonium nitrate etc., do not exhibit any cation exchange with the metal ions from aqueous phase during extraction. However, there is no report available in literature that emphasizes the application of trioctylmethylammonium bis(trifluoromethane-sulfonyl)imide ((N_1_8_8_8)(NTf_2)) ionic liquid, for the extraction of Pu(IV). In this paper, we report the advantages of using the ionic liquid, trioctylmethylammonium bis(trifluoromethanesulfonyl)imide ((N_1_8_8_8)(NTf_2)), as diluent, for the extraction of plutonium(IV) in DHOA/(N_1_8_8_8)(NTf_2)

  10. Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids.

    Science.gov (United States)

    Pinkert, André; Ang, Keng L; Marsh, Kenneth N; Pang, Shusheng

    2011-03-21

    Ionic liquids are molten salts with melting temperatures below the boiling point of water, and their qualification for applications in potential industrial processes does depend on their fundamental physical properties such as density, viscosity and electrical conductivity. This study aims to investigate the structure-property relationship of 15 ILs that are primarily composed of alkanolammonium cations and organic acid anions. The influence of both the nature and number of alkanol substituents on the cation and the nature of the anion on the densities, viscosities and electrical conductivities at ambient and elevated temperatures are discussed. Walden rule plots are used to estimate the ionic nature of these ionic liquids, and comparison with other studies reveals that most of the investigated ionic liquids show Walden rule values similar to many non-protic ionic liquids containing imidazolium, pyrrolidinium, tetraalkylammonium, or tetraalkylphosphonium cations. Comparison of literature data reveals major disagreements in the reported properties for the investigated ionic liquids. A detailed analysis of the reported experimental procedures suggests that inappropriate drying methods can account for some of the discrepancies. Furthermore, an example for the improved presentation of experimental data in scientific literature is presented.

  11. Ion pairing in ionic liquids

    International Nuclear Information System (INIS)

    Kirchner, Barbara; Malberg, Friedrich; Firaha, Dzmitry S; Hollóczki, Oldamur

    2015-01-01

    In the present article we briefly review the extensive discussion in literature about the presence or absence of ion pair-like aggregates in ionic liquids. While some experimental studies point towards the presence of neutral subunits in ionic liquids, many other experiments cannot confirm or even contradict their existence. Ion pairs can be detected directly in the gas phase, but no direct method is available to observe such association behavior in the liquid, and the corresponding indirect experimental proofs are based on such assumptions as unity charges at the ions. However, we have shown by calculating ionic liquid clusters of different sizes that assuming unity charges for ILs is erroneous, because a substantial charge transfer is taking place between the ionic liquid ions that reduce their total charge. Considering these effects might establish a bridge between the contradicting experimental results on this matter. Beside these results, according to molecular dynamics simulations the lifetimes of ion–ion contacts and their joint motions are far too short to verify the existence of neutral units in these materials. (topical review)

  12. Comparing two tetraalkylammonium ionic liquids. I. Liquid phase structure

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C., E-mail: mccribei@iq.usp.br [Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP (Brazil); Giles, Carlos [Departamento de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP (Brazil)

    2016-06-14

    X-ray scattering experiments at room temperature were performed for the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}]. The peak in the diffraction data characteristic of charge ordering in [N{sub 1444}][NTf{sub 2}] is shifted to longer distances in comparison to [N{sub 1114}][NTf{sub 2}], but the peak characteristic of short-range correlations is shifted in [N{sub 1444}][NTf{sub 2}] to shorter distances. Molecular dynamics (MD) simulations were performed for these ionic liquids using force fields available from the literature, although with new sets of partial charges for [N{sub 1114}]{sup +} and [N{sub 1444}]{sup +} proposed in this work. The shifting of charge and adjacency peaks to opposite directions in these ionic liquids was found in the static structure factor, S(k), calculated by MD simulations. Despite differences in cation sizes, the MD simulations unravel that anions are allowed as close to [N{sub 1444}]{sup +} as to [N{sub 1114}]{sup +} because anions are located in between the angle formed by the butyl chains. The more asymmetric molecular structure of the [N{sub 1114}]{sup +} cation implies differences in partial structure factors calculated for atoms belonging to polar or non-polar parts of [N{sub 1114}][NTf{sub 2}], whereas polar and non-polar structure factors are essentially the same in [N{sub 1444}][NTf{sub 2}]. Results of this work shed light on controversies in the literature on the liquid structure of tetraalkylammonium based ionic liquids.

  13. Ionic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates

    Directory of Open Access Journals (Sweden)

    Flora T.T. Ng

    2013-10-01

    Full Text Available This review presents the synergistic effect in the catalytic system of ionic liquids (ILs for the synthesis of cyclic carbonate from carbon dioxide and epoxide. The emphasis of this review is on three aspects: the catalytic system of metal-based ionic liquids, the catalytic system of hydrogen bond-promoted ionic liquids and supported ionic liquids. Metal and ionic liquids show a synergistic effect on the cycloaddition reactions of epoxides. The cations and anions of ionic liquids show a synergistic effect on the cycloaddition reactions. The functional groups in cations or supports combined with the anions have a synergistic effect on the cycloaddition reactions. Synergistic catalytic effects of ILs play an important role of promoting the cycloaddition reactions of epoxides. The design of catalytic system of ionic liquids will be possible if the synergistic effect on a molecular level is understood.

  14. Can ionic liquids be used as templating agents for controlled design of uranium-containing nanomaterials?

    International Nuclear Information System (INIS)

    Visser, Ann E.; Bridges, Nicholas J.; Tosten, Michael H.

    2013-01-01

    Graphical abstract: - Highlights: • Uranium oxides nanoparticles prepared using ionic liquids. • IL cation alkyl length impacts oxide morphology. • Low temperature UO 2 synthesis. - Abstract: Nanostructured uranium oxides have been prepared in ionic liquids as templating agents. Using the ionic liquids as reaction media for inorganic nanomaterials takes advantage of the pre-organized structure of the ionic liquids which in turn controls the morphology of the inorganic nanomaterials. Variation of ionic liquid cation structure was investigated to determine the impact on the uranium oxide morphologies. For two ionic liquid cations, increasing the alkyl chain length increases the aspect ratio of the resulting nanostructured oxides. Understanding the resulting metal oxide morphologies could enhance fuel stability and design

  15. Ionic liquid-tolerant cellulase enzymes

    Science.gov (United States)

    Gladden, John; Park, Joshua; Singer, Steven; Simmons, Blake; Sale, Ken

    2017-10-31

    The present invention provides ionic liquid-tolerant cellulases and method of producing and using such cellulases. The cellulases of the invention are useful in saccharification reactions using ionic liquid treated biomass.

  16. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  17. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power and ...... and the ability to tailor properties of individual ILs to meet specific requirements. This article highlights current research as well as the vast potential of ILs for use as media for reactions, separation and processing in the lipid area....

  18. Theoretical Probing of Weak Anion-Cation Interactions in Certain Pyridinium-Based Ionic Liquid Ion Pairs and the Application of Molecular Electrostatic Potential in Their Ionic Crystal Density Determination: A Comparative Study Using Density Functional Approach.

    Science.gov (United States)

    Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh

    2018-01-11

    A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with

  19. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  20. Ionic liquids at the surface of graphite: Wettability and structure

    Science.gov (United States)

    Bordes, Emilie; Douce, Laurent; Quitevis, Edward L.; Pádua, Agílio A. H.; Costa Gomes, Margarida

    2018-05-01

    The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.

  1. Physicochemical characterization of a new family of small alkyl phosphonium imide ionic liquids

    International Nuclear Information System (INIS)

    Hilder, M.; Girard, G.M.A.; Whitbread, K.; Zavorine, S.; Moser, M.; Nucciarone, D.; Forsyth, M.; MacFarlane, D.R.; Howlett, P.C.

    2016-01-01

    Despite their promising properties, phosphonium based ionic liquids have attracted little attention as compared to their nitrogen-based cation counterparts. This study focuses on the properties of a family of small phosphonium imide ionic liquids, as well as the effect of lithium salt addition to these. The 6 ionic liquids were either alkyl, cyclic or nitrile functionalised phoshonium cations with bis(trifluoromethanesulfonyl)imide, NTf_2, or bis(fluorosulfonyl)imide (FSI) as anion. Amongst the properties investigated were ionic conductivity, viscosity, thermal behaviour, electrochemical stability and the reversibility of electrochemical lithium cycling. All ionic liquids showed very promising properties e.g. having low transition temperatures, high electrochemical stabilities, low viscosities and high conductivities. Particularly the trimethyl phosphonium ionic liquids showed some of the highest conductivities reported amongst phosphonium ionic liquids generally. The combination of electrochemical stability, high conductivity and reversible lithium cycling makes them promising systems for energy storage devices such as lithium batteries.

  2. Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

    Energy Technology Data Exchange (ETDEWEB)

    University of California; ERC, Incorporated, Edwards Air Force Base; Air Force Research Laboratory, Edwards Air Force Base; National Synchrotron Radiation Research Center (NSRRC); Institute of Chemistry, Hebrew University; Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg; Chambreau, Steven D.; Vaghjiani, Ghanshyam L.; Leone, Stephen R.

    2011-07-19

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?]ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.

  3. Soft Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Christine J. [Univ. of California, Berkeley, CA (United States); Liu, Chen-Lin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Harmon, Christopher W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Strasser, Daniel [Univ. of California, Berkeley, CA (United States); Golan, Amir [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kostko, Oleg [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chambreau, Steven D. [Edwards Air Force Base, ERC Inc., CA (United States); Vaghjiani, Ghanshyam L. [Air Force Research Laboratory, Edwards Air Force Base, CA (United States); Leone, Stephen R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-04-20

    Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N–]), and a reactive hypergolic ionic liquid, 1-Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca–]), are generated by vaporizing ionic liquid submicrometer aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Also, hotoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~0.3 eV), attributed to reduced internal energy of the isolated ion pairs. Lastly, the method of ionic liquid submicrometer aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally “cooler” source of isolated intact ion pairs in the gas phase compared to effusive sources.

  4. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  5. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    Science.gov (United States)

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  6. Ionic liquid stabilized Rh Nanoparticles for Citral Cyclodehydration

    NARCIS (Netherlands)

    Quek, X.Y.; Guan, Y.; Santen, van R.A.; Hensen, E.J.M.

    2010-01-01

    Smells nice, too: The cyclodehydration of citral is achieved by using rhodium nanoparticles dispersed in an imidazolium-based ionic liquid. p-Cymene, p--dimethylstyrene, and limonene are obtained with selectivity greater than 75¿%. The interaction between the imidazolium cations and the metal

  7. Biopolymer Processing Using Ionic Liquids

    Science.gov (United States)

    2014-08-07

    polymerization. Chitin is not only the main component of the shells of crustaceans, but also exists as a structural polysaccharide of insects, mushrooms...combination of the dissolution of the biomass with the acid catlaysts to depolymerize the biomass into feedstock type chemicals. By using an imidazolium...Technical Section Technical Objective Ionic liquids have demonstrated the ability to effectively dissolve biomass ,1,2 including chitin and

  8. Electrochemical Model for Ionic Liquid Electrolytes in Lithium Batteries

    International Nuclear Information System (INIS)

    Yoo, Kisoo; Deshpande, Anirudh; Banerjee, Soumik; Dutta, Prashanta

    2015-01-01

    ABSTRACT: Room temperature ionic liquids are considered as potential electrolytes for high performance and safe lithium batteries due to their very low vapor pressure and relatively wide electrochemical and thermal stability windows. Unlike organic electrolytes, ionic liquid electrolytes are molten salts at room temperature with dissociated cations and anions. These dissociated ions interfere with the transport of lithium ions in lithium battery. In this study, a mathematical model is developed for transport of ionic components to study the performance of ionic liquid based lithium batteries. The mathematical model is based on a univalent ternary electrolyte frequently encountered in ionic liquid electrolytes of lithium batteries. Owing to the very high concentration of components in ionic liquid, the transport of lithium ions is described by the mutual diffusion phenomena using Maxwell-Stefan diffusivities, which are obtained from atomistic simulation. The model is employed to study a lithium-ion battery where the electrolyte comprises ionic liquid with mppy + (N-methyl-N-propyl pyrrolidinium) cation and TFSI − (bis trifluoromethanesulfonyl imide) anion. For a moderate value of reaction rate constant, the electric performance results predicted by the model are in good agreement with experimental data. We also studied the effect of porosity and thickness of separator on the performance of lithium-ion battery using this model. Numerical results indicate that low rate of lithium ion transport causes lithium depleted zone in the porous cathode regions as the porosity decreases or the length of the separator increases. The lithium depleted region is responsible for lower specific capacity in lithium-ion cells. The model presented in this study can be used for design of optimal ionic liquid electrolytes for lithium-ion and lithium-air batteries

  9. Ionic Liquids in Biomass Processing

    Science.gov (United States)

    Tan, Suzie Su Yin; Macfarlane, Douglas R.

    Ionic liquids have been studied for their special solvent properties in a wide range of processes, including reactions involving carbohydrates such as cellulose and glucose. Biomass is a widely available and renewable resource that is likely to become an economically viable source of starting materials for chemical and fuel production, especially with the price of petroleum set to increase as supplies are diminished. Biopolymers such as cellulose, hemicellulose and lignin may be converted to useful products, either by direct functionalisation of the polymers or depolymerisation to monomers, followed by microbial or chemical conversion to useful chemicals. Major barriers to the effective conversion of biomass currently include the high crystallinity of cellulose, high reactivity of carbohydrates and lignin, insolubility of cellulose in conventional solvents, as well as heterogeneity in the native lignocellulosic materials and in lignin itself. This combination of factors often results in highly heterogeneous depolymerisation products, which make efficient separation difficult. Thus the extraction, depolymerisation and conversion of biopolymers will require novel reaction systems in order to be both economically attractive and environmentally benign. The solubility of biopolymers in ionic liquids is a major advantage of their use, allowing homogeneous reaction conditions, and this has stimulated a growing research effort in this field. This review examines current research involving the use of ionic liquids in biomass reactions, with perspectives on how it relates to green chemistry, economic viability, and conventional biomass processes.

  10. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    Science.gov (United States)

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-04

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Application of Ionic Liquids in Hydrometallurgy

    Science.gov (United States)

    Park, Jesik; Jung, Yeojin; Kusumah, Priyandi; Lee, Jinyoung; Kwon, Kyungjung; Lee, Churl Kyoung

    2014-01-01

    Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry. PMID:25177864

  12. Simultaneous design of ionic liquid entrainers and energy efficient azeotropic separation processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; Christian, Brianna; White, John

    2012-01-01

    A methodology and tool set for the simultaneous design of ionic liquid entrainers and azeotropic separation processes is presented. By adjusting the cation, anion, and alkyl chain length on the cation, the properties of the ionic liquid can be adjusted to design an entrainer for a given azeotropic...... mixture. Several group contribution property models available in literature have been used along with a newly developed group contribution solubility parameter model and UNIFAC model for ionic liquids (UNIFAC-IL). For a given azeotropic mixture, an ionic liquid is designed using a computer-aided molecular...... design (CAMD) method and the UNIFAC-IL model is used to screen design candidates based on minimum ionic liquid concentration needed to break the azeotrope. Once the ionic liquid has been designed, the extractive distillation column for the azeotropic mixture is designed using the driving force method...

  13. Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium-air battery electrolytes.

    Science.gov (United States)

    Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher

    2016-04-28

    This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas.

  14. On the Chemical Stabilities of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yen-Ho Chu

    2009-09-01

    Full Text Available Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitous and in others, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention must be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  15. On the chemical stabilities of ionic liquids.

    Science.gov (United States)

    Sowmiah, Subbiah; Srinivasadesikan, Venkatesan; Tseng, Ming-Chung; Chu, Yen-Ho

    2009-09-25

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitously advantageous in others is has been a problem, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  16. Radiation Chemistry and Photochemistry of Ionic Liquids

    International Nuclear Information System (INIS)

    Wishart, J.F.; Takahaski, K.

    2010-01-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  17. Novel developments in hydrogen storage, hydrogen activation and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Doroodian, Amir

    2010-12-03

    This dissertation is divided into three chapters. Recently, metal-free hydrogen activation using phosphorous compounds has been reported in science magazine. We have investigated the interaction between hydrogen and phosphorous compounds in presence of strong Lewis acids (chapter one). A new generation of metal-free hydrogen activation, using amines and strong Lewis acids with sterically demanding nature, was already developed in our group. Shortage of high storage capacity using large substitution to improve sterical effect led us to explore the amine borane derivatives, which are explained in chapter two. Due to the high storage capacity of hydrogen in aminoborane derivatives, we have explored these materials to extend hydrogen release. These compounds store hydrogen as proton and hydride on adjacent atoms or ions. These investigations resulted in developing hydrogen storage based on ionic liquids containing methyl guanidinium cation. Then we have continued to develop ionic liquids based on methyl guanidinium cation with different anions, such as tetrafluoro borate (chapter three). We have replaced these anions with transition metal anions to investigate hydrogen bonding and catalytic activity of ionic liquids. This chapter illustrates the world of ionic liquid as a green solvent for organic, inorganic and catalytic reactions and combines the concept of catalysts and solvents based on ionic liquids. The catalytic activity is investigated particularly with respect to the interaction with CO{sub 2}. (orig.)

  18. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling...... but utilise in the case of fast chemical reactions only a small amount of expensive ionic liquid and catalyst. The novel Supported Ionic Liquid Phase (SILP) catalysis concept overcomes these drawbacks and allows the use of fixed-bed reactors for continuous reactions. In this Microreview the SILP catalysis...

  19. Reactions of carbon acids and 1,3-dipoles in the presence of ionic liquids

    International Nuclear Information System (INIS)

    Zlotin, Sergei G; Makhova, Nina N

    2010-01-01

    The review is devoted to the use of ionic liquids as solvents, immobilized organocatalysts and reagents in reactions involving carbon acids and 1,3-dipoles, which are widely used to prepare practically valuable organic compounds of various classes. The characteristic features of processes in the presence of ionic liquids, the effects of the structure of cations and anions on the regio-, stereo- and enantioselectivities of reactions and methods of recovery of ionic liquids are considered.

  20. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    Science.gov (United States)

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  1. On the Chemical Stabilities of Ionic Liquids

    OpenAIRE

    Yen-Ho Chu; Ming-Chung Tseng; Venkatesan Srinivasadesikan; Subbiah Sowmiah

    2009-01-01

    Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transfor...

  2. Solubility data and modeling for sugar alcohols in ionic liquids

    International Nuclear Information System (INIS)

    Okuniewski, Marcin; Ramjugernath, Deresh; Naidoo, Paramespri; Domańska, Urszula

    2014-01-01

    Highlights: • Solubility of D-sorbitol and xylitol in six ILs. • The (liquid + liquid) phase equilibrium of (SA + IL) with UCST. • Interesting properties of [BMIM][TDI] IL. • The correlation with NRTL model. - Abstract: Ionic liquids (ILs) are novel media characterized by strong interactions with different organic substances which leads to a wide spectrum of applications involving extraction. Ionic liquids have been used as a solvent for sugar alcohols, sugars and hydrates. This work demonstrates the experimental and theoretical study of (liquid + liquid) phase equilibria for two sugar alcohols, D-sorbitol and xylitol in a few ILs based on different cations and anions (namely, 1-ethyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide [EMPIP][NTf 2 ], 1-hexyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide [HMPIP][NTf 2 ], N-hexylquinolinium bis(trifluoromethylsulfonyl)imide [HQuin][NTf 2 ], N-hexylisoquinolinium bis(trifluoromethylsulfonyl)imide [HiQuin][NTf 2 ], 1-butyl-1-methylimidazolium 4,5-dicyano-2-(trifluoromethyl)-imidazolide [BMIM][TDI] and 1-(cyanomethyl)-3-methylimidazolium 4,5-dicyano-2-(trifluoromethyl)-imidazolide [CCNMIM][TDI]). This study was conducted to assess the applicability of the studied ILs for dissolution of these biomass-related materials. (Liquid + liquid) phase equilibrium diagrams (LLE) in binary systems (sugar alcohol + ionic liquid) were measured using the dynamic technique. The influence of the chemical structure of both the ionic liquids and sugar alcohols were established and is discussed

  3. Membrane separation of ionic liquid solutions

    Science.gov (United States)

    Campos, Daniel; Feiring, Andrew Edward; Majumdar, Sudipto; Nemser, Stuart

    2015-09-01

    A membrane separation process using a highly fluorinated polymer membrane that selectively permeates water of an aqueous ionic liquid solution to provide dry ionic liquid. Preferably the polymer is a polymer that includes polymerized perfluoro-2,2-dimethyl-1,3-dioxole (PDD). The process is also capable of removing small molecular compounds such as organic solvents that can be present in the solution. This membrane separation process is suitable for drying the aqueous ionic liquid byproduct from precipitating solutions of biomass dissolved in ionic liquid, and is thus instrumental to providing usable lignocellulosic products for energy consumption and other industrial uses in an environmentally benign manner.

  4. Recent development of ionic liquid membranes

    OpenAIRE

    Wang, Junfeng; Luo, Jianquan; Feng, Shicao; Li, Haoran; Wan, Yinhua; Zhang, Xiangping

    2016-01-01

    The interest in ionic liquids (IL) is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquidâliquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs) and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive ov...

  5. Highly Selective Separation of Carbon Dioxide from Nitrogen and Methane by Nitrile/Glycol-Difunctionalized Ionic Liquids in Supported Ionic Liquid Membranes (SILMs)

    OpenAIRE

    Hojniak, Sandra D.; Silverwood, Ian P.; Laeeq Khan, Asim; Vankelecom, Ivo F.J.; Dehaen, Wim; Kazarian, Sergei G.; Binnemans, Koen

    2014-01-01

    Novel difunctionalized ionic liquids (ILs) containing a triethylene glycol monomethyl ether chain and a nitrile group on a pyrrolidinium or imidazolium cation have been synthesized and incorporated into supported ionic liquid membranes (SILMs). These ILs exhibit ca. 2.3 times higher CO2/N2 and CO2/CH4 gas separation selectivities than analogous ILs functionalized only with a glycol chain. Although the glycol moiety ensures room temperature liquidity of the pyrrolidinium and imidazolium ILs, t...

  6. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  7. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  8. Preparation and transport properties of novel lithium ionic liquids

    International Nuclear Information System (INIS)

    Shobukawa, Hitoshi; Tokuda, Hiroyuki; Tabata, Sei-Ichiro; Watanabe, Masayoshi

    2004-01-01

    Novel lithium salts of borates having two electron-withdrawing groups (either 1,1,1,3,3,3-hexafluoro-2-propoxy or pentafluorophenoxy group) and two methoxy-oligo(ethylene oxide) groups (number of repeating unit: n = 3, 4, 7.2) were prepared by successive substitution-reactions from LiBH 4 . The obtained lithium salts were clear and colorless liquids at room temperature. The density, thermal property, viscosity, and ionic conductivity were measured for the lithium ionic liquids. The pulsed-gradient spin-echo NMR (PGSE-NMR) method was used to independently determine self-diffusion coefficients of the lithium cation ( 7 Li NMR) and the anion ( 19 F NMR) in the bulk. The ionic conductivity of the new lithium salts was 10 -5 to 10 -4 S cm -1 at 30 deg. C, which was lower than that of typical ionic liquids by two orders of magnitude. However, the degree of self-dissociation of the lithium ionic liquids; the ratio of the molar conductivity determined by the complex impedance method to that calculated from the self-diffusion coefficients and the Nernst-Einstein equation, ranged from 0.1 to 0.4, which are comparable values to those of a highly dissociable salt in an aprotic polar solvent and of typical ionic liquids. The main reason for the meager conductivity was high viscosities of the lithium ionic liquids. It should be noted that the lithium ionic liquids have self-dissociation ability and conduct the ions in the absence of organic solvents

  9. Colloidal systems of silver nanoparticles and high-regioregular cationic polythiophene with ionic-liquid-like pendant groups: Optical properties and SERS

    Czech Academy of Sciences Publication Activity Database

    Kazim, Samrana; Pfleger, Jiří; Procházka, M.; Bondarev, D.; Vohlídal, J.

    2011-01-01

    Roč. 354, č. 2 (2011), s. 611-619 ISSN 0021-9797 R&D Projects: GA AV ČR KAN100500652; GA ČR GA203/07/0717 Institutional research plan: CEZ:AV0Z40500505 Keywords : ionic conjugated polymer * polythiophene polyelectrolyte * plasmonic nanoparticle Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.070, year: 2011

  10. Partitioning of organics between ionic liquids and supercritical CO2: Limiting K-factors in [bmim][N(CN)2]–scCO2 system and generalized correlation with cation- and anion-specific LSERs

    Czech Academy of Sciences Publication Activity Database

    Planeta, Josef; Karásek, Pavel; Roth, Michal

    2015-01-01

    Roč. 102, JUL (2015), s. 133-139 ISSN 0896-8446 Institutional support: RVO:68081715 Keywords : ionic liquids * supercritical fluid chromatography * partition coefficient Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.579, year: 2015

  11. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids

    Science.gov (United States)

    Suzuki, Yumiko

    2018-01-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702

  12. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    Science.gov (United States)

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  13. Hydrogen Sulfide and Ionic Liquids: Absorption, Separation, and Oxidation.

    Science.gov (United States)

    Chiappe, Cinzia; Pomelli, Christian Silvio

    2017-06-01

    Economical and environmental concerns are the main motivations for development of energy-efficient processes and new eco-friendly materials for the capture of greenhouse gases. Currently, H 2 S capture is dominated by physical and/or chemical absorption technologies, which are, however, energy intensive and often problematic from an environmental point of view due to emission of volatile solvent components. Ionic liquids have been proposed as a promising alternative to conventional solvents because of their low volatility and other interesting properties. The aim of the present review paper is to provide a detailed overview of the achievements and difficulties that have been encountered in finding suitable ionic liquids for H 2 S capture. The effect of ionic liquid anions, cations, and functional groups on the H 2 S absorption, separation, and oxidation are highlighted. Recent developments on yet scarcely available molecular simulations and on the development of robust predictive methods are also discussed.

  14. Functionalized dicationic ionic liquids: Green and efficient ...

    Indian Academy of Sciences (India)

    have the advantages of liquid and solid phase together.11. Task-specific ionic liquids ... more attention as alternative reaction media in green chemistry than conventional ..... The reaction mixture was divided into two. Figure 3. Reusability of ...

  15. Ionic liquids: an x-ray reflectivity study

    International Nuclear Information System (INIS)

    Sloutskin, E.; Deutsch, M.; Tamam, L.; Ocko, B.; Kuzmenko, I.; Gog, T.

    2005-01-01

    Full Text:Ionic liquids are non-volatile, non-flammable and thermally stable solvents, and as such are promising 'green' replacements for traditional volatile organic solvents. In the last years hundreds of Ionic liquids were synthesized. Due to the Ionic liquids great industrial potential, this number is growing at an exceedingly fast rate. Despite the great importance of the interfacial properties of materials for technological applications and basic science, the atomic-scale surface structure of the Ionic liquids has never been studied previously. In our study, synchrotron x-ray reflectivity and surface tensiometry were employed to obtain the surface structure and thermodynamics of two ionic liquids, based on the 1-alkyl-3-methylimidazolium cations. A molecular layer of a density ∼18% higher than that of the bulk is found to form at the free surface of these liquids. The excess concentration of the oppositely charged ions within the surface layer is determined by chemical substitution of the anion. Finally, the observed layering at the surface is contrasted with our measurements on the behavior of classical aqueous salt solutions

  16. Ionic liquids in drug delivery.

    Science.gov (United States)

    Shamshina, Julia L; Barber, Patrick S; Rogers, Robin D

    2013-10-01

    To overcome potential problems with solid-state APIs, such as polymorphism, solubility and bioavailability, pure liquid salt (ionic liquid) forms of active pharmaceutical ingredients (API-ILs) are considered here as a design strategy. After a critical review of the current literature, the recent development of the API-ILs strategy is presented, with a particular focus on the liquefaction of drugs. A variety of IL tools for control over the liquid salt state of matter are discussed including choice of counterion to produce an IL from a given API; the concept of oligomeric ions that enables liquefaction of solid ILs by changing the stoichiometry or complexity of the ions; formation of 'liquid co-crystals' where hydrogen bonding is the driving force in the liquefaction of a neutral acid-base complex; combining an IL strategy with the prodrug strategy to improve the delivery of solid APIs; using ILs as delivery agents via trapping a drug in a micelle and finally ILs designed with tunable hydrophilic-lipophilic balance that matches the structural requirements needed to solubilize poorly water-soluble APIs. The authors believe that API-IL approaches may save failed lead candidates, extend the patent life of current APIs, lead to new delivery options or even new pharmaceutical action. They encourage the pharmaceutical industry to invest more research into the API-IL platform as it could lead to fast-tracked approval based on similarities to the APIs already approved.

  17. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    International Nuclear Information System (INIS)

    Lethesh, Kallidanthiyil Chellappan; Wilfred, Cecilia Devi; Taha, M. F.; Thanabalan, M.

    2014-01-01

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using 1 H NMR and 13 C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated

  18. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    Energy Technology Data Exchange (ETDEWEB)

    Lethesh, Kallidanthiyil Chellappan, E-mail: lethesh.chellappan@petronas.com.my [PETRONAS Ionic Liquids Center, Universiti Teknologi PETRONAS (Malaysia); Wilfred, Cecilia Devi; Taha, M. F. [Department of Chemical Engineering, Universiti Teknologi PETRONAS (Malaysia); Thanabalan, M. [Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  19. Solvent extraction of Sr2+ and Cs+ based on hydrophobic protic ionic liquids

    International Nuclear Information System (INIS)

    Luo, Huimin; Yu, Miao; Dai, Sheng

    2007-01-01

    A series of new hydrophobic and protic alkylammonium ionic liquids with bis(trifluoromethylsulfonyl) imide or bis(perfluoroethylsulfonyl)imide as conjugated anions was synthesized in a one-pot reaction with a high yield. In essence our synthesis method involves the combination of neutralization and metathesis reactions. Some of these hydrophobic and protic ionic liquids were liquids at room temperature and therefore investigated as new extraction media for separation of Sr 2+ and Cs + from aqueous solutions. An excellent extraction efficiency was found for some of these ionic liquids using dicyclohexano-18-crown-6 and calix[4]arene-bis(tert-octylbenzo-crown-6) as extractants. The observed enhancement in the extraction efficiency can be attributed to the greater hydrophilicity of the cations of the protic ionic liquids. The application of the protic ionic liquids as new solvent systems for solvent extraction opens up a new avenue in searching for simple and efficient ionic liquids for tailored separation processes. (orig.)

  20. Polarizability effects on the structure and dynamics of ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil); Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM (Brazil); Ribeiro, Mauro C. C. [Laboratório de Espectroscopia Molecular, Instituto de Química, Universidade de São Paulo, São Paulo, SP C.P. 26077, 05513 970 São Paulo, SP (Brazil); Skaf, Munir S. [Institute of Chemistry, University of Campinas – UNICAMP, Cx. P. 6154, Campinas, SP 13084-862 (Brazil)

    2014-04-14

    Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibrium structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.

  1. Recent development of ionic liquid membranes

    Directory of Open Access Journals (Sweden)

    Junfeng Wang

    2016-04-01

    Full Text Available The interest in ionic liquids (IL is motivated by its unique properties, such as negligible vapor pressure, thermal stability, wide electrochemical stability window, and tunability of properties. ILs have been highlighted as solvents for liquid–liquid extraction and liquid membrane separation. To further expand its application in separation field, the ionic liquid membranes (ILMs and its separation technology have been proposed and developed rapidly. This paper is to give a comprehensive overview on the recent applications of ILMs for the separation of various compounds, including organic compounds, mixed gases, and metal ions. Firstly, ILMs was classified into supported ionic liquid membranes (SILMs and quasi-solidified ionic liquid membranes (QSILMs according to the immobilization method of ILs. Then, preparation methods of ILMs, membrane stability as well as applications of ILMs in the separation of various mixtures were reviewed. Followed this, transport mechanisms of gaseous mixtures and organic compounds were elucidated in order to better understand the separation process of ILMs. This tutorial review intends to not only offer an overview on the development of ILMs but also provide a guide for ILMs preparations and applications. Keywords: Ionic liquid membrane, Supported ionic liquid membrane, Qusai-solidified ionic liquid membrane, Stability, Application

  2. Improved ionic model of liquid uranium dioxide

    NARCIS (Netherlands)

    Gryaznov, [No Value; Iosilevski, [No Value; Yakub, E; Fortov, [No Value; Hyland, GJ; Ronchi, C

    The paper presents a model for liquid uranium dioxide, obtained by improving a simplified ionic model, previously adopted to describe the equation of state of this substance [1]. A "chemical picture" is used for liquid UO2 of stoichiometric and non-stoichiometric composition. Several ionic species

  3. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    Vicent-Luna, J.M.; Dubbeldam, D.; Gómez-Álvarez, P.; Calero, S.

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level

  4. Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C(1)-C(4), C(8)) in both cation and anion of [RMIM][R-OSO(3)] by sum frequency generation and surface tension.

    Science.gov (United States)

    Santos, Cherry S; Baldelli, Steven

    2009-01-29

    The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.

  5. Ionic liquid based on α-amino acid anion and N7,N9-dimethylguaninium cation ([dMG][AA]): theoretical study on the structure and electronic properties.

    Science.gov (United States)

    Shakourian-Fard, Mehdi; Fattahi, Alireza; Bayat, Ahmad

    2012-06-07

    The interactions between five amino acid based anions ([AA](-) (AA = Gly, Phe, His, Try, and Tyr)) and N7,N9-dimethylguaninium cation ([dMG](+)) have been investigated by the hybrid density functional theory method B3LYP together with the basis set 6-311++G(d,p). The calculated interaction energy was found to decrease in magnitude with increasing side-chain length in the amino acid anion. The interaction between the [dMG](+) cation and [AA](-) anion in the most stable configurations of ion pairs is a hydrogen bonding interaction. These hydrogen bonds (H bonds) were analyzed by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis. Finally, several correlations between electron densities in bond critical points of hydrogen bonds and interaction energy as well as vibrational frequencies in the most stable configurations of ion pairs have been checked.

  6. A simulation study of CS2 solutions in two related ionic liquids with dications and monocations

    Science.gov (United States)

    Lynden-Bell, R. M.; Quitevis, E. L.

    2018-05-01

    Atomistic simulations of solutions of CS2 in an ionic liquid, [C8(C1im)2 ] [NTf2]2, with a divalent cation and in the corresponding ionic liquid with a monovalent cation, [C4C1im][NTf2], were carried out. The low-frequency librational density of states of the CS2 was of particular interest in view of recent optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). Compared to the monocation ionic liquid, the maximum shifts to higher frequencies in the dication ionic liquid under ambient conditions, but was found to be significantly pressure-dependent. CS2 molecules lie above and below the plane of the imidazolium rings and found to be close to the butyl tails of the monocation. The diffusion rates and embedding energies of solvent ions and CS2 in the two ionic liquids were measured.

  7. Structure and lifetimes in ionic liquids and their mixtures.

    Science.gov (United States)

    Gehrke, Sascha; von Domaros, Michael; Clark, Ryan; Hollóczki, Oldamur; Brehm, Martin; Welton, Tom; Luzar, Alenka; Kirchner, Barbara

    2018-01-01

    With the aid of molecular dynamics simulations, we study the structure and dynamics of different ionic liquid systems, with focus on hydrogen bond, ion pair and ion cage formation. To do so, we report radial distribution functions, their number integrals, and various time-correlation functions, from which we extract well-defined lifetimes by means of the reactive flux formalism. We explore the influence of polarizable force fields vs. non-polarizable ones with downscaled charges (±0.8) for the example of 1-butyl-3-methylimidazolium bromide. Furthermore, we use 1-butyl-3-methylimidazolium trifluoromethanesulfonate to investigate the impact of temperature and mixing with water as well as with the chloride ionic liquid. Smaller coordination numbers, larger distances, and tremendously accelerated dynamics are observed when the polarizable force field is applied. The same trends are found with increasing temperature. Adding water decreases the ion-ion coordination numbers whereas the water-ion and water-water coordination is enhanced. A domain analysis reveals that the nonpolar parts of the ions are dispersed and when more water is added the water clusters increase in size. The dynamics accelerate in general upon addition of water. In the ionic liquid mixture, the coordination number around the cation changes between the two anions, but the number integrals of the cation around the anions remain constant and the dynamics slow down with increasing content of the chloride ionic liquid.

  8. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  9. Key Developments in Ionic Liquid Crystals

    OpenAIRE

    Fernandez, A.A.; Kouwer, P.H.J.

    2016-01-01

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a...

  10. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  11. Ionic liquids, tuneable solvents for intensifying reactions and separations

    NARCIS (Netherlands)

    Meindersma, G.W.; Kuipers, N.J.M.; Haan, de A.B.

    2007-01-01

    An Ionic Liquid (IL), or a Room Temperature Ionic Liquid (RTIL), is commonly defined as a liquid entirely composed of ions, which is a fluid below 100 °C. Due to the fact that an ionic liquid is a salt, it has a negligible vapour pressure. Therefore, ionic liquids are not volatile at ambient process

  12. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  13. Static and dynamic wetting behaviour of ionic liquids.

    Science.gov (United States)

    Delcheva, Iliana; Ralston, John; Beattie, David A; Krasowska, Marta

    2015-08-01

    Ionic liquids (ILs) are a unique family of molecular liquids ('molten salts') that consist of a combination of bulky organic cations coupled to inorganic or organic anions. The net result of steric hindrance and strong hydrogen bonding between components results in a material that is liquid at room temperature. One can alter the properties of ionic liquids through chemical modification of anion and cation, thus tailoring the IL for a given application. One such property that can be controlled or selected is the wettability of an IL on a particular solid substrate. However, the study of wetting of ionic liquids is complicated by the care required for accurate and reproducible measurement, due to both the susceptibility of the IL properties to water content, as well as to the sensitivity of wettability measurements to the state of the solid surface. This review deals with wetting studies of ILs to date, including both static and dynamic wetting, as well as issues concerning line tension and the formation of precursor and wetting films. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Water in Room Temperature Ionic Liquids

    Science.gov (United States)

    Fayer, Michael

    2014-03-01

    Room temperature ionic liquids (or RTILs, salts with a melting point below 25 °C) have become a subject of intense study over the last several decades. Currently, RTIL application research includes synthesis, batteries, solar cells, crystallization, drug delivery, and optics. RTILs are often composed of an inorganic anion paired with an asymmetric organic cation which contains one or more pendant alkyl chains. The asymmetry of the cation frustrates crystallization, causing the salt's melting point to drop significantly. In general, RTILs are very hygroscopic, and therefore, it is of interest to examine the influence of water on RTIL structure and dynamics. In addition, in contrast to normal aqueous salt solutions, which crystallize at low water concentration, in an RTIL it is possible to examine isolated water molecules interacting with ions but not with other water molecules. Here, optical heterodyne-detected optical Kerr effect (OHD-OKE) measurements of orientational relaxation on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate RTILs as a function of chain length and water concentration are presented. The addition of water to the longer alkyl chain RTILs causes the emergence of a long time bi-exponential orientational anisotropy decay. Such decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The orientational relaxation is not hydrodynamic, with the slowest relaxation component becoming slower as the viscosity decreases for the longest chain, highest water content samples. The dynamics of isolated D2O molecules in 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF6) were examined using two dimensional infrared (2D IR) vibrational echo spectroscopy. Spectral diffusion and incoherent and coherent transfer of excitation between the symmetric and antisymmetric modes are examined. The coherent transfer experiments are used to address the nature of inhomogeneous

  15. Electrochemical applications of room temperature ionic liquids in nuclear fuel cycle

    International Nuclear Information System (INIS)

    Venkatesan, K.A.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2008-01-01

    Applications of room temperature ionic liquids (RTILs) have invaded all branches of science. They are also receiving an upsurge, in recent years, for possible applications in various stages of nuclear fuel cycle. Ionic liquids are compounds composed entirely of ions existing in liquid state and RTILs are ionic liquids molten at temperatures lower than 373 K. RTILs are generally made up of an organic cation and an inorganic or an organic anion. Room temperature ionic liquids have several fascinating properties, which are unique to a particular combination of cation and anion. The properties such as insignificant vapor pressure, amazing ability to dissolve organic and inorganic compounds, wide electrochemical window are the specific advantages when dealing with application of RTILs for reprocessing of spent nuclear fuel. The ionic liquids are regarded as designer or tailor-made solvents as their properties can be tuned for desired application by appropriate cation-anion combinations. An excellent review by Wilkes describes about the historical perspectives of room temperature ionic liquids, pioneers in that area, events and the products delivered till 2001. Furthermore, several comprehensive reviews have been made on room temperature ionic liquids by various authors

  16. Nanoarchitecture Control Enabled by Ionic Liquids

    Science.gov (United States)

    Murdoch, Heather A.; Limmer, Krista R.; Labukas, Joseph P.

    2017-04-01

    Ionic liquids have many advantages over traditional aqueous electrosynthesis for fabrication of functional nanoarchitectures, including enabling the integration of nanoparticles into traditional coatings, superhydrophobicity, nanofoams, and other hierarchical structures. Shape and size control through ionic liquid selection and processing conditions can synthesize nanoparticles and nanoarchitectures without the use of capping agents, surfactants, or templates that are often deleterious to the functionality of the resultant system. Here we give a brief overview of some recent and interesting applications of ionic liquids to the synthesis of nanoparticles and nanoarchitectures.

  17. Recent development of ionic liquid stationary phases for liquid chromatography.

    Science.gov (United States)

    Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang

    2015-11-13

    Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization.

    Science.gov (United States)

    Egorova, Ksenia S; Ananikov, Valentine P

    2014-02-01

    Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A short review on stable metal nanoparticles using ionic liquids, supported ionic liquids, and poly(ionic liquids)

    International Nuclear Information System (INIS)

    Manojkumar, Kasina; Sivaramakrishna, Akella; Vijayakrishna, Kari

    2016-01-01

    Metal nanoparticles (NPs) are a subject of global interest in research community due to their diverse applications in various fields of science. The stabilization of these metal NPs is of great concern in order to avoid their agglomerization during their applications. There is a huge pool of cations and anions available for the selection of ionic liquids (ILs) as stabilizers for the synthesis of metal NPs. ILs are known for their tunable nature allowing the fine tuning of NPs size and solubility by varying the substitutions on the heteroatom as well as the counter anions. However, there has been a debate over the stability of metal NPs stabilized by ILs over a long period of time and also upon their recycling and reuse in organocatalytic reactions. ILs covalently attached to solid supports (SILLPs) have given a new dimension for the stabilization of metal NPs as well as their separation, recovery, and reuse in organocatalytic reactions. Poly(ILs) (PILs) or polyelectrolytes have created a significant revolution in the polymer science owing to their characteristic properties of polymers as well as ILs. This dual behavior of PILs has facilitated the stabilization of PIL-stabilized metal NPs over a long period of time with negligible or no change in particle size, stability, and size distribution upon recycling in catalysis. This review provides an insight into the different types of imidazolium-based ILs, supported ILs, and PILs used so far for the stabilization of metal NPs and their applications as a function of their cations and counter anions.

  20. Ionic Liquid Epoxy Composite Cryotanks, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  1. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  2. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  3. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying; Moganty, Surya S.; Schaefer, Jennifer L.; Archer, Lynden A.

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2

  4. Water-soluble, triflate-based, pyrrolidinium ionic liquids

    International Nuclear Information System (INIS)

    Moreno, M.; Montanino, M.; Carewska, M.; Appetecchi, G.B.; Jeremias, S.; Passerini, S.

    2013-01-01

    Highlights: • Water-soluble, pyrrolidinium triflate ILs as solvents for extraction processes. • Electrolyte components for high safety, electrochemical devices. • Effect of the oxygen atom in the alkyl main side chain of pyrrolidinium cation. -- Abstract: The physicochemical and electrochemical properties of the water-soluble, N-methoxyethyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 1(2O1) OSO 2 CF 3 ) ionic liquid (IL) were investigated and compared with those of commercial N-butyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 14 OSO 2 CF 3 ). The results have shown that the transport properties are well correlated with the rheological and thermal behavior. The incorporation of an oxygen atom in the pyrrolidinium cation aliphatic side chain resulted in enhanced flexibility of the ether side chain, this supporting for the higher ionic conductivity, self-diffusion coefficient and density of PYR 1(2O1) OSO 2 CF 3 with respect to PYR 14 OSO 2 CF 3 , whereas no relevant effect on the crystallization of the ionic liquid was found. Finally, the presence of the ether side chain material in the pyrrolidinium cation led to a reduction in electrochemical stability, particularly on the cathodic verse

  5. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  6. Symmetric Imidazolium-Based Paramagnetic Ionic Liquids

    Science.gov (United States)

    2017-11-29

    Charts N/A Unclassified Unclassified Unclassified SAR 14 Kamran Ghiassi N/A 1 Symmetric Imidazolium-Based Paramagnetic Ionic Liquids Kevin T. Greeson...NUMBER (Include area code) 29 November 2017 Briefing Charts 01 November 2017 - 30 November 2017 Symmetric Imidazolium-Based Paramagnetic Ionic ... Liquids K. Greeson, K. Ghiassi, J. Alston, N. Redeker, J. Marcischak, L. Gilmore, A. Guenthner Air Force Research Laboratory (AFMC) AFRL/RQRP 9 Antares

  7. Ionic liquids in the synthesis of nanoobjects

    International Nuclear Information System (INIS)

    Tarasova, Natalia P; Smetannikov, Yurii V; Zanin, A A

    2010-01-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  8. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  9. The Solubility Parameters of Ionic Liquids

    Science.gov (United States)

    Marciniak, Andrzej

    2010-01-01

    The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated. PMID:20559495

  10. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  11. Computationally Efficient Prediction of Ionic Liquid Properties

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Due to fundamental differences, room-temperature ionic liquids (RTIL) are significantly more viscous than conventional molecular liquids and require long simulation times. At the same time, RTILs remain in the liquid state over a much broader temperature range than the ordinary liquids. We exploit...... to ambient temperatures. We numerically prove the validity of the proposed concept for density and ionic diffusion of four different RTILs. This simple method enhances the computational efficiency of the existing simulation approaches as applied to RTILs by more than an order of magnitude....

  12. Ionic conductivity and complexation in liquid dielectrics

    International Nuclear Information System (INIS)

    Zhakin, Anatolii I

    2003-01-01

    Electronic and ionic conductivity in nonpolar liquids is reviewed. Theoretical results on ionic complexation (formation of ion pairs and triplets, dipole-dipole chains, ion-dipole clusters) in liquid dielectrics in an intense external electric field are considered, and the relation between the complexation process and ionic conductivity is discussed. Experimental results supporting the possibility of complexation are presented and compared with theoretical calculations. Onsager's theory about the effect of an intense external electric field on ion-pair dissociation is corrected for the finite size of ions. (reviews of topical problems)

  13. Ionic liquids as lubricant additives: A review

    International Nuclear Information System (INIS)

    Zhou, Yan; Qu, Jun

    2016-01-01

    In pursuit of energy efficiency and durability throughout human history, advances in lubricants have always played important roles. Ionic liquids (ILs) are room-temperature molten salts that possess unique physicochemical properties and have shown great potential in many applications with lubrication as one of the latest. While earlier work (2001–2011) primarily explored the feasibility of using ILs as neat or base lubricants, using ILs as lubricant additives has become the new focal research topic since the breakthrough in ILs’ miscibility in nonpolar hydrocarbon oils in early 2012. This work reviews the recent advances in developing ILs as additives for lubrication with an attempt to correlate among the cationic and anionic structures, oil-solubility, and other relevant physicochemical properties, and lubricating behavior. Effects of the concentration of ILs in lubricants and the compatibility between ILs and other additives in the lubricant formulation on the tribological performance are described followed by a discussion of wear protection mechanism based on tribofilm characterization. As a result, future research directions are suggested at the end.

  14. Density and surface tension of ionic liquids.

    Science.gov (United States)

    Kolbeck, C; Lehmann, J; Lovelock, K R J; Cremer, T; Paape, N; Wasserscheid, P; Fröba, A P; Maier, F; Steinrück, H-P

    2010-12-30

    We measured the density and surface tension of 9 bis[(trifluoromethyl)sulfonyl]imide ([Tf(2)N](-))-based and 12 1-methyl-3-octylimidazolium ([C(8)C(1)Im](+))-based ionic liquids (ILs) with the vibrating tube and the pendant drop method, respectively. This comprehensive set of ILs was chosen to probe the influence of the cations and anions on density and surface tension. When the alkyl chain length in the [C(n)C(1)Im][Tf(2)N] series (n = 1, 2, 4, 6, 8, 10, 12) is increased, a decrease in density is observed. The surface tension initially also decreases but reaches a plateau for alkyl chain lengths greater than n = 8. Functionalizing the alkyl chains with ethylene glycol groups results in a higher density as well as a higher surface tension. For the dependence of density and surface tension on the chemical nature of the anion, relations are only found for subgroups of the studied ILs. Density and surface tension values are discussed with respect to intermolecular interactions and surface composition as determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). The absence of nonvolatile surface-active contaminants was proven by ARXPS.

  15. Ionic liquid gel materials: applications in green and sustainable chemistry

    OpenAIRE

    Marr, Patricia C.; Marr, Andrew C.

    2016-01-01

    Ionic liquid gel materials offer a way to further utilise ionic liquids in technological applications. Combining the controlled and directed assembly of gels, with the diverse applications of ionic liquids, enables the design of a heady combination of functional tailored materials, leading to the development of task specific / functional ionic liquid gels. This review introduces gels and gel classification, focusing on ionic liquid gels and their potential roles in a more sustainable future. ...

  16. Task-specific ionic liquids for solubilizing metal compounds

    OpenAIRE

    Thijs, Ben

    2007-01-01

    The main goal of this PhD thesis was to design new task-specific ionic liquids with the ability to dissolve metal compounds. Despite the large quantity of papers published on ionic liquids, not much is known about the mechanisms of dissolving metals in ionic liquids or about metal-containing ionic liquids. Additionally, many of the commercially available ionic liquids exhibit a very limited solubilizing power for metal compounds, although this is for many applications like electrodeposition a...

  17. Activated carbons employed to remove ionic liquids from aqueous solutions

    International Nuclear Information System (INIS)

    Hassan, S.; Farooq, A.; Ahmad, M.A.; Irfan, N.; Tufail, M.

    2011-01-01

    Imidazolium and pyridinium based ionic liquids (ILs) have been separated from aqueous solutions by adsorption using a raw Chinese activated carbon (CAC), a bleached Chinese activated carbon (BAC) and an acid treated Chinese activated carbon (AAC) as adsorbent. Adsorption isotherms data of ionic liquids on activated carbons has been obtained. The influence of both cations and anions was analyzed by studying three different ILs. The role of surface chemistry of the adsorbent was also examined using activated carbons modified by oxidative treatments. The BET surface area of activated carbons was measured by nitrogen adsorption. The results of this work indicate that activated carbon is an attractive adsorbent to remove ionic liquids from water streams. It has also been demonstrated that the adsorption of hydrophilic ionic liquids can be improved by modifying the amount and nature of oxygen groups on the activated carbon surface specially by increasing basic groups. The adsorption data for isotherms was studied at acidic, neutral and basic pH values. (author)

  18. Extraction Equilibrium of Acrylic Acid by Aqueous Two-Phase Systems Using Hydrophilic Ionic Liquids

    International Nuclear Information System (INIS)

    Lee, Yong Hwa; Lee, Woo Youn; Kim, Ki-Sub; Hong, Yeon Ki

    2014-01-01

    As an effective method for extraction of acrylic acid, aqueous two-phase systems based on morpholinium ionic liquids were used in this study. Effects of the alkyl chain length of cation in morpholinium ionic liquids on phase diagram and extraction efficiencies were investigated. Experimental results show that aqueous two phase systems can be formed by adding appropriate amount of morpholinium ionic liquids to aqueous K 2 HPO 4 solutions. It can be found that the ability of morpholinium ionic liquids for phase separation followed the order [HMMor][Br]>[OMMor][Br]>[BMMor][Br]>[EMMor][Br]. There was little difference between binodal curves of imidazolium ionic liquids and those of morpholinium ionic liquids. 50-90% of the extraction efficiency was observed for acrylic acid by aqueous two phase extraction of acrylic acid with morpholinium ionic liquids. It can be concluded that morpholinium ionic liquids/K 2 HPO 4 were effective for aqueous two phases extraction of acrylic acid comparing to imidazolium ionic liquids/K 2 HPO 4 systems because of their lower cost

  19. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  20. Surface tension and 0.1 MPa density for members of homologous series of ionic liquids composed of imidazolium-, pyridinium-, and pyrrolidinium-based cations and of cyano-groups containing anions

    Czech Academy of Sciences Publication Activity Database

    Součková, Monika; Klomfar, Jaroslav; Pátek, Jaroslav

    2015-01-01

    Roč. 406, November (2015), s. 181-193 ISSN 0378-3812 R&D Projects: GA ČR GA13-00145S Institutional support: RVO:61388998 Keywords : ionic liquid * surface tension-temperature relation * density -temperature relation * cyano-funcionalized anion Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  1. Liquid-Liquid Extraction in Systems Containing Butanol and Ionic Liquids – A Review

    Directory of Open Access Journals (Sweden)

    Kubiczek Artur

    2017-03-01

    Full Text Available Room-temperature ionic liquids (RTILs are a moderately new class of liquid substances that are characterized by a great variety of possible anion-cation combinations giving each of them different properties. For this reason, they have been termed as designer solvents and, as such, they are particularly promising for liquid-liquid extraction, which has been quite intensely studied over the last decade. This paper concentrates on the recent liquid-liquid extraction studies involving ionic liquids, yet focusing strictly on the separation of n-butanol from model aqueous solutions. Such research is undertaken mainly with the intention of facilitating biological butanol production, which is usually carried out through the ABE fermentation process. So far, various sorts of RTILs have been tested for this purpose while mostly ternary liquid-liquid systems have been investigated. The industrial design of liquid-liquid extraction requires prior knowledge of the state of thermodynamic equilibrium and its relation to the process parameters. Such knowledge can be obtained by performing a series of extraction experiments and employing a certain mathematical model to approximate the equilibrium. There are at least a few models available but this paper concentrates primarily on the NRTL equation, which has proven to be one of the most accurate tools for correlating experimental equilibrium data. Thus, all the presented studies have been selected based on the accepted modeling method. The reader is also shown how the NRTL equation can be used to model liquid-liquid systems containing more than three components as it has been the authors’ recent area of expertise.

  2. Thermophysical properties of ammonium and hydroxylammonium protic ionic liquids

    International Nuclear Information System (INIS)

    Chhotaray, Pratap K.; Gardas, Ramesh L.

    2014-01-01

    Highlights: • Density, viscosity and sound velocity measured for five ammonium and hydroxylammonium based protic ionic liquids. • Experimental density and viscosity data estimated using Gardas and Coutinho model and Vogel–Tamman–Fulcher equation. • Effects of cation, anion and alkyl chain length on studied properties have been discussed. • The intermolecular interactions were analyzed on the basis of derived properties. - Abstract: In this work, five protic ionic liquids having propylammonium, 3-hydroxy propylammonium as cations and formate, acetate, trifluoroacetate as anions have been synthesized. Thermophysical properties such as density (ρ), viscosity (η) and sound velocity (u) have been measured at various temperatures ranging from (293.15 to 343.15) K at atmospheric pressure. The experimental density and viscosity were fitted with second order polynomial and Vogel–Tamman–Fulcher (VTF) equations, respectively. Also experimental densities were correlated with the estimated density proposed by Gardas and Coutinho model. The coefficient of thermal expansion (α) and isentropic compressibility (β s ) values have been calculated from the experimental density and sound velocity data using empirical correlations. Lattice potential energy (U POT ) has been calculated to understand the strength of ionic interaction between the ions. Thermal decomposition temperature (T d ) and glass transition temperature (T g ) along with crystallization and melting point were investigated using TGA and DSC analysis, respectively. The effect of alkyl chain length and electronegative fluorine atoms on anionic fragment as well as hydroxyl substituent on cationic side chain in the protic ionic liquids has been discussed for studied properties. The effect of ΔpK a over the studied properties has also been analyzed

  3. Predictive modeling studies for the ecotoxicity of ionic liquids towards the green algae Scenedesmus vacuolatus.

    Science.gov (United States)

    Das, Rudra Narayan; Roy, Kunal

    2014-06-01

    Hazardous potential of ionic liquids is becoming an issue of high concern with increasing application of these compounds in various industrial processes. Predictive toxicological modeling on ionic liquids provides a rational assessment strategy and aids in developing suitable guidance for designing novel analogues. The present study attempts to explore the chemical features of ionic liquids responsible for their ecotoxicity towards the green algae Scenedesmus vacuolatus by developing mathematical models using extended topochemical atom (ETA) indices along with other categories of chemical descriptors. The entire study has been conducted with reference to the OECD guidelines for QSAR model development using predictive classification and regression modeling strategies. The best models from both the analyses showed that ecotoxicity of ionic liquids can be decreased by reducing chain length of cationic substituents and increasing hydrogen bond donor feature in cations, and replacing bulky unsaturated anions with simple saturated moiety having less lipophilic heteroatoms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Ionic liquids behave as dilute electrolyte solutions

    Science.gov (United States)

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  5. Effect of ionic liquid on activity, stability, and structure of enzymes: a review.

    Science.gov (United States)

    Naushad, Mu; Alothman, Zied Abdullah; Khan, Abbul Bashar; Ali, Maroof

    2012-11-01

    Ionic liquids have shown their potential as a solvent media for many enzymatic reactions as well as protein preservation, because of their unusual characteristics. It is also observed that change in cation or anion alters the physiochemical properties of the ionic liquids, which in turn influence the enzymatic reactions by altering the structure, activity, enatioselectivity, and stability of the enzymes. Thus, it is utmost need of the researchers to have full understanding of these influences created by ionic liquids before choosing or developing an ionic liquid to serve as solvent media for enzymatic reaction or protein preservation. So, in the present review, we try to shed light on effects of ionic liquids chemistry on structure, stability, and activity of enzymes, which will be helpful for the researchers in various biocatalytic applications. Copyright © 2012. Published by Elsevier B.V.

  6. How ionic species structure influences phase structure and transitions from protic ionic liquids to liquid crystals to crystals.

    Science.gov (United States)

    Greaves, Tamar L; Broomhall, Hayden; Weerawardena, Asoka; Osborne, Dale A; Canonge, Bastien A; Drummond, Calum J

    2017-12-14

    The phase behaviour of n-alkylammonium (C6 to C16) nitrates and formates has been characterised using synchrotron small angle and wide angle X-ray scattering (SAXS/WAXS), differential scanning calorimetry (DSC), cross polarised optical microscopy (CPOM) and Fourier transform infrared spectroscopy (FTIR). The protic salts may exist as crystalline, liquid crystalline or ionic liquid materials depending on the alkyl chain length and temperature. n-Alkylammonium nitrates with n ≥ 6 form thermotropic liquid crystalline (LC) lamellar phases, whereas n ≥ 8 was required for the formate series to form this LC phase. The protic ionic liquid phase showed an intermediate length scale nanostructure resulting from the segregation of the polar and nonpolar components of the ionic liquid. This segregation was enhanced for longer n-alkyl chains, with a corresponding increase in the correlation length scale. The crystalline and liquid crystalline phases were both lamellar. Phase transition temperatures, lamellar d-spacings, and liquid correlation lengths for the n-alkylammonium nitrates and formates were compared with those for n-alkylammonium chlorides and n-alkylamines. Plateau regions in the liquid crystalline to liquid phase transition temperatures as a function of n for the n-alkylammonium nitrates and formates are consistent with hydrogen-bonding and cation-anion interactions between the ionic species dominating alkyl chain-chain van der Waals interactions, with the exception of the mid chained hexyl- and heptylammonium formates. The d-spacings of the lamellar phases for both the n-alkylammonium nitrates and formates were consistent with an increase in chain-chain layer interdigitation within the bilayer-based lamellae with increasing alkyl chain length, and they were comparable to the n-alkylammonium chlorides.

  7. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors.

    Science.gov (United States)

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-04-07

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br - in PIL-M-(Br) and TFSI - in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br - and TFSI - , respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g - ¹, 40 and 48 kW·kg - ¹, and 107 and 59.9 Wh·kg - ¹ were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively.

  8. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors

    Science.gov (United States)

    Wang, Po-Hsin; Wang, Tzong-Liu; Lin, Wen-Churng; Lin, Hung-Yin; Lee, Mei-Hwa; Yang, Chien-Hsin

    2018-01-01

    A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL) and ionic liquid (IL). This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP)-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br) and TFSI− in PIL-M-(TFSI), respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br)) and (PIL-M-(TFSI)) solid electrolytes, respectively. PMID:29642456

  9. Crosslinked Polymer Ionic Liquid/Ionic Liquid Blends Prepared by Photopolymerization as Solid-State Electrolytes in Supercapacitors

    Directory of Open Access Journals (Sweden)

    Po-Hsin Wang

    2018-04-01

    Full Text Available A photopolymerization method is used to prepare a mixture of polymer ionic liquid (PIL and ionic liquid (IL. This mixture is used as a solid-state electrolyte in carbon nanoparticle (CNP-based symmetric supercapacitors. The solid electrolyte is a binary mixture of a PIL and its corresponding IL. The PIL matrix is a cross-linked polyelectrolyte with an imidazole salt cation coupled with two anions of Br− in PIL-M-(Br and TFSI− in PIL-M-(TFSI, respectively. The corresponding ionic liquids have imidazolium salt cation coupled with two anions of Br− and TFSI−, respectively. This study investigates the electrochemical characteristics of PILs and their corresponding IL mixtures used as a solid electrolyte in supercapacitors. Results show that a specific capacitance, maximum power density and energy density of 87 and 58 F·g−1, 40 and 48 kW·kg−1, and 107 and 59.9 Wh·kg−1 were achieved in supercapacitors based on (PIL-M-(Br and (PIL-M-(TFSI solid electrolytes, respectively.

  10. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  11. Key Developments in Ionic Liquid Crystals.

    Science.gov (United States)

    Alvarez Fernandez, Alexandra; Kouwer, Paul H J

    2016-05-16

    Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  12. Key Developments in Ionic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Alexandra Alvarez Fernandez

    2016-05-01

    Full Text Available Ionic liquid crystals are materials that combine the classes of liquid crystals and ionic liquids. The first one is based on the multi-billion-dollar flat panel display industry, whilst the latter quickly developed in the past decades into a family of highly-tunable non-volatile solvents. The combination yields materials with a unique set of properties, but also with many challenges ahead. In this review, we provide an overview of the key concepts in ionic liquid crystals, particularly from a molecular perspective. What are the important molecular parameters that determine the phase behavior? How should they be introduced into the molecules? Finally, which other tools does one have to realize specific properties in the material?

  13. New Pyrazolium Salts as a Support for Ionic Liquid Crystals and Ionic Conductors.

    Science.gov (United States)

    Pastor, María Jesús; Sánchez, Ignacio; Campo, José A; Schmidt, Rainer; Cano, Mercedes

    2018-04-03

    Ionic liquid crystals (ILCs) are a class of materials that combine the properties of liquid crystals (LCs) and ionic liquids (ILs). This type of materials is directed towards properties such as conductivity in ordered systems at different temperatures. In this work, we synthesize five new families of ILCs containing symmetrical and unsymmetrical substituted pyrazolium cations, with different alkyl long-chains, and anions such as Cl - , BF₄ - , ReO₄ - , p -CH₃-₆H₄SO₃ - (PTS) and CF₃SO₃ - (OTf). We study their thermal behavior by polarized light optical microscopy (POM) and differential scanning calorimetry (DSC). All of them, except those with OTf as counteranion, show thermotropic mesomorphism. The observations by POM reveal textures of lamellar mesophases. Those agree with the arrangement observed in the X-ray crystal structure of [H₂pz R(4),R(4) ][ReO₄]. The nature of the mesophases is also confirmed by variable temperature powder X-ray diffraction. On the other hand, the study of the dielectric properties at variable temperature in mesomorphic (Cl - and BF₄ - ) and non-mesomorphic (OTf) salts indicates that the supramolecular arrangement of the mesophase favors a greater ionic mobility and therefore ionic conductivity.

  14. Ionic liquids for separation of olefin-paraffin mixtures

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Huang, Jing-Fang

    2013-09-17

    The invention is directed to an ionic liquid comprising (i) a cationic portion containing a complex of a silver (I) ion and one or more neutral ligands selected from organoamides, organoamines, olefins, and organonitriles, and (ii) an anionic portion having the chemical formula ##STR00001## wherein m and n are independently 0 or an integer of 1 or above, and p is 0 or 1, provided that when p is 0, the group --N--SO.sub.2--(CF.sub.2).sub.nCF.sub.3 subtended by p is replaced with an oxide atom connected to the shown sulfur atom. The invention is also directed to a method for separating an olefin from an olefin-paraffin mixture by passing the mixture through a layer of the ionic liquid described above.

  15. Solubility of inorganic salts in pure ionic liquids

    International Nuclear Information System (INIS)

    Pereiro, A.B.; Araújo, J.M.M.; Oliveira, F.S.; Esperança, J.M.S.S.; Canongia Lopes, J.N.; Marrucho, I.M.; Rebelo, L.P.N.

    2012-01-01

    Highlights: ► We report the solubility of different conventional salts in several ionic liquids. ► The solubility was initially screened using a visual detection method. ► The most promising mixtures were quantitatively re-measured using an ATR–FTIR. - Abstract: The solubility of different conventional salts in several room-temperature ionic liquids – containing ammonium, phosphonium or imidazolium cations combined with acetate, sulfate, sulfonate, thiocyanate, chloride, tetracyano-borate, tris(pentafluoroethyl)trifluoro-phosphate, L-lactate, bis(trifluoromethylsulfonyl)imide or trifluoromethylsulfonate anions – were screened using a visual detection method. The most promising mixtures were then re-measured using an ATR–FTIR (Attenuated Total Reflection Fourier Transform Infra Red) spectroscopy technique in order to accurately and quantitatively determine the corresponding solubility at 298.15 K.

  16. Densities of Pure Ionic Liquids and Mixtures: Modeling and Data Analysis

    DEFF Research Database (Denmark)

    Abildskov, Jens; O’Connell, John P.

    2015-01-01

    Our two-parameter corresponding states model for liquid densities and compressibilities has been extended to more pure ionic liquids and to their mixtures with one or two solvents. A total of 19 new group contributions (5 new cations and 14 new anions) have been obtained for predicting pressure...

  17. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...... interactions changes negligibly between 300 and 900 K, while the average dipole moment increases due to thermal fluctuations of geometries. Our results contribute to the fundamental understanding of electronic effects in the condensed phase of ionic systems and foster progress in physical chemistry...

  18. The effect of varying the anion of an ionic liquid on the solvent effects on a nucleophilic aromatic substitution reaction.

    Science.gov (United States)

    Hawker, Rebecca R; Haines, Ronald S; Harper, Jason B

    2018-05-09

    A variety of ionic liquids, each containing the same cation but a different anion, were examined as solvents for a nucleophilic aromatic substitution reaction. Varying the proportion of ionic liquid was found to increase the rate constant as the mole fraction of ionic liquid increased demonstrating that the reaction outcome could be controlled through varying the ionic liquid. The solvent effects were correlated with the hydrogen bond accepting ability (β) of the ionic liquid anion allowing for qualitative prediction of the effect of changing this component of the solute. To determine the microscopic origins of the solvent effects, activation parameters were determined through temperature-dependent kinetic analyses and shown to be consistent with previous studies. With the knowledge of the microscopic interactions in solution, an ionic liquid was rationally chosen to maximise rate enhancement demonstrating that an ionic solvent can be selected to control reaction outcome for this reaction type.

  19. Glass Transitions and Low-Frequency Dynamics of Room-Temperature Ionic Liquids

    International Nuclear Information System (INIS)

    Yamamuro, O.; Inamura, Y.; Hayashi, S.; Hamaguchi, H.

    2006-01-01

    We have measured the heat capacity and neutrion quasi- and inelastic scattering spectra of some salts of 1-butyl-3-methylimidazolium ion bmim+, which is a typical cation of room-temperature ionic liquids, and its derivatives. The heat capacity measurements revealed that the room-temperature ionic liquids have glass transitions as molecular liquids. The temperature dependence of configurational entropy demonstrated that the room-temperature ionic liquids are 'fragile liquids'. Both heat capacity and inelastic neutron scattering data revealed that the glassy phases exhibit large low-energy excitations usually called 'boson peak'. The quasielastic neutron scattering data showed that so-called 'fast process' appears around Tg as in molecular and polymer glasses. The temperature dependence of the self-diffusion coefficient derived from the neutron scattering data indicated that the orientation of bmim+ ions and/or butyl-groups of bmim+ ions is highly disordered and very flexible in an ionic liquid phase

  20. A New Class of Solvents for TRU Dissolution and Separation: Ionic Liquids. Project No. 81891

    International Nuclear Information System (INIS)

    Rogers, Robin D.

    2004-01-01

    Through the current EMSP funding, solvent extraction technologies based on liquid-liquid partitioning of TRU to an Ionic Liquid phase containing conventional complexants has been shown to be viable. The growing understanding of the role that the different components of an ionic liquid can have on the partitioning mechanism, and on the nature of the subsequent dissolved species indicates strongly that ionic liquids are not necessarily direct replacements for volatile or otherwise hazardous organic solvents. Separations and partitioning can be exceptionally complex with competing solvent extraction, cation, anion and sacrificial ion exchange mechanisms are all important, depending on the selection of components for formation of the ionic liquid phase, and that control of these competing mechanisms can be utilized to provide new, alternative separations schemes

  1. Thermophysical properties of hydroxyl ammonium ionic liquids

    International Nuclear Information System (INIS)

    Kurnia, K.A.; Wilfred, C.D.; Murugesan, T.

    2009-01-01

    The thermophysical properties of hydroxyl ammonium ionic liquids: density ρ, T = (293.15 to 363.15) K; dynamic viscosity η, T = (298.2 to 348.2) K; and refractive indices n D , T = (293.15 to 333.15) K have been measured. The coefficients of thermal expansion α, values were calculated from the experimental density results using an empirical correlation for T = (293.15 to 363.15) K. The variation of volume expansion of ionic liquids studied was found to be independent of temperature within the range covered in the present work. The thermal decomposition temperature 'T d ' for all the six hydroxyl ammonium ionic liquids is also investigated using thermogravimetric analyzer (TGA)

  2. Preliminary Testing For Anionic, Cationic and Non-ionic

    Directory of Open Access Journals (Sweden)

    Bokic, Lj.

    2007-11-01

    Full Text Available Detergents present a major environmental problem due to large quantities of surfactants released from laundries. For this reason, it is important to apply an appropriate analytical method for their determination. In this work, we propose two simple, fast and inexpensive analytical methods for anionic, cationic and non-ionic surfactant determination: thin layer chromatography (TLC separation for qualitative screening and quantitative potentiometric determination with ion-selective electrodes. These methods have been chosen because of their many advantages: rapidity, ease of operation, low cost of analysis and a wide variety of TLC application possibilities. The advantage of potentiometric titration is its very high degree of automation and very low detection limits obtained with different ion-selective electrodes applied for different surfactants.

  3. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  4. Ionic liquid technology to recover volatile organic compounds (VOCs).

    Science.gov (United States)

    Salar-García, M J; Ortiz-Martínez, V M; Hernández-Fernández, F J; de Los Ríos, A P; Quesada-Medina, J

    2017-01-05

    Volatile organic compounds (VOCs) comprise a wide variety of carbon-based materials which are volatile at relatively low temperatures. Most of VOCs pose a hazard to both human health and the environment. For this reason, in the last years, big efforts have been made to develop efficient techniques for the recovery of VOCs produced from industry. The use of ionic liquids (ILs) is among the most promising separation technologies in this field. This article offers a critical overview on the use of ionic liquids for the separation of VOCs both in bulk and in immobilized form. It covers the most relevant works within this field and provides a global outlook on the limitations and future prospects of this technology. The extraction processes of VOCs by using different IL-based assemblies are described in detail and compared with conventional methods This review also underlines the advantages and limitations posed by ionic liquids according to the nature of the cation and the anions present in their structure and the stability of the membrane configurations in which ILs are used as liquid phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Ionic Liquids as Extraction Media for Metal Ions

    Science.gov (United States)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  6. Effect of a novel amphipathic ionic liquid on lithium deposition in gel polymer electrolytes

    International Nuclear Information System (INIS)

    Choi, Nam-Soon; Koo, Bonjae; Yeon, Jin-Tak; Lee, Kyu Tae; Kim, Dong-Won

    2011-01-01

    Highlights: · Synthesis of a dimeric ionic liquid. · Gel polymer electrolytes providing uniform lithium deposit pathway. · An amphipathic ionic liquid locates at the interface between an electrolyte-rich phase and a polymer matrix in a gel polymer electrolyte. · The presence of PDMITFSI ionic liquid leads to the suppression of dendritic lithium formation on a lithium metal electrode. - Abstract: A novel dimeric ionic liquid based on imidazolium cation and bis(trifluoromethanesulfonyl) imide (TFSI) anion has been synthesized through a metathesis reaction. Its chemical shift values and thermal properties are identified via 1 H nuclear magnetic resonance (NMR) imaging and differential scanning calorimetry (DSC). The effect of the synthesized dimeric ionic liquid on the interfacial resistance of gel polymer electrolytes is described. Differences in the SEM images of lithium electrodes after lithium deposition with and without the 1,1'-pentyl-bis(2,3-dimethylimidazolium) bis(trifluoromethane-sulfonyl)imide (PDMITFSI) ionic liquid in gel polymer electrolytes are clearly discernible. This occurs because the PDMITFSI ionic liquid with hydrophobic moieties and polar groups modulates lithium deposit pathways onto the lithium metal anode. Moreover, high anodic stability for a gel polymer electrolyte with the PDMITFSI ionic liquid was clearly observed.

  7. Detection of Ionic liquid using terahertz time-domain spectroscopy

    Science.gov (United States)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  8. Application of [HMim][NTf2], [HMim][TfO] and [BMim][TfO] ionic liquids on the extraction of toluene from alkanes: Effect of the anion and the alkyl chain length of the cation on the LLE

    International Nuclear Information System (INIS)

    Corderí, Sandra; González, Emilio J.; Calvar, Noelia; Domínguez, Ángeles

    2012-01-01

    Highlights: ► Several ionic liquids were studied as solvent to extract toluene from heptane and cyclohexane. ► (Liquid + liquid) equilibrium data were measured at 298.15 K and atmospheric pressure. ► Selectivity and solute distribution ratio were calculated and compared with those found in literature for sulfolane. ► Experimental data were correlated using NRTL and UNIQUAC thermodynamic models. - Abstract: In this paper, the separation of toluene from the aliphatic hydrocarbons heptane and cyclohexane employing the ionic liquids 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [HMim][NTf 2 ], 1-hexyl-3-methylimidazolium trifluoromethanesulfonate, [HMim][TfO] and 1-butyl-3-methylimidazolium trifluoromethanesulfonate, [BMim][TfO], as solvents was studied and discussed. Liquid–liquid equilibrium data for the ternary systems {heptane, or cyclohexane + toluene + [HMim][NTf 2 ], or [HMim][TfO], or [BMim][TfO]} and {heptane + cyclohexane + [HMim][NTf 2 ], or [HMim][TfO], or [BMim][TfO]} were measured at T = 298.15 K and atmospheric pressure. The degree of consistency of the tie-lines was tested using the Othmer–Tobias equation. The solute distribution ratio and selectivity, derived from the experimental tie-lines, were used to determine if these ionic liquids can be used as potential solvents on the extraction of toluene from aliphatic hydrocarbons; a comparison with literature data where sulfolane is used as solvent was also included. Finally, the experimental data were correlated with the NRTL and UNIQUAC thermodynamic models.

  9. Computational Studies of Ionic Liquids

    National Research Council Canada - National Science Library

    Boatz, Jerry

    2004-01-01

    The structures and relative energies of the six possible N-protonated structures of the 1,5-diamino-1,2,3,4-tetrazolium cation have been computed at the B3LYP(3)/6-311G(d,p) and MP2/6-311G(d,p) levels of theory...

  10. Contribution to the characterization of room temperature ionic liquids under ionizing irradiation

    International Nuclear Information System (INIS)

    Le Rouzo, G.; Lamouroux, Ch.; Moutiers, G.

    2010-01-01

    Room-Temperature Ionic Liquids are potentially interesting for nuclear fuel treatment. Within this framework, ionic liquids stability towards ionizing radiations (α, β or γ) is determining their potential application. The aim of this work is to assess a better understanding of ionic liquids behaviour under radiolysis. Ionic liquids chosen in these studies are constituted with BuMeIm + (or Bu 3 MeN + ) cation associated with various anions: Tf 2 N - , TfO - , PF 6 - and BF 4 - . Moreover, development of suitable chemical analysis tools crucial for characterization of these compounds has been realized. Ionic liquids stability has been mainly studied under γ irradiation, but also under electron beam or heavy particles irradiations. Ionic liquids degradation under radiolysis has been determined with two complementary approaches. The first one aims at understanding radio-induced degradation mechanisms with radical species analysis by Electron Paramagnetic Resonance spectroscopy (EPR). The second one aims at characterizing stable radiolysis products formed in liquid and gaseous phases. Studies were conducted with several analytical techniques: Electro Spray Ionisation Mass Spectrometry (ESI-MS), High Pressure Liquid Chromatography (HPLC, HPLC/UV-VIS, HPLC/ESI-MS), Gas Analysis Mass Spectrometry (Gas MS) and Gas Chromatography hyphenated with Mass Spectrometry (GC/MS). Firstly, the ionic liquid [Bu 3 MeIm][Tf 2 N] has been studied under γ irradiation. Radiolytic stability has been quantitatively assessed for high doses of radiations and a proposal of degradation scheme has been proposed on the basis of radio-induced radicals and radiolysis products analysis. Those data have been compared to those obtained for the γ radiolysis of the ionic liquid [Bu 3 MeN][Tf 2 N], enabling to assess cation influence on ionic liquids radiolysis. Secondly, degradation under γ irradiation of ionic liquids [BuMeIm][X] (X - Tf 2 N - , TfO - , PF 6 - , BF 4 - ) has been quantitatively

  11. Hydrogen fluoride capture by imidazolium acetate ionic liquid

    Science.gov (United States)

    Chaban, Vitaly

    2015-04-01

    Extraction of hydrofluoric acid (HF) from oils is a drastically important problem in petroleum industry, since HF causes quick corrosion of pipe lines and brings severe health problems to humanity. Some ionic liquids (ILs) constitute promising scavenger agents thanks to strong binding to polar compounds and tunability. PM7-MD simulations and hybrid density functional theory are employed here to consider HF capture ability of ILs. Discussing the effects and impacts of the cation and the anion separately and together, we evaluate performance of imidazolium acetate and outline systematic search guidelines for efficient adsorption and extraction of HF.

  12. Crystal structure of dimethylformamidium bis(trifluoromethanesulfonylamide: an ionic liquid

    Directory of Open Access Journals (Sweden)

    Allan Jay P. Cardenas

    2016-09-01

    Full Text Available At 100 K, the title molecular salt, C3H8NO+·C2F6NO4S2−, has orthorhombic (P212121 symmetry; the amino H atom of bis(trifluoromethanesulfonylamine (HNTf2 was transferred to the basic O atom of dimethylformamide (DMF when the ionic liquid components were mixed. The structure displays an O—H...N hydrogen bond, which links the cation to the anion, which is reinforced by a non-conventional C—H...O interaction, generating an R22(7 loop. A further very weak C—H...O interaction generates an [001] chain.

  13. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  14. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  15. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  16. CO2 Solubilities in Amide-based Brφnsted Acidic Ionic Liquids

    International Nuclear Information System (INIS)

    Palgunadi, Jelliarko; Im, Jin Kyu; Kang, Je Eun; Kim, Hoon Sik; Cheong, Min Serk

    2010-01-01

    A distinguished class of hydrophobic ionic liquids bearing a Brφnsted acidic character derived from amide-like compounds were prepared by a neutralization reaction of N,N-diethylformamide, N,N-dibutylformamide, 1-formylpiperidine, and ε-caprolactam with trifluoroacetic acid and physical absorptions of CO 2 in these ionic liquids were demonstrated and evaluated. CO 2 solubilities in these ionic liquids were influenced by the molecular structure of the cation and were apparently increased with the molar volume. Comparison based on a volume unit reveals that CO 2 solubilities in these liquids are relatively higher than those in imidazolium-based ionic liquids. Henry's coefficients calculated from low-pressure solubility tests at 313 to 333 K were used to derive the thermodynamics quantities. Enthalpy and entropy of solvation may share equal contributions in solubility

  17. Synthesis and characterization of new ionic liquids

    International Nuclear Information System (INIS)

    Oliveira, L.M.C. de; Mattedi, S.; Boaventura, J.S.; Iglesias, M.; Universidad de Santiago de Compostela

    2010-01-01

    In recent years, ionic liquids have been highlighted for its potential in various industrial applications. Among them, the salts of Broensted has a promising profile for the low toxicity, low cost and simple synthesis. This paper presents the synthesis and characterization of new salts of Bronsted with branched (lactate) or large chain anions (oleate) for future use as additives promoters of proton conductivity in fuel cells of ethanol. Experimental data were measured for density, sound velocity and conductivity of pure ionic liquids and mixtures. The density decreases linearly with increasing temperature, and sound velocity shows a similar trend, but not linear. The conductivity increases according to the Arrhenius model with activation energy less than 10 J/mol. Tests NMR, FTIR and TGA confirm ionic structure and thermal stability up to 165 deg C. (author)

  18. Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids.

    Science.gov (United States)

    Moura, Leila; Mishra, Manas; Bernales, Varinia; Fuentealba, Patricio; Padua, Agilio A H; Santini, Catherine C; Costa Gomes, Margarida F

    2013-06-20

    The influence of the presence of imidazolium side chain unsaturation on the solubility of ethane and ethylene was studied in three ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide-saturated alkyl side-chain in the cation; 1-methyl-3-(buten-3-yl)imidazolium bis(trifluorosulfonyl)imide-double bond in the side-chain of the cation; and 1-methyl-3-benzylimidazolium bis(trifluorosulfonyl)imide-benzyl group in the side-chain of the cation. The solubility of both gases decreases when the side-chain of the cations is functionalized with an unsaturated group. This can be explained by a less favorable enthalpy of solvation. The difference of solubility between ethane and ethylene can be explained from a balance of enthalpic and entropic factors: for the ionic liquid with the saturated alkyl side-chain and the benzyl-substituted side-chain, it is the favorable entropy of solvation that explains the larger ethylene solubility, whereas in the case of the saturated side-chain, it is the more favorable enthalpy of solvation. Molecular simulation allowed the identification of the mechanisms of solvation and the preferential solvation sites for each gas in the different ionic liquids. Simulations have shown that the entropy of solvation is more favorable when the presence of the gas weakens the cation-anion interactions or when the gas can be solvated near different sites of the ionic liquid.

  19. Effect of the number, position and length of alkyl chains on the physical properties of polysubstituted pyridinium ionic liquids

    International Nuclear Information System (INIS)

    Verdía, Pedro; Hernaiz, Marta; González, Emilio J.; Macedo, Eugénia A.; Salgado, Josefa; Tojo, Emilia

    2014-01-01

    Highlights: • Synthesis of five polysubstituted pyridinium based-ionic liquids. • Physical properties of the pure ionic liquids were measured at several temperatures. • Thermal analysis of the pure ionic liquids was carried out by DSC and TGA techniques. • Density, speed of sound, and refractive index were fitted with a linear expression. • Viscosity data were correlated using the VFT equation. -- Abstract: The knowledge of the physical properties of ionic liquids is of high importance in order to evaluate their potential applicability for a given purpose. In the last few years, ionic liquids have been proposed as promising solvents for extractive desulfurization of fuels. Among them, recent studies have shown that ionic liquids derived from pyridinium affords excellent S-compounds removal capacity. In this work, the thermal analysis of five ionic liquids derived from pyridinium cation polysubstituted with different alkyl chains was carried out by Differencial Scanning Calorimetry (DSC) and Thermal Gravimetric Analysis (TGA). Furthermore, the density, speed of sound, refractive index and dynamic viscosity for all the pure ionic liquids were also measured from T = (298.15 to 343.15) K. The effect of the number of cation alkyl chains, their length, and their position on the pyridinium ring, on the ionic liquid physical properties is also analyzed and discussed

  20. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  1. Desalination of aqueous media using ionic liquids

    NARCIS (Netherlands)

    2014-01-01

    The present invention relates to a method for extracting metal and/or metalloid ions from an aqueous medium, comprising the steps of: a) mixing the aqueous medium with an ionic liquid comprising an aliphatic carboxylate anion having at least one unsaturated carbon-carbon bond, or and/or with a

  2. Vaporisation of a dicationic ionic liquid.

    Science.gov (United States)

    Lovelock, Kevin R J; Deyko, Alexey; Corfield, Jo-Anne; Gooden, Peter N; Licence, Peter; Jones, Robert G

    2009-02-02

    Highest heat of vaporization yet: The dicationic ionic liquid [C(3)(C(1)Im)(2)][Tf(2)N](2) evaporates as a neutral ion triplet. These neutral ion triplets can then be ionised to form singly and doubly charged ions. The mass spectrum exhibits the dication attached to one remaining anion, and the naked dication itself (see picture).

  3. A roadmap to uranium ionic liquids: Anti-crystal engineering

    International Nuclear Information System (INIS)

    Yaprak, Damla; Spielberg, Eike T.; Baecker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-01-01

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C_4mim) cation. As dithiocarbamate ligands binding to the UO_2"2"+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. A roadmap to uranium ionic liquids: anti-crystal engineering.

    Science.gov (United States)

    Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  6. Solvent effects in ionic liquids: empirical linear energy-density relationships.

    Science.gov (United States)

    Cerda-Monje, A; Aizman, A; Tapia, R A; Chiappe, C; Contreras, R

    2012-07-28

    Multiparameter linear energy-density relationships to model solvent effects in room temperature ionic liquids (RTILs) are introduced and tested. The model incorporates two solvent dependent and two specific solute-solvent parameters represented by a set of electronic indexes derived from the conceptual density functional theory. The specific solute-solvent interactions are described in terms of the electronic chemical potential for proton migration between the anion or cation and the transition state structure of a specific reaction. These indexes provide a quantitative estimation of the hydrogen bond (HB) acceptor basicity and the hydrogen bond donor acidity of the ionic solvent, respectively. A sound quantitative scale of HB strength is thereby obtained. The solvent dependent contributions are described by the global electrophilicity of the cation and nucleophilicity of the anion forming the ionic liquid. The model is illustrated for the kinetics of cycloaddition of cyclopentadiene towards acrolein. In general, cation HB acidity outweighs the remaining parameters for this reaction.

  7. Calculating the enthalpy of vaporization for ionic liquid clusters.

    Science.gov (United States)

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  8. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    International Nuclear Information System (INIS)

    Kaneko, T.; Baba, K.; Hatakeyama, R.

    2009-01-01

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changing a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.

  9. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  10. Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Wen-Li Yuan

    2018-03-01

    Full Text Available The instructive structure-property relationships of ionic liquids (ILs can be put to task-specific design of new functionalized ILs. The dicyanamide (DCA ILs are typical CHN type ILs which are halogen free, chemical stable, low-viscous, and fuel-rich. The transport properties of DCA ionic liquids are significant for their applications as solvents, electrolytes, and hypergolic propellants. This work systematically investigates several important transport properties of four DCA ILs ([C4mim][N(CN2], [C4m2im][N(CN2], N4442[N(CN2], and N8444[N(CN2] including viscosity, conductivity, and electrochemical property at different temperatures. The melting points, temperature-dependent viscosities and conductivities reveal the structure-activity relationship of four DCA ILs. From the Walden plots, the imidazolium cations exhibit stronger cation–anion attraction than the ammonium cations. DCA ILs have relatively high values of electrochemical windows (EWs, which indicates that the DCA ILs are potential candidates for electrolytes in electrochemical applications. The cyclic voltammograms of Eu(III in these DCA ILs at GC working electrode at various temperatures 303–333 K consists of quasi-reversible waves. The electrochemical properties of the DCA ILs are also dominated by the cationic structures. The current intensity (ip, the diffusion coefficients (Do, the charge transfer rate constants (ks of Eu(III in DCA ILs all increased with the molar conductivities increased. The cationic structure-transport property relationships of DCA ILs were constructed for designing novel functionalized ILs to fulfill specific demands.

  11. Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids

    International Nuclear Information System (INIS)

    Valero-Pedraza, María José; Martín-Cortés, Alexandra; Navarrete, Alexander; Bermejo, María Dolores; Martín, Ángel

    2015-01-01

    Ammonia borane is a promising hydrogen storage material that liberates hydrogen by thermolysis at moderate temperatures, but it also presents major limitations for practical applications including a long induction time before the initiation of hydrogen release and a difficult regeneration. Previous works have demonstrated that by dissolution of ammonia borane into several ionic liquids, and particularly in 1-butyl-3-methylimidazolium chloride bmimCl, the induction period at the beginning of the thermolysis is eliminated, but some problems persist, including foaming and the formation of a residue after thermolysis that is insoluble in the ionic liquid. In this work, the release of hydrogen from ammonia borane dissolved in different ionic liquids has been analyzed, measuring the kinetics of hydrogen release, visually following the evolution of the sample during the process using pressure glass tube reactors, and analyzing the residue by spectroscopic techniques. While dissolutions of ammonia borane in most ionic liquids analyzed show similar properties as dissolutions in bmimCl, using ionic liquids with bis(trifluoromethylsulfanyl)imide Tf_2N anion the foaming problem is reduced, and in some cases the residue remains dissolved in the ionic liquid, while with ionic liquids with choline anion higher hydrogen yields are achieved that indicate that the decomposition of ammonia borane proceeds through a different path. - Highlights: • Hydrogen release from ammonia borane dissolved in 13 ionic liquids has been studied. • Induction time is shortened and hydrogen release rate is accelerated in all cases. • The best results are obtained using ionic liquids with Tf_2N anion. • Ch cation ionic liquids enable higher H_2 yield, but cyclotriborazane is produced.

  12. Protic ammonium carboxylate ionic liquids: insight into structure, dynamics and thermophysical properties by alkyl group functionalization.

    Science.gov (United States)

    Reddy, Th Dhileep N; Mallik, Bhabani S

    2017-04-19

    This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.

  13. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  14. Discovering less toxic ionic liquids by using the Microtox® toxicity test.

    Science.gov (United States)

    Hernández-Fernández, F J; Bayo, J; Pérez de los Ríos, A; Vicente, M A; Bernal, F J; Quesada-Medina, J

    2015-06-01

    New Microtox® toxicity data of 16 ionic liquids of different cationic and anionic composition were determined. The ionic liquids 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate, [BMPyr(+)][TFO(-)], 1-butyl-1-methylpyrrolidinium chloride, [BMPyr(+)][Cl(-)], hydroxypropylmethylimidazolium fluoroacetate, [HOPMIM(+)][FCH2COO(-)], and hydroxypropylmethylimidazolium glycolate [HOPMIM(+)][glycolate(-)] were found to be less toxic than conventional organic solvent such as chloroform or toluene, accoding the Microtox® toxicity assays. The toxicity of pyrrolidinium cation was lower than the imidazolium and pyridinium ones. It was found that the inclusion of an hydroxyl group in the alkyl chain length of the cation also reduce the toxicity of the ionic liquid. To sum up, the Microtox® toxicity assays can be used as screening tool to easily determined the toxicity of a wide range of ionic liquids and the toxicity data obtained could allow the obtention of structure-toxicity relationships to design less toxic ionic liquids. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The second evolution of ionic liquids: from solvents and separations to advanced materials--energetic examples from the ionic liquid cookbook.

    Science.gov (United States)

    Smiglak, Marcin; Metlen, Andreas; Rogers, Robin D

    2007-11-01

    In this Account of the small portion of the recent research in ionic liquids (ILs) by the Rogers Group, we fast forward through the first evolution of IL research, where ILs were studied for their unique set of physical properties and the resulting potential for tunable "green solvents", to the second evolution of ILs, where the tunability of the cation and anion independently offers almost unlimited access to targeted combinations of physical and chemical properties. This approach is demonstrated here with the field of energetic ionic liquids (EILs), which utilizes this design flexibility to find safe synthetic routes to ILs with high energy content and targeted physical properties.

  16. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Allan J. [Univ. of Houston, TX (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Grey, Clare [Stony Brook Univ., NY (United States)

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B2O5+x, where A = rare earth ion, Y and B = Ba, Sr were studied. The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo2O5+x and NdBaCo2O5+x, PrBaCo2-xFexO6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr3YCo4O10.5, YBaMn2O5+x. A0.5A’0.5BO3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr

  17. Pulse radiolysis study on solvated electrons in ionic liquid with controlling water content

    International Nuclear Information System (INIS)

    Yang Jinfeng; Kondoh, T.; Yoshida, Y.; Nagaishi, R.

    2006-01-01

    content of 0 to 1.4 wt% in ionic liquid, i.e., changing the ionic liquid from the dehydrated state to the water-saturated state. It indicates that the solvation structure of electrons solvated with DEMMA cations was changed to be that hydrated with water molecules, as shown in Fig. 1. In the experiment, several solutes, including acetone, trivalent ion of europium (III), pyrene, and biphenyl, were used to study the reactions of the solvated electrons in ionic liquid. (authors)

  18. Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids

    International Nuclear Information System (INIS)

    Garaev, Valeriy; Pavlovica, Sanita; Vaivars, Guntars; Kleperis, Janis

    2012-01-01

    In this work, the Nafion 112 membrane impregnated with nine various hydroxyl ammonium based ionic liquids have been investigated. The used ionic liquids were combined from hydroxyl ammonium cations (2-hydroxyethylammonium/HEA, bis(2- hydroxyethyl)ammonium/BHEA, tris(2-hydroxyethyl)ammonium/THEA) and carboxylate anions (formate, acetate, lactate). The membranes are characterized by conductivity and thermal stability measurements. It was found, that almost all composites have 10 times higher ion conductivity than a pure Nafion 112 at 90 °C in ambient environment due to the higher thermal stability. The thermal stability of Nafion membrane was increased by all studied nine ionic liquids. In this work, only biodegradable ionic liquids were used for composite preparation.

  19. Phase Behavior of Mixtures of Ionic Liquids and Organic Solvents

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    A corresponding-states form of the generalized van der Waals equation, previously developed for mixtures of an ionic liquid and a supercritical solute, is here extended to mixtures including an ionic liquid and a solvent (water or organic). Group contributions to characteristic parameters...... are implemented, leading to an entirely predictive method for densities of mixed compressed ionic liquids. Quantitative agreement with experimental data is obtained over wide ranges of conditions. Previously, the method has been applied to solubilities of sparingly soluble gases in ionic liquids and in organic...... solvents. Here we show results for heavier and more-than-sparingly solutes such as carbon dioxide and propane in ionic liquids....

  20. Catalytic Ionic-Liquid Membranes: The Convergence of Ionic-Liquid Catalysis and Ionic-Liquid Membrane Separation Technologies.

    Czech Academy of Sciences Publication Activity Database

    Izák, Pavel; Bobbink, F.D.; Hulla, M.; Klepic, M.; Friess, K.; Hovorka, Š.; Dyson, P.J.

    2018-01-01

    Roč. 83, č. 1 (2018), s. 7-18 ISSN 2192-6506 R&D Projects: GA ČR(CZ) GA17-00089S; GA ČR GA17-05421S Institutional support: RVO:67985858 Keywords : heterogeneous catalysis * ionic liquids * membranes Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.797, year: 2016

  1. SN2 fluorination reactions in ionic liquids: a mechanistic study towards solvent engineering.

    Science.gov (United States)

    Oh, Young-Ho; Jang, Hyeong Bin; Im, Suk; Song, Myoung Jong; Kim, So-Yeon; Park, Sung-Woo; Chi, Dae Yoon; Song, Choong Eui; Lee, Sungyul

    2011-01-21

    In the catalysis of S(N)2 fluorination reactions, the ionic liquid anion plays a key role as a Lewis base by binding to the counterion Cs(+) and thereby reducing the retarding Coulombic influence of Cs(+) on the nucleophile F(-). The reaction rates also depend critically on the structures of ionic liquid cation, for example, n-butyl imidazolium gives no S(N)2 products, whereas n-butylmethyl imidazolium works well. The origin of the observed phenomenal synergetic effects by the ionic liquid [mim-(t)OH][OMs], in which t-butanol is bonded covalently to the cation [mim], is that the t-butanol moiety binds to the leaving group of the substrate, moderating the retarding interactions between the acidic hydrogen and F(-). This work is a significant step toward designing and engineering solvents for promoting specific chemical reactions.

  2. Ternary (liquid + liquid) equilibria of {trifluorotris(perfluoroethyl)phosphate based ionic liquids + thiophene + heptane}

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Królikowski, Marek

    2012-01-01

    Highlights: ► Ternary (liquid + liquid) equilibria for 3 ionic liquid + thiophene + heptane systems. ► The influence of ionic liquid structure on phase diagrams is discussed. ► High selectivity for separation of heptane/thiophene is observed. - Abstract: Ternary (liquid + liquid) equilibria for three systems containing ionic liquids {(4-(2-methoxyethyl)-4-methylmorpholinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpiperidinium trifluorotris(perfluoroethyl)phosphate, 1-(2-methoxyethyl)-1-methylpyrrolidinium trifluorotris(perfluoroethyl)phosphate) + thiophene + heptane} have been determined at T = 298.15 K. All systems showed high solubility of thiophene in the ionic liquid and low solubility of heptane. The solute distribution coefficient and the selectivity were calculated for all systems. High values of selectivity were obtained. The experimental results have been correlated using NRTL model. The influence of ionic liquid structure on phase equilibria is discussed.

  3. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  4. Thermophysical properties of sulfonium- and ammonium-based ionic liquids.

    Science.gov (United States)

    Bhattacharjee, Arijit; Luís, Andreia; Lopes-da-Silva, José A; Freire, Mara G; Carvalho, Pedro J; Coutinho, João A P

    2014-11-15

    Experimental data for the density, viscosity, refractive index and surface tension of four sulfonium- and ammonium-based Ionic Liquids (ILs) with the common bis(trifluoromethylsulfonyl)imide anion were measured in the temperature range between 288.15 and 353.15 K and at atmospheric pressure. The ILs considered include butyltrimethylammonium bis(trifluoromethylsulfonyl)imide, [N 4111 ][NTf 2 ], tributylmethylammonium bis(trifluoromethylsulfonyl)imide, [N 4441 ][NTf 2 ], diethylmethylsulfonium bis(trifluoromethylsulfonyl)imide, [S 221 ][NTf 2 ], and triethylsulfonium bis(trifluoromethylsulfonyl)imide, [S 222 ][NTf 2 ]. Based on the gathered results and on data taken from literature, the impact of the cation isomerism and of the size of the aliphatic tails, as well as the effect resulting from the substitution of a nitrogen by a sulfur atom as the cation central atom, on the thermophysical properties of sulfonium- and ammonium-based ILs is here discussed. Remarkably, more symmetric cations present a lower viscosity for the same, and sometimes even for higher, alkyl chain lengths at the cation. Additional derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperature for the investigated ILs were also estimated and are presented and discussed.

  5. Novel 2-Alkyl-1-Ethylpyridinium ionic liquids : synthesis, dissociation energies and volatility

    NARCIS (Netherlands)

    Vilas, M.; Alves da Rocha, M.A.; Fernandes, A.M.; Tojo, E.; Santos, L.M.N.B.F.

    2015-01-01

    This work presents the synthesis, volatility study and electrospray ionization mass spectrometry with energy-variable collision induced dissociation of the isolated [(cation)2(anion)]+ of a novel series of 2-alkyl-1-ethyl pyridinium based ionic liquids, [2CN-21C2Py][NTf2]. Compared to the

  6. Raman Spectroscopy and Ab-Initio Model Calculations on Ionic Liquids

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2007-01-01

    spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT-Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methylimidazolium ([C4mim][X]) salts. The rotational isomerism of the [C4mim]þ cation is described: the presence of anti...

  7. Synthesis of guanidinium–sulfonimide ion pairs: towards novel ionic liquid crystals

    Directory of Open Access Journals (Sweden)

    Martin Butschies

    2013-06-01

    Full Text Available The recently introduced concept of ionic liquid crystals (ILCs with complementary ion pairs, consisting of both, mesogenic cation and anion, was extended from guanidinium sulfonates to guanidinium sulfonimides. In this preliminary study, the synthesis and mesomorphic properties of selected derivatives were described, which provide the first example of an ILC with the sulfonimide anion directly attached to the mesogenic unit.

  8. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  9. Liquid-Crystalline Ionic Liquids as Ordered Reaction Media for the Diels-Alder Reaction.

    Science.gov (United States)

    Bruce, Duncan W; Gao, Yanan; Canongia Lopes, José Nuno; Shimizu, Karina; Slattery, John M

    2016-11-02

    Liquid-crystalline ionic liquids (LCILs) are ordered materials that have untapped potential to be used as reaction media for synthetic chemistry. This paper investigates the potential for the ordered structures of LCILs to influence the stereochemical outcome of the Diels-Alder reaction between cyclopentadiene and methyl acrylate. The ratio of endo- to exo-product from this reaction was monitored for a range of ionic liquids (ILs) and LCILs. Comparison of the endo:exo ratios in these reactions as a function of cation, anion and liquid crystallinity of the reaction media, allowed for the effects of liquid crystallinity to be distinguished from anion effects or cation alkyl chain length effects. These data strongly suggest that the proportion of exo-product increases as the reaction media is changed from an isotropic IL to a LCIL. A detailed molecular dynamics (MD) study suggests that this effect is related to different hydrogen bonding interactions between the reaction media and the exo- and endo-transition states in solvents with layered, smectic ordering compared to those that are isotropic. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chiral ionic liquids in chromatographic and electrophoretic separations.

    Science.gov (United States)

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Nontoxic Ionic Liquid Fuels for Exploration Applications

    Science.gov (United States)

    Coil, Millicent

    2015-01-01

    The toxicity of propellants used in conventional propulsion systems increases not only safety risks to personnel but also costs, due to special handling required during the entire lifetime of the propellants. Orbital Technologies Corporation (ORBITEC) has developed and tested novel nontoxic ionic liquid fuels for propulsion applications. In Phase I of the project, the company demonstrated the feasibility of several ionic liquid formulations that equaled the performance of conventional rocket propellant monomethylhydrazine (MMH) and also provided low volatility and low toxicity. In Phase II, ORBITEC refined the formulations, conducted material property tests, and investigated combustion behavior in droplet and microreactor experiments. The company also explored the effect of injector design on performance and demonstrated the fuels in a small-scale thruster. The ultimate goal is to replace propellants such as MMH with fuels that are simultaneously high-performance and nontoxic. The fuels will have uses in NASA's propulsion applications and also in a range of military and commercial functions.

  12. Ionic liquids: radiation chemistry, solvation dynamics and reactivity patterns

    International Nuclear Information System (INIS)

    Wishart, J.F.; Funston, A.M.; Szreder, T.

    2006-01-01

    Ionic liquids (ILs) are a rapidly expanding family of condensed-phase media with important applications in energy production, nuclear fuel and waste processing, improving the efficiency and safety of industrial chemical processes, and pollution prevention. ILs are nonvolatile, noncombustible, highly conductive, recyclable and capable of dissolving a wide variety of materials. They are finding new uses in chemical synthesis, catalysis, separations chemistry, electrochemistry and other areas. Ionic liquids have dramatically different properties compared to conventional molecular solvents, and they provide a new and unusual environment to test our theoretical understanding of charge transfer and other reactions. We are interested in how IL properties influence physical and dynamical processes that determine the stability and lifetimes of reactive intermediates and thereby affect the courses of chemical reactions and product distributions. Successful use of ionic liquids in radiation-filled environments, where their safety advantages could be significant, requires an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of IL radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material. An understanding of ionic liquid radiation chemistry will also facilitate pulse radiolysis studies of general chemical reactivity in ILs, which will aid in the development of energy production, chemical industry and environmental applications. Pulse radiolysis of [R 4 N][NTf 2 ] [R 4 N][N(CN) 2 ], and [R 4 P][N(CN) 2 ] ionic liquids produces solvated electrons that absorb over a broad range in the near infrared and persisting for hundreds of nanoseconds. Systematic cation variation shows that solvated electron's spectroscopic properties depend strongly on the lattice structure of the ionic liquid. Very early in our radiolysis studies it became evident that

  13. A Review of Ionic Liquid Lubricants

    OpenAIRE

    Anthony E. Somers; Patrick C. Howlett; Douglas R. MacFarlane; Maria Forsyth

    2013-01-01

    Due to ever increasing demands on lubricants, such as increased service intervals, reduced volumes and reduced emissions, there is a need to develop new lubricants and improved wear additives. Ionic liquids (ILs) are room temperature molten salts that have recently been shown to offer many advantages in this area. The application of ILs as lubricants in a diverse range of systems has found that these materials can show remarkable protection against wear and significantly reduce friction in th...

  14. Supported ionic liquids fundamentals and applications

    CERN Document Server

    Fehrmann, Rasmus; Haumann, Marco

    2013-01-01

    This unique book gives a timely overview about the fundamentals and applications of supported ionic liquids in modern organic synthesis. It introduces the concept and synthesis of SILP materials and presents important applications in the field of catalysis (e.g. hydroformylation, hydrogenation, coupling reactions, fine chemical synthesis) as well as energy technology and gas separation. Written by pioneers in the field, this book is an invaluable reference book for organic chemists in academia or industry.

  15. Thermal properties of ionic systems near the liquid-liquid critical point.

    Science.gov (United States)

    Méndez-Castro, Pablo; Troncoso, Jacobo; Pérez-Sánchez, Germán; Peleteiro, José; Romaní, Luis

    2011-12-07

    Isobaric heat capacity per unit volume, C(p), and excess molar enthalpy, h(E), were determined in the vicinity of the critical point for a set of binary systems formed by an ionic liquid and a molecular solvent. Moreover, and, since critical composition had to be accurately determined, liquid-liquid equilibrium curves were also obtained using a calorimetric method. The systems were selected with a view on representing, near room temperature, examples from clearly solvophobic to clearly coulombic behavior, which traditionally was related with the electric permittivity of the solvent. The chosen molecular compounds are: ethanol, 1-butanol, 1-hexanol, 1,3-dichloropropane, and diethylcarbonate, whereas ionic liquids are formed by imidazolium-based cations and tetrafluoroborate or bis-(trifluromethylsulfonyl)amide anions. The results reveal that solvophobic critical behavior-systems with molecular solvents of high dielectric permittivity-is very similar to that found for molecular binary systems. However, coulombic systems-those with low permittivity molecular solvents-show strong deviations from the results usually found for these magnitudes near the liquid-liquid phase transition. They present an extremely small critical anomaly in C(p)-several orders of magnitude lower than those typically obtained for binary mixtures-and extremely low h(E)-for one system even negative, fact not observed, up to date, for any liquid-liquid transition in the nearness of an upper critical solution temperature. © 2011 American Institute of Physics

  16. Fast Conversion of Ionic Liquids and Poly(Ionic Liquid)s into Porous Nitrogen-Doped Carbons in Air.

    Science.gov (United States)

    Men, Yongjun; Ambrogi, Martina; Han, Baohang; Yuan, Jiayin

    2016-04-08

    Ionic liquids and poly(ionic liquid)s have been successfully converted into nitrogen-doped porous carbons with tunable surface area up to 1200 m²/g at high temperatures in air. Compared to conventional carbonization process conducted under inert gas to produce nitrogen-doped carbons, the new production method was completed in a rather shorter time without noble gas protection.

  17. Thermodynamics of dilute aqueous solutions of imidazolium based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Tejwant [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India); Kumar, Arvind, E-mail: arvind@csmcri.or [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India)

    2011-06-15

    Research highlights: The thermodynamic behaviour of aqueous imidazolium ILs has been investigated. Volumetric and ultrasonic results indicated the hydrophobic hydration of ILs. Viscometric studies revealed studied ionic liquids as water-structure makers. Hydration number increased with increase in alkyl chain length of the cation. - Abstract: Experimental measurements of density {rho}, speed of sound u, and viscosity {eta} of aqueous solutions of various 1-alkyl-3-methylimidazolium based ionic liquid (IL) solutions have been performed in dilute concentration regime at 298.15 K to get insight into hydration behaviour of ILs. The investigated ILs are based on 1-alkyl-3-methylimidazolium cation, [C{sub n}mim] having [BF{sub 4}]{sup -}, [Cl]{sup -}, [C{sub 1}OSO{sub 3}]{sup -}, and [C{sub 8}OSO{sub 3}]{sup -} as anions where n = 4 or 8. Several thermodynamic parameters like apparent molar volume {phi}{sub V}, isentropic compressibility {beta}{sub s}, and viscosity B-coefficients have been derived from experimental data. Limiting value of apparent molar volume has been discussed in terms of intrinsic molar volume (V{sub int}) molar electrostriction volume (V{sub elec}), molar disordered (V{sub dis}), and cage volume (V{sub cage}). Viscosity B-coefficients have been used to quantify the kosmotropic or chaotropic nature of ILs. Hydration number of ILs obtained using elctrostriction volume, isentropic compressibility, viscosity, and differential scanning calorimetry have been found to be comparative within the experimental error. The hydrophobic hydration has found to play an important role in hydration of ILs as compared to hydration due to hydrogen bonding and electrostriction. Limiting molar properties, hydration numbers, and B-coefficients have been discussed in terms of alkyl chain length of cation or nature of anion.

  18. Thermodynamics of dilute aqueous solutions of imidazolium based ionic liquids

    International Nuclear Information System (INIS)

    Singh, Tejwant; Kumar, Arvind

    2011-01-01

    Research highlights: → The thermodynamic behaviour of aqueous imidazolium ILs has been investigated. → Volumetric and ultrasonic results indicated the hydrophobic hydration of ILs. → Viscometric studies revealed studied ionic liquids as water-structure makers. → Hydration number increased with increase in alkyl chain length of the cation. - Abstract: Experimental measurements of density ρ, speed of sound u, and viscosity η of aqueous solutions of various 1-alkyl-3-methylimidazolium based ionic liquid (IL) solutions have been performed in dilute concentration regime at 298.15 K to get insight into hydration behaviour of ILs. The investigated ILs are based on 1-alkyl-3-methylimidazolium cation, [C n mim] having [BF 4 ] - , [Cl] - , [C 1 OSO 3 ] - , and [C 8 OSO 3 ] - as anions where n = 4 or 8. Several thermodynamic parameters like apparent molar volume φ V , isentropic compressibility β s , and viscosity B-coefficients have been derived from experimental data. Limiting value of apparent molar volume has been discussed in terms of intrinsic molar volume (V int ) molar electrostriction volume (V elec ), molar disordered (V dis ), and cage volume (V cage ). Viscosity B-coefficients have been used to quantify the kosmotropic or chaotropic nature of ILs. Hydration number of ILs obtained using elctrostriction volume, isentropic compressibility, viscosity, and differential scanning calorimetry have been found to be comparative within the experimental error. The hydrophobic hydration has found to play an important role in hydration of ILs as compared to hydration due to hydrogen bonding and electrostriction. Limiting molar properties, hydration numbers, and B-coefficients have been discussed in terms of alkyl chain length of cation or nature of anion.

  19. Supported ionic liquids: versatile reaction and separation media

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco

    2006-01-01

    The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic ...... liquid catalysts proved to be more active and selective than common systems. In separation applications the use of supported ionic liquids can facilitate selective transport of substrates across membranes.......The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic...

  20. Preparation and characterisation of high-density ionic liquids incorporating halobismuthate anions.

    Science.gov (United States)

    Cousens, Nico E A; Taylor Kearney, Leah J; Clough, Matthew T; Lovelock, Kevin R J; Palgrave, Robert G; Perkin, Susan

    2014-07-28

    A range of ionic liquids containing dialkylimidazolium cations and halobismuthate anions ([BiBr(x)Cl(y)I(z)](-) and [Bi2Br(x)Cl(y)I(z)](-)) were synthesised by combining dialkylimidazolium halide ionic liquids with bismuth(III) halide salts. The majority were room temperature liquids, all with very high densities. The neat ionic liquids and their mixtures with 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide were characterised using Densitometry, Viscometry, NMR Spectroscopy, Electrospray Ionisation Mass Spectrometry (ESI), Liquid Secondary Ion Mass Spectrometry (LSIMS), Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI), X-Ray Photoelectron Spectroscopy (XPS) and Thermogravimetric Analysis (TGA), to establish their speciation and suitability for high-temperature applications.

  1. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Sum frequency generation spectroscopy of tetraalkylphosphonium ionic liquids at the air-liquid interface

    Science.gov (United States)

    Peñalber-Johnstone, Chariz; Adamová, Gabriela; Plechkova, Natalia V.; Bahrami, Maryam; Ghaed-Sharaf, Tahereh; Ghatee, Mohammad Hadi; Seddon, Kenneth R.; Baldelli, Steven

    2018-05-01

    Sum frequency generation (SFG) spectroscopy is a nonlinear vibrational spectroscopic technique used in the study of interfaces, due to its unique ability to distinguish surface molecules that have preferential ordering compared to the isotropic bulk. Here, a series of alkyltrioctylphosphonium chloride ionic liquids, systematically varied by cation structure, were characterized at the air-liquid interface by SFG. The effect on surface structure resulting from molecular variation (i.e., addition of cyano- and methoxy-functional groups) of the cation alkyl chain was investigated. SFG spectra in the C—H stretching region (2750-3100 cm-1) for [P8 8 8 n][Cl], where n = 4, 5, 8, 10, 12, or 14, showed characteristic changes as the alkyl chain length was increased. Spectral profiles for n = 4, 5, 8, or 10 appeared similar; however, when the fourth alkyl chain was sufficiently long (as in the case of n = 12 or n = 14), abrupt changes occurred in the spectra. Molecular dynamics (MD) simulation of a slab of each ionic liquid (with n = 8, 10, or 12) confirmed gauche defects, with enhancement for the long alkyl chain and an abrupt increase of gauche occurrence from n = 8 to n = 10. A comparison of the tilt angle distribution from the simulation and the SFG analysis show a broad distribution of angles. Using experimental SFG spectra in conjunction with MD simulations, a comprehensive molecular picture at the surface of this unique class of liquids is presented.

  3. Density scaling of the transport properties of molecular and ionic liquids.

    Science.gov (United States)

    López, Enriqueta R; Pensado, Alfonso S; Comuñas, María J P; Pádua, Agílio A H; Fernández, Josefa; Harris, Kenneth R

    2011-04-14

    Casalini and Roland [Phys. Rev. E 69, 062501 (2004); J. Non-Cryst. Solids 353, 3936 (2007)] and other authors have found that both the dielectric relaxation times and the viscosity, η, of liquids can be expressed solely as functions of the group (TV (γ)), where T is the temperature, V is the molar volume, and γ a state-independent scaling exponent. Here we report scaling exponents γ, for the viscosities of 46 compounds, including 11 ionic liquids. A generalization of this thermodynamic scaling to other transport properties, namely, the self-diffusion coefficients for ionic and molecular liquids and the electrical conductivity for ionic liquids is examined. Scaling exponents, γ, for the electrical conductivities of six ionic liquids for which viscosity data are available, are found to be quite close to those obtained from viscosities. Using the scaling exponents obtained from viscosities it was possible to correlate molar conductivity over broad ranges of temperature and pressure. However, application of the same procedures to the self-diffusion coefficients, D, of six ionic and 13 molecular liquids leads to superpositioning of poorer quality, as the scaling yields different exponents from those obtained with viscosities and, in the case of the ionic liquids, slightly different values for the anion and the cation. This situation can be improved by using the ratio (D∕T), consistent with the Stokes-Einstein relation, yielding γ values closer to those of viscosity.

  4. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    International Nuclear Information System (INIS)

    Shi, Chenglong; Jia, Yongzhong; Zhang, Chao; Liu, Hong; Jing, Yan

    2015-01-01

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C 4 mim][PF 6 ]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO 4 and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO 4 − amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO 4 − )/n(Li + ) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C 4 mim][PF 6 ] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising

  5. Magnetomotive room temperature dicationic ionic liquid: a new concept toward centrifuge-less dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Beiraghi, Asadollah; Shokri, Masood; Seidi, Shahram; Godajdar, Bijan Mombani

    2015-01-09

    A new centrifuge-less dispersive liquid-liquid microextraction technique based on application of magnetomotive room temperature dicationic ionic liquid followed by electrothermal atomic absorption spectrometry (ETAAS) was developed for preconcentration and determination of trace amount of gold and silver in water and ore samples, for the first time. Magnetic ionic liquids not only have the excellent properties of ionic liquids but also exhibit strong response to an external magnetic field. These properties provide more advantages and potential application prospects for magnetic ionic liquids than conventional ones in the fields of extraction processes. In this work, thio-Michler's ketone (TMK) was used as chelating agent to form Ag/Au-TMK complexes. Several important factors affecting extraction efficiency including extraction time, rate of vortex agitator, pH of sample solution, concentration of the chelating agent, volume of ionic liquid as well as effects of interfering species were investigated and optimized. Under the optimal conditions, the limits of detection (LOD) were 3.2 and 7.3ngL(-1) with the preconcentration factors of 245 and 240 for Au and Ag, respectively. The precision values (RSD%, n=7) were 5.3% and 5.8% at the concentration level of 0.05μgL(-1) for Au and Ag, respectively. The relative recoveries for the spiked samples were in the acceptable range of 96-104.5%. The results demonstrated that except Hg(2+), no remarkable interferences are created by other various ions in the determination of Au and Ag, so that the tolerance limits (WIon/WAu or Ag) of major cations and anions were in the range of 250-1000. The validated method was successfully applied for the analysis of Au and Ag in some water and ore samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Ionic liquid based multifunctional double network gel

    Science.gov (United States)

    Ahmed, Kumkum; Higashihara, Tomoya; Arafune, Hiroyuki; Kamijo, Toshio; Morinaga, Takashi; Sato, Takaya; Furukawa, Hidemitsu

    2015-04-01

    Gels are a promising class of soft and wet materials with diverse application in tissue engineering and bio-medical purpose. In order to accelerate the development of gels, it is required to synthesize multi-functional gels of high mechanical strength, ultra low surface friction and suitable elastic modulus with a variety of methods and new materials. Among many types of gel ionic gel made from ionic liquids (ILs) could be used for diverse applications in electrochemical devices and in the field of tribology. IL, a promising materials for lubrication, is a salt with a melting point lower than 100 °C. As a lubricant, ILs are characterized by an extremely low vapor pressure, high thermal stability and high ion conductivity. In this work a novel approach of making double network DN ionic gel using IL has been made utilizing photo polymerization process. A hydrophobic monomer Methyl methacrylate (MMA) has been used as a first network and a hydrophobic IL monomer, N,N-diethyl-N-(2-mthacryloylethyl)-N-methylammonium bistrifluoromethylsulfonyl)imide (DEMM-TFSI) has been used as a second network using photo initiator benzophenon and crosslinker triethylene glycol dimethacrylate (TEGDMA). The resulting DN ionic gel shows transparency, flexibility, high thermal stability, good mechanical toughness and low friction coefficient value which can be a potential candidate as a gel slider in different mechanical devices and can open a new area in the field of gel tribology.

  7. Influence of the Ionic Liquid Type on the Gel Polymer Electrolytes Properties

    Directory of Open Access Journals (Sweden)

    Juan P. Tafur

    2015-11-01

    Full Text Available Gel Polymer Electrolytes (GPEs composed by ZnTf2 salt, poly(vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP, and different ionic liquids are synthesized using n-methyl-2-pyrrolidone (NMP as solvent. Three different imidazolium-based ionic liquids containing diverse cations and anions have been explored. Structural and electrical properties of the GPEs varying the ZnTf2 concentration are analyzed by ATR-FTIR, DSC, TG, and cyclic voltammetry. Free salt IL-GPEs present distinct behavior because they are influenced by the different IL cations and anions composition. However, inclusion of ZnTf2 salt inside the polymers provide GPEs with very similar characteristics, pointing out that ionic transport properties are principally caused by Zn2+ and triflate movement. Whatever the IL used, the presence of NMP solvent inside the polymer’s matrix turns out to be a key factor for improving the Zn2+ transport inside the GPE due to the interaction between Zn2+ cations and carbonyl groups of the NMP. High values of ionic conductivity, low activation energy values, and good voltammetric reversibility obtained regardless of the ionic liquid used enable these GPEs to be applied in Zn batteries. Capacities of 110–120 mAh·g−1 have been obtained for Zn/IL-GPE/MnO2 batteries discharged at −1 mA·cm−2.

  8. Use of ionic liquids as coordination ligands for organometallic catalysts

    Science.gov (United States)

    Li, Zaiwei [Moreno Valley, CA; Tang, Yongchun [Walnut, CA; Cheng,; Jihong, [Arcadia, CA

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  9. Ionic liquid electrolytes for dye-sensitized solar cells.

    Science.gov (United States)

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  10. Study on intercalation of ionic liquid into montmorillonite and its property evaluation

    International Nuclear Information System (INIS)

    Takahashi, Chisato; Shirai, Takashi; Fuji, Masayoshi

    2012-01-01

    Present study report fabrication of a solid–liquid intercalated compound using montmorillonite and ionic liquid [IL; 1-Butyl-3-methylimidazolium tetrafluoroborate; ([BMIM][BF 4 ])]. The intercalation of IL into the interlayer of montmorillonite was revealed by swelling behavior measured by X-ray diffraction (XRD) and cation exchange capacity (CEC). The crystal swelling structure of intercalation compound was further evidenced by transmission electron microscope (TEM). From these results, the arrangement of [BMIM] + ions (cationic part of IL) into the unit layer were proposed. Furthermore, the montmorillonite showed electrical conductivity with the aid of IL. This demonstrates a successful attempt to fabricate a solid–liquid state nano-structure compound as possible transparent electrically conducting thin film. -- Highlights: ► Direct intercalation of ionic liquid into the montmorillonite was studied. ► The crystal swelling structure in liquid state was successfully characterized by TEM. ► We proposed the atomic arrangement of intercalated compound using ionic liquid. ► Ionic liquid is useful for fabricating an intercalated compound with electrical-conductivity.

  11. Importance of liquid fragility for energy applications of ionic liquids

    Science.gov (United States)

    Sippel, Pit; Lunkenheimer, Peter; Krohns, Stephan; Thoms, Erik; Loidl, Alois

    Ionic liquids (ILs) are salts that are liquid at ambient temperatures. The strong electrostatic forces between their molecular ions result, e.g., in low volatility and high stability for many members of this huge material class. For this reason they bear a high potential for new advancements in applications, e.g., as electrolytes in energy-storage devices such as supercapacitors or batteries, where the ionic conductivity is an essential figure of merit. Most ILs show dynamic properties typical for glassy matter, which dominate many of their physical properties. An important method to study these dynamical glass-properties is dielectric spectroscopy that can access relaxation times of dynamic processes and the conductivity in a broad frequency and temperature range. In the present contribution, we present results on a large variety of ionic liquids showing that the conductivity of ILs depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394 and by the BMBF via ENREKON 03EK3015.

  12. Progress in Separation of Gases by Permeation and Liquids by Pervaporation Using Ionic Liquids: A Review

    OpenAIRE

    Kárászová, M. (Magda); Kačírková, M. (Marie); Friess, K.; Izák, P. (Pavel)

    2014-01-01

    The effective separation of gases and liquids by membranes containing ionic liquids actually belongs to one of the challenging topics in membrane community. During last decade, a plenty of new kinds of ionic liquids (IL), their combinations, different types of polymerized ionic liquids and polymer–IL composite membranes were developed and tested. This review summarizes the most important achievements and findings connected with the ionic liquid based membranes research and tries to answer h...

  13. Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.

    Science.gov (United States)

    Han, Mengwei; Espinosa-Marzal, Rosa M

    2017-09-07

    We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.

  14. Surface structure evolution in a homologous series of ionic liquids.

    Science.gov (United States)

    Haddad, Julia; Pontoni, Diego; Murphy, Bridget M; Festersen, Sven; Runge, Benjamin; Magnussen, Olaf M; Steinrück, Hans-Georg; Reichert, Harald; Ocko, Benjamin M; Deutsch, Moshe

    2018-02-06

    Interfaces of room temperature ionic liquids (RTILs) are important for both applications and basic science and are therefore intensely studied. However, the evolution of their interface structure with the cation's alkyl chain length [Formula: see text] from Coulomb to van der Waals interaction domination has not yet been studied for even a single broad homologous RTIL series. We present here such a study of the liquid-air interface for [Formula: see text], using angstrom-resolution X-ray methods. For [Formula: see text], a typical "simple liquid" monotonic surface-normal electron density profile [Formula: see text] is obtained, like those of water and organic solvents. For [Formula: see text], increasingly more pronounced nanoscale self-segregation of the molecules' charged moieties and apolar chains yields surface layering with alternating regions of headgroups and chains. The layering decays into the bulk over a few, to a few tens, of nanometers. The layering periods and decay lengths, their linear [Formula: see text] dependence, and slopes are discussed within two models, one with partial-chain interdigitation and the other with liquid-like chains. No surface-parallel long-range order is found within the surface layer. For [Formula: see text], a different surface phase is observed above melting. Our results also impact general liquid-phase issues like supramolecular self-aggregation and bulk-surface structure relations.

  15. Protic ionic liquid as additive on lipase immobilization using silica sol-gel.

    Science.gov (United States)

    de Souza, Ranyere Lucena; de Faria, Emanuelle Lima Pache; Figueiredo, Renan Tavares; Freitas, Lisiane dos Santos; Iglesias, Miguel; Mattedi, Silvana; Zanin, Gisella Maria; dos Santos, Onélia Aparecida Andreo; Coutinho, João A P; Lima, Álvaro Silva; Soares, Cleide Mara Faria

    2013-03-05

    protic ionic liquids also favoured reduced mass loss according to TG curves (always less than 42.9%) when compared to the immobilized matrix without protic ionic liquids (45.1%), except for the sample containing 3.0% protic ionic liquids (46.5%), verified by thermogravimetric analysis. Ionic liquids containing a more hydrophobic alkyl group in the cationic moiety were beneficial for recovery of the activity of the immobilized lipase. The physico-chemical characterization confirmed the presence of the enzyme and its immobilized derivatives obtained in this study by identifying the presence of amino groups, and profiling enthalpy changes of mass loss. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. A roadmap to uranium ionic liquids: Anti-crystal engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yaprak, Damla; Spielberg, Eike T.; Baecker, Tobias; Richter, Mark; Mallick, Bert [Inorganic Chemistry III, Ruhr-University Bochum (Germany); Klein, Axel [Institut fuer Anorganische Chemie, Koeln Univ. (Germany); Mudring, Anja-Verena [Inorganic Chemistry III, Ruhr-University Bochum (Germany); Materials Science and Engineering, Iowa State University and Critical Materials Institute, Ames Laboratory, Ames, IA (United States)

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C{sub 4}mim) cation. As dithiocarbamate ligands binding to the UO{sub 2}{sup 2+} unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Computational solvation analysis of biomolecules in aqueous ionic liquid mixtures : From large flexible proteins to small rigid drugs.

    Science.gov (United States)

    Zeindlhofer, Veronika; Schröder, Christian

    2018-06-01

    Based on their tunable properties, ionic liquids attracted significant interest to replace conventional, organic solvents in biomolecular applications. Following a Gartner cycle, the expectations on this new class of solvents dropped after the initial hype due to the high viscosity, hydrolysis, and toxicity problems as well as their high cost. Since not all possible combinations of cations and anions can be tested experimentally, fundamental knowledge on the interaction of the ionic liquid ions with water and with biomolecules is mandatory to optimize the solvation behavior, the biodegradability, and the costs of the ionic liquid. Here, we report on current computational approaches to characterize the impact of the ionic liquid ions on the structure and dynamics of the biomolecule and its solvation layer to explore the full potential of ionic liquids.

  18. Ionic liquids for addressing unmet needs in healthcare

    Science.gov (United States)

    Agatemor, Christian; Ibsen, Kelly N.; Tanner, Eden E. L.

    2018-01-01

    Abstract Advances in the field of ionic liquids have opened new applications beyond their traditional use as solvents into other fields especially healthcare. The broad chemical space, rich with structurally diverse ions, and coupled with the flexibility to form complementary ion pairs enables task‐specific optimization at the molecular level to design ionic liquids for envisioned functions. Consequently, ionic liquids now are tailored as innovative solutions to address many problems in medicine. To date, ionic liquids have been designed to promote dissolution of poorly soluble drugs and disrupt physiological barriers to transport drugs to targeted sites. Also, their antimicrobial activity has been demonstrated and could be exploited to prevent and treat infectious diseases. Metal‐containing ionic liquids have also been designed and offer unique features due to incorporation of metals. Here, we review application‐driven investigations of ionic liquids in medicine with respect to current status and future potential. PMID:29376130

  19. Antimicrobial polyurethane coatings based on ionic liquid quaternary ammonium compounds

    NARCIS (Netherlands)

    Yagci, M.B.; Bolca, S.; Heuts, J.P.A.; Ming, W.; With, de G.

    2011-01-01

    The antimicrobial effect of ionic liquids (ILs) as comonomers in polyurethane surface coatings was investigated. Ionic liquid-containing coatings were prepared from a hydroxyl end-capped liquid oligoester and a triisocyanate crosslinker. Three different commercially available hydroxyl end-capped

  20. Aerogels from Chitosan Solutions in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Gonzalo Santos-López

    2017-12-01

    Full Text Available Chitosan aerogels conjugates the characteristics of nanostructured porous materials, i.e., extended specific surface area and nano scale porosity, with the remarkable functional properties of chitosan. Aerogels were obtained from solutions of chitosan in ionic liquids (ILs, 1-butyl-3-methylimidazolium acetate (BMIMAc, and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc, in order to observe the effect of the solvent in the structural characteristics of this type of materials. The process of elaboration of aerogels comprised the formation of physical gels through anti-solvent vapor diffusion, liquid phase exchange, and supercritical CO2 drying. The aerogels maintained the chemical identity of chitosan according to Fourier transform infrared spectrophotometer (FT-IR spectroscopy, indicating the presence of their characteristic functional groups. The internal structure of the obtained aerogels appears as porous aggregated networks in microscopy images. The obtained materials have specific surface areas over 350 m2/g and can be considered mesoporous. According to swelling experiments, the chitosan aerogels could absorb between three and six times their weight of water. However, the swelling and diffusion coefficient decreased at higher temperatures. The structural characteristics of chitosan aerogels that are obtained from ionic liquids are distinctive and could be related to solvation dynamic at the initial state.

  1. Ionic Liquids with Symmetric Diether Tails: Bulk and Vacuum-Liquid Interfacial Structures.

    Science.gov (United States)

    Hettige, Jeevapani J; Amith, Weththasinghage D; Castner, Edward W; Margulis, Claudio J

    2017-01-12

    The behavior in the bulk and at interfaces of biphilic ionic liquids in which either the cation or anion possesses moderately long alkyl tails is to a significant degree well understood. Less clear is what happens when both the cation and anion possess tails that are not apolar, such as in the case of ether functionalities. The current article discusses the structural characteristics of C2OC2OC2-mim + /C2OC2OC2-OSO 3 - in the bulk and at the vacuum interface. We find that the vacuum interface affects only the nanometer length scale. This is in contrast to what we have recently found in ( J. Phys. Chem. Lett. , 2016 , 7 ( 19 ), 3785 - -3790 ) for isoelectronic C[8]-mim + /C[8]-OSO 3 - , where the interface effect is long ranged. Interestingly, ions with the diether tail functionality still favor the tail-outward orientation at the vacuum interface and the bulk phase preserves the alternation between charged networks and tails that is commonly observed for biphilic ionic liquids. However, such alternation is less well-defined and results in a significantly diminished first sharp diffraction peak in the bulk liquid structure function.

  2. Ionic liquids as electrolytes for Li-ion batteries-An overview of electrochemical studies

    Science.gov (United States)

    Lewandowski, Andrzej; Świderska-Mocek, Agnieszka

    The paper reviews properties of room temperature ionic liquids (RTILs) as electrolytes for lithium and lithium-ion batteries. It has been shown that the formation of the solid electrolyte interface (SEI) on the anode surface is critical to the correct operation of secondary lithium-ion batteries, including those working with ionic liquids as electrolytes. The SEI layer may be formed by electrochemical transformation of (i) a molecular additive, (ii) RTIL cations or (iii) RTIL anions. Such properties of RTIL electrolytes as viscosity, conductivity, vapour pressure and lithium-ion transport numbers are also discussed from the point of view of their influence on battery performance.

  3. Effect of room temperature ionic liquid structure on the enzymatic acylation of flavonoids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2010-01-01

    Enzymatic acylation reactions of flavonoids (rutin, esculin) with long chain fatty acids (palmitic, oleic acids) were carried out in 14 different ionic liquid media containing a range of cation and anion structures. Classification of RTILs according to flavonoid solubility (using COSMO...... must be struck that maximized flavonoid solubility with minimum negative impact on lipase activity. The process also benefitted from an increased reaction temperature which may have helped to reduced mass transfer limitations. Keywords: Room temperature ionic liquids (RTILs); Biosynthesis; Acylation......; Flavonoids; Lipase; Long chain fatty acids...

  4. Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces

    Science.gov (United States)

    2015-10-10

    reviewed journals (N/A for none) C. Zibart, D. Parr, B. Egan, H. Morris, A. Tivanski, L. M. Haverhals, “Investigation of Structure at Gold- Ionic Liquid ...into our electrochemistry program. In short, the instrument has been of great service to characterize ionic liquid -based (IL-based) electrolyte...Aug-2014 14-Nov-2014 Approved for Public Release; Distribution Unlimited Final Report: Potentiostat for Characterizing Microstructures at Ionic Liquid

  5. Ionic Liquids in Polymer Design: From Energy to Health

    Science.gov (United States)

    2016-10-19

    of Papers published in non peer- reviewed journals: Final Report: Ionic Liquids in Polymer Design: From Energy to Health Report Title ACS Symposium...SECURITY CLASSIFICATION OF: ACS Symposium: Ionic Liquids in Polymer Design: From Energy to Health at Fall 2015 ACS Meeting in Boston, MA The...combination of ionic liquids and polymers has emerged as an active field of exploration in polymer science, where new materials have be realized for

  6. Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes

    OpenAIRE

    Hoarfrost, Megan Lane

    2012-01-01

    Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the additio...

  7. Aerobic, catalytic oxidation of alcohols in ionic liquids

    Directory of Open Access Journals (Sweden)

    Souza Roberto F. de

    2006-01-01

    Full Text Available An efficient and simple catalytic system based on RuCl3 dissolved in ionic liquids has been developed for the oxidation of alcohols into aldehydes and ketones under mild conditions. A new fluorinated ionic liquid, 1-n-butyl-3-methylimidazolium pentadecafluorooctanoate, was synthesized and demonstrated better performance that the other ionic liquids employed. Moreover this catalytic system utilizes molecular oxygen as an oxidizing agent, producing water as the only by-product.

  8. Recent advances on ionic liquid uses in separation techniques.

    Science.gov (United States)

    Berthod, A; Ruiz-Ángel, M J; Carda-Broch, S

    2018-07-20

    The molten organic salts with melting point below 100°C, commonly called ionic liquids (ILs) have found numerous uses in separation sciences due to their exceptional properties as non molecular solvents, namely, a negligible vapor pressure, a high thermal stability, and unique solvating properties due to polarity and their ionic character of molten salts. Other properties, such as viscosity, boiling point, water solubility, and electrochemical window, are adjustable playing with which anion is associated with which cation. This review focuses on recent development of the uses of ILs in separation techniques actualizing our 2008 article (same authors, J. Chromatogr. A, 1184 (2008) 6-18) focusing on alkyl methylimidazolium salts. These developments include the use of ILs in nuclear waste reprocessing, highly thermally stable ILs that allowed for the introduction of polar gas chromatography capillary columns able to work at temperature never seen before (passing 300°C), the use of ILs in liquid chromatography and capillary electrophoresis, and the introduction of tailor-made ILs for mass spectrometry detection of trace anions at the few femtogram level. The recently introduced deep eutectic solvents are not exactly ILs, they are related enough so that their properties and uses in countercurrent chromatography are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Application of ionic liquids in electrochemical sensing systems.

    Science.gov (United States)

    Shiddiky, Muhammad J A; Torriero, Angel A J

    2011-01-15

    Since 1992, when the room temperature ionic liquids (ILs) based on the 1-alkyl-3-methylimidazolium cation were reported to provide an attractive combination of an electrochemical solvent and electrolyte, ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, and lithium batteries. However, it has only been in the last few years that electrochemical biosensors based on carbon ionic liquid electrodes (CILEs) and IL-modified macrodisk electrodes have been reported. However, there are still a lot of challenges in achieving IL-based sensitive, selective, and reproducible biosensors for high speed analysis of biological and environmental compounds of interest. This review discusses the principles of operation of electrochemical biosensors based on CILEs and IL/composite-modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed. Key challenges and opportunities of IL-based biosensors to further development and use are considered. Emphasis is given to direct electron-transfer reaction and electrocatalysis of hemeproteins and enzyme-modified composite electrodes. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Desulfurization performance of azole-based ionic liquids

    Directory of Open Access Journals (Sweden)

    Liubei CHENG

    2017-10-01

    Full Text Available In order to study the addition of functional groups in ionic liquid anion and cation to achieve better absorbing of SO2, the 1,1,3,3-tetramethylguanidine triazole ( is synthesized using 1,1,3,3-tetramethylguanidine and triazole as raw materials. The desulfurization performance of the synthesized is systematically studied. The desulfurization performance and desulfurization mechanism of the are discussed. The results show that the has good performance of desulfurization and regeneration. At the atmospheric pressure, 1 mol of the absorbs 2.964 mol of SO2 at 20 ℃. With the increase of temperature, the desulfurization capacity of the decreases gradually. The molar absorption ratio increases with the increase of SO2 partial pressure, and under the conditions of 130 ℃, the desorption rate of the ionic liquid after saturated adsorption reaches over 95%. The mechanism investigation results show that the interaction of SO2 and is the combination of chemical absorption and physical absorption. The results have a certain reference value to improve the efficiency of flue gas treatment.

  11. Comparing two tetraalkylammonium ionic liquids. II. Phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.; Ribeiro, Mauro C. C., E-mail: mccribei@iq.usp.br [Laboratório de Espectroscopia Molecular, Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05513-970 São Paulo, SP (Brazil); Ferreira, Fabio F.; Costa, Fanny N. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP (Brazil); Giles, Carlos [Depto. de Física da Matéria Condensada, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, 13083-859 Campinas, SP (Brazil)

    2016-06-14

    Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.

  12. Thermophysical properties of two ammonium-based protic ionic liquids.

    Science.gov (United States)

    Bhattacharjee, Arijit; Coutinho, João A P; Freire, Mara G; Carvalho, Pedro J

    2015-04-01

    Experimental data for density, viscosity, refractive index and surface tension are reported, for the first time, in the temperature range between 288.15 K and 353.15 K and at atmospheric pressure for two protic ionic liquids, namely 2-(dimethylamino)-N,N-dimethylethan-1-ammonium acetate, [N 11{2(N11)}H ][CH 3 CO 2 ], and N-ethyl-N,N-dimethylammonium phenylacetate, [N 112H ][C 7 H 7 CO 2 ]. The effect of the anion aromaticity and the cation's aliphatic tails on the studied properties is discussed. From the measured properties temperature dependency the derived properties, such as the isobaric thermal expansion coefficient, the surface entropy and enthalpy, and the critical temperature, were estimated.

  13. Design of Separation Processes with Ionic Liquids

    DEFF Research Database (Denmark)

    Peng-noo, Worawit; Kulajanpeng, Kusuma; Gani, Rafiqul

    2015-01-01

    A systematic methodology for screening and designing of Ionic Liquid (IL)-based separation processes is proposed and demonstrated using several case studies of both aqueous and non-aqueous systems, for instance, ethanol + water, ethanol + hexane, benzene + hexane, and toluene + methylcyclohexane....... The best four ILs of each mixture are [mmim][dmp], [emim][bti], [emim][etso4] and [hmim][tcb], respectively. All of them were used as entrainers in the extractive distillation. A process simulation of each system was carried out and showed a lower both energy requirement and solvent usage as compared...

  14. Lipid extraction from microalgae using a single ionic liquid

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2013-05-28

    A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.

  15. Ionic Liquids in HPLC and CE: A Hope for Future.

    Science.gov (United States)

    Ali, Imran; Suhail, Mohd; Sanagi, Mohd Marsin; Aboul-Enein, Hassan Y

    2017-07-04

    The ionic liquids (ILs) are salts with melting points below 100°C. These are called as ionic fluids, ionic melts, liquid electrolytes, fused salts, liquid salts, ionic glasses, designer solvents, green solvents and solvents of the future. These have a wide range of applications, including medical, pharmaceutical and chemical sciences. Nowadays, their use is increasing greatly in separation science, especially in chromatography and capillary electrophoresis due to their remarkable properties. The present article describes the importance of ILs in high-performance liquid chromatography and capillary electrophoresis. Efforts were also made to highlight the future expectations of ILs.

  16. Recent developments in biocatalysis in multiphasic ionic liquid reaction systems.

    Science.gov (United States)

    Meyer, Lars-Erik; von Langermann, Jan; Kragl, Udo

    2018-06-01

    Ionic liquids are well known and frequently used 'designer solvents' for biocatalytic reactions. This review highlights recent achievements in the field of multiphasic ionic liquid-based reaction concepts. It covers classical biphasic systems including supported ionic liquid phases, thermo-regulated multi-component solvent systems (TMS) and polymerized ionic liquids. These powerful concepts combine unique reaction conditions with a high potential for future applications on a laboratory and industrial scale. The presence of a multiphasic system simplifies downstream processing due to the distribution of the catalyst and reactants in different phases.

  17. Are Ionic Liquids Good Boundary Lubricants? A Molecular Perspective

    Directory of Open Access Journals (Sweden)

    Romain Lhermerout

    2018-01-01

    Full Text Available The application of ionic liquids as lubricants has attracted substantial interest over the past decade and this has produced a rich literature. The aim of this review is to summarize the main findings about frictional behavior of ionic liquids in the boundary lubrication regime. We first recall why the unusual properties of ionic liquids make them very promising lubricants, and the molecular mechanisms at the origin of their lubricating behavior. We then point out the main challenges to be overcome in order to optimise ionic liquid lubricant performance for common applications. We finally discuss their use in the context of electroactive lubrication.

  18. Ionic liquids used in extraction and separation of metal ions

    International Nuclear Information System (INIS)

    Shen Xinghai; Xu Chao; Liu Xinqi; Chu Taiwei

    2006-01-01

    Ionic liquids as green solvents now have become a research hotspot in the field of separation of metal ions by solvent extraction. Experimental results of extraction of various metal ions with ionic liquids as solvents, including that of alkali metals, alkaline earths, transition metals rare earths and actinides are introduced. The extraction of uranium, plutonium and fission products that are involved in spent nuclear fuel reprocessing is also reviewed. The possible extraction mechanisms are discussed. Finally, the prospect of replacement of volatile and/or toxic organic solvents with environmentally benign ionic liquids for solvent extraction and the potency of applications of ionic liquids in solvent extraction are also commented. (authors)

  19. Ionic liquid and nanoparticle hybrid systems: Emerging applications.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2017-06-01

    Having novel electronic and optical properties that emanate from their nano-scale dimensions, nanoparticles are central to numerous applications. Ionic liquids can confer to nanoparticle chemical protection and physicochemical property enhancement through intermolecular interactions and can consequently improve the stability and reusability of nanoparticle for various operations. With an aim to combine the novel properties of nanoparticles and ionic liquids, different structures have been generated, based on a balance of several intermolecular interactions. Such ionic liquid and nanoparticle hybrids are showing great potential in diverse applications. In this review, we first introduce various types of ionic liquid and nanoparticle hybrids, including nanoparticle colloidal dispersions in ionic liquids, ionic liquid-grafted nanoparticles, and nanoparticle-stabilized ionic liquid-based emulsions. Such hybrid materials exhibit interesting synergisms. We then highlight representative applications of ionic liquid and nanoparticle hybrids in the catalysis, electrochemistry and separations fields. Such hybrids can attain better stability and higher efficiency under a broad range of conditions. Novel and enhanced performance can be achieved in these applications by combining desired properties of ionic liquids and of nanoparticles within an appropriate hybrid nanostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Improved Ionic Liquids as Space Lubricants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  1. Notre Dame Geothermal Ionic Liquids Research: Ionic Liquids for Utilization of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Brennecke, Joan F. [Univ. of Notre Dame, IN (United States)

    2017-03-07

    The goal of this project was to develop ionic liquids for two geothermal energy related applications. The first goal was to design ionic liquids as high temperature heat transfer fluids. We identified appropriate compounds based on both experiments and molecular simulations. We synthesized the new ILs, and measured their thermal stability, measured storage density, viscosity, and thermal conductivity. We found that the most promising compounds for this application are aminopyridinium bis(trifluoromethylsulfonyl)imide based ILs. We also performed some measurements of thermal stability of IL mixtures and used molecular simulations to better understand the thermal conductivity of nanofluids (i.e., mixtures of ILs and nanoparticles). We found that the mixtures do not follow ideal mixture theories and that the addition of nanoparticles to ILs may well have a beneficial influence on the thermal and transport properties of IL-based heat transfer fluids. The second goal was to use ionic liquids in geothermally driven absorption refrigeration systems. We performed copious thermodynamic measurements and modeling of ionic liquid/water systems, including modeling of the absorption refrigeration systems and the resulting coefficients of performance. We explored some IL/organic solvent mixtures as candidates for this application, both with experimentation and molecular simulations. We found that the COPs of all of the IL/water systems were higher than the conventional system – LiBr/H2O. Thus, IL/water systems appear very attractive for absorption refrigeration applications.

  2. Raman spectroscopy, ab-initio model calculations, and conformational, equilibria in ionic liquids

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    2009-01-01

    spectroscopy and ab-initio molecular orbital calculations. A discussion is given, based mainly on some recent FT- Raman spectroscopic results on the model ionic liquid system of 1-butyl-3-methyl-imidazolium ([C4C1Im]+X-) salts. The rotational isomerism of the [C4C1Im]+ cation is described: the presence of anti.......3 Brief introduction to ab-initio model calculations .... 312 12.4 Case study on Raman spectroscopy and structure of imidazolium-based ionic liquids ..... 312 12.5 Raman spectra and structure of [C4C1Im]+ liquids ..... 315 12.6 Normal mode analysis and rotational isomerism of the [C4C1Im]+ cation...

  3. Furfural production using ionic liquids: A review.

    Science.gov (United States)

    Peleteiro, Susana; Rivas, Sandra; Alonso, José Luis; Santos, Valentín; Parajó, Juan Carlos

    2016-02-01

    Furfural, a platform chemical with a bright future, is commercially obtained by acidic processing of xylan-containing biomass in aqueous media. Ionic liquids (ILs) can be employed in processed for furfural manufacture as additives, as catalysts and/or as reaction media. Depending on the IL utilized, externally added catalysts (usually, Lewis acids, Brönsted acids and/or solid acid catalysts) can be necessary to achieve high reaction yields. Oppositely, acidic ionic liquids (AILs) can perform as both solvents and catalysts, enabling the direct conversion of suitable substrates (pentoses, pentosans or xylan-containing biomass) into furfural. Operating in IL-containing media, the furfural yields can be improved when the product is continuously removed along the reaction (for example, by stripping or extraction), to avoid unwanted side-reactions leading to furfural consumption. These topics are reviewed, as well as the major challenges involved in the large scale utilization of ILs for furfural production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Magnetic ionic liquids: synthesis and characterization

    International Nuclear Information System (INIS)

    Medeiros, Anderson M.M.S.; Parize, Alexandre L.; Oliveira, Vanda M.; Neto, Brenno A.D.; Rubim, Joel C.

    2010-01-01

    The synthesis of magnetic ionic liquids (MILs) based on the stable dispersions of magnetic nanoparticles (MNPs) of γ-Fe 2 O 3 , Fe 3 O 4 , and CoFe 2 O 4 in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf 2 ) is reported. The MNPs were obtained by the coprecipitation method. The surface of the α-Fe 2 O 3 , Fe 3 O 4 , and CoFe 2 O 4 MNPs with mean sizes (XRD) of 9.3, 12.3, and 11.0 nm, respectively were functionalized by 1-n-butyl-3-(3'-trimethoxypropylsilane)- imidazolium chloride. The non functionalized and functionalized MNPs were further characterized by Raman, FTIR-ATR, and FTNIR spectroscopy and by TGA. The stability of the MILs was assigned to the formation of at least one monolayer of the surface modifier agent that mimics the structure of the BMI.NTf 2 IL. (author)

  5. Cellulose multilayer Membranes manufacture with Ionic liquid

    KAUST Repository

    Livazovic, Sara

    2015-05-09

    Membrane processes are considered energy-efficient for water desalination and treatment. However most membranes are based on polymers prepared from fossil petrochemical sources. The development of multilayer membranes for nanofiltration and ultrafiltration, with thin selective layers of naturally available cellulose has been hampered by the availability of non-aggressive solvents. We propose the manufacture of cellulose membranes based on two approaches: (i) silylation, coating from solutions in tetrahydrofuran, followed by solvent evaporation and cellulose regeneration by acid treatment; (ii) casting from solution in 1-ethyl-3-methylimidazolum acetate ([C2mim]OAc), an ionic liquid, followed by phase inversion in water. By these methods porous supports could be easily coated with semi-crystalline cellulose. The membranes were hydrophilic with contact angles as low as 22.0°, molecular weight cut-off as low as 3000 g mol-1 with corresponding water permeance of 13.8 Lm−2 h−1 bar−1. Self-standing cellulose membranes were also manufactured without porous substrate, using only ionic liquid as green solvent. This membrane was insoluble in water, tetrahydrofuran, hexane, N,N-dimethylformamide, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide.

  6. Application of ionic liquids in liquid chromatography and electrodriven separation.

    Science.gov (United States)

    Huang, Yi; Yao, Shun; Song, Hang

    2013-08-01

    Ionic liquids (ILs) are salts in the liquid state at ambient temperature, which are nonvolatile, nonflammable with high thermal stability and dissolve easily for a wide range of inorganic and organic materials. As a kind of potential green solvent, they show high efficiency and selectivity in the field of separation research, especially in instrumental analysis. Thus far, ILs have been successfully applied by many related researchers in high-performance liquid chromatography and capillary electrophoresis as chromatographic stationary phases, mobile phase additives or electroosmotic flow modifiers. This paper provides a detailed review of these applications in the study of natural products, foods, drugs and other fine chemicals. Furthermore, the prospects of ILs in liquid chromatographic and electrodriven techniques are discussed.

  7. Ternary (liquid + liquid) equilibria of {bis(trifluoromethylsulfonyl)-amide based ionic liquids + butan-1-ol + water}

    International Nuclear Information System (INIS)

    Marciniak, Andrzej; Wlazło, Michał; Gawkowska, Joanna

    2016-01-01

    Highlights: • Ternary (liquid + liquid) equilibria for 3 ionic liquid + butanol + water systems. • The influence of ionic liquid structure on phase diagrams is discussed. • Influence of IL structure on S and β for butanol/water separation is discussed. - Abstract: Ternary (liquid + liquid) phase equilibria for 3 systems containing bis(trifluoromethylsulfonyl)-amide ionic liquids (1-buthyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide, 1-(2-methoxyethyl)-1-methylpiperidinium bis(trifluoromethylsulfonyl)-amide, {1-(2-methoxyethyl)-1-methylpyrrolidinium bis(trifluorylsulfonyl)-amide) + butan-1-ol + water} have been determined at T = 298.15 K. The selectivity and solute distribution ratio were calculated for investigated systems and compared with literature data for other systems containing ionic liquids. In each system total solubility of butan-1-ol and low solubility of water in the ionic liquid is observed. The experimental results have been correlated using NRTL model. The influence of the structure of ionic liquid on phase equilibria, selectivity and solute distribution ratio is shortly discussed.

  8. Corrosion behavior of construction materials for ionic liquid hydrogen compressor

    DEFF Research Database (Denmark)

    Arjomand Kermani, Nasrin; Petrushina, Irina; Nikiforov, Aleksey Valerievich

    2016-01-01

    The corrosion behavior of various commercially available stainless steels and nickel-based alloys as possible construction materials for components which are in direct contact with one of five different ionic liquids was evaluated. The ionic liquids, namely: 1-ethyl-3-methylimidazolium triflate, 1...... liquid hydrogen compressor. An electrochemical cell was specially designed, and steady-state cyclic voltammetry was used to measure the corrosion resistance of the alloys in the ionic liquids at 23 °C, under atmospheric pressure. The results showed a very high corrosion resistance and high stability...... for all the alloys tested. The two stainless steels, AISI 316L and AISI 347 showed higher corrosion resistance compared to AISI 321 in all the ionic liquids tested. It was observed that small addition of molybdenum, tantalum, and niobium to the alloys increased the corrosion stability in the ionic liquids...

  9. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders

    2016-01-01

    A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water....... The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic...... investigations of the reaction and products are presented. The procedure reveals a new vision for removing the pollutant NO by absorption into a non-volatile liquid and converting it into a useful bulk chemical, that is, HNO3....

  10. Thermochemistry of ionic liquid heat-transfer fluids

    International Nuclear Information System (INIS)

    Van Valkenburg, Michael E.; Vaughn, Robert L.; Williams, Margaret; Wilkes, John S.

    2005-01-01

    Large-scale solar energy collectors intended for electric power generation require a heat-transfer fluid with a set of properties not fully met by currently available commercial materials. Ionic liquids have thermophysical and chemical properties that may be suitable for heat transfer and short heat term storage in power plants using parabolic trough solar collectors. Ionic liquids are salts that are liquid at or near room temperature. Thermal properties important for heat transfer applications are melting point, boiling point, liquidus range, heat capacity, heat of fusion, vapor pressure, and thermal conductivity. Other properties needed to evaluate the usefulness of ionic liquids are density, viscosity and chemical compatibility with certain metals. Three ionic liquids were chosen for study based on their range of solvent properties. The solvent properties correlate with solubility of water in the ionic liquids. The thermal and chemical properties listed above were measured or compiled from the literature. Contamination of the ionic liquids by impurities such as water, halides, and metal ions often affect physical properties. The ionic liquids were analyzed for those impurities, and the impact of the contamination was evaluated by standard addition. The conclusion is that the ionic liquids have some very favorable thermal properties compared to targets established by the Department of Energy for solar collector applications

  11. Molecular simulation of ionic liquids: current status and future opportunities

    International Nuclear Information System (INIS)

    Maginn, E J

    2009-01-01

    Ionic liquids are salts that are liquid near ambient conditions. Interest in these unusual compounds has exploded in the last decade, both at the academic and commercial level. Molecular simulations based on classical potentials have played an important role in helping researchers understand how condensed phase properties of these materials are linked to chemical structure and composition. Simulations have also predicted many properties and unexpected phenomena that have subsequently been confirmed experimentally. The beneficial impact molecular simulations have had on this field is due in large part to excellent timing. Just when computing power and simulation methods matured to the point where complex fluids could be studied in great detail, a new class of materials virtually unknown to experimentalists came on the scene and demanded attention. This topical review explores some of the history of ionic liquid molecular simulations, and then gives examples of the recent use of molecular dynamics and Monte Carlo simulation in understanding the structure of ionic liquids, the sorption of small molecules in ionic liquids, the nature of ionic liquids in the vapor phase and the dynamics of ionic liquids. This review concludes with a discussion of some of the outstanding problems facing the ionic liquid modeling community and how condensed phase molecular simulation experts not presently working on ionic liquids might help advance the field. (topical review)

  12. NEXAFS spectroscopy of ionic liquids: experiments versus calculations.

    Science.gov (United States)

    Fogarty, Richard M; Matthews, Richard P; Clough, Matthew T; Ashworth, Claire R; Brandt-Talbot, Agnieszka; Corbett, Paul J; Palgrave, Robert G; Bourne, Richard A; Chamberlain, Thomas W; Vander Hoogerstraete, Tom; Thompson, Paul B J; Hunt, Patricia A; Besley, Nicholas A; Lovelock, Kevin R J

    2017-11-29

    Experimental near edge X-ray absorption fine structure (NEXAFS) spectra are reported for 12 ionic liquids (ILs) encompassing a range of chemical structures for both the sulfur 1s and nitrogen 1s edges and compared with time-dependent density functional theory (TD-DFT) calculations. The energy scales for the experimental data were carefully calibrated against literature data. Gas phase calculations were performed on lone ions, ion pairs and ion pair dimers, with a wide range of ion pair conformers considered. For the first time, it is demonstrated that TD-DFT is a suitable method for simulating NEXAFS spectra of ILs, although the number of ions included in the calculations and their conformations are important considerations. For most of the ILs studied, calculations on lone ions in the gas phase were sufficient to successfully reproduce the experimental NEXAFS spectra. However, for certain ILs - for example, those containing a protic ammonium cation - calculations on ion pairs were required to obtain a good agreement with experimental spectra. Furthermore, significant conformational dependence was observed for the protic ammonium ILs, providing insight into the predominant liquid phase cation-anion interactions. Among the 12 investigated ILs, we find that four have an excited state that is delocalised across both the cation and the anion, which has implications for any process that depends on the excited state, for example, radiolysis. Considering the collective experimental and theoretical data, we recommend that ion pairs should be the minimum number of ions used for the calculation of NEXAFS spectra of ILs.

  13. Extraction of butan-1-ol from water with ionic liquids at T = 308.15 K

    International Nuclear Information System (INIS)

    Domańska, Urszula; Królikowski, Marek

    2012-01-01

    Highlights: ► The LLE ternary phase diagrams with ionic liquids were measured. ► Separation of butan-1-ol/water system with tetracyanoborate-based ILs. ► Low solubility of water in [P 14,6,6,6 ][TCB] was observed. ► [P 14,6,6,6 ][TCB] is proposed for possible use in separation of butan-1-ol from aqueous phase. - Abstract: Ionic liquids (ILs) are novel green solvents that can be proposed for removing butan-1-ol from the aqueous fermentation media. Ternary (liquid + liquid) equilibrium data are presented for {ionic liquid (1) + butan-1-ol (2) + water (3)} at T = 308.15 K and ambient pressure to analyze the performance of the ionic liquid (IL) in the extraction of butan-1-ol from aqueous phase. The tetracyanoborate-based ILs have been studied: 1-hexyl-3-methylimidazolium tetracyanoborate, ([HMIM][TCB]), 1-decyl-3-methylimidazolium tetracyanoborate, ([DMIM][TCB]) and trihexyltetradecylphosphonium tetracyanoborate, ([P 14,6,6,6 ][TCB]). The results are discussed in terms of the selectivity and distribution ratio of separation of related systems. The complete miscibility in the binary liquid systems of butan-1-ol with all used ILs was observed. The imidazolium cation in comparison with phosphonium cation shows lower selectivity and distribution ratio. The IL with the longer alkyl chain at the cation shows higher selectivity and distribution ratio in this process. The non-random two liquid NRTL model was used successfully to correlate the experimental tie-lines and to calculate the phase composition error in mole fraction in the ternary systems. The average root mean square deviation (RMSD) of the phase composition was 0.0027. The data presented here indicates the usefulness of [P 14,6,6,6 ][TCB] as a solvent for the separation of butan-1-ol from water using solvent extraction. The density of [P 14,6,6,6 ][TCB] was measured as a function of temperature.

  14. Anion influence on thermophysical properties of ionic liquids: 1-butylpyridinium tetrafluoroborate and 1-butylpyridinium triflate.

    Science.gov (United States)

    Bandrés, Isabel; Royo, Félix M; Gascón, Ignacio; Castro, Miguel; Lafuente, Carlos

    2010-03-18

    The thermophysical properties of two pyridinium-based ionic liquids, 1-butylpyridinium tetrafluoroborate and 1-butylpyridinium triflate, have been measured. Thus, densities, refractive indices, speeds of sound, viscosities, surface tensions, isobaric molar heat capacities, and thermal properties have been experimentally determined over a wide range of temperatures. The comparison of the properties of the two ionic liquids has allowed us to analyze in detail the anion influence. Moreover, useful derived properties have been calculated from the results. On the other hand, the influence of the lack of a substituent in the cation has been evaluated when properties of 1-butylpyridinium tetrafluoroborate have been contrasted to those of 1-butyl-n-methylpyridinium tetrafluoroborate, (n = 2, 3, or 4). The study has been carried out paying special attention to interactions between ions in order to elucidate the desired relationship between properties and structural characteristics of ionic liquids.

  15. Effect of potential attraction term on surface tension of ionic liquids

    Science.gov (United States)

    Vaziri, N.; Khordad, R.; Rezaei, G.

    2018-03-01

    In this work, we have studied the effect of attraction term of molecular potential on surface tension of ionic liquids (ILs). For this purpose, we have introduced two different potential models to obtain analytical expressions for the surface tension of ILs. The introduced potential models have different attraction terms. The obtained surface tensions in this work have been compared with other theoretical methods and also experimental data. Using the calculated surface tension, the sound velocity is also estimated. We have studied the structural effects on the surface tensions of imidazolium-based ionic liquids. It is found that the cation alkyl chain length and the anion size play important roles to the surface tension of the selected ionic liquids. The calculated surface tensions show a good harmony with experimental data. It is clear that the attraction term of molecular potential has an important role on surface tension and sound velocity of our system.

  16. Multi-Scale Simulation of High Energy Density Ionic Liquids

    National Research Council Canada - National Science Library

    Voth, Gregory A

    2007-01-01

    The focus of this AFOSR project was the molecular dynamics (MD) simulation of ionic liquid structure, dynamics, and interfacial properties, as well as multi-scale descriptions of these novel liquids (e.g...

  17. Structure of ionic liquid-water mixtures at interfaces: x-ray and neutron reflectometry studies

    International Nuclear Information System (INIS)

    Lauw, Yansen; Rodopoulos, Theo; Horne, Mike; Follink, Bart; Hamilton, Bill; Knott, Robert; Nelson, Andy

    2009-01-01

    Full text: Fundamental studies on the effect of water in ionic liquids are necessary since the overall performance of ionic liquids in many industrial applications is often hampered by the presence of water.[1] Based on this understanding, the surface and interfacial structures of 1-butyl-1methylpyrrolidinium trifluoromethylsulfonylimide [C4mpyr][NTf2] ionic liquid-water mixtures were probed using x-ray and neutron reflectometry techniques. At the gas-liquid surface, a thick cation+water layer was detected next to the phase boundary, followed by an increasing presence of anion towards the bulk. The overall thickness of the surface exhibits non-monotonic trends with an increasing water content, which explains similar phenomenological trends in surface tension reported in the literature.[2] At an electrified interface, the interfacial structure of pure ionic liquids probed by neutron reflectometry shows similar trends to those predicted by a mean-field model.[3] However, the presence of water within the electrical double-layer is less obvious, although it is widely known that water reduces electrochemical window of ionic liquids. To shed light on this issue, further studies are currently in progress.

  18. Significant Improvement of Catalytic Efficiencies in Ionic Liquids

    International Nuclear Information System (INIS)

    Song, Choong Eui; Yoon, Mi Young; Choi, Doo Seong

    2005-01-01

    The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive 'ionic liquid effect' on catalysis are discussed

  19. Prediction of (liquid + liquid) equilibrium for binary and ternary systems containing ionic liquids with the bis[(trifluoromethyl)sulfonyl]imide anion using the ASOG method

    International Nuclear Information System (INIS)

    Robles, Pedro A.; Cisternas, Luis A.

    2015-01-01

    Highlights: • ASOG model was used to predict LLE data for ionic liquid systems. • Twenty five binary and seven ternary systems that include the NTf 2 anion were used. • New group interaction parameters were determined. • The results are satisfactory, with rms deviations of about 3%. - Abstract: Ionic liquids are neoteric, environmentally friendly solvents (as they do not produce emissions) composed of large organic cations and relatively small inorganic anions. They have favorable physical properties, such as negligible volatility and a wide range of liquid existence. (Liquid + liquid) equilibrium (LLE) data for systems including ionic liquids, although essential for the design, optimization and operation of separation processes, remain scarce. However, some recent studies have presented ternary LLE data involving several ionic liquids and organic compounds such as alkanes, alkenes, alkanols, ethers and aromatics, as well as water. In this work, the ASOG model for the activity coefficient is used to predict LLE data for 25 binary and 07 ternary systems at 101.3 kPa and several temperatures; all the systems are formed by ionic liquids including the bis[(trifluoromethyl)sulfonyl]imide (NTf 2 ) anion plus alkanes, alkenes, cycloalkanes, alkanols, water, thiophene and aromatics. New group interaction parameters were determined using a modified Simplex method, minimizing a composition-based objective function of experimental data obtained from the literature. The results are satisfactory, with rms deviations of approximately 3%

  20. Synthesis and Characterization of Benzimidazolium Salts as Novel Ionic Liquids and their Catalytic Behavior in the Reaction of Alkylation

    Institute of Scientific and Technical Information of China (English)

    Wei Guo HUANG; Bo CHEN; Yuan Yuan WANG; Li Yi DAI; Yong Kui SHAN

    2005-01-01

    A new series of ionic liquids have been prepared containing benzimidazolium cation (abbreviated as Bim). These salts were characterized by DSC, NMR, elemental analysis and thermogravimetric analysis. They showed different properties compared to imidazolium cation due to the introduction of benzene ring. The alkylation of benzene/diphenyl ether with 1-dodecene was carried in C4eBimBr-AlCl3 ionic liquids showing high catalytic activity when the mole ratio of C4eBimB:AlCl3 was 1:2.

  1. Alternative route to metal halide free ionic liquids

    International Nuclear Information System (INIS)

    Takao, Koichiro; Ikeda, Yasuhisa

    2008-01-01

    An alternative synthetic route to metal halide free ionic liquids using trialkyloxonium salt is proposed. Utility of this synthetic route has been demonstrated by preparing 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid through the reaction between 1-methylimidazole and triethyloxonium tetra-fluoroborate in anhydrous ether. (author)

  2. Ionic Liquids and Green Chemistry: A Lab Experiment

    Science.gov (United States)

    Stark, Annegret; Ott, Denise; Kralisch, Dana; Kreisel, Guenter; Ondruschka, Bernd

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few investigations have actually assessed the degree of…

  3. An Ionic Liquid Solution of Chitosan as Organocatalyst

    Directory of Open Access Journals (Sweden)

    René Wilhelm

    2013-11-01

    Full Text Available Chitosan, which is derived from the biopolymer chitin, can be readily dissolved in different ionic liquids. The resulting homogeneous solutions were applied in an asymmetric Aldol reaction. Depending on the type of ionic liquid used, high asymmetric inductions were found. The influence of different additives was also studied. The best results were obtained in [BMIM][Br] without an additive.

  4. Multi-responsive ionic liquid emulsions stabilized by microgels

    NARCIS (Netherlands)

    Monteillet, H.; Workamp, M.; Li, X.; Schuur, Boelo; Kleijn, J.M.; Leermakers, F.; Sprakel, J.

    2014-01-01

    We present a complete toolbox to use responsive ionic liquid (IL) emulsions for extraction purposes. IL emulsions stabilized by responsive microgels are shown to allow rapid extraction and reversible breaking and re-emulsification. Moreover, by using a paramagnetic ionic liquid, droplets can be

  5. The Hildebrand solubility parameters of ionic liquids-part 2.

    Science.gov (United States)

    Marciniak, Andrzej

    2011-01-01

    The Hildebrand solubility parameters have been calculated for eight ionic liquids. Retention data from the inverse gas chromatography measurements of the activity coefficients at infinite dilution were used for the calculation. From the solubility parameters, the enthalpies of vaporization of ionic liquids were estimated. Results are compared with solubility parameters estimated by different methods.

  6. Absorption of Flue-Gas Components by Ionic Liquids

    DEFF Research Database (Denmark)

    Kolding, Helene; Thomassen, Peter Langelund; Mossin, Susanne

    2014-01-01

    Gas separation by ionic liquids (ILs) is a promising new research field with several potential applications of industrial interest. Thus cleaning of industrial off gases seems to be attractive by use of ILs and Supported Ionic Liquid Phase (SILP) materials. The potential of selected ILs...

  7. Interfacial Structure and Double Layer Capacitance of Ionic Liquids

    NARCIS (Netherlands)

    Jitvisate, Monchai

    2018-01-01

    Ionic liquids are organic salts that are in liquid phase at room temperature. Their wide liquidus range, particularly at room temperature, results from the liquids’ large and asymmetric molecular geometry. This leads to a collection of unique properties, such as, high ionic strength, extremely low

  8. Synthesis and polymerization of vinyl triazolium ionic liquids

    Science.gov (United States)

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  9. Near-wall molecular ordering of dilute ionic liquids

    NARCIS (Netherlands)

    Jitvisate, Monchai; Seddon, James Richard Thorley

    2017-01-01

    The interfacial behavior of ionic liquids promises tunable lubrication as well as playing an integral role in ion diffusion for electron transfer. Diluting the ionic liquids optimizes bulk parameters, such as electric conductivity, and one would expect dilution to disrupt the near-wall molecular

  10. Reversible physical absorption of SO2 by ionic liquids

    DEFF Research Database (Denmark)

    Huang, Jun; Riisager, Anders; Fehrmann, Rasmus

    2006-01-01

    Ionic liquids can reversibly absorb large amounts of molecular SO2 gas under ambient conditions with the gas captured in a restricted configuration, possibly allowing SO2 to probe the internal cavity structures in ionic liquids besides being useful for SO2 removal in pollution control....

  11. Selective Oxidative Carbonylation of Aniline to Diphenylurea with Ionic Liquids

    DEFF Research Database (Denmark)

    Zahrtmann, Nanette; Claver, Carmen; Godard, Cyril

    2018-01-01

    A catalytic system for the selective oxidative carbonylation of aniline to diphenylurea based on Pd complexes in combination with imidazolium ionic liquids is presented. Both oxidants, Pd complexes and ionic liquids affect the activity of the reaction while the choice of oxidant determines...

  12. CO2 sorption by supported amino acid ionic liquids

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials.......The present invention concerns the absorption and desorption behaviour of carbon dioxide (CO2) using ionic liquids derived from amino acids adsorbed on porous carrier materials....

  13. Ionic liquids and green chemistry : a lab experiment

    NARCIS (Netherlands)

    Stark, A.; Ott-Reinhardt, D.; Kralisch, D.; Kreisel, G.; Ondruschka, B.

    2010-01-01

    Although ionic liquids have been investigated as solvents for many applications and are starting to be used in industrial processes, only a few lab experiments are available to introduce students to these materials. Ionic liquids have been discussed in the context of green chemistry, but few

  14. Absorption and oxidation of no in ionic liquids

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature.......The present invention concerns the absorption and in situ oxidation of nitric oxide (NO) in the presence of water and oxygen in ionic liquid compositions at ambient temperature....

  15. Natural gas purification using supported ionic liquid membrane

    NARCIS (Netherlands)

    Althuluth, M.A.M.; Overbeek, J.P.; Wees, H.J.; Zubeir, L.F.; Haije, W.G.; Berrouk, A.S.; Peters, C.J.; Kroon, M.C.

    2015-01-01

    This paper examines the possibility of the application of a supported ionic liquid membrane (SILM) for natural gas purification. The ionic liquid (IL) 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]) was impregnated successfully in the ¿-alumina layer of a tubular

  16. Interfacial Structures of Trihexyltetradecylphosphonium-bis(mandelato)borate Ionic Liquid Confined between Gold Electrodes.

    Science.gov (United States)

    Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto

    2017-02-08

    Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.

  17. X‐ray Photoelectron Spectroscopy of Pyridinium‐Based Ionic Liquids: Comparison to Imidazolium‐ and Pyrrolidinium‐Based Analogues

    Science.gov (United States)

    Mitchell, Daniel S.; Lovelock, Kevin R. J.

    2015-01-01

    Abstract We investigate eight 1‐alkylpyridinium‐based ionic liquids of the form [CnPy][A] by using X‐ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake‐up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic‐liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8Py][A] and analogues including 1‐octyl‐1‐methylpyrrolidinium‐ ([C8C1Pyrr][A]), and 1‐octyl‐3‐methylimidazolium‐ ([C8C1Im][A]) based samples, where X is common to all ionic liquids. PMID:25952131

  18. How to separate ionic liquids: Use of Hydrophilic Interaction Liquid Chromatography and mixed mode phases

    International Nuclear Information System (INIS)

    Lamouroux, C.

    2011-01-01

    This chromatographic study deals with the development of a convenient and versatile method to separate Room Temperature Ionic Liquids. Different modes of chromatography were studied. The study attempts to answer the following question: 'what were the most important interactions for the separation of ionic liquids?'. The results show that the essential interactions to assure a good retention of RTILs are the ionic ones and that hydrophobic interactions play a role in the selectivity of the separation. The separation of five imidazolium salt with a traditional dial columns in Hydrophilic Interaction Chromatography (HILIC) was demonstrated. It shows that neutral diol grafted column allows an important retention that we assume is due to the capability of diol to develop a thick layer of water. Furthermore, stationary phase based on mixed interaction associating ion exchange and hydrophobic properties were studied. Firstly, it will be argued that it is possible to separate RTILs with a convenient retention and resolution according to a reverse phase elution with the Primesep columns made of a brush type long alkyl chain with an embedded negatively charged functional group. Secondly, a successful separation of RTILs in HILIC mode with a mixed phase column containing a cationic exchanger and a hydrophobic octyl chain length will be demonstrated. (author)

  19. Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ying Li

    2013-01-01

    Full Text Available 1,3-Dialkylimidazolium-based ionic liquids were chemically synthesized and bonded on the surface of magnetic nanoparticles (MNPs with easy one-step reaction. The obtained six kinds of ionic liquid modified MNPs were characterized with transmission electron microscopy, thermogravimetric analysis, magnetization, and FTIR, which owned the high adsorption capacity due to the nanometer size and high-density modification with ionic liquids. Functionality of MNPs with ionic liquids greatly influenced the solubility of the MNPs with organic solvents depending on the alkyl chain length and the anions of the ionic liquids. Moreover, the obtained MNPs showed the specific extraction efficiency to organic pollutant, polycyclic aromatic hydrocarbons, while superparamagnetic property of the MNPs facilitated the convenient separation of MNPs from the bulks water samples.

  20. Simultaneous Design of Ionic Liquids and Azeotropic Separation Processes

    DEFF Research Database (Denmark)

    Roughton, Brock C.; White, John; Camarda, Kyle V.

    2011-01-01

    A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using the b...... % [BMPy][BF4] added. The driving force concept is used to design an extractive distillation process that minimizes energy inputs. The methodology given can be expanded to the use of ionic liquids as entrainers in any azeotropic system of interest.......A methodology for the design of azeotrope separation processes using ionic liquids as entrainers is outlined. A Hildebrand solubility parameter group contribution model has been developed to screen for or design an ionic liquid entrainer that is soluble with the azeotropic components. Using...

  1. Capillary isotachophoresis for the analysis of ionic liquid entities.

    Science.gov (United States)

    Markowska, Aleksandra; Stepnowski, Piotr

    2010-07-01

    Simple, selective and sensitive isotachophoretic methods for the analysis of ionic liquid (IL) compartments were developed in this study. A leading electrolyte containing 10 mM L-histidine + 10 mM histidine hydrochloride and a terminating electrolyte containing 5 mM glutamic acid + 5 mM L-histidine were selected to separate nitrate(V), chlorate(V), hexafluorophosphate, dicyanimide, trifluoromethanesulfonate, phosphate(V) and bis(trifluoromethanesulfonyl)imide in anionic mode. In contrast, seven short-chain alkylimidazolium, alkylpyrrolidinium, alkylpyridinium and non-chromophoric tetraalkylammonium and tetraalkylphosphonium IL cations were separated with 10 mM potassium hydroxide + 10 mM acetic acid as leading electrolyte, and 10 mM beta-alanine + 10 mM acetate as terminating electrolyte. Both methods were optimized and validated with good analytical performance parameters. LOD was about 3-5 microM, and the repeatability lay in the range of 1.06-5.59%. These methods were evaluated for their applicability to the analysis of soil samples and freshwater contaminated with ILs. In light of hitherto the absence of reports on the determination of non-chromophoric IL cations, this study delivers for the first time a universal method enabling analysis of these species. Moreover, as there is still significant lack of methodologies of IL anion analysis, the obtained results offer an interesting alternative in that matter.

  2. Formation of crystalline telluridomercurates from ionic liquids near room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Donsbach, Carsten; Dehnen, Stefanie [Fachbereich Chemie und Wissenschaftliches Zentrum fuer Materialwissenschaften, Philipps-Universitaet Marburg, Hans-Meerwein-Strasse 4, 35043, Marburg (Germany)

    2017-01-15

    The ternary telluridomercurate Na{sub 2}[HgTe{sub 2}] (1) was formed by fusion of Na{sub 2}Te and HgTe at 600 C and further treated in the ionic liquid (C{sub 4}C{sub 1}Im)[BF{sub 4}] (C{sub 4}C{sub 1}Im = 1-butyl-3-methylimidazolium) at moderately elevated temperatures (60 C), leading to replacement of the Na{sup +} cations with (C{sub 4}C{sub 1}Im){sup +} and re-arrangement of the inorganic substructure. As a result, we obtained the telluridomercurate (C{sub 4}C{sub 1}Im){sub 2}[HgTe{sub 2}] (2) and the tellurido/ditelluridomercurate (C{sub 4}C{sub 1}Im){sub 2}[Hg{sub 2}Te{sub 4}] (3) besides polytellurides and HgTe as by-products. The heavy atom compositions of the compounds were confirmed by micro X-ray fluorescence spectroscopy (μ-XFS), and their structures were determined by single-crystal diffraction. The cation-exchanged salts were further investigated by UV/Vis spectroscopy, indicating narrow band-gap optical transitions at 2.80 eV (2) and 1.63 eV (3), in agreement with their visible yellow or reddish-black color, respectively. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Dielectric response and transport properties of alkylammonium formate ionic liquids

    Science.gov (United States)

    Nazet, Andreas; Buchner, Richard

    2018-05-01

    Dielectric relaxation spectra of three members of the alkylammonium formate family of protic ionic liquids (PILs), namely, ethylammonium formate (EAF), n-butylammonium formate (BuAF), and n-pentylammonium formate (PeAF), as well as the pseudo-PIL triethylamine + formic acid (molar ratio 1:2; TEAF) have been studied over a wide frequency (50 MHz to 89 GHz) and temperature range (5-65 °C), complemented by measurements of their density, viscosity, and conductivity. It turned out that the dominating relaxation of EAF, BuAF, and PeAF arises from both cation and anion reorientations which are synchronized in their dynamics due to hydrogen bonding. Amplitudes and relaxation times of this mode reflect the—compared to nitrate—different nature of H bonding between the formate anion and ethylammonium cation, as well as increasing segregation of the PIL structure into polar and non-polar domains. The TEAF data suggest that its dominating relaxation is due to the rotation of the complex triethylamineṡ(formic acid)2 in which no significant proton transfer to an ion pair occurred. Weak dissociation of this complex into ions was postulated to account for the high conductivity of TEAF.

  4. Proactive aquatic ecotoxicological assessment of room-temperature ionic liquids

    Science.gov (United States)

    Kulacki, K.J.; Chaloner, D.T.; Larson, J.H.; Costello, D.M.; Evans-White, M. A.; Docherty, K.M.; Bernot, R.J.; Brueseke, M.A.; Kulpa, C.F.; Lamberti, G.A.

    2011-01-01

    Aquatic environments are being contaminated with a myriad of anthropogenic chemicals, a problem likely to continue due to both unintentional and intentional releases. To protect valuable natural resources, novel chemicals should be shown to be environmentally safe prior to use and potential release into the environment. Such proactive assessment is currently being applied to room-temperature ionic liquids (ILs). Because most ILs are water-soluble, their effects are likely to manifest in aquatic ecosystems. Information on the impacts of ILs on numerous aquatic organisms, focused primarily on acute LC50 and EC50 endpoints, is now available, and trends in toxicity are emerging. Cation structure tends to influence IL toxicity more so than anion structure, and within a cation class, the length of alkyl chain substituents is positively correlated with toxicity. While the effects of ILs on several aquatic organisms have been studied, the challenge for aquatic toxicology is now to predict the effects of ILs in complex natural environments that often include diverse mixtures of organisms, abiotic conditions, and additional stressors. To make robust predictions about ILs will require coupling of ecologically realistic laboratory and field experiments with standard toxicity bioassays and models. Such assessments would likely discourage the development of especially toxic ILs while shifting focus to those that are more environmentally benign. Understanding the broader ecological effects of emerging chemicals, incorporating that information into predictive models, and conveying the conclusions to those who develop, regulate, and use those chemicals, should help avoid future environmental degradation. ?? 2011 Bentham Science Publishers Ltd.

  5. Interfacial ionic 'liquids': connecting static and dynamic structures.

    Science.gov (United States)

    Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul

    2015-01-28

    It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).

  6. Dynamic and structural evidence of mesoscopic aggregation in phosphonium ionic liquids

    Science.gov (United States)

    Cosby, T.; Vicars, Z.; Heres, M.; Tsunashima, K.; Sangoro, J.

    2018-05-01

    Mesoscopic aggregation in aprotic ionic liquids due to the microphase separation of polar and non-polar components is expected to correlate strongly with the physicochemical properties of ionic liquids and therefore their potential applications. The most commonly cited experimental evidence of such aggregation is the observation of a low-q pre-peak in the x-ray and neutron scattering profiles, attributed to the polarity alternation of polar and apolar phases. In this work, a homologous series of phosphonium ionic liquids with the bis(trifluoromethylsulfonyl)imide anion and systematically varying alkyl chain lengths on the phosphonium cation are investigated by small and wide-angle x-ray scattering, dynamic-mechanical spectroscopy, and broadband dielectric spectroscopy. A comparison of the real space correlation distance corresponding to the pre-peak and the presence or absence of the slow sub-α dielectric relaxation previously associated with the motion of mesoscale aggregates reveals a disruption of mesoscale aggregates with increasing symmetry of the quaternary phosphonium cation. These findings contribute to the broader understanding of the interplay of molecular structures, mesoscale aggregation, and physicochemical properties in aprotic ionic liquids.

  7. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jing; Zhang, Shanshan; Dai, Yitong; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun, E-mail: qflei@zju.edu.cn

    2016-04-15

    Highlights: • Twelve piperazinium- and guanidinium-based ionic liquids were synthesized and characterized. • Antimicrobial activities of the ionic liquids against E. coli and S. aureus were investigated. • Cytotoxicity on the rat C6 glioma cells (C6) and human embryonic kidney cells (HEK-293) were evaluated. • The ionic liquids with the [BF{sub 4}]{sup −} anion and with benzene ring on cation exhibit relatively high toxicity. - Abstract: Twelve piperazinium- and guanidinium-based ionic liquids (ILs) were synthesized, and characterized by {sup 1}H nuclear magnetic resonance (NMR), thermal gravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The antimicrobial activity and cytotoxicity have been investigated to provide the information whether the newly synthesized ILs are toxic or not. The antimicrobial effects of these ILs on gram negative and gram positive bacteria are evaluated on the basis of the minimum inhibitory concentration (MIC) measurements. The membrane damages of bacteria in the presence of ILs are observed by scanning electron microscopy (SEM). The cytotoxicity data of the ILs on HEK-293 and C6 cells are obtained by MTT cell viability assay. The disruption of cell cycle is analyzed by the flow cytometry. The results show that most of the ILs exhibit low toxicity, and the ILs with tetrafluoroborate anion and with benzene ring on cation are the species with relatively high toxicity among the studied ILs. The fundamental data and results can provide some useful information for the further studies and applications of the ILs.

  8. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids

    International Nuclear Information System (INIS)

    Yu, Jing; Zhang, Shanshan; Dai, Yitong; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun

    2016-01-01

    Highlights: • Twelve piperazinium- and guanidinium-based ionic liquids were synthesized and characterized. • Antimicrobial activities of the ionic liquids against E. coli and S. aureus were investigated. • Cytotoxicity on the rat C6 glioma cells (C6) and human embryonic kidney cells (HEK-293) were evaluated. • The ionic liquids with the [BF_4]"− anion and with benzene ring on cation exhibit relatively high toxicity. - Abstract: Twelve piperazinium- and guanidinium-based ionic liquids (ILs) were synthesized, and characterized by "1H nuclear magnetic resonance (NMR), thermal gravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The antimicrobial activity and cytotoxicity have been investigated to provide the information whether the newly synthesized ILs are toxic or not. The antimicrobial effects of these ILs on gram negative and gram positive bacteria are evaluated on the basis of the minimum inhibitory concentration (MIC) measurements. The membrane damages of bacteria in the presence of ILs are observed by scanning electron microscopy (SEM). The cytotoxicity data of the ILs on HEK-293 and C6 cells are obtained by MTT cell viability assay. The disruption of cell cycle is analyzed by the flow cytometry. The results show that most of the ILs exhibit low toxicity, and the ILs with tetrafluoroborate anion and with benzene ring on cation are the species with relatively high toxicity among the studied ILs. The fundamental data and results can provide some useful information for the further studies and applications of the ILs.

  9. Ionic-Liquid-Infused Nanostructures as Repellent Surfaces.

    Science.gov (United States)

    Galvan, Yaraset; Phillips, Katherine R; Haumann, Marco; Wasserscheid, Peter; Zarraga, Ramon; Vogel, Nicolas

    2018-02-02

    In order to prepare lubricant-infused repellent coatings on silica nanostructures using low vapor pressure ionic liquids as lubricants, we study the wetting behavior of a set of imidazolium-based ionic liquids with different alkyl side chains as a function of the applied surface functionalities. We take advantage of the structural color of inverse opals prepared from a colloidal coassembly technique to study the infiltration of ionic liquids into these nanoporous structures. We find that the more hydrophobic ionic liquids with butyl and hexyl side chains can completely infiltrate inverse opals functionalized with mixed self-assembled monolayers composed of imidazole groups and aliphatic hydrocarbon chains, which we introduce via silane chemistry. These molecular species reflect the chemical nature of the ionic liquid, thereby increasing the affinity between the liquid and solid surface. The mixed surface chemistry provides sufficiently small contact angles with the ionic liquid to infiltrate the nanopores while maximizing the contact angle with water. As a result, the mixed monolayers enable the design of a stable ionic liquid/solid interface that is able to repel water as a test liquid. Our results underline the importance of matching chemical affinities to predict and control the wetting behavior in complex, multiphase systems.

  10. Solubility and selectivity of CO2 in ether-functionalized imidazolium ionic liquids

    International Nuclear Information System (INIS)

    Zhou, Lingyun; Shang, Xiaomin; Fan, Jing; Wang, Jianji

    2016-01-01

    Highlights: • Solubilities of CO 2 , N 2 and O 2 in [EOMmim][PF 6 ] and [EOMmim][Tf 2 N] were determined. • Introduction of ether group results in increase of CO 2 /N 2 and CO 2 /O 2 selectivity. • The solution of CO 2 in the ionic liquids is an exothermic and orderly process. • Experimental solubility data have been well correlated by Pitzer model. - Abstract: Ionic liquids are widely recognized new materials in carbon dioxide capture and separation technology. In this work, we synthesized and characterized two kinds of ether-functionalized imidazolium ionic liquids, 1-methoxyethyl-3-methylimidazolium hexafluoroborate ([EOMmim][PF 6 ]) and 1-methoxyethyl-3-methylimidazolium bis(trifluoro-methylsulfony)imide ([EOMmim][Tf 2 N]). Solubility values of CO 2 in these ionic liquids were determined by isometric weight method at the temperatures from 298.15 K to 343.15 K and the pressure up to 5.185 MPa. Furthermore, solubilities of other flue gases, N 2 and O 2 , in these two ionic liquids were also measured at 303.15 K. It was shown that little influence had been exerted on CO 2 solubility by the introduction of ether groups on the cation, but it decreased N 2 and O 2 solubility, resulting in the remarkable increase of CO 2 /N 2 and CO 2 /O 2 selectivity. In addition, the solubility data were well correlated by Pitzer model, and the standard state solution Gibbs energy, solution enthalpy and solution entropy of CO 2 in the two ionic liquids were reported. Regeneration characteristics of the investigated ionic liquids was also studied by vacuum desorption and atmospheric desorption, respectively.

  11. Highly stable noble-metal nanoparticles in tetraalkylphosphonium ionic liquids for in situ catalysis.

    Science.gov (United States)

    Banerjee, Abhinandan; Theron, Robin; Scott, Robert W J

    2012-01-09

    Gold and palladium nanoparticles were prepared by lithium borohydride reduction of the metal salt precursors in tetraalkylphosphonium halide ionic liquids in the absence of any organic solvents or external nanoparticle stabilizers. These colloidal suspensions remained stable and showed no nanoparticle agglomeration over many months. A combination of electrostatic interactions between the coordinatively unsaturated metal nanoparticle surface and the ionic-liquid anions, bolstered by steric protection offered by the bulky alkylated phosphonium cations, is likely to be the reason behind such stabilization. The halide anion strongly absorbs to the nanoparticle surface, leading to exceptional nanoparticle stability in halide ionic liquids; other tetraalkylphosphonium ionic liquids with non-coordinating anions, such as tosylate and hexafluorophosphate, show considerably lower affinities towards the stabilization of nanoparticles. Palladium nanoparticles stabilized in the tetraalkylphosphonium halide ionic liquid were stable, efficient, and recyclable catalysts for a variety of hydrogenation reactions at ambient pressures with sustained activity. Aerial oxidation of the metal nanoparticles occurred over time and was readily reversed by re-reduction of oxidized metal salts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A comparative study on the thermophysical properties for two bis[(trifluoromethyl)sulfonyl]imide-based ionic liquids containing the trimethyl-sulfonium or the trimethyl-ammonium cation in molecular solvents.

    Science.gov (United States)

    Couadou, Erwan; Jacquemin, Johan; Galiano, Hervé; Hardacre, Christopher; Anouti, Mérièm

    2013-02-07

    Herein, we present a comparative study of the thermophysical properties of two homologous ionic liquids, namely, trimethyl-sulfonium bis[(trifluoromethyl)sulfonyl]imide, [S(111)][TFSI], and trimethyl-ammonium bis[(trifluoromethyl)sulfonyl]imide, [HN(111)][TFSI], and their mixtures with propylene carbonate, acetonitrile, or gamma butyrolactone as a function of temperature and composition. The influence of solvent addition on the viscosity, conductivity, and thermal properties of IL solutions was studied as a function of the solvent mole fraction from the maximum solubility of IL, x(s), in each solvent to the pure solvent. In this case, x(s) is the composition corresponding to the maximum salt solubility in each liquid solvent at a given temperature from 258.15 to 353.15 K. The effect of temperature on the transport properties of each binary mixture was then investigated by fitting the experimental data using Arrhenius' law and the Vogel-Tamman-Fulcher (VTF) equation. The experimental data shows that the residual conductivity at low temperature, e.g., 263.15 K, of each binary mixture is exceptionally high. For example, conductivity values up to 35 and 42 mS·cm(-1) were observed in the case of the [S(111)][TFSI] + ACN and [HN(111)][TFSI] + ACN binary mixtures, respectively. Subsequently, a theoretical approach based on the conductivity and on the viscosity of electrolytes was formulated by treating the migration of ions as a dynamical process governed by ion-ion and solvent-ion interactions. Within this model, viscosity data sets were first analyzed using the Jones-Dole equation. Using this theoretical approach, excellent agreement was obtained between the experimental and calculated conductivities for the binary mixtures investigated at 298.15 K as a function of the composition up to the maximum solubility of the IL. Finally, the thermal characterization of the IL solutions, using DSC measurements, showed a number of features corresponding to different solid

  13. Olefins hydro-formylation catalysed by rhodium complexes using ionic liquids; Hydroformylation des olefines par les complexes du rhodium dans les liquides ioniques

    Energy Technology Data Exchange (ETDEWEB)

    Favre, F.

    2000-10-26

    Biphasic long chain olefins hydro-formylation catalysed by rhodium complexes using ionic liquids allows a selective reaction and an easy separation of the products from the catalyst. This study reports the synthesis of ionic liquids that were used as the catalyst's solvent. Their physical and chemical properties (melting point, solubility of organic substrates) can be varied with the structure of the organic cation (imidazolium, pyridinium, pyrrolydinium) and with its substituents (nature, length, number). It depends also on the nature of the inorganic anion (hexa-fluoro-phosphate, tetrafluoroborate, tri-fluoro-acetate, triflate, bistriflylamidure...). The use of phosphorus ligands bearing ionic functions proved to be efficient to maintain the onerous rhodium catalyst in the ionic liquid phase. Phosphines, phosphites and phosphinites including anionic (sulfonate, carboxylate) or cationic (imidazolium, pyridinium, guanidinium, phosphonium) groups have been synthesised. Finally, the influences of the ligand and of the ionic liquid on the catalytic system performances are described. Selectivities in aldehydes and reaction rates proved to be highly dependent on the nature of the ligand and of the ionic liquid. The different possibilities of recycling the ionic phase containing the rhodium catalyst have been also studied. (author)

  14. Combustible ionic liquids by design: is laboratory safety another ionic liquid myth?

    Science.gov (United States)

    Smiglak, Marcin; Reichert, W Mathew; Holbrey, John D; Wilkes, John S; Sun, Luyi; Thrasher, Joseph S; Kirichenko, Kostyantyn; Singh, Shailendra; Katritzky, Alan R; Rogers, Robin D

    2006-06-28

    The non-flammability of ionic liquids (ILs) is often highlighted as a safety advantage of ILs over volatile organic compounds (VOCs), but the fact that many ILs are not flammable themselves does not mean that they are safe to use near fire and/or heat sources; a large group of ILs (including commercially available ILs) are combustible due to the nature of their positive heats of formation, oxygen content, and decomposition products.

  15. Gas-liquid interface of room-temperature ionic liquids.

    Science.gov (United States)

    Santos, Cherry S; Baldelli, Steven

    2010-06-01

    The organization of ions at the interface of ionic liquids and the vacuum is an ideal system to test new ideas and concepts on the interfacial chemistry of electrolyte systems in the limit of no solvent medium. Whilst electrolyte systems have numerous theoretical and experimental methods used to investigate their properties, the ionic liquids are relatively new and our understanding of the interfacial properties is just beginning to be explored. In this critical review, the gas-liquid interface is reviewed, as this interface does not depend on the preparation of another medium and thus produces a natural interface. The interface has been investigated by sum frequency generation vibrational spectroscopy and ultra-high vacuum techniques. The results provide a detailed molecular-level view of the surface composition and structure. These have been complemented by theoretical studies. The combinations of treatments on this interface are starting to provide a somewhat convergent description of how the ions are organized at this neat interface (108 references).

  16. Ternary liquid-liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid

    NARCIS (Netherlands)

    Meindersma, G.W.; Podt, J.G.; de Haan, A.B.

    2006-01-01

    This research has been focused on a study of sulfolane and four ionic liquids as solvents in liquid–liquid extraction. Liquid–liquid equilibria data were obtained for mixtures of (sulfolane or 4-methyl-N-butylpyridinium tetrafluoroborate ([mebupy]BF4) or 1-ethyl-3-methylimidazolium ethylsulfate

  17. Hydroxyl group as IR probe to detect the structure of ionic liquid-acetonitrile mixtures

    Science.gov (United States)

    Xu, Jing; Deng, Geng; Zhou, Yu; Ashraf, Hamad; Yu, Zhi-Wu

    2018-06-01

    Task-specific ionic liquids (ILs) are those with functional groups introduced in the cations or anions of ILs to bring about specific properties for various tasks. In this work, the hydrogen bonding interactions between a hydroxyl functionalized IL 1-(2-hydroxylethyl)-3-methylimidazolium tetrafluoroborate ([C2OHMIM][BF4]) and acetonitrile were investigated in detail by infrared spectroscopy, excess spectroscopy, two-dimensional correlation spectroscopy, combined with hydrogen nuclear magnetic resonance and density functional theory calculations (DFT). The hydroxyl group rather than C2sbnd H is found to be the main interaction site in the cation. And the ν(Osbnd H) is more sensitive than v(C-Hs) to the environment, which has been taken as an intrinsic probe to reflect the structural change of IL. Examining the region of ν(Osbnd H), by combining excess spectroscopy and DFT calculation, a number of species were identified in the mixtures. Other than the hydrogen bond between a cation and an anion, the hydroxyl group allows the formation of a hydrogen bond between two like-charged cations. The Osbnd H⋯O hydrogen bonding interactions in the hydroxyl-mediated cation-cation complexes are cooperative, while Osbnd H⋯F and C2sbnd H⋯F hydrogen bonding interactions in cation-anion complexes are anti-cooperative. These in-depth studies on the properties of the ionic liquid-acetonitrile mixtures may shed light on exploring their applications as mixed solvents and understanding the nature of doubly ionic hydrogen bonds.

  18. Thermodynamics of interaction of ionic liquids with lipid monolayer.

    Science.gov (United States)

    Bhattacharya, G; Mitra, S; Mandal, P; Dutta, S; Giri, R P; Ghosh, S K

    2018-06-01

    Understanding the interaction of ionic liquids with cellular membrane becomes utterly important to comprehend the activities of these liquids in living organisms. Lipid monolayer formed at the air-water interface is employed as a model system to follow this interaction by investigating important thermodynamic parameters. The penetration kinetics of the imidazolium-based ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate ([DMIM][BF4]) into the zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid layer is found to follow the Boltzmann-like equation that reveals the characteristic time constant which is observed to be the function of initial surface pressure. The enthalpy and entropy calculated from temperature-dependent pressure-area isotherms of the monolayer show that the added ionic liquids bring about a disordering effect in the lipid film. The change in Gibbs free energy indicates that an ionic liquid with longer chain has a far greater disordering effect compared to an ionic liquid with shorter chain. The differential scanning calorimetric measurement on a multilamellar vesicle system shows the main phase transition temperature to shift to a lower value, which, again, indicates the disordering effect of the ionic liquid on lipid membrane. All these studies fundamentally point out that, when ionic liquids interact with lipid molecules, the self-assembled structure of a cellular membrane gets perturbed, which may be the mechanism of these molecules having adverse effects on living organisms.

  19. Combined techniques for studying actinide complexes in room temperature ionic liquids

    International Nuclear Information System (INIS)

    Gaillard, C.; Billard, I.; Mekki, S.; Ouadi, A.; Hennig, Ch.; Denecke, M.A.

    2007-01-01

    Room temperature ionic liquids (RTILs) are a new class of solvents. Their main interest is related to their 'green' properties (non-volatile, non-flammable, etc.), but also from the variability of their physico-chemical properties (stability, hydrophobicity, viscosity) as a function of the RTIL cationic and anionic components. In the frame of the nuclear fuel reprocessing, RTILs are particularly attractive in order to improve existing processes or to develop new ones for actinide and lanthanide partitioning, in replacement of toxic solvents used nowadays, for metal electrodeposition or for liquid/liquid extraction by the use of task specific ionic liquids. However, despite the increasing number of publications devoted to ionic liquids, the solvation effects, the solute-solvent and solvent-solvent interactions are still hardly known. These fundamental aspects are of tremendous importance to the understanding of the solvating properties of these new solvents. In this frame, we have undertaken studies on the solvation and complexation of lanthanides (III) and actinides in RTILs, by the use of spectroscopic techniques. Experiments were led in various ionic liquids in order to highlight the role of the anionic part of the RTILs on the reactivity of the studied cations. Results have clearly shown that solvation phenomena in RTILs are not as 'simple' as in classical solvents. The dissolution of a Ln/An salt, even if complete, does not imply dissociation and solvation of the metal cation by the RTILs anions only. The nature of first co-ordination sphere of Ln/An depends on the competition between its counter-anions and the RTIL anions, which, in turn, influence the complexation reaction with other added anions such as chlorides. (authors)

  20. Predictions of Physicochemical Properties of Ionic Liquids with DFT

    Directory of Open Access Journals (Sweden)

    Karl Karu

    2016-07-01

    Full Text Available Nowadays, density functional theory (DFT-based high-throughput computational approach is becoming more efficient and, thus, attractive for finding advanced materials for electrochemical applications. In this work, we illustrate how theoretical models, computational methods, and informatics techniques can be put together to form a simple DFT-based throughput computational workflow for predicting physicochemical properties of room-temperature ionic liquids. The developed workflow has been used for screening a set of 48 ionic pairs and for analyzing the gathered data. The predicted relative electrochemical stabilities, ionic charges and dynamic properties of the investigated ionic liquids are discussed in the light of their potential practical applications.

  1. Quaternary ammonium based task specific ionic liquid for the efficient and selective extraction of neptunium

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Nishesh Kumar [National Institute of Technology, Odisha (India). Dept. of Chemistry; Sengupta, Arijit [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Biswas, Sujoy [Bhabha Atomic Research Centre, Mumbai (India). Uranium Extraction Div.

    2017-07-01

    Liquid-liquid extraction of neptunium from aqueous acidic solution using quaternary ammonium based task specific ionic liquid (TSIL) was investigated. The extraction of Np was predominated by the 'cation exchange' mechanism via [NpO{sub 2}.Hpth]{sup +} species for NpO{sub 2}{sup 2+}, while NpO{sub 2}{sup +} was extracted in ionic liquid as [NpO{sub 2}.H.Hpth]{sup +}. The extraction process was thermodynamically spontaneous while kinetically slower. Na{sub 2}CO{sub 3} as strippant showed quantitative back extraction of neptunium ions from TSIL. TSIL showed excellent radiolytic stability upto 500 kGy gamma exposure. Finally, the TSIL was employed for the processing of simulated high level waste solutions revealing high selectivity of TSIL towards neptunium.

  2. The scaled-charge additive force field for amino acid based ionic liquids

    DEFF Research Database (Denmark)

    Fileti, E. E.; Chaban, V. V.

    2014-01-01

    Ionic liquids (ILs) constitute an emerging research field. New ILs involve more and more organic and inorganic ions. Amino acid based ILs (AAILs) represent a specific interest due to their evolutional connection to proteins. We report a new non-polarizable force field (FF) for the eight AAILs...... comprising 1-ethyl-3-methylimidazolium cation and amino acid anions. The anions were obtained via deprotonation of carboxyl group. Specific cation-anion non-covalent interactions were taken into account by computing electrostatic potential for ion pairs. The van der Waals interactions were adopted from...

  3. New synthetic routes to polyoxometalate containing ionic liquids an investigation of their properties

    CERN Document Server

    Herrmann, Sven

    2015-01-01

    In his Master project Sven Herrmann for the first time carried out fundamental investigations into the development of polyoxometalate based ionic liquids (POM-ILs). The POM-ILs were obtained by charge balancing inorganic polyoxometalate (POM) anions with sterically demanding tetraalkylammonium or tetraalkylphosphonium cations. By functionalization of lacunary Keggin clusters with 3d-transition metals and charge balancing with tetraalkylammonium cations of differing chain length, a model system for the correlation of the molecular structure with macroscopic materials properties was obtained. In

  4. Toxicity prediction of ionic liquids based on Daphnia magna by using density functional theory

    Science.gov (United States)

    Nu’aim, M. N.; Bustam, M. A.

    2018-04-01

    By using a model called density functional theory, the toxicity of ionic liquids can be predicted and forecast. It is a theory that allowing the researcher to have a substantial tool for computation of the quantum state of atoms, molecules and solids, and molecular dynamics which also known as computer simulation method. It can be done by using structural feature based quantum chemical reactivity descriptor. The identification of ionic liquids and its Log[EC50] data are from literature data that available in Ismail Hossain thesis entitled “Synthesis, Characterization and Quantitative Structure Toxicity Relationship of Imidazolium, Pyridinium and Ammonium Based Ionic Liquids”. Each cation and anion of the ionic liquids were optimized and calculated. The geometry optimization and calculation from the software, produce the value of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). From the value of HOMO and LUMO, the value for other toxicity descriptors were obtained according to their formulas. The toxicity descriptor that involves are electrophilicity index, HOMO, LUMO, energy gap, chemical potential, hardness and electronegativity. The interrelation between the descriptors are being determined by using a multiple linear regression (MLR). From this MLR, all descriptors being analyzed and the descriptors that are significant were chosen. In order to develop the finest model equation for toxicity prediction of ionic liquids, the selected descriptors that are significant were used. The validation of model equation was performed with the Log[EC50] data from the literature and the final model equation was developed. A bigger range of ionic liquids which nearly 108 of ionic liquids can be predicted from this model equation.

  5. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal-organic frameworks.

    Science.gov (United States)

    Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D

    2017-07-01

    Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  6. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal–organic frameworks

    Directory of Open Access Journals (Sweden)

    Thomas P. Vaid

    2017-07-01

    Full Text Available Traditional synthesis of metal–organic frameworks (MOFs involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a `solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs, rather than an organic solvent, in `ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  7. Lyotropic liquid crystalline phase behaviour in amphiphile-protic ionic liquid systems.

    Science.gov (United States)

    Chen, Zhengfei; Greaves, Tamar L; Fong, Celesta; Caruso, Rachel A; Drummond, Calum J

    2012-03-21

    Approximate partial phase diagrams for nine amphiphile-protic ionic liquid (PIL) systems have been determined by synchrotron source small angle X-ray scattering, differential scanning calorimetry and cross polarised optical microscopy. The binary phase diagrams of some common cationic (hexadecyltrimethyl ammonium chloride, CTAC, and hexadecylpyridinium bromide, HDPB) and nonionic (polyoxyethylene (10) oleyl ether, Brij 97, and Pluronic block copolymer, P123) amphiphiles with the PILs, ethylammonium nitrate (EAN), ethanolammonium nitrate (EOAN) and diethanolammonium formate (DEOAF), have been studied. The phase diagrams were constructed for concentrations from 10 wt% to 80 wt% amphiphile, in the temperature range 25 °C to >100 °C. Lyotropic liquid crystalline phases (hexagonal, cubic and lamellar) were formed at high surfactant concentrations (typically >50 wt%), whereas at thermal stability of the phases formed by these surfactants persisted to temperatures above 100 °C. The phase behaviour of amphiphile-PIL systems was interpreted by considering the PIL cohesive energy, liquid nanoscale order, polarity and ionicity. For comparison the phase behaviour of the four amphiphiles was also studied in water.

  8. Surface tensions of binary mixtures of ionic liquids with bis(trifluoromethylsulfonyl)imide as the common anion

    International Nuclear Information System (INIS)

    Oliveira, M.B.; Domínguez-Pérez, M.; Cabeza, O.; Lopes-da-Silva, J.A.; Freire, M.G.; Coutinho, J.A.P.

    2013-01-01

    Highlights: • Novel data for the surface tensions of mixtures [C 4 mim][NTf 2 ] + [C 4 C 1 mim]/[C 3 mpy]/[C 3 mpyr]/[C 3 mpip][NTf 2 ] are presented. • γ were determined at a fixed temperature, 298.2 K, and at atmospheric pressure, for the whole composition range. • Surface tension deviations showed the near ideal behavior of the selected mixtures. • Gibbs adsorption isotherms showed the surface preferential adsorption of one ionic liquid over the other. -- Abstract: While values for thermophysical properties of ionic liquids are becoming widely available, data for ionic liquid mixtures are still scarce. In an effort to overcome this limitation and understand the behavior of ionic liquid mixtures, novel data for the surface tension of mixtures composed of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C 4 mim][NTf 2 ], with other ionic liquids with a common anion, namely 1-butyl-2,3-dimethylimidazolium, [C 4 C 1 mim] + , 3-methyl-1-propylpyridinium, [C 3 mpy] + , 1-methyl-1-propylpyrrolidinium, [C 3 mpyr] + , and 1-methyl-1-propylpiperidinium, [C 3 mpip] + , were measured at T = 298.2 K and atmospheric pressure over the entire composition range. From the surface tension deviations derived from the experimental results, it was possible to infer that the cation alkyl chain length of the second ionic liquid constituting the mixture has a stronger influence in the ideal mixture behavior than the type of family the ionic liquid cation belongs to. The Gibbs adsorption isotherms, estimated from the experimental values, show that the composition of the vapor–liquid interface is not the same as that of the bulk and that the interface is richer in the ionic liquid with the lowest surface tension, [C 4 mim][NTf 2

  9. Nonlinear polarization of ionic liquids: theory, simulations, experiments

    Science.gov (United States)

    Kornyshev, Alexei

    2010-03-01

    Room temperature ionic liquids (RTILs) composed of large, often asymmetric, organic cations and simple or complex inorganic or organic anions do not freeze at ambient temperatures. Their rediscovery some 15 years ago is widely accepted as a ``green revolution'' in chemistry, offering an unlimited number of ``designer'' solvents for chemical and photochemical reactions, homogeneous catalysis, lubrication, and solvent-free electrolytes for energy generation and storage. As electrolytes they are non-volatile, some can sustain without decomposition up to 6 times higher voltages than aqueous electrolytes, and many are environmentally friendly. The studies of RTILs and their applications have reached a critical stage. So many of them can be synthesized - about a thousand are known already - their mixtures can further provide ``unlimited'' number of combinations! Thus, establishing some general laws that could direct the best choice of a RTIL for a given application became crucial; guidance is expected from theory and modelling. But for a physical theory, RTILs comprise a peculiar and complex class of media, the description of which lies at the frontier line of condensed matter theoretical physics: dense room temperature ionic plasmas with ``super-strong'' Coulomb correlations, which behave like glasses at short time-scale, but like viscous liquids at long-time scale. This talk will introduce RTILs to physicists and overview the current understanding of the nonlinear response of RTILs to electric field. It will focus on the theory, simulations, and experimental characterisation of the structure and nonlinear capacitance of the electrical double layer at a charged electrode. It will also discuss pros and contras of supercapacitor applications of RTILs.

  10. Numerical modeling of ultrasonic cavitation in ionic liquids

    Science.gov (United States)

    Calvisi, Michael L.; Elder, Ross M.

    2017-11-01

    Ionic liquids have favorable properties for sonochemistry applications in which the high temperatures and pressures achieved by cavitation bubbles are important drivers of chemical processes. Two different numerical models are presented to simulate ultrasonic cavitation in ionic liquids, each with different capabilities and physical assumptions. A model based on a compressible form of the Rayleigh-Plesset equation (RPE) simulates ultrasonic cavitation of a spherical bubble with a homogeneous interior, incorporating evaporation and condensation at the bubble surface, and temperature-varying thermodynamic properties in the interior. A second, more computationally intensive model of a spherical bubble uses the finite element method (FEM) and accounts for spatial variations in pressure and temperature throughout the flow domain. This model provides insight into heat transfer across the bubble surface and throughout the bubble interior and exterior. Parametric studies are presented for sonochemistry applications involving ionic liquids as a solvent, examining a range of realistic ionic liquid properties and initial conditions to determine their effect on temperature and pressure. Results from the two models are presented for parametric variations including viscosity, thermal conductivity, water content of the ionic liquid solvent, acoustic frequency, and initial bubble pressure. An additional study performed with the FEM model examines thermal penetration into the surrounding ionic liquid during bubble oscillation. The results suggest the prospect of tuning ionic liquid properties for specific applications.

  11. Physico-Chemical Properties and Phase Behaviour of Pyrrolidinium-Based Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Urszula Domańska

    2010-04-01

    Full Text Available A review of the relevant literature on 1-alkyl-1-methylpyrrolidinium-based ionic liquids has been presented. The phase diagrams for the binary systems of {1-ethyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate [EMPYR][CF3SO3] + water, or + 1-butanol} and for the binary systems of {1-propyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate [PMPYR][CF3SO3] + water, or + an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol} have been determined at atmospheric pressure using a dynamic method. The influence of alcohol chain length was discussed for the [PMPYR][CF3SO3]. A systematic decrease in the solubility was observed with an increase of the alkyl chain length of an alcohol. (Solid + liquid phase equilibria with complete miscibility in the liquid phase region were observed for the systems involving water and alcohols. The solubility of the ionic liquid increases as the alkyl chain length on the pyrrolidinium cation increases. The correlation of the experimental data has been carried out using the Wilson, UNIQUAC and the NRTL equations. The phase diagrams reported here have been compared to the systems published earlier with the 1-alkyl-1-methylpyrrolidinium-based ionic liquids. The influence of the cation and anion on the phase behaviour has been discussed. The basic thermal properties of pure ILs, i.e., melting temperature and the enthalpy of fusion, the solid-solid phase transition temperature and enthalpy have been measured using a differential scanning microcalorimetry technique.

  12. Excess molar volumes of binary mixtures (an ionic liquid + water): A review

    International Nuclear Information System (INIS)

    Bahadur, Indra; Letcher, Trevor M.; Singh, Sangeeta; Redhi, Gan G.; Venkatesu, Pannuru; Ramjugernath, Deresh

    2015-01-01

    Highlights: • Review of excess molar volumes for mixtures of (ionic liquids (ILs) + H 2 O). • 6 cation groups reviewed including imidazolium and pyrrolidinium groups. • 13 anions reviewed including tetraborate, triflate, and hydrogensulphate. • Effects of anion, cation, and temperature investigated. - Abstract: This review covers recent developments in the area of excess molar volumes for mixtures of {ILs (1) + H 2 O (2)} where ILs refers to ionic liquids involving cations: imidazolium, pyridinium, pyrrolidinium, piperidinium, morpholinium and ammonium groups; and anions: tetraborate, triflate, hydrogensulphate, methylsulphate, ethylsulphate, thiocyanate, dicyanamide, octanate, acetate, nitrate, chloride, bromide, and iodine. The excess molar volumes of aqueous ILs were found to cover a wide range of values for the different ILs (ranging from −1.7 cm 3 · mol −1 to 1.2 cm 3 · mol −1 ). The excess molar volumes increased with increasing temperature for all systems studied in this review. The magnitude and in some cases the sign of the excess molar volumes for all the aqueous ILs mixtures, apart from the ammonium ILs, were very dependent on temperature. This was particularly important in the dilute IL concentration region. It was found that the sign and magnitude of the excess molar volumes of aqueous ILs (for ILs with hydrophobic cations), was more dependent on the nature of the anion than on the cation

  13. Nitrato-Functionalized Task-Specific Ionic Liquids as Attractive Hypergolic Rocket Fuels.

    Science.gov (United States)

    Wang, Yi; Huang, Shi; Zhang, Wenquan; Liu, Tianlin; Qi, Xiujuan; Zhang, Qinghua

    2017-09-12

    Hypergolic ionic liquids (HILs) as potential replacements for hydrazine derivatives have attracted increasing interest over the last decade. Previous studies on HILs have mostly concentrated on the anionic innovations of ionic liquids to shorten the ignition delay (ID) time, but little attention has been paid to cationic modifications and their structure-property relationships. In this work, we present a new strategy of cationic functionalization by introducing the energetic nitrato group into the cationic units of HILs. Interestingly, the introduction of oxygen-rich nitrato groups into the cationic structure significantly improved the combustion performance of HILs with larger flame diameters and duration times. The density-specific impulse (ρI sp ) of these novel HILs are all above 279.0 s g cm -3 , much higher than that of UDMH (215.7 s g cm -3 ). In addition, the densities of these HILs are in the range of 1.22-1.39 g cm -3 , which is much higher than that of UDMH (0.79 g cm -3 ), showing their higher loading capacity than hydrazine-derived fuels in a propellant tank. This promising strategy of introducing nitrato groups into the cationic structures has provided a new platform for developing high-performing HILs with improved combustion properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Applications of Ionic Liquids in Electrochemical Sensors and Biosensors

    Directory of Open Access Journals (Sweden)

    Virendra V. Singh

    2012-01-01

    Full Text Available Ionic liquids (ILs are salt that exist in the liquid phase at and around 298 K and are comprised of a bulky, asymmetric organic cation and the anion usually inorganic ion but some ILs also with organic anion. ILs have attracted much attention as a replacement for traditional organic solvents as they possess many attractive properties. Among these properties, intrinsic ion conductivity, low volatility, high chemical and thermal stability, low combustibility, and wide electrochemical windows are few. Due to negligible or nonzero volatility of these solvents, they are considered “greener” for the environment as they do not evaporate like volatile organic compounds (VOCs. ILs have been widely used in electrodeposition, electrosynthesis, electrocatalysis, electrochemical capacitor, lubricants, plasticizers, solvent, lithium batteries, solvents to manufacture nanomaterials, extraction, gas absorption agents, and so forth. Besides a brief discussion of the introduction, history, and properties of ILs the major purpose of this review paper is to provide an overview on the advantages of ILs for the synthesis of conducting polymer and nanoparticle when compared to conventional media and also to focus on the electrochemical sensors and biosensors based on IL/composite modified macrodisk electrodes. Subsequently, recent developments and major strategies for enhancing sensing performance are discussed.

  15. Physicochemical properties of fatty acid based ionic liquids

    International Nuclear Information System (INIS)

    Rocha, Marisa A.A.; Bruinhorst, Adriaan van den; Schröer, Wolffram; Rathke, Bernd; Kroon, Maaike C.

    2016-01-01

    Highlights: • Effects of a branched anion and a mono-unsaturated anion on the physicochemical properties have been explored. • Fatty acid based ionic liquids were synthesized and characterized. • Densities and viscosities at different temperatures have been measured. • The thermal operating window and thermal phase behavior have been evaluated. - Abstract: In this work a series of fatty acid based ionic liquids has been synthesized and characterized. Densities and viscosities at different temperatures have been measured in the temperature range from (293.15 to 363.15) K. The thermal operating window and thermal phase behavior have been evaluated. The effects of a branched anion and a mono-unsaturated anion on the physicochemical properties have been explored. It has been observed that the density (T = 298.15 K) decreases with the following sequence: methyltrioctylammonium 4-ethyloctanoate > methyltrioctylammonium oleate ≈ tetrahexylammonium oleate > tetraoctylammonium oleate, with no detectable dependency of the thermal expansion coefficients on the total number of carbons in the ionic liquid. An almost linear correlation between the molar volumes and the total number of carbons of the alkanes together with the studied ionic liquids was found. The experimental viscosity data were correlated using the Vogel–Fulcher–Tammann (VFT) equation, where a maximum relative deviation of 1.4% was achieved. The ionic liquid with branched alkyl chains on the anion presents the highest viscosity, and methyltrioctylammonium oleate has the highest viscosity compared to the rest of the oleate based ionic liquids. The short and long-term stability were evaluated for all ionic liquids, their long-term decomposition temperatures were found to be significantly lower than their short-term decomposition temperatures. From the long-term thermal analysis was concluded that the highest temperature at which these ionic liquids can be kept is 363 K. In addition, the thermal

  16. Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography.

    Science.gov (United States)

    Su, Rui; Li, Dan; Wu, Lijie; Han, Jing; Lian, Wenhui; Wang, Keren; Yang, Hongmei

    2017-07-01

    A novel microextraction method, termed microwave-assisted ionic liquid/ionic liquid dispersive liquid-liquid microextraction, has been developed for the rapid enrichment and analysis of triazine herbicides in fruit juice samples by high-performance liquid chromatography. Instead of using hazardous organic solvents, two kinds of ionic liquids, a hydrophobic ionic liquid (1-hexyl-3-methylimidazolium hexafluorophosphate) and a hydrophilic ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborate), were used as the extraction solvent and dispersion agent, respectively, in this method. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of 1-hexyl-3-methylimidazolium hexafluorophosphate dispersed entirely into sample solution with the help of 1-butyl-3-methylimidazolium tetrafluoroborate. In addition, an ion-pairing agent (NH 4 PF 6 ) was introduced to improve recoveries of the ionic liquid phase. Several experimental parameters that might affect the extraction efficiency were investigated. Under the optimum experimental conditions, the linearity for determining the analytes was in the range of 5.00-250.00 μg/L, with the correlation coefficients of 0.9982-0.9997. The practical application of this effective and green method is demonstrated by the successful analysis of triazine herbicides in four juice samples, with satisfactory recoveries (76.7-105.7%) and relative standard deviations (lower than 6.6%). In general, this method is fast, effective, and robust to determine triazine herbicides in juice samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    Science.gov (United States)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  18. Dynamical heterogeneities of rotational motion in room temperature ionic liquids evidenced by molecular dynamics simulations

    Science.gov (United States)

    Usui, Kota; Hunger, Johannes; Bonn, Mischa; Sulpizi, Marialore

    2018-05-01

    Room temperature ionic liquids (RTILs) have been shown to exhibit spatial heterogeneity or structural heterogeneity in the sense that they form hydrophobic and ionic domains. Yet studies of the relationship between this structural heterogeneity and the ˜picosecond motion of the molecular constituents remain limited. In order to obtain insight into the time scales relevant to this structural heterogeneity, we perform molecular dynamics simulations of a series of RTILs. To investigate the relationship between the structures, i.e., the presence of hydrophobic and ionic domains, and the dynamics, we gradually increase the size of the hydrophobic part of the cation from ethylammonium nitrate (EAN), via propylammonium nitrate (PAN), to butylammonium nitrate (BAN). The two ends of the organic cation, namely, the charged Nhead-H group and the hydrophobic Ctail-H group, exhibit rotational dynamics on different time scales, evidencing dynamical heterogeneity. The dynamics of the Nhead-H group is slower because of the strong coulombic interaction with the nitrate counter-ionic anions, while the dynamics of the Ctail-H group is faster because of the weaker van der Waals interaction with the surrounding atoms. In particular, the rotation of the Nhead-H group slows down with increasing cationic chain length, while the rotation of the Ctail-H group shows little dependence on the cationic chain length, manifesting that the dynamical heterogeneity is enhanced with a longer cationic chain. The slowdown of the Nhead-H group with increasing cationic chain length is associated with a lower number of nitrate anions near the Nhead-H group, which presumably results in the increase of the energy barrier for the rotation. The sensitivity of the Nhead-H rotation to the number of surrounding nitrate anions, in conjunction with the varying number of nitrate anions, gives rise to a broad distribution of Nhead-H reorientation times. Our results suggest that the asymmetry of the cations and the

  19. Recovery of Ionic Liquids from aqueous solution by Nanofiltration

    OpenAIRE

    Fernández Dámaso, José Francisco

    2011-01-01

    The T-SAR methodology was combined with membrane characterization methods. An application of the combined approach was demonstrated with two commercial nanofiltration membranes and it was possible to successfully predict their performance for the recovery of ionic liquids from aqueous solution. Using model solutions of Pyr16 (CF3SO2)2N, it could be evidenced the formation of a new phase of ionic liquid during the concentration process. In this case, 66% of the ionic liquid was separated and t...

  20. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors.

    Science.gov (United States)

    Mourad, Eléonore; Coustan, Laura; Lannelongue, Pierre; Zigah, Dodzi; Mehdi, Ahmad; Vioux, André; Freunberger, Stefan A; Favier, Frédéric; Fontaine, Olivier

    2017-04-01

    Kinetics of electrochemical reactions are several orders of magnitude slower in solids than in liquids as a result of the much lower ion diffusivity. Yet, the solid state maximizes the density of redox species, which is at least two orders of magnitude lower in liquids because of solubility limitations. With regard to electrochemical energy storage devices, this leads to high-energy batteries with limited power and high-power supercapacitors with a well-known energy deficiency. For such devices the ideal system should endow the liquid state with a density of redox species close to the solid state. Here we report an approach based on biredox ionic liquids to achieve bulk-like redox density at liquid-like fast kinetics. The cation and anion of these biredox ionic liquids bear moieties that undergo very fast reversible redox reactions. As a first demonstration of their potential for high-capacity/high-rate charge storage, we used them in redox supercapacitors. These ionic liquids are able to decouple charge storage from an ion-accessible electrode surface, by storing significant charge in the pores of the electrodes, to minimize self-discharge and leakage current as a result of retaining the redox species in the pores, and to raise working voltage due to their wide electrochemical window.

  1. Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids.

    Science.gov (United States)

    Singh, Akhil Pratap; Gardas, Ramesh L; Senapati, Sanjib

    2015-10-14

    Ionic liquids (ILs) have shown great potential in the dissolution and stability of biomolecules when a low-to-moderate quantity of water is added. Hence, determining the thermophysical properties and understanding these novel mixtures at the molecular level are of both fundamental and practical importance. In this context, here we report the synthesis of two nontoxic guanidinium cation based ILs, tetramethylguanidinium benzoate [TMG][BEN] and tetramethylguanidinium salicylate [TMG][SAL], and present a detailed comparison of their thermophysical properties in the presence of water. The results show that the [TMG][SAL]/water mixtures have higher density and higher apparent molar volume, but a lower viscosity and higher compressibility than the [TNG][BEN]/water mixtures. The measured viscosity and compressibility data are explained from ab initio quantum mechanical calculations and liquid-phase molecular dynamics simulations, where salicylate anions of denser [TMG][SAL]/water were found to exist as isolated ions due to intramolecular H-bonding. On the contrary, intermolecular H-bonding among the benzoate anions and their strong tendency to form an extended H-bonding network with water made [TMG][BEN]/water solutions more viscous and less compressible. This study shows the importance of probing these emerging solvents at the molecular-to-atomic level, which could be helpful in their optimal usage for task-specific applications.

  2. Amine-Functionalized Amino Acid-based Ionic Liquids as Efficient and High-Capacity Absorbents for CO2

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kunov-Kruse, Andreas Jonas; Fehrmann, Rasmus

    2014-01-01

    Ionic liquids (ILs) comprised of ammonium cations and anions of naturally occurring amino acids containing an additional amine group (e.g., lysine, histidine, asparagine, and glutamine) were examined as high-capacity absorbents for CO2. An absorption capacity of 2.1 mol CO2 per mol of IL (3.5 mol...

  3. Density, viscosity, and surface tension of synthesis grade imidazolium,pyridinium, and pyrrolidinium based room temperature ionic liquids

    NARCIS (Netherlands)

    Galan Sanchez, L.M.; Espel, J.R.; Onink, S.A.F.; Meindersma, G.W.; Haan, de A.B.

    2009-01-01

    Density, viscosity, and surface tension data sets of 13 ionic liquids formed by imidazolium, pyridinium, or pyrrolidinium cations paired with dicyanamide (DCA), tetrafluoroborate (BF4¯), thiocyanate (SCN¯),methylsulfate (MeSO4¯), and trifluoroacetate (TFA) anions are reported. The properties were

  4. Ionic liquids as entrainers for water + ethanol, water + 2-propanol, and water + THF systems: A quantum chemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vijay Kumar [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam (India); Banerjee, Tamal, E-mail: tamalb@iitg.ernet.i [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam (India)

    2010-07-15

    Ionic liquids (ILs) are used as entrainers in azeotropic systems such as water + ethanol, water + 2-propanol, and water + tetrahydrofuran (THF). Ionic liquids consisting of a cation and an anion has limitless combinations, thereby making experimentation expensive and time taking. For the prediction of the liquid phase nonidealities resulting from molecular interactions, 'COnductor-like Screening MOdel for Real Solvents' (COSMO-RS) approach is used in this work for the screening of potential ionic liquids. Initially benchmarking has been done on 12 reported isobaric IL based ternary systems with an absolute average deviation of 4.63% in vapor phase mole fraction and 1.07% in temperature. After successful benchmarking, ternary vapor + liquid equilibria for the azeotropic mixture of (a) ethanol + water, (b) 2-propanol + water, and (c) THF + water with combinations involving 10 cations (imidazolium, pyridinium, quinolium) and 24 anions were predicted. The VLE prediction, which gave the relative volatility, showed that the imidazolium based ionic liquid were the best entrainer for the separation of the three systems at their azeotropic point. ILs with [MMIM] cation in combination with acetate [OAc], chloride [Cl], and bromide [Br] anion gave the highest relative volatility.

  5. Ionic liquids for nano- and microstructures preparation. Part 2: Application in synthesis.

    Science.gov (United States)

    Łuczak, Justyna; Paszkiewicz, Marta; Krukowska, Anna; Malankowska, Anna; Zaleska-Medynska, Adriana

    2016-01-01

    Ionic liquids (ILs) are widely applied to prepare metal nanoparticles and 3D semiconductor microparticles. Generally, they serve as a structuring agent or reaction medium (solvent), however it was also demonstrated that ILs can play a role of a co-solvent, metal precursor, reducing as well as surface modifying agent. The crucial role and possible types of interactions between ILs and growing particles have been presented in the Part 1 of this review paper. Part 2 of the paper gives a comprehensive overview of recent experimental studies dealing with application of ionic liquids for preparation of metal and semiconductor based nano- and microparticles. A wide spectrum of preparation routes using ionic liquids is presented, including precipitation, sol-gel technique, hydrothermal method, nanocasting and ray-mediated methods (microwave, ultrasound, UV-radiation and γ-radiation). It was found that ionic liquids formed of a 1-butyl-3-methylimidazolium [BMIM] combined with tetrafluoroborate [BF4], hexafluorophosphate [PF6], and bis(trifluoromethanesulfonyl)imide [Tf2N] are the most often used ILs in the synthesis of nano- and microparticles, due to their low melting temperature, low viscosity and good transportation properties. Nevertheless, examples of other IL classes with intrinsic nanoparticles stabilizing abilities such as phosphonium and ammonium derivatives are also presented. Experimental data revealed that structure of ILs (both anion and cation type) affects the size and shape of formed metal particles, and in some cases may even determine possibility of particles formation. The nature of the metal precursor determines its affinity to polar or nonpolar domains of ionic liquid, and therefore, the size of the nanoparticles depends on the size of these regions. Ability of ionic liquids to form varied extended interactions with particle precursor as well as other compounds presented in the reaction media (water, organic solvents etc.) provides nano- and

  6. Ionic Liquid-Based Ultrasonic/Microwave-Assisted Extraction of ...

    African Journals Online (AJOL)

    Conclusion: Compared with traditional methods, IL-UMAE method uses Ionic liquid-solvent which greatly shortens the extraction time. IL-UMAE as a simple, effective and environmentally friendly approach shows a broad prospect for active ingredient extraction. Keywords: Dioscorea zingiberensis Steroidal saponins, Ionic ...

  7. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    International Nuclear Information System (INIS)

    Park, Nam Ku; Bae, Young Chan

    2010-01-01

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim] [PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim] [PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  8. Comparison studies of rheological and thermal behaviors of ionic liquids and nanoparticle ionic liquids.

    Science.gov (United States)

    Xu, Yiting; Zheng, Qiang; Song, Yihu

    2015-08-14

    Novel nanoparticle ionic liquids (NILs) are prepared by grafting modified nanoparticles with long-chain ionic liquids (ILs). The NIL behaves like a liquid at ambient temperature. We studied the rheological behavior of the IL and NIL over the range of 10-55 °C and found an extraordinary difference between the IL and NIL: a small content of nanosilica (7%) moderately improves the crystallinity by 7% of the poly(ethylene glycol) (PEG) segment in the IL, and it improves the dynamic moduli significantly (by 5 times at room temperature). It retards the decay temperature (by 10 °C) of the dynamic moduli during heating as well. The thermal rheological hysteresis observed during heating-cooling temperature sweeps is ascribed to the melting-recrystallization of the PEG segments. Meanwhile, the IL and NIL express accelerated crystallization behavior in comparison with the oligomeric anion. For the first time, we find that ILs and NILs are able to form nanoparticle-containing spherulites at room temperature after long time aging.

  9. Permeation of Ionic Liquids through the skin

    Directory of Open Access Journals (Sweden)

    Ana Júlio

    2017-12-01

    Full Text Available Alternative forms of drug delivery such as delivery through the skin, have been developed to explore other routes. However, the incorporation of poorly soluble or partially insoluble drugs into these delivery systems represents a major problem. Ionic liquids (ILs may be incorporated in aqueous, oily or hydroalcoholic solutions and thus, may be used as excipients in drug delivery systems to increase/improve the topical and transdermal drug delivery. However, it is fundamental to consider the cytotoxicity of these salts and it is also crucial to evaluate if these compounds permeate through the skin. Herein, three imidazole-based ILs: [C2mim][Br], [C4mim][Br] and [C6mim][Br], were synthesized and each IL was incorporated within caffeine saturated solutions. Permeation studies of the active (caffeine in these solutions were performed to evaluate the amount of IL that permeated through the porcine ear skin in the presence of the active. To achieve this, gravimetric studies of the receptor compartment were performed. Results showed that the more lipophilic IL [C6mim][Br] presented the highest permeation through the skin. The permeation is dependent upon the size of the alkyl chain of the IL, and as more than 60% of the ILs permeate is it vital to consider the cytotoxicity of these salts when considering their incorporation in topical systems.

  10. A Review of Ionic Liquid Lubricants

    Directory of Open Access Journals (Sweden)

    Anthony E. Somers

    2013-01-01

    Full Text Available Due to ever increasing demands on lubricants, such as increased service intervals, reduced volumes and reduced emissions, there is a need to develop new lubricants and improved wear additives. Ionic liquids (ILs are room temperature molten salts that have recently been shown to offer many advantages in this area. The application of ILs as lubricants in a diverse range of systems has found that these materials can show remarkable protection against wear and significantly reduce friction in the neat state. Recently, some researchers have shown that a small family of ILs can also be incorporated into non-polar base oils, replacing traditional anti-wear additives, with excellent performance of the neat IL being maintained. ILs consist of large asymmetrical ions that may readily adsorb onto a metal surface and produce a thin, protective film under boundary lubrication conditions. Under extreme pressure conditions, certain IL compounds can also react to form a protective tribofilm, in particular when fluorine, phosphorus or boron atoms are present in the constituent ions.

  11. Enhanced Mixed Feedstock Processing Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake A [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2016-10-22

    Biomass pretreatment using certain ionic liquids (ILs) is very efficient, generally producing a substrate that is amenable to saccharification with fermentable sugar yields approaching theoretical limits. Although promising, several challenges must be addressed before IL pretreatment technology becomes commercially viable. Once of the most significant challenges is the affordable and scalable recovery and recycle or the IL itself. Pervaporation is a highly selective and scalable membrane separation process for quantitatively recovering volatile solutes or solvents directly from non-volatile solvents that could prove more versatile for IL dehydration than traditional solvent extraction processes, as well as efficient and energetically more advantageous than standard evaporative techniques. In this study we evaluated a commercially available pervaporation system for IL dehydration and recycling as part of an integrated IL pretreatment process using 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]) that has been proven to be very effective as a biomass pretreatment solvent. We demonstrate that >99.9 wt% [C2C1Im][OAc] can be recovered from aqueous solution and recycled at least five times. A preliminary techno-economic analysis validated the promising role of pervaporation in improving overall biorefinery process economics, especially in the case where other IL recovery technologies might lead to significant losses. These findings establish the foundation for further development of pervaporation as an effective method of recovering and recycling ILs using a commercially viable process technology.

  12. Fission-Product Separation Based on Room-Temperature Ionic-Liquids

    International Nuclear Information System (INIS)

    Hussey, Charles L.

    2005-01-01

    During the previous funding cycle for this project, we investigated the electrochemistry of Cs(I) in air and moisture-stable ionic liquids both with and without the addition of BOBCalixC6. These investigations revealed that the electrochemical windows of the dialkylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquids do not permit the direct electrochemical reduction of Cs(I), even when Hg electrodes are employed, because these organic cations are reduced at less negative potentials than Cs(I). However, Cs(I) coordinated by BOBCalixC6 can be electrolytically reduced to Cs(Hg) in tetraalkylammonium-based room-temperature ionic liquids such as tri-1-butylmethylammonium bis[(trifluoromethyl)sulfonyl]imide (Bu3MeN+Tf2N-) at Hg electrodes. Because this reduction process does not harm either the ionic liquid or the macrocycle, it is a promising method for recycling the cesium extraction system. The previous studies mentioned above were carried out under an inert atmosphere, i.e., in the absence of H2O and O2. However, it may not be economically feasible or even possible to carry out the recycling process in the absence of these contaminants during large-scale processing of aqueous tank waste. Thus, as described in our proposal, we have begun an investigation of the electrochemical recovery of Cs from the Bu3MeN+Tf2N- + BOBCalixC6 extraction system in an air atmosphere containing various amounts of water and oxygen. Our recent preliminary results were very surprising because they indicated that the electrochemical extraction process is relatively insensitive to the presence of small amounts of moisture even when the moisture content of the ionic liquid approaches 1000 ppm. Furthermore, we have found that the ''wet'' ionic liquid can be easily dehydrated under reduced pressure or by sparging with dry nitrogen gas without the need for heat or any other specialized treatment

  13. Dissolution of cellulose in ionic liquid: A review

    Science.gov (United States)

    Mohd, N.; Draman, S. F. S.; Salleh, M. S. N.; Yusof, N. B.

    2017-02-01

    Dissolution of cellulose with ionic liquids (IL) and deep eutectic solvent (DES) lets the comprehensive dissolution of cellulose. Basically, cellulose can be dissolved, in some hydrophilic ionic liquids, such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-allyl-3-methylimidazolium chloride (AMIMCl). Chloride based ionic liquids are suitable solvents for cellulose dissolution. Although the ILs is very useful in fine chemical industry, its application in the pharmaceutical and food industry have been very limited due to issues with toxicity, purity, and high cost. Seeing to these limitations, new green alternative solvent which is DES was used. This green solvents, may be definitely treated as the next-generation reagents for more sustainable industrial development. Thus, this review aims to discuss the dissolution of cellulose either with ionic liquids or DES and its application.

  14. Ionic Liquids Enabling Revolutionary Closed-Loop Life Support

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is to utilize ionic liquids with the Bosch process to achieve closed-loop life support. Specific tasks are to: 1) Advance the technology readiness of...

  15. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Science.gov (United States)

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review. PMID:26690155

  16. Studies of Latent Acidity and Neutral Buffered Chloroaluminate Ionic Liquids

    National Research Council Canada - National Science Library

    Osteryoung, Robert

    2000-01-01

    Studies on ionic liquids composed of aluminum chloride and 1-ethyl-3-methylimidazolium chloride were carried out, with emphasis on understanding and explaining acidity and latent acidity in "neutral buffered" melts...

  17. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors.

    Science.gov (United States)

    Behera, Kamalakanta; Pandey, Shubha; Kadyan, Anu; Pandey, Siddharth

    2015-12-04

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO₂) gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO₂ sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  18. Green oxidation of alkenes in ionic liquid solvent by hydrogen ...

    Indian Academy of Sciences (India)

    ern organic synthesis, and pharmacology and poly- mer industry.1–8 ... methyl imidazolium chloride (EMIM) ionic liquid as solvent. ... Synthetic procedure for pure siliceous MCM-41 ... ally coordinating propyl chain spacer, which allowed.

  19. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli; Nunes, Suzana Pereira

    2017-01-01

    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl

  20. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    Directory of Open Access Journals (Sweden)

    Kamalakanta Behera

    2015-12-01

    Full Text Available Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability, ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, are currently being explored by researchers worldwide. The use of ionic liquids for the detection of carbon dioxide (CO2 gas is currently a major topic of research due to the associated importance of this gas with daily human life. This review focuses on the application of ionic liquids in optical and electrochemical CO2 sensors. The design, mechanism, sensitivity and detection limit of each type of sensor are highlighted in this review.

  1. Extraction of lithium from salt lake brine using room temperature ionic liquid in tributyl phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Chenglong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Jia, Yongzhong [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); Zhang, Chao [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China); University of Chinese Academy of Sciences, 100049 Beijing (China); Liu, Hong [Qinghai Salt Chemical Products Supervision and Inspection Center, 816000 Golmud (China); Jing, Yan, E-mail: 1580707906@qq.com [Key Laboratory of Salt Lake Resources and Chemistry, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 810008 Xining (China)

    2015-01-15

    Highlights: • We proposed a new system for Li recovery from salt lake brine by extraction using an ionic liquid. • Cation exchange was proposed to be the mechanism of extraction followed in ionic liquid. • This ionic liquid system shown considerable extraction ability for lithium and the single extraction efficiency of lithium reached 87.28% under the optimal conditions. - Abstract: Lithium is known as the energy metal and it is a key raw material for preparing lithium isotopes which have important applications in nuclear energy source. In this work, a typical room temperature ionic liquid (RTILs), 1-butyl-3-methyl-imidazolium hexafluorophosphate ([C{sub 4}mim][PF{sub 6}]), was used as an alternative solvent to study liquid/liquid extraction of lithium from salt lake brine. In this system, the ionic liquid, NaClO{sub 4} and tributyl phosphate (TBP) were used as extraction medium, co-extraction reagent and extractant respectively. The effects of solution pH value, phase ratio, ClO{sub 4}{sup −} amount and other factors on lithium extraction efficiency had been investigated. Optimal extraction conditions of this system include the ratio of TBP/IL at 4/1 (v/v), O/A at 2:1, n(ClO{sub 4}{sup −})/n(Li{sup +}) at 2:1, the equilibration time of 10 min and unadjusted pH. Under the optimal conditions, the single extraction efficiency of lithium was 87.28% which was much higher than the conventional extraction system. Total extraction efficiency of 99.12% was obtained by triple-stage countercurrent extraction. Study on the mechanism revealed that the use of ionic liquid increased the extraction yield of lithium through cation exchange in this system. Preliminary results indicated that the use of [C{sub 4}mim][PF{sub 6}] as an alternate solvent to replace traditional organic solvents (VOCs) in liquid/liquid extraction was very promising.

  2. Ionic liquid propellants: future fuels for space propulsion.

    Science.gov (United States)

    Zhang, Qinghua; Shreeve, Jean'ne M

    2013-11-11

    Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ionic Liquid-Based Optical and Electrochemical Carbon Dioxide Sensors

    OpenAIRE

    Kamalakanta Behera; Shubha Pandey; Anu Kadyan; Siddharth Pandey

    2015-01-01

    Due to their unusual physicochemical properties (e.g., high thermal stability, low volatility, high intrinsic conductivity, wide electrochemical windows and good solvating ability), ionic liquids have shown immense application potential in many research areas. Applications of ionic liquid in developing various sensors, especially for the sensing of biomolecules, such as nucleic acids, proteins and enzymes, gas sensing and sensing of various important ions, among other chemosensing platforms, ...

  4. Quantum mechanical determination of atomic polarizabilities of ionic liquids.

    Science.gov (United States)

    Heid, Esther; Szabadi, András; Schröder, Christian

    2018-04-25

    The distribution of a molecule's polarizability to individual atomic sites is inevitable to develop accurate polarizable force fields. We present the direct quantum mechanical calculation of atomic polarizabilities of 27 common ionic liquids. The method is superior to previously published distribution routines based on large databases of the molecular polarizability, and enables the correct description of any ionic liquid and its peculiarities within the quantum mechanical framework.

  5. A classical density functional theory of ionic liquids.

    Science.gov (United States)

    Forsman, Jan; Woodward, Clifford E; Trulsson, Martin

    2011-04-28

    We present a simple, classical density functional approach to the study of simple models of room temperature ionic liquids. Dispersion attractions as well as ion correlation effects and excluded volume packing are taken into account. The oligomeric structure, common to many ionic liquid molecules, is handled by a polymer density functional treatment. The theory is evaluated by comparisons with simulations, with an emphasis on the differential capacitance, an experimentally measurable quantity of significant practical interest.

  6. Lead-Salt Quantum-Dot Ionic Liquids

    KAUST Repository

    Sun, Liangfeng

    2010-03-08

    PbS quantum dots (QDs) are functionalized using ionic liquids with thiol moieties as capping ligands. The resulting amphiphilic QD ionic liquids exhibit fluidlike behavior at room temperature, even in the absence of solvents. The photostability of the QDs is dramatically improved compared to the as-synthesized oleic acid-capped QDs dispersed in toluene. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ionic conductivity of ternary electrolyte containing sodium salt and ionic liquid

    International Nuclear Information System (INIS)

    Egashira, Minato; Asai, Takahito; Yoshimoto, Nobuko; Morita, Masayuki

    2011-01-01

    Highlights: ► Ternary electrolyte containing NaBF 4 , polyether and ionic liquid has been prepared. ► The conductivity of the electrolytes has been evaluated toward content of ionic liquid. ► The conductivity shows maximum 1.2 mS cm −1 and is varied in relation to solution structure. - Abstract: For the development of novel non-aqueous sodium ion conductor with safety of sodium secondary cell, non-flammable ionic liquid is attractive as electrolyte component. A preliminary study has been carried out for the purpose of constructing sodium ion conducting electrolyte based on ionic liquid. The solubility of sodium salt such as NaBF 4 in ionic liquid is poor, thus the ternary electrolyte has been prepared where NaBF 4 with poly(ethylene glycol) dimethyl ether (PEGDME) as coordination former is dissolved with ionic liquid diethyl methoxyethyl ammonium tetrafluoroborate (DEMEBF 4 ). The maximum conductivity among the prepared solutions, ca. 1.2 mS cm −1 at 25 °C, was obtained when the molar ratio (ethylene oxide unit in PEGDME):NaBF 4 :DEMEBF 4 was 8:1:2. The relationship between the conductivity of the ternary electrolyte and its solution structure has been discussed.

  8. IONIC LIQUIDS MATERIAL AS MODERN CONTEXT OF CHEMISTRY IN SCHOOL

    Directory of Open Access Journals (Sweden)

    Hernani Hernani

    2016-04-01

    Full Text Available One way to improve students’ chemistry literacy which is demanded in the modernization of modern technology-based chemistry learning is by studying ionic liquids. Low level of scientific literacy of students in Indonesia as revealed in the PISA in 2012 was the main reason of the research. Ionic liquids-based technology are necessary to be applied as a context for learning chemistry because: (1 the attention of the scientific an technology community in the use of ionic liquids as a new generation of green solvent, electrolyte material and fluidic engineering in recent years becomes larger, in line with the strong demands of the industry for the provision of new materials that are reliable, safe, and friendly for various purposes; (2 scientific explanations related to the context of the ionic liquid contains a lot of facts, concepts, principles, laws, models and theories can be used to reinforce the learning content as a media to develop thinking skill (process/competence as demanded by PISA; (3 The modern technology-based ionic liquid can also be used as a discourse to strengthen scientific attitude. The process of synthesis of ionic liquid involves fairly simple organic reagents, so it deserves to be included in the chemistry subject in school.

  9. Novel applications of ionic liquids in materials processing

    International Nuclear Information System (INIS)

    Reddy, Ramana G

    2009-01-01

    Ionic liquids are mixtures of organic and inorganic salts which are liquids at room temperature. Several potential applications of ionic liquids in the field of materials processing are electrowinning and electrodeposition of metals and alloys, electrolysis of active metals at low temperature, liquid-liquid extraction of metals. Results using 1-butyl-3-methylimidazolium chloride with AlCl 3 at low temperatures yielded high purity aluminium deposits (>99.9% pure) and current efficiencies >98%. Titanium and aluminium were co-deposited with/without the addition of TiCl 4 with up to 27 wt% Ti in the deposit with current efficiencies in the range of 78-85 %. Certain ionic liquids are potential replacements for thermal oils and molten salts as heat transfer fluids in solar energy applications due to high thermal stability, very low corrosivity and substantial sensible heat retentivity. The calculated storage densities for several chloride and fluoride ionic liquids are in the range of 160-210 MJ/m 3 . A 3-D mathematical model was developed to simulate the large scale electrowinning of aluminium. Since ionic liquids processing results in their low energy consumption, low pollutant emissions many more materials processing applications are expected in future.

  10. Density, thermal expansion and viscosity of cholinium-derived ionic liquids.

    Science.gov (United States)

    Costa, Anabela J L; Soromenho, Mário R C; Shimizu, Karina; Marrucho, Isabel M; Esperança, José M S S; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-05-14

    Density and viscosity data of the N-alkyl-N,N-dimethyl-N-(2-hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide ionic liquids homologous series [N(1 1 n 2(OH))][Ntf(2)] with n=1, 2, 3, 4 and 5 have been measured at atmospheric pressure in the 283density, viscosity and related properties of this family of ionic liquids. A volumetric predictive method based on the effective molar volume of cations and anions is used to estimate the effective molar volume of the different cations present in this study. The results agree with data for other cation families that show a molar volume increment per CH(2) group on the alkyl chain of the cation of about 17.2 cm(3) mol(-1), except for [N(1 1 1 2(OH))](+), which exhibits an outlier behaviour. Molecular dynamics simulation results are used to explain the volumetric behaviour along the homologous series from a molecular perspective. The predictive power of group contribution methods for density and viscosity is also tested. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Nature of the Interactions in Triethanolammonium-Based Ionic Liquids. A Quantum Chemical Study.

    Science.gov (United States)

    Fedorova, Irina V; Safonova, Lyubov P

    2018-05-10

    Structural features and interionic interactions play a crucial role in determining the overall stability of ionic liquids and their physicochemical properties. Therefore, we performed high-level quantum-chemical study of different cation-anion pairs representing the building units of protic ionic liquids based on triethanolammonium cation and anions of sulfuric, nitric, phosphoric, and phosphorus acids to provide essential insight into these phenomena at the molecular level. It was shown that every structure is stabilized through multiple H bonds between the protons in the N-H and O-H groups of the cation and different oxygen atoms of the anion acid. Using atoms in molecules topological parameters and natural bond orbital analysis, we determined the nature and strength of these interactions. Our calculations suggest that the N-H group of the cation has more proton donor-like character than the O-H group that makes the N-H···O hydrogen bonds stronger. A close relation between the binding energies of these ion pairs and experimental melting points was established: the smaller the absolute value of the binding energy between ions, the lower is the melting point.

  12. Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials

    International Nuclear Information System (INIS)

    Wang, Yadong; Zaghib, K.; Guerfi, A.; Bazito, Fernanda F.C.; Torresi, Roberto M.; Dahn, J.R.

    2007-01-01

    Using accelerating rate calorimetry (ARC), the reactivity between six ionic liquids (with and without added LiPF 6 ) and charged electrode materials is compared to the reactivity of standard carbonate-based solvents and electrolytes with the same electrode materials. The charged electrode materials used were Li 1 Si, Li 7 Ti 4 O 12 and Li 0.45 CoO 2 . The experiments showed that not all ionic liquids are safer than conventional electrolytes/solvents. Of the six ionic liquids tested, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide (EMI-FSI) shows the worst safety properties, and is much worse than conventional electrolyte. 1-Ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI) and 1-propyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (Py13-FSI) show similar reactivity to carbonate-based electrolyte. The three ionic liquids 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide (BMMI-TFSI), 1-butyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide (Pp14-TFSI) and N-trimethyl-N-butylammonium bis(trifluoromethanesulfonyl)imide (TMBA-TFSI) show similar reactivity and are much safer than the conventional carbonate-based electrolyte. A comparison of the reactivity of ionic liquids with common anions and cations shows that ionic liquids with TFSI - are safer than those with FSI - , and liquids with EMI + are worse than those with BMMI + , Py13 + , Pp14 + and TMBA +

  13. Determination of three estrogens and bisphenol A by functional ionic liquid dispersive liquid-phase microextraction coupled with ultra-high performance liquid chromatography and ultraviolet detection.

    Science.gov (United States)

    Jiang, Yuehuang; Tang, Tingting; Cao, Zhen; Shi, Guoyue; Zhou, Tianshu

    2015-06-01

    A hydroxyl-functionalized ionic liquid, 1-hydroxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, was employed in an improved dispersive liquid-phase microextraction method coupled with ultra high performance liquid chromatography for the enrichment and determination of three estrogens and bisphenol A in environmental water samples. The introduced hydroxyl group acted as the H-bond acceptor that dispersed the ionic liquid effectively in the aqueous phase without dispersive solvent or external force. Fourier transform infrared spectroscopy indicated that the hydroxyl group of the cation of the ionic liquid enhanced the combination of extractant and analytes through the formation of hydrogen bonds. The improvement of the extraction efficiency compared with that with the use of alkyl ionic liquid was proved by a comparison study. The main parameters including volume of extractant, temperature, pH, and extraction time were investigated. The calibration curves were linear in the range of 5.0-1000 μg/L for estrone, estradiol, and bisphenol A, and 10.0-1000 μg/L for estriol. The detection limits were in the range of 1.7-3.4 μg/L. The extraction efficiency was evaluated by enrichment factor that were between 85 and 129. The proposed method was proved to be simple, low cost, and environmentally friendly for the determination of the four endocrine disruptors in environmental water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  15. Impurity effects on ionic-liquid-based supercapacitors

    International Nuclear Information System (INIS)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2016-01-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  16. Impurity effects on ionic-liquid-based supercapacitors

    Science.gov (United States)

    Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong

    2017-02-01

    Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.

  17. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  18. Does alkyl chain length really matter? Structure–property relationships in thermochemistry of ionic liquids

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Zaitsau, Dzmitry H.; Emel’yanenko, Vladimir N.; Ralys, Ricardas V.; Yermalayeu, Andrei V.; Schick, Christoph

    2013-01-01

    Graphical abstract: We have shown that enthalpies of formation, enthalpies of vaporization, and lattice potential energies of alkylsubstituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with Cl and Br anions are linearly dependant on the alkyl chain length. The thermochemical properties of ILs are generally obey the group additivity rules and the values of the additivity parameters for enthalpies of formation and vaporization are very close to those for molecular compounds. - Highlights: • Alkyl substituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with anions [Cl] and [Br] were studied using DSC and ab initio methods. • The thermochemical properties of ILs generally obey the group additivity rules. • A linear dependence on the chain length of the alkyl chain of cation was found. - Abstract: DSC was used for determination of reaction enthalpies of synthesis of ionic liquids [C n mim][Cl]. A combination of DSC with quantum chemical calculations presents an indirect way to study thermodynamics of ionic liquids. The indirect procedure for vaporization enthalpy was validated with the direct experimental measurements by using thermogravimetry. First-principles calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the CBS-QB3 and G3 (MP2) theory. Experimental DSC data for homologous series of alkyl substituted imidazolium, pyridinium, and pyrrolidinium based ionic liquids with anions [Cl] and [Br] were collected from the literature. We have shown that enthalpies of formation, enthalpies of vaporization, and lattice potential energies are linearly dependant on the alkyl chain length. The thermochemical properties of ILs generally obey the group additivity rules and the values of the additivity parameters for enthalpies of formation and vaporization seem to be very close to those for molecular compounds

  19. Conductivity relaxation and charge transport of trihexyl tetradecyl phosphonium dicyanamide ionic liquid by broadband dielectric spectroscopy

    Science.gov (United States)

    Thasneema K., K.; Thayyil, M. Shahin; Krishna Kumar N., S.; Govindaraj, G.; Saheer, V. C.

    2018-04-01

    Usually ionic liquids consists of a large organic cation with low symmetry such as imidazolium, pyridinium, quaternary ammonium or phosponium etc combined with enormously wide range of inorganic or organic symmetric anion with melting point below 100. Ionic liquids existing in an extremely large number of possible ion pair combinations. It offers a very wide range of thermo physical properties led to the concept of designer solvents for specific applications. Due to the features of high chemical and thermal stability, low vapor pressure non flammability high ionic conductivity, and they show a good solvent ability towards a great variety of organic or inorganic compounds, ionic liquids have a widespread use in many areas such as batteries, fuel cell, solar cells, super capacitors etc. The main focus of this work is the study of molecular dynamics and conductivity relaxation of amorphous Trihexyl tetradecyl phosphonium dicyanamide ([P14,6,6,6][N(CN)2]) ionic liquid which is proved as a better electrolyte in super capacitors, over a wide frequency 10-2 Hz to 107 Hz and the temperature range between 123k and 265 k by means of Broadband Dielectric Spectroscopy. We observe alpha conductivity relaxation and secondary relaxation above and below Glass Transition Temperature. The experimental results were analyzed using electric modulus representation. The analysis emphasis the inter molecular interaction and the nature of glass forming system, whether it is fragile or strong system. The ionic liquid shows a fragile behavior and the fragility index m=123.59. TGA result of the sample exhibit a good resistance to thermal decomposition, up to 300°C.

  20. Ionic imbalance induced self-propulsion of liquid metals

    Science.gov (United States)

    Zavabeti, Ali; Daeneke, Torben; Chrimes, Adam F.; O'Mullane, Anthony P.; Zhen Ou, Jian; Mitchell, Arnan; Khoshmanesh, Khashayar; Kalantar-Zadeh, Kourosh

    2016-08-01

    Components with self-propelling abilities are important building blocks of small autonomous systems and the characteristics of liquid metals are capable of fulfilling self-propulsion criteria. To date, there has been no exploration regarding the effect of electrolyte ionic content surrounding a liquid metal for symmetry breaking that generates motion. Here we show the controlled actuation of liquid metal droplets using only the ionic properties of the aqueous electrolyte. We demonstrate that pH or ionic concentration gradients across a liquid metal droplet induce both deformation and surface Marangoni flow. We show that the Lippmann dominated deformation results in maximum velocity for the self-propulsion of liquid metal droplets and illustrate several key applications, which take advantage of such electrolyte-induced motion. With this finding, it is possible to conceive the propulsion of small entities that are constructed and controlled entirely with fluids, progressing towards more advanced soft systems.

  1. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding.

    Science.gov (United States)

    Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde

    2011-06-01

    Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented.

  2. Liquid-liquid extraction of actinides, lanthanides, and fission products by use of ionic liquids: from discovery to understanding

    International Nuclear Information System (INIS)

    Billard, Isabelle; Ouadi, Ali; Gaillard, Clotilde

    2011-01-01

    Liquid-liquid extraction of actinides and lanthanides by use of ionic liquids is reviewed, considering, first, phenomenological aspects, then looking more deeply at the various mechanisms. Future trends in this developing field are presented. (orig.)

  3. Malonamide, phosphine oxide and calix[4]arene functionalized ionic liquids: synthesis and extraction of actinides and lanthanides

    International Nuclear Information System (INIS)

    Ternova, Dariia

    2014-01-01

    Radioactive waste treatment is a crucial problem nowadays. This work was dedicated to the development of the new extracting systems for radionuclides on the basis of 'green' solvents Ionic Liquids (Ils). For this purpose Ils were functionalized with various extracting patterns: phosphine oxide, carbamoyl phosphine oxide groups and malonamide fragment. Also the calix[4]arene platforms were used for the synthesis of functionalized ionic liquids (Fils) and their precursors. The Fils of both types cationic and anionic have been obtained. The synthesized Fils were tested for the liquid-liquid extraction of radionuclides. lt was found that extraction well occurs due to the extracting patterns, however a charge of a modified ion influences extraction.The various extracting experiments and mathematical modelling have been performed to determine the mechanisms of extraction. These studies showed that each extracting system is characterized by a different set of extracting equilibria, based mostly on cationic exchange. (author)

  4. Mechanisms and rules of anion partition into ionic liquids: phenolate ions in ionic liquid/water biphasic systems.

    Science.gov (United States)

    Katsuta, Shoichi; Nakamura, Ko-ichi; Kudo, Yoshihiro; Takeda, Yasuyuki

    2012-01-19

    It is important to understand the mechanisms and general rules of ion partitioning in hydrophobic ionic liquid (IL)/water biphasic systems in order to predict the extractability of an ionic species with various ILs. In this study, we have investigated the partition of picrate ion (target anion, T(-)) from aqueous sodium picrate solutions into several ILs and the accompanying changes in aqueous concentrations of the IL component cation (C(+)) and anion (A(-)) at 298.2 K. The main ILs examined are 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide, 1-butyl-3-methylimidazolium hexafluorophosphate, and 1-methyl-3-octylimidazolium bis(trifluoromethanesulfonyl)amide. The aqueous concentrations of C(+) and A(-) decreased and increased, respectively, with the extraction of T(-) into the IL phase. From the standpoint of equilibrium, the partition behavior of T(-) can be explained both by the anion exchange with A(-) in the IL phase and by the ion pair extraction with C(+) in the aqueous phase. The aqueous concentrations of C(+) and A(-) are governed by the solubility product of the IL (K(sp)). The distribution ratio of T(-) is expressed as a function of Δ[T(-)](W), namely, the difference between the initial and equilibrium concentrations of T(-) in the aqueous phase; the distribution ratio of T(-) is nearly constant when Δ[T(-)](W) < K(sp)(1/2), but decreases with increasing Δ[T(-)](W) in the larger Δ[T(-)](W) region. The equilibrium constants of the ion pair extraction and the ion exchange extraction have been determined for picrate and other phenolate ions whose partition data were previously reported. The dependences of the extraction constants and extractability on the kinds of IL component ions can be quantitatively explained on the basis of the variations of K(sp).

  5. Cluster approach to the prediction of thermodynamic and transport properties of ionic liquids

    Science.gov (United States)

    Seeger, Zoe L.; Kobayashi, Rika; Izgorodina, Ekaterina I.

    2018-05-01

    The prediction of physicochemical properties of ionic liquids such as conductivity and melting point would substantially aid the targeted design of ionic liquids for specific applications ranging from solvents for extraction of valuable chemicals to biowaste to electrolytes in alternative energy devices. The previously published study connecting the interaction energies of single ion pairs (1 IP) of ionic liquids to their thermodynamic and transport properties has been extended to larger systems consisting of two ion pairs (2 IPs), in which many-body and same-ion interactions are included. Routinely used cations, of the imidazolium and pyrrolidinium families, were selected in the study coupled with chloride, tetrafluoroborate, and dicyanamide. Their two ion pair clusters were subjected to extensive configuration screening to establish most stable structures. Interaction energies of these clusters were calculated at the spin-ratio scaled MP2 (SRS-MP2) level for the correlation interaction energy, and a newly developed scaled Hartree-Fock method for the rest of energetic contributions to interaction energy. A full geometry screening for each cation-anion combination resulted in 192 unique structures, whose stability was assessed using two criteria—widely used interaction energy and total electronic energy. Furthermore, the ratio of interaction energy to its dispersion component was correlated with experimentally observed melting points in 64 energetically favourable structures. These systems were also used to test the correlation of the dispersion contribution to interaction energy with measured conductivity.

  6. A density functional theory study on the interactions between dibenzothiophene and tetrafluoroborate-based ionic liquids.

    Science.gov (United States)

    Lin, Jin; Lü, Renqing; Wu, Chongchong; Xiao, Ye; Liang, Fei; Famakinwa, Temilola

    2017-04-01

    The interactions between dibenzothiophene (DBT) and N-butyl-N-methylimidazolium tetrafluoroborate ([BMIM][BF 4 ]), N-butyl-N-methylmorpholinium tetrafluoroborate ([Bmmorpholinium][BF 4 ]), N-butyl-N-methylpiperdinium tetrafluoroborate ([BMPiper][BF 4 ]), N-butyl-N-methylpyrrolidinium tetrafluoroborate ([BMPyrro][BF 4 ]), and N-butylpyridinium tetrafluoroborate ([BPY][BF 4 ]) were investigated using density functional theory approach. Geometric, electron, and topological properties were analyzed using natural bond orbital, atoms in molecules theory, and noncovalent interaction methods in order to understand intermolecular interactions between DBT and ionic liquids. The result shows that hydrogen bond and van der Waals interactions are widespread in all the ionic liquids-DBT systems. Ion-π interactions between DBT and cation or anion are also observed, while π + -π interactions are only found in the [BMIM][BF 4 ]-DBT and [BPY][BF 4 ]-DBT systems. The order of interaction energy is [BPY][BF4]-DBT > [BMIM][BF 4 ]-DBT > [BMPiper][BF 4 ]-DBT > [BMPyrro][BF 4 ]-DBT > [BMmorpholinum][BF 4 ]-DBT. The energies between DBT and the two ionic liquids containing aromatic cations are significantly higher.

  7. Thermodynamics of non-ionic surfactant Triton X-100-cationic surfactants mixtures at the cloud point

    International Nuclear Information System (INIS)

    Batigoec, Cigdem; Akbas, Halide; Boz, Mesut

    2011-01-01

    Highlights: → Non-ionic surfactants are used as emulsifier and solubilizate in such as textile, detergent and cosmetic. → Non-ionic surfactants occur phase separation at temperature as named the cloud point in solution. → Dimeric surfactants have attracted increasing attention due to their superior surface activity. → The positive values of ΔG cp 0 indicate that the process proceeds nonspontaneous. - Abstract: This study investigates the effects of gemini and conventional cationic surfactants on the cloud point (CP) of the non-ionic surfactant Triton X-100 (TX-100) in aqueous solutions. Instead of visual observation, a spectrophotometer was used for measurement of the cloud point temperatures. The thermodynamic parameters of these mixtures were calculated at different cationic surfactant concentrations. The gemini surfactants of the alkanediyl-α-ω-bis (alkyldimethylammonium) dibromide type, on the one hand, with different alkyl groups containing m carbon atoms and an ethanediyl spacer, referred to as 'm-2-m' (m = 10, 12, and 16) and, on the other hand, with -C 16 alkyl groups and different spacers containing s carbon atoms, referred to as '16-s-16' (s = 6 and 10) were synthesized, purified and characterized. Additions of the cationic surfactants to the TX-100 solution increased the cloud point temperature of the TX-100 solution. It was accepted that the solubility of non-ionic surfactant containing polyoxyethylene (POE) hydrophilic chain was a maximum at the cloud point so that the thermodynamic parameters were calculated at this temperature. The results showed that the standard Gibbs free energy (ΔG cp 0 ), the enthalpy (ΔH cp 0 ) and the entropy (ΔS cp 0 ) of the clouding phenomenon were found positive in all cases. The standard free energy (ΔG cp 0 ) increased with increasing hydrophobic alkyl chain for both gemini and conventional cationic surfactants; however, it decreased with increasing surfactant concentration.

  8. Molecular interactions and thermal transport in ionic liquids with carbon nanomaterials.

    Science.gov (United States)

    França, João M P; Nieto de Castro, Carlos A; Pádua, Agílio A H

    2017-07-05

    We used molecular dynamics simulation to study the effect of suspended carbon nanomaterials, nanotubes and graphene sheets, on the thermal conductivity of ionic liquids, an issue related to understanding the properties of nanofluids. One important aspect that we developed is an atomistic model of the interactions between the organic ions and carbon nanomaterials, so we did not rely on existing force fields for small organic molecules or assume simple combining rules to describe the interactions at the liquid/material interface. Instead, we used quantum calculations with a density functional suitable for non-covalent interactions to parameterize an interaction model, including van der Waals terms and also atomic partial charges on the materials. We fitted a n-m interaction potential function with n values of 9 or 10 and m values between 5 and 8, so a 12-6 Lennard-Jones function would not fit the quantum calculations. For the atoms of ionic liquids and carbon nanomaterials interacting among themselves, we adopted existing models from the literature. We studied the imidazolium ionic liquids [C 4 C 1 im][SCN], [C 4 C 1 im][N(CN) 2 ], [C 4 C 1 im][C(CN) 3 ] and [C 4 C 1 im][(CF 3 SO 2 ) 2 N]. Attraction is stronger for cations (than for anions) above and below the π-system of the nanomaterials, whereas anions show stronger attraction for the hydrogenated edges. The ordering of ions around and inside (7,7) and (10,10) single-walled nanotubes, and near a stack of graphene sheets, was analysed in terms of density distribution functions. We verified that anions are found, as well as cations, in the first interfacial layer interacting with the materials, which is surprising given the interaction potential surfaces. The thermal conductivity of the ionic liquids and of composite systems containing one nanotube or one graphene stack in suspension was calculated using non-equilibrium molecular dynamics. Thermal conductivity was calculated along the axis of the nanotube and

  9. Method and apparatus using an active ionic liquid for algae biofuel harvest and extraction

    Science.gov (United States)

    Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo

    2012-11-06

    The invention relates to use of an active ionic liquid to dissolve algae cell walls. The ionic liquid is used to, in an energy efficient manner, dissolve and/or lyse an algae cell walls, which releases algae constituents used in the creation of energy, fuel, and/or cosmetic components. The ionic liquids include ionic salts having multiple charge centers, low, very low, and ultra low melting point ionic liquids, and combinations of ionic liquids. An algae treatment system is described, which processes wet algae in a lysing reactor, separates out algae constituent products, and optionally recovers the ionic liquid in an energy efficient manner.

  10. Interaction of copper with dinitrogen tetroxide in 1-butyl-3-methylimidazolium-based ionic liquids.

    Science.gov (United States)

    Morozov, I V; Deeva, E B; Glazunova, T Yu; Troyanov, S I; Guseinov, F I; Kustov, L M

    2017-03-27

    Ionic liquids that are stable toward oxidation and nitration and are based on the 1-n-butyl-3-methylimidazolium cation (BMIm + ) can be used as solvents and reaction media for copper dissolution in liquid dinitrogen tetraoxide N 2 O 4 . The ionic liquid not only favors the dissociation of N 2 O 4 into NO + and NO 3 - , but also takes part in the formation of different crystalline products. Thus, NO[BF 4 ], NO[Cu(NO 3 ) 3 ] and (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were prepared using (BMIm)A, A - = [BF 4 ] - , (CF 3 SO 2 ) 2 N - , CF 3 COO - , respectively. The formation of a certain product is determined by the nature of the anion A - and the relative solubility of the reaction products in the ionic liquid. Crystals of NO[BF 4 ] were also prepared directly from a mixture of N 2 O 4 and BMImBF 4 . According to XRD single-crystal structure analysis, the structure of NO[BF 4 ] consists of tetrahedral [BF 4 ] - anions and nitrosonium NO + cations; the formation of these ions prove the heterolytic dissociation of N 2 O 4 dissolved in the ionic liquid. The crystal structure of the earlier unknown binuclear copper trifluoroacetate (BMIm) 2 [Cu 2 (CF 3 COO) 6 ] were determined by X-ray diffraction. The peculiarity of this dimer compared to the majority of known dimeric copper(ii) carboxylates is the unusually long CuCu distance (3.15 Å), with Cu(ii) ions demonstrating an atypical coordination of a distorted trigonal bipyramid formed by five O atoms of five trifluoroacetate groups.

  11. Separation of thiophene from heptane with ionic liquids

    International Nuclear Information System (INIS)

    Domańska, Urszula; Lukoshko, Elena Vadimovna; Królikowski, Marek

    2013-01-01

    Highlights: ► The ternary (liquid + liquid) equilibria in 1-butyl-1-methylpyrrolidinium-based ILs was measured. ► High selectivity and distribution ratio for the extraction of thiophene was found. ► [BMPYR][TCM] was proposed as entrainer for the separation process. ► Extraction of sulphur-compounds from alkanes was proposed. -- Abstract: Ionic liquids (ILs) are well known novel green solvents, which can be used for removing sulfur compounds from gasoline and diesel oils. Ternary (liquid + liquid) equilibrium data are presented for mixtures of {ionic liquid (1) + thiophene (2) + heptane (3)} at T = 298.15 K and ambient pressure to analyze the performance of the ionic liquid (IL) in the extraction of thiophene from the alkanes. Three pyrrolidinium-based ionic liquids have been studied: 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, ([BMPYR][FAP]), 1-butyl-1-methylpyrrolidinium tetracyanoborate, [BMPYR][TCB] and 1-butyl-1-methylpyrrolidinium tricyanomethanide, [BMPYR][TCM]. The results are discussed in terms of the selectivity and distribution ratio of separation of related systems. The immiscibility in the binary liquid systems of (thiophene + heptane) with all used ILs was observed. The [TCM] − anion in comparison with [TCB] − and [FAP] − anions shows much higher selectivity and slightly lower distribution ratio for extraction of thiophene. The non-random two liquid NRTL model was used successfully to correlate the experimental tie-lines and to calculate the phase composition error in mole fraction in the ternary systems. The average root mean square deviation (RMSD) of the phase composition was 0.047. The densities of [BMPYR][TCM] in temperature range from (298.15 to 348.15) K were measured. The data presented here show that the [BMPYR][TCM] ionic liquid can be used as an alternative solvent for the separation of thiophene from the hydrocarbon stream using solvent liquid–liquid extraction at ambient conditions

  12. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M., E-mail: luismiguel.varela@usc.es [Grupo de Nanomateriais e Materia Branda, Departamento de Física da Materia Condensada, Universidade de Santiago de Compostela, Campus Vida s/n, E-15782 Santiago de Compostela (Spain); Cabeza, Oscar [Facultade de Ciencias, Universidade da Coruña, Campus A Zapateira s/n, E-15008 A Coruña (Spain); Fedorov, Maxim [Department of Physics, Scottish University Physics Alliance (SUPA), University of Strathclyde, John Anderson Bldg., 107 Rottenrow East, Glasgow G4 0NG (United Kingdom); Lynden-Bell, Ruth M. [Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca{sup 2

  13. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    International Nuclear Information System (INIS)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.; Varela, Luis M.; Cabeza, Oscar; Fedorov, Maxim; Lynden-Bell, Ruth M.

    2015-01-01

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF 6 ]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means of their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO 3 ] − and [PF 6 ] − anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca 2+ cations. No qualitative

  14. Screening for High Conductivity/Low Viscosity Ionic Liquids Using Product Descriptors.

    Science.gov (United States)

    Martin, Shawn; Pratt, Harry D; Anderson, Travis M

    2017-07-01

    We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18 th , 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology.

    Science.gov (United States)

    Brown, Leslie; Earle, Martyn J; Gîlea, Manuela A; Plechkova, Natalia V; Seddon, Kenneth R

    2017-08-10

    Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous character of ionic liquid-based solvent systems to be used in a wide variety of separations (including transition metal salts, arenes, alkenes, alkanes, bio-oils and sugars).

  16. The use of a long chain ionic liquid in an LiMn2O4 based lithium ion cell

    International Nuclear Information System (INIS)

    Sutto, Thomas E.; Duncan, Teresa T.

    2012-01-01

    A long chain substituted imidazolium ionic liquid, 1,2-dimethyl-3-octylimidazolium bis(trifluoromethanesulfonyl)imide (MMOITFSI), is used as the electrolyte for reversible intercalation of Li into LiMn 2 O 4 . Ionic conductivity measurements indicate that in spite of the longer chain attached to the imidazolium ring, the conductivity for the pure liquid and with 0.5 M LiTFSI present, remains above 1 mS/cm. Cyclic voltammetry revealed high reversibility of Li + into LiMn 2 O 4 in this ionic liquid. Charge/discharge experiments indicated reversible capacity of 115 mAHr/g at a discharge rate of C/6 for 0.5 M Li in MMOITFSI. Higher discharge rates (C/3) resulted in lower capacities (below 100 mAHr/g), most likely due to the higher viscosity of the long chain ionic liquid. Improved discharge rates, of 111 mAHr/g at a higher discharge rate of C/3, were observed when 10 wt% of a short chain ionic liquid, 1,2-dimethyl-3-propylimidazolium bis(trifluoromethanesulfonyl)imide (MMPITFSI), was added to the MMOITFSI. For both the pure MMOITFSI and the ionic liquid blend of MMOITFSI with MMPITFSI, cycle lifetimes showed minimal degradation due to intercalation by the imidazolium cation into the graphite used to enhance the conductivity of the cathode material.

  17. A reversible conductivity modulation of azobenzene-based ionic liquids in aqueous solutions using UV/vis light.

    Science.gov (United States)

    Li, Zhiyong; Yuan, Xiaoqing; Feng, Ying; Chen, Yongkui; Zhao, Yuling; Wang, Huiyong; Xu, Qingli; Wang, Jianji

    2018-05-09

    Photo-induced conductivity modulation of stimuli-responsive materials is of great importance from the viewpoint of fundamental research and technology. In this work, 5 new kinds of azobenzene-based photo-responsive ionic liquids were synthesized and characterized, and UV/vis light modulation of their conductivity was investigated in an aqueous solution. The factors affecting the conductivity modulation of the photo-responsive fluids, such as photo-isomerization efficiency, photo-regulation aggregation, concentration and chemical structure of the ionic liquids, were examined systematically. It was found that the conductivity of the ionic liquids in water exhibited a significant increase upon UV light irradiation and the ionic liquids with a shorter alkyl spacer in the cation showed a more remarkable photo-induced conductivity enhancement with a maximum increase of 150%. In addition, the solution conductivity was restored (or very close) to the initial value upon an alternative irradiation with visible light. Thus, the solution conductivity can be modulated using alternative irradiation with UV and visible light. Although the reversible photo-isomerization of the azobenzene group under UV/vis irradiation is the origin of the conductivity modulation, the photo-regulated aggregation of the ionic liquid in water is indispensable for the maximum degree of conductivity modulation because UV irradiation can weaken, even break the aggregated cis-isomers of the ionic liquids in an aqueous solution.

  18. Particle self-assembly at ionic liquid-based interfaces.

    Science.gov (United States)

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  19. Direct synthesis of silver nanoparticles in ionic liquid

    International Nuclear Information System (INIS)

    Corrêa, Cíntia M.; Bizeto, Marcos A.; Camilo, Fernanda F.

    2016-01-01

    Ionic liquids have structural organization at nanoscale that can trigger the spontaneous ordering of structures in nanoscopic range. Due to this characteristic, several metal nanoparticles have been prepared in this media. In this paper, we describe the direct preparation of silver nanoparticles in the following imidazolium ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1,2-dimethyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and in citrate tetrabutylammonium, that is an ionic liquid that acts as solvent and reducing agent at the same time. We also evaluated the morphology of the nanoparticles and the stability of the dispersions. Spherical silver nanoparticles with surface Plasmon bands in the range of 400–430 nm were produced in all the ionic liquids, with the only exception for the 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide that produced a black precipitate. The best results were obtained by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and citrate tetrabutylammonium ionic liquids. The former resulted in concentrated spherical silver nanoparticles dispersion (ca. 1.0 mM of Ag) with diameters ranging from 6 to 12 nm and by adding polyvinylpyrrolidone (PVP) to the dispersions they became stable for at least 1 month. The citrate tetrabutylammonium ionic liquid produced even more concentrated dispersion of spherical silver nanoparticles with diameters ranging from 2 to 6 nm. These dispersions were quite stable without the need of PVP, since the Plasmon band in the electronic absorption spectra remained unaltered for months after the preparation. The citrate tetrabutylammonium ionic liquid offers a slow kinetic for the silver nanoparticle formation as the citrate is a milder reducing agent than borohydride.Graphical Abstract

  20. Direct synthesis of silver nanoparticles in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Corrêa, Cíntia M.; Bizeto, Marcos A.; Camilo, Fernanda F., E-mail: ffcamilo@unifesp.br [Universidade Federal de São Paulo, Laboratório de Materiais Híbridos, Departamento de Ciências Exatas e da Terra, Instituto de Ciências Ambientais, Químicas e Farmacêuticas (Brazil)

    2016-05-15

    Ionic liquids have structural organization at nanoscale that can trigger the spontaneous ordering of structures in nanoscopic range. Due to this characteristic, several metal nanoparticles have been prepared in this media. In this paper, we describe the direct preparation of silver nanoparticles in the following imidazolium ionic liquids: 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1,2-dimethyl-3-butylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and in citrate tetrabutylammonium, that is an ionic liquid that acts as solvent and reducing agent at the same time. We also evaluated the morphology of the nanoparticles and the stability of the dispersions. Spherical silver nanoparticles with surface Plasmon bands in the range of 400–430 nm were produced in all the ionic liquids, with the only exception for the 1-octyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide that produced a black precipitate. The best results were obtained by using 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and citrate tetrabutylammonium ionic liquids. The former resulted in concentrated spherical silver nanoparticles dispersion (ca. 1.0 mM of Ag) with diameters ranging from 6 to 12 nm and by adding polyvinylpyrrolidone (PVP) to the dispersions they became stable for at least 1 month. The citrate tetrabutylammonium ionic liquid produced even more concentrated dispersion of spherical silver nanoparticles with diameters ranging from 2 to 6 nm. These dispersions were quite stable without the need of PVP, since the Plasmon band in the electronic absorption spectra remained unaltered for months after the preparation. The citrate tetrabutylammonium ionic liquid offers a slow kinetic for the silver nanoparticle formation as the citrate is a milder reducing agent than borohydride.Graphical Abstract.

  1. Single component, reversible ionic liquids for energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Vittoria Blasucci; Ryan Hart; Veronica Llopis Mestre; Dominique Julia Hahne; Melissa Burlager; Hillary Huttenhower; Beng Joo Reginald Thio; Pamela Pollet; Charles L. Liotta; Charles A. Eckert [Georgia Institute of Technology, Atlanta, GA (United States). Chemical & Biomolecular Engineering

    2010-06-15

    Single component, reversible ionic liquids have excellent potential as novel solvents for a variety of energy applications. Our energy industry is faced with many new challenges including increased energy consumption, depleting oil reserves, and increased environmental awareness. We report the use of reversible ionic liquids to solve two energy challenges: extraction of hydrocarbons from contaminated crude oil and carbon capture from power plant flue gas streams. Our reversible solvents are derived from silylated amine molecular liquids which react with carbon dioxide reversibly to form ionic liquids. Here we compare the properties of various silylated amine precursors and their corresponding ionic liquids. We show how the property changes are advantageous in the two aforementioned energy applications. In the case of hydrocarbon purification, we take advantage of the polarity switch between precursor and ionic liquid to enable separations. In carbon capture, our solvents act as dual physical and chemical capture agents for carbon dioxide. Finally, we show the potential economics of scale-up for both processes. 20 refs., 1 fig., 3 tabs.

  2. Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness.

    Science.gov (United States)

    David, Alessio; Fajardo, Oscar Y; Kornyshev, Alexei A; Urbakh, Michael; Bresme, Fernando

    2017-07-01

    The properties of ionic liquids can be modified by applying an external electrostatic potential, providing a route to control their performance in nanolubrication applications. Most computational studies to date have focused on the investigation of smooth surfaces. Real surfaces are generally inhomogeneous and feature roughness of different length scales. We report here a study of the possible effects that surface roughness may have on electrotunable lubricity with ionic liquids, performed here by means of non-equilibrium molecular dynamics simulations. In order to advance our understanding of the interplay of friction and substrate structure we investigate coarse grained models of ionic liquids confined in model surfaces with nanometer roughness. The friction is shown to depend on the roughness of the substrate and the direction of shear. For the investigated systems, the friction coefficient is found to increase with roughness. These results are in contrast with previous studies, where roughness induced reduction of friction was reported, and they highlight the strong sensitivity of the friction process to the structure of the surfaces. The friction force features a maximum at a specific surface charge density. This behaviour is reminiscent of the one reported in ionic liquids confined by flat surfaces, showing the generality of this physical effect in confined ionic liquids. We find that an increase of the substrate-liquid dispersion interactions shifts the maximum to lower surface charges. This effect opens a route to control electrotunable friction phenomena by tuning both the electrostatic potential and the composition of the confining surfaces.

  3. ELECTROCATALYSIS OF HEMOGLOBIN IN IONIC LIQUID ...

    African Journals Online (AJOL)

    Preferred Customer

    thermal stability, relatively high ionic conductivity, negligible vapor pressure and wide ... through the opposite end of the tube to establish an electrical contact and the ... support to assembly the Hb molecules and form a biocompatible porous ...

  4. Confused ionic liquid ions--a "liquification" and dosage strategy for pharmaceutically active salts.

    Science.gov (United States)

    Bica, Katharina; Rogers, Robin D

    2010-02-28

    We present a strategy to expand the liquid and compositional ranges of ionic liquids, specifically pharmaceutically active ionic liquids, by simple mixing with a solid acid or base to form oligomeric ions.

  5. Ionic Liquid-Liquid Chromatography: A New General Purpose Separation Methodology

    OpenAIRE

    Brown, Leslie; Earle, Martyn J; Gilea, Manuela; Plechkova, Natalia V; Seddon, Kenneth R

    2017-01-01

    Ionic liquids can form biphasic solvent systems with many organic solvents and water, and these solvent systems can be used in liquid-liquid separations and countercurrent chromatography. The wide range of ionic liquids that can by synthesised, with specifically tailored properties, represents a new philosophy for the separation of organic, inorganic and bio-based materials. A customised countercurrent chromatograph has been designed and constructed specifically to allow the more viscous char...

  6. Densities and isothermal compressibilities of ionic liquids - Modelling and application

    DEFF Research Database (Denmark)

    Abildskov, Jens; Ellegaard, Martin Dela; O’Connell, J.P.

    2010-01-01

    Two corresponding-states forms have been developed for direct correlation function integrals in liquids to represent pressure effects on the volume of ionic liquids over wide ranges of temperature and pressure. The correlations can be analytically integrated from a chosen reference density to pro...

  7. Ionic Liquid Catalyzed Electrolyte for Electrochemical Polyaniline Supercapacitors

    Science.gov (United States)

    Inamdar, A. I.; Im, Hyunsik; Jung, Woong; Kim, Hyungsang; Kim, Byungchul; Yu, Kook-Hyun; Kim, Jin-Sang; Hwang, Sung-Min

    2013-05-01

    The effect of different wt.% of ionic liquid "1,6-bis (trimethylammonium-1-yl) hexane tetrafluoroborate" in 0.5 M LiClO4+PC electrolyte on the supercapacitor properties of polyaniline (PANI) thin film are investigated. The PANI film is synthesized using electropolymerization of aniline in the presence of sulfuric acid. The electrochemical properties of the PANI thin film are studied by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) measurements. The optimum amount of the ionic liquid is found to be 2 wt.% which provides better ionic conductivity of the electrolyte. The highest specific capacitance of 259 F/g is obtained using the 2 wt.% electrolyte. This capacitance remains at up to 208 F/g (80% capacity retention) after 1000 charge-discharge cycles at a current density of 0.5 mA/g. The PANI film in the 2 wt.% ionic liquid catalyzed 0.5 M LiClO4+PC electrolyte shows small electrochemical resistance, better rate performance and higher cyclability. The increased ionic conductivity of the 2 wt.% ionic liquid catalyzed electrolyte causes a reduction in resistance at the electrode/electrolyte interface, which can be useful in electrochemically-preferred power devices for better applicability.

  8. Ionic Liquids: An Environmentally Friendly Media for Nucleophilic Substitution Reactions

    International Nuclear Information System (INIS)

    Jorapur, Yogesh R.; Chi, Dae Yoon

    2006-01-01

    Ionic liquids are alternative reaction media of increasing interest and are regarded as an eco-friendly alternatives, of potential use in place of the volatile organic solvents typically used in current chemical processing methods. They are emerging as the smart and excellent solvents, which are made of positive and negative ions that they are liquids near room temperature. The nucleophilic substitution reaction is one of the important method for inserting functional groups into a carbon skeleton. Many nucleophilic substitution reactions have been found with enhanced reactivity and selectivity in ionic liquid. In this review, some recent interesting results of nucleophilic substitution reactions such as hydroxylations, ether cleavages, carbon-X (X = carbon, oxygen, nitrogen, fluorine) bond forming reactions, and ring opening of epoxides in ionic liquids are discussed

  9. Microwave-Assisted Syntheses in Recyclable Ionic Liquids: Photoresists Based on Renewable Resources.

    Science.gov (United States)

    Petit, Charlotte; Luef, Klaus P; Edler, Matthias; Griesser, Thomas; Kremsner, Jennifer M; Stadler, Alexander; Grassl, Bruno; Reynaud, Stéphanie; Wiesbrock, Frank

    2015-10-26

    The copoly(2-oxazoline) pNonOx80 -stat-pDc(=) Ox20 can be synthesized from the cationic ring-opening copolymerization of 2-nonyl-2-oxazoline NonOx and 2-dec-9'-enyl-2-oxazoline Dc(=) Ox in the ionic liquid n-hexyl methylimidazolium tetrafluoroborate under microwave irradiation in 250 g/batch quantities. The polymer precipitates upon cooling, enabling easy recovery of the polymer and the ionic liquid. Both monomers can be obtained from fatty acids from renewable resources. pNonOx80 -stat-pDc(=) Ox20 can be used as polymer in a photoresist (resolution of 1 μm) based on UV-induced thiol-ene reactions. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Transparent and flexible quantum dot-polymer composites using an ionic liquid as compatible polymerization medium

    International Nuclear Information System (INIS)

    Woelfle, Caroline; Claus, Richard O

    2007-01-01

    Quantum dot (QD)-polymer composites were fabricated based on a solution of QDs dispersed in an ionic liquid. Positively charged water-soluble nanocrystals were obtained from solutions of CdSe/ZnS QDs dispersed in toluene by ligand exchange with 2-dimethylaminoethanethiol (DAET). The resulting QDs were further transferred into a hydrophobic ionic liquid HMITFSI (1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) by cation exchange, resulting in a CdSe/ZnS-HMITFSI solution, which was used as a compatible medium for the polymerization and cross-linking of polymethyl methacrylate networks. Transparent, fluorescent and flexible materials resulted. The quantum yields of the composites depended on the initial properties of the QDs dispersed in toluene, and medium-size QDs (2.6 nm) resulted in the highest quantum yields

  11. Metal coordination in the high-temperature leaching of roasted NdFeB magnets with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide

    OpenAIRE

    Orefice, Martina; Binnemans, Koen; Vander Hoogerstraete, Tom

    2018-01-01

    Ionic liquids are largely used to leach metals from primary (ores) and secondary sources (end-of-life products). However, dry ionic liquids with a carboxylic function on the cation have not yet been used to leach metals at temperature above 100 °C and under atmospheric pressure. The ionic liquid betainium bis(trifluoromethylsulfonyl)imide, [Hbet][Tf2N], was used in the dry state to recover neodymium, dysprosium and cobalt from NdFeB magnets and NdFeB production scrap. The magnets and the scra...

  12. Biomass Conversion in Ionic Liquids - in-situ Investigations

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas

    Due to rising oil prices and global warming caused by CO2 emissions, there is an increased demand for new types of fuels and chemicals derived from biomass. This thesis investigates catalytic conversion of cellulose into sugars in ionic liquids and the important platform chemical 5-hydroxymethylf......Due to rising oil prices and global warming caused by CO2 emissions, there is an increased demand for new types of fuels and chemicals derived from biomass. This thesis investigates catalytic conversion of cellulose into sugars in ionic liquids and the important platform chemical 5......-hydroxymethylfurfural (HMF). The thesis focuses on kinetic and mechanistic investigations using new in-situ FTIR spectroscopic methods based on the ATR-principle. At first the kinetics of cellulose hydrolysis and the simultaneously HMF formation was investigated in the ionic liquid 1-butyl-2,3-dimethylimidazolium...... activation energies suggest that the ionic liquid acts co-catalytic by stabilizing the oxocarbenium transition state. The chromium catalyzed conversion of glucose to HMF in ionic liquid 1-butyl-3-methylimidazolium chloride with CrCl3⋅6H2O and CrCl2 as catalysts was investigated. The CrCl3⋅6H2O catalyst...

  13. Unimolecular Solvolyses in Ionic Liquid: Alcohol Dual Solvent Systems

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Kochly

    2016-01-01

    Full Text Available A study was undertaken of the solvolysis of pivaloyl triflate in a variety of ionic liquid:alcohol solvent mixtures. The solvolysis is a kΔ process (i.e., a process in which ionization occurs with rearrangement, and the resulting rearranged carbocation intermediate reacts with the alcohol cosolvent via two competing pathways: nucleophilic attack or elimination of a proton. Five different ionic liquids and three different alcohol cosolvents were investigated to give a total of fifteen dual solvent systems. 1H-NMR analysis was used to determine relative amounts of elimination and substitution products. It was found, not surprisingly, that increasing the bulkiness of alcohol cosolvent led to increased elimination product. The change in the amount of elimination product with increasing ionic liquid concentration, however, varied greatly between ionic liquids. These differences correlate strongly, though not completely, to the Kamlet–Taft solvatochromic parameters of the hydrogen bond donating and accepting ability of the solvent systems. An additional factor playing into these differences is the bulkiness of the ionic liquid anion.

  14. Catalytic Oxidation of CW Agents Using H2O2 in Ionic Liquids

    National Research Council Canada - National Science Library

    Nelson, William M

    2003-01-01

    Partial contents: Structures of ionic, Common Cationic Surfactants, Micelles to Micelles to Microemulsions, Microemulsion Formulations,Structures of HD, Structures of HD, VX, VX, GB, and GD, Decontamination...

  15. Full characterization of polypyrrole thin films electrosynthesized in room temperature ionic liquids, water or acetonitrile

    International Nuclear Information System (INIS)

    Viau, L.; Hihn, J.Y.; Lakard, S.; Moutarlier, V.; Flaud, V.; Lakard, B.

    2014-01-01

    Highlights: • Polypyrrole films were electrodeposited from three room temperature ionic liquids. • Polymer films were characterized using many surface analysis techniques. • The incorporation of anions and/or cations inside the polymer films was evidenced. • The influence of the ionic liquid on the polymer properties was deeply studied. - Abstract: Pyrrole was electrochemically oxidized in two conventional media (water and acetonitrile) and in three room temperature ionic liquids: 1-butyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Infrared and Raman Spectroscopies confirmed the formation of polypyrrole by electropolymerization but were unable to demonstrate the presence of anions in the polymer films. The use of ionic liquids as growth media resulted in polymer films having a good electrochemical activity. The difference of activity from one polymer film to the other was mainly attributed to the difference of viscosity between the solvents used. The morphological features of the polypyrrole films were also fully studied. Profilometric measurements demonstrated that polymer films grown, at the same potential, in ionic liquids were thinner and had a smaller roughness than those grown in other solvents. Atomic Force Microscopy showed that polypyrrole films had nearly similar micrometric nodular structure whatever the growth medium even if some differences of porosity and homogeneity were observed using Scanning Electron Microscopy. The incorporation of counter-anions at the top surface of the films was finally evidenced by X-ray Photoelectron Spectroscopy. These anions were also incorporated inside the polymer film with a uniform distribution as shown by Glow Discharge Optical Emission Spectroscopy

  16. Highly effective ionic liquids for biodiesel production from waste vegetable oils

    Directory of Open Access Journals (Sweden)

    Fathy A. Yassin

    2015-03-01

    Full Text Available As conventional energy sources deplete, the need for developing alternative energy resources which are environment friendly becomes more imperative. Vegetable oils are attracting increased interest in this purpose. The methanolysis of vegetable oil to produce a fatty acid methyl ester (FAME, i.e., biodiesel fuel was catalyzed by commercial ionic liquid and its chloride modification. The imidazolium chloride ionic liquid was frequently chosen for the synthesis of biodiesel. The dual-functionalized’ ionic liquid is prepared by a direct combination reaction between imidazolium cation and various metal chlorides such as CoCl2, CuCl2, NiCl2, FeCl3 and AlCl3. Imidazolium tetrachloroferrate was proved to be a selective catalyst for the methanolysis reaction at a yield of 97% when used at 1:10, catalyst: oil ratio for 8 h at 55 °C. Operational simplicity, reusability of the used catalyst for 8 times at least, high yields and no saponification are the key features of this methodology. The dynamic viscosity and density of the upgraded vegetable oil decreased from 32.1 cP and 0.9227 g/cm3 to 10.2 cP and 0.9044 g/cm3 respectively, compared to those of the base vegetable oil. The objective of this study was the synthesis and characterization of biodiesel using commercial ionic liquid and its chloride modification. The ionic liquid catalysts were characterized using FTIR, Raman spectroscopy, DSC, TG and UV.

  17. Design principles from multiscale simulations to predict nanostructure in self-assembling ionic liquids.

    Science.gov (United States)

    Nebgen, Benjamin T; Magurudeniya, Harsha D; Kwock, Kevin W C; Ringstrand, Bryan S; Ahmed, Towfiq; Seifert, Sönke; Zhu, Jian-Xin; Tretiak, Sergei; Firestone, Millicent A

    2017-12-14

    Molecular dynamics simulations (up to the nanoscale) were performed on the 3-methyl-1-pentylimidazolium ionic liquid cation paired with three anions; chloride, nitrate, and thiocyanate as aqueous mixtures, using the effective fragment potential (EFP) method, a computationally inexpensive way of modeling intermolecular interactions. The simulations provided insight (preferred geometries, radial distribution functions and theoretical proton NMR resonances) into the interactions within the ionic domain and are validated against 1 H NMR spectroscopy and small- and wide-angle X-ray scattering experiments on 1-decyl-3-methylimidazolium. Ionic liquids containing thiocyanate typically resist gelation and form poorly ordered lamellar structures upon mixing with water. Conversely, chloride, a strongly coordinating anion, normally forms strong physical gels and produces well-ordered nanostructures adopting a variety of structural motifs over a very wide range of water compositions. Nitrate is intermediate in character, whereby upon dispersal in water it displays a range of viscosities and self-assembles into nanostructures with considerable variability in the fidelity of ordering and symmetry, as a function of water content in the binary mixtures. The observed changes in the macro and nanoscale characteristics were directly correlated to ionic domain structures and intermolecular interactions as theoretically predicted by the analysis of MD trajectories and calculated RDFs. Specifically, both chloride and nitrate are positioned in the plane of the cation. Anion to cation proximity is dependent on water content. Thiocyanate is more susceptible to water insertion into the second solvent shell. Experimental 1 H NMR chemical shifts monitor the site-specific competition dependence with water content in the binary mixtures. Thiocyanate preferentially sits above and below the aromatic ring plane, a state disallowing interaction with the protons on the imidazolium ring.

  18. Determination of sulfonamides in butter samples by ionic liquid magnetic bar liquid-phase microextraction high-performance liquid chromatography.

    Science.gov (United States)

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-01-01

    A novel, simple, and environmentally friendly pretreatment method, ionic liquid magnetic bar liquid-phase microextraction, was developed for the determination of sulfonamides in butter samples by high-performance liquid chromatography. The ionic liquid magnetic bar was prepared by inserting a stainless steel wire into the hollow of a hollow fiber and immobilizing ionic liquid in the micropores of the hollow fiber. In the extraction process, the ionic liquid magnetic bars were used to stir the mixture of sample and extraction solvent and enrich the sulfonamides in the mixture. After extraction, the analyte-adsorbed ionic liquid magnetic bars were readily isolated with a magnet from the extraction system. It is notable that the present method was environmentally friendly since water and only several microliters of ionic liquid were used in the whole extraction process. Several parameters affecting the extraction efficiency were investigated and optimized, including the type of ionic liquid, sample-to-extraction solvent ratio, the number of ionic liquid magnetic bars, extraction temperature, extraction time, salt concentration, stirring speed, pH of the extraction solvent, and desorption conditions. The recoveries were in the range of 73.25-103.85 % and the relative standard deviations were lower than 6.84 %. The experiment results indicated that the present method was effective for the extraction of sulfonamides in high-fat content samples.

  19. The Use of Supported Acidic Ionic Liquids in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Rita Skoda-Földes

    2014-06-01

    Full Text Available Catalysts obtained by the immobilisation of acidic ionic liquids (ILs on solid supports offer several advantages compared to the use of catalytically active ILs themselves. Immobilisation may result in an increase in the number of accessible active sites of the catalyst and a reduction of the amount of the IL required. The ionic liquid films on the carrier surfaces provide a homogeneous environment for catalytic reactions but the catalyst appears macroscopically as a dry solid, so it can simply be separated from the reaction mixture. As another advantage, it can easily be applied in a continuous fixed bed reactor. In the present review the main synthetic strategies towards the preparation of supported Lewis acidic and Brønsted acidic ILs are summarised. The most important characterisation methods and structural features of the supported ionic liquids are presented. Their efficiency in catalytic reactions is discussed with special emphasis on their recyclability.

  20. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.

    Science.gov (United States)

    Maton, Cedric; De Vos, Nils; Stevens, Christian V

    2013-07-07

    The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.

  1. Immobilization of molecular catalysts in supported ionic liquid phases.

    Science.gov (United States)

    Van Doorslaer, Charlie; Wahlen, Joos; Mertens, Pascal; Binnemans, Koen; De Vos, Dirk

    2010-09-28

    In a supported ionic liquid phase (SILP) catalyst system, an ionic liquid (IL) film is immobilized on a high-surface area porous solid and a homogeneous catalyst is dissolved in this supported IL layer, thereby combining the attractive features of homogeneous catalysts with the benefits of heterogeneous catalysts. In this review reliable strategies for the immobilization of molecular catalysts in SILPs are surveyed. In the first part, general aspects concerning the application of SILP catalysts are presented, focusing on the type of catalyst, support, ionic liquid and reaction conditions. Secondly, organic reactions in which SILP technology is applied to improve the performance of homogeneous transition-metal catalysts are presented: hydroformylation, metathesis reactions, carbonylation, hydrogenation, hydroamination, coupling reactions and asymmetric reactions.

  2. Thermophysical properties of phosphonium-based ionic liquids

    Science.gov (United States)

    Bhattacharjee, Arijit; Lopes-da-Silva, José A.; Freire, Mara G.; Coutinho, João A. P.; Carvalho, Pedro J.

    2015-01-01

    Experimental data for density, viscosity, refractive index and surface tension of four phosphonium-based ionic liquids were measured in the temperature range between (288.15 and 353.15) K and at atmospheric pressure. The ionic liquids considered include tri(isobutyl) methylphosphonium tosylate, [Pi(444)1][Tos], tri(butyl)methylphosphonium methylsulfate, [P4441][CH3SO4], tri(butyl)ethylphosphonium diethylphosphate, [P4442][(C2H5O)2PO2], and tetraoctylphosphonium bromide, [P8888][Br]. Additionally, derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperatures for the investigated ionic liquids were also estimated and are presented and discussed. Group contribution methods were evaluated and fitted to the density, viscosity and refractive index experimental data. PMID:26435574

  3. USE OF IONIC LIQUIDS FOR IMPROVEMENT OF CELLULOSIC ETHANOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Qijun Wang

    2011-02-01

    Full Text Available Cellulosic ethanol production has drawn much attention in recent years. However, there remain significant technical challenges before such production can be considered as economically feasible at an industrial scale. Among them, the efficient conversion of carbohydrates in lignocellulosic biomass into fermentable sugars is one of the most challenging technical difficulties in cellulosic ethanol production. Use of ionic liquids has opened new avenues to solve this problem by two different pathways. One is pretreatment of lignocellulosic biomass using ionic liquids to increase its enzymatic hydrolysis efficiency. The other is to transform the hydrolysis process of lignocellulosic biomass from a heterogeneous reaction system to a homogeneous one by dissolving it into ionic liquids, thus improving its hydrolysis efficiency.

  4. Thermophysical properties of phosphonium-based ionic liquids.

    Science.gov (United States)

    Bhattacharjee, Arijit; Lopes-da-Silva, José A; Freire, Mara G; Coutinho, João A P; Carvalho, Pedro J

    2015-08-25

    Experimental data for density, viscosity, refractive index and surface tension of four phosphonium-based ionic liquids were measured in the temperature range between (288.15 and 353.15) K and at atmospheric pressure. The ionic liquids considered include tri(isobutyl) methylphosphonium tosylate, [P i (444)1 ][Tos], tri(butyl)methylphosphonium methylsulfate, [P 4441 ][CH 3 SO 4 ], tri(butyl)ethylphosphonium diethylphosphate, [P 4442 ][(C 2 H 5 O) 2 PO 2 ], and tetraoctylphosphonium bromide, [P 8888 ][Br]. Additionally, derivative properties, such as the isobaric thermal expansion coefficient, the surface thermodynamic properties and the critical temperatures for the investigated ionic liquids were also estimated and are presented and discussed. Group contribution methods were evaluated and fitted to the density, viscosity and refractive index experimental data.

  5. Organosilica Membrane with Ionic Liquid Properties for Separation of Toluene/H₂ Mixture.

    Science.gov (United States)

    Hirota, Yuichiro; Maeda, Yohei; Yamamoto, Yusuke; Miyamoto, Manabu; Nishiyama, Norikazu

    2017-08-03

    In this study, we present a new concept in chemically stabilized ionic liquid membranes: an ionic liquid organosilica (ILOS) membrane, which is an organosilica membrane with ionic liquid-like properties. A silylated ionic liquid was used as a precursor for synthesis. The permselectivity, permeation mechanism, and stability of the membrane in the H₂/toluene binary system were then compared with a supported ionic liquid membrane. The membrane showed a superior separation factor of toluene/H₂ (>17,000) in a binary mixture system based on a solution-diffusion mechanism with improved durability over the supported ionic liquid membrane.

  6. Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids

    Science.gov (United States)

    Tiruye, Girum Ayalneh; Muñoz-Torrero, David; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca

    2016-09-01

    Four Ionic Liquid based Polymer Electrolytes (IL-b-PE) were prepared by blending a Polymeric Ionic Liquid, Poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PILTFSI), with four different ionic liquids: 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) (IL-b-PE1), 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide (PYR14FSI) (IL-b-PE2), 1-(2-hydroxy ethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (HEMimTFSI) (IL-b-PE3), and 1-Butyl-1-methylpyrrolidinium dicyanamide, (PYR14DCA) (IL-b-PE4). Physicochemical properties of IL-b-PE such as ionic conductivity, thermal and electrochemical stability were found to be dependent on the IL properties. For instance, ionic conductivity was significantly higher for IL-b-PE2 and IL-b-PE4 containing IL with small size anions (FSI and DCA) than IL-b-PE1 and IL-b-PE3 bearing IL with bigger anion (TFSI). On the other hand, wider electrochemical stability window (ESW) was found for IL-b-PE1 and IL-b-PE2 having ILs with electrochemically stable pyrrolidinium cation and FSI and TFSI anions. Solid state Supercapacitors (SCs) were assembled with activated carbon electrodes and their electrochemical performance was correlated with the polymer electrolyte properties. Best performance was obtained with SC having IL-b-PE2 that exhibited a good compromise between ionic conductivity and electrochemical window. Specific capacitance (Cam), real energy (Ereal) & real power densities (Preal) as high as 150 F g-1, 36 Wh kg-1 & 1170 W kg-1 were found at operating voltage of 3.5 V.

  7. Ionic-Liquid Based Separation of Azeotropic Mixtures

    DEFF Research Database (Denmark)

    Kulajanpeng, Kusuma; Suriyapraphadilok, Uthaiporn; Gani, Rafiqul

    2014-01-01

    methodology for the screening of ionic liquids (ILs) as entrainers for ILs-based separation processes in binary aqueous azeotropic systems (e.g., water + ethanol and water + isopropanol) is presented. Ionic liquids as entrainers were first screened based on a combination of criteria such as stabi......methodology for the screening of ionic liquids (ILs) as entrainers for ILs-based separation processes in binary aqueous azeotropic systems (e.g., water + ethanol and water + isopropanol) is presented. Ionic liquids as entrainers were first screened based on a combination of criteria...... [C1MIM][DMP]. For the final evaluation, the best candidates for aqueous systems were used as entrainers, and then the vapor-liquid equilibrium (VLE) of the ternary systems containing ILs was predicted by the Non Random Two Liquids (NRTL) model to confirm the breaking of the azeotrope. Based...... on minimum concentration of the ILs required to break the given azeotrope, the best ILs as entrainers for water + ethanol and water + isopropanol azeotropic mixtures were [C1MIM][DMP] and [C2MIM][N(CN)2], respectively....

  8. Lattice model of ionic liquid confined by metal electrodes

    Science.gov (United States)

    Girotto, Matheus; Malossi, Rodrigo M.; dos Santos, Alexandre P.; Levin, Yan

    2018-05-01

    We study, using Monte Carlo simulations, the density profiles and differential capacitance of ionic liquids confined by metal electrodes. To compute the electrostatic energy, we use the recently developed approach based on periodic Green's functions. The method also allows us to easily calculate the induced charge on the electrodes permitting an efficient implementation of simulations in a constant electrostatic potential ensemble. To speed up the simulations further, we model the ionic liquid as a lattice Coulomb gas and precalculate the interaction potential between the ions. We show that the lattice model captures the transition between camel-shaped and bell-shaped capacitance curves—the latter characteristic of ionic liquids (strong coupling limit) and the former of electrolytes (weak coupling). We observe the appearance of a second peak in the differential capacitance at ≈0.5 V for 2:1 ionic liquids, as the packing fraction is increased. Finally, we show that ionic size asymmetry decreases substantially the capacitance maximum, when all other parameters are kept fixed.

  9. Thermodynamic properties of binary mixtures combining two pyridinium-based ionic liquids and two alkanols

    International Nuclear Information System (INIS)

    García-Mardones, Mónica; Barrós, Alba; Bandrés, Isabel; Artigas, Héctor; Lafuente, Carlos

    2012-01-01

    Highlights: ► Thermodynamic properties of an ionic liquid and an alkanol have been reported. ► The ionic liquids studied were 1-butyl-3 (or 4)-methylpyridinium tetrafluoroborate. ► The alkanols were methanol and ethanol. ► From measured data excess properties have been obtained and correlated. - Abstract: Densities and speeds of sound have been determined for the binary mixtures containing an ionic liquid (1-butyl-3-methylpyridinium tetrafluoroborate or 1-butyl-4-methylpyridinium tetrafluoroborate) and an alkanol (methanol or ethanol) over the temperature range (293.15 to 323.15) K. Excess volumes and excess isentropic compressibilities have been calculated from density and speed of sound data and correlated. All the mixtures show negative values for these excess properties. Furthermore, the isothermal (vapour + liquid) equilibrium has been measured at T = (303.15 and 323.15) K, and the corresponding activity coefficients and excess Gibbs functions have been obtained. In this case, positive excess Gibbs functions have been found. We have carried out an exhaustive interpretation of the experimental results in terms of structural and energetic effects taking also into account the thermodynamic information of pure compounds. Finally, in order to study the influence of both, the presence and the position of methyl group in the cation, we have compared the results of these systems with those obtained for the mixtures formed by 1-butylpyridinium tetrafluoroborate and methanol or ethanol.

  10. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves

    International Nuclear Information System (INIS)

    Lou Zaixiang; Wang Hongxin; Zhu Song; Chen Shangwei; Zhang Ming; Wang Zhouping

    2012-01-01

    The ionic liquids based simultaneous ultrasonic and microwave assisted extraction (IL-UMAE) technique was first proposed and applied to isolate compounds. The ionic liquids comprising a range of four anions, five 1-alkyl-3-methylimidazolium derivatives were designed and prepared. The results suggested that varying the anion and cation both had apparent effects on the extraction of phenolics. The results also showed that irradiation power, time and solid–liquid ratio significantly affected the yields. The yields of caffeic acid and quercetin obtained by IL-UMAE were higher than those by regular UMAE. Compared with conventional heat-reflux extraction (HRE), the proposed approach exhibited higher efficiency (8–17% enhanced) and shorter extraction time (from 5 h to 30 s). The results indicated ILUMAE to be a fast and efficient extraction technique. Moreover, the proposed method was validated by the reproducibility and recovery experiments. The ILUMAE method provided good recoveries (from 96.1% to 105.3%) with RSD lower than 5.2%, which indicated that the proposed method was credible. Based on the designable nature of ionic liquids, and the rapid and highly efficient performance of the proposed approach, ILUMAE provided a new alternative for preparation of various useful substances from solid samples.

  11. Determination of proton conductivity of ionic liquids for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Wallnofer, E.; Baumgartner, W.R.; Hacker, V. [Graz Univ. of Technology, Graz (Austria). Inst. for Chemistry and Technology of Inorganic Material

    2006-07-01

    Hydrogen fuel cells operating at temperatures of between 100 and 200 degrees C allow the catalyst to tolerate higher levels of carbon monoxide (CO) impurities. However, the number of possible materials for high temperature fuel cell electrolytes or membranes is limited. This study examined the relevant electrochemical properties of different ion liquids with specific reference to neutralized imidazole derivates with a dominant Grotthuss mechanism of proton conduction. The electrochemical stability of the ionic liquids was measured by cyclic voltammetry (CV) under nitrogen. Proton conductivity was measured under hydrogen by CV within the electrochemical limits. Hydrogen was dissolved at the anode, transported through the ionic liquid, and recombined at the cathode, so that the detected current could indicate the amount of transported hydrogen. Electrochemical impedance spectroscopy (EIS) was used to measure the frequency dependent behaviour of the ionic liquids. All measurements were conducted at 50, 100, and 150 degrees C. Results of the study showed that proton conductivity increased with higher temperatures. It was concluded that neutralized imidazole derivates with optimized side chains of the cation may prove to be a viable alternative to conventional fuel cell electrolytes. 4 refs., 2 figs.

  12. Energy Efficient Electrochromic Windows Incorporating Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Cheri Boykin; James Finley; Donald Anthony; Julianna Knowles; Richard Markovic; Michael Buchanan; Mary Ann Fuhry; Lisa Perrine

    2008-11-30

    One approach to increasing the energy efficiency of windows is to control the amount of solar radiation transmitted through a window by using electrochromic technology. What is unique about this project is that the electrochromic is based on the reduction/oxidation reactions of cathodic and anodic organic semi-conducting polymers using room temperature ionic liquids as ion transport electrolytes. It is believed that these types of coatings would be a lower cost alternative to traditional all inorganic thin film based electrochromic technologies. Although there are patents1 based on the proposed technology, it has never been reduced to practice and thoroughly evaluated (i.e. durability and performance) in a window application. We demonstrate that by using organic semi-conductive polymers, specific bands of the solar spectrum (specifically visible and near infrared) can be targeted for electrochemical variable transmittance responsiveness. In addition, when the technology is incorporated into an insulating glass unit, the energy parameters such as the solar heat gain coefficient and the light to solar gain ratio are improved over that of a typical insulating glass unit comprised of glass with a low emissivity coating. A minimum of {approx}0.02 quads of energy savings per year with a reduction of carbon emissions for electricity of {approx}320 MKg/yr benefit is achieved over that of a typical insulating glass unit including a double silver low-E coating. Note that these values include a penalty in the heating season. If this penalty is removed (i.e. in southern climates or commercial structures where cooling is predominate year-round) a maximum energy savings of {approx}0.05 quad per year and {approx}801 MKg/yr can be achieved over that of a typical insulating glass unit including a double silver low-E coating. In its current state, the technology is not durable enough for an exterior window application. The primary downfall is that the redox chemistry fails to

  13. CATION-EXCHANGE SOLID-PHASE AND LIQUID-LIQUID ...

    African Journals Online (AJOL)

    B. S. Chandravanshi

    An existing liquid-liquid extraction (LLE) method was improved in terms of ... clean-up of the alkaloids from khat leaves, prior to HPLC-DAD detection. Despite .... The limits of detection (LOD) and quantification (LOQ) were calculated using the.

  14. Synthesis of novel ionic liquids from lignin-derived compounds

    Science.gov (United States)

    Socha, Aaron; Singh, Seema; Simmons, Blake A.; Bergeron, Maxime

    2017-09-19

    Methods and compositions are provided for synthesizing ionic liquids from lignin derived compounds comprising: contacting a starting material comprising lignin with a depolymerization agent to depolymerize the lignin and form a mixture of aldehyde containing compounds; contacting the mixture of aldehyde containing compounds with an amine under conditions suitable to convert the mixture of aldehyde containing compounds to a mixture of amine containing compounds; and contacting the mixture of amine containing compounds with an acid under conditions suitable to form an ammonium salt, thereby preparing the ionic liquid.

  15. Capturing CO2: conventional versus ionic-liquid based technologies

    International Nuclear Information System (INIS)

    Privalova, E I; Mäki-Arvela, P; Murzin, Dmitry Yu; Mikkhola, J P

    2012-01-01

    Since CO 2 facilitates pipeline corrosion and contributes to a decrease of the calorific value of gaseous fuels, its removal has become an issue of significant economic importance. The present review discusses various types of traditional CO 2 capture technologies in terms of their efficiency, complexity in system design, costs and environmental impact. The focus is hereby not only on conventional approaches but also on emerging 'green' solvents such as ionic liquids. The suitability of different ionic liquids as gas separation solvents is discussed in the present review and a description on their synthesis and properties in terms of CO 2 capture is provided. The bibliography includes 136 references.

  16. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure

    OpenAIRE

    Adamova, Gabriela; Gardas, Ramesh L.; Nieuwenhuyzen, Mark; Vaca Puga, Alberto; Rebelo, Luis Paulo N.; Robertson, Allan J.; Seddon, Kenneth R.

    2012-01-01

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, CnH2n+1Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosit...

  17. Alkyltributylphosphonium chloride ionic liquids: synthesis, physicochemical properties and crystal structure.

    Science.gov (United States)

    Adamová, Gabriela; Gardas, Ramesh L; Nieuwenhuyzen, Mark; Puga, Alberto V; Rebelo, Luís Paulo N; Robertson, Allan J; Seddon, Kenneth R

    2012-07-21

    A series of alkyltributylphosphonium chloride ionic liquids, prepared from tributylphosphine and the respective 1-chloroalkane, C(n)H(2n+1)Cl (where n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 or 14), is reported. This work is a continuation of an extended series of tetraalkylphosphonium ionic liquids, where the focus is on the variability of n and its impact on the physical properties, such as melting points/glass transitions, thermal stability, density and viscosity. Experimental density and viscosity data were interpreted using QPSR and group contribution methods and the crystal structure of propyl(tributyl)phosphonium chloride is detailed.

  18. The A Priori Design and Selection of Ionic Liquids as Solvents for Active Pharmaceutical Ingredients

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Weber, Cameron C.; Rogers, Robin D.

    2017-01-01

    In this paper we derive a straightforward computational approach to predict the optimal ionic liquid (IL) solvent for a given compound, based on COSMO-RS calculations. These calculations were performed on 18 different active pharmaceutical ingredients (APIs) using a matrix of 210 hypothetical ILs...... on the N-alkylguanidinium cation were prepared and characterized. The solubility of the APIs in each of these classes was found to be qualitatively consistent with the predictions of the COSMO-RS model. The suitability of these novel guanidinium salts as crystallization solvents was demonstrated by the use...

  19. Formulation of Ionic-Liquid Electrolyte To Expand the Voltage Window of Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, Katherine L.; Beidaghi, Majid; Gogotsi, Yury

    2015-03-18

    An effective method to expand the operating potential window (OPW) of electrochemical capacitors based on formulating the ionic-liquid (IL) electrolytes is reported. Using model electrochemical cells based on two identical onion-like carbon (OLC) electrodes and two different IL electrolytes and their mixtures, it was shown that the asymmetric behavior of the electrolyte cation and anion toward the two electrodes limits the OPW of the cell and therefore its energy density. Also, a general solution to this problem is proposed by formulating the IL electrolyte mixtures to balance the capacitance of electrodes in a symmetric supercapacitor.

  20. The thiocyanate anion is a primary driver of carbon dioxide capture by ionic liquids

    Science.gov (United States)

    Chaban, Vitaly

    2015-01-01

    Carbon dioxide, CO2, capture by room-temperature ionic liquids (RTILs) is a vivid research area featuring both accomplishments and frustrations. This work employs the PM7-MD method to simulate adsorption of CO2 by 1,3-dimethylimidazolium thiocyanate at 300 K. The obtained result evidences that the thiocyanate anion plays a key role in gas capture, whereas the impact of the 1,3-dimethylimidazolium cation is mediocre. Decomposition of the computed wave function on the individual molecular orbitals confirms that CO2-SCN binding extends beyond just expected electrostatic interactions in the ion-molecular system and involves partial sharing of valence orbitals.