WorldWideScience

Sample records for ionic devices iii

  1. Ionic liquids, electrolyte solutions including the ionic liquids, and energy storage devices including the ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Gering, Kevin L.; Harrup, Mason K.; Rollins, Harry W.

    2015-12-08

    An ionic liquid including a phosphazene compound that has a plurality of phosphorus-nitrogen units and at least one pendant group bonded to each phosphorus atom of the plurality of phosphorus-nitrogen units. One pendant group of the at least one pendant group comprises a positively charged pendant group. Additional embodiments of ionic liquids are disclosed, as are electrolyte solutions and energy storage devices including the embodiments of the ionic liquid.

  2. III-V semiconductor materials and devices

    CERN Document Server

    Malik, R J

    1989-01-01

    The main emphasis of this volume is on III-V semiconductor epitaxial and bulk crystal growth techniques. Chapters are also included on material characterization and ion implantation. In order to put these growth techniques into perspective a thorough review of the physics and technology of III-V devices is presented. This is the first book of its kind to discuss the theory of the various crystal growth techniques in relation to their advantages and limitations for use in III-V semiconductor devices.

  3. Thermoelectric Power in Bilayer Graphene Device with Ionic Liquid Gating.

    Science.gov (United States)

    Chien, Yung-Yu; Yuan, Hongtao; Wang, Chang-Ran; Lee, Wei-Li

    2016-01-01

    The quest for materials showing large thermoelectric power has long been one of the important subjects in material science and technology. Such materials have great potential for thermoelectric cooling and also high figure of merit ZT thermoelectric applications. We have fabricated bilayer graphene devices with ionic-liquid gating in order to tune its band gap via application of a perpendicular electric field on a bilayer graphene. By keeping the Fermi level at charge neutral point during the cool-down, we found that the charge puddles effect can be greatly reduced and thus largely improve the transport properties at low T in graphene-based devices using ionic liquid gating. At (Vig, Vbg) = (-1 V, +23 V), a band gap of about 36.6 ± 3 meV forms, and a nearly 40% enhancement of thermoelectric power at T = 120 K is clearly observed. Our works demonstrate the feasibility of band gap tuning in a bilayer graphene using ionic liquid gating. We also remark on the significant influence of the charge puddles effect in ionic-liquid-based devices.

  4. Challenges and Opportunities of Solid State Ionic Devices

    Science.gov (United States)

    Weppner, Werner

    2006-06-01

    High energy density batteries, fuel cells, electrolysis cells, electrochromic devices, chemical sensors, thermoelectric converters or photogalvanic solar cells are solid state ionic devices of large practical interest in view of our energy and environmental problems. The engineering of new or improved devices is commonly based on individual materials considerations and their interaction in galvanic cells. Conflicts exist in view of the formation of chemically stable interfaces of functionally different electrolyte and electrode materials, simultaneous high energy and power densities because of commonly low conductivities of chemically stable materials, fast chemical diffusion in electrodes which should have a wide range of non-stoichiometry, practical problems of using less expensive polycrystalline materials which have high intergranular resistances and finally reaching both ionic and electronic equilibria at the electrolyte-electrode interfaces at low temperatures. Simultaneously high ionic conductivity and chemical stability may be reached by designing structures of large poly-ions of the non-conducting components. Electrodes should not be made of metallic conductors but of electronic semi-conductors with fast enhancement of the diffusion of the electroactive ions by internal electrical fields. Device considerations are based on the development of single element arrangements (SEAs) which incorporate the electrodes into the electrolyte in the case of fuel and electrolysis cells. The same simplification may be applied for electrochromic systems which consist of a single active layer instead of the conventional three materials. A new design of active chemical sensors probing the environment by the magnitude of the applied voltage or current may overcome the limitations of cross-sensitivities and interfacial reactions, which allows simultaneous sensing of several species by a single galvanic cell.

  5. Ionic current devices-Recent progress in the merging of electronic, microfluidic, and biomimetic structures.

    Science.gov (United States)

    Koo, Hyung-Jun; Velev, Orlin D

    2013-05-09

    We review the recent progress in the emerging area of devices and circuits operating on the basis of ionic currents. These devices operate at the intersection of electrochemistry, electronics, and microfluidics, and their potential applications are inspired by essential biological processes such as neural transmission. Ionic current rectification has been demonstrated in diode-like devices containing electrolyte solutions, hydrogel, or hydrated nanofilms. More complex functions have been realized in ionic current based transistors, solar cells, and switching memory devices. Microfluidic channels and networks-an intrinsic component of the ionic devices-could play the role of wires and circuits in conventional electronics.

  6. Electroless Deposition of III-V Semiconductor Nanostructures from Ionic Liquids at Room Temperature.

    Science.gov (United States)

    Lahiri, Abhishek; Borisenko, Natalia; Olschewski, Mark; Gustus, René; Zahlbach, Janine; Endres, Frank

    2015-09-28

    Group III-V semiconductor nanostructures are important materials in optoelectronic devices and are being researched in energy-related fields. A simple approach for the synthesis of these semiconductors with well-defined nanostructures is desired. Electroless deposition (galvanic displacement) is a fast and versatile technique for deposition of one material on another and depends on the redox potentials of the two materials. Herein we show that GaSb can be directly synthesized at room temperature by galvanic displacement of SbCl3 /ionic liquid on electrodeposited Ga, on Ga nanowires, and also on commercial Ga. In situ AFM revealed the galvanic displacement process of Sb on Ga and showed that the displacement process continues even after the formation of GaSb. The bandgap of the deposited GaSb was 0.9±0.1 eV compared to its usual bandgap of 0.7 eV. By changing the cation in the ionic liquid, the redox process could be varied leading to GaSb with different optical properties.

  7. Novel bipyridinium ionic liquids as liquid electrochromic devices.

    Science.gov (United States)

    Jordão, Noémi; Cabrita, Luis; Pina, Fernando; Branco, Luís C

    2014-04-01

    Novel mono and dialkylbipyridinium (viologens) cations combined with iodide, bromide, or bis(trifluoromethanesulfonyl)imide [NTf2] as anions were developed. Selective alkylation synthetic methodologies were optimized in order to obtain the desired salts in moderate to high yields and higher purities. All prepared mono- and dialkylbipyridinium salts were completely characterized by (1)H, (13)C, and (19)F NMR spectroscopy, Fourier-transform IR spectroscopy, and elemental analysis (in the case of NTf2 salts). Melting points, glass transition temperatures by differential scanning calorimetry (DSC) studies, and decomposition temperatures were also checked for different prepared organic salts. Viscosities at specific temperatures and activation energies were determined by rheological studies (including viscosity dependence with temperature in heating and cooling processes). Electrochemical studies based on cyclic voltammetry (CV), differential pulsed voltammetry (DPV), and square-wave voltammetry (SWV) were performed in order to determine the redox potential as well as evaluate reversibility behavior of the novel bipyridinium salts. As proof of concept, we developed a reversible liquid electrochromic device in the form of a U-tube system, the most promising dialkylbipyridinium-NTf2 ionic liquid being used as the electrochromic material and the room-temperature ionic liquid (RTIL), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)-imide [EMIM][NTf2], as a stable and efficient electrolyte. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ruthenium(III Chloride Catalyzed Acylation of Alcohols, Phenols, and Thiols in Room Temperature Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Mingzhong Cai

    2009-09-01

    Full Text Available Ruthenium(III chloride-catalyzed acylation of a variety of alcohols, phenols, and thiols was achieved in high yields under mild conditions (room temperature in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]. The ionic liquid and ruthenium catalyst can be recycled at least 10 times. Our system not only solves the basic problem of ruthenium catalyst reuse, but also avoids the use of volatile acetonitrile as solvent.

  9. III-V semiconductor devices integrated with silicon III-V semiconductor devices integrated with silicon

    Science.gov (United States)

    Hopkinson, Mark; Martin, Trevor; Smowton, Peter

    2013-09-01

    The integration of III-V semiconductor devices with silicon is one of the most topical challenges in current electronic materials research. The combination has the potential to exploit the unique optical and electronic functionality of III-V technology with the signal processing capabilities and advanced low-cost volume production techniques associated with silicon. Key industrial drivers include the use of high mobility III-V channel materials (InGaAs, InAs, InSb) to extend the performance of Si CMOS, the unification of electronics and photonics by combining photonic components (GaAs, InP) with a silicon platform for next-generation optical interconnects and the exploitation of large-area silicon substrates and high-volume Si processing capabilities to meet the challenges of low-cost production, a challenge which is particularly important for GaN-based devices in both power management and lighting applications. The diverse nature of the III-V and Si device approaches, materials technologies and the distinct differences between industrial Si and III-V processing have provided a major barrier to integration in the past. However, advances over the last decade in areas such as die transfer, wafer fusion and epitaxial growth have promoted widespread renewed interest. It is now timely to bring some of these topics together in a special issue covering a range of approaches and materials providing a snapshot of recent progress across the field. The issue opens a paper describing a strategy for the epitaxial integration of photonic devices where Kataria et al describe progress in the lateral overgrowth of InP/Si. As an alternative, Benjoucef and Reithmaier report on the potential of InAs quantum dots grown direct onto Si surfaces whilst Sandall et al describe the properties of similar InAs quantum dots as an optical modulator device. As an alternative to epitaxial integration approaches, Yokoyama et al describe a wafer bonding approach using a buried oxide concept, Corbett

  10. Antimony Based III-V Thermophotovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    CA Wang

    2004-06-09

    Antimony-based III-V thermophotovoltaic (TPV) cells are attractive converters for systems with low radiator temperature around 1100 to 1700 K, since these cells potentially can be spectrally matched to the thermal source. Cells under development include GaSb and the lattice-matched GaInAsSb/GaSb and InPAsSb/InAs quaternary systems. GaSb cell technology is the most mature, owing in part to the relative ease in preparation of the binary alloy compared to quaternary GaInAsSb and InPAsSb alloys. Device performance of 0.7-eV GaSb cells exceeds 90% of the practical limit. GaInAsSb TPV cells have been the primary focus of recent research, and cells with energy gap E{sub g} ranging from {approx}0.6 to 0.49 eV have been demonstrated. Quantum efficiency and fill factor approach theoretical limits. Open-circuit voltage factor is as high as 87% of the practical limit for the higher-E{sub g} cells, but degrades to below 80% with decreasing E{sub g} of the alloy, which might be due to Auger recombination. InPAsSb cells are the least studied, and a cell with E{sub g} = 0.45-eV has extended spectral response out to 4.3 {micro}m. This paper briefly reviews the main contributions that have been made for antimonide-based TPV cells, and suggests additional studies for further performance enhancements.

  11. III-V compound SC for optoelectronic devices

    Directory of Open Access Journals (Sweden)

    Sudha Mokkapati

    2009-04-01

    Full Text Available III-V compound semiconductors (SC have played a crucial role in the development of optoelectronic devices for a broad range of applications. Major applications of InP or GaAs based III-V compound SC are devices for optical fiber communications, infrared and visible LEDs/LDs and high efficiency solar cells. GaN based compounds are extremely important for short wavelength light emitters used in solid state lighting systems. We review the important device applications of various III-V compound SC materials.

  12. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development.

    Directory of Open Access Journals (Sweden)

    Jesper Petersen

    Full Text Available The development of DNA microarray assays is hampered by two important aspects: processing of the microarrays is done under a single stringency condition, and characteristics such as melting temperature are difficult to predict for immobilized probes. A technical solution to these limitations is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More specifically, we noted that (i the two stringency modulators generated melting curves that could be compared, (ii both led to increased assay robustness, and (iii both were associated with difficulties in genotyping the same mutation. These findings demonstrate that ionic strength stringency buffers can be used instead of thermal gradients. Given the flexibility of design of ionic gradients, these can be created over all types of arrays, and encompass an attractive alternative to temperature gradients, avoiding curtailment of the size or spacing of subarrays on slides associated with temperature gradients.

  13. Ionic liquids, method for the production thereof, and use of same as electrolytes for electrochemical energy storage devices

    OpenAIRE

    Miguel, Irene de; Herradón García, Bernardo; Mann, Enrique; Morales, Enrique

    2014-01-01

    [EN] The invention relates to ionic liquids of general formula (I), to the synthesis thereof, and to the use of said ionic liquids as electrolytes in electrochemical electrical energy storage devices.

  14. Influence of Ionic Liquids on an Iron(III) Catalyzed Three-Component Coupling/Hydroarylation/Dehydrogenation Tandem Reaction.

    Science.gov (United States)

    Muntzeck, Maren; Wilhelm, René

    2016-06-01

    A three-component oxidative dehydrogenation tandem reaction via the coupling and hydroarylation of benzaldehyde, aniline and phenylacetylene to a quinoline derivate was catalyzed by an iron-containing ionic liquid. The reaction was air mediated and could be performed under neat conditions. The iron(III) of the ionic liquid was the oxidizing species.

  15. GaN Substrates for III-Nitride Devices

    OpenAIRE

    2010-01-01

    Despite the rapid commercialization of III-nitride semiconductor devices for applications in visible and ultraviolet optoelectronics and in high-power and high-frequency electronics, their full potential is limited by two primary obstacles: i) a high defect density and biaxial strain due to the heteroepitaxial growth on foreign substrates, which result in lower performance and shortened device lifetime, and ii) a strong built-in electric field due to spontaneous and piezoelectric polarization...

  16. Effects of ionic strength and fulvic acid on adsorption of Tb(III) and Eu(III) onto clay

    Science.gov (United States)

    Poetsch, Maria; Lippold, Holger

    2016-09-01

    High salinity and natural organic matter are both known to facilitate migration of toxic or radioactive metals in geochemical systems, but little is known on their combined effect. We investigated complexation of Tb(III) and Eu(III) (as analogues for trivalent actinides) with fulvic acid and their adsorption onto a natural clay in the presence of NaCl, MgCl2 and CaCl2 up to very high ionic strengths. 160Tb, 152Eu and 14C-labelled fulvic acid were employed as radiotracers, allowing investigations at very low concentrations according to probable conditions in far-field scenarios of nuclear waste repositories. A combined Kd approach (Linear Additive Model) was tested for suitability in predicting solid-liquid distribution of metals in the presence of organic matter based on the interactions in the constituent subsystems. In this analysis, it could be shown that high ionic strength does not further enhance the mobilizing potential of humic matter. A quantitative reproduction of the influence of fulvic acid failed for most systems under study. Assumptions and limitations of the model are discussed.

  17. METHOD AND DEVICE FOR REMOVING AN IONIC IMPURITY FROM BUILDING STRUCTURES

    DEFF Research Database (Denmark)

    2009-01-01

    The invention relates to a method for removing an ionic impurity from building structures comprising the steps of: forming at least one electrode unit (2, 3) by mixing a clay compound with an ion exchange component; placing at least one anode (4) and at least one cathode (5) at the same or separate......). The invention further relates to a device for removing an ionic impurity from building structures, the device including electrode units (2, 3) consisting of at least one electrode being an anode) (4) or a cathode (5) and at least one buffer component arranged in a poultice (8) including an ion exchange...

  18. III-V aresenide-nitride semiconductor materials and devices

    Science.gov (United States)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    1997-01-01

    III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  19. Ionic Liquids in Electro-active Devices (ILED)

    Science.gov (United States)

    2013-12-12

    chlorotrifluoroethylene)] (P(VDF-CTFE)) and poly(vinylidene fluoride-trifluoroethylene- chlorofluoroethylene) (P(VDF-TrFE- CFE ), for ionic polymer actuators. P...VDF-CTFE) and (P(VDF-TrFE- CFE ) are known as ferroelectric EAPs that can be operated under high voltage. Since Poly(methyl methacrylate) (PMMA) has a...TrFE- CFE ), the cross-linked P(VDF- CTFE)/PMMA blends are also studied and compared with those of the perfluorosulfonate ionomers. Figure 3 shows the

  20. High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices.

    Science.gov (United States)

    Nguyen, Chien A; Xiong, Shanxin; Ma, Jan; Lu, Xuehong; Lee, Pooi See

    2011-08-07

    Solid polymer electrolytes with excellent ionic conductivity (above 10(-4) S cm(-1)), which result in high optical modulation for solid electrochromic (EC) devices are presented. The combination of a polar host matrix poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) and a solid plasticized of a low molecular weight poly(ethylene oxide) (PEO) (M(w)≤ 20,000) blended polymer electrolyte serves to enhance both the dissolution of lithium salt and the ionic transport. Calorimetric measurement shows a reduced crystallization due to a better intermixing of the polymers with small molecular weight PEO. Vibrational spectroscopy identifies the presence of free ions and ion pairs in the electrolytes with PEO of M(w)≤ 8000. The ionic dissolution is improved using PEO as a plasticizer when compared to liquid propylene carbonate, evidently shown in the transference number analysis. Ionic transport follows the Arrhenius equation with a low activation energy (0.16-0.2 eV), leading to high ionic conductivities. Solid electrochromic devices fabricated with the blended P(VDF-TrFE)/PEO electrolytes and polyaniline show good spectroelectrochemical performance in the visible (300-800 nm) and near-infrared (0.9-2.4 μm) regions with a modulation up to 60% and fast switching speed of below 20 seconds. The successful introduction of the solid polymer electrolytes with its best harnessed qualities helps to expedite the application of various electrochemical devices. This journal is © the Owner Societies 2011

  1. A first truly all-solid state organic electrochromic device based on polymeric ionic liquids.

    Science.gov (United States)

    Shaplov, Alexander S; Ponkratov, Denis O; Aubert, Pierre-Henri; Lozinskaya, Elena I; Plesse, Cédric; Vidal, Frédéric; Vygodskii, Yakov S

    2014-03-25

    Using polymeric ionic liquids and PEDOT as ion conducting separators and electrodes, respectively, an all-polymer-based organic electrochromic device (ECD) has been constructed. The advantages of such an ECD are: fast switching time (3 s), high coloration efficiency (390 cm(2) C(-1) at 620 nm), optical contrast up to ΔT = 22% and the possibility of working under vacuum.

  2. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    Science.gov (United States)

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E

    2015-12-22

    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  3. The preparation of sol-gel materials doped with ionic liquids and trialkyl phosphine oxides for yttrium(III) uptake.

    Science.gov (United States)

    Liu, Yinghui; Sun, Xiaoqi; Luo, Fang; Chen, Ji

    2007-12-01

    A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C8mim+ PF6(-)) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.

  4. The preparation of sol-gel materials doped with ionic liquids and trialkyl phosphine oxides for Yttrium(III) uptake

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yinghui [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Sun Xiaoqi [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luo Fang [Key Laboratory of Polyoxometalates Science of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun 130024 (China); Chen Ji [Key Laboratory of Rare Earth Chemistry and Physics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)], E-mail: jchen@ciac.jl.cn

    2007-12-05

    A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C{sub 8}mim{sup +}PF{sub 6}{sup -}) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.

  5. 78 FR 4094 - Effective Date of Requirement for Premarket Approval for Two Class III Preamendments Devices

    Science.gov (United States)

    2013-01-18

    ... Approval for Two Class III Preamendments Devices AGENCY: Food and Drug Administration, HHS. ACTION... the following two class III preamendments devices: Hip joint metal/metal semi- constrained, with a... class III (premarket approval). Under section 513 of the FD&C Act, devices that were in...

  6. Effects of ionic strength on the coordination of Eu(III) and Cm(III) to a Gram-negative bacterium, Paracoccus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, T.; Ohnuki, T. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Kimura, T. [Nuclear Science and Engineering Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki (Japan); Francis, A.J. [Environmental Sciences Dept., Brookhaven National Lab., Upton, NY (United States)

    2006-07-01

    We studied the effect of ionic strength on the interactions of Europium(III) and Curium(III) with a Gram-negative bacterium Paracoccus denitrificans. Bacterial cells grown in 0.5-, 3.5-, and 5.0% NaCl were used in adsorption experiments and laser experiments that were performed at the same ionic strengths as those in the original growth media. The distribution ratio (log K{sub d}) for Eu(III) and Cm(III) was determined at pHs 3-5. To elucidate the coordination environment of Eu(III) adsorbed on P. denitrificans, we estimated the number of water molecules in the inner sphere and strength of the ligand field by time-resolved laser-induced fluorescence spectroscopy (TRLFS) at pHs 4-6. The log K{sub d} of Eu(III) and Cm(III) increased with an increase of pH at all ionic strengths because there was less competition for ligands in cells with H{sup +} at higher pHs, wherein less H{sup +} was present in solution: cation adsorption generally occurs through an exchange with H{sup +} on the functional groups of coordination sites. No significant differences were observed in the log K{sub d} of Eu(III) and Cm(III) at each pH in 0.5-, 3.5-, and 5.0% NaCl solutions, though competition for ligands with Na{sup +} would be expected to increase at higher NaCl concentrations. The log K{sub d} of Eu(III) was almost equivalent to that of Cm(III) under all the experimental conditions. TRLFS showed that the coordination environments of Eu(III) did not differ from each other at 0.5-, 3.5-, and 5.0% NaCl at pHs 4-6. TRLFS also showed that the characteristic of the coordination environment of Eu(III) on P. denitrificans was similar to that on a halophile, Nesterenkonia halobia, while it significantly differed from that on a non-halophile, Pseudomonas putida. These findings indicate that the number of coordination sites for Eu(III) on P. denitrificans, whose cell surface may have similar structures to that of halophiles, increased with increasing ionic strength, though their structure

  7. Solvation structure and thermodynamics for Pr(III), Nd(III) and Dy(III) complexes in ionic liquids evaluated by Raman spectroscopy and DFT calculation

    Science.gov (United States)

    Kuribara, Keita; Matsumiya, Masahiko; Tsunashima, Katsuhiko

    2016-12-01

    The coordination states of trivalent praseodymium, neodymium, and dysprosium complexes in the ionic liquid, triethyl-n-pentylphosphonium bis(trifluoromethyl-sulfonyl) amide ([P2225][TFSA]) were investigated by Raman spectroscopy. The effect of the concentration of rare earth ions on the Raman spectra was investigated, ranging from 0.23 to 0.45 mol kg-1 of Pr(III), Nd(III), and Dy(III) in [P2225][TFSA]. Based on a conventional analysis, the solvation numbers, n, of Pr(III), Nd(III), and Dy(III) in [P2225][TFSA] were determined to be 4.99, 5.01, and 5.00 at 298 K and 5.04, 5.06, and 5.07 at 373 K, respectively. Thermodynamic properties such as ΔisoG, ΔisoH, and ΔisoS for the isomerism of [TFSA]- from trans- to cis-coordinated isomer in the bulk and the first solvation sphere of the central RE3+ (RE = Pr, Nd, and Dy) cation in [P2225][TFSA] were evaluated from the temperature dependence of the Raman bands, measured at temperatures ranging from 298 to 398 K. Regarding the bulk properties, ΔisoG(bulk), ΔisoH(bulk), and TΔisoS(bulk) at 298 K were found to be -1.06, 6.86, and 7.92 kJ mol-1, respectively. The trans-[TFSA]- was a dominant contributor to the enthalpy, as shown by the positive value of ΔisoH(bulk). The value of TΔisoS(bulk) was slightly larger than that of ΔisoH(bulk), and cis-[TFSA]- was, therefore, entropy-controlled in [P2225][TFSA]. In contrast, in the first solvation sphere of the RE3+ cation, ΔisoH(RE) became remarkably negative, suggesting that cis-[TFSA]- isomers were stabilized by enthalpic contributions. Furthermore, ΔisoH(RE) contributed to the remarkable decrease in ΔisoG(RE), and this result clearly indicates that cis-[TFSA]- conformers bound to RE3+ cations are the preferred coordination state of [RE(III)(cis-TFSA)5]2- in [P2225][TFSA]. Moreover, optimized geometries and binding energies of [Pr(III)(cis-TFSA)5]2-, [Nd(III)(cis-TFSA)5]2-, and [Dy(III)(cis-TFSA)5]2- clusters were also investigated by DFT calculations using the ADF

  8. Enhancing extraction ability by rational design of phosphoryl functionalized ionic liquids and mechanistic investigation on neodymium (III) extraction

    Institute of Scientific and Technical Information of China (English)

    王君平; 赵洁莹; 冯达; 康鑫淳; 孙云雨; 赵玲玲; 梁洪泽

    2016-01-01

    Four ionic liquids (ILs): 3-(diethoxyphosphoryl)propyl triphenylphosphinium hexafluorophosphate [Ph3PC3P(OEt)2][PF6] (IL-1), 3-(ethoxyphenylphosphoryl)propyl triphenylphosphinium hexafluorophosphate [Ph3PC3PPh(OEt)][PF6] (IL-2), 3-(diphenyl-phosphoryl)propyl triphenylphosphinium hexafluorophosphate [Ph3PC3P(Ph)2][PF6] (IL-3), and 3-(diethoxyphosphoryl)propyl triphenylphosphinium bis(trifluoromethanesulfonyl)imide [Ph3PC3P(OEt)2][NTf2] (IL-4) were synthesized and characterized by IR and31P,1H,13C NMR spectroscopy. The liquid-liquid extraction of neodymium(III) by these phosphorus functionalized ionic liquids (PFILs) diluted with common room temperature ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C6mim][NTf2] was studied. The extraction percentage of Nd(III) was measured as a function of various parameters, such as the ini-tial pH of aqueous phase, equilibrium time, temperature, and concentration of PFIL extractant. The influence of the nature of diluents and salting-out reagents on extraction was also investigated. The results indicated that the extraction process was exothermical and the extraction percentage of Nd(III) by IL-1 was the highest among the PFILs investigated. A possible metal complexation mechanism was proposed for the present PFIL/IL extraction system. And the loaded Nd(III) ions by PFIL could be stripped completely from the ionic liquid phase by 1 mol/L nitric acid.

  9. Synthesis of Ionic Imprinted Polymer Particles for Selective Membrane Transport ofFe(III using Polyeugenol as the Functional Polymer

    Directory of Open Access Journals (Sweden)

    Muhammad Cholid Djunaidi

    2016-03-01

    Full Text Available The preparation of Ionic Imprinted Polymer (IIP particles for selective membrane transport of Fe (III had been done using polyeugenol as functional polymer and PVA (polyvinyl alcohol (Mr 125,000 solution in 1-Methyl-2-pyrrolidone (NMP solvent as membrane base. The membrane was then cut and Fe(III was removed by acid to produce IIP particles membrane. Analysis of the membrane and its constituent was done by IR, SEM and also TOC analysis. Experimental results showed the transport of Fe(III was faster with the decrease of membrane thickness and the higher concentration of template. However, the transport of Fe(III was slower for higher concentration of PVA (Polyvinyl Alcohol in the membrane. The selectivity of all IIP particles membrane was confirmed as they were all unable to transport Cr (III, while NIP (Non-imprinted Polymer membrane was able transport Cr (III.

  10. Spatial signal correlation from an III-nitride synaptic device

    Science.gov (United States)

    Zhang, Shuai; Zhu, Bingcheng; Shi, Zheng; Yuan, Jialei; Jiang, Yuan; Shen, Xiangfei; Cai, Wei; Yang, Yongchao; Wang, Yongjin

    2017-10-01

    The mechanism by which the external environment affects the internal nervous system is investigated via the spatial correlation of an III-nitride synaptic device, which combines in-plane and out-of-plane illumination. The InGaN/GaN multiple-quantum-well collector (MQW-collector) demonstrates a simultaneous light emission and light detection mode due to the unique property of the MQW-diode. The MQW-collector absorbs the internal incoming light and the external illumination at the same time to generate an integration of the excitatory postsynaptic voltages (EPSVs). Signal cognition can be distinctly decoded from the integrated EPSVs because the signal differences are maintained, which is in good agreement with the simulation results. These results suggest that the nervous system can simultaneously amplify the EPSV amplitude and achieve signal cognition by spatial EPSV summation, which can be further optimized to explore the connections between the internal nervous system and the external environment.

  11. III-nitride semiconductors and their modern devices

    CERN Document Server

    2013-01-01

    This book is dedicated to GaN and its alloys AlGaInN (III-V nitrides), semiconductors with intrinsic properties well suited for visible and UV light emission and electronic devices working at high temperature, high frequency, and harsh environments. There has been a rapid growth in the industrial activity relating to GaN, with GaN now ranking at the second position (after Si) among all semiconductors. This is mainly thanks to LEDs, but also to the emergence of lasers and high power and high frequency electronics. GaN-related research activities are also diversifying, ranging from advanced optical sources and single electron devices to physical, chemical, and biological sensors, optical detectors, and energy converters. All recent developments of nitrides and of their technology are gathered here in a single volume, with chapters written by world leaders in the field. This third book of the series edited by B. Gil is complementary to the preceding two, and is expected to offer a modern vision of nitrides and...

  12. Tunable ionic transport control inside a bio-inspired constructive bi-channel nanofluidic device.

    Science.gov (United States)

    Zeng, Lu; Yang, Zhe; Zhang, Huacheng; Hou, Xu; Tian, Ye; Yang, Fu; Zhou, Jianjun; Li, Lin; Jiang, Lei

    2014-02-26

    Inspired by the cooperative functions of the asymmetrical ion channels in living cells, a constructive bi-channel nanofluidic device that demonstrates the enhanced capability of multiple regulations over both the ion flux amount and the ionic rectification property is prepared. In this bi-channel system, the construction routes of the two asymmetric conical nanochannels provide a way to efficiently transform the nanodevice into four different functional working modes. In addition, the variation of external pH conditions leads the nanodevice to the uncharged, semi-charged and charged states, where the multistory ionic regulating function property is enhanced by the charged degree. This intelligent integration of the single functional nanochannels demonstrates a promising future for building more functional multi-channel integrated nanodevices as well as expands the functionalities of the bio-inspired smart nanochannels.

  13. Uranium dioxide in Fe(III)-containing ionic liquids with DMSO: Dissolution, separation, and structural characterization

    Science.gov (United States)

    Yao, Aining; Chu, Taiwei

    2016-11-01

    UO2 can be successfully dissolved in imidazolium-based Fe(III)-containing ionic liquids (ILs) with the help of DMSO. Spectroscopic studies and X-ray diffraction show that UO2Cl42- is the principal product. The dissolved uranyl species can be easily separated from the ILs via a combination of crystallization and solvent extraction. Moreover, even if 15.2 wt% of the rare-earth elements of Sm, Eu, and Gd, compared with the total amount of uranium and the rare-earth elements, exist in the IL, only uranium-containing crystals would be selectively formed and separated from the system. The solvents of acetone and acetonitrile could be used to separate the rare-earth elements from uranium in the IL with the help of imidazolium chloride. Considering the complete process from the dissolution of UO2 and some rare-earth oxides to the separation of uranium and rare-earth elements in the IL, the facile approach is promising for the spent nuclear fuel reprocessing.

  14. Determination of the physical properties of room temperature ionic liquids using a Love wave device.

    Science.gov (United States)

    Ouali, F Fouzia; Doy, Nicola; McHale, Glen; Hardacre, Christopher; Ge, Rile; Allen, Ray W K; MacInnes, Jordan M; Newton, Michael I

    2011-09-01

    In this work, we have shown that a 100 MHz Love wave device can be used to determine whether room temperature ionic liquids (RTILs) are Newtonian fluids and have developed a technique that allows the determination of the density-viscosity product, ρη, of a Newtonian RTIL. In addition, a test for a Newtonian response was established by relating the phase change to insertion loss change. Five concentrations of a water-miscible RTIL and seven pure RTILs were measured. The changes in phase and insertion loss were found to vary linearly with the square root of the density-viscosity product for values up to (ρη)(1/2) ~ 10 kg m(-2) s(-1/2). The square root of the density-viscosity product was deduced from the changes in either phase or insertion loss using glycerol as a calibration liquid. In both cases, the deduced values of ρη agree well with those measured using viscosity and density meters. Miniaturization of the device, beyond that achievable with the lower-frequency quartz crystal microbalance approach, to measure smaller volumes is possible. The ability to fabricate Love wave and other surface acoustic wave sensors using planar metallization technologies gives potential for future integration into lab-on-a-chip analytical systems for characterizing ionic liquids.

  15. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes

    Science.gov (United States)

    Northcutt, Robert; Sundaresan, Vishnu-Baba

    2012-09-01

    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements.

  16. Microfludic device for creating ionic strength gradients over DNA microarrays for efficient DNA melting studies and assay development

    DEFF Research Database (Denmark)

    Petersen, Jesper; Poulsen, Lena; Birgens, Henrik

    2009-01-01

    is to use a thermal gradient and information from melting curves, for instance to score genotypes. However, application of temperature gradients normally requires complicated equipment, and the size of the arrays that can be investigated is restricted due to heat dissipation. Here we present a simple...... microfluidic device that creates a gradient comprising zones of defined ionic strength over a glass slide, in which each zone corresponds to a subarray. Using this device, we demonstrated that ionic strength gradients function in a similar fashion as corresponding thermal gradients in assay development. More...

  17. Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices

    Science.gov (United States)

    Fujita, Shizuo; Oda, Masaya; Kaneko, Kentaro; Hitora, Toshimi

    2016-12-01

    The recent progress and development of corundum-structured III-oxide semiconductors are reviewed. They allow bandgap engineering from 3.7 to ∼9 eV and function engineering, leading to highly durable electronic devices and deep ultraviolet optical devices as well as multifunctional devices. Mist chemical vapor deposition can be a simple and safe growth technology and is advantageous for reducing energy and cost for the growth. This is favorable for the wide commercial use of devices at low cost. The III-oxide semiconductors are promising candidates for new devices contributing to sustainable social, economic, and technological development for the future.

  18. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices.

    Science.gov (United States)

    Watanabe, Masayoshi; Thomas, Morgan L; Zhang, Shiguo; Ueno, Kazuhide; Yasuda, Tomohiro; Dokko, Kaoru

    2017-01-13

    Ionic liquids (ILs) are liquids consisting entirely of ions and can be further defined as molten salts having melting points lower than 100 °C. One of the most important research areas for IL utilization is undoubtedly their energy application, especially for energy storage and conversion materials and devices, because there is a continuously increasing demand for clean and sustainable energy. In this article, various application of ILs are reviewed by focusing on their use as electrolyte materials for Li/Na ion batteries, Li-sulfur batteries, Li-oxygen batteries, and nonhumidified fuel cells and as carbon precursors for electrode catalysts of fuel cells and electrode materials for batteries and supercapacitors. Due to their characteristic properties such as nonvolatility, high thermal stability, and high ionic conductivity, ILs appear to meet the rigorous demands/criteria of these various applications. However, for further development, specific applications for which these characteristic properties become unique (i.e., not easily achieved by other materials) must be explored. Thus, through strong demands for research and consideration of ILs unique properties, we will be able to identify indispensable applications for ILs.

  19. Recent Advances in Fast Ion Conducting Materials and Devices - Proceedings of the 2nd Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Liu, Qingguo; Chen, Liquan

    The Table of Contents for the book is as follows: * Preface * Invited Papers * Recent Trends in Solid State Ionics * Theoretical Aspects of Fast Ion Conduction in Solids * Chemical Bonding and Intercalation Processes in Framework Structures * Extra-Large Near-Electrode Regions and Diffusion Length on the Solid Electrolyte-Electrode Interface as Studied by Photo-EMF Method * Frequency Response of Glasses * XPS Studies on Ion Conducting Glasses * Characterization of New Ambient Temperature Lithium Polymer-Electrolyte * Recent Development of Polymer Electrolytes: Solid State Voltammetry in Polymer Electrolytes * Secondary Solid State Batteries: From Material Properties to Commercial Development * Silver Vanadium Oxide Bronze and its Applications for Electrochemical Devices * Study on β''-Alumina Solid Electrolyte and β Battery in SIC * Materials for Solid Oxide Fuel Cells * Processing for Super Superionic Ceramics * Hydrogen Production Using Oxide Ionic or Protonic Conductor * Ionically Conductive Sulfide-Based Lithium Glasses * Relation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses * The Mechanism of Ionic Conductivity in Glass * The Role of Synthesis and Structure in Solid State Ionics - Electrodes to Superconductors * Electrochromism in Spin-Coated Thin Films from Peroxo-Poly tungstate Solutions * Electrochemical Studies on High Tc Superconductors * Multivalence Fast Ionic Conductors - Montmorillonites * Contributed Papers * Volt-Ampere Characteristics and Interface Charge Transport in Solid Electrolytes * Internal Friction of Silver Chalcogenides * Thermal Expansion of Ionic and Superionic Solids * Improvement of PEO-LiCF3SO3 Complex Electrolytes Using Additives * Ionic Conductivity of Modified Poly (Methoxy Polyethylene Glycol Methacrylate) s-Lithium Salt Complexes * Solid Polymer Electrolytes of Crosslinked Polyethylene Glycol and Lithium Salts * Single Ionic Conductors Prepared by in Situ Polymerization of Methacrylic Acid

  20. MIEC (mixed-ionic-electronic-conduction)-based access devices for non-volatile crossbar memory arrays

    Science.gov (United States)

    Shenoy, Rohit S.; Burr, Geoffrey W.; Virwani, Kumar; Jackson, Bryan; Padilla, Alvaro; Narayanan, Pritish; Rettner, Charles T.; Shelby, Robert M.; Bethune, Donald S.; Raman, Karthik V.; BrightSky, Matthew; Joseph, Eric; Rice, Philip M.; Topuria, Teya; Kellock, Andrew J.; Kurdi, Bülent; Gopalakrishnan, Kailash

    2014-10-01

    Several attractive applications call for the organization of memristive devices (or other resistive non-volatile memory (NVM)) into large, densely-packed crossbar arrays. While resistive-NVM devices frequently possess some degree of inherent nonlinearity (typically 3-30× contrast), the operation of large (\\gt 1000×1000 device) arrays at low power tends to require quite large (\\gt 1e7) ON-to-OFF ratios (between the currents passed at high and at low voltages). One path to such large nonlinearities is the inclusion of a distinct access device (AD) together with each of the state-bearing resistive-NVM elements. While such an AD need not store data, its list of requirements is almost as challenging as the specifications demanded of the memory device. Several candidate ADs have been proposed, but obtaining high performance without requiring single-crystal silicon and/or the high processing temperatures of the front-end-of-the-line—which would eliminate any opportunity for 3D stacking—has been difficult. We review our work at IBM Research—Almaden on high-performance ADs based on Cu-containing mixed-ionic-electronic conduction (MIEC) materials [1-7]. These devices require only the low processing temperatures of the back-end-of-the-line, making them highly suitable for implementing multi-layer cross-bar arrays. MIEC-based ADs offer large ON/OFF ratios (\\gt 1e7), a significant voltage margin {{V}m} (over which current \\lt 10 nA), and ultra-low leakage (\\lt 10 pA), while also offering the high current densities needed for phase-change memory and the fully bipolar operation needed for high-performance RRAM. Scalability to critical lateral dimensions \\lt 30 nm and thicknesses \\lt 15 nm, tight distributions and 100% yield in large (512 kBit) arrays, long-term stability of the ultra-low leakage states, and sub-50 ns turn-ON times have all been demonstrated. Numerical modeling of these MIEC-based ADs shows that their operation depends on C{{u}+} mediated hole

  1. Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices

    Science.gov (United States)

    Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin

    2016-11-01

    The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.

  2. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    Science.gov (United States)

    Bodo, Enrico

    2015-09-03

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  3. Fabrication and Optical Recombination in III-Nitride Microstructures and Devices

    Science.gov (United States)

    2003-10-01

    Fabrication and optical investigations of III-nitride microstructures Our group has pioneered the fabrication of micro - and nano -size photonic... pumped individual III-nitride micro -size LEDs and micro -LED arrays and observed enhanced quantum efficiencies. The micro -size LEDs were fabricated...quality III-nitride QWs, heterostructures, microstructures, and micro -devices and to study their optical and optoeletronic properties. By optimizing

  4. Assessment of technical documentation of Class III medical devices

    NARCIS (Netherlands)

    Roszek B; de Bruijn ACP; Pot JWGA; van Drongelen AW; BMT; vgc

    2010-01-01

    Europese regelgeving vereist dat fabrikanten van medische hulpmiddelen een dossier opstellen waaruit blijkt dat het hulpmiddel veilig en functioneel is. De kwaliteit van dossiers van de hoogste risicoklasse medische hulpmiddelen, klasse III, laat evenwel te wensen over. Dit blijkt uit onderzoek va

  5. An Ionic-Polymer-Metallic Composite Actuator for Reconfigurable Antennas in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Yi-Chen Lin

    2014-01-01

    Full Text Available In this paper, a new application of an electro-active-polymer for a radio frequency (RF switch is presented. We used an ionic polymer metallic composite (IPMC switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost. In addition, the IPMC is suitable for mobile devices because of its driving voltage of 3 volts and thickness of 200 μm. The IPMC acts as a normally-on switch to control the operating frequency of a reconfigurable antenna in mobile phones. We experimentally demonstrated by network analysis that the IPMC switch could shift its operating frequency from 1.1 to 2.1 GHz, with return losses of than −10 dB at both frequencies. To minimize electrolysis and maximize the operation time in air, propylene carbonate electrolyte with lithium perchlorate (LiClO4 was applied inside the IPMC. The results showed that when the IPMC was actuated over three months at 3.5 V, the tip displacement fell by less than 10%. Therefore, an IPMC actuator is a promising choice for application to a reconfigurable antenna.

  6. An ionic-polymer-metallic composite actuator for reconfigurable antennas in mobile devices.

    Science.gov (United States)

    Lin, Yi-Chen; Yu, Chung-Yi; Li, Chung-Min; Liu, Chin-Heng; Chen, Jiun-Peng; Chu, Tah-Hsiung; Su, Guo-Dung John

    2014-01-06

    In this paper, a new application of an electro-active-polymer for a radio frequency (RF) switch is presented. We used an ionic polymer metallic composite (IPMC) switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost. In addition, the IPMC is suitable for mobile devices because of its driving voltage of 3 volts and thickness of 200 μm. The IPMC acts as a normally-on switch to control the operating frequency of a reconfigurable antenna in mobile phones. We experimentally demonstrated by network analysis that the IPMC switch could shift its operating frequency from 1.1 to 2.1 GHz, with return losses of than -10 dB at both frequencies. To minimize electrolysis and maximize the operation time in air, propylene carbonate electrolyte with lithium perchlorate (LiClO₄) was applied inside the IPMC. The results showed that when the IPMC was actuated over three months at 3.5 V, the tip displacement fell by less than 10%. Therefore, an IPMC actuator is a promising choice for application to a reconfigurable antenna.

  7. Non-volatile polymer electrolyte based on poly(propylene carbonate), ionic liquid, and lithium perchlorate for electrochromic devices.

    Science.gov (United States)

    Zhou, Dan; Zhou, Rui; Chen, Chuanxiang; Yee, Wu-Aik; Kong, Junhua; Ding, Guoqiang; Lu, Xuehong

    2013-06-27

    A series of solvent-free ionic liquid (IL)-based polymer electrolytes composed of amorphous and biodegradable poly(propylene carbonate) (PPC) host, LiClO4, and 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)) were prepared and characterized for the first time. FTIR studies reveal that the interaction between PPC chains and imidazolium cations weakens the complexation between PPC chains and Li(+) ions. Thermal analysis (DSC and TGA) results show that the incorporation of BMIM(+)BF4(-) into PPC/LiClO4 remarkably decreases the glass transition temperature and improves the thermal stability of the electrolytes. AC impedance results show that the ionic conductivities of the electrolytes are significantly increased with the increase of BMIM(+)BF4(-) amount, the ambient ionic conductivity of the electrolyte at a PPC/LiClO4/BMIM(+)BF4(-) weight ratio of 1/0.2/3 is 1.5 mS/cm, and the ionic transport behavior follows the Arrhenius equation. Both PPC/LiClO4/BMIM(+)BF4(-) and PPC/BMIM(+)BF4(-) electrolytes were applied in electrochromic devices with polyaniline as the electrochromic layer. The PPC/LiClO4/BMIM(+)BF4(-)-based device exhibits much better electrochromic performance in terms of optical contrast and switching time due to the presence of much smaller cations.

  8. Radiation Effects in III-V Nanowire Devices

    Science.gov (United States)

    2016-09-01

    Nanowire Devices Distribution Statement A. Approved for public release; distribution is unlimited. September 2016 HDTRA1-11-1-0021 Steven R...NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13...related to the surface scattering of electrons. For the relation of surface morphology to oxide thickness (or oxidation time), the surface morphology of

  9. Adsorption of Eu(III on oMWCNTs: Effects of pH, Ionic Strength, Solid-Liquid Ratio and Water-Soluble Fullerene

    Directory of Open Access Journals (Sweden)

    P. Liu

    2013-01-01

    Full Text Available The influences of pH, ionic strength, solid-liquid ratio, , and on Eu(III adsorption onto the oxidation multiwalled carbon nanotubes (oMWCNTs were studied by using batch technique. The dynamic process showed that the adsorption of Eu(III onto oMWCNTs could be in equilibrium for about 17 h and matched the quasi-second-order kinetics model. The sorption process was influenced strongly by pH changes and ionic strength. In the pH range of 1.0 to 4.0, the adsorption ratio increased with the increasing of pH values, then the adsorption of Eu(III was almost saturated in the pH range of 4.0 to 10.0, and the adsorption ratio reached about 90%. The adsorption ratio decreased with the increasing of ionic strength. could promote the adsorption process obviously, but competed with Eu(III for the adsorption sites, thus leading to the reducing of Eu(III adsorption onto oMWCNTs. In the presence of or , the adsorption of Eu(III onto oMWCNTs could be affected obviously by solid-liquid ratio and the initial concentration of Eu(III.

  10. Thin and flexible solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes for device applications.

    Science.gov (United States)

    Howlett, Patrick C; Ponzio, Florian; Fang, Jian; Lin, Tong; Jin, Liyu; Iranipour, Nahid; Efthimiadis, Jim

    2013-09-07

    All solid-state organic ionic plastic crystal-polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10's μms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material.

  11. Syntheses, structures and luminescent properties of Sm (III) and Eu (III) chelates for organic electroluminescent device applications

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Y.J.; Wong, T.K.S.; Yan, Y.K.; Hu, X

    2003-08-25

    Samarium(III) and europium(III) complexes of the {beta}-diketone ligand (2-thienyl)trifluoroacetylacetone (HTTA) and triphenylphosphine oxide (TPPO) were prepared. The complexes, Sm(TTA){sub 2}(TPPO){sub 2}NO{sub 3} (1), Eu(TTA){sub 2}(TPPO){sub 2}NO{sub 3}H{sub 2}O (2), and Eu(TTA){sub 3}(TPPO){sub 2} (3) were characterized. Single crystal X-ray diffraction molecular structures of complexes 1 and 3 are presented and some of the crystal parameters for complex 1 are: space group, P1; a=11.019(4) A, b=11.791(6) A, c=12.535(5) A; {alpha}=102.68(3) deg., {beta}=102.06(3) deg., {gamma}=117.75(3) deg. ; for complex 3: space group, P-1, a=11.1946(9) A, b=12.117(2) A, c=23.535(2) A, {alpha}=80.047(13) deg., {beta}=76.498(7) deg., {gamma}=70.450(9) deg. . Electroluminescent devices were fabricated by vacuum evaporation. Apart from single layer devices, double and triple layer devices with the following structures: ITO/TPD/Complex 2/Al; ITO/TPD/Complex 3/Al; ITO/TPD/Complex 2/Alq/Al were studied, where N,N-bis(3-methylphenyl)-N,N'-diphenyl-benzidine (TPD) was used as a hole transporting layer and tris(8-hydroxyquinolinate)aluminum (Alq) as an electron transporting layer. The results indicate that single layer devices show very low quantum efficiency, while the double layer devices with a hole transporting layer exhibit enhanced efficiency and a well defined EL spectrum. No significant improvement was observed in the triple layer devices with an additional electron transporting layer.

  12. III-V/Ge MOS device technologies for low power integrated systems

    Science.gov (United States)

    Takagi, S.; Noguchi, M.; Kim, M.; Kim, S.-H.; Chang, C.-Y.; Yokoyama, M.; Nishi, K.; Zhang, R.; Ke, M.; Takenaka, M.

    2016-11-01

    CMOS utilizing high mobility III-V/Ge channels on Si substrates is expected to be one of the promising devices for high performance and low power integrated systems in the future technology nodes, because of the enhanced carrier transport properties. In addition, Tunneling-FETs (TFETs) using Ge/III-V materials are regarded as one of the most important steep slope devices for the ultra-low power applications. In this paper, we address the device and process technologies of Ge/III-V MOSFETs and TFETs on the Si CMOS platform. The channel formation, source/drain (S/D) formation and gate stack engineering are introduced for satisfying the device requirements. The plasma post oxidation to form GeOx interfacial layers is a key gate stack technology for Ge CMOS. Also, direct wafer bonding of ultrathin body quantum well III-V-OI channels, combined with Tri-gate structures, realizes high performance III-V n-MOSFETs on Si. We also demonstrate planar-type InGaAs and Ge/strained SOI TFETs. The defect-less p+-n source junction formation with steep impurity profiles is a key for high performance TFET operation.

  13. TETRAHALOINDATE(III)-BASED IONIC LIQUIDS IN THE COUPLING REACTION OF CARBON DIOXIDE AND EPOXIDES TO GENERATE CYCLIC CARBONATES: H-BONDING AND MECHANISTIC STUDIES

    Science.gov (United States)

    The microwave reactions of InX3 with [Q]Y produce a series of tetrahaloindate(III)-based ionic liquids (ILs) with a general formula of [Q][InX3Y] (Q = imidazolium, phosphonium, ammonium, and pyridinium; X = Cl, Br, I; Y = Cl, Br). The reaction of CO2

  14. Synthesis and characterization of nanostructured electrodes for solid state ionic devices

    Science.gov (United States)

    Zhang, Yuelan

    Solid-state electrochemical energy conversion and storage technologies such as fuel cells and lithium ion batteries will influence the way we use energy and the environment we live in. The demands for advanced power sources with high energy efficiency, minimum environmental impact, and low cost have been the impetus for the development of a new generation of batteries and fuel cells. Currently, lithium ion battery technology's greatest disadvantages are long-term cycling stability and high charge/discharge rate capabilities. On the other hand, fuel cell technology's greatest disadvantage is cost. It is found that these problems could be attenuated by the incorporation of nano-structured materials. But, we are still far away from possessing a solid scientific understanding of what goes on at the nanoscale inside these solid state ionic devices, and what is the relationship between nano-structures and their electrochemical properties, especially between the microstructure and electrode polarization and degradation. Electrode polarization represents a voltage loss in an electrochemical energy conversion process. Such understanding is critical for further progress in solid state ionic devices. This thesis focused on the design, fabrication, and characterization of nanostructured porous electrodes with desired composition and microstructure to minimize electrode polarization losses in the application of fuel cells and lithium ion batteries. Various chemical methods such as sol-gel, hydrothermal, surfactant, colloidal and polymer template-assisted processes have been applied in this work. And various characterization techniques have been used to explore the understanding of the microscopic features with electrochemical interfacial properties of the electrodes. Solid-state diffusion often limits the utilization and rate capability of electrode materials in a lithium-ion battery, especially at high charge/discharge rates. When the fluxes of Li+ insertion or extraction

  15. Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids.

    Science.gov (United States)

    Lu, Hsin-Che; Kao, Sheng-Yuan; Yu, Hsin-Fu; Chang, Ting-Hsiang; Kung, Chung-Wei; Ho, Kuo-Chuan

    2016-11-09

    Herein, three kinds of viologens-based electrochromic devices (ECDs) (heptyl viologen (HV(BF4)2), octyl viologen (OV(BF4)2), and nonyl viologen (NV(BF4)2)) were fabricated utilizing ferrocene (Fc) as a redox mediator. Among them, the NV(BF4)2-based ECD exhibits the highest coloration efficiency (36.2 cm(2)/C) owing to the lowest driving energy. Besides, switching between 0 and 1.2 V, the NV(BF4)2-based ECD shows a desirable initial transmittance change (ΔT = 56.7% at 605 nm), and long-term stability (ΔT = 45.4% after 4000 cycles). Furthermore, a UV-cured polymer electrolyte containing polymeric ionic liquid (PIL, 1-allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and ethoxylated trimethylolpropane triacrylate (ETPTA) was introduced to the NV(BF4)2-based ECD. By controlling the weight percentage of the PIL, different curing degrees of the polymer electrolytes were obtained and led to an improved stability of the NV(BF4)2-based ECD because of the immobilization of NV(BF4)2. This observation was explained by calculating the apparent diffusivity (Dapp) of the redox species in the NV(BF4)2-based ECD under various curing degrees. In addition, increasing the amount of PIL leads to a lower driven energy needed for the NV(BF4)2-based ECD, following the same trend as the value of Dapp. Among all NV(BF4)2-based ECDs, 20 wt % of PIL addition (20-PIL ECD) exhibits large transmittance change (ΔT = 55.2% at 605 nm), short switching times (2.13 s in coloring and 2.10 s in bleaching), high coloration efficiency (60.4 and 273.5 cm(2)/C at 605 nm, after excluding the current density at the steady state), and exceptional cycling stability (ΔT = 53.8% after 10,000 cycles, or retained 97.5% of its initial ΔT).

  16. Chemical association in simple models of molecular and ionic fluids. III. The cavity function

    Science.gov (United States)

    Zhou, Yaoqi; Stell, George

    1992-01-01

    Exact equations which relate the cavity function to excess solvation free energies and equilibrium association constants are rederived by using a thermodynamic cycle. A zeroth-order approximation, derived previously by us as a simple interpolation scheme, is found to be very accurate if the associative bonding occurs on or near the surface of the repulsive core of the interaction potential. If the bonding radius is substantially less than the core radius, the approximation overestimates the association degree and the association constant. For binary association, the zeroth-order approximation is equivalent to the first-order thermodynamic perturbation theory (TPT) of Wertheim. For n-particle association, the combination of the zeroth-order approximation with a ``linear'' approximation (for n-particle distribution functions in terms of the two-particle function) yields the first-order TPT result. Using our exact equations to go beyond TPT, near-exact analytic results for binary hard-sphere association are obtained. Solvent effects on binary hard-sphere association and ionic association are also investigated. A new rule which generalizes Le Chatelier's principle is used to describe the three distinct forms of behaviors involving solvent effects that we find. The replacement of the dielectric-continuum solvent model by a dipolar hard-sphere model leads to improved agreement with an experimental observation. Finally, equation of state for an n-particle flexible linear-chain fluid is derived on the basis of a one-parameter approximation that interpolates between the generalized Kirkwood superposition approximation and the linear approximation. A value of the parameter that appears to be near optimal in the context of this application is obtained from comparison with computer-simulation data.

  17. Synthesis, characterization, crystal structure and electrochemical studies of ionic iron(III) dipicolinato complex

    Science.gov (United States)

    Ghasemi, Fatemeh; Ghasemi, Khaled; Rezvani, Ali Reza; Rosli, Mohd Mustaqim; Razak, Ibrahim Abdul

    2017-09-01

    The new complex (NH4)[Fe(dipic)2] (1) (dipicH2 = 2,6-pyridinedicarboxylic acid), was synthesized and characterized by elemental analysis, FTIR and UV-Vis spectroscopy and single crystal X-ray method. The crystal system is tetragonal with space group I41/a. The FeIII ion and the N atom of the ammonium cation are located on a crystallographic fourfold rotoinversion axis (4 bar). The Nsbnd H⋯O and Csbnd H⋯O intermolecular hydrogen bonding and π⋯π stacking interactions play an important role in the formation of a 3-dimensional anion-cation network and stabilization of the crystal structure. The redox behavior of the complex was also investigated by cyclic voltammetry.

  18. Nonisovalent Si-III-V and Si-II-VI alloys: Covalent, ionic, and mixed phases

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Joongoo; Park, Ji-Sang; Stradins, Pauls; Wei, Su-Huai

    2017-07-01

    Nonequilibrium growth of Si-III-V or Si-II-VI alloys is a promising approach to obtaining optically more active Si-based materials. We propose a new class of nonisovalent Si2AlP (or Si2ZnS) alloys in which the Al-P (or Zn-S) atomic chains are as densely packed as possible in the host Si matrix. As a hybrid of the lattice-matched parent phases, Si2AlP (or Si2ZnS) provides an ideal material system with tunable local chemical orders around Si atoms within the same composition and structural motif. Here, using first-principles hybrid functional calculations, we discuss how the local chemical orders affect the electronic and optical properties of the nonisovalent alloys.

  19. Optimization of PEDOT films in ionic liquid supercapacitors: demonstration as a power source for polymer electrochromic devices.

    Science.gov (United States)

    Österholm, Anna M; Shen, D Eric; Dyer, Aubrey L; Reynolds, John R

    2013-12-26

    We report on the optimization of the capacitive behavior of poly(3,4-ethylenedioxythiophene) (PEDOT) films as polymeric electrodes in flexible, Type I electrochemical supercapacitors (ESCs) utilizing ionic liquid (IL) and organic gel electrolytes. The device performance was assessed based on figures of merit that are critical to evaluating the practical utility of electroactive polymer ESCs. PEDOT/IL devices were found to be highly stable over hundreds of thousands of cycles and could be reversibly charged/discharged at scan rates between 500 mV/s and 2 V/s depending on the polymer loading. Furthermore, these devices exhibit leakage currents and self-discharge rates that are comparable to state of the art electrochemical double-layer ESCs. Using an IL as device electrolyte allowed an extension of the voltage window of Type I ESCs by 60%, resulting in a 2.5-fold increase in the energy density obtained. The efficacies of tjese PEDOT ESCs were assessed by using them as a power source for a high-contrast and fast-switching electrochromic device, demonstrating their applicability in small organic electronic-based devices.

  20. Novel planarization and passivation in the integration of III-V semiconductor devices

    Science.gov (United States)

    Zheng, Jun-Fei; Hanberg, Peter J.; Demir, Hilmi V.; Sabnis, Vijit A.; Fidaner, Onur; Harris, James S., Jr.; Miller, David A. B.

    2004-06-01

    III-V semiconductor devices typically use structures grown layer-by-layer and require passivation of sidewalls by vertical etching to reduce leakage current. The passivation is conventionally achieved by sealing the sidewalls using polymer and the polymer needs to be planarized by polymer etch-back method to device top for metal interconnection. It is very challenging to achieve perfect planarization needed for sidewalls of all the device layers including the top layer to be completely sealed. We introduce a novel hard-mask-assisted self-aligned planarization process that allows the polymer in 1-3 μm vicinity of the devices to be planarized perfectly to the top of devices. The hard-mask-assisted process also allows self-aligned via formation for metal interconnection to device top of μm size. The hard mask is removed to expose a very clean device top surface for depositing metals for low ohmic contact resistance metal interconnection. The process is robust because it is insensitive to device height difference, spin-on polymer thickness variation, and polymer etch non-uniformity. We have demonstrated high yield fabrication of monolithically integrated optical switch arrays with mesa diodes and waveguide electroabsorption modulators on InP substrate with yield > 90%, high breakdown voltage of > 15 Volts, and low ohmic contact resistance of 10-20 Ω.

  1. Improved breakdown characteristics of monolithically integrated III-nitride HEMT-LED devices using carbon doping

    Science.gov (United States)

    Liu, Chao; Liu, Zhaojun; Huang, Tongde; Ma, Jun; May Lau, Kei

    2015-03-01

    We report selective growth of AlGaN/GaN high electron mobility transistors (HEMTs) on InGaN/GaN light emitting diodes (LEDs) for monolithic integration of III-nitride HEMT and LED devices (HEMT-LED). To improve the breakdown characteristics of the integrated HEMT-LED devices, carbon doping was introduced in the HEMT buffer by controlling the growth pressure and V/III ratio. The breakdown voltage of the fabricated HEMTs grown on LEDs was enhanced, without degradation of the HEMT DC performance. The improved breakdown characteristics can be attributed to better isolation of the HEMT from the underlying conductive p-GaN layer of the LED structure.

  2. Air-Stable, Self-Bleaching Electrochromic Device Based on Viologen- and Ferrocene-Containing Triflimide Redox Ionic Liquids.

    Science.gov (United States)

    Gélinas, Bruno; Das, Dyuman; Rochefort, Dominic

    2017-08-30

    We demonstrate an electrochromic device with self-bleaching ability that uses ethyl viologen- ([EV](2+)) and ferrocene-based redox ionic liquids ([FcNTf](-)) as the electroactive species. These electroactive compounds are insensitive to atmospheric O2 and H2O in both their oxidized and reduced states once dissolved in a typical ionic liquid electrolyte ([BMIm][NTf2]), allowing for the device to be assembled outside a glovebox without any encapsulation. This device could generate a deep blue color by the application of a 2.0 V potential between two fluorine-doped tin oxide (FTO) substrates to oxidize the ferrocenyl centers to [FcNTf](0) while reducing viologen to [EV](+•). Self-bleaching occurs at OCP as [EV](+•) and [FcNTf](0) undergo homogeneous electron transfer in the electrolyte. The mass transport of ethyl viologen and ferrocenylsulfonyl(trifluoromethylsulfonyl)imide ([FcNTf](-)) anion was evaluated by double potential step chronoamperometry to study the impact of the diffusion coefficient on the self-bleaching mechanism. The electrochromic device demonstrated here shows a contrast ΔT (610 nm) around 40% at 2.0 V as colored cell voltage, a switching time in the order of few seconds for coloration and bleaching, coloration efficiency of 105.4 to 146.2 cm(2) C(1-) at 610 nm, and very high stability (94.8% ΔT after 1000 cycles) despite the presence of O2 and H2O in the electrolyte.

  3. High-field electron transport in nanoscale group-III nitride devices

    Energy Technology Data Exchange (ETDEWEB)

    Komirenko, S.M.; Kim, K.W. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Electrical and Computer Engineering; Kochelap, V.A. [Inst. of Semiconductor Physics, National Academy of Sciences of Ukraine, Kiev-28 (Ukraine); Stroscio, M.A. [Army Research Office, Research Triangle Park, NC (United States). Mathematical Sciences Div.

    2001-11-08

    Focusing on the short-size group-III nitride heterostructures, we have developed a model which takes into account main features of transport of electrons injected into a polar semiconductor under high electric fields. The model is based on an exact analytical solution of Boltzmann transport equation. The electron velocity distribution over the device is analyzed at different fields and the basic characteristics of the high-field electron transport are obtained. The critical field for the runaway regime, when electron energies and velocities increase with distance which results in the average velocities higher than the peak velocity in bulk-like samples, is determined. We have found that the runaway electrons are characterized by a distribution function with population inversion. Different nitride-based small-size devices where this effect can have an impact on the device performance are considered. (orig.)

  4. Room temperature ionic liquids enhanced the speciation of Cr(VI) and Cr(III) by hollow fiber liquid phase microextraction combined with flame atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Chujie, E-mail: cjzeng@126.com [Department of Chemistry and Material, Yulin Normal College, Yulin, Guangxi 537000 (China); Lin, Yao; Zhou, Neng; Zheng, Jiaoting; Zhang, Wei [Department of Chemistry and Material, Yulin Normal College, Yulin, Guangxi 537000 (China)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer First reported enhancement effect of RTILs in HF-LPME for the speciation of chromium. Black-Right-Pointing-Pointer The addition of RTILs led to 3.5 times improvement of the sensitivity of Cr(VI). Black-Right-Pointing-Pointer The proposed method is a simplicity, sensitivity, low cost, green method. - Abstract: A new method for the speciation of Cr(VI) and Cr(III) based on enhancement effect of room temperature ionic liquids (RTILs) for hollow fiber liquid phase microextraction (HF-LPME) combined with flame atomic absorption spectrometry (FAAS) was developed. Room temperature ionic liquids (RTILs) and diethyldithiocarbamate (DDTC) were used enhancement reagents and chelating reagent, respectively. The addition of room temperature ionic liquids led to 3.5 times improvement in the determination of Cr(VI). In this method, Cr(VI) reacts with DDTC yielding a hydrophobic complex, which is subsequently extracted into the lumen of hollow fiber, whereas Cr(III) is remained in aqueous solutions. The extraction organic phase was injected into FAAS for the determination of Cr(VI). Total Cr concentration was determined after oxidizing Cr(III) to Cr(VI) in the presence of KMnO{sub 4} and using the extraction procedure mentioned above. Cr(III) was calculated by subtracting of Cr(VI) from the total Cr. Under optimized conditions, a detection limit of 0.7 ng mL{sup -1} and an enrichment factor of 175 were achieved. The relative standard deviation (RSD) was 4.9% for Cr(VI) (40 ng mL{sup -1}, n = 5). The proposed method was successfully applied to the speciation of chromium in natural water samples with satisfactory results.

  5. Electromechanical characterization of non-uniform charged ionic polymer-metal composites (IPMC) devices

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, B; Branco, P J C [Institute Superior Tecnico, DEEC - Energia, Lisboa 1096-001 (Portugal)], E-mail: pbranco@ist.utl.pt

    2008-08-15

    Research on electromechanical characterization of non-uniformly charged IPMCs is quasi-absent. This has limited their use to only those devices where the IPMC is completely covered with electrode surfaces (uniformly charged). In this paper, we develop a theoretical study for electromechanical characterization of non-uniformly charged IPMCs. A continuum model taking into account the gravitational forces, important for large IPMCs, is presented. Based on this approach, FEM analysis of IPMC devices using Comsol Multiphysics is introduced in a very simple way. Three devices have been studied, comparing the analytical model results with those ones obtained from a FEM analysis.

  6. Electron-transfer reactions of cobalt(III) complexes. 1. The kinetic investigation of the reduction of various surfactant cobalt(III) complexes by iron(II) in surface active ionic liquids.

    Science.gov (United States)

    Nagaraj, Karuppiah; Senthil Murugan, Krishnan; Thangamuniyandi, Pilavadi; Sakthinathan, Subramanian

    2015-05-15

    The kinetics of outer sphere electron transfer reaction of surfactant cobalt(III) complex ions, cis-[Co(en)2(C12H25NH2)2](3+) (1), cis-[Co(dp)2(C12H25NH2)2](3+) (2), cis-[Co(trien)(C12H25NH2)2](3+) (3), cis-[Co(bpy)2(C12H25NH2)2](3+) (4) and cis-[Co(phen)2(C12H25NH2)2](3+) (5) (en: ethylenediamine, dp: diaminopropane, trien : triethylenetetramine, bpy: 2,2'-bipyridyl, phen: 1,10-phenanthroline and C12H25NH2 : dodecylamine) have been interrogated by Fe(2+) ion in ionic liquid (1-butyl-3-methylimidazoliumbromide) medium at different temperatures (298, 303, 308, 313, 318 and 323K) by the spectrophotometry method under pseudo first order conditions using an excess of the reductant. Experimentally the reactions were found to be of second order and the electron transfer as outer sphere. The second order rate constant for the electron transfer reaction in ionic liquids was found to increase with increase in the concentration of all these surfactant cobalt(III) complexes. Among these complexes (from en to phen ligand), complex containing the phenanthroline ligand rate is higher compared to other complexes. By assuming the outer sphere mechanism, the results have been explained based on the presence of aggregated structures containing cobalt(III) complexes at the surface of ionic liquids formed by the surfactant cobalt(III) complexes in the reaction medium. The activation parameters (enthalpy of activation ΔH(‡) and entropy of activation ΔS(‡)) of the reaction have been calculated which substantiate the kinetics of the reaction.

  7. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices

    Science.gov (United States)

    1998-05-12

    elevated temperatures that is accompanied by a decreased film thickness. As the temperature is decreased water is reabsorbed , and the film swells to its...Vogtle, Supramolecular Chemistry; Wiley, New York, 1993. ISAM NLO Thin Films and Devices Final Report 28 [6] J. H. Fuhrhop and J. Koning, Membrane and

  8. On the collective network of ionic liquid/water mixtures. III. Structural analysis of ionic liquids on the basis of Voronoi decomposition.

    Science.gov (United States)

    Schröder, C; Neumayr, G; Steinhauser, O

    2009-05-21

    Three different mixtures of 1-butyl-3-methyl-imidazolium tetrafluoroborate with water have been studied by means of molecular dynamics simulations. Based on the classical Lopes-Padua force field trajectories of approximately 60 ns were computed. This is the third part of a series concerning the collective network of 1-butyl-3-methyl-imidazolium tetrafluoroborate/water mixtures. The first part [C. Schröder et al., J. Chem. Phys. 127, 234503 (2007)] dealt with the orientational structure and static dielectric constants. The second part [C. Schröder et al., J. Chem. Phys. 129, 184501 (2008)] was focused on the decomposition of the dielectric spectrum of these mixtures. In this work the focus lies on the characterization of the neighborhood of ionic liquids by means of the Voronoi decomposition. The Voronoi algorithm is a rational tool to uniquely decompose the space around a reference molecule without using any empirical parameters. Thus, neighborhood relations, direct and indirect ones, can be extracted and were used in combination with g-coefficients. These coefficients represent the generalization of the traditional radial distribution function in order to include the mutual positioning and orientation of anisotropic molecules. Furthermore, the Voronoi method provides, as a by-product, the mutual coordination numbers of molecular species.

  9. Green oxidation of alkenes in ionic liquid solvent by hydrogen peroxide over high performance Fe(III) Schiff base complexes immobilized on MCM-41

    Indian Academy of Sciences (India)

    Mohammad Taghi Goldani; Ali Mohammadi; Reza Sandaroos

    2014-05-01

    A series of Fe(III) Schiff base complexes immobilized on MCM-41 were prepared and characterized by various physicochemical and spectroscopic methods. The complexes were used for oxidation of cyclohexene by 30% hydrogen peroxide in the presence and absence of ethylmethyl imidazolium chloride (EMIM) ionic liquid as solvent. The immobilized complexes proved to be effective catalysts and generally exhibited much higher catalytic performance than their homogeneous analogue. Catalytic performance of the complexes was also found to be closely related to the Schiff base ligands used. Additionally, ion liquid solvent efficiently improved all the catalytic performances. Finally, the reaction was extended to different alkenes using the heterogeneous complex 2-L4. Among all the alkenes, those containing -electron-withdrawing groups and trans-orientations exhibited lower tendency for oxidation.

  10. Electrochemistry of poly(3,4-ethylenedioxythiophene)-polyaniline/ Prussian blue electrochromic devices containing an ionic liquid based gel electrolyte film.

    Science.gov (United States)

    Deepa, Melepurath; Awadhia, Arvind; Bhandari, Shweta

    2009-07-21

    Electrochromic devices based on poly(3,4-ethylenedioxythiophene) (PEDOT) as the cathodic coloring electrode and polyaniline (PANI) or Prussian blue (PB) as the counter electrode containing a highly conductive, self-supporting, distensible and transparent polymer-gel electrolyte film encapsulating an ionic liquid, 1-butyl-1-methylpyrrolidiniumbis-(trifluoromethylsulfonyl)imide, have been fabricated. Polarization, charge transfer and diffusion processes control the electrochemistry of the functional electrodes during coloration and bleaching and these phenomena differ when PEDOT and PANI/PB were employed alternately as working electrodes. While the electrochemical impedance response shows good similitude for PEDOT and PANI electrodes, the responses of PEDOT and PB were significantly different in the PEDOT-PB device, especially during reduction of PB, wherein the overall amplitude of the impedance response is enormous. Large values of the coloration efficiency maxima of 281 cm2 C(-1) (lambda = 583 nm) and 274 cm2 C(-1) (lambda = 602 nm), achieved at -1.0 and -1.5 V for the PEDOT PANI and PEDOT-PB devices have been correlated to the particularly low magnitude of charge transfer resistance and high polarization capacitance operative at the PEDOT ionic liquid based electrolyte interface at these dc potentials, thus allowing facile ion-transport and consequently resulting in enhanced absorption modulation. Moderately fast switching kinetics and the ability of these devices to sustain about 2500 cycles of clear-to-dark and dark-to-clear without incurring major losses in the optical contrast, along with the ease of construction of these cells in terms of high scalability and reproducibility of the synthetic procedure for fabrication of the electrochromic films and the ionic liquid based gel electrolyte film, are indicators of the promise these devices hold for practical applications like electrochromic windows and displays.

  11. Ionic-liquid-assisted synthesis of nanostructured and carbon-coated Li3V2(PO4)3 for high-power electrochemical storage devices.

    Science.gov (United States)

    Zhang, Xiaofei; Böckenfeld, Nils; Berkemeier, Frank; Balducci, Andrea

    2014-06-01

    Carbon-coated Li3V2(PO4)3 (LVP) displaying nanostructured morphology can be easily prepared by using ionic-liquid-assisted sol-gel synthesis. The selection of highly viscous and thermally stable ionic liquids might promote the formation of nanostructures during the sol-gel synthesis. The presence of these structures shortens the diffusion paths and enlarges the contact area between the active material and the electrolyte; this leads to a significant improvement in lithium-ion diffusion. At the same time, the use of ionic liquids has a positive influence on the coating of the LVP particles, which improves the electronic conductivity of this material; this leads to enhanced charge-transfer properties. At a high current density of 40 C, the LVP/N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide material delivered a reversible capacity of approximately 100 mA h g(-1), and approximately 99 % of the initial capacity value was retained even after 100 cycles at 50 C. The excellent high rate and cycling stability performance make Li3V2(PO4)3 prepared by ionic-liquid-assisted sol-gel synthesis a very promising cathode material for high-power electrochemical storage devices.

  12. Genetic Algorithm for Innovative Device Designs in High-Efficiency III-V Nitride Light-Emitting Diodes

    Science.gov (United States)

    Zhu, Di; Schubert, Martin F.; Cho, Jaehee; Schubert, E. Fred; Crawford, Mary H.; Koleske, Daniel D.; Shim, Hyunwook; Sone, Cheolsoo

    2012-01-01

    Light-emitting diodes are becoming the next-generation light source because of their prominent benefits in energy efficiency, versatility, and benign environmental impact. However, because of the unique polarization effects in III-V nitrides and the high complexity of light-emitting diodes, further breakthroughs towards truly optimized devices are required. Here we introduce the concept of artificial evolution into the device optimization process. Reproduction and selection are accomplished by means of an advanced genetic algorithm and device simulator, respectively. We demonstrate that this approach can lead to new device structures that go beyond conventional approaches. The innovative designs originating from the genetic algorithm and the demonstration of the predicted results by implementing structures suggested by the algorithm establish a new avenue for complex semiconductor device design and optimization.

  13. Sulfonic Acid- and Lithium Sulfonate-Grafted Poly(Vinylidene Fluoride) Electrospun Mats As Ionic Liquid Host for Electrochromic Device and Lithium-Ion Battery.

    Science.gov (United States)

    Zhou, Rui; Liu, Wanshuang; Leong, Yew Wei; Xu, Jianwei; Lu, Xuehong

    2015-08-05

    Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) are promising nonvolatile electrolytes with high ionic conductivity. The large cations of ILs are, however, difficult to diffuse into solid electrodes, making them unappealing for application in some electrochemical devices. To address this issue, a new strategy is used to introduce proton conduction into an IL-based electrolyte. Poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) copolymer is functionalized with sulfonic acid through covalent attachment of taurine. The sulfonic acid-grafted P(VDF-HFP) electrospun mats consist of interconnected nanofibers, leading to remarkable improvement in dimensional stability of the mats. IL-based polymer electrolytes are prepared by immersing the modified mats in 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(+)BF4(-)). It is found that the SO3(-) groups can have Lewis acid-base interactions with the cations (BMIM(+)) of IL to promote the dissociation of ILs, and provide additional proton conduction, resulting in significantly improved ionic conductivity. Using this novel electrolyte, polyaniline-based electrochromic devices show higher transmittance contrast and faster switching behavior. Furthermore, the sulfonic acid-grafted P(VDF-HFP) electrospun mats can also be lithiated, giving additional lithium ion conduction for the IL-based electrolyte, with which Li/LiCoO2 batteries display enhanced C-rate performance.

  14. Ionic Polymer Microspheres Bearing a Co(III) -Salen Moiety as a Bifunctional Heterogeneous Catalyst for the Efficient Cycloaddition of CO2 and Epoxides.

    Science.gov (United States)

    Leng, Yan; Lu, Dan; Zhang, Chenjun; Jiang, Pingping; Zhang, Weijie; Wang, Jun

    2016-06-01

    We report a unique strategy to obtain the bifunctional heterogeneous catalyst TBB-Bpy@Salen-Co (TBB=1,2,4,5-tetrakis(bromomethyl)benzene, Bpy=4,4'-bipyridine, Salen-Co=N,N'-bis({4-dimethylamino}salicylidene)ethylenediamino cobalt(III) acetate) by combining a cross-linked ionic polymer with a Co(III) -salen Schiff base. The catalyst showed extra high activity for CO2 fixation under mild, solvent-free reaction conditions with no requirement for a co-catalyst. The synthesized catalyst possessed distinctive spherical structural features, abundant halogen Br(-) anions with good leaving group ability, and accessible Lewis acidic Co metal centers. These unique features, together with the synergistic role of the Co and Br(-) functional sites, allowed TBB-Bpy@Salen-Co to exhibit enhanced catalytic conversion of CO2 into cyclic carbonates relative to the corresponding monofunctional analogues. This catalyst can be easily recovered and recycled five times without significant leaching of Co or loss of activity. Moreover, based on our experimental results and previous work, a synergistic cycloaddition reaction mechanism was proposed.

  15. A novel fluorinated Eu(III) β-diketone complex as thin film for optical device applications

    Science.gov (United States)

    de Sá, Gilberto F.; Alves, Severino, Jr.; da Silva, Blenio J. P.; da Silva, Eronides F., Jr.

    1998-11-01

    We discuss the synthesis and spectroscopic characteristics of a thin film (˜30-90 nm) based on lanthanide europium (III) complexes as the emitter layers, to shift the UV portion of light spectrum into the visible region. The complex presents high quantum efficiency (˜65%), is highly volatile and thermodynamically stable. In addition, the thin film is used as an alternative antireflection coating on a silicon solar cell, allowing for an improvement of about 21% on cell efficiency. The high absorption and luminescence properties in the UV-visible region and its compatibility with device fabrication processes make this material of great potential for use in advanced optical device technologies.

  16. Group III nitride semiconductors for short wavelength light-emitting devices

    Science.gov (United States)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  17. Hybrid integration of III-V and silicon materials and devices

    Science.gov (United States)

    Luo, Zhongsheng

    Laser liftoff (LLO) based hybrid integration techniques including the double-transfer process and the pixel-to-point transfer process have been developed to integrate III-V photonics with silicon materials and circuitry. No degradation in the device performance has been observed using the LLO based transfer techniques. On the contrary, performance improvements in both electrical characteristics and electroluminescence (EL) output have been found for the (In,Ga)N light emitting diodes (LEDs) transferred onto Si substrate. Based on computer simulation, it is found that as much as 70% enhancement in EL output could be expected by optimizing the metal layering on the backside of the transferred LEDs. In order to understand the existing experimental data and improve controllability and damage-free transfer yield of the LLO process, a novel, comprehensive LLO model based on thermal-mechanical analysis has been proposed and developed. The LLO model has been validated in the well-studied GaN/sapphire system. By employing the LLO based transfer technique, two optoelectronic systems have been designed and demonstrated. The first one is an integrated fluorescence microsystem, which involved the integration of Cd(S,Se) bandgap filters, (In,Ga)N LEDs, Poly(dimethylsiloxane) (PDMS) microfluidic channels with a pre-fabricated Si PIN photodiode chip. Prototypes with both one color (blue LED) excitation and two-color (blue and green LED) excitation have consistently demonstrated a detection capability of as low as 1 nM fluosphere beads using Molecular Probes FluoSpheresRTM dye. Furthermore, the feasibility of multi-wavelength design has been verified using the bi-wavelength prototype. To optimize signal-to-noise ratio and detection sensitivity of the microsystem via system design, an in-depth mathematic analysis has also been performed. The second application is a zero-footprint optical metrology wafer, which relies on the reflection at the optical detection window, through which

  18. Bromide complexation by the Eu(III) lanthanide cation in dry and humid ionic liquids: a molecular dynamics PMF study.

    Science.gov (United States)

    Chaumont, Alain; Wipff, Georges

    2012-05-14

    We report a molecular dynamics study on the EuBr(n)(3-n) complexes (n=0 to 6) formed upon complexation of Br(-) by Eu(3+) in the [BMI][PF(6)], [BMI][Tf(2)N] and [MeBu(3)N][Tf(2)N] ionic liquids (ILs), to compare the effect of the IL anion (PF(6)(-) versus Tf(2)N(-)), the IL cation (BMI(+) versus MeBu(3)N(+)) and the "IL humidity" on their solvation and stability. In "dry" solutions all complexes remain stable and the first coordination shell of Eu(3+) is purely anionic (Br(-) and IL anions), surrounded by IL cations (BMI(+) or MeBu(3)N(+) ions). Long range "onion type" solvation features (up to 20 Å from Eu(3+)), with alternating cation-rich and anion-rich solvent shells, are observed around the different complexes. The comparison of gas phase-optimized structures of EuBr(n)(3-n) complexes (that are unstable for n=5 and 6) with those observed in solution points to the importance of solvation forces on the nature of the complex, with a higher stabilization by imidazolium- than by ammonium-based dry ILs. Adding water to the IL has different effects, depending on the IL. In the highly hygroscopic [BMI][PF(6)] IL, Br(-) ligands are displaced by water, to finally form Eu(H(2)O)(9)(3+). In the less "humid" [BMI][Tf(2)N], the EuBr(n)(3-n) complexes do not dissociate and coordinate at most 1-2 H(2)O molecules. We also calculated the free-energy profiles (Potential of Mean Force calculations) for the stepwise complexation of Br(-), and found significant solvent effects. EuBr(6)(3-) is predicted to form in both [BMI][PF(6)] and [BMI][Tf(2)N], but not in [MeBu(3)N][Tf(2)N], mainly due to weaker interactions with the cationic solvation shell. First steps are found to be more exergonic in the PF(6)(-)- than in the Tf(2)N(-)-based IL. Molecular dynamics (MD) comparisons between ILs and classical solvents (acetonitrile and water) are also reported, affording good agreement with the experimental observations of Br(-) complexation by trivalent lanthanides in these classical

  19. Study on the impact of device parameter variations on performance of III-V homojunction and heterojunction tunnel FETs

    Science.gov (United States)

    Hemmat, Maedeh; Kamal, Mehdi; Afzali-Kusha, Ali; Pedram, Massoud

    2016-10-01

    In this paper, the impact of physical parameter variations on the electrical characteristics of III-V TFETs is investigated. The study is performed on the operations of two optimized ultra-thin 20 nm double-gate transistors. The two device structures are InAs homojunction TFET and InAs-GaAs0.1Sb0.9 heterojunction TFET. The operation parameters are the ON-current, OFF-current, and threshold voltage. The investigation is performed at the device level, using a device simulator and the Monte-Carlo simulation approach is exploited to extract the distribution of electrical parameters in the presence of the process variation. The results reveal that the operation of the transistor is more sensitive to the doping of the source and gate work function compared to other physical parameters. Furthermore, the heterojunction TFETs show less sensitivity to physical parameter variations compared to the homojunction ones.

  20. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    Science.gov (United States)

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications.

  1. Peroxidase-like catalytic activity of water-insoluble complex linked Fe(III)-thiacalix[4]arenetetrasulfonate with tetrakis(1-methylpyridinium-4-yl)porphine via ionic interaction.

    Science.gov (United States)

    Odo, Junichi; Sumihiro, Manabu; Okadome, Takuma; Inoguchi, Masahiko; Akashi, Haruo; Nakagoe, Kazunori

    2009-12-01

    A new water-insoluble Fe(3+)-TCAS[4]/TMPyP complex linked tetraanionic Fe(III)-thiacalix[4]arenetetrasulfonate (Fe(3+)-TCAS[4]) with tetracationic tetrakis(1-methylpyridinium-4-yl)porphine (TMPyP) via ionic interaction was prepared. The peroxidase-like catalytic activity of the Fe(3+)-TCAS[4]/TMPyP complex was investigated based on the dye formation reaction by oxidation of 4-aminoantipyrine and phenol with H(2)O(2) catalyzed by peroxidase. This Fe(3+)-TCAS[4]/TMPyP complex showed the highest activity in pH 5.5 acetate buffer solutions, and it was applied to the photometric determination of trace amounts of H(2)O(2). The calibration curve was linear over the range from 1.0 to 35 microg of H(2)O(2) in a 1.0 ml sample solution. Moreover, the method using glucoseoxidase and the Fe(3+)-TCAS[4]/TMPyP complex was applied to the determination of glucose, and the results were satisfactory even in control sera. The Fe(3+)-TCAS[4]/TMPyP complex can be applied to a practical sample, such as blood or urine, as an analytical reagent for the photometric determination of H(2)O(2) in place of peroxidase.

  2. Impurity-induced disorder in III-nitride materials and devices

    Science.gov (United States)

    Wierer, Jr., Jonathan J; Allerman, Andrew A

    2014-11-25

    A method for impurity-induced disordering in III-nitride materials comprises growing a III-nitride heterostructure at a growth temperature and doping the heterostructure layers with a dopant during or after the growth of the heterostructure and post-growth annealing of the heterostructure. The post-growth annealing temperature can be sufficiently high to induce disorder of the heterostructure layer interfaces.

  3. 78 FR 20268 - Effective Date of Requirement for Premarket Approval for Three Class III Preamendments Devices...

    Science.gov (United States)

    2013-04-04

    ... improvement in hepatic coma and metabolic disturbances. Treatment interruptions or discontinuations--Inadequate safeguards in the device may lead to treatment interruptions or discontinuations in the case of power failures. Electrical shock due to lack of electrical safety-- Inadequate safeguards in the device...

  4. Growth and characterisation of group-III nitride-based nanowires for devices

    OpenAIRE

    2007-01-01

    One of the main goals of this thesis was to get more insight into the mechanisms driving the growth of nitride nanowires by plasma-assisted molecular beam epitaxy (PA-MBE). The influence of the group-III and group-V flux as well as the substrate temperature Tsub has been studied leading to the conclusion that the III-V ratio determines the growth mode. N-rich conditions lead to nanowire growth and Tsub has an important influence. For GaN an increase of Tsub enhances the Ga desorption, thus lo...

  5. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    Science.gov (United States)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  6. 75 FR 52294 - Effective Date of Requirement for Premarket Approval for Four Class III Preamendments Devices

    Science.gov (United States)

    2010-08-25

    ... complications. e. Interference with other organs--because of the device's size and the location of its... when the vaginal pouch contacts the vaginal wall, cervical mucosa, and the penis. d. Ulceration...

  7. 76 FR 50663 - Effective Date of Requirement for Premarket Approval for Three Class III Preamendments Devices

    Science.gov (United States)

    2011-08-16

    ... human environment. Therefore, neither an environmental assessment nor an environmental impact statement is required. V. Analysis of Impacts FDA has examined the impacts of the final rule under Executive... little or no interest in marketing these devices in the future. Therefore, the Agency certifies that...

  8. Reversed-phase ion-pair liquid chromatographic method for determination of reaction equilibria involving ionic species: exemplification of the method using ligand substitution reactions of ethylenediaminetetraacetatochromium(III) ion with acetate and phosphate ions.

    Science.gov (United States)

    Sato, Emiko; Miya, Seiko; Saitoh, Kazunori; Saito, Shingo; Shibukawa, Masami

    2011-02-18

    A reversed-phase ion-pair liquid chromatographic method is presented for the determination of reaction equilibria involving ionic species of the same charge sign as reactant and product compounds. It has been demonstrated that ion-exchange chromatography or reversed-phase ion-pair chromatography is a useful tool for the determination of equilibrium constants of chemical reactions involving ionic species such as metal complexation reactions. Previous work with these methods has been based on the assumption that the limiting retention factors of the reactant and product species are constant independent of concentration of the chemical species (X) in the mobile phase, which reacts with the analyte compound. However, when all the reactant and product species are ions of the same charge sign as that of the species X, it is virtually impossible to apply these methods to the equilibrium constant determination because the retention factors of both the reactant and product species may depend on the concentration of X. In this study, an alternative approach was developed that estimates the limiting retention factors of ionic species from the dependence of the retention factor on the ionic strength of the mobile phase. Ligand substitution reactions of ethylenediaminetetraacetatochromium(III) ion with acetate and phosphate ions were used as model reactions to test this method. The equilibrium constants determined by this method are in good agreement with those obtained by a UV-visible spectrophotometric method.

  9. Growth and characterization of III-nitrides materials system for photonic and electronic devices by metalorganic chemical vapor deposition

    Science.gov (United States)

    Yoo, Dongwon

    A wide variety of group III-Nitride-based photonic and electronic devices have opened a new era in the field of semiconductor research in the past ten years. The direct and large bandgap nature, intrinsic high carrier mobility, and the capability of forming heterostructures allow them to dominate photonic and electronic device market such as light emitters, photodiodes, or high-speed/high-power electronic devices. Avalanche photodiodes (APDs) based on group III-Nitrides materials are of interest due to potential capabilities for low dark current densities, high sensitivities and high optical gains in the ultraviolet (UV) spectral region. Wide-bandgap GaN-based APDs are excellent candidates for short-wavelength photodetectors because they have the capability for cut-off wavelengths in the UV spectral region (lambda operate in the solar-blind spectral regime of lambda 10,000 and 50, respectively. The large stable optical gains are attributed to the improved crystalline quality of epitaxial layers grown on low dislocation density bulk substrates. GaN p-i-n rectifiers have brought much research interest due to its superior physical properties. The AIN-free full-vertical GaN p-i-n rectifiers on n-type 6H-SiC substrates by employing a conducting AIGaN:Si buffer layer provides the advantages of the reduction of sidewall damage from plasma etching and lower forward resistance due to the reduction of current crowding at the bottom n-type layer. The AlGaN:Si nucleation layer was proven to provide excellent electrical properties while also acting as a good buffer role for subsequent GaN growth. The reverse breakdown voltage for a relatively thin 2.5 mum-thick i-region was found to be over -400V.

  10. Energy Harvesting Applications of Ionic Polymers

    OpenAIRE

    Martin, Benjamin Ryan

    2005-01-01

    Energy Harvesting Applications of Ionic Polymers Benjamin R. Martin Abstract The purpose of this thesis is the development and analysis of applications for ionic polymers as energy harvesting devices. The specific need is a self-contained energy harvester to supply renewable power harvested from ambient vibrations to a wireless sensor. Ionic polymers were investigated as mechanical to electrical energy transducers. An ionic polymer device was designed to harvest energy from vi...

  11. Controlled Growth of Ordered III-Nitride Core-Shell Nanostructure Arrays for Visible Optoelectronic Devices

    Science.gov (United States)

    Rishinaramangalam, Ashwin K.; Ul Masabih, Saadat Mishkat; Fairchild, Michael N.; Wright, Jeremy B.; Shima, Darryl M.; Balakrishnan, Ganesh; Brener, Igal; Brueck, S. R. J.; Feezell, Daniel F.

    2015-05-01

    We demonstrate the growth of ordered arrays of nonpolar core-shell nanowalls and semipolar core-shell pyramidal nanostripes on c-plane (0001) sapphire substrates using selective-area epitaxy and metal organic chemical vapor deposition. The nanostructure arrays are controllably patterned into LED mesa regions, demonstrating a technique to impart secondary lithography features into the arrays. We study the dependence of the nanostructure cores on the epitaxial growth conditions and show that the geometry and morphology are strongly influenced by growth temperature, V/III ratio, and pulse interruption time. We also demonstrate the growth of InGaN quantum well shells on the nanostructures and characterize the structures by using micro-photoluminescence and cross-section scanning tunneling electron microscopy.

  12. Intersubband transitions in III-V semiconductors for novel infrared optoelectronic devices

    Science.gov (United States)

    Hossain, Mohammed Imrul

    Intersubband transitions (ISBTs) in the conduction band (CB) of semiconductor multiple quantum wells (QW) have led to devices, like quantum-well infrared photodetectors and quantum cascade lasers (QCL). Due to the complexities related to the valence band (VB), hole ISBTs have not been explored as intensively as their electronic counterparts. Absorption and photoluminescence due to ISBT in the VB have been reported for p-type Si-SiGe QWs but this material system suffers from significant challenges associated with the built-in strain of these lattice mismatched materials. The GaAs/AlGaAs material system is virtually strain-free and quite mature. We are investigating the properties of bound-to-bound inter-valence subband transitions in GaAs QWs with high Al composition barriers for mid-infrared emitters. Hole ISBTs are interesting because the polarization of the light emitted in heavy-to-light hole transitions is not restricted to the perpendicular of the quantum wells (unlike electron ISBTs in the CB due to selection rules), therefore surface emitting QCLs and ultimately vertical-cavity surface emitting devices are possible using these transitions. Moreover the valence-band offset for pure GaAs and AlAs is comparable with the conduction-band offset in the traditional InGaAs/InAlAs lattice matched to InP system. Very recently we have observed strong heavy to light hole absorption and heavy to heavy hole electroluminescence from ridge waveguide structures in the mid infra-red range. We are also investigating dual wavelength mid infra-red QCLs in the InGaAs/InAlAs system lattice matched to InP. This device may be useful in applications like differential absorption lidar where light has to be evaluated and compared at two different frequencies for environmental sensing application. Most approaches to multi-wavelength QCL operation involve the use of heterogeneous cascades. Our design involves a single type of active region, emitting at two widely different wavelengths in

  13. Growth and Characterization of III-V Semiconductors for Device Applications

    Science.gov (United States)

    Williams, Michael D.

    2000-01-01

    The research goal was to achieve a fundamental understanding of the physical processes occurring at the surfaces and interfaces of epitaxially grown InGaAs/GaAs (100) heterostructures. This will facilitate the development of quantum well devices for infrared optical applications and provide quantitative descriptions of key phenomena which impact their performance. Devices impacted include high-speed laser diodes and modulators for fiber optic communications at 1.55 micron wavelengths and intersub-band lasers for longer infrared wavelengths. The phenomenon of interest studied was the migration of indium in InGaAs structures. This work centered on the molecular beam epitaxy reactor and characterization apparatus donated to CAU by AT&T Bell Laboratories. The material characterization tool employed was secondary ion mass spectrometry. The training of graduate and undergraduate students was an integral part of this program. The graduate students received a thorough exposure to state-of-the-art techniques and equipment for semiconductor materials analysis as part of the Master''s degree requirement in physics. The undergraduates were exposed to a minority scientist who has an excellent track record in this area. They also had the opportunity to explore surface physics as a career option. The results of the scientific work was published in a refereed journal and several talks were presented professional conferences and academic seminars.

  14. A heterogeneous III-V/silicon integration platform for on-chip quantum photonic circuits with single quantum dot devices

    CERN Document Server

    Davanco, Marcelo; Sapienza, Luca; Zhang, Chen-Zhao; Cardoso, Jose Vinicius De Miranda; Verma, Varun; Mirin, Richard; Nam, Sae Woo; Liu, Liu; Srinivasan, Kartik

    2016-01-01

    Photonic integration is an enabling technology for photonic quantum science, offering greater scalability, stability, and functionality than traditional bulk optics. Here, we describe a scalable, heterogeneous III-V/silicon integration platform to produce Si$_3$N$_4$ photonic circuits incorporating GaAs-based nanophotonic devices containing self-assembled InAs/GaAs quantum dots. We demonstrate pure singlephoton emission from individual quantum dots in GaAs waveguides and cavities - where strong control of spontaneous emission rate is observed - directly launched into Si$_3$N$_4$ waveguides with > 90 % efficiency through evanescent coupling. To date, InAs/GaAs quantum dots constitute the most promising solidstate triggered single-photon sources, offering bright, pure and indistinguishable emission that can be electrically and optically controlled. Si$_3$N$_4$ waveguides offer low-loss propagation, tailorable dispersion and high Kerr nonlinearities, desirable for linear and nonlinear optical signal processing d...

  15. Optimal III-nitride HEMTs: from materials and device design to compact model of the 2DEG charge density

    Science.gov (United States)

    Li, Kexin; Rakheja, Shaloo

    2017-02-01

    In this paper, we develop a physically motivated compact model of the charge-voltage (Q-V) characteristics in various III-nitride high-electron mobility transistors (HEMTs) operating under highly non-equilibrium transport conditions, i.e. high drain-source current. By solving the coupled Schrödinger-Poisson equation and incorporating the two-dimensional electrostatics in the channel, we obtain the charge at the top-of-the-barrier for various applied terminal voltages. The Q-V model accounts for cutting off of the negative momenta states from the drain terminal under high drain-source bias and when the transmission in the channel is quasi-ballistic. We specifically focus on AlGaN and AlInN as barrier materials and InGaN and GaN as the channel material in the heterostructure. The Q-V model is verified and calibrated against numerical results using the commercial TCAD simulator Sentaurus from Synopsys for a 20-nm channel length III-nitride HEMT. With 10 fitting parameters, most of which have a physical origin and can easily be obtained from numerical or experimental calibration, the compact Q-V model allows us to study the limits and opportunities of III-nitride technology. We also identify optimal material and geometrical parameters of the device that maximize the carrier concentration in the HEMT channel in order to achieve superior RF performance. Additionally, the compact charge model can be easily integrated in a hierarchical circuit simulator, such as Keysight ADS and CADENCE, to facilitate circuit design and optimization of various technology parameters.

  16. Graphene-ionic liquid composites

    Science.gov (United States)

    Aksay, Ilhan A.; Korkut, Sibel; Pope, Michael; Punckt, Christian

    2016-11-01

    Method of making a graphene-ionic liquid composite. The composite can be used to make elec-trodes for energy storage devices, such as batteries and supercapacitors. Dis-closed and claimed herein is method of making a graphene-ionic liquid com-posite, comprising combining a graphene source with at least one ionic liquid and heating the combination at a temperature of at least about 130 .degree. C.

  17. Growth and characterisation of group-III nitride-based nanowires for devices

    Energy Technology Data Exchange (ETDEWEB)

    Meijers, R.J.

    2007-08-30

    One of the main goals of this thesis was to get more insight into the mechanisms driving the growth of nitride nanowires by plasma-assisted molecular beam epitaxy (PA-MBE). The influence of the group-III and group-V flux as well as the substrate temperature T{sub sub} has been studied leading to the conclusion that the III-V ratio determines the growth mode. Ga desorption limits the temperature range to grow GaN nanowires and dissociation of InN is the limiting factor for InN nanowire growth. A reduction of the surface diffusivity on polar surfaces under N-rich conditions explains the anisotropic growth. Growth kinetics of the nanowires show that there are two important contributions to the growth. The first is growth by direct impingement and its contribution is independent of the nanowire diameter. The second contribution comes from atoms, which absorb on the substrate or wire sidewalls and diffuse along the sidewalls to the top of the wire, which acts as an effective sink for the adatoms due to a reduced surface mobility on the polar top of the wires. This diffusion channel, which is enhanced at higher T{sub sub}, becomes more significant for smaller wire diameters, because its contribution scales like 1/d. Experiments with an interruption of the growth and sharp interfaces in TEM images of heterostructures show that the suggestion in literature of a droplet-mediated PA-MBE nitride growth has to be discarded. Despite a thin amorphous silicon nitride wetting layer on the substrate surface, both GaN and InN nanowires grow in the wurtzite structure and epitaxially in a one-to-one relation to the Si(111) substrate surface. There is no evidence for cubic phases. TEM images and optical studies display a high crystalline and optical quality of GaN and InN nanowires. The substrate induces some strain in the bottom part of the nanowires, especially in InN due to the lower T{sub sub} than for GaN, which is released without the formation of dislocations. Only some stacking

  18. The evaluation of MiL-Lx and Hybrid III Leg using Hybrid III and EUROSID2-re Anthropomorphic Test Devices

    CSIR Research Space (South Africa)

    Pandelani, T

    2012-09-01

    Full Text Available the standard in automotive testing until the Hybrid III family of ATDs was introduced in 1987. The Hybrid III addressed deficiencies of the Hybrid II, mainly in the area of the neck performance and provided improved bio-fidelity. The Hybrid III ATD also... used a curved spine which better represented the occupant in a sitting position, as opposed to the original Hybrid II straight spine. The Hybrid III is still the standard in automotive crash testing; however, newer specialized ATDs...

  19. Electrochemical aspects of ionic liquids

    CERN Document Server

    Ohno, Hiroyuki

    2011-01-01

    The second edition is based on the original book, which has been revised, updated and expanded in order to cover the latest information on this rapidly growing field. The book begins with a description of general and electrochemical properties of ionic liquids and continues with a discussion of applications in biochemistry, ionic devices, functional design and polymeric ionic liquids. The new edition includes new chapters on Li ion Batteries and Actuators, as well as a revision of existing chapters to include a discussion on purification and the effects of impurities, adsorption of ionic liqui

  20. Extraction of Am(III) using novel solvent systems containing a tripodal diglycolamide ligand in room temperature ionic liquids: a 'green' approach for radioactive waste processing

    NARCIS (Netherlands)

    Sengupta, A; Mohapatra, P.K.; Iqbal, M.; Verboom, Willem; Huskens, Jurriaan; Godbole, S.V.

    2012-01-01

    Extraction of Am3+ from acidic feed solutions was investigated using novel solvent systems containing a tripodal diglycolamide (T-DGA) in three room temperature ionic liquids (RTIL), viz. [C4mim][NTf2], [C6mim][NTf2] and [C8mim][NTf2]. Compared to the results obtained with N,N,N′,N′-tetra-n-octyl

  1. Lanthanide-mediated organic synthesis : lanthanide(III) compounds as Lewis acid catalysts and cerium(IV) compounds as reagents for reactions in ionic liquids

    OpenAIRE

    Deleersnyder, Karen

    2007-01-01

    In this PhD project, new procedures were investigated for various important organic reactions. Nowadays, organic procedures should not only result in high reaction yields and purity but moreover they should be designed to be environmentally friendly as well. Therefore, a proper choice of catalyst and solvent is an important aspect. In this study, greener solvents such as ionic liquids, water and rather unhazardous organic solvents were used. Moreover, this PhD research was focused on the ...

  2. The influence of agitation sequence and ionic strength on in vitro drug release from hypromellose (E4M and K4M) ER matrices--the use of the USP III apparatus.

    Science.gov (United States)

    Asare-Addo, Kofi; Kaialy, Waseem; Levina, Marina; Rajabi-Siahboomi, Ali; Ghori, Mohammed U; Supuk, Enes; Laity, Peter R; Conway, Barbara R; Nokhodchi, Ali

    2013-04-01

    Theophylline extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC) E4M and K4M were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The objectives of this study were to evaluate the effects of systematic agitation, ionic strength and pH on the release of theophylline from the gel forming hydrophilic polymeric matrices with different methoxyl substitution levels. Tribo-electric charging of hypromellose, theophylline and their formulated blends containing E4M and K4M grades has been characterised, along with quantitative observations of flow, compression behaviour and particle morphology. Agitations were studied at 5, 10, 15, 20, 25, 30 dips per minute (dpm) and also in the ascending and descending order in the dissolution vials. The ionic concentration strength of the media was also varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. To study the effect of ionic strength on the hydrophilic matrices, agitation was set at 20 dpm. The charge results on individual components imply that the positively charged particles have coupled with the negatively charged particles to form a stable ordered mixture which is believed to result in a more homogeneous and stable system. The particle shape analysis showed the HPMC K4M polymer to have a more irregular morphology and a rougher surface texture in comparison to the HPMC E4M polymer, possibly a contributory factor to the gelation process. The results showed gelation occurred quicker for the K4M tablet matrices. Drug release increased with increased agitation. This was more pronounced for the E4M tablet matrices. The ionic strength also had more of an effect on the drug release from the E4M matrices. The experiments highlighted the resilience of the K4M matrices in comparison with the E4M matrices. The results thus show that despite similar viscosities of

  3. Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices

    Science.gov (United States)

    Li, Guoqiang; Wang, Wenliang; Yang, Weijia; Wang, Haiyan

    2015-11-01

    Recently, pulsed laser deposition (PLD) technology makes viable the epitaxial growth of group III-nitrides on thermally active substrates at low temperature. The precursors generated from the pulsed laser ablating the target has enough kinetic energy when arriving at substrates, thereby effectively suppressing the interfacial reactions between the epitaxial films and the substrates, and eventually makes the film growth at low temperature possible. So far, high-quality group III-nitride epitaxial films have been successfully grown on a variety of thermally active substrates by PLD. By combining PLD with other technologies such as laser rastering technique, molecular beam epitaxy (MBE), and metal-organic chemical vapor deposition (MOCVD), III-nitride-based light-emitting diode (LED) structures have been realized on different thermally active substrates, with high-performance LED devices being demonstrated. This review focuses on the epitaxial growth of group III-nitrides on thermally active substrates by PLD and their use in the development of LED devices. The surface morphology, interfacial property between film and substrate, and crystalline quality of as-grown group III-nitride films by PLD, are systematically reviewed. The corresponding solutions for film homogeneity on large size substrates, defect control, and InGaN films growth by PLD are also discussed in depth, together with introductions to some newly developed technologies for PLD in order to realize LED structures, which provides great opportunities for commercialization of LEDs on thermally active substrates.

  4. Learning Ionic

    CERN Document Server

    Ravulavaru, Arvind

    2015-01-01

    This book is intended for those who want to learn how to build hybrid mobile applications using Ionic. It is also ideal for people who want to explore theming for Ionic apps. Prior knowledge of AngularJS is essential to complete this book successfully.

  5. The Effect of Temperature and Ionic Strength on the Oxidation of Iodide by Iron(III) : A Clock Reaction Kinetic Study

    NARCIS (Netherlands)

    Bauer, Jurica; Tomisic, Vladislav; Vrkljan, Petar B. A.

    2012-01-01

    A laboratory exercise has recently been reported in which the students use the initial rates method based on the clock reaction approach to deduce the rate law and propose a reaction mechanism for the oxidation of iodide by iron(III) ions. The same approach is used in the exercise proposed herein; t

  6. Experimental determination of water activity for binary aqueous cerium(III) ionic solutions: application to an assessment of the predictive capability of the binding mean spherical approximation model.

    Science.gov (United States)

    Ruas, Alexandre; Simonin, Jean-Pierre; Turq, Pierre; Moisy, Philippe

    2005-12-08

    This work is aimed at a description of the thermodynamic properties of actinide salt solutions at high concentration. The predictive capability of the binding mean spherical approximation (BIMSA) theory to describe the thermodynamic properties of electrolytes is assessed in the case of aqueous solutions of lanthanide(III) nitrate and chloride salts. Osmotic coefficients of cerium(III) nitrate and chloride were calculated from other lanthanide(III) salts properties. In parallel, concentrated binary solutions of cerium nitrate were prepared in order to measure experimentally its water activity and density as a function of concentration, at 25 degrees C. Water activities of several binary solutions of cerium chloride were also measured to check existing data on this salt. Then, the properties of cerium chloride and cerium nitrate solutions were compared within the BIMSA model. Osmotic coefficient values for promethium nitrate and promethium chloride given by this theory are proposed. Finally, water activity measurements were made to examine the fact that the ternary system Ce(NO3)3/HNO3/H2O and the quaternary system Ce(NO3)3/HNO3/N2H5NO3/H2O may be regarded as "simple solutions" (in the sense of Zdanovskii and Mikulin).

  7. Effect of low temperature anneals and nonthermal treatments on the properties of gap fill oxides used in SiGe and III-V devices

    Science.gov (United States)

    Ryan, E. Todd; Morin, Pierre; Madan, Anita; Mehta, Sanjay

    2016-07-01

    Silicon dioxide is used to electrically isolate CMOS devices such as fin field effect transistors by filling gaps between the devices (also known as shallow trench isolation). The gap fill oxide typically requires a high temperature anneal in excess of 1000 °C to achieve adequate electrical properties and oxide densification to make the oxide compatible with subsequent fabrication steps such as fin reveal etch. However, the transition from Si-based devices to high mobility channel materials such as SiGe and III-V semiconductors imposes more severe thermal limitations on the processes used for device fabrication, including gap fill oxide annealing. This study provides a framework to quantify and model the effect of anneal temperature and time on the densification of a flowable silicon dioxide as measured by wet etch rate. The experimental wet etch rates allowed the determination of the activation energy and anneal time dependence for oxide densification. Dopant and self-diffusion can degrade the channel material above a critical temperature. We present a model of self-diffusion of Ge and Si in SiGe materials. Together these data allowed us to map the thermal process space for acceptable oxide wet etch rate and self-diffusion. The methodology is also applicable to III-V devices, which require even lower thermal budget. The results highlight the need for nonthermal oxide densification methods such as ultraviolet (UV) and plasma treatments. We demonstrate that several plasma treatments, in place of high temperature annealing, improved the properties of flowable oxide. In addition, UV curing prior to thermal annealing enables acceptable densification with dramatically reduced anneal temperature.

  8. Transformation of Biopharmaceutical Classification System Class I and III Drugs Into Ionic Liquids and Lipophilic Salts for Enhanced Developability Using Lipid Formulations.

    Science.gov (United States)

    Williams, Hywel D; Ford, Leigh; Lim, Shea; Han, Sifei; Baumann, John; Sullivan, Hannah; Vodak, David; Igonin, Annabel; Benameur, Hassan; Pouton, Colin W; Scammells, Peter J; Porter, Christopher J H

    2017-05-23

    Higher lipid solubility of lipophilic salt forms creates new product development opportunities for high-dose liquid-filled capsules. The purpose of this study is to determine if lipophilic salts of Biopharmaceutical Classification System (BCS) Class I amlodipine and BCS Class III fexofenadine, ranitidine, and metformin were better lipid formulation candidates than existing commercial salts. Lipophilic salts were prepared from lipophilic anions and commercial HCl or besylate salt forms, as verified by (1)H-NMR. Thermal properties were assessed by differential scanning calorimetry and hot-stage microscopy. X-ray diffraction and polarized light microscopy were used to confirm the salt's physical form. All lipophilic salt forms were substantially more lipid-soluble (typically >10-fold) when compared to commercial salts. For example, amlodipine concentrations in lipidic excipients were limited to 100 mg/g when using the docusate salt. Higher lipid solubility of the lipophilic salts of each drug translated to higher drug loadings in lipid formulations. In vitro tests showed that lipophilic salts solubilized in a lipid formulation resulted in dispersion behavior that was at least as rapid as the dissolution rates of conventional salts. This study confirmed the applicability of forming lipophilic salts of BCS I and III drugs to promote the utility of lipid-based delivery systems. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  9. Three-dimensional computed tomographic evaluation of Le Fort III distraction osteogenesis with an external device in syndromic craniosynostosis.

    Science.gov (United States)

    Wery, M F; Nada, R M; van der Meulen, J J; Wolvius, E B; Ongkosuwito, E M

    2015-03-01

    There is little anteroposterior growth of the midface in patients with syndromic craniosynostosis who are followed up over time without intervention. A Le Fort III with distraction osteogenesis can be done to correct this. This is a controlled way in which to achieve appreciable stable advancement of the midface without the need for bone grafting, but the vector of the movement is not always predictable. The purpose of this study was to evaluate the 3-dimensional effect of Le Fort III distraction osteogenesis with an external frame. Ten patients (aged 7-19 years) who had the procedure were included in the study. The le Fort III procedure and the placement of the external frame were followed by an activation period and then a 3-month retention period. Computed tomographic (CT) images taken before and after operation were converted and loaded into 3-dimensional image rendering software and compared with the aid of a paired sample t test and a colour-coded qualitative analysis. Comparison of the CT data before and after distraction indicated that the amount of midface advancement was significant. Le Fort III distraction osteogenesis is an effective way to advance the midface. However, the movement during osteogenesis is not always exactly in the intended direction, and a secondary operation is often necessary. Three-dimensional evaluation over a longer period of time is necessary.

  10. Ionic thermoelectric gating organic transistors

    Science.gov (United States)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (∼100 μV K−1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (∼10,000 μV K−1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins. PMID:28139738

  11. Ionic thermoelectric gating organic transistors

    Science.gov (United States)

    Zhao, Dan; Fabiano, Simone; Berggren, Magnus; Crispin, Xavier

    2017-01-01

    Temperature is one of the most important environmental stimuli to record and amplify. While traditional thermoelectric materials are attractive for temperature/heat flow sensing applications, their sensitivity is limited by their low Seebeck coefficient (~100 μV K-1). Here we take advantage of the large ionic thermoelectric Seebeck coefficient found in polymer electrolytes (~10,000 μV K-1) to introduce the concept of ionic thermoelectric gating a low-voltage organic transistor. The temperature sensing amplification of such ionic thermoelectric-gated devices is thousands of times superior to that of a single thermoelectric leg in traditional thermopiles. This suggests that ionic thermoelectric sensors offer a way to go beyond the limitations of traditional thermopiles and pyroelectric detectors. These findings pave the way for new infrared-gated electronic circuits with potential applications in photonics, thermography and electronic-skins.

  12. Large-signal characterizations of DDR IMPATT devices based on group III-V semiconductors at millimeter-wave and terahertz frequencies

    Science.gov (United States)

    Acharyya, Aritra; Mallik, Aliva; Banerjee, Debopriya; Ganguli, Suman; Das, Arindam; Dasgupta, Sudeepto; Banerjee, J. P.

    2014-08-01

    Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on group III-V semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A comparative study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.

  13. A Thermodynamic Model for Acetate, Lactate, and Oxalate Complexation with Am(III), Th(IV), Np(V), and U(VI) Valid to High Ionic Strength

    Energy Technology Data Exchange (ETDEWEB)

    Bynaum, R.V.; Free, S.J.; Moore, R.C.

    1999-01-15

    The organic ligands acetate, lactate, oxalate and EDTA have been identified as components of wastes targeted for disposal in the Waste Isolation Pilot Plant (WIPP) located in Southeastern New Mexico. The presence of these ligands is of concern because complexation of the actinides with the ligands may increase dissolved actinide concentrations and impact chemical retardation during transport. The current work considers the complexation of Am(III), Th (IV), Np(V), and U(W) with two of the organic ligands, acetate and lactate, in NaCl media from dilute through high concentration. A thermodynamic model for actinide complexation with the organic ligands has been developed based on the Pitzer activity coefficient formalism and the Harvie-Moller-Weare, Felmy-Weare database for describing brine evaporite systems. The model was parameterized using first apparent stability constant data from the literature. Because of complexation of other metal ions (Fe, Mg, Ni, Pb, etc.) present in the WIPP disposal room with the organic ligands, preliminary results from model calculations indicate the organic ligands do not significantly increase dissolved actinide concentrations.

  14. Monitoring corrosion and corrosion control of iron in HCl by non-ionic surfactants of the TRITON-X series - Part III. Immersion time effects and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Mohammed A., E-mail: maaismail@yahoo.co [Materials and Corrosion Lab (MCL), Department of Chemistry, Faculty of Science, Taif University, 888 Hawaiya, Taif (Saudi Arabia); Department of Chemistry, Faculty of Science, Ain Shams University, 11566 Abbassia, Cairo (Egypt); Ahmed, M.A. [Physics Department, Faculty of Science, Taif University, 888 Hawaiya, Taif (Saudi Arabia); Arida, H.A. [Materials and Corrosion Lab (MCL), Department of Chemistry, Faculty of Science, Taif University, 888 Hawaiya, Taif (Saudi Arabia); Kandemirli, Fatma [Nigde University, Department of Chemistry, 51240 Nigde (Turkey); Saracoglu, Murat [Faculty of Education, Erciyes University, 38039 Kayseri (Turkey); Arslan, Taner [Department of Chemistry, Eskisehir Osmangazi University, 26480 Eskisehir (Turkey); Basaran, Murat A. [Nigde University, Department of Mathematics, 51240 Nigde (Turkey)

    2011-05-15

    Graphical abstract: . Display Omitted Research highlights: The inhibition effect of TX-100, TX-165 and TX-305 on iron corrosion in 1.0 M HCl was studied. TX-305 inhibited iron corrosion more effectively than TX-100 and TX-165. In most cases, inhibition efficiency increased with time during the first 60 min of immersion, then decreased. Calculated quantum chemical parameters confirmed the experimental inhibition efficiencies of the tested surfactants. - Abstract: The inhibition performance of three selected non-ionic surfactants of the TRITON-X series, namely TRITONX-100 (TX-100), TRITON-X-165 (TX-165) and TRITON-X-305 (TX-305), on the corrosion of iron was studied in 1.0 M HCl solutions as a function of inhibitor concentration (0.01-0.20 g L{sup -1}) and immersion time (0.0-8 h) at 298 K. Measurements were conducted based on Tafel polarization, LPR and impedance studies. At high frequencies, the impedance spectrum showed a depressed capacitive loop in the complex impedance plane, whose diameter is a function of the immersion time and the type and concentration of the introduced surfactant. In all cases, an inductive loop was observed in the low frequency and this could be attributed to the adsorption behavior. The inhibition efficiency increased with immersion time, reached a maximum and then decreased. This was attributed to the orientation change of adsorbed surfactant molecules. TX-305 inhibited iron corrosion more effectively than TX-100 and TX-165. The frontier orbital energies, the energy gap between frontier orbitals, dipole moments ({mu}), charges on the C and O atoms, the polarizabilities, and the quantum chemical descriptors were calculated. The quantum chemical calculation results inferred that for the HOMO representing the condensed Fukui function for an electrophilic attack (f{sub k}{sup +}), the contributions belong to the phenyl group and the oxygen atom attached to the phenyl group for each tested surfactant. Quantitative structure

  15. Metal migration processes in homo- and heterobimetallic bismuth(III)-lead(II) porphyrin complexes: emergence of allosteric Newton's cradle-like devices.

    Science.gov (United States)

    Najjari, Btissam; Le Gac, Stéphane; Roisnel, Thierry; Dorcet, Vincent; Boitrel, Bernard

    2012-09-26

    Metal ion migration in a bis-strapped porphyrin ligand with overhanging carboxylate groups has been investigated in solution. Two types of homobimetallic complexes are generated with Pb(II) and Bi(III) cations, which stand on both sides of the macrocycle: (i) a dissymmetric complex with one cation bound to the porphyrin N core and the other cation hung over the N core through bonding with a carboxylate of a strap; (ii) a C(2)-symmetric complex with both cations coordinated to the N core and to the carboxylate groups of the straps. Variable-temperature NMR studies and 2D rotational Overhauser effect spectroscopy NMR experiments have shown that in the former dissymmetric complexes, the two cations undergo a coupled intramolecular migration resulting in exchange of their coordination modes. Such complexes constitute active states of Newton's cradle-like devices (NCDs), with the ion migration rate depending on the lability of the metal-ligand interactions [Pb(II) faster than Bi(III) NCDs]. On the other hand, the C(2)-symmetric complexes constitute either an inactive state [with Pb(II)] or a resting state [with Bi(III)] of an NCD, since they correspond respectively to a precursor or an intermediate in the motion of the cations. The NCDs are under both allosteric and acid-base control: (i) with Pb(II), the addition of an allosteric effector such as an acetate anion to the medium allows the conversion of the symmetric form to the dissymmetric one, thus triggering the Newton's cradle-like motion of the cations; (ii) with Bi(III), a lifted state was converted to a resting one by the addition of protons and then restored by the addition of a base. As an extension to nondegenerate systems, a heterobimetallic Bi(III)-Pb(II) complex was selectively obtained, and it constitutes a frozen lifted state of a dissymmetric NCD. All of these homo- and hetero-NCDs could be successively formed by selective metal ion exchange. These unique findings open the way to novel tristable devices.

  16. Optimization of a carbon-based hybrid energy storage device with cerium (III) sulfate as redox electrolyte

    Science.gov (United States)

    Díaz, Patricia; González, Zoraida; Santamaría, Ricardo; Granda, Marcos; Menéndez, Rosa; Blanco, Clara

    2016-03-01

    The electrochemical performance of a carbon-based hybrid energy storage system, with Ce2(SO4)3/H2SO4 as inorganic redox electrolyte, was enhanced by optimizing several parameters of the device. A mass balance of the two electrodes forming the system together with the selection of a suitable activated carbon as negative electrode allowed the cell voltage to be increased up to 1.9 V. In addition, the use of a cation-exchange membrane significantly enhanced the electrochemical performance of the system by minimizing secondary reactions of cerium ions on the negative electrode. The optimized device reached energy and power density values up to ∼20 W h kg-1 and 524 W kg-1 respectively. Moreover, the system showed a good long-term electrochemical performance over 20,000 cycles.

  17. A Model of Numerical Calculation of Conductivity for III-V MBE Epilayers Using a Hall Device

    Directory of Open Access Journals (Sweden)

    Andrzej Wolkenberg

    2013-01-01

    Full Text Available An electrical conduction versus temperature model using a Hall device was developed. In the case of InAs, InGaAs, and GaAs MBE epilayers, the prediction agrees well with the experimental results. Herein, we explain here how these calculated fractions of total conductivity describe the measured values. The method allows for the calculation of the carrier concentration and mobility of each component of a multicarrier system. The extracted concentrations are used to characterise the different components of charge transport in the active layer. The conductance values G [S] of these components of charge transport were obtained. Also the scattering events for the investigated samples are presented. The analysis of the experimental results for three semiconductor compositions and different concentrations demonstrates the utility of our method in comparing the conductance of each component of the multilayered system as a function of temperature.

  18. Spectrophotometric and pH-Metric Studies of Ce(III, Dy(III, Gd(III,Yb(III and Pr(III Metal Complexes with Rifampicin

    Directory of Open Access Journals (Sweden)

    A. N. Sonar

    2011-01-01

    Full Text Available The metal-ligand and proton-ligand stability constant of Ce(III, Dy(III, Gd(III,Yb(III and Pr(III metals with substituted heterocyclic drug (Rifampicin were determined at various ionic strength by pH metric titration. NaClO4 was used to maintain ionic strength of solution. The results obtained were extrapolated to the zero ionic strength using an equation with one individual parameter. The thermodynamic stability constant of the complexes were also calculated. The formation of complexes has been studied by Job’s method. The results obtained were of stability constants by pH metric method is confirmed by Job’s method.

  19. Energy audit of three energy-conserving devices in a steel industry demonstration program. Task III. GTE high temperature recuperation

    Energy Technology Data Exchange (ETDEWEB)

    Holden, F.C.; Hoffman, A.O.; Lownie, H.W.

    1983-06-01

    The Office of Industrial Programs of the Department of Energy has undertaken a program to demonstrate to industry the benefits of installing various energy-conserving devices and equipment. This report presents results on one of those systems, a high-temperature ceramic recuperator designed and manufactured by Sylvania Chemical and Metallurgical Division, GTE Products Corporation of Towanda, Pennsylvania. The ceramic cross-flow recuperator unit recovers waste heat from the hot combustion gases and delivers preheated air to high-temperature burners of various manufacture. Of the 38 host site installations included in the program, sufficient operating data were obtained from 28 sites to evaluate the benefits in terms of energy and economic savings that can be achieved. Performance and cost data are analyzed and presented for those 28 installations, which covered a variety of applications, sizes, and industry types. Except for 5 sites where unusual operating or data-collection problems were encountered, the improvements in performance of the recuperated furnaces equalled or exceeded estimates; the average of the total fuel savings for these 23 sites was 44.0 percent, some portion of which resulted from furnace improvements other than recuperation. Payback times were calculated for both total costs and for recuperator-related costs, using a cumulative annual after-tax cash flow method which includes tax investment credits, estimates of general and fuel-price inflation, and maintenance costs.

  20. Conductance Modulation across the Metal-Insulator Transition in Single Nanowire Devices of doped-VO2 Gated with Ionic Liquid

    Science.gov (United States)

    Stabile, Adam; Whittaker, Luisa; Banerjee, Sarbajit; Sambandamurthy, G.

    2013-03-01

    Studies of the effects of charge modulation in VO2 systems may provide useful insights into the microscopic mechanisms behind its metal-insulator transition (MIT). Recently, ionic liquid (IL) has become a popular material for gating nanodevices due to its superior charge accumulation capabilities. Thus, using IL to gate single nanowires of W-doped-VO2, we systematically study the modulation of electrical transport across the temperature-driven and voltage-driven MIT as a function of gate voltage. We report the manifestation of hysteresis loops, which show an unprecedented modulation of resistance and current by as large as 20%. Moreover, we show that the largest modulation loop coincides with the largest changes in resistance across the temperature-driven MIT suggesting that the memory behavior in VO2 and its MIT are closely linked. Similar behavior is also observed across the voltage-driven MIT. These studies lay the ground work for an alternative approach to understanding the mechanisms behind the MIT in VO2 systems when driven by different external parameters.

  1. Applications of ionic liquids in polymer science and technology

    CERN Document Server

    2015-01-01

    This book summarizes the latest knowledge in the science and technology of ionic liquids and polymers in different areas. Ionic liquids (IL) are actively being investigated in polymer science and technology for a number of different applications. In the first part of the book the authors present the particular properties of ionic liquids as speciality solvents. The state-of-the art in the use of ionic liquids in polymer synthesis and modification reactions including polymer recycling is outlined. The second part focuses on the use of ionic liquids as speciality additives such as plasticizers or antistatic agents.  The third part examines the use of ionic liquids in the design of functional polymers (usually called polymeric ionic liquids (PIL) or poly(ionic liquids)). Many important applications in diverse scientific and industrial areas rely on these polymers, like polymer electrolytes in electrochemical devices, building blocks in materials science, nanocomposites, gas membranes, innovative anion sensitive...

  2. Study of Effect of Variation of Ionic Strength of the Medium on Velocity Constant of Ru(Iii Catalyzed Oxidation of Hydroxy Benzoic Acids by Chloramine-T in Acidic Medium

    Directory of Open Access Journals (Sweden)

    Dr. Parmod Kumar

    2014-01-01

    Full Text Available In the present study the effect of variation of ionic strength of the medium on rate of oxidation of hydroxy benzoic acids as its effect provides some clues regarding the nature of reactive species involved in the rate determining step. In order to realize the above aim the experiments has been carried out which ultimately concluded that ionic strength variation does not change the reaction velocity constant significantly.

  3. A method for establishing class III medical device equivalence: sodium hyaluronate (GenVisc 850 for the treatment of knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Doros G

    2016-07-01

    Full Text Available Gheorghe Doros,1 Philip T Lavin,2 Michael Daley,3 Larry E Miller4 1School of Public Health, Boston University, Boston, 2Lavin Consulting LLC, Framingham, MA, 3OrthogenRx Inc., Doylestown, PA, 4Miller Scientific Consulting, Inc., Asheville, NC, USA Abstract: Although the concept of equivalence for drugs (generics and biologics (biosimilars has been readily adopted, the concept of equivalence or indistinguishable characteristics for class III medical devices has yet to be specifically addressed regarding a defined regulatory approval process in the US. In September 2015, GenVisc 850® (sodium hyaluronate, a hyaluronic acid approved for the treatment of knee osteoarthritis, was approved by the US Food and Drug Administration (FDA based upon indistinguishable characteristics in comparison to an approved branded hyaluronic acid (Supartz®/Supartz FX™. The purpose of this paper is to review the methodology and report the main outcomes used to demonstrate clinical comparability of GenVisc 850 with Supartz/Supartz FX. The FDA approval was collectively attained using prospectively defined methods for preclinical, physical, and chemical testing, as well as noninferiority in clinical performance comparisons. Evidence from five randomized controlled studies of Supartz/Supartz FX vs saline control injections (used for Supartz approval, two randomized controlled trials of GenVisc 850 vs saline control injections, and one randomized controlled study of GenVisc 850 vs Supartz/Supartz FX provided evidence of safety for GenVisc 850. Efficacy was further assessed based on assessment of the same Supartz studies and three prospectively identified GenVisc 850 studies. A Bayesian network meta-analysis was used to demonstrate that the clinical efficacy of GenVisc 850 was noninferior to Supartz/Supartz FX and superior to saline control. Overall, safety of GenVisc 850 was similar to that of Supartz/Supartz FX and saline control injections, while efficacy of GenVisc 850

  4. Ionic Liquids in Lithium-Ion Batteries.

    Science.gov (United States)

    Balducci, Andrea

    2017-04-01

    Lithium-ion batteries are among the most widespread energy storage devices in our society. In order to introduce these devices in new key applications such as transportation, however, their safety and their operative temperature range need to be significantly improved. These improvements can be obtained only by developing new electrolytes. Ionic liquids are presently considered among the most attractive electrolytes for the development of advanced and safer lithium-ion batteries. In this manuscript, the use of various types of ionic liquids, e.g. aprotic and protic, in lithium-ion batteries is considered. The advantages and the limits associated to the use of these innovative electrolytes are critically analysed.

  5. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  6. Electronic and Ionic Transport Dynamics in Organolead Halide Perovskites.

    Science.gov (United States)

    Li, Dehui; Wu, Hao; Cheng, Hung-Chieh; Wang, Gongming; Huang, Yu; Duan, Xiangfeng

    2016-07-26

    Ion migration has been postulated as the underlying mechanism responsible for the hysteresis in organolead halide perovskite devices. However, the electronic and ionic transport dynamics and how they impact each other in organolead halide perovskites remain elusive to date. Here we report a systematic investigation of the electronic and ionic transport dynamics in organolead halide perovskite microplate crystals and thin films using temperature-dependent transient response measurements. Our study reveals that thermally activated ionic and electronic conduction coexist in perovskite devices. The extracted activation energies suggest that the electronic transport is easier, but ions migrate harder in microplates than in thin films, demonstrating that the crystalline quality and grain boundaries can fundamentally modify electronic and ionic transport in perovskites. These findings offer valuable insight on the electronic and ionic transport dynamics in organolead halide perovskites, which is critical for optimizing perovskite devices with reduced hysteresis and improved stability and efficiency.

  7. The Development of a Diagnostic-Prescriptive Tool for Undergraduates Seeking Information for a Social Science/Humanities Assignment. III. Enabling Devices.

    Science.gov (United States)

    Cole, Charles; Cantero, Pablo; Ungar, Andras

    2000-01-01

    This article focuses on a study of undergraduates writing an essay for a remedial writing course that tested two devices, an uncertainty expansion device and an uncertainty reduction device. Highlights include Kuhlthau's information search process model, and enabling technology devices for the information needs of information retrieval system…

  8. Supported ionic liquid membrane in membrane reactor

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, M.; Dharmawijaya, P. T.; Wenten, I. G.

    2017-01-01

    Membrane reactor is a device that integrates membrane based separation and (catalytic) chemical reaction vessel in a single device. Ionic liquids, considered to be a relatively recent magical chemical due to their unique properties, have a large variety of applications in all areas of chemical industries. Moreover, the ionic liquid can be used as membrane separation layer and/or catalytically active site. This paper will review utilization of ionic liquid in membrane reactor related applications especially Fischer-Tropsch, hydrogenation, and dehydrogenation reaction. This paper also reviews about the capability of ionic liquid in equilibrium reaction that produces CO2 product so that the reaction will move towards the product. Water gas shift reaction in ammonia production also direct Dimethyl Ether (DME) synthesis that produces CO2 product will be discussed. Based on a review of numerous articles on supported ionic liquid membrane (SILM) indicate that ionic liquids have the potential to support the process of chemical reaction and separation in a membrane reactor.

  9. Measurement of linear energy transfer distribution at CERN-EU high- energy reference field facility with real-time radiation monitoring device III and its comparison with dosimetric telescope

    CERN Document Server

    Doke, T; Hara, K; Hayashi, T; Kikuchi, J; Suzuki, S; Terasawa, K

    2004-01-01

    The distributions of linear energy transfer for LET (LET/sub water/) in front of the 80-cm-thick concrete side shield at the CERN-EU high- energy reference field (CERF) facility were measured with a Si detector telescope named real-time radiation monitoring device-III (RRMD-III) covered with and without a 1 cm-thick acrylic plate. In these measurements, a difference of about 20% in the absorbed dose between the two LET/sub water/ distributions was observed as a result of protons, deuterons and tritons recoiled by neutrons. The LET/sub water/ distribution obtained using RRMD-III without the 1-cm-thick acrylic plate is compared with lineal energy distributions obtained using the dosimetric telescope (DOSTEL) detector under the same conditions. These dose equivalents are also compared with that obtained using HANDI TEPC which is used as the standard at the CERF facility. (26 refs).

  10. The role of ionic functionality on charge injection processes in conjugated polymers and fullerenes

    Science.gov (United States)

    Weber, Christopher David

    Understanding the fundamental chemistry of conjugated polymers and fullerenes has been the subject of intense research for the last three decades, with the last ten years seeing increased research toward the application of these materials into functional organic electronic devices such as organic photovoltaic devices (OPVs). This field has seen significant advances is cell efficiency in just the last few years (to >10%), in large part due to the development of new donor and acceptor materials, the fine tuning of fabrication parameters to control material nanostructure, as well as the introduction of new interfacial materials such as ionically functionalized conjugated polymers, also known as conjugated polyelectrolytes (CPEs). This dissertation aims to further understand the fundamental chemistry associated with charge injection processes in CPEs and ionically functionalized fullerenes. The role of ionic functionality on electrochemical, chemical, and interfacial charge injection processes is explored. The results presented demonstrate the use of ionic functionality to control the spatial doping profile of a bilayer structure of anionically and cationically functionalized CPEs to fabricate a p-n junction (Chapter II). The role of ionic functionality on chemical charge injection processes is explored via the reaction of polyacetylene and polythiophene based CPEs with molecular oxygen (Chapters III and IV). The results show the dramatic effect of ionic functionality, as well as the specific role of the counterion, on the photooxidative stability of CPEs. The control of reaction pathway via counterion charge density is also explored (Chapter IV) and shows a continuum of reaction pathways based on the charge density of the counter cation. Finally, the role of ionic functionality on interfacial charge injection processes in a functional OPV is explored using a cationically functionalized fullerene derivative (Chapters V and VI). Cell performance increases due to an

  11. Ionic strength and pH effect on the Fe(III)-imidazolate bond in the heme pocket of horseradish peroxidase: an EPR and UV-visible combined approach.

    Science.gov (United States)

    Laurenti, E; Suriano, G; Ghibaudi, E M; Ferrari, R P

    2000-10-01

    The effects of chloride, dihydrogenphosphate and ionic strength on the spectroscopic properties of horseradish peroxidase in aqueous solution at pH=3.0 were investigated. A red-shift (lambda=408 nm) of the Soret band was observed in the presence of 40 mM chloride; 500 mM dihydrogenphosphate or chloride brought about a blue shift of the same band (lambda=370 nm). The EPR spectrum of the native enzyme at pH 3.0 was characterized by the presence of two additional absorption bands in the region around g=6, with respect to pH 6.5. Chloride addition resulted in the loss of these features and in a lower rhombicity of the signal. A unique EPR band at g=6.0 was obtained as a result of the interaction between HRP and dihydrogenphosphate, both in the absence and presence of 40 mM Cl-. We suggest that a synergistic effect of low pH, Cl- and ionic strength is responsible for dramatic modifications of the enzyme conformation consistent with the Fe(II)-His170 bond cleavage. Dihydrogenphosphate as well as high chloride concentrations are shown to display an unspecific effect, related to ionic strength. A mechanistic explanation for the acid transition of HRP, previously observed by Smulevich et al. [Biochemistry 36 (1997) 640] and interpreted as a pure pH effect, is proposed.

  12. Multiplexed ionic current sensing with glass nanopores.

    Science.gov (United States)

    Bell, Nicholas A W; Thacker, Vivek V; Hernández-Ainsa, Silvia; Fuentes-Perez, Maria E; Moreno-Herrero, Fernando; Liedl, Tim; Keyser, Ulrich F

    2013-05-21

    We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores.

  13. III-V microelectronics

    CERN Document Server

    Nougier, JP

    1991-01-01

    As is well known, Silicon widely dominates the market of semiconductor devices and circuits, and in particular is well suited for Ultra Large Scale Integration processes. However, a number of III-V compound semiconductor devices and circuits have recently been built, and the contributions in this volume are devoted to those types of materials, which offer a number of interesting properties. Taking into account the great variety of problems encountered and of their mutual correlations when fabricating a circuit or even a device, most of the aspects of III-V microelectronics, from fundamental p

  14. Impact of gate geometry on ionic liquid gated ionotronic systems

    Science.gov (United States)

    Wong, A. T.; Noh, J. H.; Pudasaini, P. R.; Wolf, B.; Balke, N.; Herklotz, A.; Sharma, Y.; Haglund, A. V.; Dai, S.; Mandrus, D.; Rack, P. D.; Ward, T. Z.

    2017-04-01

    Ionic liquid electrolytes are gaining widespread application as a gate dielectric used to control ion transport in functional materials. This letter systematically examines the important influence that device geometry in standard "side gate" 3-terminal geometries plays in device performance of a well-known oxygen ion conductor. We show that the most influential component of device design is the ratio between the area of the gate electrode and the active channel, while the spacing between these components and their individual shapes has a negligible contribution. These findings provide much needed guidance in device design intended for ionotronic gating with ionic liquids.

  15. Ionic solvents used in ionic polymer transducers, sensors and actuators

    OpenAIRE

    2004-01-01

    Ionic liquids are incorporated into transducers, actuators or sensors which employ the ionic polymer membranes. The ionic liquids have superior electrochemical stability, low viscosity and low vapor pressure. The transducers, actuators and sensors which utilize ionic polymer membranes solvated with ionic liquids have long term air stability. Superior results are achieved when a conductive powder and ionomer mixture is applied to the ionic polymer membrane to form the electrodes during or afte...

  16. Fluidic nanotubes and devices

    Science.gov (United States)

    Yang, Peidong; He, Rongrui; Goldberger, Joshua; Fan, Rong; Wu, Yiying; Li, Deyu; Majumdar, Arun

    2008-04-08

    Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches. A variety of applications are described, such as: nanopores, nanocapillary devices, nanoelectrophoretic, DNA sequence detectors, immunosensors, thermoelectric devices, photonic devices, nanoscale fluidic bioseparators, imaging devices, and so forth.

  17. K-CO on Transition Metals: A Local Ionic Interaction.

    Science.gov (United States)

    1987-05-01

    A-Rli8t 342 K-CO ON TRANSITION METALS- A LOCAL IONIC INTERACTION i/i (U) PENNSYLVANIA UNIV PHILADELPHIA DEPT OF PHYSICS C H PATTERSON ET AL MAY 87 TR...CO on Transition Metals: A Local Ionic Interaction by Charles H. Patterson, Peter A. Schultz, and Richard P. Messmer Abstract Submitted for the...administrator. 87 9 1 011 K-CO on Transition Metalss A Local Ionic Interaction Charles H. Patterson and 0 Peter A. Schultz III Department of Physics (a) D

  18. Modeling of ionic liquids

    Science.gov (United States)

    Tatlipinar, Hasan

    2017-02-01

    Ionic liquids are very important entry to industry and technology. Because of their unique properties they may classified as a new class of materials. IL usually classified as a high temperature ionic liquids (HTIL) and room temperature ionic liquids (RTIL). HTIL are molten salts. There are many research studies on molten salts such as recycling, new energy sources, rare elements mining. RTIL recently become very important in daily life industry because of their "green chemistry" properties. As a simple view ionic liquids consist of one positively charged and one negatively charged components. Because of their Coulombic or dispersive interactions the local structure of ionic liquids emerges. In this presentation the local structural properties of the HTIL are discussed via correlation functions and integral equation theories. RTIL are much more difficult to do modeling, but still general consideration for the modeling of the HTIL is valid also for the RTIL.

  19. 三级综合医院医学装备质量与安全管理指标探讨%Study on Indicators for Quality and Security Administration of Medical Devices in Grade III General Hospitals

    Institute of Scientific and Technical Information of China (English)

    郑理华; 何兴华; 陈宇珂; 丁效军

    2013-01-01

    按照三级综合医院医学装备管理要求,提出质量与安全管理6项指标:大型医疗设备配置许可证以及操作人员上岗证;医学装备管理信息档案完备性及设备标识唯一性;列入国家强检目录的医疗器械定期进行计量检测及计量检定证书有效性;用于急救、生命支持系统的医学装备完好率;医用耗材和试剂的管理指标;医疗器械不良事件监测指标。为顺利通过等级医院评审提供参考。%Six quality and security administration indicators were raised in this paper in accordance with requirements of medical devices management in Grade III general hospitals, which made a distinct deifnition of corresponding requirements and was of great reference value in classiifcation of hospitals in China. These indicators involved the permissions for large medical devices and the licenses for their operators;completeness of the medical devices history record and unique identiifcation for every device;regular calibration and inspection of medical devices listed in the national catalog of mandatory inspection and the certiifcates of calibrations and inspections;the work condition of the ifrst-aid and life supporting medical devices;management indicators of medical consumables and reagents;indicators for adverse event reports of medical devices.

  20. Potentiometric studies on the complex formation of some Ln(III) ions with 4-nitrocatechol

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, B.C.; Dubey, S.N. (Kurukshetra Univ. (India). Dept. of Chemistry)

    1981-07-01

    The interaction of La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Ho(III) and Y(III) with 4-nitrocatechol has been investigated potentiometrically in aqueous medium at 25deg and at ionic strengths of 0.05, 0.1, 0.15 and 0.2M (KNO/sub 3/). The proton-ligand formation constants and metal-ligand formation constants have been calculated using the Calvin-Bjerrum titration technique as modified by Irving and Rossotti. The thermodynamic formation constants have also been determined. The order of stabilities of the lanthanide complexes with the above ligand is found to be: La(III) < Ce(III) approximately Pr(III) < Nd(III) < Sm(III) < Gd(III) < Y(III) < Tb(III) < Dy(III) < Ho(III).

  1. Solvation of uranyl(II) and europium(III) cations and their chloro complexes in a room-temperature ionic liquid. A theoretical study of the effect of solvent "humidity".

    Science.gov (United States)

    Chaumont, Alain; Wipff, Georges

    2004-09-20

    We report a molecular dynamics study of the solvation of the UO2(2+) and Eu3+ cations and their chloro complexes in the [BMI][PF6][H2O] "humid" room-temperature ionic liquid (IL) composed of 1-butyl-3-methylimidazolium+ and PF6- ions and H2O in a 1:1:1 ratio. When compared to the results obtained in dry [BMI][PF6], the present results reveal the importance of water. The "naked" cations form UO2(H2O)5(2+) and Eu(H2O)9(3+) complexes, embedded in a shell of 7 and 8 PF6- anions, respectively. All studied UO2Cln(2-n) and EuCln(3-n) chloro complexes remain stable during the dynamics and coordinate additional H2O molecules in their first shell. UO2Cl4(2-) and EuCl6(3-) are surrounded by an "unsaturated" water shell, followed by a shell of BMI+ cations. According to an energy component analysis, the UO2Cl4(2-) and EuCl6(3-) species, intrinsically unstable toward dissociation, are more stable than their less halogenated analogues in the IL solution, due to the solvation forces. The different chloro species also interact better with the humid than with the dry IL, which hints at the importance of solvent humidity to improve their solubility. Humidity markedly modifies the local ion environment, with major consequences as far as their spectroscopic properties are concerned. We finally compare the aqueous interface of [BMI][PF6] and [OMI][PF6] ionic liquids, demonstrating the importance of imidazolium substituents (N-butyl versus N-octyl) to the nature of the interface and miscibility with water. Copyright 2004 American Chemical Society

  2. Simulation study of 14-nm-gate III-V trigate field effect transistor devices with In1-xGaxAs channel capping layer

    Science.gov (United States)

    Huang, Cheng-Hao; Li, Yiming

    2015-06-01

    In this work, we study characteristics of 14-nm-gate InGaAs-based trigate MOSFET (metal-oxide-semiconductor field effect transistor) devices with a channel capping layer. The impacts of thickness and gallium (Ga) concentration of the channel capping layer on the device characteristic are firstly simulated and optimized by using three-dimensional quantum-mechanically corrected device simulation. Devices with In1-xGaxAs/In0.53Ga0.47As channels have the large driving current owing to small energy band gap and low alloy scattering at the channel surface. By simultaneously considering various physical and switching properties, a 4-nm-thick In0.68Ga0.32As channel capping layer can be adopted for advanced applications. Under the optimized channel parameters, we further examine the effects of channel fin angle and the work-function fluctuation (WKF) resulting from nano-sized metal grains of NiSi gate on the characteristic degradation and variability. To maintain the device characteristics and achieve the minimal variation induced by WKF, the physical findings of this study indicate a critical channel fin angle of 85o is needed for the device with an averaged grain size of NiSi below 4x4 nm2.

  3. Simulation study of 14-nm-gate III-V trigate field effect transistor devices with In1−xGaxAs channel capping layer

    Directory of Open Access Journals (Sweden)

    Cheng-Hao Huang

    2015-06-01

    Full Text Available In this work, we study characteristics of 14-nm-gate InGaAs-based trigate MOSFET (metal-oxide-semiconductor field effect transistor devices with a channel capping layer. The impacts of thickness and gallium (Ga concentration of the channel capping layer on the device characteristic are firstly simulated and optimized by using three-dimensional quantum-mechanically corrected device simulation. Devices with In1−xGaxAs/In0.53Ga0.47As channels have the large driving current owing to small energy band gap and low alloy scattering at the channel surface. By simultaneously considering various physical and switching properties, a 4-nm-thick In0.68Ga0.32As channel capping layer can be adopted for advanced applications. Under the optimized channel parameters, we further examine the effects of channel fin angle and the work-function fluctuation (WKF resulting from nano-sized metal grains of NiSi gate on the characteristic degradation and variability. To maintain the device characteristics and achieve the minimal variation induced by WKF, the physical findings of this study indicate a critical channel fin angle of 85o is needed for the device with an averaged grain size of NiSi below 4x4 nm2.

  4. Steps Towards Industrialization of Cu-III-VI2Thin-Film Solar Cells:Linking Materials/Device Designs to Process Design For Non-stoichiometric Photovoltaic Materials.

    Science.gov (United States)

    Hwang, Huey-Liang; Chang, Hsueh-Hsin; Sharma, Poonam; Letha, Arya Jagadhamma; Shao, Lexi; Zhang, Yafei; Tseng, Bae-Heng

    2016-10-01

    The concept of in-line sputtering and selenization become industrial standard for Cu-III-VI2 solar cell fabrication, but still it's very difficult to control and predict the optical and electrical parameters, which are closely related to the chemical composition distribution of the thin film. The present review article addresses onto the material design, device design and process design using parameters closely related to the chemical compositions. Its variation leads to change in the Poisson equation, current equation, and continuity equation governing the device design. To make the device design much realistic and meaningful, we need to build a model that relates the opto-electrical properties to the chemical composition. The material parameters as well as device structural parameters are loaded into the process simulation to give a complete set of process control parameters. The neutral defect concentrations of non-stoichiometric CuMSe2 (M = In and Ga) have been calculated under the specific atomic chemical potential conditions using this methodology. The optical and electrical properties have also been investigated for the development of a full-function analytical solar cell simulator. The future prospects regarding the development of copper-indium-gallium-selenide thin film solar cells have also been discussed.

  5. Voltage charging enhances ionic conductivity in gold nanotube membranes.

    Science.gov (United States)

    Gao, Peng; Martin, Charles R

    2014-08-26

    Ionically conductive membranes are used in many electrochemical processes and devices, including batteries, fuel cells, and electrolyzers. In all such applications, it is advantageous to use membranes with high ionic conductivity because membrane resistance causes a voltage loss suffered by the cell. We describe here a method for enhancing ionic conductivity in membranes containing small diameter (4 nm) gold nanotubes. This entails making the gold nanotube membrane the working electrode in an electrochemical cell and applying a voltage to the membrane. We show here that voltage charging in this way can increase membrane ionic conductivity by over an order of magnitude. When expressed in terms of the ionic conductivity of the electrolyte, κ, within an individual voltage-charged tube, the most negative applied voltage yielded a κ comparable to that of 1 M aqueous KCl, over 2 orders of magnitude higher than κ of the 0.01 M KCl solution contacting the membrane.

  6. Efficient III-Nitride MIS-HEMT devices with high-κ gate dielectric for high-power switching boost converter circuits

    Science.gov (United States)

    Mohanbabu, A.; Mohankumar, N.; Godwin Raj, D.; Sarkar, Partha; Saha, Samar K.

    2017-03-01

    The paper reports the results of a systematic theoretical study on efficient recessed-gate, double-heterostructure, and normally-OFF metal-insulator-semiconductor high-electron mobility transistors (MIS-HEMTs), HfAlOx/AlGaN on Al2O3 substrate. In device architecture, a thin AlGaN layer is used in the AlGaN graded barrier MIS-HEMTs that offers an excellent enhancement-mode device operation with threshold voltage higher than 5.3 V and drain current above 0.64 A/mm along with high on-current/off-current ratio over 107 and subthreshold slope less than 73 mV/dec. In addition, a high OFF-state breakdown voltage of 1200 V is achieved for a device with a gate-to-drain distance and field-plate length of 15 μm and 5.3 μm, respectively at a drain current of 1 mA/mm with a zero gate bias, and the substrate grounded. The numerical device simulation results show that in comparison to a conventional AlGaN/GaN MIS-HEMT of similar design, a graded barrier MIS-HEMT device exhibits a better interface property, remarkable suppression of leakage current, and a significant improvement of breakdown voltage for HfAlOx gate dielectric. Finally, the benefit of HfAlOx graded-barrier AlGaN MIS-HEMTs based switching devices is evaluated on an ultra-low-loss converter circuit.

  7. III-Nitride, SiC and Diamond Materials for Electronic Devices. Symposium Held April 8-12 1996, San Francisco, California, U.S.A. Volume 423.

    Science.gov (United States)

    1996-12-01

    Baliga, IEEE Electron Device Lett. 10, 455 (1989). 3. M. Bhatnagar and B.J. Baliga, IEEE Trans. Electron Devices, 19 4. T.P. Chow and R. Tyagi, IEEE...Nakamura et al. of Nichia Chemical have achieved InGaN multi-quantum well (MQW) structure blue/violet lasing under pulsed current injection [3]. Although...Among these, p-type ohmic contact is considered one of the most important. According to the I-V characteristics of the Nichia laser, the turn-on

  8. Functional ionic liquids; Funktionelle ionische Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Baecker, Tobias

    2012-07-01

    In the thesis at hand, new functional ionic liquids were investigated. Main focus was attended to their structure property relations and the structural features leading to a decrease of the melting point. New compounds of the type 1-butyl-3-methylimidazolium tris(N,Ndialkyldithiocarbamato) uranylate with variously substituated dithiocarbamato ligands were synthesized and characterized. Ligands with asymmetrical substitution pattern proved to be most suitable for ionic liquid formation. The single-crystal X-ray structures revealed the interactions in the solid state. Here, the first spectroscopic investigation of the U-S bond in sulfur donated uranyl complexes, up to now only observed in single-crystal X-ray structures, is presented, and the participation of the uranium f-orbitals is shown by theoretical calculations. Electrochemical investigations showed the accessibility of the respective U{sup V}O{sub 2}{sup +} compounds. As well, ionic liquids with [FeCl{sub 4}]{sup -} and [Cl{sub 3}FeOFeCl{sub 3}]{sup 2-} as anion were synthesized. Both of these anions contain high-spin Fe(III) centres in distorted tetrahedral environment, but exhibit different magnetic behaviour. The tetrachloroferrates show the usual paramagnetism, the m-oxobis(trichloroferrate) exhibits unexpectedly strong antiferromagnetic coupling, as was observed by NMR experiments and susceptibility measurements. To investigate structure-property relations in functionalized ionic liquids, a set of protic, primary alkylammonium and aprotic, quarternary trimethylalkylammonium based ionic liquids was synthesized, and characterized. The length of the alkyl chain was systematically varied, and all compounds were synthesized with and without hydroxyl group, as well as formate and bis(triflyl)amide salts, aiming at getting insight into the influence of the different structure parts on the respective ionic liquid's properties.

  9. A Medical Delivery Device

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a medical delivery device comprising at least two membrane electrode assembly units each of which comprises three layers: an upper and a lower electrode and a selective ionic conductive membrane provided there-between. At least one of the three layers are shared...

  10. A Medical Delivery Device

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a medical delivery device comprising at least two membrane electrode assembly units each of which comprises three layers: an upper and a lower electrode and a selective ionic conductive membrane provided there-between. At least one of the three layers are shared...

  11. Photophysics of ionic biochromophores

    CERN Document Server

    Brøndsted Nielsen, Steen

    2014-01-01

    This concise guide to studying ionic biochromophores features the first integrated overview of the photophysics of differing classes of biomolecules, from single amino acids to DNA. It includes an appraisal of the latest theories and experimental techniques.

  12. Ionic liquids in tribology.

    Science.gov (United States)

    Minami, Ichiro

    2009-06-24

    Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  13. Ionic Liquids in Tribology

    Directory of Open Access Journals (Sweden)

    Ichiro Minami

    2009-06-01

    Full Text Available Current research on room-temperature ionic liquids as lubricants is described. Ionic liquids possess excellent properties such as non-volatility, non-flammability, and thermo-oxidative stability. The potential use of ionic liquids as lubricants was first proposed in 2001 and approximately 70 articles pertaining to fundamental research on ionic liquids have been published through May 2009. A large majority of the cations examined in this area are derived from 1,3-dialkylimidazolium, with a higher alkyl group on the imidazolium cation being beneficial for good lubrication, while it reduces the thermo-oxidative stability. Hydrophobic anions provide both good lubricity and significant thermo-oxidative stability. The anions decompose through a tribochemical reaction to generate metal fluoride on the rubbed surface. Additive technology to improve lubricity is also explained. An introduction to tribology as an interdisciplinary field of lubrication is also provided.

  14. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  15. Characterization of electronic structure of aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq) for phosphorescent organic light emitting devices

    Science.gov (United States)

    Chu, Ta-Ya; Wu, Yao-Shan; Chen, Jenn-Fang; Chen, Chin H.

    2005-03-01

    The structure of the triplet host material, aluminum (III) bis(2-methyl-8-quninolinato)-4-phenylphenolate (BAlq), has been optimized by density functional theory (DFT) with B3LYP methods to study the electronic distribution of its HOMO and LUMO energy states. Calculated triplet bandgap energy of BAlq is shown to be consistent with the experimental data. By analyzing the partial density states (PDOS) of these ligands contributing to the total density of states (TDOS), it is concluded that the HOMO and LUMO orbitals of BAlq are mainly localized on the 4-phenylphenol and 2-methyl-8-hydroxyquinoline ligands, respectively.

  16. High H- ionic conductivity in barium hydride

    Science.gov (United States)

    Verbraeken, Maarten C.; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T. S.

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H-) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm-1 at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  17. Influence of the ionic liquid cation on the solvent extraction of trivalent rare-earth ions by mixtures of Cyanex 923 and ionic liquids.

    Science.gov (United States)

    Rout, Alok; Binnemans, Koen

    2015-01-21

    Trivalent rare-earth ions were extracted from nitric acid medium by the neutral phosphine oxide extractant Cyanex 923 into ionic liquid phases containing the bis(trifluoromethylsulfonyl)imide anion. Five different cations were considered: 1-butyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, methyltributylammonium, methyltrioctylammonium and trihexyl(tetradecyl)phosphonium. The extraction behavior of neodymium(iii) was investigated as a function of various parameters: pH, extractant concentration, concentration of the neodymium(iii) ion in the aqueous feed and concentration of the salting-out agent. The loading capacity of the ionic liquid phase was studied. The extraction efficiency increased with increasing pH of the aqueous feed solution. The extraction occurred for all ionic liquids via an ion-exchange mechanism and the extraction efficiency could be related to the solubility of the ionic liquid cation in the aqueous phase: high distribution ratios for hydrophilic cations and low ones for hydrophobic cations. Addition of nitrate ions to the aqueous phase resulted in an increase in extraction efficiency for ionic liquids with hydrophobic cations due to extraction of neutral complexes. Neodymium(iii) could be stripped from the ionic liquid phase by 0.5-1.0 M nitric acid solutions and the extracting phase could be reused. The extractability of other rare earths present in the mixture was compared for the five ionic liquids.

  18. Ionic liquids in chemical engineering.

    Science.gov (United States)

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  19. Applications of functionalized ionic liquids

    Institute of Scientific and Technical Information of China (English)

    LI; Xuehui; ZHAO; Dongbin; FEI; Zhaofu; WANG; Lefu

    2006-01-01

    Recent developments of the synthesis and applications of functionalized ionic liquids(including dual-functionalized ionic liquids) have been highlighted in this review. Ionic liquids are attracting attention as alternative solvents in green chemistry, but as more functionalized ILs are prepared, a greater number of applications in increasingly diverse fields are found.

  20. Fun with Ionic Compounds

    Science.gov (United States)

    Logerwell, Mollianne G.; Sterling, Donna R.

    2007-01-01

    Ionic bonding is a fundamental topic in high school chemistry, yet it continues to be a concept that students struggle to understand. Even if they understand atomic structure and ion formation, it can be difficult for students to visualize how ions fit together to form compounds. This article describes several engaging activities that help…

  1. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  2. Vulcanizing machine suppress electrothermal device, cooling device and application development Jining III coal mine%电热式硫化机打压装置、冷却装置研制及应用

    Institute of Scientific and Technical Information of China (English)

    袁向科; 李双忠

    2012-01-01

    In that paper, by introducing the electric - type vulcanizing machine encountered in the vulcanizing joint suppression, cooling problems, de- velopment of a reliable and practical curing pressure from the cooling device to ensure the quality of vulcanized joints.%该文通过分绍电热式硫化机在接头硫化过程中遇到打压、冷却问题,研制一套可靠、实用的硫化打压、冷却装置来保证硫化接头质量。该装置在井下硫化接头中得到了应用,收到良好的效果。

  3. Microwave discharge electrodeless lamps (MDEL). III. A novel tungsten-triggered MDEL device emitting VUV and UVC radiation for use in wastewater treatment.

    Science.gov (United States)

    Horikoshi, Satoshi; Miura, Takashi; Kajitani, Masatsugu; Serpone, Nick

    2008-03-01

    Exposure to low doses of the xenoestrogen bisphenol A (BPA) and to the hormonal 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, an environmental endocrine disruptor, can have serious health consequences such as the induction of mammary gland ductal hyperplasias and carcinoma (LaChapelle et al., Reprod. Toxicol., 2007, 23, 20; Murray et al., Reprod. Toxicol., 2007, 23, 383). To the extent that these toxins are present in wastewaters (Donald et al., Sci. Total Environ. 1999, 231, 173; Brotons et al., Environ. Health Perspect. 1994, 103, 608; Olea et al., Environ. Health Perspect. 1996, 104, 298; Biles et al., J. Agric. Food Chem. 1997, 45, 3541; Markey et al., J. Steroid Biochem. Mol. Biol., 2003, 83, 235), we examined their oxidative destruction in aqueous media by a novel light source. A tungsten-triggered microwave discharge electrodeless lamp (W-MDEL) was fabricated for possible use in wastewater treatment using vacuum UV-transparent quartz in which a tungsten trigger, also embedded in quartz, was attached to the MDEL to aid in the self-ignition of the lamp on irradiation at low microwave power levels. The quantity of mercury gas in the W-MDEL was optimized by monitoring the continuous radiation and peak intensities of the emitted light in the vacuum UV (VUV) and UVC regions. The usefulness of the W-MDEL device was assessed through the degradation of 2,4-D and BPA in air-equilibrated aqueous media and in oxygen-saturated aqueous media. Enhanced degradation of these two xenoestrogenic toxins was achieved by increasing the number of W-MDEL devices while keeping constant the microwave radiation feeding each W-MDEL lamp. This novel lamp provides an additional light source in the photooxidation of environmental contaminants without the need for a metal-oxide photocatalyst. Under our conditions, process dynamics using the W-MDEL light source are greater than with the more conventional photochemical methods that employ low-pressure Hg arc electrode lamps in synthetic

  4. Predictive model for ionic liquid extraction solvents for rare earth elements

    Science.gov (United States)

    Grabda, Mariusz; Oleszek, Sylwia; Panigrahi, Mrutyunjay; Kozak, Dmytro; Eckert, Franck; Shibata, Etsuro; Nakamura, Takashi

    2015-12-01

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF3-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids' ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF3 were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  5. Predictive model for ionic liquid extraction solvents for rare earth elements

    Energy Technology Data Exchange (ETDEWEB)

    Grabda, Mariusz; Oleszek, Sylwia [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Institute of Environmental Engineering of the Polish Academy of Sciences, ul. M. Sklodowskiej-Curie 34, 41-819, Zabrze (Poland); Panigrahi, Mrutyunjay; Kozak, Dmytro; Shibata, Etsuro; Nakamura, Takashi [Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2,1-Katahira, 2-Chome, 980-8577 Sendai (Japan); Eckert, Franck [COSMOlogic GmbH & Co KG, Imbacher Weg 46, 50379 Leverkusen (Germany)

    2015-12-31

    The purpose of our study was to select the most effective ionic liquid extraction solvents for dysprosium (III) fluoride using a theoretical approach. Conductor-like Screening Model for Real Solvents (COSMO-RS), based on quantum chemistry and the statistical thermodynamics of predefined DyF{sub 3}-ionic liquid systems, was applied to reach the target. Chemical potentials of the salt were predicted in 4,400 different ionic liquids. On the base of these predictions set of ionic liquids’ ions, manifesting significant decrease of the chemical potentials, were selected. Considering the calculated physicochemical properties (hydrophobicity, viscosity) of the ionic liquids containing these specific ions, the most effective extraction solvents for liquid-liquid extraction of DyF{sub 3} were proposed. The obtained results indicate that the COSMO-RS approach can be applied to quickly screen the affinity of any rare earth element for a large number of ionic liquid systems, before extensive experimental tests.

  6. Robust and versatile ionic liquid microarrays achieved by microcontact printing

    Science.gov (United States)

    Gunawan, Christian A.; Ge, Mengchen; Zhao, Chuan

    2014-04-01

    Lab-on-a-chip and miniaturized systems have gained significant popularity motivated by marked differences in material performance at the micro-to-nano-scale realm. However, to fully exploit micro-to-nano-scale chemistry, solvent volatility and lack of reproducibility need to be overcome. Here, we combine the non-volatile and versatile nature of ionic liquids with microcontact printing in an attempt to establish a facile protocol for high throughput fabrication of open microreactors and microfluidics. The micropatterned ionic liquid droplets have been demonstrated as electrochemical cells and reactors for microfabrication of metals and charge transfer complexes, substrates for immobilization of proteins and as membrane-free high-performance amperometric gas sensor arrays. The results suggest that miniaturized ionic liquid systems can be used to solve the problems of solvent volatility and slow mass transport in viscous ionic liquids in lab-on-a-chip devices, thus providing a versatile platform for a diverse number of applications.

  7. Ionic Channels in Thunderclouds

    Science.gov (United States)

    Losseva, T. V.; Fomenko, A. S.; Nemtchinov, I. V.

    2007-12-01

    We proceed to study the formation and propagation of ionic channels in thunderclouds in the framework of the model of the corona discharge wave propagation (Fomenko A.S., Losseva T.V., Nemtchinov I.V. The corona discharge waves in thunderclouds and formation of ionic channels // 2004 Fall Meeting. EOS Trans. AGU. 2004. V. 85. ¹ 47. Suppl. Abstract AE23A-0835.). In this model we proposed a hypothesis that the structure of a thundercloud becomes nonuniform due to corona discharge on the drops and ice particles and formation of ionic channels with higher conductivity than the surrounding air. When the onset strength of corona discharge becomes smaller than the electric field strength the corona discharge increases concentrations of ions in a small part of the cloud (a hot spot). An additional charge at opposite ends of the hot spot forms due to polarization process. The increased electric field initiates corona discharge in other parts of the cloud on ice particles and water drops with smaller sizes. The corona discharge front moves as a wave with the velocity of the order of ion drift and formes a highly conductive channel. We model this non-stationary problem with Poisson equation which is solved simultaneously with a simplified set of kinetic equations for ions, small charged particles and electrons (at high electric fields), including ionization due to electronic impact, attachment and formation of positive ions. By applying 3D numerical simulations we obtain the parameters of formed ionic channels with respect to onset electric fields both from large particles (in hot spot) and from small particles (surrounding hot spot), microscopic currents from particles with different sizes and the external electric field in the cloud. The interaction of ionic channels is also investigated. This work was supported by Russian Foundation of Basic Research (Project No 07-05-00998-à).

  8. Synthesis, Properties, and Light-Emitting Electrochemical Cell (LEEC) Device Fabrication of Cationic Ir(III) Complexes Bearing Electron-Withdrawing Groups on the Cyclometallating Ligands.

    Science.gov (United States)

    Pal, Amlan K; Cordes, David B; Slawin, Alexandra M Z; Momblona, Cristina; Ortı, Enrique; Samuel, Ifor D W; Bolink, Henk J; Zysman-Colman, Eli

    2016-10-17

    The structure-property relationship study of a series of cationic Ir(III) complexes in the form of [Ir(C^N)2(dtBubpy)]PF6 [where dtBubpy = 4,4'-di-tert-butyl-2,2'-bipyridine and C^N = cyclometallating ligand bearing an electron-withdrawing group (EWG) at C4 of the phenyl substituent, i.e., -CF3 (1), -OCF3 (2), -SCF3 (3), -SO2CF3 (4)] has been investigated. The physical and optoelectronic properties of the four complexes were comprehensively characterized, including by X-ray diffraction analysis. All the complexes exhibit quasireversible dtBubpy-based reductions from -1.29 to -1.34 V (vs SCE). The oxidation processes are likewise quasireversible (metal + C^N ligand) and are between 1.54 and 1.72 V (vs SCE). The relative oxidation potentials follow a general trend associated with the Hammett parameter (σ) of the EWGs. Surprisingly, complex 4 bearing the strongest EWG does not adhere to the expected Hammett behavior and was found to exhibit red-shifted absorption and emission maxima. Nevertheless, the concept of introducing EWGs was found to be generally useful in blue-shifting the emission maxima of the complexes (λem = 484-545 nm) compared to that of the prototype complex [Ir(ppy)2(dtBubpy)]PF6 (where ppy = 2-phenylpyridinato) (λem = 591 nm). The complexes were found to be bright emitters in solution at room temperature (ΦPL = 45-66%) with microsecond excited-state lifetimes (τe = 1.14-4.28 μs). The photophysical properties along with density functional theory (DFT) calculations suggest that the emission of these complexes originates from mixed contributions from ligand-centered (LC) transitions and mixed metal-to-ligand and ligand-to-ligand charge transfer (LLCT/MLCT) transitions, depending on the EWG. In complexes 1, 3, and 4 the (3)LC character is prominent over the mixed (3)CT character, while in complex 2, the mixed (3)CT character is much more pronounced, as demonstrated by DFT calculations and the observed positive solvatochromism effect. Due to the

  9. Retreating behavior of a charged ionic liquid droplet in a dielectric liquid under electric field

    Science.gov (United States)

    Ahn, Myung Mo; Im, Do Jin; Kang, In Seok

    2013-11-01

    Ionic liquids show great promise as excellent solvents or catalysts in energy and biological fields due to their unique chemical and physical properties. The ionic liquid droplets in microfluidic systems can also be used as a potential platform for chemical biological reactions. In order to control electrically the ionic liquid droplets in a microfluidic device, the charging characteristics of ionic liquid droplets need to be understood. In this work, the charging characteristics of various ionic liquids are investigated by using the parallel plate electrodes system. Under normal situation, a charged droplet shows bouncing motion between electrodes continuously. However, for some special ionic liquids, interesting retreating behavior of charged ionic liquid droplet has been observed. This retreating behavior of ionic liquid droplet has been analyzed experimentally by the image analysis and the electrometer signal analysis. Based on the hypothesis of charge leakage of the retreating ionic liquid droplets, FT-IR spectroscopy analysis has also been performed. The retreating behavior of ionic liquid droplet is discussed from the intermolecular point of view according to the species of ionic liquids. This research was supported by grant No. 2013R1A1A2011956 funded by the Ministry of Science, ICT and Future Planning (MSIP) and by grant No. 2013R1A1A2010483 funded by the Ministry of Education, Science and Technology (MEST) through the NRF.

  10. Ionic conductivity in oxide heterostructures: the role of interfaces

    Directory of Open Access Journals (Sweden)

    Emiliana Fabbri, Daniele Pergolesi and Enrico Traversa

    2010-01-01

    Full Text Available Rapidly growing attention is being directed to the investigation of ionic conductivity in oxide film heterostructures. The main reason for this interest arises from interfacial phenomena in these heterostructures and their applications. Recent results revealed that heterophase interfaces have faster ionic conduction pathways than the bulk or homophase interfaces. This finding can open attractive opportunities in the field of micro-ionic devices. The influence of the interfaces on the conduction properties of heterostructures is becoming increasingly important with the miniaturization of solid-state devices, which leads to an enhanced interface density at the expense of the bulk. This review aims to describe the main evidence of interfacial phenomena in ion-conducting film heterostructures, highlighting the fundamental and technological relevance and offering guidelines to understanding the interface conduction mechanisms in these structures.

  11. Microencapsulation of Lactobacillus plantarum DKL 109 using External Ionic Gelation Method

    National Research Council Canada - National Science Library

    Chun, Honam; Kim, Cheol-Hyun; Cho, Young-Hee

    2014-01-01

    The aim of this study was to apply the external ionic gelation using an atomizing spray device comprised of a spray gun to improve the viability of Lactobacillus plantarum DKL 109 and for its commercial use...

  12. Nanoscale Ionic Materials

    KAUST Repository

    Rodriguez, Robert

    2008-11-18

    Polymer nanocomposites (nanoparticles dispersed in a polymer matrix) have been the subject of intense research for almost two decades in both academic and industrial settings. This interest has been fueled by the ability of nanocomposites to not only improve the performance of polymers, but also by their ability to introduce new properties. Yet, there are still challenges that polymer nanocomposites must overcome to reach their full potential. In this Research News article we discuss a new class of hybrids termed nanoparticle ionic materials (NIMS). NIMS are organic-inorganic hybrid materials comprising a nanoparticle core functionalized with a covalently tethered ionic corona. They are facilely engineered to display flow properties that span the range from glassy solids to free flowing liquids. These new systems have unique properties that can overcome some of the challenges facing nanocomosite materials. © 2008 WILEY-VCH Verlag GmbH & Co. KGaA.

  13. Cyclic phosphonium ionic liquids

    Directory of Open Access Journals (Sweden)

    Sharon I. Lall-Ramnarine

    2014-01-01

    Full Text Available Ionic liquids (ILs incorporating cyclic phosphonium cations are a novel category of materials. We report here on the synthesis and characterization of four new cyclic phosphonium bis(trifluoromethylsulfonylamide ILs with aliphatic and aromatic pendant groups. In addition to the syntheses of these novel materials, we report on a comparison of their properties with their ammonium congeners. These exemplars are slightly less conductive and have slightly smaller self-diffusion coefficients than their cyclic ammonium congeners.

  14. High performance ultracapacitors with carbon nanomaterials and ionic liquids

    Science.gov (United States)

    Lu, Wen; Henry, Kent Douglas

    2012-10-09

    The present invention is directed to the use of carbon nanotubes and/or electrolyte structures in various electrochemical devices, such as ultracapacitors having an ionic liquid electrolyte. The carbon nanotubes are preferably aligned carbon nanotubes. Compared to randomly entangled carbon nanotubes, aligned carbon nanotubes can have better defined pore structures and higher specific surface areas.

  15. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  16. Long-range electrostatic screening in ionic liquids.

    Science.gov (United States)

    Gebbie, Matthew A; Dobbs, Howard A; Valtiner, Markus; Israelachvili, Jacob N

    2015-06-16

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems.

  17. III-Nitride nanowire optoelectronics

    Science.gov (United States)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  18. Ionic and Molecular Liquids

    DEFF Research Database (Denmark)

    Chaban, Vitaly V.; Prezhdo, Oleg

    2013-01-01

    Because of their outstanding versatility, room-temperature ionic liquids (RTILs) are utilized in an ever increasing number of novel and fascinating applications, making them the Holy Grail of modern materials science. In this Perspective, we address the fundamental research and prospective...... applications of RTILs in combination with molecular liquids, concentrating on three significant areas: (1) the use of molecular liquids to decrease the viscosity of RTILs; (2) the role of RTIL micelle formation in water and organic solvents; and (3) the ability of RTILs to adsorb pollutant gases. Current...

  19. Richard III

    DEFF Research Database (Denmark)

    Lauridsen, Palle Schantz

    2017-01-01

    Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"......Kort analyse af Shakespeares Richard III med fokus på, hvordan denne skurk fremstilles, så tilskuere (og læsere) langt henad vejen kan føle sympati med ham. Med paralleller til Netflix-serien "House of Cards"...

  20. Eu(III) adsorption on rutile:Batch experiments and modeling

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Eu(III) adsorption on rutile was investigated as a function of contact time,pH,ionic strength and Eu(III) concentration by using a batch experimental method.The effects of carbonate,sulfate,and phosphate were also studied.It was found that the kinetics of Eu(III) adsorption on rutile could be described by a pseudo-second-order model.The adsorption of Eu(III) on rutile is strongly pH-dependent,but relatively insensitive to ionic strength.A double layer model (DLM) with two inner-sphere Eu(III) surface complexes was applied to quantitatively interpret the adsorption of Eu(III) on rutile.There were no apparent effects of carbonate and sulfate on Eu(III) adsorption,whereas the presence of phosphate promoted Eu(III) adsorption on rutile.The surface complexes of Eu(III) on rutile were evidenced by X-ray photoelectron spectroscopy (XPS).

  1. Graphene terahertz modulators by ionic liquid gating

    CERN Document Server

    Wu, Yang; Qiu, Xuepeng; Liu, Jingbo; Deorani, Praveen; Banerjee, Karan; Son, Jaesung; Chen, Yuanfu; Chia, Elbert E M; Yang, Hyunsoo

    2015-01-01

    Graphene based THz modulators are promising due to the conical band structure and high carrier mobility of graphene. Here, we tune the Fermi level of graphene via electrical gating with the help of ionic liquid to control the THz transmittance. It is found that, in the THz range, both the absorbance and reflectance of the device increase proportionately to the available density of states due to intraband transitions. Compact, stable, and repeatable THz transmittance modulation up to 93% (or 99%) for a single (or stacked) device has been demonstrated in a broad frequency range from 0.1 to 2.5 THz, with an applied voltage of only 3 V at room temperature.

  2. Unraveling the photoelectrochemical properties of ionic liquids: cognizance of partially reversible redox activity.

    Science.gov (United States)

    Patel, Dipal B; Chauhan, Khushbu R; Mukhopadhyay, Indrajit

    2014-11-01

    Ionic liquid based electrolytes are gaining great interest in the field of photoenergy conversion. We have found that the ionic liquids namely BMIm Cl, BMIm PF6 and BMIm Tf2N inherently offer redox activity. The device performance of the photoelectrochemical (PEC) cells of the configuration PbOx (0.25 cm(2))|blank ionic liquids|platinum (2 cm(2)) was analyzed in detail to get insights into the working principle of such systems. It was found that partially reversible redox ion pairs diminish the performance of such cells as power generating devices. The partial redox activity of the ionic liquids was confirmed by a number of observations derived from the PEC spectra. The important parameter, Vredox, which determines the performance of any PEC cell was also calculated for all the ionic liquids. The difficulties that arise in high frequency C-V measurements for ionic liquid systems were overcome by choosing the appropriate probing frequency. The evaluated Vredox of BMIm Cl, BMIm PF6 and BMIm Tf2N ionic liquids was found to be -0.30, -0.20 and -0.78 V (vs. NHE), respectively. This study will be beneficial to understand the role of ionic liquids as redox active electrolyte media in several applications.

  3. Ionic Vapor Composition in Pyridinium-Based Ionic Liquids.

    Science.gov (United States)

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-05-26

    Strong electrostatic interactions in ionic compounds make vaporization a complex process. The gas phase can contain a broad range of ionic clusters, and the cluster composition can differ greatly from that in the liquid phase. Room-temperature ionic liquids (RTILs) constitute a complicated case due to their ionic nature, asymmetric structure, and a huge versatility of ions and ionic clusters. This work reports vapor-liquid equilibria and vapor compositions of butylpyridinium (BPY) RTILs formed with hexafluorophosphate (PF6), trifluoromethanesulfonate (TF), and bis(trifluoromethanesulfonyl)imide (TFSI) anions. Unlike inorganic crystals, the pyridinium-based RTILs contain significant percentages of charged clusters in the vapor phase. Ion triplets and ion quadruplets each constitute up to 10% of the vapor phase composition. Triples prevail over quadruples in [BPY][PF6] due to the size difference of the cation and the anion. The percentage of charged ionic clusters in the gas phase is in inverse proportion to the mass of the anion. The largest identified vaporized ionic cluster comprises eight ions, with a formation probability below 1%. Higher temperature fosters formation of larger clusters due to an increase of the saturated vapor density.

  4. Self-Sensing Ionic Polymer Actuators: A Review

    Directory of Open Access Journals (Sweden)

    Karl Kruusamäe

    2015-03-01

    Full Text Available Ionic electromechanically active polymers (IEAP are laminar composites that can be considered attractive candidates for soft actuators. Their outstanding properties such as low operating voltage, easy miniaturization, and noiseless operation are, however, marred by issues related to the repeatability in the production and operation of these materials. Implementing closed-loop control for IEAP actuators is a viable option for overcoming these issues. Since IEAP laminates also behave as mechanoelectrical sensors, it is advantageous to combine the actuating and sensing functionalities of a single device to create a so-called self-sensing actuator. This review article systematizes the state of the art in producing self-sensing ionic polymer actuators. The IEAPs discussed in this paper are conducting (or conjugated polymers actuators (CPA, ionic polymer-metal composite (IPMC, and carbonaceous polymer laminates.

  5. Wettability by Ionic Liquids.

    Science.gov (United States)

    Liu, Hongliang; Jiang, Lei

    2016-01-06

    Ionic liquids (ILs) have become particularly attractive recently because they have demonstrated themselves to be important construction units in the broad fields of chemistry and materials science, from catalysis and synthesis to analysis and electrochemistry, from functional fluids to clean energy, from nanotechnology to functional materials. One of the greatest issues that determines the performance of ILs is the wettability of correlated surfaces. In this concept article, the key developments and issues in IL wettability are surveyed, including the electrowetting of ILs in gas-liquid-solid systems and liquid-liquid-solid systems, ILs as useful probe fluids, the superwettability of Ils, and future directions in IL wettability. This should generate extensive interest in the field and encourage more scientists to engage in this area to tackle its scientific challenges.

  6. Thermodynamic data for predicting concentrations of Pu(III), Am(III), and Cm(III) in geologic environments

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Dhanpat; Rao, Linfeng; Weger, H.T.; Felmy, A.R. [Pacific Northwest National Laboratory, WA (United States); Choppin, G.R. [Florida State University, Florida (United States); Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    1999-01-01

    This report provides thermodynamic data for predicting concentrations of Pu(III), Am(III), and Cm(III) in geologic environments, and contributes to an integration of the JNC chemical thermodynamic database, JNC-TDB (previously PNC-TDB), for the performance analysis of geological isolation system for high-level radioactive wastes. Thermodynamic data for the formation of complexes or compounds with hydroxide, chloride, fluoride, carbonate, nitrate, sulfate and phosphate are discussed in this report. Where data for specific actinide(III) species are lacking, the data were selected based on chemical analogy to other trivalent actinides. In this study, the Pitzer ion-interaction model is mainly used to extrapolate thermodynamic constants to zero ionic strength at 25degC. (author)

  7. Ionic regulation in genetic translation systems.

    Science.gov (United States)

    Douzou, P; Maurel, P

    1977-03-01

    The polyelectrolyte theory can provide an interpretation of the interdependence of pH, ionic strength, and polyamines one observes in the activity of ribonuclease acting on RNA. According to this theory: (i) A nucleic acid-enzyme complex and the suspending medium may be considered as two phases in equilibrium, even though within limits, the complex is soluble in water. (ii) The enzymatic catalysis is under tight control of the electrostatic potential generated by the system. Consequently, modification in electrostatic potential will induce a concomitant change in activity. (iii) The electrostatic potential can be modified through action on the system of "modulators", either "external" (ionic strength, pH, temperature, etc.) or "internal" (specific ligands, substrates, protein factors, etc.). Similarities between the reaction of ribonuclease (ribonuclease 3'-pyrimidino-oligonucleotidohydrolase; EC 3.1.4.22) and RNA and those observed with highly organized systems catalyzing DNA, RNA, and protein synthesis suggest that the electrostatic potential also provides an important regulatory mechanism in genetic translation. In this view, an essential function of nucleic acids is to provide their enzyme partners with polyanionic microenvironments within which their catalytic activities are controlled by variation in physicochemical parameters, including the proton concentration induced through "modulation" of the local electrostatic potential.

  8. Ionic liquids--an overview.

    Science.gov (United States)

    Jenkins, Harry Donald Brooke

    2011-01-01

    A virtually unprecedented exponential burst of activity resulted following the publication, in 1998, of an article by Michael Freeman (Freemantle, M. Chemical & Engineering News, 1998, March 30, 32), which speculated on the role and contribution that ionic liquids (ILs) might make in the future on the development of clean technology. Up until that time only a handful of researchers were routinely engaged in the study of ILs but frenzied activity followed that continues until the present day. Scientists from all disciplines related to Chemistry have now embarked on studies, including theoreticians who are immersed in the aim of improving the "designer role" so that they can tailor ILs to deliver specified properties. This article, whilst not in any sense attempting to be exhaustive, highlights the main features which characterise ILs, presenting these in a form readily assimilated by newcomers to this area of research. An extensive glossary is featured in this article as well as a chronological list which charts the major areas of development. What follows consists of a number of sections briefly describing the role of lLs as solvents, hypergolic fuels, their use in some electrochemical devices such as solar cells and lithium batteries and their use in polymerisation reactions, followed by a concise summary of some of the other roles that they are capable of playing. The role of empirical, volume-based thermodynamics procedures, as well as large scale computational studies on ILs is also highlighted. These developments which are described are remarkable in that they have been achieved in less than a decade and a half although knowledge of these materials has existed for much longer.

  9. Synthesis, characterization and applications of ionic supramolecular assemblies

    Science.gov (United States)

    Lin, Xinrong

    Supramolecular ionic assemblies not only provide alternatives to conventional polymers, but also introduce unique and interesting functions for the design of "smart" polymeric assemblies for use in a number of fields due to their programmable and reversible properties. Research in the area has led to an understanding of the connection between molecular contributions and macroscopic properties, as well as a range of applications from material processing/manufacuturing to energy transfer and storage. To this end, we have developed a library of charged building blocks based on ionic liquids to create functional supramolecular ionic assemblies. The polymeric ionic assemblies prepared from a di-phosphonium and poly (acrylic acid) were first studied and found to have the potential to be utilized as "smart" materials due to their ability to reversibly respond to stimuli such as temperature and pressure. With the interest of elucidating the molecular contributions to the bulk macroscopic material properties, six supramolecular assemblies were sequentially characterized in terms of thermal, rheological and X-ray studies. The effect of side alkyl chain was found to dramatically change the material properties. A second type of supramolecular assembly was investigated based on a poly-phosphonium ionic liquid, which was complexed with a number of carboxylic acids. The material properties were easily manipulated from a sticky fiber to a brittle solid by changing the composition of the carboxylic acid. A crosslinked supramolecular assembly combining ionic interactions and weak covalent bonds, specifically disulfide bonds, was next designed and characterized. The network properties could be switched between "on and off" using mild conditions. The polymeric ionic networks and their building block ionic liquids are also of interest as safe electrolytes in energy storage devices due to their non-flammability, non-volatility, etc. We have identified one ionic liquid with superior

  10. Physicochemical properties and toxicities of hydrophobicpiperidinium and pyrrolidinium ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Justin; Papaiconomou, Nicolas; Kumar, R. Anand; Lee,Jong-Min; Kerr, John; Newman, John; Prausnitz, John M.

    2007-06-25

    Some properties are reported for hydrophobic ionic liquids (IL) containing 1-methyl-1-propyl pyrrolidinium [MPPyrro]{sup +}, 1-methyl-1-butyl pyrrolidinium [MBPyrro]{sup +}, 1-methyl-1-propyl piperidinium [MPPip]{sup +}, 1-methyl-1-butyl piperidinium [MBPip]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPyrro]{sup +} and 1-methyl-1-octylpiperidinium [MOPip]{sup +} cations. These liquids provide new alternatives to pyridinium and imidazolium ILs. High thermal stability of an ionic liquid increases safety in applications like rechargeable lithium-ion batteries and other electrochemical devices. Thermal properties, ionic conductivities, viscosities, and mutual solubilities with water are reported. In addition, toxicities of selected ionic liquids have been measured using a human cancer cell-line. The ILs studied here are sparingly soluble in water but hygroscopic. We show some structure-property relationships that may help to design green solvents for specific applications. While ionic liquids are claimed to be environmentally-benign solvents, as yet few data have been published to support these claims.

  11. Quantum and Ionic Transport Across Superconductor-based Heterostructures

    Science.gov (United States)

    Nayfeh, Osama; Dinh, Son; Taylor, Benjamin; de Andrade, Marcio; Swanson, Paul; Offord, Bruce; de Escobar, Anna Leese; Claussen, Stephanie; Kassegne, Sam

    2015-03-01

    We present analysis of quantum and ionic transport across superconductor/barrier/ionic/barrier/superconductor (SBIBS) heterostructures. Calculations for various ionic configurations demonstrate modification of the quantum transport coherence length and energy profile with moderate ionic transport away from the superconductor-barrier interface. The effect of electric field and cryogenic temperature on the stability of the ionic configurations for quantum information state storage is examined. Characterization and analysis of constructed Al and Nb-based device structures are presented. Acknowledgements: We acknowledge the support of the SSC Pacific In-house Laboratory Independent Research Science and Technology Program managed by Dr. Dave Rees, the Naval Innovative Science and Engineering Program managed by Mr. Robin Laird, and the ONR Summer Faculty Research Program. Interactions with Dr. Van Vechten (ONR) and Dr. Manheimer (IARPA) are appreciated. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of SPAWAR or the U.S. Government. Approved for Public Release; distribution is unlimited.

  12. Investigation of polymer electrolyte based on agar and ionic liquids

    Directory of Open Access Journals (Sweden)

    M. M. Silva

    2012-12-01

    Full Text Available The possibility to use natural polymer as ionic conducting matrix was investigated in this study. Samples of agarbased electrolytes with different ionic liquids were prepared and characterized by physical and chemical analyses. The ionic liquids used in this work were 1-ethyl-3-methylimidazolium ethylsulfate, [C2mim][C2SO4], 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc] and trimethyl-ethanolammonium acetate, [Ch][OAc]. Samples of solvent-free electrolytes were prepared and characterized by ionic conductivity measurements, thermal analysis, electrochemical stability, X-ray diffraction, scanning electron microscopy and Fourier Transform infrared spectroscopy. Electrolyte samples are thermally stable up to approximately 190°C. All the materials synthesized are semicrystalline. The electrochemical stability domain of all samples is about 2.0 V versus Li/Li+. The preliminary studies carried out with electrochromic devices (ECDs incorporating optimized compositions have confirmed that these materials may perform as satisfactory multifunctional component layers in the field of ‘smart windows’, as well as ECD-based devices.

  13. Cr(III REMOVAL FROM AQUEOUS SOLUTIONS BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    Mehmet MAHRAMANLIOĞLU

    2002-03-01

    Full Text Available The adsorption of Cr (III on the adsorbent produced from lignite coal was studied as a function of time, amount of adsorbent, pH and temperature. Cr (III adsorption data obeyed Freundlich, Langmuir and Lagergren equations. The values of ?H0, ?S0 and ?G0 were calculated. The results showed that adsorption is endothermic. The negative free energy values indicate that the process of Cr (III adsorption is spontaneous and favoured at high temperatures. The adsorption of Cr (III in the presence of different cations was also studied at 200 C. The results were correlated with the ionic potential of cations.

  14. Investigation of Interface between Ge Electrodes and Ionic Liquid Electrolytes for Electric Double Layer Capacitors

    Science.gov (United States)

    Abeysinghe, R. M.; Oguchi, H.; Kuwano, H.

    2016-11-01

    This study discusses novel way of use of ionic liquids to develop Ge-based electrodes for electric double layer capacitors (EDLC). We found that ionic liquids change their electrochemical properties depending on the amount of the absorbed water. Wet ionic liquids work as solvents to dissolve Ge and make porous structures, whereas dry ones work as electrolytes of the EDLCs. The former property was used to increase surface area of the electrodes which is desired to increase the capacity of EDLCs. This method showed another advantage in contrast to the dry ionic liquids; wet ones could fill the complex Ge pores in parallel to porous structure formation. Finally, after porous formation, we dried the ionic liquid at 100 °C and prepared the EDLCs composed of Ge porous electrodes. Cyclic voltammetry and impedance measurements indicated that the obtained devices can work as EDLCs.

  15. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yangyang [ORNL; Fan, Fei [ORNL; Agapov, Alexander L [ORNL; Saito, Tomonori [ORNL; Yang, Jun [ORNL; Yu, Xiang [ORNL; Hong, Kunlun [ORNL; Mays, Jimmy [University of Tennessee, Knoxville (UTK); Sokolov, Alexei P [ORNL

    2014-01-01

    Replacing traditional liquid electrolytes by polymers will significantly improve electrical energy storage technologies. Despite significant advantages for applications in electrochemical devices, the use of solid polymer electrolytes is strongly limited by their poor ionic conductivity. The classical theory predicts that the ionic transport is dictated by the segmental motion of the polymer matrix. As a result, the low mobility of polymer segments is often regarded as the limiting factor for development of polymers with sufficiently high ionic conductivity. Here, we show that the ionic conductivity in many polymers can be strongly decoupled from their segmental dynamics, in terms of both temperature dependence and relative transport rate. Based on this principle, we developed several polymers with superionic conductivity. The observed fast ion transport suggests a fundamental difference between the ionic transport mechanisms in polymers and small molecules and provides a new paradigm for design of highly conductive polymer electrolytes.

  16. Monolayer to Bilayer Structural Transition in Confined Pyrrolidinium-Based Ionic Liquids.

    Science.gov (United States)

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Licence, Peter; Dolan, Andrew; Welton, Tom; Perkin, Susan

    2013-02-07

    Ionic liquids can be intricately nanostructured in the bulk and at interfaces resulting from a delicate interplay between interionic and surface forces. Here we report the structuring of a series of dialkylpyrrolidinium-based ionic liquids induced by confinement. The ionic liquids containing cations with shorter alkyl chain substituents form alternating cation-anion monolayer structures on confinement to a thin film, whereas a cation with a longer alkyl chain substituent leads to bilayer formation. The crossover from monolayer to bilayer structure occurs between chain lengths of n = 8 and 10 for these pyrrolidinium-based ionic liquids. The bilayer structure for n = 10 involves full interdigitation of the alkyl chains; this is in contrast with previous observations for imidazolium-based ionic liquids. The results are pertinent to these liquids' application as electrolytes, where the electrolyte is confined inside the pores of a nanoporous electrode, for example, in devices such as supercapacitors or batteries.

  17. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  18. Ionic emission from Taylor cones

    Science.gov (United States)

    Castro Reina, Sergio

    Electrified Taylor cones have been seen as an efficient way to generate thrust for space propulsion. Especially the pure ionic regime (PIR) combines a very high specific impulse (thrust per unit mass) and efficiency, which is very important to reduce fuel transportation costs. The PIR has been primarily based on electrosprays of liquid metals [Swatik and Hendricks 1968, Swatik 1969]. However, emissions dominated by or containing exclusively ions have also been observed from nonmetallic purely ionic substances, initially sulfuric acid [Perel et al. 1969], and more recently room temperature molten salts referred to as ionic liquids (ILs) [Romero-Sanz et al. 2003]. The recent use of the liquid metal ion source (LMIS) with ILs, becoming this "new" source to be known as ionic liquid ion source (ILIS) [Lozano and Martinez-Sanchez 2005], has shown important differences on the emission from Taylor cones with the traditional hollow capillary. This new source seems to be more flexible than the capillary [Paulo, Sergio, carlos], although its low emission level (low thrust) is an important drawback from the space propulsion point of view. Throughout the thesis I have studied some aspects of the ionic emission from ionic liquid Taylor cones and the influence of the properties of the liquids and the characteristic of source on the emission. I have unraveled the reason why ILIS emits such low currents (˜200 nA) and found a way to solve this problem increasing the current up to capillary levels (˜1000 nA) [Castro and Fernandez de la Mora 2009]. I have also tried to reduce ion evaporation while reducing the emitted droplet size in order to increase the thrust generated while keeping the efficiency relatively high and I have measured the energy of evaporation of several cations composing ionic liquids, mandatory step to understand ionic evaporation.

  19. Ionic Liquid Epoxy Resin Monomers

    Science.gov (United States)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  20. Nanoconfined Ionic Liquids.

    Science.gov (United States)

    Zhang, Shiguo; Zhang, Jiaheng; Zhang, Yan; Deng, Youquan

    2016-12-29

    Ionic liquids (ILs) have been widely investigated as novel solvents, electrolytes, and soft functional materials. Nevertheless, the widespread applications of ILs in most cases have been hampered by their liquid state. The confinement of ILs into nanoporous hosts is a simple but versatile strategy to overcome this problem. Nanoconfined ILs constitute a new class of composites with the intrinsic chemistries of ILs and the original functions of solid matrices. The interplay between these two components, particularly the confinement effect and the interactions between ILs and pore walls, further endows ILs with significantly distinct physicochemical properties in the restricted space compared to the corresponding bulk systems. The aim of this article is to provide a comprehensive review of nanoconfined ILs. After a brief introduction of bulk ILs, the synthetic strategies and investigation methods for nanoconfined ILs are documented. The local structure and physicochemical properties of ILs in diverse porous hosts are summarized in the next sections. The final section highlights the potential applications of nanoconfined ILs in diverse fields, including catalysis, gas capture and separation, ionogels, supercapacitors, carbonization, and lubrication. Further research directions and perspectives on this topic are also provided in the conclusion.

  1. Hydrophobic ionic liquids

    Science.gov (United States)

    Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.

    1998-01-01

    Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.

  2. Tomo III

    OpenAIRE

    2015-01-01

    Memorias, histórico, físicas, crítico, apologéticas de la América Meridional con unas breves advertencias y noticias útiles, a los que de orden de Su Majestad, hubiesen de viajar y describir aquellas vastas regiones. Reino Animal. Tomo III. Por un anónimo americano en Cádiz por los años de 1757. Primera Parte Prólogo Artículo 1°De los cuadrúpedos útiles al hombre a varios usos y a su sustento. Vaca Caballos Carneros de la tierra, especie de camellos Vicuña Guanacos Puercos monteses Artículo 2...

  3. Ionic Adsorption and Desorption of CNT Nanoropes

    Directory of Open Access Journals (Sweden)

    Jun-Jun Shang

    2016-09-01

    Full Text Available A nanorope is comprised of several carbon nanotubes (CNTs with different chiralities. A molecular dynamic model is built to investigate the ionic adsorption and desorption of the CNT nanoropes. The charge distribution on the nanorope is obtained by using a modified gradient method based on classical electrostatic theory. The electrostatic interactions among charged carbon atoms are calculated by using the Coulomb law. It was found here that the charged nanorope can adsorb heavy metal ions, and the adsorption and desorption can be realized by controlling the strength of applied electric field. The distance between the ions and the nanorope as well as the amount of ions have an effect on the adsorption capacity of the nanorope. The desorption process takes less time than that of adsorption. The study indicates that the CNT nanorope can be used as a core element of devices for sewage treatment.

  4. Student Conceptions of Ionic Compounds in Solution and the Influences of Sociochemical Norms on Individual Learning

    Science.gov (United States)

    Warfa, Abdi-Rizak M.

    Using the symbolic interactionist perspective that meaning is constituted as individuals interact with one another, this study examined how group thinking during cooperative inquiry-based activity on chemical bonding theories shaped and influenced college students' understanding of the properties of ionic compounds in solution. The analysis revealed the development of sociochemical norms and specific ways of reasoning about chemical ideas that led to shifts in student thinking and understanding of the nature of dissolved ionic solids. The analysis similarly revealed two kinds of teacher-initiated discourses, dialogical and monologic, that impacted student learning differently. I discuss the nature of this teacher-initiated discourse and number of moves, such as confirming, communicative, and re-orienting, that the course instructor made to communicate to students what counts as justifiable chemical reasoning and appropriate representations of chemical knowledge. I further describe the use of sociochemical dialogues as lens to study the ways in which chemistry instructors and students develop normative ways of reasoning and chemical justifications. Because the activity was designed as an intervention to target student misconceptions about ionic bonding, I also examined the extent to which the activity elicited and corrected commonly found student chemical misconceptions. To do so, student-generated particulate drawings were coded qualitatively into one of four broad themes: i) use of molecular framework with discrete atoms, ii) use of ionic framework with discrete ionic species, iii) use of quasi-ionic framework with partial ionic-molecular thinking, or iv) use of an all-encompassing "other" category. The findings suggested the intervention significantly improved students' conceptual knowledge of ionic compounds in solution - there was statistically significant increase in the number of drawings using ionic and quasi-ionic frameworks in the pre-activity vs. post

  5. Toxicity of ionic liquids: eco(cyto)activity as complicated, but unavoidable parameter for task-specific optimization.

    Science.gov (United States)

    Egorova, Ksenia S; Ananikov, Valentine P

    2014-02-01

    Rapid progress in the field of ionic liquids in recent decades led to the development of many outstanding energy-conversion processes, catalytic systems, synthetic procedures, and important practical applications. Task-specific optimization emerged as a sharpening stone for the fine-tuning of structure of ionic liquids, which resulted in unprecedented efficiency at the molecular level. Ionic-liquid systems showed promising opportunities in the development of green and sustainable technologies; however, the chemical nature of ionic liquids is not intrinsically green. Many ionic liquids were found to be toxic or even highly toxic towards cells and living organisms. In this Review, we show that biological activity and cytotoxicity of ionic liquids dramatically depend on the nature of a biological system. An ionic liquid may be not toxic for particular cells or organisms, but may demonstrate high toxicity towards another target present in the environment. Thus, a careful selection of biological activity data is a must for the correct assessment of chemical technologies involving ionic liquids. In addition to the direct biological activity (immediate response), several indirect effects and aftereffects are of primary importance. The following principal factors were revealed to modulate toxicity of ionic liquids: i) length of an alkyl chain in the cation; ii) degree of functionalization in the side chain of the cation; iii) anion nature; iv) cation nature; and v) mutual influence of anion and cation.

  6. Vertical III-nitride thin-film power diode

    Energy Technology Data Exchange (ETDEWEB)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  7. Vertical III-nitride thin-film power diode

    Science.gov (United States)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  8. Recrystallized quinolinium ionic liquids for electrochemical analysis

    Science.gov (United States)

    Selvaraj, Gowri; Wilfred, Cecilia Devi; Eang, Neo Kian

    2016-11-01

    Ionic liquids have received a lot of attention due to their unique properties. In this work the prospect of quinolinium based ionic liquids as electrolyte for dye sensitised solar cell were tested using cyclic voltammetry. The results have shown electron transfer in the ionic liquid without undergoing any permanent chemical changes. Prior to testing, the ionic liquids were purified through recrystallization as electrochemical properties of ionic liquids are highly dependent on the purity of the ionic liquids. This results have shone new light for this work.

  9. Ionic Graphitization of Ultrathin Films of Ionic Compounds.

    Science.gov (United States)

    Kvashnin, A G; Pashkin, E Y; Yakobson, B I; Sorokin, P B

    2016-07-21

    On the basis of ab initio density functional calculations, we performed a comprehensive investigation of the general graphitization tendency in rocksalt-type structures. In this paper, we determine the critical slab thickness for a range of ionic cubic crystal systems, below which a spontaneous conversion from a cubic to a layered graphitic-like structure occurs. This conversion is driven by surface energy reduction. Using only fundamental parameters of the compounds such as the Allen electronegativity and ionic radius of the metal atom, we also develop an analytical relation to estimate the critical number of layers.

  10. Physical Medicine Devices; Reclassification of Iontophoresis Device Intended for Any Other Purposes. Final order.

    Science.gov (United States)

    2016-07-26

    The Food and Drug Administration (FDA) is issuing a final order to reclassify iontophoresis devices intended for any other purposes, which are preamendments class III devices (regulated under product code EGJ), into class II (special controls) and to amend the device identification to clarify that devices intended to deliver specific drugs are not considered part of this regulatory classification.

  11. Arsenic (III, V), indium (III), and gallium (III) toxicity to zebrafish embryos using a high-throughput multi-endpoint in vivo developmental and behavioral assay.

    Science.gov (United States)

    Olivares, Christopher I; Field, Jim A; Simonich, Michael; Tanguay, Robert L; Sierra-Alvarez, Reyes

    2016-04-01

    Gallium arsenide (GaAs), indium gallium arsenide (InGaAs) and other III/V materials are finding increasing application in microelectronic components. The rising demand for III/V-based products is leading to increasing generation of effluents containing ionic species of gallium, indium, and arsenic. The ecotoxicological hazard potential of these streams is unknown. While the toxicology of arsenic is comprehensive, much less is known about the effects of In(III) and Ga(III). The embryonic zebrafish was evaluated for mortality, developmental abnormalities, and photomotor response (PMR) behavior changes associated with exposure to As(III), As(V), Ga(III), and In(III). The As(III) lowest observable effect level (LOEL) for mortality was 500 μM at 24 and 120 h post fertilization (hpf). As(V) exposure was associated with significant mortality at 63 μM. The Ga(III)-citrate LOEL was 113 μM at 24 and 120 hpf. There was no association of significant mortality over the tested range of In(III)-citrate (56-900 μM) or sodium citrate (213-3400 μM) exposures. Only As(V) resulted in significant developmental abnormalities with LOEL of 500 μM. Removal of the chorion prior to As(III) and As(V) exposure was associated with increased incidence of mortality and developmental abnormality suggesting that the chorion may normally attenuate mass uptake of these metals by the embryo. Finally, As(III), As(V), and In(III) caused PMR hypoactivity (49-69% of control PMR) at 900-1000 μM. Overall, our results represent the first characterization of multidimensional toxicity effects of III/V ions in zebrafish embryos helping to fill a significant knowledge gap, particularly in Ga(III) and In(III) toxicology.

  12. Experimental and Theoretical Studies on Biologically Active Lanthanide (III) Complexes

    Science.gov (United States)

    Kostova, I.; Trendafilova, N.; Georgieva, I.; Rastogi, V. K.; Kiefer, W.

    2008-11-01

    The complexation ability and the binding mode of the ligand coumarin-3-carboxylic acid (HCCA) to La(III), Ce(III), Nd(III), Sm(III), Gd(III) and Dy(III) lanthanide ions (Ln(III)) are elucidated at experimental and theoretical level. The complexes were characterized using elemental analysis, DTA and TGA data as well as 1H NMR and 13C NMR spectra. FTIR and Raman spectroscopic techniques as well as DFT quantum chemical calculations were used for characterization of the binding mode and the structures of lanthanide(III) complexes of HCCA. The metal—ligand binding mode is predicted through molecular modeling and energy estimation of different Ln—CCA structures using B3LYP/6-31G(d) method combined with a large quasi-relativistic effective core potential for lanthanide ion. The energies obtained predict bidentate coordination of CCA- to Ln(III) ions through the carbonylic oxygen and the carboxylic oxygen. Detailed vibrational analysis of HCCA, CCA- and Ln(III) complexes based on both calculated and experimental frequencies confirms the suggested metal—ligand binding mode. The natural bonding analysis predicts strongly ionic character of the Ln(III)-CCA bonding in the- complexes studied. With the relatively resistant tumor cell line K-562 we obtained very interesting in-vitro results which are in accordance with our previously published data concerning the activity of lanthanide(III) complexes with other coumarin derivatives.

  13. Synthesis, crystal structure and magnetism of iron(III) and manganese(III) dipicolinates with pyridinemethanols

    Science.gov (United States)

    Uhrecký, Róbert; Pavlik, Ján; Růžičková, Zdeňka; Dlháň, Ľubor; Koman, Marian; Boča, Roman; Moncoľ, Ján

    2014-11-01

    Four ionic iron(III) and manganese(III) dipicolinato complexes of the formula (2-pymeH) [FeIII(dipic)2]ṡ[FeIII(H2O)2Cl(dipic)]ṡ2H2O, (3-pymeH)[MnIII(dipic)2]ṡ1.5H2O, (4-pymeH)[FeIII(dipic)2]ṡ2H2O and (4-pymeH)[MnIII(dipic)2]ṡ2H2O, where H2dipic = pyridine-2,6-dicarboxylic acid, 2-pyme = 2-pyridinemethanol, 3-pyme = 3-pyridinemethanol, 4-pyme = 4-pyridinemethanol, have been prepared and characterized by the single-crystal X-ray structure analysis, infrared spectroscopy and magnetic measurements. The magnetic data were fitted to a zero-field splitting model revealing a slight magnetic anisotropy for Mn(III) systems. The molecular field correction was consistently formulated and included in the analysis for both, magnetic susceptibility and magnetization data.

  14. Surface tension of ionic liquids and ionic liquid solutions.

    Science.gov (United States)

    Tariq, Mohammad; Freire, Mara G; Saramago, Benilde; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luís Paulo N

    2012-01-21

    Some of the most active scientific research fronts of the past decade are centered on ionic liquids. These fluids present characteristic surface behavior and distinctive trends of their surface tension versus temperature. One way to explore and understand their unique nature is to study their surface properties. This critical review analyses most of the surface tension data reported between 2001 and 2010 (187 references).

  15. Ionic Conductivity of Chitosan Membrane and Application for Electrochemical Devices

    Institute of Scientific and Technical Information of China (English)

    A. K. Arof

    2005-01-01

    @@ 1Introduction The product that is able to dissolve in dilute acetic acid when chitin is deacetylated is generally referred to as chitosan. Chitosan is well known for its aptitude to generate thin films[1]. The oxygen and nitrogen atoms of chitosan, in particular, have lone pair electrons that can form complexes with inorganic salts. However,the NH2 groups react much more rapidly than OH moieties towards salt[1-3].

  16. Selective Extraction of Bioproducts by Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    王键吉; 裴渊超; 赵扬; 张锁江

    2005-01-01

    Imidazolium based room temperature ionic liquids have been used to extract selectively L-tryptophan from fermentation broth. BF4 anion was found to enhance dramatically the partitioning of L-tryptophan into ionic liquid phase from aqueous solutions.

  17. "Practical" Electrospinning of Biopolymers in Ionic Liquids.

    Science.gov (United States)

    Shamshina, Julia L; Zavgorodnya, Oleksandra; Bonner, Jonathan R; Gurau, Gabriela; Di Nardo, Thomas; Rogers, Robin D

    2017-01-10

    To address the need to scale up technologies for electrospinning of biopolymers from ionic liquids to practical volumes, a setup for the multi-needle electrospinning of chitin using the ionic liquid 1-ethyl-3-methylimidazolium acetate, [C2 mim]-[OAc], was designed, built, and demonstrated. Materials with controllable and high surface area were prepared at the nanoscale using ionic-liquid solutions of high-molecular-weight chitin extracted with the same ionic liquid directly from shrimp shells.

  18. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  19. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    OpenAIRE

    2016-01-01

    The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the sep...

  20. Complex Formation Between Polyelectrolytes and Ionic Surfactants

    OpenAIRE

    1998-01-01

    The interaction between polyelectrolyte and ionic surfactant is of great importance in different areas of chemistry and biology. In this paper we present a theory of polyelectrolyte ionic-surfactant solutions. The new theory successfully explains the cooperative transition observed experimentally, in which the condensed counterions are replaced by ionic-surfactants. The transition is found to occur at surfactant densities much lower than those for a similar transition in non-ionic polymer-sur...

  1. Handbook of green chemistry, green solvents, ionic liquids

    CERN Document Server

    Anastas, Paul T; Stark, Annegret

    2014-01-01

    Green chemistry is a vitally important subject area in the world where being as green and environmentally sound as possible is no longer a luxury but a necessity. Its applications include the design of chemical products and processes that help to reduce or eliminate the use and generation of hazardous substances. The Handbook of Green Chemistry comprises 12 volumes, split into subject-specific sets as follow: Set I: Green Catalysis Set II: Green Solvents Volume 4: Supercritical Solvents Volume 5: Reactions in Water Volume 6: Ionic Liquids Set III: Green

  2. A routine synthesis of magnetite applied in ionic liquids

    Science.gov (United States)

    Nan, Alexandrina; Turcu, Rodica; Liebscher, Jürgen

    2013-11-01

    This paper describe the synthesis of magnetite nanoparticles using 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4[. Iron (II) chloride and iron (III) chloride which dissolves in [BMIM][BF4[ are coprecipitated in the presence of potassium hydroxide yielding magnetite. The stabilization of magnetite was realized without further purification with glycolic acid. The TEM images show spherical nanoparticles with mean diameter of 8nm. FTIR spectra contain the specific bands of both magnetite and glycolic acid indicating the formation of the magnetic nanoparticles stabilized with glycolic acid. Our results show that ionic liquids can be used as solvent to achieve magnetite stabilized by glycolic acid which shows superparamagnetic behaviour.

  3. High-flux ionic diodes, ionic transistors and ionic amplifiers based on external ion concentration polarization by an ion exchange membrane: a new scalable ionic circuit platform.

    Science.gov (United States)

    Sun, Gongchen; Senapati, Satyajyoti; Chang, Hsueh-Chia

    2016-04-07

    A microfluidic ion exchange membrane hybrid chip is fabricated using polymer-based, lithography-free methods to achieve ionic diode, transistor and amplifier functionalities with the same four-terminal design. The high ionic flux (>100 μA) feature of the chip can enable a scalable integrated ionic circuit platform for micro-total-analytical systems.

  4. Ionic-Liquid-Tethered Nanoparticles: Hybrid Electrolytes

    KAUST Repository

    Moganty, Surya S.

    2010-10-22

    A new class of solventless electrolytes was created by tethering ionic liquids to hard inorganic ZrO2 nanostructures (see picture; NIM=nanoscale ionic material). These hybrid fluids exhibit exceptional redox stability windows, excellent thermal stability, good lithium transference numbers, long-term interfacial stability in the presence of a lithium anode and, when doped with lithium salt, reasonable ionic conductivities.

  5. The hype with ionic liquids as solvents

    Science.gov (United States)

    Kunz, Werner; Häckl, Katharina

    2016-09-01

    In this mini review, we give our personal opinion about the present state of the art concerning Ionic Liquids, proposed as alternative solvents. In particular, we consider their different drawbacks and disadvantages and discuss the critical aspects of the research of Ionic Liquids as solvents. Finally, we point out some aspects on potentially promising Ionic Liquid solvents.

  6. Retarded ionic motion in flourites

    NARCIS (Netherlands)

    Schoonman, J.

    1980-01-01

    Metals halides with the fluorite structure attain conductivity values typical of ionic melts far below their melting points, and also go through a second-order transition. Conductivity data for the fluorites are reviewed, and it is shown that the anion vacancies have a large and unique mobility valu

  7. Lipid processing in ionic liquids

    DEFF Research Database (Denmark)

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power...

  8. Fluctuating hydrodynamics for ionic liquids

    Science.gov (United States)

    Lazaridis, Konstantinos; Wickham, Logan; Voulgarakis, Nikolaos

    2017-04-01

    We present a mean-field fluctuating hydrodynamics (FHD) method for studying the structural and transport properties of ionic liquids in bulk and near electrified surfaces. The free energy of the system consists of two competing terms: (1) a Landau-Lifshitz functional that models the spontaneous separation of the ionic groups, and (2) the standard mean-field electrostatic interaction between the ions in the liquid. The numerical approach used to solve the resulting FHD-Poisson equations is very efficient and models thermal fluctuations with remarkable accuracy. Such density fluctuations are sufficiently strong to excite the experimentally observed spontaneous formation of liquid nano-domains. Statistical analysis of our simulations provides quantitative information about the properties of ionic liquids, such as the mixing quality, stability, and the size of the nano-domains. Our model, thus, can be adequately parameterized by directly comparing our prediction with experimental measurements and all-atom simulations. Conclusively, this work can serve as a practical mathematical tool for testing various theories and designing more efficient mixtures of ionic liquids.

  9. Identifying the Electronic Properties Relevant to Improving the Performance of High Band-Gap Copper Based I-III-VI2 Chalcopyrite Thin Film Photovoltaic Devices: Final Subcontract Report, 27 April 2004-15 September 2007

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J. D.

    2008-08-01

    This report summarizes the development and evaluation of higher-bandgap absorbers in the CIS alloy system. The major effort focused on exploring suitable absorbers with significant sulfur alloying in collaboration with Shafarman's group at the Institute of Energy Conversion. Three series of samples were examined; first, a series of quaternary CuIn(SeS)2-based devices without Ga; second, a series of devices with pentenary Cu(InGa)(SeS)2 absorbers in which the Se-to-S and In-to-Ga ratios were chosen to keep the bandgap nearly constant, near 1.52 eV. Third, based on the most-promising samples in those two series, we examined a series of devices with pentenary Cu(InGa)(SeS)2 absorbers with roughly 25 at.% S/(Se+S) ratios and varying Ga fractions. We also characterized electronic properties of several wide-bandgap CuGaSe2 devices from both IEC and NREL. The electronic properties of these absorbers were examined using admittance spectroscopy, drive-level capacitance profiling, transient photocapacitance, and transient photocurrent optical spectroscopies. The sample devices whose absorbers had Ga fraction below 40 at.% and S fractions above 20 at.% but below 40% exhibited the best electronic properties and device performance.

  10. Application of High Shear Agitation for Desulfurization of Gasoline Using Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    Zhao Dishun; ZhangZhigang; Wang Jialei; Wang Na; Li Xiangyu

    2006-01-01

    The high shear agitation device was first adopted for gasoline desulfurization by ionic liquids. The effect of benzylimidazol fluoborate in desulfurization of gasoline and the influence of moisture on deuslfurization rate were investigated. The experimental results showed that the ionic liquid could effectively decrease the sulfur content of gasoline and the optimal conditions were as follows: The reaction could be carried out at room temperature, a volumetric ratio between oil and the liquid of 2∶1, a volumetric ratio between water and ionic liquid of 0.04∶1, a rotational speed of 5 krad/s, and a reaction time of 1 minute. The desulfurization rate of gasoline reached 53.6%, and the gasoline yield was up to 97.3%. The ionic liquid could be recycled for repeated use, and the use of high shear agitation for gasoline would have good prospects.

  11. IONIC SELF-ASSEMBLY AND HUMIDITY SENSITIVITY OF POLYELECTROLYTE MULTILAYERS

    Institute of Scientific and Technical Information of China (English)

    Hai-hu Yu; De-sheng Jiang

    2002-01-01

    Multilayer thin films of alternately adsorbed layers of polyelectrolytes PDDA and PS-119 were formed on both planar silica substrates and optical fibers through the ionic self-assembly technique. Intrinsic Fabry-Perot cavities were fabricated by stepwise assembling the polyelectrolytes onto the ends of optical fibers for the purposes of fiber optical device and sensor development. Ionically assembled polyelectrolyte multilayer thin films, in whichthere are hydrophilic side groups with strong affinity towards water molecules, are a category of humidity-sensitive functional materials. The polyelectrolyte multilayer thin film Fabry-Perot cavity-type fiber optical humidity sensor can work over a wide range from about 0% RH to about 100% RH with a response time less than 1 s.

  12. Insertion devices

    CERN Document Server

    Bahrdt, J

    2006-01-01

    The interaction of an insertion device with the electron beam in a storage ring is discussed. The radiation property including brightness, ux and polarization of an ideal and real planar and helical / elliptical device is described. The magnet design of planar, helical, quasiperiodic devices and of devices with a reduced on axis power density are resumed.

  13. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    Science.gov (United States)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-01-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (∼1012 inch−2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics. PMID:27491392

  14. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    Science.gov (United States)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-08-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  15. Observation of ionic Coulomb blockade in nanopores

    Science.gov (United States)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  16. Organic photoresponse materials and devices.

    Science.gov (United States)

    Dong, Huanli; Zhu, Hongfei; Meng, Qing; Gong, Xiong; Hu, Wenping

    2012-03-07

    Organic photoresponse materials and devices are critically important to organic optoelectronics and energy crises. The activities of photoresponse in organic materials can be summarized in three effects, photoconductive, photovoltaic and optical memory effects. Correspondingly, devices based on the three effects can be divided into (i) photoconductive devices such as photodetectors, photoreceptors, photoswitches and phototransistors, (ii) photovoltaic devices such as organic solar cells, and (iii) optical data storage devices. It is expected that this systematic analysis of photoresponse materials and devices could be a guide for the better understanding of structure-property relationships of organic materials and provide key clues for the fabrication of high performance organic optoelectronic devices, the integration of them in circuits and the application of them in renewable green energy strategies (critical review, 452 references).

  17. Nanoparticles in ionic liquids: interactions and organization.

    Science.gov (United States)

    He, Zhiqi; Alexandridis, Paschalis

    2015-07-28

    Ionic liquids (ILs), defined as low-melting organic salts, are a novel class of compounds with unique properties and a combinatorially great chemical diversity. Ionic liquids are utilized as synthesis and dispersion media for nanoparticles as well as for surface functionalization. Ionic liquid and nanoparticle hybrid systems are governed by a combined effect of several intermolecular interactions between their constituents. For each interaction, including van der Waals, electrostatic, structural, solvophobic, steric, and hydrogen bonding, the characterization and quantitative calculation methods together with factors affecting these interactions are reviewed here. Various self-organized structures based on nanoparticles in ionic liquids are generated as a result of a balance of these intermolecular interactions. These structures, including colloidal glasses and gels, lyotropic liquid crystals, nanoparticle-stabilized ionic liquid-containing emulsions, ionic liquid surface-functionalized nanoparticles, and nanoscale ionic materials, possess properties of both ionic liquids and nanoparticles, which render them useful as novel materials especially in electrochemical and catalysis applications. This review of the interactions within nanoparticle dispersions in ionic liquids and of the structure of nanoparticle and ionic liquid hybrids provides guidance on the rational design of novel ionic liquid-based materials, enabling applications in broad areas.

  18. Ionic conductivity studies of gel polyelectrolyte based on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Cha, E.H. [The Faculty of Liberal Arts (Chemistry), Hoseo University, Asan Choongnam 336-795 (Korea); Lim, S.A. [Functional Proteomics Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea); Park, J.H. [Department of Herbal Medicine, Hoseo University, Asan Choongnam 336-795 (Korea); Kim, D.W. [Department of Chemical Technology, Han Bat National University, Daejon 305-719 (Korea); Macfarlane, D.R. [School of Chemistry, Monash University, Clayton, Vic. 3800 (Australia)

    2008-04-01

    Novel lithium polyelectrolyte-ionic liquids have been prepared and characterized of their properties. Poly(lithium 2-acrylamido-2-methyl propanesulfonate) (PAMPSLi) and its copolymer with N-vinyl formamide (VF) also has been prepared as a copolymer. 1-Ethyl-3-methylimidazolium tricyanomethanide (emImTCM) and N,N-dimethyl-N-propyl-N-butyl ammonium tricyanomethanide (N{sub 1134}TCM) which are chosen because of the same with the anion of ionic liquid were prepared. The ionic conductivity of copolymer system (PAMPSLi/PVF/emImTCM: 5.43 x 10{sup -3} S cm{sup -1} at 25 C) exhibits about over four times higher than that of homopolymer system (PAMPSLi/emImTCM: 1.28 x 10{sup -3} S cm{sup -1} at 25 C). Introduction of vinyl formamide into the copolymer type can increase the dissociation of the lithium cations from the polymer backbone. The ionic conductivity of copolymer with emImTCM (PAMPSLi/PVF/emImTCM) exhibits the higher conductivity than that of PAMPSLi/PVF/N{sub 1134}TCM (2.48 x 10{sup -3} S cm{sup -1}). Because of using the polymerizable anion it is seen to maintain high flexibility of imidazolium cation effectively to exhibit the higher conductivity. And also the viscosity of emImTCM (19.56 cP) is lower than that of N{sub 1134}TCM (28.61 cP). Low viscosity leads to a fast rate of diffusion of redox species. (author)

  19. Multiphysics simulation of corona discharge induced ionic wind

    CERN Document Server

    Cagnoni, Davide; Christen, Thomas; de Falco, Carlo; Parolini, Nicola; Stevanović, Ivica

    2013-01-01

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices, whose main benefit is the ability to accurately predict the amount of charge injected at the corona electrode. Our multiphysics numerical model consists of a highly nonlinear strongly coupled set of PDEs including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are validated by comparison with experimental measurements and are shown to closely match. Finally, our simulation tool is used to estimate the effectiveness of the design of an electrohydrodynamic cooling apparatus for power electronics applicat...

  20. Multiphysics simulation of corona discharge induced ionic wind

    Energy Technology Data Exchange (ETDEWEB)

    Cagnoni, Davide [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); Agostini, Francesco; Christen, Thomas [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); Parolini, Nicola [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); Stevanović, Ivica [ABB Switzerland Ltd., Corporate Research, CH-5405 Baden-Dättwil (Switzerland); Laboratory of Electromagnetics and Acoustics, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Falco, Carlo de [MOX - Dipartimento di Matematica “F. Brioschi,” Politecnico di Milano, 20133 Milano (Italy); CEN - Centro Europeo di Nanomedicina, 20133 Milano (Italy)

    2013-12-21

    Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices; its main benefit is the ability to accurately predict the amount of charge injected from the corona electrode. Our multiphysics numerical model consists of a highly nonlinear, strongly coupled set of partial differential equations including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity, and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are verified and validated by comparison with experimental measurements of integral physical quantities, which are shown to closely match.

  1. Nanoionic devices enabling a multitude of new features

    Science.gov (United States)

    Terabe, Kazuya; Tsuchiya, Takashi; Yang, Rui; Aono, Masakazu

    2016-07-01

    In recent years, interesting nanoscale phenomena caused by physical or chemical effects due to local ion transfers near heterointerfaces using ionic conductors have been discovered, and the so-called ``nanoionic devices'' (which apply new functionalities gained by exploiting those phenomena) are being proposed. Up until now, nanoionic devices with unique functions that have been unattainable with conventional semiconductor devices have been developed. These devices include brain-type devices, completely solid-state electric-double-layer transistors, multi-functional on-demand-type devices, superconducting elements capable of modulating transition temperature, and so on. As for research and development on nanodevices for next-generation information and communication technologies, expected developments of these devices in the field of solid-state ionics are introduced based on the results of our research.

  2. Fluid flow sensing with ionic polymer-metal composites

    Science.gov (United States)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  3. Pressure-Temperature Phase Diagram of Ionic Liquid Dielectric DEME-TFSI

    Science.gov (United States)

    McCann, Duncan M.; Misek, Martin; Kamenev, Konstantin V.; Huxley, Andrew D.

    Ionic liquids have proven highly effective as dielectrics in Electric Double Layer (EDL) devices for electrostatic doping in a range of materials. DEME-TFSI in particular is a commonly used dielectric due to its high ionic conductivity and low glass transition temperature of 182 K. Application of pressure provides a dual tuning parameter in tandem with the electric field yet progress is hampered by the lack of an accurate pressure-temperature phase diagram for DEME- TFSI. We present results on expansivity and leakage current measurements of the ionic liquid dielectric DEME-TFSI to provide a phase diagram mapping the glass transition temperature up to 0.6 GPa. This should allow the effective operation of EDL devices using DEME-TFSI under pressure.

  4. Oxidative study of gabapentin by alkaline hexacyanoferrate(III) in room temperature in presence of catalytic amount of Ru(III) a mechanistic approach

    Science.gov (United States)

    Jose, Timy P.; Angadi, Mahantesh A.; Salunke, Manjalee S.; Tuwar, Suresh M.

    2008-12-01

    The kinetics of oxidation of gabapentin by hexacyanoferrate(III) in aqueous alkaline medium at a constant ionic strength of 0.5 mol dm -3 was studied spectrophotometrically. The reaction is of first order in [HCF(III)] and of less than unit order in [alkali]. The reaction rate is independent upon [gabapentin]. Effects of added products, ionic strength and dielectric constant of the reaction medium have been investigated. Oxidative product of gabapentin was identified. A suitable mechanism has been proposed. The reaction constants involved in the different steps of mechanism are calculated. The activation parameters of the mechanism are computed and discussed .

  5. Solid State Ionics Advanced Materials for Emerging Technologies

    Science.gov (United States)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    Keynote lecture. Challenges and opportunities of solid state ionic devices / W. Weppner -- pt. I. Ionically conducting inorganic solids. Invited papers. Multinuclear NMR studies of mass transport of phosphoric acid in water / J. R. P. Jayakody ... [et al.]. Crystalline glassy and polymeric electrolytes: similarities and differences in ionic transport mechanisms / J.-L. Souquet. 30 years of NMR/NQR experiments in solid electrolytes / D. Brinkmann. Analysis of conductivity and NMR measurements in Li[symbol]La[symbol]TiO[symbol] fast Li[symbol] ionic conductor: evidence for correlated Li[symbol] motion / O. Bohnké ... [et al.]. Transport pathways for ions in disordered solids from bond valence mismatch landscapes / S. Adams. Proton conductivity in condensed phases of water: implications on linear and ball lightning / K. Tennakone -- Contributed papers. Proton transport in nanocrystalline bioceramic materials: an investigative study of synthetic bone with that of natural bone / H. Jena, B. Rambabu. Synthesis and properties of the nanostructured fast ionic conductor Li[symbol]La[symbol]TiO[symbol] / Q. N. Pham ... [et al.]. Hydrogen production: ceramic materials for high temperature water electrolysis / A. Hammou. Influence of the sintering temperature on pH sensor ability of Li[symbol]La[symbol]TiO[symbol]. Relationship between potentiometric and impedance spectroscopy measurements / Q. N. Pham ... [et al.]. Microstructure chracterization and ionic conductivity of nano-sized CeO[symbol]-Sm[symbol]O[symbol] system (x=0.05 - 0.2) prepared by combustion route / K. Singh, S. A. Acharya, S. S. Bhoga. Red soil in Northern Sri Lanka is a natural magnetic ceramic / K. Ahilan ... [et al.]. Neutron scattering of LiNiO[symbol] / K. Basar ... [et al.]. Preparation and properties of LiFePO[symbol] nanorods / L. Q. Mai ... [et al.]. Structural and electrochemical properties of monoclinic and othorhombic MoO[symbol] phases / O. M. Hussain ... [et al.]. Preparation of Zircon (Zr

  6. Externally Wetted Ionic Liquid Thruster

    Science.gov (United States)

    Lozano, P.; Martinez-Sanchez, M.; Lopez-Urdiales, J. M.

    2004-10-01

    This paper presents initial developments of an electric propulsion system based on ionic liquid ion sources (ILIS). Propellants are ionic liquids, which are organic salts with two important characteristics; they remain in the liquid state at room temperature and have negligible vapor pressure, thus allowing their use in vacuum. The working principles of ILIS are similar to those of liquid metal ion sources (LMIS), in which a Taylor cone is electrostatically formed at the tip of an externally wetted needle while ions are emitted directly from its apex. ILIS have the advantage of being able to produce negative ions that have similar masses than their positive counterparts with similar current levels. This opens up the possibility of achieving plume electrical neutrality without electron emitters. The possible multiplexing of these emitters is discussed in terms of achievable thrust density for applications other than micro-propulsion.

  7. Ionic Liquids for Advanced Materials

    Science.gov (United States)

    2008-12-01

    developed characterization set-ups for the electromechanical responses of conductive network/ ionomer composite (CNIC). The overall research goal... glass transition temperature (Tg) with an increase in dielectric constant and ion content. ILs uniquely combine high dielectric constant, low...from 230-440%. Dissociation of ionic aggregates was observed at 85-88 °C in DMA experiments, and the glass transition temperatures increased with

  8. Modelling room temperature ionic liquids.

    Science.gov (United States)

    Bhargava, B L; Balasubramanian, Sundaram; Klein, Michael L

    2008-08-07

    Room temperature ionic liquids (IL) composed of organic cations and inorganic anions are already being utilized for wide-ranging applications in chemistry. Complementary to experiments, computational modelling has provided reliable details into the nature of their interactions. The intra- and intermolecular structures, dynamic and transport behaviour and morphologies of these novel liquids have also been explored using simulations. The current status of molecular modelling studies is presented along with the prognosis for future work in this area.

  9. Aircrew Training Devices: Utility and Utilization of Advanced Instructional Features (Phase II-Air Training Command, Military Airlift Command, and Strategic Air Command [and] Phase III-Electronic Warfare Trainers).

    Science.gov (United States)

    Polzella, Donald J.; Hubbard, David C.

    This document consists of an interim report and a final report which describe the second and third phases of a project designed to determine the utility and utilization of sophisticated hardware and software capabilities known as advanced instructional features (AIFs). Used with an aircrew training device (ATD), AIFs permit a simulator instructor…

  10. Separation process for lanthanides based on solvation properties of non ionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Draye, M.; Favre-Reguillon, A.; Foos, J.; Cote, G

    2004-07-01

    In the present study, cloud-point extraction is used with a lipophilic chelating agent (8-hydroxyquinoline) to extract and separate lanthanum (III) and gadolinium (III) from an aqueous solution. The methodology used is based on the formation of lanthanide (III) organic complexes that are soluble in a micellar phase of non-ionic surfactant. The lanthanide (III) complexes are then extracted into the surfactant-rich phase at a temperature above the cloud-point temperature. The cloud-point temperature, the structure of the lipophilic part of the nonionic surfactant and the chelating agent - metal molar ratio are identified as factors determining the extraction efficiency and selectivity. With Triton X-114, high selectivity and decontamination factor for Gd(III) is observed indicating that micelle mediated extraction involving cloud-point extraction is promising for the specific separation of actinide ions from nuclear waste solution. (authors)

  11. Ionic Liquids to Replace Hydrazine

    Science.gov (United States)

    Koelfgen, Syri; Sims, Joe; Forton, Melissa; Allan, Barry; Rogers, Robin; Shamshina, Julia

    2011-01-01

    A method for developing safe, easy-to-handle propellants has been developed based upon ionic liquids (ILs) or their eutectic mixtures. An IL is a binary combination of a typically organic cation and anion, which generally produces an ionic salt with a melting point below 100 deg C. Many ILs have melting points near, or even below, room temperature (room temperature ionic liquids, RTILs). More importantly, a number of ILs have a positive enthalpy of formation. This means the thermal energy released during decomposition reactions makes energetic ILs ideal for use as propellants. In this specific work, to date, a baseline set of energetic ILs has been identified, synthesized, and characterized. Many of the ILs in this set have excellent performance potential in their own right. In all, ten ILs were characterized for their enthalpy of formation, density, melting point, glass transition point (if applicable), and decomposition temperature. Enthalpy of formation was measured using a microcalorimeter designed specifically to test milligram amounts of energetic materials. Of the ten ILs characterized, five offer higher Isp performance than hydrazine, ranging between 10 and 113 seconds higher than the state-of-the-art propellant. To achieve this level of performance, the energetic cations 4- amino-l,2,4-triazolium and 3-amino-1,2,4-triazolium were paired with various anions in the nitrate, dicyanamide, chloride, and 3-nitro-l,2,4-triazole families. Protonation, alkylation, and butylation synthesis routes were used for creation of the different salts.

  12. Electronic polarizability of ionic crystals

    Science.gov (United States)

    Ivanov, O. V.; Maksimov, E. G.

    1992-01-01

    The electronic polarizability of ionic crystals is considered in the framework of the Gordon-Kim electron gas model. First a polarization of a single ion is calculated by using the modified Sternheimer approach. Then the interaction between two ions with dipole momenta p n and p n' is studied using the Thomas-Fermi type approximation for the energy functional. By expressing the total energy as a functional of the polarizations p n instead of an electric field E and minimizing this functional with respect to p n linear equations for p n are obtained. Solution of these equations leads to the Clausius-Mossotti type expression for dielectric constant ∈ ∞ of ionic crystals in terms of a cell polarizability. It is shown that the cell polarizability can not be expressed in terms of an averaged ion polarizability only but includes also some non-local contributions due to a short-range interactions between ions. Numerical calculations lead to a good agreement with experimental data for a number of ionic crystals.

  13. On the Chemical Stabilities of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yen-Ho Chu

    2009-09-01

    Full Text Available Ionic liquids are novel solvents of interest as greener alternatives to conventional organic solvents aimed at facilitating sustainable chemistry. As a consequence of their unusual physical properties, reusability, and eco-friendly nature, ionic liquids have attracted the attention of organic chemists. Numerous reports have revealed that many catalysts and reagents were supported in the ionic liquid phase, resulting in enhanced reactivity and selectivity in various important reaction transformations. However, synthetic chemists cannot ignore the stability data and intermolecular interactions, or even reactions that are directly applicable to organic reactions in ionic liquids. It is becoming evident from the increasing number of reports on use of ionic liquids as solvents, catalysts, and reagents in organic synthesis that they are not totally inert under many reaction conditions. While in some cases, their unexpected reactivity has proven fortuitous and in others, it is imperative that when selecting an ionic liquid for a particular synthetic application, attention must be paid to its compatibility with the reaction conditions. Even though, more than 200 room temperature ionic liquids are known, only a few reports have commented their effects on reaction mechanisms or rate/stability. Therefore, rather than attempting to give a comprehensive overview of ionic liquid chemistry, this review focuses on the non-innocent nature of ionic liquids, with a decided emphasis to clearly illuminate the ability of ionic liquids to affect the mechanistic aspects of some organic reactions thereby affecting and promoting the yield and selectivity.

  14. Rapid Preparation Methods of Biological Samples for Ionic Compounds Using Ion Exchange Type Monolithic Silica Spin Column

    OpenAIRE

    宮崎, 将太; 山田, 智子; 太田, 茂徳; 斉藤, 剛; 奈女良, 昭; 大平, 真義

    2010-01-01

    We developed a device comprising a spin column packed with ion exchange type (SCX and SAX) monolithic silica for extracting ionic compounds from biological samples. The methods involving the use of these spin column are not useful for the extraction of ionic analytes, but are highly reproducible for the analysis in serum and urine. This spin column enabled sample preparation in less than 10 min. Handling such as sample loading, washing, and elution of analytes, was exhibited by the centrifuga...

  15. Device, method and system for preparing microcapsules

    DEFF Research Database (Denmark)

    2014-01-01

    into hydrophobic oil flow, which is horizontally maintained in the silicone tubing. The injection of polymer/cell mixture into a stream of mineral oil results in the generation of spherical droplet and in the formation of a water- in-oil emulsion due to the immiscibility of the two phases. Subsequently, the micro......-droplets in oil phase are converted into stable microcapsules by gelation in a separate chamber which is loaded with ionic cross- linking solution at physiological ionic strength and pH. The utility of the microcapsules generated by the device of present invention is virtually unlimited in the fields...

  16. Ultraviolet-visible nanophotonic devices

    OpenAIRE

    2010-01-01

    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010. Thesis (Ph. D.) -- Bilkent University, 2010. Includes bibliographical references leaves 130-141. Recently in semiconductor market, III-Nitride materials and devices are of much interest due to their mechanical strength, radiation resistance, working in the spectrum from visible down to the deep ultraviolet region and solar-blind device ...

  17. Photovoltaic device

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Jason A; Keenihan, James R; Gaston, Ryan S; Kauffmann, Keith L; Langmaid, Joseph A; Lopez, Leonardo; Maak, Kevin D; Mills, Michael E; Ramesh, Narayan; Teli, Samar R

    2017-03-21

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  18. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  19. Concentration device

    DEFF Research Database (Denmark)

    2013-01-01

    A concentration device (2) for filter filtration concentration of particles (4) from a volume of a fluid (6). The concentration device (2) comprises a filter (8) configured to filter particles (4) of a predefined size in the volume of the fluid (6). The concentration device (2) comprises...

  20. Photovoltaic device

    Science.gov (United States)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  1. A smart surface with switchable wettability by an ionic liquid.

    Science.gov (United States)

    Chang, Li; Liu, Hongliang; Ding, Yi; Zhang, Jiajing; Li, Li; Zhang, Xiqi; Liu, Mingzhu; Jiang, Lei

    2017-05-11

    Smart control of surface wettability by ionic liquids (ILs) is significant for designing IL-related intelligent materials and devices. Herein, we present mixed molecular brushes comprised of poly(phenylethyl methacrylate) and 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (PPhEtMA-co-PFDMS) grafted surfaces that are capable of dynamically regulating 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]) wettability. (1)H NMR and quartz crystal microbalance characterization demonstrate that the wettability changes result from a temperature-dominated cation-π interaction between [EMIm][NTf2] and PPhEtMA-co-PFDMS brushes.

  2. Microcontact Printing of Thiol-Functionalized Ionic Liquid Microarrays for "Membrane-less" and "Spill-less" Gas Sensors.

    Science.gov (United States)

    Gondosiswanto, Richard; Gunawan, Christian A; Hibbert, David B; Harper, Jason B; Zhao, Chuan

    2016-11-16

    Lab-on-a-chip systems have gained significant interest for both chemical synthesis and assays at the micro-to-nanoscale with a unique set of benefits. However, solvent volatility represents one of the major hurdles to the reliability and reproducibility of the lab-on-a-chip devices for large-scale applications. Here we demonstrate a strategy of combining nonvolatile and functionalized ionic liquids with microcontact printing for fabrication of "wall-less" microreactors and microfluidics with high reproducibility and high throughput. A range of thiol-functionalized ionic liquids have been synthesized and used as inks for microcontact printing of ionic liquid microdroplet arrays onto gold chips. The covalent bonds formed between the thiol-functionalized ionic liquids and the gold substrate offer enhanced stability of the ionic liquid microdroplets, compared to conventional nonfunctionalized ionic liquids, and these microdroplets remain stable in a range of nonpolar and polar solvents, including water. We further demonstrate the use of these open ionic liquid microarrays for fabrication of "membrane-less" and "spill-less" gas sensors with enhanced reproducibility and robustness. Ionic-liquid-based microarray and microfluidics fabricated using the described microcontact printing may provide a versatile platform for a diverse number of applications at scale.

  3. Complexation of Nd(III) with tetraborate ion and its effect on actinide (III) solubility in WIPP brine

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, Marian [Los Alamos National Laboratory; Richmann, Michael K [Los Alamos National Laboratory; Reed, Donald T [Los Alamos National Laboratory; Yongliang, Xiong [SNL

    2010-01-01

    The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, it was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported.

  4. Complexation of Nd(III) with tetraborate ion and its effect on actinide(III) solubility in WIPP brine

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, M.; Richmann, M.; Reed, D.T. [Earth and Environmental Sciences Div., Los Alamos National Lab., Carlsbad Operations, NM (United States); Xiong, Y. [Sandia National Labs., Carlsbad Program Group, Carlsbad, NM (United States)

    2010-07-01

    The potential importance of tetraborate complexation on lanthanide(III) and actinide(III) solubility is recognized in the literature but a systematic study of f-element complexation has not been performed. In neodymium solubility studies in WIPP brines, the carbonate complexation effect is not observed since tetraborate ions form a moderately strong complex with neodymium(III). The existence of these tetraborate complexes was established for low and high ionic strength solutions. Changes in neodymium(III) concentrations in undersaturation experiments were used to determine the neodymium with tetraborate stability constants as a function of NaCl ionic strength. As very low Nd(III) concentrations have to be measured, it was necessary to use an extraction pre-concentration step combined with ICP-MS analysis to extend the detection limit by a factor of 50. The determined Nd(III) with borate stability constants at infinite dilution and 25 C are equal to log {beta}{sub 1} = 4.55 {+-} 0.06 using the SIT approach, equal to log {beta}{sub 1} = 4.99 {+-} 0.30 using the Pitzer approach, with an apparent log {beta}{sub 1} = 4.06 {+-} 0.15 (in molal units) at I = 5.6 m NaCl. Pitzer ion-interaction parameters for neodymium with tetraborate and SIT interaction coefficients were also determined and reported. (orig.)

  5. First principles approach to ionicity of fragments

    Science.gov (United States)

    Pilania, Ghanshyam; Liu, Xiang-Yang; Valone, Steven M.

    2015-02-01

    We develop a first principles approach towards the ionicity of fragments. In contrast to the bond ionicity, the fragment ionicity refers to an electronic property of the constituents of a larger system, which may vary from a single atom to a functional group or a unit cell to a crystal. The fragment ionicity is quantitatively defined in terms of the coefficients of contributing charge states in a superposition of valence configurations of the system. Utilizing the constrained density functional theory-based computations, a practical method to compute the fragment ionicity from valence electron charge densities, suitably decomposed according to the Fragment Hamiltonian (FH) model prescription for those electron densities, is presented for the first time. The adopted approach is illustrated using BeO, MgO and CaO diatomic molecules as simple examples. The results are compared and discussed with respect to the bond ionicity scales of Phillips and Pauling.

  6. Polyelectrolyte brushes in mixed ionic medium studied via intermolecular forces

    Science.gov (United States)

    Farina, Robert; Laugel, Nicolas; Pincus, Philip; Tirrell, Matthew

    2011-03-01

    The vast uses and applications of polyelectrolyte brushes make them an attractive field of research especially with the growing interest in responsive materials. Polymers which respond via changes in temperature, pH, and ionic strength are increasingly being used for applications in drug delivery, chemical gating, etc. When polyelectrolyte brushes are found in either nature (e.g., surfaces of cartilage and mammalian lung interiors) or commercially (e.g., skin care products, shampoo, and surfaces of medical devices) they are always surrounded by mixed ionic medium. This makes the study of these brushes in varying ionic environments extremely relevant for both current and future potential applications. The polyelectrolyte brushes in this work are diblock co-polymers of poly-styrene sulfonate (N=420) and poly-t-butyl styrene (N=20) which tethers to a hydrophobic surface allowing for a purely thermodynamic study of the polyelectrolyte chains. Intermolecular forces between two brushes are measured using the SFA. As multi-valent concentrations are increased, the brushes collapse internally and form strong adhesion between one another after contact (properties not seen in a purely mono-valent environment).

  7. Carbons, ionic liquids and quinones for electrochemical capacitors

    Directory of Open Access Journals (Sweden)

    Raul eDiaz

    2016-04-01

    Full Text Available Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL capacitance and energy density.The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  8. Carbons, ionic liquids and quinones for electrochemical capacitors

    Science.gov (United States)

    Diaz, Raul; Doherty, Andrew

    2016-04-01

    Carbons are the main electrode materials used in electrochemical capacitors, which are electrochemical energy storage devices with high power densities and long cycling lifetimes. However, increasing their energy density will improve their potential for commercial implementation. In this regard, the use of high surface area carbons and high voltage electrolytes are well known strategies to increase the attainable energy density, and lately ionic liquids have been explored as promising alternatives to current state of the art acetonitrile-based electrolytes. Also, in terms of safety and sustainability ionic liquids are attractive electrolyte materials for electrochemical capacitors. In addition, it has been shown that the matching of the carbon pore size with the electrolyte ion size further increases the attainable electric double layer (EDL) capacitance and energy density. The use of pseudocapacitive reactions can significantly increase the attainable energy density, and quinonic-based materials offer a potentially sustainable and cost effective research avenue for both the electrode and the electrolyte. This perspective will provide an overview of the current state of the art research on electrochemical capacitors based on combinations of carbons, ionic liquids and quinonic compounds, highlighting performances and challenges and discussing possible future research avenues. In this regard, current interest is mainly focused on strategies which may ultimately lead to commercially competitive sustainable high performance electrochemical capacitors for different applications including those requiring mechanical flexibility and biocompatibility.

  9. Ionic Polymer Microactuator Activated by Photoresponsive Organic Proton Pumps

    Directory of Open Access Journals (Sweden)

    Khaled M. Al-Aribe

    2015-10-01

    Full Text Available An ionic polymer microactuator driven by an organic photoelectric proton pump transducer is described in this paper. The light responsive transducer is fabricated by using molecular self-assembly to immobilize oriented bacteriorhodopsin purple membrane (PM patches on a bio-functionalized porous anodic alumina (PAA substrate. When exposed to visible light, the PM proton pumps produce a unidirectional flow of ions through the structure’s nano-pores and alter the pH of the working solution in a microfluidic device. The change in pH is sufficient to generate an osmotic pressure difference across a hydroxyethyl methacrylate-acrylic acid (HEMA-AA actuator shell and induce volume expansion or contraction. Experiments show that the transducer can generate an ionic gradient of 2.5 μM and ionic potential of 25 mV, producing a pH increase of 0.42 in the working solution. The ΔpH is sufficient to increase the volume of the HEMA-AA microactuator by 80%. The volumetric transformation of the hydrogel can be used as a valve to close a fluid transport micro-channel or apply minute force to a mechanically flexible microcantilever beam.

  10. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating.

    Science.gov (United States)

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-08-03

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the least studied property in TMDs due to methodological difficulty accessing it in different TMD species. Here, we report the systematic study of superconductivity in MoSe2, MoTe2 and WS2 by ionic gating in different regimes. Electrostatic gating using ionic liquid was able to induce superconductivity in MoSe2 but not in MoTe2 because of inefficient electron accumulation limited by electronic band alignment. Alternative gating using KClO4/polyethylene glycol enabled a crossover from surface doping to bulk doping, which induced superconductivities in MoTe2 and WS2 electrochemically. These new varieties greatly enriched the TMD superconductor families and unveiled critical methodology to expand the capability of ionic gating to other materials.

  11. Charge carrier trapping into mobile, ionic defects in nanoporous ultra-low-k dielectric materials

    Science.gov (United States)

    Plawsky, Joel; Borja, Juan; Lu, Toh-Ming; Gill, William

    2014-03-01

    Reliability and robustness of low-k materials for advanced interconnects has become a major challenge for the continuous down-scaling of silicon semiconductor devices. Metal catalyzed time dependent breakdown (TDDB) is a major force preventing the integration of sub-32nm process technology nodes. We investigate how ionic species can become trapping centers (mobile defects) for charge carriers. A mechanism for describing and quantifying the trapping of charge carriers into mobile ions under bias and temperature stress is presented and experimentally investigated. The dynamics of trapping into ionic centers are severely impacted by temperature and species mass transport. After extended bias and temperature stress, the magnitude of charge trapping into ionic centers decreases asymptotically. Various processes such as the reduction of ionic species, moisture outgassing, and the inhibition of ionic drift via the distortion of local fields were investigated as possible cause for the reduction in charge trapping. Simulations suggest that built-in fields reduce the effect of an externally applied field in directing ionic drift, which can lead to the inhibition of the trapping mechanism. In addition, conduction mechanisms are investigated for reactive and inert electrodes. Seimconductor Research Corporation.

  12. Ionic charging by local imbalance at interfaces in hybrid lead halide perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Almora, Osbel; Guerrero, Antonio; Garcia-Belmonte, Germà, E-mail: garciag@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12071 Castelló (Spain)

    2016-01-25

    Identification of specific operating mechanisms becomes particularly challenging when mixed ionic-electronic conductors are used in optoelectronic devices. Ionic effects in perovskite solar cells are believed to distort operation curves and possess serious doubts about their long term stability. Current hysteresis and switchable photovoltaic characteristics have been connected to the kinetics of ion migration. However, the nature of the specific ionic mechanism (or mechanisms) able to explain the operation distortions is still poorly understood. It is observed here that the local rearrangement of ions at the electrode interfaces gives rise to commonly observed capacitive effects. Charging transients in response to step voltage stimuli using thick CH{sub 3}NH{sub 3}PbI{sub 3} samples show two main polarization processes and reveal the structure of the ionic double-layer at the interface with the non-reacting contacts. It is observed that ionic charging, with a typical response time of 10 s, is a local effect confined in the vicinity of the electrode, which entails absence of net mobile ionic concentration (space-charge) in the material bulk.

  13. Achieving enhanced ionic mobility in nanoporous silica by controlled surface interactions.

    Science.gov (United States)

    Garaga, Mounesha Nagendrachar; Aguilera, Luis; Yaghini, Negin; Matic, Aleksandar; Persson, Michael; Martinelli, Anna

    2017-02-22

    We report a strategy to enhance the ionic mobility in an emerging class of gels, based on robust nanoporous silica micro-particles, by chemical functionalization of the silica surface. Two very different ionic liquids are used to fill the nano-pores of silica at varying pore filling factors, namely one aprotic imidazolium based (1-methyl-3-hexylimidazolium bis(trifluoromethanesulfonyl)imide, C6C1ImTFSI), and one protic ammonium based (diethylmethylammonium methanesulfonate, DEMAOMs) ionic liquid. Both these ionic liquids display higher ionic mobility when confined in functionalized silica as compared to untreated silica nano-pores, an improvement that is more pronounced at low pore filling factors (i.e. in the nano-sized pore domains) and observed in the whole temperature window investigated (i.e. from -10 to 140 °C). Solid-state NMR, diffusion NMR and dielectric spectroscopy concomitantly demonstrate this effect. The origin of this enhancement is explained in terms of weaker intermolecular interactions and a consequent flipped-ion effect at the silica interface strongly supported by 2D solid-state NMR experiments. The possibility to significantly enhance the ionic mobility by controlling the nature of surface interactions is extremely important in the field of materials science and highlights these structurally tunable gels as promising solid-like electrolytes for use in energy relevant devices. These include, but are not limited to, Li-ion batteries and proton exchange membrane (PEM) fuel cells.

  14. Preparation and characterisation of high-density ionic liquids incorporating halobismuthate anions.

    Science.gov (United States)

    Cousens, Nico E A; Taylor Kearney, Leah J; Clough, Matthew T; Lovelock, Kevin R J; Palgrave, Robert G; Perkin, Susan

    2014-07-28

    A range of ionic liquids containing dialkylimidazolium cations and halobismuthate anions ([BiBr(x)Cl(y)I(z)](-) and [Bi2Br(x)Cl(y)I(z)](-)) were synthesised by combining dialkylimidazolium halide ionic liquids with bismuth(III) halide salts. The majority were room temperature liquids, all with very high densities. The neat ionic liquids and their mixtures with 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide were characterised using Densitometry, Viscometry, NMR Spectroscopy, Electrospray Ionisation Mass Spectrometry (ESI), Liquid Secondary Ion Mass Spectrometry (LSIMS), Matrix-assisted Laser Desorption/Ionization Mass Spectrometry (MALDI), X-Ray Photoelectron Spectroscopy (XPS) and Thermogravimetric Analysis (TGA), to establish their speciation and suitability for high-temperature applications.

  15. Ionic Liquids: Just Molten Salts After All?

    Directory of Open Access Journals (Sweden)

    Anna K. Croft

    2009-07-01

    Full Text Available While there has been much effort in recent years to characterise ionic liquids in terms of parameters that are well described for molecular solvents, using these to explain reaction outcomes remains problematic. Herein we propose that many reaction outcomes in ionic liquids may be explained by considering the electrostatic interactions present in the solution; that is, by recognising that ionic liquids are salts. This is supported by evidence in the literature, along with studies presented here.

  16. Barriers to medical device innovation

    Directory of Open Access Journals (Sweden)

    Bergsl

    2014-06-01

    Full Text Available Jacob Bergsland, Ole Jakob Elle, Erik Fosse The Intervention Centre, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Oslo, Norway Abstract: The US Food and Drug Administration (FDA has defined a medical device as a health care product that does not achieve it's purpose by chemical action or by being metabolized. This means that a vast number of products are considered medical devices. Such devices play an essential role in the practice of medicine. The FDA classifies medical devices in three classes, depending on the risk of the device. Since Class I and II devices have relatively simple requirements for getting to the market, this review will focus on “implantable devices”, which, in general, belong to Class III. The European Union and Canada use a slightly different classification system. While early generations of medical devices were introduced without much testing, either technical or clinical, the process of introducing a Class III medical device from concept to clinical practice has become strongly regulated and requires extensive technological and clinical testing. The modern era of implantable medical devices may be considered to have started in the 1920s with development of artificial hips. The implantable pacemaker was another milestone and pacemakers and cardioverters/defibrillators have since saved millions of lives and created commercial giants in the medical device industry. This review will include some examples of cardiovascular devices. Similar considerations apply to the total implantable device market, although clinical and technological applications obviously vary considerably. Keyword: implantable, FDA, regulation, CE-mark, innovation

  17. Investigation of Electronic Corrosion at Device Level

    DEFF Research Database (Denmark)

    Jellesen, Morten Stendahl; Minzari, Daniel; Rathinavelu, Umadevi

    2010-01-01

    This work presents device level testing of a lead free soldered electronic device tested with bias on under cyclic humidity conditions in a climatic chamber. Besides severe temperature and humidity during testing some devices were deliberately contaminated before testing. Contaminants investigated...... are ionic or airborne contaminants likely to be introduced by production or service conditions. The effect of changes in processing parameters as a result of production shift to lead free solder (e.g. higher soldering temperature) has also been investigated. Analysis have shown that one printed circuit...

  18. Improved Ionic Liquids as Space Lubricants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Ionic liquids are candidate lubricant materials. However for application in low temperature space mechanisms their lubrication performance needs to be enhanced. UES...

  19. Electricity generation at high ionic strength in microbial fuel cell by a newly isolated Shewanella marisflavi EP1

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jiexun [Univ. of Science and Technology of China, Hefei (China). Hefei National Lab. for Physical Sciences at Microscale and School of Life Sciences; State Oceanic Administration, Xiamen (China). Key Lab. of Marine Biogenetic Resources; Sun, Baolin [Univ. of Science and Technology of China, Hefei (China). Hefei National Lab. for Physical Sciences at Microscale and School of Life Sciences; Zhang, Xiaobo [Zhejiang Univ., Hangzhou (China). Coll. of Life Sciences; State Oceanic Administration, Xiamen (China). Key Lab. of Marine Biogenetic Resources

    2010-01-15

    Increasing the ionic strength of the electrolyte in a microbial fuel cell (MFC) can remarkably increase power output due to the reduction of internal resistance. However, only a few bacterial strains are capable of producing electricity at a very high ionic strength. In this report, we demonstrate a newly isolated strain EP1, belonging to Shewanella marisflavi based on polyphasic analysis, which could reduce Fe(III) and generate power at a high ionic strength of up to 1,488 mM (8% NaCl) using lactate as the electron donor. Using this bacterium, a measured maximum power density of 3.6 mW/m{sup 2} was achieved at an ionic strength of 291 mM. The maximum power density was increased by 167% to 9.6 mW/m{sup 2} when ionic strength was increased to 1,146 mM. However, further increasing the ionic strength to 1,488 mM resulted in a decrease in power density to 5.2 mW/m{sup 2}. Quantification of the internal resistance distribution revealed that electrolyte resistance was greatly reduced from 1,178 to 50 {omega} when ionic strength increased from 291 to 1,488 mM. These results indicate that isolation of specific bacterial strains can effectively improve power generation in some MFC applications. (orig.)

  20. Morphology and Ionic Conductivity of Block Copolymer Electrolytes Containing Ionic Liquids

    Science.gov (United States)

    Park, Moon Jeong

    2015-03-01

    The global energy crisis and an increase in environmental pollution in the recent years have drawn the attention of the scientific community towards the development of efficient electrochemical devices. Polymers containing charged species have the potential to serve as electrolytes in next-generation devices and achieving high ion transport properties in these electrolytes is the key to improving their efficiency. Although the synthesis and characterization of a wide variety of ion-containing polymers have been extensively reported over the last decade, quantitative understanding of the factors governing the ion transport properties of these materials is in its infancy. In this talk, I will present the current understanding of the diverse factors affecting the thermodynamics, morphologies and ion transport of ion-containing polymers by focusing on the use of ionic liquids (ILs). Various strategies for accessing improved transport properties of IL-containing polymers are elucidated by focusing on the role of IL-polymer interactions. The major accomplishment of obtaining well-defined morphologies for these IL-containing polymers by the use of block copolymer is particularly emphasized as a novel means of controlling the transport properties. The application of IL-incorporated polymer electrolytes in high temperature fuel cells and electro-active actuators is also enclosed.

  1. Tailor-made ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jork, C. [Technische Universitaet Berlin, Strasse des 17. Juni 135, Institut fuer Verfahrenstechnik, Fachgebiet Thermodynamik und Thermische Verfahrenstechnik, 10623 Berlin (Germany); Kristen, C. [Technische Universitaet Berlin, Strasse des 17. Juni 135, Institut fuer Verfahrenstechnik, Fachgebiet Thermodynamik und Thermische Verfahrenstechnik, 10623 Berlin (Germany); Pieraccini, D. [University of Pisa, Dipartimento di Chimica Bioorganica e Biofarmacia, via Bonanno 33, 56126 Pisa (Italy); Stark, A. [Friedrich-Schiller-Universitaet Jena, Institut fuer Technische Chemie und Umweltchemie, Lessingstrasse 12, 07743 Jena (Germany); Chiappe, C. [University of Pisa, Dipartimento di Chimica Bioorganica e Biofarmacia, via Bonanno 33, 56126 Pisa (Italy); Beste, Y.A. [BASF AG, GCT/A-L540, 67056 Ludwigshafen (Germany); Arlt, W. [Universitaet Erlangen/Nuernberg, Lehrstuhl fuer Thermische Verfahrenstechnik, Egerlandstrasse 3, 91058 Erlangen (Germany)]. E-mail: wolfgang.arlt@cbi.uni-erlangen.de

    2005-06-15

    This article presents a first consequent thermodynamic optimization of ionic liquids (IL) as entrainers in the distillative separation of both an azeotropic aqueous (tetrahydrofuran + water) and a close-boiling aromatic test system (methylcyclohexane + toluene) on the basis of COSMO-RS predictions. The use of this method allows for the preselection from the large pool of available IL. Thus, favorable structural variations were identified and used for tailoring IL entrainers. For the prediction of activity coefficients with COSMO-RS, the use of different conformations of the components, derived from conformational analyses, leads to varying results. The simulations showed that the influence of conformations of the volatile components and the ionic liquids depends largely on the type of the phase equilibrium, which is investigated. The approach to tailor ionic liquids as additives for separation science starts with the prediction of the activity coefficients at infinite dilution. The simulation indicated that a higher degree of branching or longer alkyl substituents on the cation, as well as a low nucleophilicity of the anion decreases both selectivity and capacity in the polar test mixture. However, COSMO-RS calculations for the non-polar mixture showed that the selection of an entrainer for this system is more complicated, because - contrarily to (tetrahydrofuran + water) - structural variations of the IL entrainer cause converse changes in selectivity and capacity: while the selectivity for toluene increases with a lower degree of branching and a shorter alkyl substituent of the cation as well as with a lower nucleophilicity of the anion, these properties decrease the capacity. In this work, the most favorable IL entrainers were synthesized and the separation factors of the test systems were experimentally validated at finite dilution.

  2. Ionic Structure at Dielectric Interfaces

    Science.gov (United States)

    Jing, Yufei

    The behavior of ions in liquids confined between macromolecules determines the outcome of many nanoscale assembly processes in synthetic and biological materials such as colloidal dispersions, emulsions, hydrogels, DNA, cell membranes, and proteins. Theoretically, the macromolecule-liquid boundary is often modeled as a dielectric interface and an important quantity of interest is the ionic structure in a liquid confined between two such interfaces. The knowledge gleaned from the study of ionic structure in such models can be useful in several industrial applications, such as biosensors, lithium-ion batteries double-layer supercapacitors for energy storage and seawater desalination. Electrostatics plays a critical role in the development of such functional materials. Many of the functions of these materials, result from charge and composition heterogeneities. There are great challenges in solving electrostatics problems in heterogeneous media with arbitrary shapes because electrostatic interactions remains unknown but depend on the particular density of charge distributions. Charged molecules in heterogeneous media affect the media's dielectric response and hence the interaction between the charges is unknown since it depends on the media and on the geometrical properties of the interfaces. To determine the properties of heterogeneous systems including crucial effects neglected in classical mean field models such as the hard core of the ions, the dielectric mismatch and interfaces with arbitrary shapes. The effect of hard core interactions accounts properly for short range interactions and the effect of local dielectric heterogeneities in the presence of ions and/or charged molecules for long-range interactions are both analyzed via an energy variational principle that enables to update charges and the medium's response in the same simulation time step. In particular, we compute the ionic structure in a model system of electrolyte confined by two planar dielectric

  3. Corrosion prevention of magnesium surfaces via surface conversion treatments using ionic liquids

    Science.gov (United States)

    Qu, Jun; Luo, Huimin

    2016-09-06

    A method for conversion coating a magnesium-containing surface, the method comprising contacting the magnesium-containing surface with an ionic liquid compound under conditions that result in decomposition of the ionic liquid compound to produce a conversion coated magnesium-containing surface having a substantially improved corrosion resistance relative to the magnesium-containing surface before said conversion coating. Also described are the resulting conversion-coated magnesium-containing surface, as well as mechanical components and devices containing the conversion-coated magnesium-containing surface.

  4. Microfluidic Device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  5. CyberStorm III

    NARCIS (Netherlands)

    Luiijf, H.A.M.; et al

    2010-01-01

    Projectteam Cyber Storm III - De Verenigde Staten organiseerden de afgelopen jaren een reeks grootschalige ICT-crisisoefeningen met de naam Cyber Storm. Cyber Storm III is de derde oefening in de reeks. Het scenario van Cyber Storm III staat in het teken van grootschalige ICT-verstoringen, waarbij n

  6. Progress Towards III-V Photovoltaics on Flexible Substrates

    Science.gov (United States)

    McNatt, Jeremiah S.; Pal, AnnaMaria T.; Clark, Eric B.; Sayir, Ali; Raffaelle, Ryne P.; Bailey, Christopher G.; Hubbard, Seth M.; Maurer, William F.; Fritzemeier, Les

    2008-01-01

    Presented here is the recent progress of the NASA Glenn Research Center OMVPE group's efforts in the development of high efficiency thin-film polycrystalline III-V photovoltaics on optimum substrates. By using bulk polycrystalline germanium (Ge) films, devices of high efficiency and low mass will be developed and incorporated onto low-cost flexible substrates. Our progress towards the integration of high efficiency polycrystalline III-V devices and recrystallized Ge films on thin metal foils is discussed.

  7. Development and modeling of novel extensional ionic polymer transducers

    Science.gov (United States)

    Akle, Barbar; Wallmersperger, Thomas; Leo, Donald

    2007-04-01

    Ionic polymer transducers (IPT), sometimes referred to as artificial muscles, are known to generate a large bending strain and a moderate stress at low applied voltages. Bending actuators have limited engineering applications due to the low forcing capabilities and the need for complicated external devices to convert the bending action into rotating or linear motion desired in most devices. Recently Akle and Leo (2006) reported extensional actuation in ionic polymer transducers. Model prediction indicates that such actuators can produce strain up to 10% and a blocked stress up to 20MPa under a +/- 2V applied electric potential. Compared to other smart materials, IPT is a flexible membrane and it has a reliability of over one million cycles. In this work novel extensional IPT actuators are developed for the purpose of increasing the overall displacement of the actuator. The electromechanical coupling is measured and a correlation of the experimental data with the active areas model by Akle and Leo (2006) and the numerical electromechanical model by Wallmersperger and Leo (2004) are presented. The coupling between each test case with the model parameters enables further understanding of the physical actuation phenomena as the role of diffusion of ions and diluents and the electrostatic forces between the charged species. In this study the displacement of an extensional ionic polymer transducer is measured and compared to the bending of the same IPT actuator. The bending strain is measured to be approximately 2.5%, while the extensional strain for the same ionomer is in the order of 17.5%. Finally an interesting behavior, reported for the first time is the steady expansion of the IPT sample due to the application of a symmetrical sine wave. This indicates that charge accumulation is occurring at the electrode.

  8. Ionic Interactions in Actinide Tetrahalides

    Science.gov (United States)

    Akdeniz, Z.; Karaman, A.; Tosi, M. P.

    2001-05-01

    We determine a model of the ionic interactions in AX 4 compounds (where A is an atom in the actinide series from Th to Am and X = F, Cl, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is taken from earlier work on rare-earth trihalides [Z. Akdeniz, Z. Q q e k and M. P. Tosi, Z. Naturforsch. 55a, 861 (2000)] and in particular allows for the electronic polarizability of the actinide ion. This polarizability quantitatively determines the antisymmetric-bending vibrational mode, but its magnitude remains compatible with a symmetric tetrahedral shape of the molecule at equilibrium. The fluorides have an especially high degree of ionic character, and the interionic-force parameters for each halide of the U, Np, Pu and Am series show regular trends, suggesting that extrapolations to the other transuranic-element halides may usefully be made. The Th compounds show some deviations from these trends, and the interionic-force model that we determine for ThCl4 differs somewhat from that obtained in a previous study. We therefore return on the evaluation of the relative stability of charged oligomers of ThCl4 and ZrCl4 and find confirmation of our earlier results on this problem.

  9. Engineered microorganisms having resistance to ionic liquids

    Science.gov (United States)

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  10. Chemical and Electrochemical Studies in Ionic Liquids

    Science.gov (United States)

    1990-01-12

    Electrochemistry and Witchcraft ", Gordon Research Conference on Electrochemistry", Santa Barbara, CA, January, 1985. OR. A. Osteryoung, ’An Introduction to...Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft ", Chemistry Department Colloquium, University of Alabama...Tuscaloosa, Alabama, December 1, 1988. OR. A. Osteryoung, "Ambient Temperature Chloroaluminate Ionic Liquids: Chemistry, Electrochemistry and Witchcraft

  11. First principles approach to ionicity of fragments

    Energy Technology Data Exchange (ETDEWEB)

    Pilania, Ghanshyam, E-mail: gpilania@lanl.gov; Liu, Xiang-Yang; Valone, Steven M.

    2015-02-20

    Highlights: • A novel first principles approach towards the fragment ionicity. • Constrained DFT and valance charge density decomposition were employed. • Correct dissociation limit achieved for diatomics. • Ionicity is an input parameter for a new class of atomistic potentials. - Abstract: We develop a first principles approach towards the ionicity of fragments. In contrast to the bond ionicity, the fragment ionicity refers to an electronic property of the constituents of a larger system, which may vary from a single atom to a functional group or a unit cell to a crystal. The fragment ionicity is quantitatively defined in terms of the coefficients of contributing charge states in a superposition of valence configurations of the system. Utilizing the constrained density functional theory-based computations, a practical method to compute the fragment ionicity from valence electron charge densities, suitably decomposed according to the Fragment Hamiltonian (FH) model prescription for those electron densities, is presented for the first time. The adopted approach is illustrated using BeO, MgO and CaO diatomic molecules as simple examples. The results are compared and discussed with respect to the bond ionicity scales of Phillips and Pauling.

  12. Facile Synthesis of Ureas in Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    Wei Xing QIAN; Feng Yang JU; Yong Min ZHANG; Wei Liang BAO

    2004-01-01

    The reaction of isocyanates with aliphatic and aromatic amines in the 1-n-butyl-3- methylimidazolium tetrafluoroborate (bmimBF4) ionic liquid in good to excellent yields is described. Due to its insolubility, the desired urea solids could be recovered by simple filtration from the ionic liquid after reaction.

  13. Supported Ionic Liquid Phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    Applications of ionic liquids to replace conventional solvents in homogeneous transition-metal catalysis have increased significantly during the last decade. Biphasic ionic liquid/organic liquid systems offer advantages with regard to product separation, catalyst stability, and recycling but util...

  14. Base stable quaternary ammonium ionic liquids

    OpenAIRE

    Lethesh, Kallidanthiyil Chellappan; Dehaen, Wim; Binnemans, Koen

    2014-01-01

    Ionic liquids with the bis(2-ethylhexyl)dimethylammonium cation, [BEDMA]+, were prepared by a halide-free route starting from the readily available secondary amine bis(2-ethylhexyl)amine. The following anions were considered: chloride, bromide, iodide, nitrate, hydrogensulphate, dihydrogenphosphate, formate, acetate, propionate, trifluoroacetate, methyl sulphate, methanesulphonate, tosylate, isonicotinate, nicotinate and picolinate. Several of the compounds are room-temperature ionic liquids,...

  15. Gaseous Hydrocarbon Separations Using Functionalized Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Moura Leila

    2016-03-01

    Full Text Available The functionalization of the side chains on the cation or the anion of an ionic liquid is a common approach to tailor its properties for different processes including the separation of gases. In this paper, we present the current state of the art concerning the usage of ionic liquids for hydrocarbon separations. We also show how the functionalization of ionic liquids or the appropriate anion/cation combinations can contribute to the increase of the performance of the ionic liquids for the separation of gaseous hydrocarbons – either by improving the capacity of the ionic liquid to absorb a given gas or by increasing the selectivity towards a particular hydrocarbon. Original results concerning the usage of olefin-complexing metal salts of lithium (I, nickel (II and copper (II dissolved in ionic liquids for selectively absorbing light olefins are presented. It is observed that the absorption capacity of an imidazolium-based ionic liquid is doubled by the addition of a copper (II salt. This result is compared with the effect of the functionalization of the ionic liquid and the advantages and difficulties of the two approaches are analyzed.

  16. Aqueous solutions of ionic liquids: microscopic assembly

    NARCIS (Netherlands)

    Vicent-Luna, J.M.; Dubbeldam, D.; Gómez-Álvarez, P.; Calero, S.

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level

  17. CHAOS III: Gas-phase Abundances in NGC 5457

    Science.gov (United States)

    Croxall, Kevin V.; Pogge, Richard W.; Berg, Danielle A.; Skillman, Evan D.; Moustakas, John

    2016-10-01

    We present Large Binocular Telescope observations of 109 H ii regions in NGC 5457 (M101) obtained with the Multi-Object Double Spectrograph. We have robust measurements of one or more temperature-sensitive auroral emission lines for 74 H ii regions, permitting the measurement of “direct” gas-phase abundances. Comparing the temperatures derived from the different ionic species, we find: (1) strong correlations of T[N ii] with T[S iii] and T[O iii], consistent with little or no intrinsic scatter; (2) a correlation of T[S iii] with T[O iii], but with significant intrinsic dispersion; (3) overall agreement between T[N ii], T[S ii], and T[O ii], as expected, but with significant outliers; (4) the correlations of T[N ii] with T[S iii] and T[O iii] match the predictions of photoionization modeling while the correlation of T[S iii] with T[O iii] is offset from the prediction of photoionization modeling. Based on these observations, which include significantly more observations of lower excitation H ii regions, missing in many analyses, we inspect the commonly used ionization correction factors (ICFs) for unobserved ionic species and propose new empirical ICFs for S and Ar. We have discovered an unexpected population of H ii regions with a significant offset to low values in Ne/O, which defies explanation. We derive radial gradients in O/H and N/O which agree with previous studies. Our large observational database allows us to examine the dispersion in abundances, and we find intrinsic dispersions of 0.074 ± 0.009 in O/H and 0.095 ± 0.009 in N/O (at a given radius). We stress that this measurement of the intrinsic dispersion comes exclusively from direct abundance measurements of H ii regions in NGC 5457.

  18. Global Positioning System III (GPS III)

    Science.gov (United States)

    2015-12-01

    Military Operations in Urban Terrain; Defense-Wide Mission Support; Air Mobility; and Space Launch Orbital Support. For military users, the GPS III...program provides Precise Positioning Service (PPS) to military operations and force enhancement. It also provides increased anti-jam power to the earth ...to be modified . On January 31, 2016, USD(AT&L) signed the GPS III revised APB. This Change 1 to the APB was due to both cost and schedule breaches

  19. Application of Ionic Liquids in Hydrometallurgy

    Directory of Open Access Journals (Sweden)

    Jesik Park

    2014-08-01

    Full Text Available Ionic liquids, low temperature molten salts, have various advantages manifesting themselves as durable and environmentally friendly solvents. Their application is expanding into various fields including hydrometallurgy due to their unique properties such as non-volatility, inflammability, low toxicity, good ionic conductivity, and wide electrochemical potential window. This paper reviews previous literatures and our recent results adopting ionic liquids in extraction, synthesis and processing of metals with an emphasis on the electrolysis of active/light, rare earth, and platinum group metals. Because the research and development of ionic liquids in this area are still emerging, various, more fundamental approaches are expected to popularize ionic liquids in the metal manufacturing industry.

  20. Hybrid silicon evanescent devices

    Directory of Open Access Journals (Sweden)

    Alexander W. Fang

    2007-07-01

    Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.

  1. Materials space of solid-state electrolytes: unraveling chemical composition-structure-ionic conductivity relationships in garnet-type metal oxides using cheminformatics virtual screening approaches.

    Science.gov (United States)

    Kireeva, Natalia; Pervov, Vladislav S

    2017-08-09

    The organic electrolytes of most current commercial rechargeable Li-ion batteries (LiBs) are flammable, toxic, and have limited electrochemical energy windows. All-solid-state battery technology promises improved safety, cycling performance, electrochemical stability, and possibility of device miniaturization and enables a number of breakthrough technologies towards the development of new high power and energy density microbatteries for electronics with low processing cost, solid oxide fuel cells, electrochromic devices, etc. Currently, rational materials design is attracting significant attention, which has resulted in a strong demand for methodologies that can accelerate the design of materials with tailored properties; cheminformatics can be considered as an efficient tool in this respect. This study was focused on several aspects: (i) identification of the parameters responsible for high Li-ion conductivity in garnet structured oxides; (ii) development of quantitative models to elucidate composition-structure-Li ionic conductivity relationships, taking into account the experimental details of sample preparation; (iii) circumscription of the materials space of solid garnet-type electrolytes, which is attractive for virtual screening. Several candidate compounds have been recommended for synthesis as potential solid state electrolyte materials.

  2. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies.

    Science.gov (United States)

    Schichtel, N; Korte, C; Hesse, D; Janek, J

    2009-05-07

    Ionic transport in solids parallel to grain or phase boundaries is usually strongly enhanced compared to the bulk. Transport perpendicular to an interface (across an interface) is often much slower. Therefore in modern micro- and nanoscaled devices, a severe influence on the ionic/atomic transport properties can be expected due to the high density of interfaces.Transport processes in boundaries of ionic materials are still not understood on an atomic scale. In most of the studies on ionic materials the interfacial transport properties are explained by the influence of space charge regions. Here we discuss the influence of interfacial strain at semicoherent or coherent heterophase boundaries on ionic transport along these interfaces in ionic materials. A qualitative model is introduced for (untilted and untwisted) hetero phase boundaries. For experimental verification, the interfacial oxygen ionic conductivity of different multilayer systems consisting of cubic ZrO(2) stabilised by aliovalent dopands (YSZ, CSZ) and an insulating oxide is investigated as a function of structural mismatch. Recent results on extremely fast ionic conduction in YSZ/SrTiO(3) thin film systems ("colossal ionic concuctivity at interfaces") is discussed from the viewpoint of strain effects.

  3. Ionic Current Rectification in a pH-Tunable Polyelectrolyte Brushes Functionalized Conical Nanopore: Effect of Salt Gradient.

    Science.gov (United States)

    Lin, Jeng-Yang; Lin, Chih-Yuan; Hsu, Jyh-Ping; Tseng, Shiojenn

    2016-01-19

    The behavior of ionic current rectification (ICR) in a conical nanopore with its surface modified by pH-tunable polyelectrolyte (PE) brushes connecting two large reservoirs subject to an applied electric field and a salt gradient is investigated. Parameters including the solution pH, types of ionic species, strength of applied salt gradient, and applied potential bias are examined for their influences on the ionic current and rectification factor, and the mechanisms involved are investigated comprehensively. The ICR behavior depends highly on the charged conditions of the PE layer, the level of pH, the geometry of nanopore, and the thickness of the double layer. In particular, the distribution of ionic species and the local electric field near the nanopore openings play a key role, yielding profound and interesting results that are informative to device design as well as experimental data interpretation.

  4. Infrared spectroscopy of ionic clusters

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.M. (California Univ., Berkeley, CA (USA). Dept. of Chemistry Lawrence Berkeley Lab., CA (USA))

    1990-11-01

    This thesis describes new experiments wherein the infrared vibrational predissociation spectra of a number of mass-selected ionic cluster systems have been obtained and analyzed in the 2600 to 4000 cm{sup {minus}1} region. The species studied include: the hydrated hydronium ions, H{sub 3}O{sup +} (H{sub 2}O){sub 3 {minus}10}, ammoniated ammonium ions, NH{sub 4}{sup +}(NH{sub 3}){sub 1 {minus}10} and cluster ions involving both water and ammonia around an ammonium ion core, (mixed clusters) NH{sub 4}{sup +}(NH{sub 3}){sub n}(H{sub 2}O){sub m} (n+m=4). In each case, the spectra reveal well resolved structures that can be assigned to transitions arising from the vibrational motions of both the ion core of the clusters and the surrounding neutral solvent molecules. 154 refs., 19 figs., 8 tabs.

  5. Lattice models of ionic systems

    Science.gov (United States)

    Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.

    2002-05-01

    A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.

  6. Ionic liquids in analytical chemistry.

    Science.gov (United States)

    Soukup-Hein, Renee J; Warnke, Molly M; Armstrong, Daniel W

    2009-01-01

    The role of ionic liquids (ILs) in analytical chemistry is increasing substantially every year. A decade ago there were but a handful of papers in this area of research that were considered curiosities at best. Today, those publications are recognized as seminal articles that gave rise to one of the most rapidly expanding areas of research in chemical analysis. In this review, we briefly highlight early work involving ILs and discuss the most recent advances in separations, mass spectrometry, spectroscopy, and electroanalytical chemistry. Many of the most important advances in these fields depend on the development of new, often unique ILs and multifunctional ILs. A better understanding of the chemical and physical properties of ILs is also essential.

  7. Radiation effects in ionic solids

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Noriaki; Tanimura, Katsumi

    1986-09-01

    Current development of the research of radiation damage in ionic solids is reviewed. Emphasis is placed on the correlation between elementary radiation damage processes and the atomic and electronic structures of the materials. Both the radiation damage induced by electronic excitation and by elastic collision are treated. For the former two crucial processes, the self-trapping of excitons and the formation of stable Frenkel pairs from the self-trapped excitons in several materials, is discussed in terms of the structures of materials. Deficiency in the available data on the knock-on threshold energies are pointed out. Available information of Frenkel pairs produced by electronic and elastic encounters is surveyed. Possible models of defect clustering are summarized and existing information on clustering is discussed on their basis.

  8. Prospects of III-Vs for Logic Applications

    Directory of Open Access Journals (Sweden)

    U.P. Gomes

    2012-05-01

    Full Text Available The increasing challenges for further scaling down of Si CMOS require the study of alternative channel materials. This paper highlights the significance of III-V compound semiconductor materials in order to face the looming fate of Si CMOS technology. The potential advantages of using III-Vs as channel materials for future III-V CMOS is its outstanding transport properties that have been widely accepted in high frequency RF applications. However, many significant challenges in front of III-V digital technology needs to be overcome before III-V CMOS becomes feasible for next generation high speed and low power logic applications. But it may be that this situation is changing given recent progress in the fabrication of high-mobility III-Vs based heterostructure electronic devices for logic applications to fulfill the needs towards the everyday evolving III-V CMOS technology.

  9. A biokinetic and dosimetric model for ionic indium in humans

    Science.gov (United States)

    Andersson, Martin; Mattsson, Sören; Johansson, Lennart; Leide-Svegborn, Sigrid

    2017-08-01

    This paper reviews biokinetic data for ionic indium, and proposes a biokinetic model for systemic indium in adult humans. The development of parameter values focuses on human data and indium in the form of ionic indium(III), as indium chloride and indium arsenide. The model presented for systemic indium is defined by five different pools: plasma, bone marrow, liver, kidneys and other soft tissues. The model is based on two subsystems: one corresponding to indium bound to transferrin and one where indium is transported back to the plasma, binds to red blood cell transferrin and is then excreted through the kidneys to the urinary bladder. Absorbed doses to several organs and the effective dose are calculated for 111In- and 113mIn-ions. The proposed biokinetic model is compared with previously published biokinetic indium models published by the ICRP. The absorbed doses are calculated using the ICRP/ICRU adult reference phantoms and the effective dose is estimated according to ICRP Publication 103. The effective doses for 111In and 113mIn are 0.25 mSv MBq-1 and 0.013 mSv MBq-1 respectively. The updated biokinetic and dosimetric models presented in this paper take into account human data and new animal data, which represent more detailed and presumably more accurate dosimetric data than that underlying previous models for indium.

  10. The effect of mechanical twisting on oxygen ionic transport in solid-state energy conversion membranes.

    Science.gov (United States)

    Shi, Yanuo; Bork, Alexander Hansen; Schweiger, Sebastian; Rupp, Jennifer Lilia Marguerite

    2015-07-01

    Understanding 'electro-chemo-mechanics' in oxygen ion conducting membranes represents a foundational step towards new energy devices such as micro fuel cells and oxygen or fuel separation membranes. For ionic transport in macro crystalline electrolytes, doping is conventionally used to affect oxygen ionic association/migration energies. Recently, tuning ionic transport in films through lattice strain conveyed by substrates or heterostructures has generated much interest. However, reliable manipulation of strain states to twist the ionic conduction in real micro energy devices remains intractable. Here, we demonstrate that the oxygen ionic conductivity clearly correlates with the compressive strain energy acting on the near order of the electrolyte lattices by comparing thin-film ceria-based membrane devices against substrate-supported flat structures. It is possible to capitalize on this phenomenon with a smart choice of strain patterns achieved through microelectrode design. We highlight the importance of electro-chemo-mechanics in the electrolyte material for the next generation of solid-state energy conversion microdevices.

  11. Hydrogen Ionic Plasma and Particle Dynamics in Negative Ion Source for NBI

    Science.gov (United States)

    Tsumori, Katsuyoshi

    2013-10-01

    Three negative-ion-based neutral beam injectors (NBIs) have been developed for plasma heating in the Large Helical Device. The NBIs achieve successfully the nominal injection power and beam energy, and understanding of the production and transport mechanisms of H- ion is required to obtain more stable high power beam. In the ion source development, we have found hydrogen ionic plasmas with extremely low electron density are produced in the beam extraction region. The plasma is measured with a combination of an electrostatic probe, millimeter-wave interferometer and cavity ring down (CRD). It has been observed for the first time that the charge neutrality of the ionic plasma is broken with H- extraction and electrons compensate the extracted H- charge. The influence of the extraction field widely affects to the ionic plasma in the extraction region. Two-dimensional particle-in-cell simulation (2D-PIC) has been applied to investigate the particle transport and reproduces the production of the ionic plasma and electron compensation due to H- extraction. In particle model, produced H- ions leave from the Cs covered PG surface in opposite direction to beam extraction. The direction can be changed with the electric field and collective effect due to the presence of plasma. A new technique using CCD camera with H α filter applied to measure the two-dimensional distribution of H- density. In the ionic plasma, H α light is emitted via electron-impact excitation and mutual neutralization processes with H- ion and proton. Comparing the results obtained with optical emission spectroscopy, electrostatic probe and CRD, it is shown the H α emission is dominated with the mutual neutralization. By subtracting the CCD images with and without beam extraction, it becomes clear that H- ions are extracted not directly from the PG surface but from the bulk of the ionic plasma. The result suggests the initial energy of H- ion is dumped rapidly in the ionic plasma.

  12. 77 FR 12064 - Radiological Devices Panel of the Medical Devices Advisory Committee; Notice of Meeting

    Science.gov (United States)

    2012-02-28

    ... April 9, 2009 (74 FR 16214), for breast transilluminators, one of the remaining preamendments class III devices. On July 18, 1995 (60 FR 36639), FDA published a Final Rule that misbranded breast transilluminators and effectively placed them in class III based on the recommendation of the Obstetrics...

  13. Ionic liquids for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz,John; Newman, John

    2005-09-29

    We have investigated possible anticipated advantages of ionic-liquid electrolytes for use in lithium-ion batteries. Thermal stabilities and phase behavior were studied by thermal gravimetric analysis and differential scanning calorimetry. The ionic liquids studied include various imidazoliumTFSI systems, pyrrolidiniumTFSI, BMIMPF{sub 6}, BMIMBF{sub 4}, and BMIMTf. Thermal stabilities were measured for neat ionic liquids and for BMIMBF{sub 4}-LiBF{sub 4}, BMIMTf-LiTf, BMIMTFSI-LiTFSI mixtures. Conductivities have been measured for various ionic-liquid lithium-salt systems. We show the development of interfacial impedance in a Li|BMIMBF{sub 4} + LiBF{sub 4}|Li cell and we report results from cycling experiments for a Li|BMIMBF{sub 4} + 1 mol/kg LIBF{sub 4}|C cell. The interfacial resistance increases with time and the ionic liquid reacts with the lithium electrode. As expected, imidazolium-based ionic liquids react with lithium electrodes. We seek new ionic liquids that have better chemical stabilities.

  14. Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation.

    Science.gov (United States)

    Jacobs, Daniel A; Wu, Yiliang; Shen, Heping; Barugkin, Chog; Beck, Fiona J; White, Thomas P; Weber, Klaus; Catchpole, Kylie R

    2017-01-25

    The issue of hysteresis in perovskite solar cells has now been convincingly linked to the presence of mobile ions within the perovskite layer. Here we test the limits of the ionic theory by attempting to account for a number of exotic characterization results using a detailed numerical device model that incorporates ionic charge accumulation at the perovskite interfaces. Our experimental observations include a temporary enhancement in open-circuit voltage following prolonged periods of negative bias, dramatically S-shaped current-voltage sweeps, decreased current extraction following positive biasing or "inverted hysteresis", and non-monotonic transient behaviours in the dark and the light. Each one of these phenomena can be reproduced and ultimately explained by our models, providing further evidence for the ionic theory of hysteresis as well as valuable physical insight into the factors that coincide to bring these phenomena about. In particular we find that both interfacial recombination and carrier injection from the selective contacts are heavily affected by ionic accumulation, and are essential to explaining the non-monotonic voltage transients and S-shaped J-V curves. Inverted hysteresis is attributed to the occurrence of "positive" ionic accumulation, which may also be responsible for enhancing the stabilized open-circuit voltage in some perovskite cells.

  15. Structural and Dielectric Properties of Ionic Liquid Doped Metal Organic Framework based Polymer Electrolyte Nanocomposites

    Science.gov (United States)

    Dutta, Rituraj; Kumar, Ashok

    2016-10-01

    Metal Organic Frameworks (MOFs) are mesoporous materials that can be treated as potential hosts for trapping guest molecules in their pores. Ion conduction and phase behavior dynamics of Ionic Liquids (ILs) can be controlled by tunable interactions of MOFs with the ILs. MOFs incorporated with ionic liquid can be dispersed in the polymers to synthesize polymer electrolyte nanocomposites with high ionic conductivity, electrochemical and thermal stability for applications in energy storage and conversion devices such as rechargeable Li-ion batteries. In the present work we have synthesized Cu-based MOF [Cu3(l,3,5-benzene tricarboxylate)2(H2O)] incorporated with the ionic liquid 1-Butyl-3-methylimidazolium bromide at different weight ratios of MOF and IL. The synthesized MOF-IL composites are dispersed in Poly (ethylene oxide) (PEO). Frequency dependent behavior of permittivity and dielectric loss of the nanocomposites depict the non-Debye dielectric relaxation mechanism. The room temperature Nyquist plots reveal decreasing bulk resistance upto 189 Ω with optimum ionic conductivity of 1.3×10-3S cm-1at maximum doping concentration of IL in the nanocomposite system.

  16. Radiation-induced solidification of ionic liquid under extreme electric field

    Science.gov (United States)

    Terhune, Kurt J.; King, Lyon B.; He, Kai; Cumings, John

    2016-09-01

    An extreme electric field on the order of 1010 V m-1 was applied to the free surface of an ionic liquid to cause electric-field-induced evaporation of molecular ions from the liquid. The point of ion emission was observed in situ using a TEM. The resulting electrospray emission process was observed to create nanoscale high-aspect-ratio dendritic features that were aligned with the direction of the electric field. Upon removal of the stressing field the features were seen to remain, indicating that the ionic liquid residue was solidified or gelled. Similar electrospray experiments performed in a field-emission scanning electron microscope revealed that the features are created when the high-energy electron beam damages the molecular structure of the ionic liquid. While the electric field does not play a direct role in the fluid modification, the electric stress was critical in detecting the liquid property change. It is only because the electric stress mechanically elongated the fluid during the electrospray process and these obviously non-liquid structures persisted when the field was removed that the damage was evident. This evidence of ionic liquid radiation damage may have significant bearing on electrospray devices where it is possible to produce high-energy secondary electrons through surface impacts of emitted ions downstream of the emitter. Any such impacts that are in close proximity could see reflected secondary electrons impact the emitter causing gelling of the ionic liquid.

  17. Metallothionein (MT)-III

    DEFF Research Database (Denmark)

    Carrasco, J; Giralt, M; Molinero, A

    1999-01-01

    Metallothionein-III is a low molecular weight, heavy-metal binding protein expressed mainly in the central nervous system. First identified as a growth inhibitory factor (GIF) of rat cortical neurons in vitro, it has subsequently been shown to be a member of the metallothionein (MT) gene family...... and renamed as MT-III. In this study we have raised polyclonal antibodies in rabbits against recombinant rat MT-III (rMT-III). The sera obtained reacted specifically against recombinant zinc-and cadmium-saturated rMT-III, and did not cross-react with native rat MT-I and MT-II purified from the liver of zinc...... injected rats. The specificity of the antibody was also demonstrated in immunocytochemical studies by the elimination of the immunostaining by preincubation of the antibody with brain (but not liver) extracts, and by the results obtained in MT-III null mice. The antibody was used to characterize...

  18. Ionic Liquid Fuels for Chemical Propulsion

    Science.gov (United States)

    2016-10-31

    energetic materials; chemical kinetics ; hypergolic fuels; salts; ligands; lithium; borohydrides; density functional theory; flammability 16. SECURITY...continuum model  DFT  density functional theory  DME   dimethoxethane  DNB  1,5‐dinitrobiuret  GIL   generalized ionic liquid  He  helium  IL  ionic liquid... kinetics and reaction dynamics involved in the hypergolic and catalytic ignition of ionic liquid propellants with the purpose of identifying key

  19. Crowned Ionic Liquids for Biomolecular Interaction Analysis.

    Science.gov (United States)

    Tseng, Ming-Chung; Yuan, Tsu-Chun; Li, Zhuo; Chu, Yen-Ho

    2016-11-15

    On the basis of affinity recognition with positively charged side chains in peptides and proteins, a series of crowned 1,2,3-triazolium ionic liquids (CIL 1-6) was developed and found to be capable of quantitatively extracting peptides and proteins from the aqueous layer into the ionic liquid phase. All of the synthesized CIL 1-6 are liquid at room temperature. This is the first example of biomolecular recognition of both lysine- and arginine-containing peptides and proteins by CILs in pure ionic liquid phase.

  20. Quantized friction across ionic liquid thin films

    Science.gov (United States)

    Smith, Alexander M.; Lovelock, Kevin R. J.; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    Ionic liquids, salts in the liquid state under ambient conditions, are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  1. Quantized friction across ionic liquid thin films.

    Science.gov (United States)

    Smith, Alexander M; Lovelock, Kevin R J; Gosvami, Nitya Nand; Welton, Tom; Perkin, Susan

    2013-10-07

    Ionic liquids - salts in the liquid state under ambient conditions - are of great interest as precision lubricants. Ionic liquids form layered structures at surfaces, yet it is not clear how this nano-structure relates to their lubrication properties. We measured the friction force between atomically smooth solid surfaces across ionic liquid films of controlled thickness in terms of the number of ion layers. Multiple friction-load regimes emerge, each corresponding to a different number of ion layers in the film. In contrast to molecular liquids, the friction coefficients differ for each layer due to their varying composition.

  2. Ferroelectric devices

    CERN Document Server

    Uchino, Kenji

    2009-01-01

    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  3. Electrochemical energy storage device based on carbon dioxide as electroactive species

    Science.gov (United States)

    Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George

    2013-03-05

    An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.

  4. Influences of porous reservoir Laplace pressure on emissions from passively fed ionic liquid electrospray sources

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, Daniel G., E-mail: dcourtney@alum.mit.edu; Shea, Herbert [Ecole Polytechnique Federale de Lausanne (EPFL), Microsystems for Space Technologies Laboratory (LMTS), Neuchatel CH-2002 (Switzerland)

    2015-09-07

    Passively fed ionic liquid electrospray sources are capable of efficiently emitting a variety of ion beams with promising applications to spacecraft propulsion and as focused ion beams. Practical devices will require integrated or coupled ionic liquid reservoirs; the effects of which have not been explored in detail. Porous reservoirs are a simple, scalable solution. However, we have shown that their pore size can dramatically alter the beam composition. Emitting the ionic liquid 1-ethyl-3-methylimidazolium bis(triflouromethylsulfonyl)amide, the same device was shown to yield either an ion or droplet dominated beam when using reservoirs of small or large pore size, respectively; with the latter having a mass flow in excess of 15 times larger than the former at negative polarity. Another source, emitting nearly purely ionic beams of 1-ethyl-3-methylimidazolium tetrafluoroborate, was similarly shown to emit a significant droplet population when coupled to reservoirs of large (>100 μm) pores; constituting a reduction in propulsive efficiency from greater than 70% to less than 30%. Furthermore, we show that reservoir selection can alter the voltage required to obtain and sustain emission, increasing with smaller pore size.

  5. Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Ogihara, Wataru; Yoshizawa, Masahiro; Ohno Hiroyuki [Tokyo University of Agriculture and Technology (Japan). Dept. of Biotechnology; Sun, Jiazeng; Forsyth, M. [Monash University, Clayton (Australia). School of Materials Engineering; MacFarlane, D.R. [Monash University, Clayton (Australia). School of Chemistry

    2004-04-30

    We have prepared polymer gel electrolytes with alkali metal ionic liquids (AMILs) that inherently contain alkali metal ions. The AMIL consisted of sulfate anion, imidazolium cation, and alkali metal cation. AMILs were mixed directly with poly(3-sulfopropyl acrylate) lithium salt or poly(2-acrylamido-2-methylpropanesulfonic acid) lithium salt to form polymer gels. The ionic conductivity of these gels decreased with increasing polymer fraction, as in general ionic liquid/polymer mixed systems. At low polymer concentrations, these gels displayed excellent ionic conductivity of 10{sup -4} to 10{sup -3} S cm{sup -1} at room temperature. Gelation was found to cause little change in the {sup 7}Li diffusion coefficient of the ionic liquid, as measured by pulse-field-gradient NMR. These data strongly suggest that the lithium cation migrates in successive pathways provided by the ionic liquids. (author)

  6. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Science.gov (United States)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  7. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    Directory of Open Access Journals (Sweden)

    Eero eSalminen

    2014-02-01

    Full Text Available The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat benzalkonium [ADBA] (alkyldimethylbenzylammonium was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs. Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC. The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  8. Synthesis of hetero ionic compounds using dialkylcarbonate quaternization

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2017-09-19

    Methods of preparing hetero ionic complexes, and ionic liquids from bisulfate salts of heteroatomic compounds using dialkylcarbonates as a primary quaternizing reactant are disclosed. Also disclosed are methods of making electrochemical cells comprising the ionic liquids, and an electrochemical cell comprising an alkaline electrolyte and a hetero ionic complex additive.

  9. Complexation of Am(III) and Nd(III) by 1,10-Phenanthroline-2,9-Dicarboxylic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, Mark D.; Sinkov, Sergey I.; Nilsson, Mikael; Lumetta, Gregg J.; Hancock, Robert D.; Nash, Ken L.

    2013-01-01

    The complexant 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) is a planar tetradentate ligand that is more preorganized for metal complexation than its unconstrained analogue ethylendiiminodiacetic acid (EDDA). Furthermore, the backbone nitrogen atoms of PDA are aromatic, hence are softer than the aliphatic amines of EDDA. It has been hypothesized that PDA will selectively bond to trivalent actinides over lanthanides. In this report, the results of spectrophotometric studies of the complexation of Nd(III) and Am(III) by PDA are reported. Because the complexes are moderately stable, it was necessary to conduct these titrations using competitive equilibrium methods, competitive cation omplexing between PDA and diethylenetriaminepentaacetic acid, and competition between ligand protonation and complex formation. Stability constants and ligand protonation constants were determined at 0.1 mol/L ionic strength and at 0.5 mol/L ionic strength nitrate media at 21 ± 1 C. The stability constants are lower than those predicted from first principles and speciation calculations indicate that Am(III) selectivity over Nd(III) is less than that exhibited by 1,10-phenanthroline.

  10. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Rongqing (Lenexa, KS); Jiang,Hong-Xing (Manhattan, KS); Lin, Jing-Yu (Manhattan, KS)

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  11. Ionic liquid polyoxometalates as light emitting materials

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz-acosta, Denisse [Los Alamos National Laboratory; Del Sesto, Rico E [Los Alamos National Laboratory; Scott, Brian [Los Alamos National Laboratory; Bennett, Bryan L [Los Alamos National Laboratory; Purdy, Geraldine M [Los Alamos National Laboratory; Muenchausen, Ross E [Los Alamos National Laboratory; Mc Kigney, Edward [Los Alamos National Laboratory; Gilbertson, Robert [Los Alamos National Laboratory

    2008-01-01

    The low melting point, negligible vapor pressure, good solubility, and thermal and chemical stability make ionic liquids useful materials for a wide variety of applications. Polyoxometalates are early transition metal oxygen clusters that can be synthesized in many different sizes and with a variety of heterometals. The most attractive feature of POMs is that their physical properties, in particular electrical, magnetic, and optical properties, can be easily modified following known procedures. It has been shown that POMs can exhibit cooperative properties, as superconductivity and energy transfer. POM ionic liquids can be obtained by selecting the appropliate cation. Different alkyl ammonium and alkyl phosphonium salts are being used to produce new POM ionic liquids together with organic or inorganic luminescent centers to design light emitting materials. Ammonium and phosphonium cations with activated, polymerizable groups are being used to further polymerize the ionic liquid into transparent, solid materials with high metal density.

  12. Ionic Liquid Epoxy Composite Cryotanks Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this work is to determine the optimal process for manufacturing lightweight linerless cryogenic storage tanks using ionic liquid epoxy composite...

  13. Ionic liquid-nanoparticle hybrid electrolytes

    KAUST Repository

    Lu, Yingying

    2012-01-01

    We investigate physical and electrochemical properties of a family of organic-inorganic hybrid electrolytes based on the ionic liquid 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone) imide covalently tethered to silica nanoparticles (SiO 2-IL-TFSI). The ionic conductivity exhibits a pronounced maximum versus LiTFSI composition, and in mixtures containing 13.4 wt% LiTFSI, the room-temperature ionic conductivity is enhanced by over 3 orders of magnitude relative to either of the mixture components, without compromising lithium transference number. The SiO 2-IL-TFSI/LiTFSI hybrid electrolytes are thermally stable up to 400°C and exhibit tunable mechanical properties and attractive (4.25V) electrochemical stability in the presence of metallic lithium. We explain these observations in terms of ionic coupling between counterion species in the mobile and immobile (particle-tethered) phases of the electrolytes. © 2012 The Royal Society of Chemistry.

  14. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  15. Modeling electrokinetics in ionic liquids: General

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bao, Jie [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA USA; Pan, Wenxiao [Department of Mechanical Engineering, University of Wisconsin-Madison, Madison WI USA; Sun, Xin [Physical and Computational Science Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-04-07

    Using direct numerical simulations we provide a thorough study on the electrokinetics of ionic liquids. In particular, the modfied Poisson-Nernst-Planck (MPNP) equations are solved to capture the crowding and overscreening effects that are the characteristics of an ionic liquid. For modeling electrokinetic flows in an ionic liquid, the MPNP equations are coupled with the Navier-Stokes equations to study the coupling of ion transport, hydrodynamics, and electrostatic forces. Specifically, we consider the ion transport between two parallel plates, charging dynamics in a 2D straight-walled pore, electro-osmotic ow in a nano-channel, electroconvective instability on a plane ion-selective surface, and electroconvective ow on a curved ion-selective surface. We discuss how the crowding and overscreening effects and their interplay affect the electrokinetic behaviors of ionic liquids in these application problems.

  16. Selective gas absorption by ionic liquids

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Kegnæs, Søren; Due-Hansen, Johannes;

    2010-01-01

    Reversible absorption performance for the flue gas components CO 2, NO and SO2 has been tested for several different ionic liquids (ILs) at different temperatures and flue gas compositions. Furthermore, different porous, high surface area carriers have been applied as supports for the ionic liquids...... to obtain Supported Ionic Liquid-Phase (SILP) absorber materials. The use of solid SILP absorbers with selected ILs were found to significantly improve the absorption capacity and sorption dynamics at low flue gas concentration, thus making the applicability of ILs viable in technical, continuous flow...... processes for flue gas cleaning. The results show that CO 2, NO and SO2 can be reversible and selective absorbed using different ILs and that Supported Ionic Liquid-Phase (SILP) absorbers are promising materials for industrial flue gas cleaning. Absorption/desorption dynamics can be tuned by temperatures...

  17. Polarization versus Temperature in Pyridinium Ionic Liquids

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    Electronic polarization and charge transfer effects play a crucial role in thermodynamic, structural, and transport properties of room-temperature ionic liquids (RTILs). These nonadditive interactions constitute a useful tool for tuning physical chemical behavior of RTILs. Polarization and charge...

  18. Aqueous ionic liquid pretreatment of straw.

    Science.gov (United States)

    Fu, Dongbao; Mazza, Giuseppe

    2011-07-01

    Pretreatment is the key to unlock the recalcitrance of lignocellulose for cellulosic biofuels production. Increasing attention has been drawn to ionic liquids (ILs) for pretreatment of lignocellulosic biomass, because this approach has several advantages over conventional methods. However, cost and energy-intensive recycling of the solvents are major constraints preventing ILs from commercial viability. In this work, a mixture of ionic liquid 1-ethyl-3-methylimidazolium acetate and water was demonstrated to be effective for pretreatment of lignocellulosic biomass, evidenced by the removal of lignin and a reduction in cellulose crystallinity. A higher fermentable sugar yield (81%) was obtained than for pure ionic liquid pretreatment under the same conditions (67%). Aqueous ionic liquid pretreatment has the advantages of less usage and easier recycling of ILs, and reduced viscosity. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    Science.gov (United States)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  20. Phosphonium-based ionic liquids and uses

    Energy Technology Data Exchange (ETDEWEB)

    Del Sesto, Rico E; Koppisch, Andrew T; Lovejoy, Katherine S; Purdy, Geraldine M

    2014-12-30

    Phosphonium-based room temperature ionic liquids ("RTILs") were prepared. They were used as matrices for Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry and also for preparing samples of dyes for analysis.

  1. Enhanced Mixed Electronic-Ionic Conductors through Cation Ordering

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Allan J. [Univ. of Houston, TX (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Grey, Clare [Stony Brook Univ., NY (United States)

    2014-08-31

    The performance of many energy conversion and storage devices depend on the properties of mixed ionic-electronic conducting (miec) materials. Mixed or ambipolar conductors simultaneously transport ions and electrons and provide the critical interface between chemical and electrical energy in devices such as fuel cells, ion transport membranes, and batteries. Enhancements in storage capacity, reversibility, power density and device lifetime all require new materials and a better understanding of the fundamentals of ambipolar conductivity and surface reactivity.The high temperature properties of the ordered perovksites AA’B2O5+x, where A = rare earth ion, Y and B = Ba, Sr were studied. The work was motivated by the high oxygen transport and surface exchange rates observed for members of this class of mixed ionic and electronic conductors. A combined experimental and computational approach, including structural, electrochemical, and transport characterization and modeling was used. The approach attacks the problem simultaneously at global (e.g., neutron diffraction and impedance spectroscopy), local (e.g., pair distribution function, nuclear magnetic resonance) and molecular (ab initio thermokinetic modeling) length scales. The objectives of the work were to understand how the cation and associated anion order lead to exceptional ionic and electronic transport properties and surface reactivity in AA’B2O5+x perovskites. A variety of compounds were studied by X-ray and neutron diffraction, measurements of thermodynamics and transport and theoretically. These included PrBaCo2O5+x and NdBaCo2O5+x, PrBaCo2-xFexO6- δ (x = 0, 0.5, 1.0, 1.5 and 2) and LnBaCoFeO6- δ (Ln = La, Pr, Nd, Sm, Eu and Gd), Sr3YCo4O10.5, YBaMn2O5+x. A0.5A’0.5BO3 (where A=Y, Sc, La, Ce, Pr, Nd, Pm, Sm; A’= Sr

  2. Nanostructure of the Ionic Liquid-Graphite Stern Layer.

    Science.gov (United States)

    Elbourne, Aaron; McDonald, Samila; Voïchovsky, Kislon; Endres, Frank; Warr, Gregory G; Atkin, Rob

    2015-07-28

    Ionic liquids (ILs) are attractive solvents for devices such as lithium ion batteries and capacitors, but their uptake is limited, partially because their Stern layer nanostructure is poorly understood compared to molecular solvents. Here, in situ amplitude-modulated atomic force microscopy has been used to reveal the Stern layer nanostructure of the 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIm TFSI)-HOPG (highly ordered pyrolytic graphite) interface with molecular resolution. The effect of applied surface potential and added 0.1 wt/wt % Li TFSI or EMIm Cl on ion arrangements is probed between ±1 V. For pure EMIm TFSI at open-circuit potential, well-defined rows are present on the surface formed by an anion-cation-cation-anion (A-C-C-A) unit cell adsorbed with like ions adjacent. As the surface potential is changed, the relative concentrations of cations and anions in the Stern layer respond, and markedly different lateral ion arrangements ensue. The changes in Stern layer structure at positive and negative potentials are not symmetrical due to the different surface affinities and packing constraints of cations and anions. For potentials outside ±0.4 V, images are featureless because the compositional variation within the layer is too small for the AFM tip to detect. This suggests that the Stern layer is highly enriched in either cations or anions (depending on the potential) oriented upright to the surface plane. When Li(+) or Cl(-) is present, some Stern layer ionic liquid cations or anions (respectively) are displaced, producing starkly different structures. The Stern layer structures elucidated here significantly enhance our understanding of the ionic liquid electrical double layer.

  3. 21 CFR 807.94 - Format of a class III certification.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Format of a class III certification. 807.94... IMPORTERS OF DEVICES Premarket Notification Procedures § 807.94 Format of a class III certification. (a) A class III certification submitted as part of a premarket notification shall state as follows: I...

  4. Fast Ignition and Sustained Combustion of Ionic Liquids

    Science.gov (United States)

    Joshi, Prakash B. (Inventor); Piper, Lawrence G. (Inventor); Oakes, David B. (Inventor); Sabourin, Justin L. (Inventor); Hicks, Adam J. (Inventor); Green, B. David (Inventor); Tsinberg, Anait (Inventor); Dokhan, Allan (Inventor)

    2016-01-01

    A catalyst free method of igniting an ionic liquid is provided. The method can include mixing a liquid hypergol with a HAN (Hydroxylammonium nitrate)-based ionic liquid to ignite the HAN-based ionic liquid in the absence of a catalyst. The HAN-based ionic liquid and the liquid hypergol can be injected into a combustion chamber. The HAN-based ionic liquid and the liquid hypergol can impinge upon a stagnation plate positioned at top portion of the combustion chamber.

  5. A novel family of green ionic liquids with surface activities

    Institute of Scientific and Technical Information of China (English)

    ZHANG HaiBo; ZHOU XiaoHai; DONG JinFeng; ZHANG GaoYong; WANG CunXin

    2007-01-01

    Ionic liquids have many unique properties as a new and remarkable class of environmental benign solvents, which promises widespread applications in industry and other areas. However, the ionic liquids with surface activity are rarely reported. In this work, a series of novel ionic liquids was synthesized by using N-methyl-2-pyrrolidone and alkyl bromide. The physical properties of this family of ionic liquids have been characterized, which shows that these compounds have ionic liquids characteristics,surface activity and biocompatibility.

  6. Superbase-derived protic ionic liquids

    Science.gov (United States)

    Dai, Sheng; Luo, Huimin; Baker, Gary A.

    2013-09-03

    Protic ionic liquids having a composition of formula (A.sup.-)(BH.sup.+) wherein A.sup.- is a conjugate base of an acid HA, and BH.sup.+ is a conjugate acid of a superbase B. In particular embodiments, BH.sup.+ is selected from phosphazenium species and guanidinium species encompassed, respectively, by the general formulas: ##STR00001## The invention is also directed to films and membranes containing these protic ionic liquids, with particular application as proton exchange membranes for fuel cells.

  7. Ionic liquids in the synthesis of nanoobjects

    Energy Technology Data Exchange (ETDEWEB)

    Tarasova, Natalia P; Smetannikov, Yurii V; Zanin, A A [Institute of Chemistry and Problems of Sustainable Development D.I.Mendeleev University of Chemical Technology of Russia (Russian Federation)

    2010-08-12

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  8. Ionic liquids in the synthesis of nanoobjects

    Science.gov (United States)

    Tarasova, Natalia P.; Smetannikov, Yurii V.; Zanin, A. A.

    2010-08-01

    Data on the usage of the novel green solvents, ionic liquids, in the synthesis of nanoobjects and their stabilization are considered. The information is structured according to the resulting products of the synthetic processes: nanoparticles of noble metals, nanoparticles of non-metals, nanoparticles of metal oxides and chalcogenides, nanocomposites, and highly dispersed polymers. The conclusion is made that the ionic liquids might determine the structure and the properties of the nanoobjects, thus opening new fundamental and technological horizons in nanochemistry.

  9. The Solubility Parameters of Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Andrzej Marciniak

    2010-04-01

    Full Text Available The Hildebrand’s solubility parameters have been calculated for 18 ionic liquids from the inverse gas chromatography measurements of the activity coefficients at infinite dilution. Retention data were used for the calculation. The solubility parameters are helpful for the prediction of the solubility in the binary solvent mixtures. From the solubility parameters, the standard enthalpies of vaporization of ionic liquids were estimated.

  10. Thermodynamic Properties of Caprolactam Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    JIANG Lu; BAI Liguang; ZHU Jiqin; CHEN Biaohua

    2013-01-01

    A series of caprolactam ionic liquids (ILs) containing incorporated halide anions were synthesized.Their physical properties,such as melting points,heats of fusion and heat capacities,were measured by differential scanning calorimeter (DSC).The results indicate that these ionic liquids exhibit proper melting points,high value of heats of fusion,and satisfying heat capacities which are suitable for thermal energy storage applications.

  11. Study of thioglycosylation in ionic liquids

    Directory of Open Access Journals (Sweden)

    Ragauskas Arthur

    2006-06-01

    Full Text Available Abstract A novel, green chemistry, glycosylation strategy was developed based upon the use of ionic liquids. Research studies demonstrated that thiomethyl glycosides could readily be activated with methyl trifluoromethane sulfonate, using 1-butyl-3-methylimidazolium tetrafluoroborate as a solvent. This green chemistry glycosylation strategy provided disaccharides with typical yields averaging 75%. The ionic liquid solvent could be readily reused for five sequential glycosylation reactions with no impact on product yield.

  12. Ionic interaction of sulfatide with choline lipids.

    Science.gov (United States)

    Abramson, M B; Katzman, R

    1968-08-09

    Aqueous systems of sphingomyelin-sulfatide and lecithin-sulfatide were compared with aqueous systems of the individual lipids. The acid capacity of the mixed lipids increased, a result of the formation of an ionic bond between the sulfate of one molecule and the positive nitrogen of the other, making the phosphate available for direct titration. Cholesterol reduces this ionic interaction, probably because of the increased spacing of the ionized groups.

  13. Interaction of Novel Ionic Liquids with Soils

    OpenAIRE

    2013-01-01

    With the constant development of new ionic liquids, the understanding of the chemical fate of these compounds also needs to be updated. To this effect, the interaction of a number of novel ionic liquids with soils was determined. Therefore, three novel headgroups (ammonium, phosphonium, or pyrrolidinium) with single or quaternary substitution were tested on a variety of soils with high-to-low organic matter content and high-to-low cation exchange capacity, thereby trying to capture the full r...

  14. Characterization of ionic permeability and water vapor transmission rate of polymers used for implantable electronics.

    Science.gov (United States)

    Kirsten, Sabine; Schubert, Martin; Uhlemann, Jürgen; Wolter, Klaus-Jurgen

    2014-01-01

    Biocompatible polymers used as encapsulation and packaging materials for implantable electronic devices have to comply with numerous requirements. Especially their barrier properties against water molecules and ions are of particular interest regarding the reliability of the encapsulation as well as functional integrity of the electronic components since water and ions on the circuit board may evoke corrosion, leakage current and finally the failure of the device. This paper describes a measurement setup to investigate the ionic permeability under in vitro conditions of polymeric membranes manufactured from various biocompatible polymers. Ionic permeability and water vapor transmission rate representing the barrier properties of these membranes were investigated. First results were obtained for polyimide, silicone, polyether ether ketone and polyamide, whereas polyimide evinced the best properties.

  15. Modification of Fluorescent Photoinduced Electron Transfer (PET) Sensors/Switches To Produce Molecular Photo-Ionic Triode Action**

    Science.gov (United States)

    Huxley, Allen J M; Schroeder, Marc; Nimal Gunaratne, H Q; Prasanna de Silva, A

    2014-01-01

    The fluorophore-spacer1-receptor1-spacer2-receptor2 system (where receptor2 alone is photoredox-inactive) shows ionically tunable proton-induced fluorescence off-on switching, which is reminiscent of thermionic triode behavior. This also represents a new extension to modular switch systems based on photoinduced electron transfer (PET) towards the emulation of analogue electronic devices. PMID:24574178

  16. Neptunium Binding Kinetics with Arsenazo(III)

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Aaron T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mezyk, Stephen P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    This document has been prepared to meet FCR&D level 2 milestone M2FT-14IN0304021, “Report on the results of actinide binding kinetics with aqueous phase complexants” This work was carried out under the auspices of the Thermodynamics and Kinetics of Advanced Separations Systems FCR&D work package. The report details kinetics experiments that were performed to measure rates of aqueous phase complexation for pentavalent neptunium with the chromotropic dye Arsenazo III (AAIII). The studies performed were designed to determine how pH, ionic strength and AAIII concentration may affect the rate of the reaction. A brief comparison with hexavalent neptunium is also made. It was identified that as pH was increased the rate of reaction also increased, however increasing the ionic strength and concentration of AAIII had the opposite effect. Interestingly, the rate of reaction of Np(VI) with AAIII was found to be slower than that of the Np(V) reaction.

  17. Prediction of gas solubilities in ionic liquids.

    Science.gov (United States)

    Oliferenko, Alexander A; Oliferenko, Polina V; Seddon, Kenneth R; Torrecilla, José S

    2011-10-14

    Ionic liquids (of which it is estimated that there are at least one million simple fluids) generate a rich chemical space, which is now just at the beginning of its systematic exploration. Many properties of ionic liquids are truly unique and, which is more important, can be finely tuned. Differential solubility of industrial chemicals in ionic liquids is particularly interesting, because it can be a basis for novel, efficient, environmentally friendly technologies. Given the vast number of potential ionic liquids, and the impossibility of a comprehensive empirical exploration, it is essential to extract the maximum information from extant data. We report here some computational models of gas solubility. These multiple regression- and neural network-based models cover a chemical space spanned by 48 ionic liquids and 23 industrially important gases. Molecular polarisabilities and special Lewis acidity and basicity descriptors calculated for the ionic liquid cations and anions, as well as for the gaseous solutes, are used as input parameters. The quality of fit "observed versus predicted Henry's law constants" is particularly good for the neural network model. Validation was established with an external dataset, again with a high quality fit. In contrast to many other neural network models published, our model is no "black box", since contributions of the parameters and their nonlinearity characteristics are calculated and analysed.

  18. Aqueous Solutions of Ionic Liquids: Microscopic Assembly.

    Science.gov (United States)

    Vicent-Luna, Jose Manuel; Dubbeldam, David; Gómez-Álvarez, Paula; Calero, Sofia

    2016-02-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactions that influences the macroscopic behavior is hydrogen bonding. In this work, we conduct molecular dynamics simulations to investigate the effects of ionic liquids on the hydrogen-bond network of water in dilute aqueous solutions of ionic liquids with various combinations of cations and anions. Calculations are performed for imidazolium-based cations with alkyl chains of different lengths and for a variety of anions, namely, [Br](-), [NO3](-), [SCN](-) [BF4](-), [PF6](-), and [Tf2N](-). The structure of water and the water-ionic liquid interactions involved in the formation of a heterogeneous network are analyzed by using radial distribution functions and hydrogen-bond statistics. To this end, we employ the geometric criterion of the hydrogen-bond definition and it is shown that the structure of water is sensitive to the amount of ionic liquid and to the anion type. In particular, [SCN](-) and [Tf2N](-) were found to be the most hydrophilic and hydrophobic anions, respectively. Conversely, the cation chain length did not influence the results.

  19. The structure of ionic liquids

    CERN Document Server

    Gontrani, Lorenzo

    2014-01-01

    This volume describes the most recent findings on the structure of ILs interpreted through cutting-edge experimental and theoretical methods. Research in the field of ionic liquids (ILs) keeps a fast and steady pace. Since these new-generation molten salts first appeared in the chemistry and physics landscape, a large number of new compounds has been synthesized. Most of them display unexpected behaviour and possess stunning properties. The coverage in this book ranges from the mesoscopic structure of ILs to their interaction with proteins. The reader will learn how diffraction techniques (small and large angle X-Ray and neutron scattering, powder methods), X-Ray absorption spectroscopies (EXAFS/XANES), optical methods (IR, RAMAN), NMR and calorimetric methods can help the study of ILs, both as neat liquids and in mixtures with other compounds. It will enable the reader to choose the best method to suit their experimental needs. A detailed survey of theoretical methods, both quantum-chemical and classical, ...

  20. Evaluation of sorptive flotation technique for enhanced removal of radioactive Eu(III) from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ezzat, Amir; Saad, Ebtissam A. [Ain Shams Univ., Cairo (Egypt). Chemistry Dept.; Mahmoud, Mamdoh R. [Atomic Energy Authority, Cairo (Egypt). Nuclear Chemistry Dept.; Soliman, Mohamed A. [Atomic Energy Authority, Cairo (Egypt). Egypt Second Research Reactor; Kandil, Abdelhakim [Helwan Univ., Cairo (Egypt). Chemistry Dept.

    2017-06-01

    The present study aims at the removal of Eu(III) from aqueous solutions by sorptive flotation process. This process involves adsorption of Eu(III) onto bentonite and kaolinite clays followed by floatation using sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) collectors. The effect of adsorption parameters (pH, contact time, clay weight, Eu(III) concentration, ionic strength) as well as flotation parameters (collector and frother concentrations, bubbling time, concentrations of foreign cations and anions) on the removal efficiency of Eu(III) were studied. The obtained results show that Eu(III) ions are removed efficiently (R% ∝ 95%) at pH=4 after 1 h shaking with clay and 15 min floatation. The adsorption kinetics of Eu(III) onto the employed clays followed the pseudo-second-order model and the equilibrium data fitted well to the Freundlich isotherm model.

  1. Ionic transport in hybrid lead iodide perovskite solar cells

    Science.gov (United States)

    Eames, Christopher; Frost, Jarvist M.; Barnes, Piers R. F.; O'Regan, Brian C.; Walsh, Aron; Islam, M. Saiful

    2015-01-01

    Solar cells based on organic–inorganic halide perovskites have recently shown rapidly rising power conversion efficiencies, but exhibit unusual behaviour such as current–voltage hysteresis and a low-frequency giant dielectric response. Ionic transport has been suggested to be an important factor contributing to these effects; however, the chemical origin of this transport and the mobile species are unclear. Here, the activation energies for ionic migration in methylammonium lead iodide (CH3NH3PbI3) are derived from first principles, and are compared with kinetic data extracted from the current–voltage response of a perovskite-based solar cell. We identify the microscopic transport mechanisms, and find facile vacancy-assisted migration of iodide ions with an activation energy of 0.6 eV, in good agreement with the kinetic measurements. The results of this combined computational and experimental study suggest that hybrid halide perovskites are mixed ionic–electronic conductors, a finding that has major implications for solar cell device architectures. PMID:26105623

  2. Ventricular assist device

    Science.gov (United States)

    VAD; RVAD; LVAD; BVAD; Right ventricular assist device; Left ventricular assist device; Biventricular assist device; Heart pump; Left ventricular assist system; LVAS; Implantable ventricular assist device

  3. Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange.

    Science.gov (United States)

    Jensen, Mark P; Neuefeind, Jörg; Beitz, James V; Skanthakumar, S; Soderholm, L

    2003-12-17

    The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta)4(-) or Eu(tta)4(-) complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C4mim+Tf2N(-)), rather than the hydrated, neutral complexes, M(tta)(3)(H2O)n)(n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C4mim+Tf2N(-) is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C4mim+Ln(tta)4(-) ion pairs which exert little influence on the structure of the ionic liquid phase.

  4. Mechanisms of metal ion transfer into room-temperature ionic liquids : the role of anion exchange.

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M. P.; Neuefeind, J.; Beitz, J. V.; Skanthakumar, S.; Soderholm, L.; Chemistry

    2003-12-17

    The structure and stoichiometry of the lanthanide(III) (Ln) complexes with the ligand 2-thenoyltrifluoroacetone (Htta) formed in a biphasic aqueous room-temperature ionic liquid system have been studied by complementary physicochemical methods. Equilibrium thermodynamics, optical absorption and luminescence spectroscopies, high-energy X-ray scattering, EXAFS, and molecular dynamics simulations all support the formation of anionic Nd(tta){sub 4}{sup -} or Eu(tta){sub 4}{sup -} complexes with no water coordinated to the metal center in 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide (C{sub 4}mim{sup +}Tf{sub 2}N{sup -}), rather than the hydrated, neutral complexes, M(tta){sub 3}(H{sub 2}O){sub n} (n = 2 or 3), that form in nonpolar molecular solvents, such as xylene or chloroform. The presence of anionic lanthanide complexes in C{sub 4}mim{sup +}Tf{sub 2}N{sup -} is made possible by the exchange of the ionic liquid anions into the aqueous phase for the lanthanide complex. The resulting complexes in the ionic liquid phase should be thought of as weak C{sub 4}mim{sup +}Ln(tta){sub 4}{sup -} ion pairs which exert little influence on the structure of the ionic liquid phase.

  5. Class 1 devices case studies in medical devices design

    CERN Document Server

    Ogrodnik, Peter J

    2014-01-01

    The Case Studies in Medical Devices Design series consists of practical, applied case studies relating to medical device design in industry. These titles complement Ogrodnik's Medical Device Design and will assist engineers with applying the theory in practice. The case studies presented directly relate to Class I, Class IIa, Class IIb and Class III medical devices. Designers and companies who wish to extend their knowledge in a specific discipline related to their respective class of operation will find any or all of these titles a great addition to their library. Class 1 Devices is a companion text to Medical Devices Design: Innovation from Concept to Market. The intention of this book, and its sister books in the series, is to support the concepts presented in Medical Devices Design through case studies. In the context of this book the case studies consider Class I (EU) and 510(k) exempt (FDA) . This book covers classifications, the conceptual and embodiment phase, plus design from idea to PDS. These title...

  6. Solid State Ionic Materials - Proceedings of the 4th Asian Conference on Solid State Ionics

    Science.gov (United States)

    Chowdari, B. V. R.; Yahaya, M.; Talib, I. A.; Salleh, M. M.

    1994-07-01

    The Table of Contents for the full book PDF is as follows: * Preface * I. INVITED PAPERS * Diffusion of Cations and Anions in Solid Electrolytes * Silver Ion Conductors in the Crystalline State * NMR Studies of Superionic Conductors * Hall Effect and Thermoelectric Power in High Tc Hg-Ba-Ca-Cu-O Ceramics * Solid Electrolyte Materials Prepared by Sol-Gel Chemistry * Preparation of Proton-Conducting Gel Films and their Application to Electrochromic Devices * Thin Film Fuel Cells * Zirconia based Solid Oxide Ion Conductors in Solid Oxide Fuel Cells * The Influence of Anion Substitution on Some Phosphate-based Ion Conducting Glasses * Lithium Intercalation in Carbon Electrodes and its Relevance in Rocking Chair Batteries * Chemical Sensors using Proton Conducting Ceramics * NMR/NQR Studies of Y-Ba-Cu-O Superconductors * Silver Molybdate Glasses and Battery Systems * New Highly Conducting Polymer Ionics and their Application in Electrochemical Devices * Study of Li Electrokinetics on Oligomeric Electrolytes using Microelectrodes * Calculation of Conductivity for Mixed-Phase Electrolytes PEO-MX-Immiscible Additive by Means of Effective Medium Theory * II. CONTRIBUTED PAPERS * Phase Relationship and Electrical Conductivity of Sr-V-O System with Vanadium Suboxide * Amorphous Li+ Ionic Conductors in Li2SO4-Li2O-P2O5 System * Fast Ion Transport in KCl-Al2O3 Composites * The Effect of the Second Phase Precipitation on the Ionic Conductivity of Zr0.85Mg0.15O1.85 * Conductivity Measurements and Phase Relationships in CaCl2-CaHCl Solid Electrolyte * Relationships Between Crystal Structure and Sodium Ion Conductivity in Na7Fe4(AsO4)6 and Na3Al2(AsO4)3 * Electrical Conductivity and Solubility Limit of Ti4+ Ion in Na1+x TiyZr2-ySixP3-xO12 System * Study on Sodium Fast Ion Conductors of Na1+3xAlxTi2-xSi2xP3-2xO12 System * Influences of Zirconia on the Properties of β''-Alumina Ceramics * Decay of Luminescence from Cr3+ Ions in β-Alumina * Lithium Ion Conductivity in the Li4XO4-Li2

  7. Separating device

    NARCIS (Netherlands)

    De Jong, T.P.R.

    2001-01-01

    A sorting device (1) suitable for sorting wire from a waste stream, comprising a body (2) that moves when in use, and provided with spikes or similar projections. The body is embodied as a rotatable roll (2), which oscillates axially during its rotation. The roll is coupled to an oscillation engine

  8. Detection device

    Science.gov (United States)

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  9. Assistive Devices

    Science.gov (United States)

    ... a number of assistive devices. These are tools, products or types of equipment that help you perform tasks and activities. They may help you move around, see, communicate, eat, or get dressed. Some are high-tech tools, such as computers. Others are much simpler, ...

  10. Printing Device

    NARCIS (Netherlands)

    Berg, van den M.J.; Markies, P.R.; Zuilhof, H.

    2014-01-01

    An ink jetprinting device includes a pressure chamber formed by a plurality of wall segments, a first aperture extending through a wall segment and communicating with an ink jet orifice and a second aperture extending through a wall segment and communicating with an ink supply duct. The pressure

  11. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  12. Printing Device

    NARCIS (Netherlands)

    Berg, van den M.J.; Markies, P.R.; Zuilhof, H.

    2014-01-01

    An ink jetprinting device includes a pressure chamber formed by a plurality of wall segments, a first aperture extending through a wall segment and communicating with an ink jet orifice and a second aperture extending through a wall segment and communicating with an ink supply duct. The pressure cha

  13. Balancing device

    NARCIS (Netherlands)

    Van Dorsser, W.D.; Herder, J.L.; Wisse B.M.; Barents, R.

    2007-01-01

    The invention relates to a balancing device for a mass, comprising an arm that is adjustable about a pivoting point and with which the mass is coupled, and an adjustable spring system that is coupled with the arm, which spring system comprises at least one spring, wherein the spring system comprises

  14. Theory of phase separation and polarization for dissociated ionic liquids

    CERN Document Server

    Gavish, Nir

    2015-01-01

    Room temperature ionic liquids are attractive to numerous applications and particularly, to renewable energy devices. As solvent free electrolytes, they demonstrate a paramount connection between the material morphology and Coulombic interactions: unlike dilute electrolytes, the electrode/RTIL interface is a product of both electrode polarization and spatiotemporal bulk properties. Yet, theoretical studies have dealt almost exclusively with independent models of morphology and electrokinetics. In this work, we develop a novel Cahn-Hilliard-Poisson type mean-field framework that couples morphological evolution with electrokinetic phenomena. Linear analysis of the model shows that spatially periodic patterns form via a finite wavenumber instability, a property that cannot arise in the currently used Fermi-Poisson-Nernst-Planck equations. Numerical simulations in above one-space dimension, demonstrate that while labyrinthine type patterns develop in the bulk, stripe patterns emerge near charged surfaces. The res...

  15. Electromechanical modelling of tapered ionic polymer metal composites transducers

    Directory of Open Access Journals (Sweden)

    Rakesha Chandra Dash

    2016-09-01

    Full Text Available Ionic polymer metal composites (IPMCs are relatively new smart materials that exhibit a bidirectional electromechanical coupling. IPMCs have large number of important engineering applications such as micro robotics, biomedical devices, biomimetic robotics etc. This paper presents a comparison between tapered and uniform cantilevered Nafion based IPMCs transducer. Electromechanical modelling is done for the tapered beam. Thickness can be varied according to the requirement of force and deflection. Numerical results pertaining to the force and deflection characteristics of both type IPMCs transducer are obtained. It is shown that the desired amount of force and deflections for tapered IPMCs can be achieved for a given voltage. Different fixed end (t0 and free end (t1 thickness values have been taken to justify the results using MATLAB.

  16. Transformational III-V Electronics

    KAUST Repository

    Nour, Maha A.

    2014-04-01

    Flexible electronics using III-V materials for nano-electronics with high electron mobility and optoelectronics with direct band gap are attractive for many applications. This thesis describes a complementary metal oxide semiconductor (CMOS) compatible process for transforming traditional III-V materials based electronics into flexible one. The thesis reports releasing 200 nm of Gallium Arsenide (GaAs) from 200 nm GaAs / 300 nm Aluminum Arsenide (AlAs) stack on GaAs substrate using diluted hydrofluoric acid (HF). This process enables releasing a single top layer compared to peeling off all layers with small sizes at the same time. This is done utilizing a network of release holes that contributes to the better transparency (45 % at 724 nm wavelengths) observed. Fabrication of metal oxide semiconductor capacitor (MOSCAPs) on GaAs is followed by releasing it to have devices on flexible 200 nm GaAs. Similarly, flexible GaSb and InP fabrication process is also reported to transform traditional electronics into large-area flexible electronics.

  17. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.

    Science.gov (United States)

    Kim, Jaehwan; Jeon, Jin-Han; Kim, Hyun-Jun; Lim, Hyuneui; Oh, Il-Kwon

    2014-03-25

    Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.

  18. Nano-semiconductors devices and technology

    CERN Document Server

    Iniewski, Krzysztof

    2011-01-01

    With contributions from top international experts from both industry and academia, Nano-Semiconductors: Devices and Technology is a must-read for anyone with a serious interest in future nanofabrication technologies. Taking into account the semiconductor industry's transition from standard CMOS silicon to novel device structures--including carbon nanotubes (CNT), graphene, quantum dots, and III-V materials--this book addresses the state of the art in nano devices for electronics. It provides an all-encompassing, one-stop resource on the materials and device structures involved in the evolution

  19. Ionic liquid processing of cellulose.

    Science.gov (United States)

    Wang, Hui; Gurau, Gabriela; Rogers, Robin D

    2012-02-21

    Utilization of natural polymers has attracted increasing attention because of the consumption and over-exploitation of non-renewable resources, such as coal and oil. The development of green processing of cellulose, the most abundant biorenewable material on Earth, is urgent from the viewpoints of both sustainability and environmental protection. The discovery of the dissolution of cellulose in ionic liquids (ILs, salts which melt below 100 °C) provides new opportunities for the processing of this biopolymer, however, many fundamental and practical questions need to be answered in order to determine if this will ultimately be a green or sustainable strategy. In this critical review, the open fundamental questions regarding the interactions of cellulose with both the IL cations and anions in the dissolution process are discussed. Investigations have shown that the interactions between the anion and cellulose play an important role in the solvation of cellulose, however, opinions on the role of the cation are conflicting. Some researchers have concluded that the cations are hydrogen bonding to this biopolymer, while others suggest they are not. Our review of the available data has led us to urge the use of more chemical units of solubility, such as 'g cellulose per mole of IL' or 'mol IL per mol hydroxyl in cellulose' to provide more consistency in data reporting and more insight into the dissolution mechanism. This review will also assess the greenness and sustainability of IL processing of biomass, where it would seem that the choices of cation and anion are critical not only to the science of the dissolution, but to the ultimate 'greenness' of any process (142 references).

  20. Ion transport and softening in a polymerized ionic liquid

    Science.gov (United States)

    Kumar, Rajeev; Bocharova, Vera; Strelcov, Evgheni; Tselev, Alexander; Kravchenko, Ivan I.; Berdzinski, Stefan; Strehmel, Veronika; Ovchinnikova, Olga S.; Minutolo, Joseph A.; Sangoro, Joshua R.; Agapov, Alexander L.; Sokolov, Alexei P.; Kalinin, Sergei V.; Sumpter, Bobby G.

    2014-12-01

    Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach. Experimental data for the kinetics of charging and steady state current-voltage relations can be explained by taking into account the dissociation of ions under an applied electric field (known as the Wien effect). Onsager's theory of the Wien effect coupled with the Poisson-Nernst-Planck formalism for the charge transport is found to be in excellent agreement with the experimental results. The agreement between the theory and experiments allows us to predict structural properties of the PolyIL films. We have observed significant softening of the PolyIL films beyond certain threshold voltages and formation of holes under a scanning probe microscopy (SPM) tip, through which an electric field was applied. The observed softening is explained by the theory of depression in glass transition temperature resulting from enhanced dissociation of ions with an increase in applied electric field.Polymerized ionic liquids (PolyILs) are promising materials for various solid state electronic applications such as dye-sensitized solar cells, lithium batteries, actuators, field-effect transistors, light emitting electrochemical cells, and electrochromic devices. However, fundamental understanding of interconnection between ionic transport and mechanical properties in PolyILs is far from complete. In this work, local charge transport and structural changes in films of a PolyIL are studied using an integrated experiment-theory based approach

  1. The type III manufactory

    CERN Document Server

    Palcoux, Sébastien

    2011-01-01

    Using unusual objects in the theory of von Neumann algebra, as the chinese game Go or the Conway game of life (generalized on finitely presented groups), we are able to build, by hands, many type III factors.

  2. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor

    Directory of Open Access Journals (Sweden)

    Agostino Romeo

    2015-01-01

    Full Text Available The development of devices able to detect and record ion fluxes is a crucial point in order to understand the mechanisms that regulate communication and life of organisms. Here, we take advantage of the combined electronic and ionic conduction properties of a conducting polymer to develop a hybrid organic/living device with a three-terminal configuration, using the Physarum polycephalum Cell (PPC slime mould as a living bio-electrolyte. An over-oxidation process induces a conductivity switch in the polymer, due to the ionic flux taking place at the PPC/polymer interface. This behaviour endows a current-depending memory effect to the device.

  3. A bio-inspired memory device based on interfacing Physarum polycephalum with an organic semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, Agostino; Dimonte, Alice; Tarabella, Giuseppe; D’Angelo, Pasquale, E-mail: dangelo@imem.cnr.it, E-mail: iannotta@imem.cnr.it; Erokhin, Victor; Iannotta, Salvatore, E-mail: dangelo@imem.cnr.it, E-mail: iannotta@imem.cnr.it [IMEM-CNR, Institute of Materials for Electronics and Magnetism-National Research Council, Parma 43124 (Italy)

    2015-01-01

    The development of devices able to detect and record ion fluxes is a crucial point in order to understand the mechanisms that regulate communication and life of organisms. Here, we take advantage of the combined electronic and ionic conduction properties of a conducting polymer to develop a hybrid organic/living device with a three-terminal configuration, using the Physarum polycephalum Cell (PPC) slime mould as a living bio-electrolyte. An over-oxidation process induces a conductivity switch in the polymer, due to the ionic flux taking place at the PPC/polymer interface. This behaviour endows a current-depending memory effect to the device.

  4. Connection between NMR and electrical conductivity in glassy chalcogenide fast ionic conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung -Han [Iowa State Univ., Ames, IA (United States)

    1995-07-07

    The work documented in this thesis follows the traditional order. In this chapter a general discussion of ionic conduction and of glassy materials are followed by a brief outline of the experimental techniques for the investigation of fast ionic conduction in glassy materials, including NMR and impedance spectroscopy techniques. A summary of the previous and present studies is presented in the last section of this introductory chapter. The details of the background theory and models are found in the Chapter II, followed by the description of the experimental details in Chapter III. Chapter IV of the thesis describes the experimental results and the analysis of the experimental observations followed by the conclusions in chapter V.

  5. The Research Progress of CO2 Capture with Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    赵志军; 董海峰; 张香平

    2012-01-01

    Due to their negligible volatility, reasonable thermal stability, strong dissolubility, wide liquid range and tunability of structure and property, ionic liquids have been regarded as emerging candidate reagents for CO2 cap- ture from industries gases. In this review, the research progresses in CO2 capture using conventional ionic liquids,functionalized ionic liquids, supported ionic-liquids membranes, polymerized ionic liquids and mixtures of ionic liquids with some molecular solvents were investigated and reviewed. Discussion of relevant research fields was presented and the future developments were suggested.

  6. Magnetic Ionic Liquid [bmim][FeCl4] as an Efficient Catalyst for the Synthesis of 2-Aryl Benzimidazoles and 2-Aryl Benzothiazoles Derivatives

    Directory of Open Access Journals (Sweden)

    Soheil Sayyahi

    2015-09-01

    Full Text Available The magnetic ionic liquid (MIL 1-butyl-3-methylimidazolium tetrachloro ferrate(III ([bmim][FeCl4] sufficiently catalyzes the one-pot condensation of 1,2 diaminobenzene or 2-aminobenzenethiol with different aromatic aldehydes producing benzimidazoles and benzothiazoles drivatives, respectively. The MIL showed high performance resulting great yields with appropriate reaction time.

  7. Water Contaminant Mitigation in Ionic Liquid Propellant

    Science.gov (United States)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  8. Catalysis in Molten Ionic Media

    DEFF Research Database (Denmark)

    Boghosian, Soghomon; Fehrmann, Rasmus

    2013-01-01

    . The historical development of the process during the last 100 years is described briefly; it is noteworthy that the liquid nature of the catalyst medium was not recognized before the early 1940s. The catalyst system appears quite complicated due to the complex nature of the melt components, which......, the fundamental research described in this chapter involves (i) the synthesis of compounds and pure chemicals; (ii) the determination of basic physical and chemical data as melting point, density, heat capacity, and so on; (iii) the construction of phase diagrams; (iv) the determination of the crystal structure...... of vanadium compounds, of which the majority are identified as catalyst deactivation products; and (v) studies of molecular structure and catalytic activity. Finally, the reaction mechanism is highlighted, which represents the state of the art of that catalytic process by 2013. © 2013 Elsevier Inc. All rights...

  9. Nonaqueous System of Iron-Based Ionic Liquid and DMF for the Oxidation of Hydrogen Sulfide and Regeneration by Electrolysis.

    Science.gov (United States)

    Guo, Zhihui; Zhang, Tingting; Liu, Tiantian; Du, Jun; Jia, Bing; Gao, Shujing; Yu, Jiang

    2015-05-05

    To improve the hydrogen sulfide removal efficiency with the application of an iron-based imidazolium chloride ionic liquid (Fe(III)-IL) as desulfurizer, Fe(II) and N,N-dimethylformamide (DMF) are introduced to Fe(III)-IL to construct a new nonaqueous desulfurization system (Fe(III/II)-IL/DMF). Following desulfurization, the system can be regenerated using the controlled-potential electrolysis method. The addition of Fe(II) in Fe(III)-IL is beneficial for the hydrogen sulfide removal and the electrochemical regeneration of the desulfurizer. The addition of DMF in Fe(III/II)-IL does not change the structure of Fe(III/II)-IL but clearly decreases the acidity, increases the electrolytic current, and decreases the stability of the Fe-Cl bond in Fe(III/II)-IL. Fe(III/II)-IL/DMF can remove hydrogen sulfide and can be regenerated through an electrochemical method more efficiently than can Fe(III/II)-IL. After six cycles, the desulfurization efficiency remains higher than 98%, and the average conversion rate of Fe(II) is essentially unchanged. No sulfur peroxidation occurs, and the system remains stable. Therefore, this new nonaqueous system has considerable potential for removing H2S in pollution control applications.

  10. "Distinvar" device

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    The alignment of one of the accelerator magnets being checked by the AR Division survey group. A "distinvar" device, invented by the group, using calibrated invar wires stretched between the fixed survey pillar (on the left) and a fixed point on the magnet. In two days it is thus possible to measure the alignment of the 100 magnets with an accuracy better than 1/10.

  11. Magnetohydrodynamic device

    Energy Technology Data Exchange (ETDEWEB)

    Gorlin, S.M.; Ljubimov, G.A.; Bitjurin, V.A.; Kovbasjuk, V.I.; Maximenko, V.I.; Medin, S.A.; Barshak, A.E.

    1979-12-25

    A magnetohydrodynamic device having a duct for a conducting gas to flow at an angle with the direction of the magnetic field induction vector is described. The duct is situated in the magnetic system and is provided with a plurality of electrodes adapted to interact electrically with the gas, whereas the cross-sectional shape of the duct working space is bounded by a closed contour formed by a curve inscribed into a rectangle. 1 claim.

  12. Separation of yttrium (III) from lanthanoids (III) by solvent extraction with substituted N-Alkylcarbonyl-N-phenylhydroxylamines

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, K.; Ogata, T.; Nakagawa, K. [Hokkaido National Industrial Research Institute, Sapporo (Japan); Saitoh, T.; Kamidate, T.; Watanabe, H. [Hokkaido University, Sapporo, (Japan). Faculty of Engineering

    1996-12-31

    A series of substituted N-alkylcarbonyl-N-phenylhydroxylamines(R-PHAs) were synthesized and utilized for the extraction of yttrium(III) and lanthanoids(III) in order to obtain effective extractants for the separation of yttrium(III) from the lanthanoids(III) and the mutual separation of the lanthanoids(III). The distribution ratio of yttrium(III) and the lanthanoids(III) between the carbon tetrachloride and the aqueous phases was measured as functions of the pH and the extractant concentration at 298 K at an ionic strength of 0.1 (NaNO{sub 3}). Yttrium(III) and the lanthanoids(III) were extracted with R-PHAs(HL) as self-adducted chelates of the form, ML{sub 3}(HL){sub x}, where `x` is 1, 2 or 3 depending on the extraction system. The extractability of the metal ions decreased in the order of R-PHA having a primary, a secondary and a tertiary alkyl substituent attached to the carbonyl group because of the steric hindrance of the alkyl group. The separation factors for both Yb/Eu and Yb/Y pairs increased with increasing branching of the alkyl group of R-PHA. The excellent selectivity of R-PHAs having a tertiary alkyl group was attributable to a greater inductive effect of the tertiary alkyl group than those of the primary and secondary alkyl groups. The substituents at the phenyl group of R-PHAs gave no significant effect on the selectivity, while the extractability was enhanced considerably by introduction of electron withdrawing substituents at appropriate positions of the phenyl group of R-PHAs. (authors) 10 refs., 3 tabs., 1 fig.

  13. Hybrid III-V/silicon lasers

    Science.gov (United States)

    Kaspar, P.; Jany, C.; Le Liepvre, A.; Accard, A.; Lamponi, M.; Make, D.; Levaufre, G.; Girard, N.; Lelarge, F.; Shen, A.; Charbonnier, P.; Mallecot, F.; Duan, G.-H.; Gentner, J.-.; Fedeli, J.-M.; Olivier, S.; Descos, A.; Ben Bakir, B.; Messaoudene, S.; Bordel, D.; Malhouitre, S.; Kopp, C.; Menezo, S.

    2014-05-01

    The lack of potent integrated light emitters is one of the bottlenecks that have so far hindered the silicon photonics platform from revolutionizing the communication market. Photonic circuits with integrated light sources have the potential to address a wide range of applications from short-distance data communication to long-haul optical transmission. Notably, the integration of lasers would allow saving large assembly costs and reduce the footprint of optoelectronic products by combining photonic and microelectronic functionalities on a single chip. Since silicon and germanium-based sources are still in their infancy, hybrid approaches using III-V semiconductor materials are currently pursued by several research laboratories in academia as well as in industry. In this paper we review recent developments of hybrid III-V/silicon lasers and discuss the advantages and drawbacks of several integration schemes. The integration approach followed in our laboratory makes use of wafer-bonded III-V material on structured silicon-on-insulator substrates and is based on adiabatic mode transfers between silicon and III-V waveguides. We will highlight some of the most interesting results from devices such as wavelength-tunable lasers and AWG lasers. The good performance demonstrates that an efficient mode transfer can be achieved between III-V and silicon waveguides and encourages further research efforts in this direction.

  14. Electrochemical, computational and spectroscopic investigation on local environment of plutonium in ionic liquid and aqueous medium. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Arijit; Murali, Mallekav S.; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre Trombay, Mumbai (India). Radiochemistry Div.; Ali, Sk. Musharaf; Shenoy, Kalsanka Trivikram [Bhabha Atomic Research Centre Trombay, Mumbai (India). Chemical Engineering Div.

    2016-07-01

    With an aim to understand the nature of species, cyclic voltammetry (CV) of Pu(IV) in dilute HBr and in a room temperature ionic liquid (RTIL), 1-octyl-3-methylimidazolium bromide (C{sub 8}mimBr) was carried out. Shifts of cathodic and anodic peak potentials of Pu(IV) cyclic voltammograms were observed towards negative potentials in the extended electrochemical window for ionic liquid medium compared to 2 M HBr. The diffusion coefficient of the most likely species of Pu(IV) in aqueous medium was found to be greater than that of the corresponding species in ionic liquid while the activation energy showed reverse trend. The Pu(IV)/Pu(III) redox reaction was found to be exothermic in aqueous medium while it was endothermic in C{sub 8}mimBr. The redox reaction was found to be quasi reversible for both the media while the extent of irreversibility was more in ionic liquid. UV-Vis spectroscopy of Pu in these media showed significant differences in the peak positions and their relative intensities, indicating the possible differences in the interactions of Pu(IV) with the solvent molecules resulting in speciation differences. A new prominent peak was observed in RTIL which could be for a new species of Pu(IV). Computational studies were also carried out to understand the solvation of Pu and the possibility of thermodynamic conversion from Pu(IV) to Pu(III).

  15. Enzyme activity in dialkyl phosphate ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  16. Enzyme activity in dialkyl phosphate ionic liquids.

    Science.gov (United States)

    Thomas, Marie F; Li, Luen-Luen; Handley-Pendleton, Jocelyn M; van der Lelie, Daniel; Dunn, John J; Wishart, James F

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariella volvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  17. CPE OF URANIUM (VI USING IONIC LIQUID

    Directory of Open Access Journals (Sweden)

    SANAA NAÏT-TAHAR

    2016-07-01

    Full Text Available Cloud point extraction (CPE was used to extract uranium (VI from an aqueous solution in acetate media. The methodology used is based on the formation of uranyl-ionic liquid (I complexes and uranyl-D2EHPA soluble in a micellar phase of non-ionic surfactant (Triton X-100. The uranium (VI complexes are then extracted into the surfactant-rich phase at ambient temperature. The ionic liquid (IL used as a chelating agent was synthesized and characterized in this study. It is composed of N-butyl N’-triethoxy methyl imidazolium cation and diethylhexylphosphate (D2EHPA-H as anion. The effect of the IL on the extraction efficiency was studied in presence and in absence of IL’s cation in acetate medium.

  18. III-V Heterojunction Structures and High Speed Devices

    Science.gov (United States)

    1992-03-02

    L’s) with tuent bulk materials and in an increase varyTng primitive cell , consisting of m of the number of atoms per primitive and n monolayers of...and lattice dynamics of these (m+n) per primitive cell (20). The SL’s and for obtaining a detailed infor- (Si) (Ge)n [001) SL’s constitute five...the primitive cell for the SL’s is governed by the specific vAlues of m and n for each Sb-family Present address: Division of Physic,. being a series

  19. Vertical III-V nanowire device integration on Si(100).

    Science.gov (United States)

    Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike

    2014-01-01

    We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.

  20. Onboard tagging for smart medical devices.

    Science.gov (United States)

    Li, Kejia; Warren, Steve

    2011-01-01

    Most medical devices are 'dumb:' their role is to acquire, display, and forward data. They make few if any operational decisions based on those data. Onboard tagging is a means whereby a device can embed information about itself, its data, and the sensibility of those data into its data stream. This diagnostic add-on offers a move toward 'smart' devices that will have the ability to affect changes in operational modes based on onboard contextual decision making, such as decisions to avoid needless wireless transmission of corrupt data. This paper presents a description of three types of onboard tags that relate to device hardware (type I tag), signal statistics (type II tag), and signal viability for the intended application (type III tag). A custom wireless pulse oximeter is presented as a use case to show how type II and III tags that convey photoplethysmogram (PPG) statistics and usability specifiers can be calculated and embedded into the data stream without degrading performance.

  1. Correlations between phase behaviors and ionic conductivities of (ionic liquid + alcohol) systems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Ku [Division of Chemical Engineering and Molecular Thermodynamics Lab, Hanyang University, Seoul 133-791 (Korea, Republic of); Bae, Young Chan, E-mail: ycbae@hanyang.ac.k [Division of Chemical Engineering and Molecular Thermodynamics Lab, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2010-11-15

    To understand the basic properties of ionic liquids (ILs), we examined the phase behavior and ionic conductivity characteristics using various compositions of different ionic liquids (1-ethyl-3-methylimidazolium hexafluorophosphate [emim; PF6] and 1-benzyl-3-methylimidazolium hexafluorophosphate [bzmim; PF6]) in several different alcohols (ethanol, propanol, 1-butanol, 2-butanol, and hexanol). We conducted a systematic study of the impact of different factors on the phase behavior of imidazolium-based ionic liquids in alcohols. Using a new experimental method with a liquid electrolyte system, we observed that the ionic conductivity of the ionic liquid/alcohol was sensitive to the surrounding temperature. We employed Chang et al.'s thermodynamic model [Chang et al. (1997, 1998) ] based on the lattice model. The obtained co-ordinated unit parameter from this model was used to describe the phase behavior and ionic conductivities of the given system. Good agreement with experimental data of various alcohol and ILs systems was obtained in the range of interest.

  2. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Manjunatha, H., E-mail: h-manjunath@blr.amrita.edu; Kumaraswamy, G. N. [Department of Physics, Amrita Vishwa Vidyapeetham, Bengaluru-560 035 (India); Damle, R. [Department of Physics, Bangalore University, Bengaluru-560 056 (India)

    2016-05-06

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10{sup −1} – 10{sup −3} Scm{sup −1}, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEO{sub x}NaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O{sup +1} ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  3. Thickness-dependent structural arrangement in nano-confined imidazolium-based ionic liquid films.

    Science.gov (United States)

    Rouha, Michael; Cummings, Peter T

    2015-02-14

    A fundamental understanding of interfacial processes in nano-confined ionic liquids is crucial to increase the performance of modern energy storage devices. It is well-known that interfaces between electrodes and ionic liquids exhibit structures distinct from that of the bulk liquid. Following the recent interest in these systems, we studied the structure of thin ionic liquid films confined in flexible uncharged carbon nano-pores by using fully-atomistic molecular dynamics simulations. We show that the interfacial ions self-assemble into a closely-packed chequerboard-like pattern, formed by both cations and anions in direct contact with the pore wall, and that within this structure we find changes dependent on the thickness of the confined films. At low coverages a dense layer is formed in which both the imidazolium-ring and its alkyl-tail lie parallel to the pore wall. With increasing coverage the alkyl-chains reorient perpendicular to the surface, making space for additional ions until a densified highly ordered layer is formed. This wall-induced self-patterning into interfacial layers with significantly higher than bulk density is consistent with recent experimental and theoretical studies of similar systems. This work reveals additional molecular-level details on the effect of the film-thickness on the structure and density of the ionic liquid.

  4. Silicon microhole arrays architecture for stable and efficient photoelectrochemical cells using ionic liquids electrolytes

    Science.gov (United States)

    Shen, Xiaojuan; Chen, Ling; Li, Junnan; Zhao, Jie

    2016-06-01

    Silicon microhole arrays (SiMHs) structure is constructed and fabricated by a low-cost maskless anodic etching process, which is applied as the photoanode for the silicon photoelectrochemical (PEC) cells. The depths of silicon microhole arrays can be independently controlled by the etching time. The light-scattering properties are also investigated. Additionally, surface morphology analysis show that large hole diameters of SiMHs is very favourable for the full-filling of ionic liquids electrolyte. Therefore, better electrochemical contact as well as high ionic conductivity of the ionic liquids electrolyte renders the PEC SiMHs solar cells to exhibit more excellent performance. After optimization, the maximum PCE could be achieved at 4.04% for the SiMHs cell. The performance of the SiMHs cell is highly comparable to that of silicon nanowires cell. More importantly, the liquid-state electrolyte is confined in the unique microhole structure, which can obviously prevent the leakage of the ionic liquids electrolyte, resulting in much better long-term stability than the reference devices. These preliminary results validate the concept of interpenetrating networks with semiconductor structure/ILs junction to develop stable and efficient PEC cells.

  5. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    Science.gov (United States)

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-03

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species.

  6. Ion beam irradiation as a tool to improve the ionic conductivity in solid polymer electrolyte systems

    Science.gov (United States)

    Manjunatha, H.; Damle, R.; Kumaraswamy, G. N.

    2016-05-01

    Solid polymer electrolytes (SPEs) have potential applications in solid state electronic and energy devices. The optimum conductivity of SPEs required for such applications is about 10-1 - 10-3 Scm-1, which is hard to achieve in these systems. It is observed that ionic conductivity of SPEs continuously increase with increasing concentration of inorganic salt in the host polymer. However, there is a critical concentration of the salt beyond which the conductivity of SPEs decreases due to the formation of ion pairs. In the present study, solid polymer thin films based on poly (ethylene oxide) (PEO) complexed with NaBr salt with different concentrations have been prepared and the concentration at which ion pair formation occurs in PEOxNaBr is identified. The microstructure of the SPE with highest ionic conductivity is modified by irradiating it with low energy O+1 ion (100 keV) of different fluencies. It is observed that the ionic conductivity of irradiated SPEs increases by one order in magnitude. The increase in ionic conductivity may be attributed to the enhanced segmental motion of the polymer chains due to radiation induced micro structural modification.

  7. High frequency III-V nanowire MOSFETs

    Science.gov (United States)

    Lind, Erik

    2016-09-01

    III-V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  8. Diffusion and ionic conductivity in solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, J. N.

    1979-01-01

    In ionic solids, the most usual experimental method of determining the correlation factor (f) has been a comparison of tracer diffusion and ionic conductivity. Theoretical values of f have been determined for many lattice geometries and jump processes and compared with measured values of f as a means of determining the atomic jump process. This paper considers the problems of applying this technique to solid electrolytes where the concentration of defects responsible for diffusion is comparable to the concentration of the mobile ions. The difficulties of applying the more common experimental techniques are discussed and the present level of theoretical understanding of correlation effects will be outlined.

  9. Soft shape-adaptive gripping device made from artificial muscle

    Science.gov (United States)

    Hamburg, E.; Vunder, V.; Johanson, U.; Kaasik, F.; Aabloo, A.

    2016-04-01

    We report on a multifunctional four-finger gripper for soft robotics, suitable for performing delicate manipulation tasks. The gripping device is comprised of separately driven gripping and lifting mechanisms, both made from a separate single piece of smart material - ionic capacitive laminate (ICL) also known as artificial muscle. Compared to other similar devices the relatively high force output of the ICL material allows one to construct a device able to grab and lift objects exceeding multiple times its own weight. Due to flexible design of ICL grips, the device is able to adapt the complex shapes of different objects and allows grasping single or multiple objects simultaneously without damage. The performance of the gripper is evaluated in two different configurations: a) the ultimate grasping strength of the gripping hand; and b) the maximum lifting force of the lifting actuator. The ICL is composed of three main layers: a porous membrane consisting of non-ionic polymer poly(vinylidene fluoride-co-hexafluoropropene) (PVdF-HFP), ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane-sulfonate (EMITFS), and a reinforcing layer of woven fiberglass cloth. Both sides of the membrane are coated with a carbonaceous electrode. The electrodes are additionally covered with thin gold layers, serving as current collectors. Device made of this material operates silently, requires low driving voltage (<3 V), and is suitable for performing tasks in open air environment.

  10. 33 CFR 155.480 - Overfill devices.

    Science.gov (United States)

    2010-07-01

    ... overfill device that— (i) Meets the requirements of 46 CFR 39.20-7(b)(2) and (b)(3) and (d)(1) through (d... meets the requirements of 46 CFR 39.20-9(b); or (iii) Is an installed high level indicating device that... indicator for that tank) that meets the requirements for tank overfill alarms under 46 CFR 39.20-7(b)(2)...

  11. Electrooptical devices

    Science.gov (United States)

    Hurwitz, C. E.

    1980-03-01

    This report covers work carried out with support of the Department of the Air Force during the period 1 October 1979 through 31 March 1980. A part of this support was provided by the Rome Air Development Center. CW operation at temperatures up to 55 C has been achieved for GaInAsP/InP double-heterostructure (DH) lasers emitting at 1.5 micrometers, which were grown without a GaInAsP buffer layer. These devices are of interest for use as sources in fiber-optics communications systems, since the lowest transmission loss reported for fused-silica optical fibers occurs at 1.55 micrometers. Surface passivation techniques developed for InP and GaInAsP avalanche photodiodes have resulted in reductions of dark current as large as four orders of magnitude, to values as low as .0000016 A/sq cm at 0.9 V(b) where V(b) is the breakdown voltage. Devices consisting entirely of InP have been passivated with plasma-deposited Si3N4, and those with a GaInAsP layer but with the p-n junction in InP have been passivated with polyimide. Neither of these techniques successfully reduces dark currents in devices with the p-n junction in the GaInAsP, but a film of photoresist sprayed with SF6 as the propellant has given excellent results. The electrical characteristics in InP ion implanted with Sn, Ge, Si, and C have been investigated. All of these column IV elements yielded n-type conductivity and Sn, Ge, and Si showed high electrical activation; however, implanted C was found to have a net electrical activation of only about 5 percent.

  12. Formation of new functional materials and device heterostructures on the basis of nanosystems of superionic conductors

    Institute of Scientific and Technical Information of China (English)

    Despotuli; A.; L.; Andreeva; A.; V.

    2005-01-01

    Search for conditions of conservation of fast ionic transport (FIT) in nanosystems of advanced superionic conductors (ASIC)[1-4] and synthesis of new types of device thin-film heterostructures on this basis is a fundamental scientific problem. ASICs (α-AgI, solid electrolytes of the family RbAg4I5, etc. ) are crystals with a record high level of ionic conductivity and a low value of activation energy E~0. 1 eV.……

  13. Formation of new functional materials and device heterostructures on the basis of nanosystems of superionic conductors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ Search for conditions of conservation of fast ionic transport (FIT) in nanosystems of advanced superionic conductors (ASIC)[1-4] and synthesis of new types of device thin-film heterostructures on this basis is a fundamental scientific problem. ASICs (α-AgI, solid electrolytes of the family RbAg4I5, etc. ) are crystals with a record high level of ionic conductivity and a low value of activation energy E~0. 1 eV.

  14. Physical chemistry of reaction dynamics in ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  15. Physical Chemistry of Reaction Dynamics in Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark [Pennsylvania State Univ., University Park, PA (United States)

    2016-10-02

    Work completed over the past year mainly involves finishing studies related to solvation dynamics in ionic liquids, amplifying and extending our initial PFG-NMR work on solute diffusion, and learning how to probe rotational dynamics in ionic liquids.

  16. Coordination Chemistry of Europium(III) Ion Towards Acylpyrazolone Ligands.

    Science.gov (United States)

    Atanassova, Maria; Kurteva, Vanya; Billard, Isabelle

    2015-01-01

    Two Eu(III) complexes were synthesized using 4-acylpyrazolone ligands: 3-methyl-4-(4-methylbenzoyl)-1-phenyl-pyrazol-5-one (HPMMBP) and 3-methyl-1-phenyl-4-(4-phenylbenzoyl)-pyrazol-5-one (HPPMBP). The composition of the obtained solid complexes was determined as Eu(PMMBP)3·C2H5OH and Eu(PPMBP)3·3H2O based on elemental analysis and was further studied by IR, NMR and TG-TSC data. The lanthanoid complexation in solid state and in solution during liquid-liquid extraction (molecular diluent and ionic liquid) is discussed.

  17. Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids.

    Science.gov (United States)

    Zhang, Yanmei; Pidko, Evgeny A; Hensen, Emiel J M

    2011-05-01

    A combined experimental and computational study of the ionic-liquid-mediated dehydration of glucose and fructose by Cr(II) and Cr(III) chlorides has been performed. The ability of chromium to selectively dehydrate glucose to 5-hydroxymethylfurfural (HMF) in the ionic liquid 1-ethyl-3-methyl imidazolium chloride does not depend on the oxidation state of chromium. Nevertheless, Cr(III) exhibits higher activity and selectivity to HMF than Cr(II) . Anhydrous CrCl(2) and CrCl(3)⋅6 H(2)O readily catalyze glucose dehydration with HMF yields of 60 and 72%, respectively, after 3 h. Anhydrous CrCl(3) has a lower activity, because it only slowly dissolves in the reaction mixture. The transformation of glucose to HMF involves the formation of fructose as an intermediate. The exceptional catalytic performance of the chromium catalysts is explained by their unique ability to catalyze glucose to fructose isomerization and fructose to HMF dehydration with high selectivity. Side reactions leading to humins by means of condensation reactions take predominantly place during fructose dehydration. The higher HMF selectivity for Cr(III) is tentatively explained by the higher activity in fructose dehydration compared to Cr(II) . This limits the concentration of intermediates that are involved in bimolecular condensation reactions. Model DFT calculations indicate a substantially lower activation barrier for glucose isomerization by Cr(III) compared to Cr(II) . Qualitatively, glucose isomerization follows a similar mechanism for Cr(II) and Cr(III) . The mechanism involves ring opening of D-glucopyranose coordinated to a single Cr ion, followed by a transient self-organization of catalytic chromium complexes that promotes the rate-determining hydrogen-shift step.

  18. Pressure induced ionic-superionic transition in silver iodide at ambient temperature.

    Science.gov (United States)

    Han, Y H; Wang, H B; Troyan, I A; Gao, C X; Eremets, M I

    2014-01-28

    Silver iodide (AgI-V) is an archetypical ionic compound for studying the formation mechanism of a superionic state. Previous studies have proven that superionic AgI with high ionic conductivity greater than 0.1 Ω(-1)cm(-1) could only be obtained at high temperatures. We show in this paper that high pressure could also induce the superionic state in AgI even at ambient temperature. Using electrochemical impedance spectroscopy, we investigated Ag(+) ions diffusing in rock-salt structured AgI-III and KOH-type AgI-V under high pressures and directly observed the superionic state in AgI-V. The diffusion coefficient of AgI-V is ∼3.4 × 10(-4)-8.6 × 10(-4) cm(2)/s in the investigated pressure range of 12-17 GPa, comparable with those of superionic α-AgI and AgI-III'. By analyzing the half infinite length Warburg diffusion process, two parameters α and β, which closely relate to the disordered state of Ag(+) ions, have been determined and it was suggested that Ag(+) ions in AgI-V become disordered. The ionic conductivity of AgI-V is three orders of magnitude higher than that of AgI-III, and has reached around 0.1 Ω(-1)cm(-1). Evidence for all three, the diffusion coefficient, α and β, and conductivity have proven that AgI-V is a superionic conductor at ambient temperature.

  19. Mechanistic Studies of Charge Injection from Metallic Electrodes into Organic Semiconductors Mediated by Ionic Functionalities: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thuc-Quyen [UCSB; Bazan, Guillermo [UCSB; Mikhailovsky, Alexander [UCSB

    2014-04-15

    Metal-organic semiconductor interfaces are important because of their ubiquitous role in determining the performance of modern electronics such as organic light emitting diodes (OLEDs), fuel cells, batteries, field effect transistors (FETs), and organic solar cells. Interfaces between metal electrodes required for external wiring to the device and underlying organic structures directly affect the charge carrier injection/collection efficiency in organic-based electronic devices primarily due to the mismatch between energy levels in the metal and organic semiconductor. Environmentally stable and cost-effective electrode materials, such as aluminum and gold typically exhibit high potential barriers for charge carriers injection into organic devices leading to increased operational voltages in OLEDs and FETs and reduced charge extraction in photovoltaic devices. This leads to increased power consumption by the device, reduced overall efficiency, and decreased operational lifetime. These factors represent a significant obstacle for development of next generation of cheap and energy-efficient components based on organic semiconductors. It has been noticed that introduction of organic materials with conjugated backbone and ionic pendant groups known as conjugated poly- and oligoelectrolytes (CPEs and COEs), enables one to reduce the potential barriers at the metal-organic interface and achieve more efficient operation of a device, however exact mechanisms of the phenomenon have not been understood. The goal of this project was to delineate the function of organic semiconductors with ionic groups as electron injection layers. The research incorporated a multidisciplinary approach that encompassed the creation of new materials, novel processing techniques, examination of fundamental electronic properties and the incorporation of the resulting knowledgebase into development of novel organic electronic devices with increased efficiency, environmental stability, and reduced

  20. Synthesis, characterization and thermal properties of thiosalicylate ionic liquids

    Indian Academy of Sciences (India)

    Cecilia Devi Wilfred; Fadwa Babiker Mustafa

    2013-11-01

    In an attempt to produce new functionalized ionic liquids, a series of thiosalicylate ionic liquids based on imidazolium, ammonium, phosphonium, choline and pyrrolidinium cations were synthesized. The compounds were characterized by Infra Red (IR), Nuclear Magnetic Resonance (NMR) and mass spectra (ESI-MS). Their glass-transition temperatures, melting points and decomposition temperatures have been measured. Physicochemical properties of ionic liquids are influenced by alkyl chain length and nature of the cation of ionic liquids.

  1. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    OpenAIRE

    Handy, Scott T.; Steven Bornemann

    2011-01-01

    Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic li...

  2. Transport-induced inversion of screening ionic charges in nanochannels

    OpenAIRE

    Zhu, Xin; Guo, Lingzi; Ni, Sheng; Zhang, Xingye; Liu, Yang

    2016-01-01

    This work reveals a counter-intuitive but basic process of ionic screening in nano-fluidic channels. Steady-state numerical simulations and mathematical analysis show that, under significant longitudinal ionic transport, the screening ionic charges can be locally inverted in the channels: their charge sign becomes the same as that of the channel surface charges. The process is identified to originate from the coupling of ionic electro-diffusion transport and junction 2-D electrostatics. This ...

  3. Application of Ionic Liquids in Amperometric Gas Sensors.

    Science.gov (United States)

    Gębicki, Jacek; Kloskowski, Adam; Chrzanowski, Wojciech; Stepnowski, Piotr; Namiesnik, Jacek

    2016-01-01

    This article presents an analysis of available literature data on metrological parameters of the amperometric gas sensors containing ionic liquids as an electrolyte. Four mechanism types of signal generation in amperometric sensors with ionic liquid are described. Moreover, this article describes the influence of selected physico-chemical properties of the ionic liquids on the metrological parameters of these sensors. Some metrological parameters are also compared for amperometric sensors with GDE and SPE electrodes and with ionic liquids for selected analytes.

  4. Synthetic Organic Electrochemistry in Ionic Liquids: The Viscosity Question

    Directory of Open Access Journals (Sweden)

    Scott T. Handy

    2011-07-01

    Full Text Available Ionic liquids are obvious candidates for use in electrochemical applications due to their ionic character. Nevertheless, relatively little has been done to explore their application in electrosynthesis. We have studied the Shono oxidation of arylamines and carbamates using ionic liquids as recyclable solvents and have noted that the viscosity of the medium is a major problem, although with the addition of sufficient co-solvent, good results and excellent recovery and recycling of the ionic liquid can be achieved.

  5. Characterization and Functionality of Immidazolium Ionic Liquids Modified Magnetic Nanoparticles

    OpenAIRE

    Ying Li; Ning Tang; Fuyuhiko Inagaki; Chisato Mukai; Kazuichi Hayakawa

    2013-01-01

    1,3-Dialkylimidazolium-based ionic liquids were chemically synthesized and bonded on the surface of magnetic nanoparticles (MNPs) with easy one-step reaction. The obtained six kinds of ionic liquid modified MNPs were characterized with transmission electron microscopy, thermogravimetric analysis, magnetization, and FTIR, which owned the high adsorption capacity due to the nanometer size and high-density modification with ionic liquids. Functionality of MNPs with ionic liquids greatly influenc...

  6. Scalable devices

    KAUST Repository

    Krüger, Jens J.

    2014-01-01

    In computer science in general and in particular the field of high performance computing and supercomputing the term scalable plays an important role. It indicates that a piece of hardware, a concept, an algorithm, or an entire system scales with the size of the problem, i.e., it can not only be used in a very specific setting but it\\'s applicable for a wide range of problems. From small scenarios to possibly very large settings. In this spirit, there exist a number of fixed areas of research on scalability. There are works on scalable algorithms, scalable architectures but what are scalable devices? In the context of this chapter, we are interested in a whole range of display devices, ranging from small scale hardware such as tablet computers, pads, smart-phones etc. up to large tiled display walls. What interests us mostly is not so much the hardware setup but mostly the visualization algorithms behind these display systems that scale from your average smart phone up to the largest gigapixel display walls.

  7. Structural control of mixed ionic and electronic transport in conducting polymers

    Science.gov (United States)

    Rivnay, Jonathan; Inal, Sahika; Collins, Brian A.; Sessolo, Michele; Stavrinidou, Eleni; Strakosas, Xenofon; Tassone, Christopher; Delongchamp, Dean M.; Malliaras, George G.

    2016-04-01

    Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT:PSS films. We quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. These findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction.

  8. Preparation, spectroscopic and thermal characterization of new La(III), Ce(III), Sm(III) and Y(III) complexes of enalapril maleate drug. In vitro antimicrobial assessment studies

    Science.gov (United States)

    Refat, Moamen S.; Al-Azab, Fathi M.; Al-Maydama, Hussein M. A.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-02-01

    The 1:1 M ratio metal complexes of enalapril maleate hypertensive drug with La(III), Ce(III), Sm(III) and Y(III) were synthesized. The suggested structures of the resulted complexes based on the results of elemental analyses, molar conductivity, (infrared, UV-visible and fluorescence) spectra, effective magnetic moment, thermal analysis (TG), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) were discussed. The infrared spectral data were suggested that enalapril reacts with metal ions as an ionic bidentate ligand through its carboxylate oxygen and the amide carbonyl oxygen, but in case of the Sm(III) complex, it reacted as a monodentate through its amide carbonyl oxygen. Maleate moiety acts with all these metals as bidentate ligand through its carboxylate or carbonyl oxygen. The kinetic and thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves. The antibacterial evaluation of the enalapril maleate and their complexes were also performed against some gram positive and negative bacteria as well as fungi.

  9. Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces

    Science.gov (United States)

    2015-10-10

    Characterizing Microstructures at Ionic Liquid /Electrode Interfaces Report Title This report details the procurement and integration of a multichannel...Haverhals, “Microstructure at the Ionic Liquid /Electrode Interface ”, 226th ECS Meeting, 8 October, 2014, Cancun, Mexico. (c) Presentations Received Paper...Technology Transfer FINAL REPORT “Potentiostat for Characterizing Microstructures at Ionic Liquid /Electrode Interfaces ” Proposal #: 66259CHRI

  10. Single-Base DNA Discrimination via Transverse Ionic Transport

    CERN Document Server

    Wilson, James

    2013-01-01

    We suggest to discriminate single DNA bases via transverse ionic transport, namely by detecting the ionic current that flows in a channel while a single-stranded DNA is driven through an intersecting nanochannel. Our all-atom molecular dynamics simulations indeed show that the ionic currents of the four bases are statistically distinct, thus offering another possible approach to sequence DNA.

  11. Synthesis of electroactive ionic liquids for flow battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Travis Mark; Ingersoll, David; Staiger, Chad; Pratt, Harry

    2015-09-01

    The present disclosure is directed to synthesizing metal ionic liquids with transition metal coordination cations, where such metal ionic liquids can be used in a flow battery. A cation of a metal ionic liquid includes a transition metal and a ligand coordinated to the transition metal.

  12. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  13. Practical microwave electron devices

    CERN Document Server

    Meurant, Gerard

    2013-01-01

    Practical Microwave Electron Devices provides an understanding of microwave electron devices and their applications. All areas of microwave electron devices are covered. These include microwave solid-state devices, including popular microwave transistors and both passive and active diodes; quantum electron devices; thermionic devices (including relativistic thermionic devices); and ferrimagnetic electron devices. The design of each of these devices is discussed as well as their applications, including oscillation, amplification, switching, modulation, demodulation, and parametric interactions.

  14. Investigations into the synthesis and fluorescence properties of Eu(III), Tb(III), Sm(III) and Gd(III) complexes of a novel bis-beta-diketone-type ligand.

    Science.gov (United States)

    Luo, Yi-Ming; Chen, Zhe; Tang, Rui-Ren; Xiao, Lin-Xiang; Peng, Hong-Jian

    2008-02-01

    A novel bis-beta-diketon ligand, 1,1'-(2,6-bispyridyl)bis-3-phenyl-1,3-propane-dione (L), was designed and synthesized and its complexes with Eu(III), Tb(III), Sm(III) and Gd(III) ions were successfully prepared. The ligand and the corresponding metal complexes were characterized by elemental analysis, and infrared, mass and proton nuclear magnetic resonance spectroscopy. Analysis of the IR spectra suggested that each of the lanthanide metal ions coordinated to the ligand via the carbonyl oxygen atoms and the nitrogen atom of the pyridine ring. The fluorescence properties of these complexes in solid state were investigated and it was discovered that all of the lanthanide ions could be sensitized by the ligand (L) to some extent. In particular, the Tb(III) complex was an excellent green-emitter and would be a potential candidate material for applications in organic light-emitting devices (OLEDs) and medical diagnosis.

  15. Investigations into the synthesis and fluorescence properties of Eu(III), Tb(III), Sm(III) and Gd(III) complexes of a novel bis- β-diketone-type ligand

    Science.gov (United States)

    Luo, Yi-Ming; Chen, Zhe; Tang, Rui-Ren; Xiao, Lin-Xiang; Peng, Hong-Jian

    2008-02-01

    A novel bis- β-diketon ligand, 1,1'-(2,6-bispyridyl)bis-3-phenyl-1,3-propane-dione (L), was designed and synthesized and its complexes with Eu(III), Tb(III), Sm(III) and Gd(III) ions were successfully prepared. The ligand and the corresponding metal complexes were characterized by elemental analysis, and infrared, mass and proton nuclear magnetic resonance spectroscopy. Analysis of the IR spectra suggested that each of the lanthanide metal ions coordinated to the ligand via the carbonyl oxygen atoms and the nitrogen atom of the pyridine ring. The fluorescence properties of these complexes in solid state were investigated and it was discovered that all of the lanthanide ions could be sensitized by the ligand (L) to some extent. In particular, the Tb(III) complex was an excellent green-emitter and would be a potential candidate material for applications in organic light-emitting devices (OLEDs) and medical diagnosis.

  16. Methods for forming group III-arsenide-nitride semiconductor materials

    Science.gov (United States)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  17. Wizlaw III og minnesangen

    DEFF Research Database (Denmark)

    Pontoppidan, Maria

    2012-01-01

    Artikel om den sidste slaviske Rügenfyrste, Wizlaw III (1265/68-1325), der traditionelt har været identificeret med minnesangeren Wizlaw den Unge. Om de bevarede sange og om minnesangens rolle ved det rügenske fyrstehof.......Artikel om den sidste slaviske Rügenfyrste, Wizlaw III (1265/68-1325), der traditionelt har været identificeret med minnesangeren Wizlaw den Unge. Om de bevarede sange og om minnesangens rolle ved det rügenske fyrstehof....

  18. Solvation and Reaction in Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Maroncelli, Mark

    2015-01-15

    The long-range goal of our DOE-sponsored research is to obtain a fundamental understanding of solvation effects on photo-induced charge transfer and related processes. Much of the focus during the past funding period has been on studies of ionic liquids and on characterizing various reactions with which to probe the nature of this interesting new solvent medium.

  19. Ionic conduction of lithium hydride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Pilipenko, G.I.; Oparin, D.V.; Zhuravlev, N.A.; Gavrilov, F.F.

    1987-09-01

    Using the electrical-conductivity- and NMR-measurement- methods, the ionic-conduction mechanism is established in stoichiometric lithium hydride single crystals. The activation energies of migration of anion- and cation-vacancies and the formation of Schottky-pair defects are determined. They assume that the mechanisms of self-diffusion and conductivity are different in lithium hydride.

  20. Polypyrrole for Artificial Muscles: Ionic Mechanisms

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2006-01-01

    is centered on polypyrrole (PPy), which is the material most used and studied. The tetraethyl ammonium cation (TEA) is shown to be able to move in and out of PPy(DBS) polymer films, in contrast to expectations. There is a switching between ionic mechanisms during cycling in TEACl electrolyte....

  1. Micro-ionics: next generation power sources.

    Science.gov (United States)

    Tuller, Harry L; Litzelman, Scott J; Jung, Woochul

    2009-05-07

    The desire for ever smarter systems-on-a-chip and plug-free portable electronics with longer operating times between recharge has stimulated growing interest in micro-ionic systems. The use of thin film and photolithographic processing techniques, commonly at temperatures considerably below those utilized in conventional ceramics processing methods, leads to ionic or mixed ionic-electronic materials with nanosized dimensions. The implications for nanosized grains on the conductivity of thin film solid oxide electrolytes are examined. Grain boundary engineering, as a means of controlling and ultimately enhancing transport along and across grain boundaries, becomes essential given that such boundaries often dominate the transport properties of such nano-dimensioned materials. Heterogeneous doping by selective in-diffusion along grain boundaries was introduced as a potentially powerful means of achieving this. This is coupled with the modeling of space charge distributions at such boundaries, taking into account possible dopant segregation to the boundaries. The use of lithographic methods for generating geometrically well defined structures is used to illustrate how one can achieve a much improved understanding of electrode processes in SOFC structures. Indeed, the more idealized structures achievable by application of microelectronic processing provide a marvelous opportunity to uncover the science underlying the technology of micro- and ultimately macro-ionics.

  2. Vaporisation of a dicationic ionic liquid.

    Science.gov (United States)

    Lovelock, Kevin R J; Deyko, Alexey; Corfield, Jo-Anne; Gooden, Peter N; Licence, Peter; Jones, Robert G

    2009-02-02

    Highest heat of vaporization yet: The dicationic ionic liquid [C(3)(C(1)Im)(2)][Tf(2)N](2) evaporates as a neutral ion triplet. These neutral ion triplets can then be ionised to form singly and doubly charged ions. The mass spectrum exhibits the dication attached to one remaining anion, and the naked dication itself (see picture).

  3. SANS analysis of aqueous ionic perfluoropolyether micelles

    CERN Document Server

    Gambi, C M C; Chittofrati, A; Pieri, R; Baglioni, P; Teixeira, J

    2002-01-01

    Preliminary SANS results of ionic chlorine terminated perfluoropolyether micelles in water are given. The experimental spectra have been analyzed by a two-shell ellipsoidal model for the micellar form factor and a screened Coulombic plus hard-sphere repulsion potential for the structure factor. (orig.)

  4. Catalytic Alkene Metathesis in Ionic Liquids

    Science.gov (United States)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  5. Analysis of ionic conductance of carbon nanotubes

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Bazant, M.Z.

    2016-01-01

    We use space-charge (SC) theory (also called the capillary pore model) to describe the ionic conductance, G, of charged carbon nanotubes (CNTs). Based on the reversible adsorption of hydroxyl ions to CNT pore walls, we use a Langmuir isotherm for surface ionization and make calculations as a

  6. Tilts and Ionic Shifts in Rhombohedral Perovskites

    NARCIS (Netherlands)

    Noheda, Beatriz; Duan, Ning; Cereceda, Noé; Gonzalo, Julio A.

    1998-01-01

    We make a comparative analysis of rhombohedral perovskites (ABO3) with/without oxygen rotations and ionic shifts, within the framework of a generalised effective field approach. We analyse available data on LaAlO3 and LiTaO3 and new data on Zr-rich PZT, examples of three different ways of structural

  7. Reactions of Starch in Ionic Liquids

    Science.gov (United States)

    We found that starches are found to be soluble at 80 ºC in ionic liquids such as 1-butyl-3-methylimidazolium chloride (BMIMCl) and 1-butyl-3-methylimidazolium dicyanamide (BMIMdca) in concentration up to 10% (w/w). Higher concentrations of biopolymers in these novel solvents resulted in solutions w...

  8. Photo-degradation of imidazolium ionic liquids

    OpenAIRE

    Katoh, Ryuzi; Takahashi, Kenji

    2009-01-01

    Degradation of imidazolium ionic liquid, [bmim+][TFSA-] and iodide solution of [bmim+][TFSA-] by UV-laser irradiation has been studied through ground-state absorption and transient absorption spectroscopy. We found that excited state [bmim+]* undergoes degradation efficiently. © 2009 Elsevier Ltd. All rights reserved.

  9. Esterification of Starch in Ionic Liquids

    Science.gov (United States)

    We shall discuss the use of various ionic liquids in the preparation of starch esters. Starch was reacted with vinyl acetate in different 1-butyl-3-methylimidazolium (bmim) salts as solvents in an effort to produce starches with different acetylation patterns. Overall degree of substitution (DS) w...

  10. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  11. Interaction between ionic lattices and superconducting condensates

    OpenAIRE

    2007-01-01

    The interaction of the ionic lattice with the superconducting condensate is treated in terms of the electrostatic force in superconductors. It is shown that this force is similar but not identical to the force suggested by the volume difference of the normal and superconducting states. The BCS theory shows larger deviations than the two-fluid model.

  12. Effect of oxidation state and ionic strength on sorption of actinides (Th, U, Np, Am) to geologic media [Abstract and References Only

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Richmann, Michael K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-30

    The degree of conservatism in the estimated sorption partition coefficients (Kds) used in a performance assessment model is being evaluated based on a complementary batch and column method. The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected at the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV).

  13. Aqueous complexation of thorium(IV), uranium(IV), neptunium(IV), plutonium(III/IV), and cerium(III/IV) with DTPA.

    Science.gov (United States)

    Brown, M Alex; Paulenova, Alena; Gelis, Artem V

    2012-07-16

    Aqueous complexation of Th(IV), U(IV), Np(IV), Pu(III/IV), and Ce(III/IV) with DTPA was studied by potentiometry, absorption spectrophotometry, and cyclic voltammetry at 1 M ionic strength and 25 °C. The stability constants for the 1:1 complex of each trivalent and tetravalent metal were calculated. From the potentiometric data, we report stability constant values for Ce(III)DTPA, Ce(III)HDTPA, and Th(IV)DTPA of log β(101) = 20.01 ± 0.02, log β(111) = 22.0 ± 0.2, and log β(101) = 29.6 ± 1, respectively. From the absorption spectrophotometry data, we report stability constant values for U(IV)DTPA, Np(IV)DTPA, and Pu(IV)DTPA of log β(101) = 31.8 ± 0.1, 32.3 ± 0.1, and 33.67 ± 0.02, respectively. From the cyclic voltammetry data, we report stability constant values for Ce(IV) and Pu(III) of log β(101) = 34.04 ± 0.04 and 20.58 ± 0.04, respectively. The values obtained in this work are compared and discussed with respect to the ionic radius of each cationic metal.

  14. Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography.

    Science.gov (United States)

    Tang, Sheng; Liu, Shujuan; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2014-08-29

    Ionic liquids (ILs) and polymeric ionic liquids (PILs) with unique and fascinating properties have drawn considerable interest for their use in separation science, especially in chromatographic techniques. In this article, significant contributions of ILs and PILs in the improvement of capillary electrophoresis and capillary electrochromatography are described, and a specific overview of the most relevant examples of their applications in the last five years is also given. Accordingly, some general conclusions and future perspectives in these areas are discussed.

  15. Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity.

    Science.gov (United States)

    Yoshida, Yukihiro; Baba, Osamu; Saito, Gunzi

    2007-05-10

    A series of dicyanamide [N(CN)2]-based ionic liquids were prepared using 1-alkyl-3-methylimidazolium cations with different alkyl chain lengths and ethyl-containing heterocyclic cations with different ring structures, and the influence of such structural variations on their thermal property, density, electrochemical window, viscosity, ionic conductivity, and solvatochromic effects was investigated. We found that the 1,3-dimethylimidazolium salt shows the highest ionic conductivity among ionic liquids free from halogenated anions (3.6 x 10(-2) S cm(-1) at 25 degrees C), and the elongation of the alkyl chain causes the pronounced depression of fluidity and ionic conductivity. Also, such an elongation gives rise to the increase in the degree of ion association in the liquids, mainly caused by the van der Waals interactions between alkyl chains. N(CN)2 salts with 1-ethyl-2-methylpyrazolium (EMP) and N-ethyl-N-methylpyrrolidinium (PY(12)) cations as well as 1-ethyl-3-methylimidazolium (EMI) cation are liquids at room temperature (RT), while the N-ethylthiazolium salt shows a melting event at higher temperature (57 degrees C). Among the three RT ionic liquids with ethyl-containing cations, RT ionic conductivity follows the order EMI > PY(12) > EMP, which does not coincide with the order of fluidity at RT (EMI > EMP > PY(12)). Such a discrepancy is originated from a high degree of ion dissociation in the PY(12) salt, which was manifested in the Walden rule deviation and solvatochromic effects. A series of N(CN)2/C(CN)3 binary mixtures of the EMI salts were also prepared. RT ionic conductivity decreases linearly with increasing the molar fraction of C(CN)3 anion.

  16. VOC and HAP recovery using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Michael R. Milota : Kaichang Li

    2007-05-29

    During the manufacture of wood composites, paper, and to a lesser extent, lumber, large amounts of volatile organic compounds (VOCs) such as terpenes, formaldehyde, and methanol are emitted to air. Some of these compounds are hazardous air pollutants (HAPs). The air pollutants produced in the forest products industry are difficult to manage because the concentrations are very low. Presently, regenerative thermal oxidizers (RTOs and RCOs) are commonly used for the destruction of VOCs and HAPs. RTOs consume large amounts of natural gas to heat air and moisture. The combustion of natural gas generates increased CO2 and NOx, which have negative implications for global warming and air quality. The aforementioned problems are addressed by an absorption system containing a room-temperature ionic liquid (RTIL) as an absorbent. RTILs are salts, but are in liquid states at room temperature. RTILs, an emerging technology, are receiving much attention as replacements for organic solvents in industrial processes with significant cost and environmental benefits. Some of these processes include organic synthesis, extraction, and metal deposition. RTILs would be excellent absorbents for exhausts from wood products facilities because of their unique properties: no measurable vapor pressure, high solubility of wide range of organic compounds, thermal stability to 200°C (almost 400°F), and immisciblity with water. Room temperature ionic liquids were tested as possible absorbents. Four were imidizolium-based and were eight phosphonium-based. The imidizolium-based ionic liquids proved to be unstable at the conditions tested and in the presence of water. The phosphonium-based ionic liquids were stable. Most were good absorbents; however, cleaning the contaminates from the ionic liquids was problematic. This was overcome with a higher temperature (120°C) than originally proposed and a very low pressure (1 kPa. Absorption trials were conducted with tetradecy

  17. Mechanistic study of ruthenium (III) catalysed oxidation of L-lysine by diperiodatoargentate (III) in aqueous alkaline medium

    Indian Academy of Sciences (India)

    R R Hosamani; S T Nandibewoor

    2009-05-01

    The kinetics of Ru(III) catalysed oxidation of L-lysine by diperiodatoargentate (III) (DPA) in alkaline medium at 298 K and a constant ionic strength of 0.50 mol dm-3 was studied spectrophotometrically. The oxidation products are aldehyde (5-aminopentanal) and Ag (I). The stoichiometry is i.e. [L-lysine] : [DPA] = 1 : 1. The reaction is of first order in [Ru(III)] and [DPA] and is less than unit order in both [L-lys] and [alkali]. Addition of periodate had a retarding effect on the reaction. The oxidation reaction in alkaline medium has been shown to proceed via a Ru(III)-L-lysine complex, which further reacts with one molecule of monoperiodatoargentate(III) (MPA) in a rate determining step followed by other fast steps to give the products. The main products were identified by spot test, IR, GC-MS studies. The activation parameters with respect to slow step of the mechanism are computed and discussed and thermodynamic quantities are also determined. The active species of catalyst and oxidant have been identified.

  18. Electrophoresis device

    Science.gov (United States)

    Rhodes, P. H.; Snyder, R. S. (Inventor)

    1982-01-01

    A device for separating cellular particles of a sample substance into fractionated streams of different cellular species includes a casing having a distribution chamber, a separation chamber, and a collection chamber. The electrode chambers are separated from the separation chamber interior by means of passages such that flow variations and membrane variations around the slotted portion of the electrode chamber do not enduce flow perturbations into the laminar buffer curtain flowing in the separation chamber. The cellular particles of the sample are separated under the influence of the electrical field and the separation chamber into streams of different cellular species. The streams of separated cells enter a partition array in the collection chamber where they are fractionated and collected.

  19. Stratification devices

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2008-01-01

    heating system. High temperatures in the top of the storage tank established by the energy from the solar collector reduce the use of auxiliary energy. Low temperatures in the bottom of the storage tank improve the operation conditions for the solar collector. Using thermal stratified heat storages...... results in longer operation periods and improved utilization of the solar collector. Thermal stratification can be achieved, for example by using inlet stratification devices at all inlets to the storage tank. This paper presents how thermal stratification is established and utilized by means of inlet......Thermal stratification in the storage tank is extremely important in order to achieve high thermal performance of a solar heating system. High temperatures in the top of the storage tank and low temperatures in the bottom of the storage tank lead to the best operation conditions for any solar...

  20. Solid state ionics: a Japan perspective.

    Science.gov (United States)

    Yamamoto, Osamu

    2017-01-01

    The 70-year history of scientific endeavor of solid state ionics research in Japan is reviewed to show the contribution of Japanese scientists to the basic science of solid state ionics and its applications. The term 'solid state ionics' was defined by Takehiko Takahashi of Nagoya University, Japan: it refers to ions in solids, especially solids that exhibit high ionic conductivity at a fairly low temperature below their melting points. During the last few decades of exploration, many ion conducting solids have been discovered in Japan such as the copper-ion conductor Rb4Cu16I7Cl13, proton conductor SrCe1-x Y x O3, oxide-ion conductor La0.9Sr0.9Ga0.9Mg0.1O3, and lithium-ion conductor Li10GeP2S12. Rb4Cu16I7Cl13 has a conductivity of 0.33 S cm(-1) at 25 °C, which is the highest of all room temperature ion conductive solid electrolytes reported to date, and Li10GeP2S12 has a conductivity of 0.012 S cm(-1) at 25 °C, which is the highest among lithium-ion conductors reported to date. Research on high-temperature proton conducting ceramics began in Japan. The history, the discovery of novel ionic conductors and the story behind them are summarized along with basic science and technology.

  1. Comparative Investigation of the Ionicity of Aprotic and Protic Ionic Liquids in Molecular Solvents by using Conductometry and NMR Spectroscopy.

    Science.gov (United States)

    Thawarkar, Sachin; Khupse, Nageshwar D; Kumar, Anil

    2016-04-01

    Electrical conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium-based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate, [bmIm][BF4 ], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the (1) H NMR chemical shifts of the ionic liquids. The self-diffusion coefficients D of the cation and anion of [HmIm][CH3 COO] in D2 O and in [D6 ]DMSO are determined by using (1) H nuclei with pulsed field gradient spin-echo NMR spectroscopy.

  2. Ionic liquids based on S-alkylthiolanium cations and TFSI anion as potential electrolytes

    Institute of Scientific and Technical Information of China (English)

    ZHANG HuanQi; YANG Li; FANG ShaoHua; PENG ChengXin; LUO HongJun

    2009-01-01

    New ionic liquids based on S-alkylthiolanium cations with TFSI anions were synthesized and charac-terized.The physical and electrochemical properties,including melting point,thermal stability,solubil-ity,viscosity,conductivity and electrochemical window,were reported.Relation between these proper-ties and the structure of the cations was discussed.In this series,T4TFSI and T5TFSI have melting points below -60℃,and their conductivities are 2.10 mS/cm and 1.46 mS/cm;their electrochemical windows are 4.1 V and 4.5 V at room temperature.These cyclic alkylthiolanium-based ionic liquids are promising as novel electrolytes in various electrochemical devices,especially under low temperature condition.

  3. Nanoscale Carbon Greatly Enhances Mobility of a Highly Viscous Ionic Liquid

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    liquids (ILs) and apolar carbon nanotubes (CNTs) are disparate objects; nevertheless, their interaction leads to spontaneous CNT filling with ILs. Moreover, ionic diffusion of highly viscous ILs can increase 5-fold inside CNTs, approaching that of molecular liquids, even though the confined IL phase still...... phenomena. Governed by internal energy and entropy rather than external work, the kinetics of CNT filling is characterized in detail The significant growth of the IL mobility induced by nanoscale carbon promises important advances in electricity storage devices.......The ability to encapsulate molecules is one of the outstanding features of nanotubes. The encapsulation alters physical and chemical properties of both nanotubes and guest species. The latter normally form a separate phase, exhibiting drastically different behavior compared to the bulk. Ionic...

  4. Capacitive Energy Storage from - 50o to 100o Using an Ionic Liquid Electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Rongying [Universite Paul Sabatier, Toulouse Cedex, France.; Taberna, Pierre-Louis [Universite Paul Sabatier, Toulouse Cedex, France.; Santini, Sebastien [SOLVIONIC Company, Toulouse, France; Presser, Volker [ORNL; Perez, Carlos R. [Drexel University; Malbosc, Francois [SOLVIONIC Company, Toulouse, France; Rupesinghe, Nalin L. [AIXTRON, Cambridge, UK; Teo, Kenneth B. K. [AIXTRON, Cambridge, UK; Gogotsi, Yury G. [Drexel University; Simon, Patrice [Universite Paul Sabatier, Toulouse Cedex, France.

    2011-01-01

    Relying on redox reactions, most batteries are limited in their ability to operate at very low or very high temperatures. While performance of electrochemical capacitors is less dependent on the temperature, present-day devices still cannot cover the entire range needed for automotive and electronics applications under a variety of environmental conditions. We show that the right combination of the exohedral nanostructured carbon (nanotubes and onions) electrode and a eutectic mixture of ionic liquids can dramatically extend the temperature range of electrical energy storage, thus defying the conventional wisdom that ionic liquids can only be used as electrolytes above room temperature. We demonstrate electrical double layer capacitors able to operate from 50 to 100 C over a wide voltage window (up to 3.7 V) and at very high charge/discharge rates of up to 20 V/s.

  5. Solid-State Neutron Detector Device

    Science.gov (United States)

    Bensaoula, Abdelhak (Inventor); Starikov, David (Inventor); Pillai, Rajeev (Inventor)

    2017-01-01

    The structure and methods of fabricating a high efficiency compact solid state neutron detector based on III-Nitride semiconductor structures deposited on a substrate. The operation of the device is based on absorption of neutrons, which results in generation of free carriers.

  6. Advanced Semiconductor Devices

    Science.gov (United States)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    Sb-heterostructure backward diodes for millimeter-wave detection / N. Su ... [et al.]. A Mixed-signal row/Column architecture for very large monolithic mm-wave phased arrays / C. Carta, M. Seo and M. Rodwell. Terahertz emission from electrically pumped silicon germanium itersubband devices / N. Sustersic [et al.]. Terahertz sensing of materials / G. Xuan ... [et al.] -- III. silicon and SiGe devices. Negative bias temperature instability in TiN/HF-Silicate based gate stacks / N. A. Chowdhury, D. Misra and N. Rahim. Power adaptive control of dense configured super-self-aligned back-gate planar transistors / H. Lin ... [et al.]. Non-volatile high speed & low power charge trapping devices / M. K. Kim and S. Tiwari. High performance SiGeC/Si Near-IR electrooptic modulators and photodetectors / M. Schubert and F. Rana -- III. Silicon and SiGe devices. Negative bias temperature instability in TiN/HF-Silicate based gate stacks / N. A. Chowdhury, D. Misra and N. Rahim. Power adaptive control of dense configured super-self-aligned back-gate planar transistors / H. Lin ... [et al.]Non-volatile high speed & low power charge trapping devices / M. K. Kim and S. Tiwari. High performance SiGeC/Si Near-IR electrooptic modulators and photodetectors / M. Schubert and F. Rana -- IV. Nanoelelectronics and ballistic devices. Hybrid nanomaterials for multi-spectral infrared photodetection / A. D. Stiff-Roberts. Ballistic electron acceleration negative-differential-conductivity devices / B. Aslan ... [et al.] -- V. Photoluminescence and photocapacitance. Understanding ultraviolet emitter performance using intensity dependent Time-Resolved photoluminescence / M. Wraback ... [ et al.]. Photocapacitance of selectively doped AlGaAs/GaAs heterostructures containing deep traps / N. B. Gorev ... [et al.

  7. A novel family of green ionic liquids with surface activities

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ionic liquids have many unique properties as a new and remarkable class of environmental benign solvents,which promises widespread applications in industry and other areas. However,the ionic liq-uids with surface activity are rarely reported. In this work,a series of novel ionic liquids was synthe-sized by using N-methyl-2-pyrrolidone and alkyl bromide. The physical properties of this family of ionic liquids have been characterized,which shows that these compounds have ionic liquids characteristics,surface activity and biocompatibility.

  8. Supported ionic liquids: versatile reaction and separation media

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Haumann, Marco;

    2006-01-01

    The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic ...... liquid catalysts proved to be more active and selective than common systems. In separation applications the use of supported ionic liquids can facilitate selective transport of substrates across membranes.......The latest developments in supported ionic liquid phase (SILP) systems for catalysis and separation technology are surveyed. The SILP concept combines the advantages of homogeneous catalysis with heterogeneous process technology, and a variety of reactions have been studied where supported ionic...

  9. Biocatalysis in ionic liquids - advantages beyond green technology.

    Science.gov (United States)

    Park, Seongsoon; Kazlauskas, Romas J

    2003-08-01

    In recent years researchers have started to explore a particular class of organic solvents called room temperature ionic liquids - or simply ionic liquids - to identify their unique advantages for biocatalysis. Because they lack vapour pressure, ionic liquids hold potential as green solvents. Furthermore, unlike organic solvents of comparable polarity, they often do not inactivate enzymes, which simplifies reactions involving polar substrates such as sugars. Biocatalytic reactions in ionic liquids have also shown higher selectivity, faster rates and greater enzyme stability; however, these solvents present other challenges, among them difficulties in purifying ionic liquids and controlling water activity and pH, higher viscosity and problems with product isolation.

  10. Absorption and oxidation of nitrogen oxide in ionic liquids

    DEFF Research Database (Denmark)

    Kunov-Kruse, Andreas Jonas; Thomassen, Peter Langelund; Riisager, Anders

    2016-01-01

    . The nitric acid is absorbed in the ionic liquid up to approximately one mole HNO3 per mole of the ionic liquid due to the formation of hydrogen bonds. The nitric acid can be desorbed by heating, thereby regenerating the ionic liquid with excellent reproducibility. Here, time-resolved in-situ spectroscopic......A new strategy for capturing nitrogen oxide, NO, from the gas phase is presented. Dilute NO gas is removed from the gas phase by ionic liquids under ambient conditions. The nitrate anion of the ionic liquid catalyzes the oxidation of NO to nitric acid by atmospheric oxygen in the presence of water...

  11. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  12. Complex formation reactions of lanthanum(III), cerium(III), thorium(IV), dioxouranyl(IV) complexes with tricine.

    Science.gov (United States)

    Mohamed, Mahmoud M A

    2007-08-01

    Equilibrium studies for the heavy metal ions La(III), Ce(III), Th(IV) and UO2(IV) (M) complexes of the zwitterionic buffer tricine (L) in aqueous solution are investigated. Stoichiometry and stability constants for the different complexes formed as well as hydrolysis products of the metal cations are determined at 25 degrees C and ionic strength 0.1 M NaNO3. The stability of the formed complexes are discussed in terms of the nature of the heavy metal cation. The solid complexes are synthesized and characterized by means of elemental analysis, FTIR, and TG analysis. The general molecular formulae of the obtained complexes is suggested to be [M(L)2](NO3)n-2(H2O)x, where n = the charge of the metal cation, x = no. of water molecules.

  13. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  14. Interactions in ion pairs of protic ionic liquids: comparison with aprotic ionic liquids.

    Science.gov (United States)

    Tsuzuki, Seiji; Shinoda, Wataru; Miran, Md Shah; Kinoshita, Hiroshi; Yasuda, Tomohiro; Watanabe, Masayoshi

    2013-11-01

    The stabilization energies for the formation (E(form)) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G** level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E(form) for the [dema][CF3SO3] and [dmpa][CF3SO3] complexes (-95.6 and -96.4 kcal/mol, respectively) are significantly larger (more negative) than that for the [etma][CF3SO3] complex (-81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl(-), BF4(-), TFSA(-) anions. The anion has contact with the N-H bond of the dema(+) or dmpa(+) cations in the most stable geometries of the dema(+) and dmpa(+) complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0-18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E(form) for the less stable geometries for the dema(+) and dmpa(+) complexes are close to those for the most stable etma(+) complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N-H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA(-) anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF3SO3] ionic liquid.

  15. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    technologies suffer from the fact that the overall reaction rates are often restricted by mass and heat transport problems. Lastly, there are severe limitations concerning the feedstock selection as for some important substrates, such as e.g. glucose, the process can only be operated in very diluted systems to avoid rapid tar formation [22,23,24]. In this contribution we describe for the first time a catalytic reaction system producing hydrogen from glucose in astonishingly high selectivities using a single reaction step under very mild conditions. The catalytic reaction system is characterized by its homogeneous nature and comprises a Ru-complex catalyst dissolved and stabilized in an ionic liquid medium. Ionic liquids are salts of melting points below 100 C [25]. These liquid materials have attracted much interest in the last decade as solvents for catalytic reactions [26] and separation technologies (extraction, distillation) [27,28,29,30,31,32]. Besides, these liquids have found industrial applications as process fluids for mechanic [33] and electrochemical applications [34]. Finally, from the pioneering work of Rogers and co-workers, it is known that ionic liquids are able to dissolve significant amounts of water-insoluble biopolymers (such as e.g. cellulose and chitin)[35] and even complex biopolymer mixtures, such as e.g. wood, have been completely dissolved in some ionic liquids [36]. In our specific application, the role of the ionic liquid is threefold: a) the ionic liquid dissolves the carbohydrate starting material thus expanding the range of applicable carbohydrate to water insoluble polymers; b) the ionic liquid provides a medium to dissolve and stabilize the catalyst; c) the ionic liquid dissolves hydrogen at a very low level, so inhibiting any possible collateral hydrogen-consuming process (detailed investigation of the hydrogen solubility in ionic liquids have been reported by e.g. Brennecke and coworkers [37]). (orig.)

  16. [Advances of poly (ionic liquid) materials in separation science].

    Science.gov (United States)

    Liu, Cuicui; Guo, Ting; Su, Rina; Gu, Yuchen; Deng, Qiliang

    2015-11-01

    Ionic liquids, as novel ionization reagents, possess beneficial characteristics including good solubility, conductivity, thermal stability, biocompatibility, low volatility and non-flammability. Ionic liquids are attracting a mass of attention of analytical chemists. Poly (ionic liquid) materials have common performances of ionic liquids and polymers, and have been successfully applied in separation science area. In this paper, we discuss the interaction mechanisms between the poly(ionic liquid) materials and analytes including hydrophobic/hydrophilic interactions, hydrogen bond, ion exchange, π-π stacking and electrostatic interactions, and summarize the application advances of the poly(ionic liquid) materials in solid phase extraction, chromatographic separation and capillary electrophoresis. At last, we describe the future prospect of poly(ionic liquid) materials.

  17. Periodicity and map for discovery of new ionic liquids

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    There is virtually no limit in the number of ionic liquids. How to select proper ones or discover new ones with desirable properties in such a large pool of ionic liquids? It has become a bottleneck in the researches and applications of ionic liquids. Mendeleev's periodic law states that the properties of the elements vary periodically. Whether the similar regularity exists among ionic or molecular fragments of compounds is an interesting topic. In this work, we attempted to establish a periodicity and draw a "map" of ionic liquids for providing definite guidance to discover, design, and select the proper ionic liquids rather than trial-and-error. If a complete regularity of the system of ionic liquids can be finally established in the future, we are near an epoch in understanding the existing differences and the reasons for the similarity of the ions or molecular fragments.

  18. Integrated device architectures for electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Frey, Jonathan Mack; Berland, Brian Spencer

    2015-04-21

    This disclosure describes systems and methods for creating monolithically integrated electrochromic devices which may be a flexible electrochromic device. Monolithic integration of thin film electrochromic devices may involve the electrical interconnection of multiple individual electrochromic devices through the creation of specific structures such as conductive pathway or insulating isolation trenches.

  19. Influence of ionic strength on the rheological properties of hydroxypropylmethyl cellulose-sodium dodecylsulfate mixtures

    Directory of Open Access Journals (Sweden)

    Katona Jaroslav M.

    2015-01-01

    Full Text Available Mixtures of polymers and surfactants are commonly found in a range of products of pharmaceutical, cosmetic, and food industry. Interaction between polymers and surfactants influences different properties of these products, e.g. stability, flow properties, phase behavior, etc. It is known from previous work that an interaction in binary mixtures of hydroxypropylmethyl cellulose (HPMC and sodium dodecylsulfate (SDS takes place when SDS concentration (CSDS. is higher than the critical association concentration (CAC and lower than the polymer saturation point (PSP. The interaction results in the formation of an HPMC-SDS complex. The objective of this work was to study the effect of the ionic strength on the HPMC-SDS complex formation by rheological investigation. The HPMC/SDS mixtures composed of 0.70 % wt. HPMC, and 0.00 % to 2.50 % wt. SDS were prepared in deionized water, 0.01M and 0.05M NaCl solution. It was found that an increase in the ionic strength influences the HPMC-SDS complex formation by increasing the zero shear viscosity of the mixtures in the interaction region (CACPSP. The HPMC/SDS mixtures showed a shear thinning or a shear thickening flow properties depending on CSDS. The flow properties were influenced by the ionic strength of the mixtures.[Projekat Ministarstva nauke Republike Srbije, br. III46010

  20. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    Science.gov (United States)

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  1. The effect of pH and ionic strength of dissolution media on in-vitro release of two model drugs of different solubilities from HPMC matrices.

    Science.gov (United States)

    Asare-Addo, Kofi; Conway, Barbara R; Larhrib, Hassan; Levina, Marina; Rajabi-Siahboomi, Ali R; Tetteh, John; Boateng, Joshua; Nokhodchi, Ali

    2013-11-01

    The evaluation of the effects of different media ionic strengths and pH on the release of hydrochlorothiazide, a poorly soluble drug, and diltiazem hydrochloride, a cationic and soluble drug, from a gel forming hydrophilic polymeric matrix was the objective of this study. The drug to polymer ratio of formulated tablets was 4:1. Hydrochlorothiazide or diltiazem HCl extended release (ER) matrices containing hypromellose (hydroxypropyl methylcellulose (HPMC)) were evaluated in media with a pH range of 1.2-7.5, using an automated USP type III, Bio-Dis dissolution apparatus. The ionic strength of the media was varied over a range of 0-0.4M to simulate the gastrointestinal fed and fasted states and various physiological pH conditions. Sodium chloride was used for ionic regulation due to its ability to salt out polymers in the midrange of the lyotropic series. The results showed that the ionic strength had a profound effect on the drug release from the diltiazem HCl K100LV matrices. The K4M, K15M and K100M tablets however withstood the effects of media ionic strength and showed a decrease in drug release to occur with an increase in ionic strength. For example, drug release after the 1h mark for the K100M matrices in water was 36%. Drug release in pH 1.2 after 1h was 30%. An increase of the pH 1.2 ionic strength to 0.4M saw a reduction of drug release to 26%. This was the general trend for the K4M and K15M matrices as well. The similarity factor f2 was calculated using drug release in water as a reference. Despite similarity occurring for all the diltiazem HCl matrices in the pH 1.2 media (f2=64-72), increases of ionic strength at 0.2M and 0.4M brought about dissimilarity. The hydrochlorothiazide tablet matrices showed similarity at all the ionic strength tested for all polymers (f2=56-81). The values of f2 however reduced with increasing ionic strengths. DSC hydration results explained the hydrochlorothiazide release from their HPMC matrices. There was an increase in

  2. Laser device

    Science.gov (United States)

    Scott, Jill R.; Tremblay, Paul L.

    2007-07-10

    A laser device includes a target position, an optical component separated a distance J from the target position, and a laser energy source separated a distance H from the optical component, distance H being greater than distance J. A laser source manipulation mechanism exhibits a mechanical resolution of positioning the laser source. The mechanical resolution is less than a spatial resolution of laser energy at the target position as directed through the optical component. A vertical and a lateral index that intersect at an origin can be defined for the optical component. The manipulation mechanism can auto align laser aim through the origin during laser source motion. The laser source manipulation mechanism can include a mechanical index. The mechanical index can include a pivot point for laser source lateral motion and a reference point for laser source vertical motion. The target position can be located within an adverse environment including at least one of a high magnetic field, a vacuum system, a high pressure system, and a hazardous zone. The laser source and an electro-mechanical part of the manipulation mechanism can be located outside the adverse environment. The manipulation mechanism can include a Peaucellier linkage.

  3. A Compact Ionic Polymer Metal Composite (IPMC System with Inductive Sensor for Closed Loop Feedback

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2015-05-01

    Full Text Available Ionic polymer metal composite (IPMC, of which a low actuating voltage (<5 V, high power efficiency and biocompatibility makes it a proven candidate for low power devices. However, due to its inherent nonlinear behaviour and time-variance, feedback control, as well as reliable sensing means, are required for accurate operations. This paper presents an IPMC actuator implemented with an inductive sensor to enhance the reliability and compactness of the overall device. A practical, low cost and importantly, compact inductive sensor fabricated on a printed circuit board (PCB is proposed here. Target material selections and coil design considerations are discussed. It is experimentally determined that the inductive sensor has comparable performance to a laser sensor. Based on a proportional-integral-derivative (PID control results the inductive sensor has demonstrated to be an alternative to a laser sensor allowing devices using IPMC actuators to be compact.

  4. Three-dimensional ionic conduction in the strained electrolytes of solid oxide fuel cells

    Science.gov (United States)

    Han, Yupei; Zou, Minda; Lv, Weiqiang; Mao, Yiwu; Wang, Wei; He, Weidong

    2016-05-01

    Flexible power sources including fuel cells and batteries are the key to realizing flexible electronic devices with pronounced foldability. To understand the bending effects in these devices, theoretical analysis on three-dimensional (3-D) lattice bending is necessary. In this report, we derive a 3-D analytical model to analyze the effects of electrolyte crystal bending on ionic conductivity in flexible solid-state batteries/fuel cells. By employing solid oxide fuel cells as a materials' platform, the intrinsic parameters of bent electrolyte materials, including lattice constant, Young's modulus, and Poisson ratio, are evaluated. Our work facilitates the rational design of highly efficient flexible electrolytes for high-performance flexible device applications.

  5. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  6. Self-segregated nanostructure in room temperature ionic liquids.

    Science.gov (United States)

    Pontoni, Diego; Haddad, Julia; Di Michiel, Marco; Deutsch, Moshe

    2017-08-29

    The nanosegregated bulk structure, and its evolution with the cation's alkyl length n, are studied by X-ray scattering for an unprecedentedly broad homologous series of a model room-temperature ionic liquid, [CnMIM][NTf2] (n = 4-22). A tri-periodic local structure is found, with the lateral periodicities, dII and dIII independent of n, and a longitudinal one, dI, linearly increasing with n. The results are consistent with a local structure comprising alternating layers of polar headgroups and apolar, interdigitated, partly overlapping, cations' alkyl tails, of an average macroscopic mass density close to that of liquid alkanes. A slope decrease in the linear dI(n) suggests a change from a lower to a higher rate of increase with n of chain overlap for n ≥ 12. The order decay lengths of the layering, and of the lateral chain packing, increase with n, as expected from the increasing van der Waals interaction's domination of the structure. The headgroups' lateral packing decay length decreases with n, due to increasing frustration between the longer lateral periodicity preferred by the headgroups, and the shorter lateral periodicity preferred by the chains. A comparison of the bulk and surface structures highlights the surface's ordering effect, which, however, does not induce here a surface phase different from the bulk, as it does in liquid crystals and liquid alkanes.

  7. Control of local ion transport to create unique functional nanodevices based on ionic conductors

    Directory of Open Access Journals (Sweden)

    Kazuya Terabe, Tsuyoshi Hasegawa, Changhao Liang and Masakazu Aono

    2007-01-01

    Full Text Available The development of nanometer-scale devices operating under a new principle that could overcome the limitations of current semiconductor devices has attracted interest in recent years. We propose that nanoionic devices that operate by controlling the local transport of ions are promising in this regard. It is possible to control the local transport of ions using the solid electrochemical properties of ionic and electronic mixed conductors. As an example of this concept, here, we report a method of controlling the transport of silver ions of the mixed-conductor silver sulfide (Ag2S crystal and basic research on nanoionic devices based on this mixed conductor. These devices show unique functions such as atom deposition, resistance switching, and quantum point contact switching. The switches operate through the formation and dissolution of an atomic bridge between the electrodes, and the behavior is realized by control of the local solid-state electrochemical reaction. Potential nanoionic devices utilizing the unique functions and characters that do not exist in conventional semiconductor devices are discussed.

  8. Calculus III essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Calculus III includes vector analysis, real valued functions, partial differentiation, multiple integrations, vector fields, and infinite series.

  9. Activation of blood clotting and fibrinolysis in angiocardiography with ionic and non-ionic contrast medium; Aktivierung von Blutgerinnung und Fibrinolyse nach Angiokardiographie mit ionischem und nichtionischem Kontrastmittel

    Energy Technology Data Exchange (ETDEWEB)

    Winkler, U.H. [Gerinnungsphysiologisches Lab., Zentrum fuer Frauenheilkunde, Universitaetsklinikum Essen (Germany); Park, J.W. [Herz-Zentrum Kaiser-Wilhelm-Krankenhaus, Duisburg (Germany); Weber, S. [Schering AG, Geschaeftsbereich Deutschland, Berlin (Germany); Kothe, A. [Gerinnungsphysiologisches Lab., Zentrum fuer Frauenheilkunde, Universitaetsklinikum Essen (Germany); Schnitker, J. [Inst. fuer Angewandte Statistik GmbH, Bielefeld (Germany); Behrends-Steins, B. [Schering AG, Geschaeftsbereich Deutschland, Berlin (Germany); Albring, M. [Schering AG, Geschaeftsbereich Deutschland, Berlin (Germany)

    1997-06-01

    Purpose: To study the effects of a ionic (amidotrizoate) and a nonionic X-ray contrast medium (iopromid) during routine levocardiography and coronary angiography, we employed assays that detect reaction products of thrombin and plasmin to assess the activation of the haemostatic system. Methods: Subsequent to informed consent, 20 patients were randomly assigned to receive either amidotrizoate or iopromid during standard levocardiography and coronary angiography in a double-blind comparative study. Groups were comparable in respect of age, weight, sex and severity of the disease. No anticoagulation was provided. Coronary angiography was performed according to a standardised protocol. Consumption of contrast media and duration of the examination were comparable in both groups. Results: Thrombin generation (F.1+2) and thrombin activity (TAT) were higher with the ionic contrast medium but did not attain statistical significance. Fibrin generation and degradation as expressed by D-dimer fibrin split products was significantly increased in patients who had been receiving amidotrizoate (p<0,05, U-Test). Conclusion: The non-ionic X-ray contrast medium induced significantly less haemostatic activation in vivo than did the ionic medium amidotrizoate. These data suggest that earlier in vitro observations of more pronounced anticoagulant effects of ionic X-ray contrast media are of limited significance for the evaluation of in vivo effects of X-ray contrast media on haemostatic function. (orig.) [Deutsch] Ziel: Bestimmung der Aktivitaet des haemostatischen Systems in vivo nach Gabe von ionischem und nichtionischem Roentgenkontrastmittel in der Angiokardiographie. Material und Methoden: In eine randomisierte doppelblinde Vergleichsstudie mit den Kontrastmitteln Amidotrizoat und Iopromid wurden 20 Patienten (10 pro Gruppe) einbezogen. Bei der aus medizinischen Gruenden indizierten Angiokardiographie wurden 5 repraesentative Reaktionsprodukte der thrombin- und plasmininduzierten

  10. Active III-V Semiconductor Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Ek, Sara; Chen, Yaohui; Schubert, Martin;

    2011-01-01

    We experimentally demonstrate enhanced amplified spontaneous emission in a quantum well III-V semiconductor photonic crystal waveguide slab. The effect is described by enhanced light matter interaction with the decrease of the group velocity. These are promising results for future compact devices...... for terabit/s communication, such as miniaturised semiconductor optical amplifiers and mode-locked lasers....

  11. Selective extraction and detection of noble metal based on ionic liquid immobilized silica gel surface using ICP-OES

    Indian Academy of Sciences (India)

    HADI M MARWANI; AMJAD E ALSAFRANI; HAMAD A AL-TURAIF; ABDULLAH M ASIRI; SHER BAHADAR KHAN

    2016-08-01

    In this study, an efficiently employed ionic liquid combined with commercially available silica gel (SG–ClPrNTf$_2$) was developed for selective detection of gold(III) by use of inductively coupled plasma–optical emission spectrometry (ICP-OES). The selectivity of SG–ClPrNTf$_2$ was evaluated towards seven metal ions, including Y(III), Mn(II), Zr(IV), Pb(II), Mg(II), Pd(II) and Au(III). Based on pH study and distribution coefficient values, the SG–ClPrNTf$_2$ phase was found to be the most selective towards Au(III) at pH 2 as compared to other metal ions. The adsorption isotherm of Au(III) on the SG–ClPrNTf$_2$ phase followed the Langmuir model with adsorption capacity of 59.48 mg g$^{−1}$, which was highly in agreement with experimental data of adsorption isotherm study. The kinetics study indicated that Au(III) adsorption kinetics data were well fit with the pseudo-second-order kinetic model on the basis of correlation coefficient fitting (0.996) and adsorption capacity agreement (62.26 mg g$^{−1}$). Furthermore, SG–ClPrNTf$_2$ phase was effectively performed for the determination of Au(III) in real water samples with satisfactory results.

  12. Transport in Ionic Liquid Gated and Superconducting Nanostructures

    Science.gov (United States)

    Bretz-Sullivan, Terence Michael

    Electrons, when subjected to low temperatures and to very short length scales, exhibit an array of unique quantum mechanical properties. In order to access this regime, one needs cryogenic measurement and nanofabrication techniques. Both experiments in this thesis, which were performed on nanoscale devices, used a 3H e cryostat to access low temperatures, and electron beam lithography to fabricate the devices. The first experiment focused on electron tunneling and transport in ionic liquid gated narrow channels (nanowires) of strontium titanate while the second experiment focused on transport in superconducting aluminum nanowires and magnetic field tuned reentrant superconductivity. Measurements of the current-voltage (I - V) characteristics of ionic liquid gated nanometer scale channels of strontium titanate have been carried out. At low gate voltages, the I - V characteristics exhibited a large voltage threshold for conduction and a nonlinear power law behavior at all temperatures measured. The source-drain current of these nanowires scaled as a power law of the difference between the source-drain voltage and the threshold voltage. The scaling behavior of the I - V characteristic is reminiscent of collective electronic transport through an array of quantum dots. At large gate voltages, the narrow channel acts as a quasi-1D wire whose conductance follows Landauer's formula for multichannel transport. Reenterant superconductivity in quasi-one dimensional superconductors, through the application of a magnetic field, is a counter-intuitive phenomenon. It was not until recently that a microscopic mechanism describing the phenomenon was developed in which superconductivity and phase slip driven dissipation coexist in a non-equilibrium state. Here we present new results on magnetic field induced reentrance to superconductivity in quasi-1D aluminum nanowires for in-plane magnetic fields both transverse to and longitudinal along the wire axis. Measurements in the

  13. Structure of room temperature ionic liquids

    Science.gov (United States)

    Yethiraj, Arun

    2016-10-01

    The structure of room temperature ionic liquids is studied using molecular dynamics simulations and integral equation theory. Three ionic liquids 1-alkyl-3-methylimidazolium hexfluorophosphate, [C n MIM] [PF6], for n  =  1, 4, and 8, are studied using a united atom model of the ions. The primary interest is a study of the pair correlation functions and a test of the reference interaction site model theory. There is liquid-like ordering in the liquid that arises from electrostatic attractions and steric packing considerations. The theory is not in quantitative agreement with the simulation results and underestimates the degree of liquid-like order. A pre-peak in the static structure factor is seen in both simulations and theory, suggesting that this is a geometric effect arising from a packing of the alkyl chains.

  14. Ionic conduction in the solid state

    Indian Academy of Sciences (India)

    P Padma Kumar; S Yashonath

    2006-01-01

    Solid state ionic conductors are important from an industrial viewpoint. A variety of such conductors have been found. In order to understand the reasons for high ionic conductivity in these solids, there have been a number of experimental, theoretical and computational studies in the literature. We provide here a survey of these investigations with focus on what is known and elaborate on issues that still remain unresolved. Conductivity depends on a number of factors such as presence of interstitial sites, ion size, temperature, crystal structure etc. We discuss the recent results from atomistic computer simulations on the dependence of conductivity in NASICONs as a function of composition, temperature, phase change and cation among others. A new potential for modelling of NASICON structure that has been proposed is also discussed.

  15. Dissolution enthalpies of cellulose in ionic liquids.

    Science.gov (United States)

    Parviainen, Helena; Parviainen, Arno; Virtanen, Tommi; Kilpeläinen, Ilkka; Ahvenainen, Patrik; Serimaa, Ritva; Grönqvist, Stina; Maloney, Thaddeus; Maunu, Sirkka Liisa

    2014-11-26

    In this work, interactions between cellulose and ionic liquids were studied calorimetrically and by optical microscopy. Two novel ionic liquids (1,5-Diazabicyclo[4.3.0]non-5-enium propionate and N-methyl-1,5-diazabicyclo[4.3.0]non-5-enium dimethyl phosphate) and 1-ethyl-3-methylimidazolium acetate-water mixtures were used as solvents. Optical microscopy served in finding the extent of dissolution and identifying the dissolution pattern of the cellulose sample. Calorimetric studies identified a peak relating to dissolution of cellulose in solvent. The transition did, however, not indicate complete dissolution, but rather dissolution inside fibre or fibrils. This method was used to study differences between four cellulose samples with different pretreatment or origins.

  16. Oxidative depolymerization of lignin in ionic liquids.

    Science.gov (United States)

    Stärk, Kerstin; Taccardi, Nicola; Bösmann, Andreas; Wasserscheid, Peter

    2010-06-21

    Beech lignin was oxidatively cleaved in ionic liquids to give phenols, unsaturated propylaromatics, and aromatic aldehydes. A multiparallel batch reactor system was used to screen different ionic liquids and metal catalysts. Mn(NO(3))(2) in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate [EMIM][CF(3)SO(3)] proved to be the most effective reaction system. A larger scale batch reaction with this system in a 300 mL autoclave (11 g lignin starting material) resulted in a maximum conversion of 66.3 % (24 h at 100 degrees C, 84x10(5) Pa air). By adjusting the reaction conditions and catalyst loading, the selectivity of the process could be shifted from syringaldehyde as the predominant product to 2,6-dimethoxy-1,4-benzoquinone (DMBQ). Surprisingly, the latter could be isolated as a pure substance in 11.5 wt % overall yield by a simple extraction/crystallization process.

  17. Chitosan drug binding by ionic interaction.

    Science.gov (United States)

    Boonsongrit, Yaowalak; Mitrevej, Ampol; Mueller, Bernd W

    2006-04-01

    Three model drugs (insulin, diclofenac sodium, and salicylic acid) with different pI or pKa were used to prepare drug-chitosan micro/nanoparticles by ionic interaction. Physicochemical properties and entrapment efficiencies were determined. The amount of drug entrapped in the formulation influences zeta potential and surface charge of the micro/nanoparticles. A high entrapment efficiency of the micro/nanoparticles could be obtained by careful control of formulation pH. The maximum entrapment efficiency did not occur in the highest ionization range of the model drugs. The high burst release of drugs from chitosan micro/nanoparticles was observed regardless of the pH of dissolution media. It can be concluded that the ionic interaction between drug and chitosan is low and too weak to control the drug release.

  18. Differences between Subjective Balanced Occlusion and Measurements Reported With T-Scan III

    Directory of Open Access Journals (Sweden)

    Zana Lila-Krasniqi

    2017-08-01

    CONCLUSION: In our study, it was concluded that there were statistically significant differences of balanced occlusion in all three groups. Also it was concluded that subjective data are not exact with measurements reported with electronic device T-scan III.

  19. Electrically configurable materials and devices for intelligent neuromorphic applications

    Science.gov (United States)

    Lai, Qianxi

    As miniaturization of advanced CMOS device is approaching its fundamental physical limit, emerging electrically configurable devices which can modify its function dynamically and adaptively can arm existing CMOS circuitry with more versatile function, and are essential for reconfigurable computing and intelligent neural circuit. Organic semiconductors have the flexibility to change its electrical properties by changing its dopant concentration. Controllable ionic doping in conductive polymers has been realized and utilized to make electrically configurable devices for intelligent neuromorphic applications. First, a nonvolatile organic memory made of dopant configurable polymers has been demonstrated and showed controllable and repeatable conductance switching and nonvolatile characteristics. A 16x16 crossbar network composed of configurable switching devices has been fabricated and has successfully demonstrated its application on associative memory which can memorize and recognize learned pattern even with extra or missing features. An organic/Si hybrid field configurable transistor (FCT) has been fabricated on a Si nanowire FET platform by integrating the dopant configurable polymer into the gate structure. The FCT can be precisely configured to desired nonvolatile analog state dynamically, repeatedly, and reversibly by controlling the concentration of ions dopants in the polymer with a gate voltage. The flexible configurability and plasticity of the FCT could facilitate field-programmable circuits for defect-tolerance and synapse-like devices for dynamic learning. Further investigation on this ion-doped polymer showed the voltage modulation of the ionic charge concentration and dipole moment concentration in the polymer which contributed to a new electric device-a memory capacitor. This ionic transport in the polymer can lead to the time-dependent electrical property of the FCT (a synaptic transistor), which has demonstrated the first time synapse-like spiking

  20. Sorption of La(III) and Ce(III) by oxidized carbon nanotubes

    Science.gov (United States)

    Lyu, Sh. T.; Rakov, E. G.

    2016-10-01

    The ion-exchange sorption of La(III) and Ce(III) from nitrate solutions using oxidized carbon nanotubes with a solubility of 4.2 g/L is studied at metal concentration C = 5-160 mg/L, pH 2.5-6.0, ratio S: L = 0.002-0.06, and room temperature. At C = 35 mg/L, the equilibrium capacity is shown to grow dramatically with pH rising from 3.0 to 4.0-4.5 and reaching 840 mg/g in La and 950 mg/g in Ce when S: L 4.0-4.5. The introduction of ionic salts is found to reduce the capacity (at pH > 4 and concentrations of 0.01 M and 0.1 M NaCl, the Ce capacity is reduced to ~500 and ~200 mg/g). It is concluded that the sorption equilibrium is better described by the Langmuir equation, while the process kinetics, by pseudo-first and pseudo-second order equations.