WorldWideScience

Sample records for ion-exchage resin influence

  1. Continuous Stabilization of Chardonnay with Ion-Exchage Resin: Influence on Protein and Phenolic Profile of Wine Estabilización en Continuo de Chardonnay con Resina de Intercambio Iónico: Efecto en los Perfiles Proteicos y Fenólicos del Vino

    Directory of Open Access Journals (Sweden)

    Johannes de Bruijn

    2009-03-01

    Full Text Available Unstable proteins may react with polyphenols, forming haze and precipitation in white wines. Therefore, the adsorption of these wine proteins is an essential step in the production of white wines. The objective of this study was to determine the influence of adsorption of these proteins on the stability, and protein and phenolic composition of a Chardonnay wine. In this work, protein stabilization of Chardonnay wine was done by continuous adsorption using a packed bed with a SP-Trisacryl-M adsorbent (Sigma-Aldrich. A more pronounced breakthrough of proteins and turbidity causing compounds was found after treating 65 bed volumes of wine by the resin. An increased retention of the protein fraction of 20-50 kDa during the first 62 bed volumes of treated wine was related to improved wine stability. The removal of phenolics by Trisacryl was low. Caffeic acid and (--epicatechin were the main phenolic compounds that could be detected by high performance liquid chromatography (HPLC. Chardonnay, a low protein content wine, improved its stability after Trisacryl treatment due to the adsorption of the 20-50 kDa protein fraction.Proteínas inestables pueden reaccionar con polifenoles, formando turbidez y precipitación en vinos blancos. Por ende, la adsorción de estas proteínas de vino es una etapa esencial en la producción de vinos blancos. El objetivo de este estudio fue determinar la influencia de la adsorción de estas proteínas en la estabilidad y la composición proteica y fenólica de un vino Chardonnay. En este trabajo, la estabilización proteica de vino Chardonnay se realizó mediante adsorción en continuo, utilizando un lecho empaquetado con adsorbente de SP-Trisacryl-M (Sigma-Aldrich. Un quiebre más pronunciado de proteínas y componentes causantes de turbidez se encontró después de pasar un volumen de vino equivalente a 65 lechos de volumen de Trisacryl a través de la resina. Una mayor retención de la fracción proteica de 20-50 k

  2. Bonding resin thixotropy and viscosity influence on dentine bond strength.

    Science.gov (United States)

    Niem, Thomas; Schmidt, Alexander; Wöstmann, Bernd

    2016-08-01

    To investigate the influence of bonding resin thixotropy and viscosity on dentine tubule penetration, blister formation and consequently on dentine bond strength as a function of air-blowing pressure (air-bp) intensity. Two HEMA-free, acetone-based, one-bottle self-etch adhesives with similar composition except disparate silica filler contents and different bonding resin viscosities were investigated. The high-filler-containing adhesive (G-Bond) featured a lower viscous bonding resin with inherent thixotropic resin (TR) properties compared to the low-filler-containing adhesive (iBond) exhibiting a higher viscous bonding resin with non-thixotropic resin (NTR) properties. Shear bond strength tests for each adhesive with low (1.5bar; 0.15MPa; n=16) and high (3.0bar; 0.30MPa; n=16) air-bp application were performed after specimen storage in distilled water (24h; 37.0±1.0°C). Results were analysed using a Student's t-test to identify statistically significant differences (padhesive specimens were morphologically characterised by SEM. Statistically significant bond strength differences were obtained for the thixotropic resin adhesive (high-pressure: 24.6MPa, low-pressure: 9.6MPa). While high air-bp specimens provided SEM images revealing resin-plugged dentine tubules, resin tags and only marginally blister structures, low air-bp left copious droplets and open dentine tubules. In contrast, the non-thixotropic resin adhesive showed no significant bond strength differences (high-pressure: 9.3MPa, low-pressure: 7.6MPa). A pressure-dependent distinct influence of bonding resin thixotropy and viscosity on dentine bond strength has been demonstrated. Stronger adhesion with high air-bp application is explained by improved resin fluidity and facilitated resin penetration into dentine tubules. Filler particles used in adhesive systems may induce thixotropic effects in bonding resin layers, accounting for improved free-flowing resin properties. In combination with high air

  3. [Influence Factors on Monomer Conversion of Dental Composite Resin].

    Science.gov (United States)

    Wang, Shuang; Gao, Yan; Wang, Jing; Zhang, Yan; Zhang, Yuntao; Wang, Fanghui; Wang, Qingshan

    2015-04-01

    Dental composite resin is a kind of material which has been widely used in dental restoration. Research has found that the influence of residual monomer on the material mechanical, chemical and biological properties cannot be ignored. This paper elaborates these harms of residual monomers. The effects of resin matrix, inorganic filler and initiating system, illumination, secondarily treatment on the degree of conversion were also analyzed. The paper also discusses the effective measures to increase the conversion, and offers theoretical basis for the clinical application and development of composite resin.

  4. Influence of light intensity on contraction stress of flowable resins.

    Science.gov (United States)

    Takamizawa, Toshiki; Yamamoto, Akira; Inoue, Naoki; Tsujimoto, Akimasa; Oto, Tatsuki; Irokawa, Atsushi; Tsubota, Keishi; Miyazaki, Masashi

    2008-03-01

    The purpose of this study was to evaluate the influence of power density on contraction stress of resin composite restorative materials during photo-polymerization. Six flowable resin composites, and a hybrid resin composite for comparison, were used. The composites were polymerized with the power density adjusted to either 100 or 600 mW/cm(2). Stress development was determined with a custom-made tensilometer. The adhesive was placed in a thin layer on a steel rod and resin paste was packed into the mold. The contraction force (N) generated during polymerization was continuously recorded and the maximum contraction stress (MPa) was calculated. Data were analyzed statistically. When the power density was adjusted to 100 mW/cm(2), the average contraction stress ranged from 0.30 to 0.50 MPa for the flowable composites, compared with 0.35 MPa for the hybrid composite. When the power density was adjusted to 600 mW/cm(2), the average contraction stress ranged from 0.34 to 1.00 MPa for the flowable composites and 0.69 MPa for the hybrid composite comparison. For all materials tested except Estelite Flow Quick, contraction stress increased with higher power density. The present results indicate that contraction stress during polymerization is influenced by power density and resin composite type.

  5. Survival of resin infiltrated ceramics under influence of fatigue.

    Science.gov (United States)

    Aboushelib, Moustafa N; Elsafi, Mohamed H

    2016-04-01

    to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, Pceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while

  6. Influence of curing rate of resin composite on the bond strength to dentin

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Asmussen, E; Peutzfeldt, A

    2007-01-01

    This study determined whether the strength with which resin composite bonds to dentin is influenced by variations in the curing rate of resin composites. Resin composites were bonded to the dentin of extracted human molars. Adhesive (AdheSE, Ivoclar Vivadent) was applied and cured (10 seconds...

  7. Image resolution influence on determination of resin injection rock mass

    Science.gov (United States)

    Wang, Weixing; Hakami, Eva

    2006-01-01

    In the context of nuclear waste repositories, an important approach to understanding brittle rock mass behavior to integrate new and powerful observational and numerical methods with multi-functional 3-D imaging and visualization techniques. Since 1994, Swedish Nuclear Fuel and Waste Management Company (SKB) have identified the need for a better understanding of radionuclide transport and retention processes in fractured rock. As a cooperation project between Sweden and China, we sampled a number of rock specimens for analyze rock fracture network by optical image technique. The samples are resin injected, in which way; opened fractures can be seen clearly by means of UV (Ultraviolet) light illumination. In the study period, we used different optical focuses to obtain the images from the same samples; we found that Image resolution influences on porosity determination of resin injected rock mass. This paper presents and discusses the six issues based on our research results: (1) Fracture porosity increases as camera focus distance decreases; (2) Porosity increases as illumination increases in resin injected fracture images; (3) To roughly estimate the porosity, the low resolution image can be used; (4) To collect more details of fracture information, the high resolution image is needed; (5) The resolution of image should be determined based on the aim of fracture analysis; (6) To acquire high resolution image, constructing a special illumination (standard) box maybe helpful to avoid light reflection and diffusion.

  8. Resin Viscosity Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    Science.gov (United States)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2017-08-01

    Viscosity of the liquid resin effects the chemical and mechanical properties of the pultruded composite. In resin injection pultrusion manufacturing the liquid resin is injected into a specially designed tapered injection chamber through the injection slots present on top and bottom of the chamber. The resin is injected at a pressure so as to completely wetout the fiber reinforcements inside the tapered injection chamber. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the center of chamber causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to efficaciously penetrate through the compacted fibers and achieve complete wetout. The impact of resin viscosity on resin flow, fiber compaction, wetout and on the final product is further discussed. Injection chamber design predominantly effects the resin flow inside the chamber and the minimum injection pressure required to completely wet the fibers. Therefore, a desirable injection chamber design is such that wetout occurs at lower injection pressures and at low internal pressures inside the injection chamber.

  9. Influences of carbon nanofillers on mechanical performance of epoxy resin polymer

    Science.gov (United States)

    Singh, Shraddha; Srivastava, V. K.; Prakash, Rajiv

    2015-03-01

    The influence of multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GnPs) on epoxy resin was investigated to compare their mechanical properties. MWCNT/epoxy resin and GnP/epoxy resin composites were compared with each other for their tensile strength, compressive strength, Charpy Impact and Izod impact energy with the variation of weight percentage ratio of nanofiller ranging from 0.5, 1.0, 2.0 and 3.0, respectively. The result shows that GnP/epoxy resin composite gave better tensile and compressive strength compared to MWCNT/epoxy resin composite whereas Izod impact energy, Charpy impact energy and dynamic fracture toughness of MWCNT/epoxy resin composite resulted in better impact resistance than the GnP/epoxy resin composite. Thermal stability and microstructural properties of composites were measured using Thermogravimetric analysis (TGA), transmission electron microscope (TEM) and scanning electron microscope (SEM).

  10. Influence of the Functionalization Degree of Acidic Ion-Exchange Resins on Ethyl Octyl Ether Formation

    OpenAIRE

    Guilera, J.; Hanková, L. (Libuše); Jeřábek, K.; E Ramírez; Tejero, J.

    2014-01-01

    Ethyl octyl ether (EOE) can be obtained by the ethylation of 1-octanol by means of ethanol or diethyl carbonate over acidic ion-exchange resins. However, EOE formation has to compete with the less steric demanding formation of diethyl ether, by-product obtained from ethanol dehydration or diethyl carbonate decomposition. In the present work, the influence of the resin functionalization degree on EOE formation has been evaluated. A series of partially sulfonated resins were prepared by the sul...

  11. The influence of a packable resin composite, conventional resin composite and amalgam on molar cuspal stiffness.

    Science.gov (United States)

    Molinaro, J D; Diefenderfer, K E; Strother, J M

    2002-01-01

    Packable resin composites may offer improved properties and clinical performance over conventional resin composites or dental amalgam. This in vitro study examined the cuspal stiffness of molars restored with a packable resin composite, a conventional posterior microfilled resin composite and amalgam. Forty-eight intact caries-free human third molars were distributed into four treatment groups (n=12) so that the mean cross-sectional areas of all groups were equal. Standardized MOD cavity preparations were made and specimens restored using one of four restorative materials: (1) a spherical particle amalgam (Tytin); (2) Tytin amalgam with a dentin adhesive liner (OptiBond Solo); (3) a conventional microfilled posterior resin composite (Heliomolar); (4) a packable posterior resin composite (Prodigy Posterior). Cuspal stiffness was measured using a Bionix 200 biomaterials testing machine (MTS). Specimens were loaded vertically to 300 N at a crosshead speed of 1.0 mm/minute. Stiffness was measured at 10 intervals: (1) prior to cavity preparation (intact); (2) following cavity preparation, but before restoration; (3) seven days after restoration; then (4) 1, 2, 3, 4, 5, 6 and 12 months after restoration. All specimens were stored at 37 degrees C in deionized water throughout the study and thermocycled (5 degrees/55 degrees C; 2000 cycles) monthly for 12 months. Repeated Measures ANOVA revealed significant differences among treatment groups over time (presin composite increased cuspal stiffness over that of amalgam.

  12. Influence of composite resin consistency and placement technique on proximal contact tightness of Class II restorations.

    NARCIS (Netherlands)

    Loomans, B.A.C.; Opdam, N.J.M.; Roeters, F.J.M.; Bronkhorst, E.M.; Plasschaert, A.J.M.

    2006-01-01

    PURPOSE: To investigate the influence of composite resin consistency and placement technique on proximal contact tightness of Class II composite resin restorations. MATERIALS AND METHODS: A manikin model (KaVo Dental) was used with an artificial first molar in which a standardized MO preparation was

  13. The influence of urea formaldehyde resins on pyrolysis characteristics and products of wood-based panels

    Directory of Open Access Journals (Sweden)

    Yongshun Feng

    2012-11-01

    Full Text Available In China each year, large amounts of wood-based panels are consumed and abandoned. These are huge resources for energy recovery and materials reuse. In order to study the influence of urea formaldehyde resin (UF resin on waste wood-based panels during pyrolysis, thermobalance experiments together with the evolution of main gaseous products of wood, wood-based panels, and UF resins were carried out and analyzed by TG-FTIR. Elementary and GC-MS analyses were also done to study the characteristics of solid and liquid products. Results from TG and DTG analyses indicated that UF resin used in wood-based panels accelerated the degradation rate of wood-based panels at lower temperature; however the resin inhibited the degradation of wood-based panels over the later stage at higher temperatures. Compared with solid wood, the higher intensity and earlier releasing time of HNCO and NH3 in wood board revealed that the release of nitric gases is mainly due to the presence of UF resin, especially between 180 °C and 320 °C. Mass loss of hydrogen is significantly inhibited by UF resin, and nitrogen is quite stable in the char. The influence of UF resin on pyrolysis liquids of wood-based panels is mainly on nitrogen compounds and ketones rather than aldehydes and esters, which is probably due to the chemical reactions of UF resin with lignin constituent in wood.

  14. Guayule resin detection and influence on guayule rubber

    Science.gov (United States)

    Guayule (Parthenium argentatum) is a natural rubber (cis-1,4-polyisoprene) producing crop, native to North America. Guayule also produces organic resins, complex mixtures of terpenes, triglycerides, guayulins, triterpenoids and other components. During natural rubber extraction, guayule resins can b...

  15. Influence of handpiece maintenance sprays on resin bonding to dentin

    Directory of Open Access Journals (Sweden)

    Toyotarou Sugawara

    2010-03-01

    Full Text Available Toyotarou Sugawara1, Atsushi Kameyama2, Akiko Haruyama3, Takumi Oishi4, Nobuyuki Kukidome2, Yasuaki Takase2, Masatake Tsunoda21Undergraduate Student, Tokyo Dental College, Chiba, Japan; 2Division of General Dentistry, Tokyo Dental College Chiba Hospital, Chiba, Japan; 3Department of Dental Materials Science, Tokyo Dental College, Chiba, Japan; 4Department of Dentistry and Oral Surgery, Keio University School of Medicine, Tokyo, JapanObjective: To investigate the influence of maintenance spray on resin bonding to dentin.Materials and methods: The crown of extracted, caries-free human molars was transversally sectioned with a model trimmer to prepare the dentin surfaces from mid-coronal sound dentin, and then uniformly abraded with #600 silicon carbide paper. The dentin surfaces were randomly divided into three groups: oil-free spray group where maintenance cleaner for air bearing handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; oil-containing spray group where maintenance cleaner for micro motor handpieces was sprayed onto the dentin surface for 1 s and rinsed with water spray for 30 s; and control group where the surface was rinsed with water spray for 30 s and then air-dried. These surfaces were then bonded with Clearfil SE Bond (Kuraray Medical, and resin composite (Clearfil AP-X, Kuraray Medical build-up crowns were incrementally constructed on the bonded surfaces. After storage for 24 h in 37°C water, the bonded teeth were sectioned into hour-glass shaped slices (0.7-mm thick perpendicular to the bonded surfaces. The specimens were then subjected to microtensile bond strength (μTBS testing at a crosshead speed of 1.0 mm/min. Data were analyzed with one-way ANOVA and the Tukey-Kramer test.Results: Maintenance spray-contaminated specimens (oil-free and oil-containing spray groups showed significantly lower μTBS than control specimens (P < 0.05. However, there was no significant difference between

  16. Vacuum infusion equipment design and the influence of reinforcement layers addition to the resin infusion time

    Science.gov (United States)

    Saputra, A. H.; Setyarso, G.

    2016-11-01

    The characteristic of composite material is greatly influenced by the manufacture method of composite. The conventional method that has been used such as hand lay-up and spray up are simple and easy to apply but the composite tend to have a void in it because of the air trapped during the manufacture process. Vacuum infusion is one of the modern composite manufacture process which can replace the conventional method. The problem of this method happens when the resin infusion time become longer due to the addition of reinforcement layers. When the resin infusion time is longer than the resin's gel time, the resin will become gel and not able to flow into the mold. In order to overcome this problem, a study that observe the influence of reinforcement layers addition to the resin infusion time is needed. In this study, vacuum infusion equipment for composite materials manufacturing process that are designed consists of: 1×1m glass as the mold, 1L PVC tube for the resin container, 1L glass tube for the resin trap, and ‘A HP vacuum pump with 7 CFM vacuum speed. The resin that is used in this study is unsaturated polyester resin (UPR) and the fiber used as reinforcement is fiber glass. It is observed that the more number of reinforcement layers the longer resin infusion time will be. The resin infusion time (in seconds) from two until six layers respectively for the area of 15×20cm are: 88, 115, 145, 174, 196; for the area of 15×25cm are: 119, 142, 168, 198, 235; and for the area of 15×35cm are: 181, 203, 235, 263, 303. The maximum reinforcement layers that can be accommodated for each 15×20cm, 15×25cm, and 15×35cm area are respectively 31 layers, 29 layers, and 25 layers.

  17. A comparative study to determine strength of autopolymerizing acrylic resin and autopolymerizing composite resin influenced by temperature during polymerization: An In Vitro study.

    Science.gov (United States)

    Chhabra, Anuj; Rudraprasad, I V; Nandeeshwar, D B; Nidhi, C

    2017-01-01

    Temporary coverage of a prepared tooth is an important step during various stages of the fixed dental prosthesis. Provisional restorations should satisfy proper mechanical requirements to resist functional and nonfunctional loads. A few studies are carried out regarding the comparison of the effect of curing environment, air and water, on mechanical properties of autopolymerizing acrylic and composite resin. Hence, the aim of this study was to compare the transverse strength of autopolymerizing acrylic resin and autopolymerizing composite resin as influenced by the temperature of air and water during polymerization. Samples of autopolymerizing acrylic resin and composite resin were prepared by mixing as per manufacturer's instructions and were placed in a preformed stainless steel mold. The mold containing the material was placed under different controlled conditions of water temperature and air at room temperature. Polymerized samples were then tested for transverse strength using an Instron universal testing machine. Alteration of curing condition during polymerization revealed a significant effect on the transverse strength. The transverse strength of acrylic resin specimens cured at 60°C and composite resin specimens cured at 80°C was highest. Polymerizing the resin in cold water at 10°C reduced the mechanical strength. Polymerization of the resin in hot water greatly increased its mechanical properties. The method of placing resin restoration in hot water during polymerization may be useful for improving the mechanical requirements and obtaining long-lasting performance.

  18. Influence of argon laser curing on resin bond strength.

    Science.gov (United States)

    Hinoura, K; Miyazaki, M; Onose, H

    1993-04-01

    Light cured resin composites are usually cured with halogen lamps whose light output decreases with time and distance to the resin surface. This study compared bond strengths of resins to tooth structure cured with either an argon laser or a conventional halogen light. The enamel and dentin of bovine incisors were ground on the buccal surface with wet #600 grit SiC paper. A 4 x 2 mm mold was placed on the tooth surface and Scotchbond 2/Silux and Clearfil Photobond/Photo Clearfil A were placed into the molds and cured using a Quick Light or an argon laser for exposure times of 10, 20, and 30 seconds, and distances of 0.0, 0.5, 1.0, and 1.5 mm from the resin surface. The intensity of the Quick Light was measured as 510 mW/cm2 at 470 +/- 15 nm and the intensity of the argon laser was adjusted to 510 mW/cm2 before curing. Shear bond tests at a crosshead speed of 1.0 mm/min were performed after 24 hours of storage in water. The bond strengths obtained with the halogen lamp and the laser were not significantly different at the same exposure times and at 0.0 or 0.5 mm from the resin surface. The laser cured bond strengths did not decrease with increasing distance whereas there was a significant decrease in halogen bond strengths at distances greater than 0.5 mm for both resins. The use of the laser might provide a clinical advantage in cases where the curing light source cannot be brought into proximity to the surface of the resin.

  19. The influence of molecular structure on the hydrolysability of unsaturated polyester resins; Influence de la structure moleculaire sur l`hydrolysabilite des resines polyester insature

    Energy Technology Data Exchange (ETDEWEB)

    Spiteri, P.; Denis, V.; Fontanille, M.; Villenave, J.J.

    1993-04-01

    The influence of the structure of polyester resins on their water absorption processes has been evidenced. Correlations have been established between the kinetics of the absorption of water and the hydrolytic degradation of the materials. They allow to propose a method for predicting the life time of unsaturated polyester materials. (authors). 1 tab., 5 figs., 5 refs.

  20. Influence of Weave on Fabric Wrinkle Recovery Property before and after Resin Treatment

    Institute of Scientific and Technical Information of China (English)

    马海青; 周翔

    2001-01-01

    Cotton fabrics with different weaves are designed and the influence of weave on wrinkle recovery property and tensile property is analyzed. Weave type plays a prominent part in determining fabric wrinkle recovery property and tensile property. Weave factor C is in direct relation to wrinkle recovery angle and in inverse relation to tensile property. This trend also exists after resin treatment. 3/1 left-twill fabric shows good wrinkle recovery angle and lest tensile loss after resin treatment.

  1. Influence of hydroxyethyl acrylamide addition to dental adhesive resin.

    Science.gov (United States)

    Rodrigues, Stéfani Becker; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Schneider, Luis Felipe Jochims; Ogliari, Fabrício Aulo; Petzhold, Cesar Liberato; Samuel, Susana Maria Werner

    2015-12-01

    to determine the physicochemical properties of experimental adhesive resins containing hydroxyethyl acrylamide. Three groups of experimental resin were formulated, GHEAA33% (33.3wt% HEAA+66.6wt% BisGMA), GHEAA50% (50wt% HEAA+50wt% BisGMA), and GHEAA-FREE (33.3wt% HEMA+66.6wt% of BisGMA). The polymerization process of each adhesive resin group, as well as for the homopolymers, BisGMA, HEMA, HEAA, HEMA* without EDAB, and HEAA* without EDAB, was characterized through differential scanning calorimetry (DSC). Elution of monomers was evaluated by (1)H NMR. Dynamic mechanical analysis (DMA) was used to collect the glass transition temperature (Tg), the storage modulus (E') and the reticulation degree (ρ). Flexural strength was calculated by three-point bending test with 0.75mm/min. Softening in solvent was calculated through hardness before and after immersion in water or ethanol. GHEAA50%, GHEAA33%, GHEAA-FREE presented higher polymerization rate ( [Formula: see text] , 12.3 and 5.3mmolg(-1)s(-1), respectively) than homopolymers HEMA, HEMA* and HEAA*. Group with HEAA presented higher degree of conversion (GHEAA50%=64.07%>GHEAA33%=55.82%>GHEAA-FREE=49.02%; p=0.008) All groups presented low elution of monomers (p>0.05). The values of E' were higher on GHEAA33% than GHEAA-FREE (p=0.034). Tg and flexural strength values of GHEAA-FREE were higher than acrylamide groups (p=0.022 and padhesive resin. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Influence of nanometric silicon carbide on phenolic resin composites properties

    Indian Academy of Sciences (India)

    GEORGE PELIN; CRISTINA-ELISABETA PELIN; ADRIANA STEFAN; ION DINC\\u{A}; ANTON FICAI; ECATERINA ANDRONESCU; ROXANA TRUSC\\u{A}

    2016-06-01

    This paper presents a preliminary study on obtaining and characterization of phenolic resin-based composites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ensure uniform dispersion of the nanopowder, followed by heat curing of the phenolic-based materials at controlled temperature profile up to 120$^{\\circ}$C. The obtained nanocomposites were characterized by FTIR spectroscopy and scanning electron microscopy analysis and evaluated in terms of mechanical, tribological and thermal stability under load. The results highlight the positive effect of the nanometric silicon carbide addition in phenolic resin on mechanical, thermo-mechanical and tribological performance, improving their strength, stiffness and abrasive properties. The best results were obtained for 1 wt% nSiC, proving that this value is the optimum nanometric silicon carbide content. The results indicate that these materials could be effectively used to obtain ablative or carbon–carbon composites in future studies.

  3. Influence of microhybrid resin and etching times on bleached enamel for the bonding of ceramic brackets.

    Science.gov (United States)

    Firoozmand, Leily Macedo; Brandão, Juliana Viana Pereira; Fialho, Melissa Proença Nogueira

    2013-01-01

    The aim of this study was to evaluate the shear bond strength (SBS) of polycrystalline ceramic brackets (PCB) bonded after bleaching treatment using different composite resins and enamel etching times. A total of 144 bovine incisors were randomly divided into two study groups (n = 72, each) as follows: G1, enamel bleached with 35% hydrogen peroxide, and G2 (control group), enamel unbleached. After the bleaching treatment, the samples were stored in artificial saliva for 14 days. These groups were further divided into two subgroups (n = 36, each) as follows: GA, brackets bonded with Transbond XT (3M) and GB, brackets bonded with Filtek Z250 (3M). For each resin used, three different etching times with 37% phosphoric acid (15, 30 and 60 seconds) were tested. SBS tests were performed using a universal testing machine (EMIC), and the adhesive remnant index (ARI) score was verified. Significant differences among the three experimental conditions and interactions between the groups were observed. The type of composite resin accounted for 24% of the influence on the bond strength, whereas the etching time and bleaching treatment accounted for 14.5% and 10% of the influence on bond strength, respectively. The ARI revealed that the most common area of adhesion failure was at the composite resin-bracket interface. The type of composite resin, etching time and external bleaching significantly influenced the SBS of PCB on enamel, even after 14 days of saliva storage.

  4. Influence of microhybrid resin and etching times on bleached enamel for the bonding of ceramic brackets

    Directory of Open Access Journals (Sweden)

    Leily Macedo Firoozmand

    2013-04-01

    Full Text Available The aim of this study was to evaluate the shear bond strength (SBS of polycrystalline ceramic brackets (PCB bonded after bleaching treatment using different composite resins and enamel etching times. A total of 144 bovine incisors were randomly divided into two study groups (n = 72, each as follows: G1, enamel bleached with 35% hydrogen peroxide, and G2 (control group, enamel unbleached. After the bleaching treatment, the samples were stored in artificial saliva for 14 days. These groups were further divided into two subgroups (n = 36, each as follows: GA, brackets bonded with Transbond XT (3M and GB, brackets bonded with Filtek Z250 (3M. For each resin used, three different etching times with 37% phosphoric acid (15, 30 and 60 seconds were tested. SBS tests were performed using a universal testing machine (EMIC, and the adhesive remnant index (ARI score was verified. Significant differences among the three experimental conditions and interactions between the groups were observed. The type of composite resin accounted for 24% of the influence on the bond strength, whereas the etching time and bleaching treatment accounted for 14.5% and 10% of the influence on bond strength, respectively. The ARI revealed that the most common area of adhesion failure was at the composite resin-bracket interface. The type of composite resin, etching time and external bleaching significantly influenced the SBS of PCB on enamel, even after 14 days of saliva storage.

  5. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions

    Directory of Open Access Journals (Sweden)

    Coutellier D.

    2012-08-01

    Full Text Available The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP impact. During this research, several parameters has being studied as the influence of the yarns insertions [1–4], the degradation of the yarns during the weaving process [5–7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two

  6. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions

    Science.gov (United States)

    Lefebvre, M.; Boussu, F.; Coutellier, D.; Vallee, D.

    2012-08-01

    The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1-4], the degradation of the yarns during the weaving process [5-7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a

  7. Knoop microhardness and FT-Raman evaluation of composite resins: influence of opacity and photoactivation source

    Directory of Open Access Journals (Sweden)

    Luis Gustavo Barrotte Albino

    2011-06-01

    Full Text Available The aim of this study was to evaluate the degree of conversion by Knoop microhardness (KHN and FT-Raman spectroscopy (FTIR of one nanofilled (Filtek Supreme-3M-ESPE [FS] and one microhybrid composite (Charisma-Heraeus-Kulzer [CH], each with different opacities, namely enamel, dentin, and translucent, which were photo-activated by a quartz-tungsten-halogen lamp (QTH and a light-emitting diode (LED. Resin was bulk inserted into a disc-shaped mold that was 2.0 mm thick and 4 mm in diameter, obtaining 10 samples per group. KHN and FTIR values were analyzed by two-way ANOVA and Tukey's tests (α = 0.05. Nanofilled resin activated by a LED presented higher microhardness values than samples activated by a QTH for dentin opacity (p < 0.05. The microhybrid resin showed no differences in KHN or FTIR values with different activation sources or opacity. The nanofilled dentin and enamel resins showed lower FTIR values than the translucent resin. The KHN values of the translucent resins were not influenced by the light source.

  8. Influence of a peracetic acid-based immersion on indirect composite resin.

    Science.gov (United States)

    Samuel, Susana Maria Werner; Fracaro, Gisele Baggio; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Campregher, Ulisses Bastos

    2011-06-01

    The aim of this study was to evaluate the influence of immersion in a 0.2% peracetic acid-based disinfectant on the three-point flexural strength, water sorption and water solubility of an indirect composite resin. Specimens were produced according to ISO 4049:2000 specifications and were divided in two groups: Control group, with no disinfection and Disinfected group, with three 10 min immersions in the peracetic acid intercalated with 10 min immersions in sterile distilled water. All evaluations were conducted in compliance with ISO specifications. Three-point flexural strength, water sorption and solubility of indirect composite resin before and after immersion showed no statistical significant differences (p > 0.05) and met ISO standard requirements. Immersion in peracetic acid solution showed no influence in indirect composite resin tested properties.

  9. Influence of Suspended Emulsion Polymerization Conditions on Particle Characteristics of Polyvinyl Chloride Resin

    Institute of Scientific and Technical Information of China (English)

    包永忠; 魏真理; 翁志学; 黄志明

    2003-01-01

    Suspended emulsion polymerization of vinyl chloride was carried out in a 5 L autoclave. The influence of agitation, polymerization conversion, dispersant and surfactant on the average particle size (PS) and particle size distribution (PSD), particle morphology and porosity of polyvinyl chloride (PVC) resin was investigated. It showed that the agitator had great influence on the smooth operation of polymerization, PS and PSD. The PS increased and PSD became narrow as polymerization conversion became high. The porosity decreased with the increase of conversion. A convenient choice of additives, both dispersants and non-ionic surfactants, allows one to adjust PS and PSD. The PS decreased with the addition of polyvinyl alcohol or hydroxypropyl methylcellulose dispersants,and increased with the addition of Span surfactants. The addition of dispersants or surfactants also affected the morphology and porosity of resin, and PVC resin with looser agglomeration and homogeneous distribution of primary particles was prepared.

  10. Apoptotic and necrotic influence of dental resin polymerization initiators in human gingival fibroblast cultures.

    Science.gov (United States)

    Masuki, Kouhei; Nomura, Yuji; Bhawal, Ujjal Kumar; Sawajiri, Masahiko; Hirata, Isao; Nahara, Yukinori; Okazaki, Masayuki

    2007-11-01

    The aim of this study was to examine the apoptotic and necrotic influence of four dental resin polymerization initiators--namely benzoyl peroxide (BPO), camphorquinone (CQ), dimethylaminoethyl methacrylate (DMAEMA), and dimethyl-para-toluidine (DMPT)--on human gingival fibroblast (HGF) cells. To this end, the growth inhibition of HGF cells with 1 mM BPO, CQ, and DMAEMA, and 500 microM DMPT was evaluated using Cell Counting Kit-8. Then, cell cycle analysis by flow cytometry was used to assess propidium iodide-stained cells (distribution of cells in G0/G1, S, G2/M phases). All four dental resin polymerization initiators induced G0/G1 cell cycle arrest. As for the patterns of cell death (necrosis and/or apoptosis), they were analyzed using Annexin V-FITC/PI staining with flow cytometry. All four dental resin polymerization initiators most likely induced necrosis.

  11. Influence of composition on rate of polymerization contraction of light-curing resin composites.

    Science.gov (United States)

    Asmussen, Erik; Peutzfeldt, Anne

    2002-06-01

    A slow contraction may result in reduced gap formation when a restorative resin polymerizes in a dental cavity. It was the aim in the present work to investigate the rate of contraction in relation to composition of experimental light-curing resin composites. The monomer of the resin composites consisted of mixtures of BisGMA, TEGDMA, and in one series HEMA. The resins contained varying amounts of initiators, co-initiators, and inhibitor, and were made composite by adding a silanized glass filler to a content of 74% by weight of the composite paste. The polymerization contraction up to 120 sec was determined by means of the bonded-disk method. Within the ranges studied, the concentration of initiator and co-initiator in the monomer mixture had only an insignificant influence on rate of polymerization. In comparison to camphorquinone, the initiators 1-phenyl-1,2-propanedione and benzil reduced the rate of polymerization without affecting the final contraction. In comparison to N,N-dimethyl-p-aminobenzoic acid ethyl ester, N,N-cyanoethyl methylaniline was as effective, while N,N-diethanol-p-toluidine was less effective as co-initiator. A relatively high content of the inhibitor methoxyhydroquinone reduced the initial rate but not the final polymerization contraction. The rate of polymerization increased with the level of HEMA and TEGDMA in the monomer mixture. It was concluded that intrinsic slow cure may be obtained with certain compositions of resin composites without impairing the final extent of polymerization.

  12. Influence of carbonisation on selected engineering properties of carbon resin electrodes for electrochemical treatment of wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Oke, I.A. [Obafemi Awolowo Univ., Ile-Ife (Nigeria). Dept. of Civil Engineering

    2009-10-15

    Carbon resin electrodes (CRE) developed using a non-heat treatment process were investigated in an effort to determine the influence of several properties on electrode performance. These included density; electrical resistance; microstructure; hydroscopy; stability moisture content; and compressive and flexural strength. The influences of carbonization temperature, carbon particle size, and compaction pressure were also analyzed. Results of the study showed that the electrical resistance and density of the CRE decreased with increases in carbonization temperatures. Particle size, compacting pressure, and the percentage of resin used in the electrodes also influenced electrical resistance. The carbonization of the CREs from 30 to 220 degrees C reduced specific electrical resistance and density. The carbonization temperature did not have a significant effect on wetness, compressive and flexural strength, or on the stability and moisture content of the electrodes. It was concluded that the cost of producing the CREs is significantly cheaper than the cost of heat-treated electrodes. 78 refs., 9 tabs., 8 figs.

  13. The influence of resin flexural modulus on the magnitude of ceramic strengthening.

    LENUS (Irish Health Repository)

    Fleming, Garry J P

    2012-07-01

    The aim was to determine the magnitude of ceramic resin-strengthening with resin-based materials with varying flexural moduli using a regression technique to assess the theoretical strengthening at a \\'zero\\' resin-coating thickness. The hypothesis tested was that experimentally, increasing resin flexural modulus results in increased resin-strengthening observed at a theoretical \\'zero\\' resin-coating thickness.

  14. Influence of surface roughness on the color of dental-resin composites

    Institute of Scientific and Technical Information of China (English)

    Razvan GHINEA; Laura UGARTE-ALVAN; Ana YEBRA; Oscar E. PECHO; Rade D. PARAVINA; Maria del Mar PEREZ

    2011-01-01

    This study deals with the influence of surface roughness on the color of resin composites.Ten resin composites (microfilled,hybrid,and microhybrid) were each polished with 500-grit,1200-grit,2000-grit,and 4000-grit SiC papers.The roughness parameter (Ra) was measured using a Plμ confocal microscope,and field-emission scanning electron microscope (Fe-SEM) images were used to investigate filler morphology.Color was measured using a spectroradiometer and a D65 standard illuminant (geometry diffuse/0° specular component excluded (SCE) mode).Surface roughness decreased,with grit number and was not influenced by filler size or size distribution.A significant influence of Ra on lightness (L) was found.Lightness increased with decreases in roughness,except for specimens that underwent polishing procedure 4 (PP4; 500-grit,1200-grit,2000-grit,and 4000-grit SiC papers consecutively).Generally,it was found that surface roughness influenced the color of resin composites.The composites that underwent PP1 (500-grit SiC paper) exhibited significant differences in chroma (C),hue (h°),and lightness (L*) compared to composites that underwent PP3 (500-grit,1200-grit,and 2000-grit SiC papers consecutively) and PP4.Color difference (△E*) between the polishing procedures was within acceptability thresholds in dentistry.

  15. [Influence of primers ' chemical composition on shear bond strength of resin cement to zirconia ceramic].

    Science.gov (United States)

    Łagodzińska, Paulina; Bociong, Kinga; Dejak, Beata

    2014-01-01

    Resin cements establish a strong durable bond between zirconia ceramic and hard tissues of teeth. It is essential to use primers with proper chemical composition before cementation. The aim of this study was to assess the influence of primer's chemical composition on the shear bond strength of zirconia ceramic to resin cements. 132 zirconia specimens were randomly assigned to four groups. There were four resin systems used. They included resin cement and respective primer, dedicated to zirconia: Clearfil Ceramic Primer/Panavia F2.0, Monobond Plus/Multilink Automix, AZ - Primer/ResiCem, Z - Prime Plus/Duo-Link. In each group the protocol of cementation was as follows: application of primer to the zirconia surface and application of the respective resin cement in cylindric mold (dimensions: 3.0 mm height and 3.0 mm diameter). Then, the shear bond strength was evaluated and the failure type was assessed in lupes (×2.5 magnification), also random specimens under SEM. The Wilcoxon test was used to analyze the data, the level of significance was α = 0.05. Finally, the known chemical composition of each primer was analysed in reference to probable chemical bonds, which may occure between primers and zirconia. The mean shear bond strength between resin cements and zirconia was the highest for Z-Prime Plus/Duo-Link (8.24 ± 3,21 MPa) and lowest for Clearfil Ceramic Primer/Panavia F 2.0 (4.60 ± 2.21 MPa). The analysis revealed significant difference between all groups, except pair Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem. The failure type in groups of Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem was mainly adhesive, in groups Monobond Plus/ /Multilink Automix and Z-Prime Plus/Duo-Link mainly mixed. The chemical composition of primers affects different bond mechanisms between resin cements and zirconia. The highest shear bond strength of resin cement to zirconia can be obtained for the primer composed of 10-Methacryloyloxydecyl dihydrogen

  16. Influence of Electrolytical Oxidising of Silumine Surfaces on the Quality of Bonding with Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Posmyk A.

    2016-09-01

    Full Text Available The article presents the preparation process of AC-AlSi12 aluminum alloy surface by application of anodic oxidation method. The method enables the formation of a porous oxide layer (Al2O3 which generates the substrate of durable adhesive bond with an epoxy resin. It also presents the influence of the form of silicon precipitates in the modified alloy upon anodizing process, uniform structure and thickness of the oxide layer as well as the topography of its surface which is expected to improve adhesion of the resin and silumin. The paper describes how the position of oxidized surface against the negative electrode influences the coating structure. The studied silumins are intended to form the material for casting of 3 dimensional objects whose parts will change the distribution of electric field strength that may cause non-uniform structure of the coating.

  17. Influence of contamination on resin bond strength to nano-structured alumina-coated zirconia ceramic.

    Science.gov (United States)

    Zhang, Shanchuan; Kocjan, Andraz; Lehmann, Frank; Kosmac, Tomaz; Kern, Matthias

    2010-08-01

    The purpose of this study was to evaluate the influence of contamination and subsequent cleaning on the bond strength and durability of an adhesive resin to nano-structured alumina-coated zirconia ceramic. Zirconia ceramic disks were coated with nano-structured alumina, utilizing the hydrolysis of aluminum nitride powder. After immersion in saliva or the use of a silicone disclosing agent, specimens were cleaned with phosphoric acid etching or with tap water rinsing only. Uncontaminated specimens served as controls. Plexiglas tubes filled with composite resin were bonded with a phosphate monomer [10-methacryloxydecyl-dihydrogenphosphate (MDP)]-containing resin (Panavia 21). Subgroups of eight specimens each were stored in distilled water at 37 degrees C, either for 3 d without thermal cycling (TC) or for 150 d with 37,500 thermal cycles from 5 to 55 degrees C. The tensile bond strength (TBS) was determined using a universal testing machine at a crosshead speed of 2 mm min(-1). The topography of the debonded surface was scrutinized for fractographic features, utilizing both optical and scanning electron microscopy. The TBS to uncontaminated nano-structured alumina-coated zirconia ceramic was durable, while contamination significantly reduced the TBS. Phosphoric acid cleaning was effective in removal of saliva contamination from the coated bonding surface but was not effective in removal of the silicone disclosing agent. Nano-structured alumina coating improves resin bonding to zirconia ceramic and eliminates the need for air-abrasion before bonding.

  18. The Influence of Chicken Egg Shell as Fillers on Biocomposite Acrylic Resin for Denture Based

    Science.gov (United States)

    Lubis, M.; Ginting, M. H. S.; Dalimunthe, N. F.; Hasibuan, D. M. T.; Sastrodihardjo, S.

    2017-03-01

    This research was conducted to discover the influence of the addition of chicken egg shells microparticle as filler on the mechanical properties such as modulus of elasticity, modulus of rapture and particle size analysis on biocomposite acrylic resin for denture based. The raw materials used in this research were acrylic resin, egg shell, cold mold seals, gypsum, Vaseline and wax. The process of making biocomposite acrylic resin for denture based with mix the acrylic resin in ratio 2:1 (w/w). Then added the microparticle filler 0,10,20,30 (%w) to mold and boil in 75°C for 90 minutes and increase the temperature to 90 °C for 30 minutes. Took the sample and let it dried. The results of research showed the increase of modulus elasticity and modulus of rapture. The modulus of elasticity showed a very significant increase by adding fillers 10% of 2.123 GPa, which was only 1.932 GPa without adding the filler of chicken egg shells. For modulus of rapture showed the increase by adding fillers 20% of 48,311MPa, which was only 46,865 GPa without adding the filler of chicken egg shells

  19. Zinc Chloride Influence on The Resins Furan Polymerization to Foundry Moulds

    Science.gov (United States)

    de Miranda, Leila Figueiredo; Vale, Marcus; Júnior, Antonio Hortêncio Munhoz; Masson, Terezinha Jocelen; de Andrade e Silva, Leonardo Gondin

    The resins used in foundry molds developed for the automotive market has led to major changes in the manufacturing method of foundry molds. The polymerization of these resins and a subsequent curing are used to connect to the foundry sand in a rigid structure capable of receiving and holding liquid metal. It is essential to know the process of polymerization of these resins and their impact on the final properties of the obtained molds, especially in the mechanical characteristics. In this work it was studied the influence of the addition of zinc chloride (in solution) in the sand-furan resin mixture, with the aim of reducing the relation between the extraction time intervals and time bench life. The results showed that addition of percentages of the order of 5.0wt% to 7.5wt% zinc chloride solution reduces this ratio between 10% and 17%; this means that the casting model may be extracted from the sand mass in a smaller time interval increasing the productivity of manufacturing molds. It was also observed that there was also an increase of 9% to 18% in bench life intervals.

  20. The influence of mouthrinses and simulated toothbrushing on the surface roughness of a nanofilled composite resin

    Directory of Open Access Journals (Sweden)

    Keico Graciela Sano Trauth

    2012-06-01

    Full Text Available The aim of this study was to determine the influence of mouthrinses on the surface roughness of a nanofilled composite resin after toothbrushing. One hundred nanofilled composite resin specimens were prepared and randomly distributed into two groups-brushed and non-brushed-and then assigned to five subgroups, according to the mouthrinse solutions (n = 10: Colgate Plax Fresh Mint, Oral B, Cepacol, Colgate Plax, and artificial saliva. Each sample was immersed in 20 mL of the mouthrinses for 1 minute, 5 days per week, twice a day, for a 3-week period. The control group used in the study was one in which the specimens were not subjected to brushing and remained only in artificial saliva. Toothbrushing was performed once a week for 1 minute, for 3 weeks. Surface roughness measurements (Ra were performed after the immersion period and toothbrushing, by means of a profilometer. Data were analyzed by two-way ANOVA and Tukey's test. Analysis revealed that the association between toothbrushing and Colgate Plax Fresh Mint produced the lowest surface roughness (p < 0.05. All other groups tested (Oral B, Cepacol, Colgate Plax, artificial saliva exhibited no statistically significant differences between surfaces, whether subjected to toothbrushing or not (p < 0.05. It was concluded that the surface roughness of the nanofilled composite resin tested can be influenced by the mouthrinse associated with toothbrushing.

  1. Influence of Matrixes on Microstructure and Properties of CTBN Toughened Epoxy Resins

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The influence of the type of epoxy resins (E-51, F-51) on the mechanical properties and microstructure of carboxyl-terminated butadiene nitrile rubber (CTBN) toughened epoxy resins was investigated by determination of adhesive strength and toughness as well as observation of scanning electron microstructure (SEM). The results indicate that the adhesive strength of CTBN toughened E-51 system is superior to CTBN toughened F-51 system. However, CTBN toughened E-51 system is inferior to CTBN toughened F-51 system in the toughness. This difference is related to the microstructure of two toughened systems. For CTBN toughened F-51, larger cavities and rubber particles are found in the system. The larger cavities easily cause stress concentration and result in decrease of the adhesive strength. While the larger rubber particles may better terminate the development of crazing and shear banding and result in increase of the toughness.

  2. Influence of compliance of the substrate materials on polymerization contraction stress in thin resin composite layers.

    Science.gov (United States)

    Alster, D; Venhoven, B A; Feilzer, A J; Davidson, C L

    1997-02-01

    The present study determined in a laboratory set-up the influence of compliance of the substrate material on polymerisation contraction stress for various thicknesses of bonded dental resin composite films. When the compliance of the tensilometer set-up was increased from 0.029 micron MPa-1 to 0.150 micron MPa-1, the contraction stress in films with a thickness of 100 microns and a diameter of 5.35 mm decreased from 22 to 7 MPa. For the 700 microns samples the stress decreased from 12 to 11 MPa. It was concluded that if compliance from the substrate materials is possible, a thinner resin composite film may effect a more reliable bond.

  3. Influence of epoxy resin as encapsulation material of silicon photovoltaic cells on maximum current

    Directory of Open Access Journals (Sweden)

    Acevedo-Gómez David

    2017-01-01

    Full Text Available This work presents an analysis about how the performance of silicon photovoltaic cells is influenced by the use of epoxy resin as encapsulation material with flat roughness. The effect of encapsulation on current at maximum power of mono-crystalline cell was tested indoor in a solar simulator bench at 1000 w/m² and AM1.5G. The results show that implementation of flat roughness layer onto cell surface reduces the maximum current inducing on average 2.7% less power with respect to a cell before any encapsulation. The losses of power and, in consequence, the less production of energy are explained by resin light absorption, reflection and partially neutralization of non-reflective coating.

  4. Composite resin color stability: influence of light sources and immersion media

    Directory of Open Access Journals (Sweden)

    Patricia Aleixo dos Santos Domingos

    2011-06-01

    Full Text Available OBJECTIVE: This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. MATERIAL AND METHODS: Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05. For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05. RESULTS: High-power-density LED (ΔE=1.91 promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus - ΔE=2.05; XL 3000 - ΔE=2.28. Coffee (ΔE=8.40; ΔL=-5.21 showed the highest influence on color stability of the studied composite resin. CONCLUSION: There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.

  5. Influence of light curing and sample thickness on microhardness of a composite resin.

    Science.gov (United States)

    Aguiar, Flávio Hb; Andrade, Kelly Rm; Leite Lima, Débora An; Ambrosano, Gláucia Mb; Lovadino, José R

    2009-01-01

    The aim of this in vitro study was to evaluate the influence of light-curing units and different sample thicknesses on the microhardness of a composite resin. Composite resin specimens were randomly prepared and assigned to nine experimental groups (n = 5): considering three light-curing units (conventional quartz tungsten halogen [QTH]: 550 mW/cm(2) - 20 s; high irradiance QTH: 1160 mW/cm(2) - 10 s; and light-emitting diode [LED]: 360 mW/cm(2) - 40 s) and three sample thicknesses (0.5 mm, 1 mm, and 2 mm). All samples were polymerized with the light tip 8 mm away from the specimen. Knoop microhardness was then measured on the top and bottom surfaces of each sample. The top surfaces, with some exceptions, were almost similar; however, in relation to the bottom surfaces, statistical differences were found between curing units and thicknesses. In all experimental groups, the 0.5-mm-thick increments showed microhardness values statistically higher than those observed for 1- and -2-mm increments. The conventional and LED units showed higher hardness mean values and were statistically different from the high irradiance unit. In all experimental groups, microhardness mean values obtained for the top surface were higher than those observed for the bottom surface. In conclusion, higher levels of irradiance or thinner increments would help improve hybrid composite resin polymerization.

  6. Intraoral environment conditions and their influence on marginal leakage in composite resin restorations.

    Science.gov (United States)

    Mathias, Paula; Rocha, Viviane; Saraiva, Letícia; Cavalcanti, Andrea N; Azevedo, Juliana F; Paulillo, Luís Alexandre M S

    2010-01-01

    Color matching in the anterior superior incisor region (ASIR) is very difficult when using a rubber dam during restorative procedures. This study measured temperature/relative humidity parameters in the ASIR and evaluated the influence of the inhalation/downtime/exhalation mouth-breathing cycle on microleakage in composite resin restorations performed in the region, using three different adhesive systems. Sixty bovine incisors were randomly assigned to six groups (n=10) according to environmental conditions (laboratory environment or intraoral conditions) and the three adhesive systems being tested (Prime & Bond NT (PB), Single Bond (SB) and Clearfil SE Bond (CL)). The composite resin restored specimens were thermocycled (800 cycles, 5-55 degrees C), immersed in a 2% methylene blue-buffered solution and sectioned longitudinally The dye penetration on the margin of the restoration was evaluated and non-parametric statistical analyses were performed. The temperature and humidity parameters in the ASIR showed significant differences when compared to the laboratory environment. Restorations performed in the ASIR environment showed no increases in microleakage. As it was shown that temperature/humidity in ASIR do not affect marginal sealing in direct composite resin restorations negatively, better color matching can be safely achieved without the use of a rubber dam.

  7. The influence of polymerization shrinkage of resin cements on bonding to metal.

    Science.gov (United States)

    Verzijden, C W; Feilzer, A J; Creugers, N H; Davidson, C L

    1992-02-01

    During the setting of a resin composite cement (RCC) used as an adhesive between a resin-bonded bridge and tooth structure, the adhesion may be disrupted by the development of shrinkage stress. The aim of this study was to investigate the influence of the shrinkage stress of three different RCCs on their adhesive and cohesive qualities when bonded to metal surfaces in a rigid set-up. Two opposing parallel NiCr discs (Wiron 77) were mounted in a tensilometer at a mutual distance of 200 microns and cemented with Panavia Ex, Clearfil F2, or Microfill Pontic C. The alloy surfaces were treated by either electrolytic etching, sand-blasting, silane-coating, or tin-plating. During setting, the discs were kept at their original mutual distance to simulate the extreme clinical situation of "complete" rigidity, where the casting and the tooth cannot move toward each other. The developing shrinkage stress was recorded continuously. During setting, the adhesive strength of the RCCs to silane-coated surfaces was always higher than their early cohesive strength. Electrolytically-etched surfaces as well as sand-blasted surfaces showed, in almost all cases, adhesive failure. The tin-plated samples showed mainly adhesive failure at the metal/resin interface. The highest bond strength values were found for silane-coated surfaces in combination with Clearfil F2.

  8. The influence of silane evaporation procedures on microtensile bond strength between a dental ceramic and a resin cement

    OpenAIRE

    Pereira Carolina; Buono Vicente; Mota Joao Mauricio

    2010-01-01

    Aim: To assess the influence of silane evaporation procedures on bond strength between a dental ceramic and a chemically activated resin cement. Materials and Methods: Eighteen blocks (6 mm Χ 14 mm Χ 14 mm) of ceramic IPS Empress 2 were cemented (C and B) to composite resin (InTen-S) blocks using a chemical adhesive system (Lok). Six groups were analyzed, each with three blocks divided according to ceramic surface treatment: two control groups (no treatment, NT; 10% hydroflu...

  9. Influence of light curing and sample thickness on microhardness of a composite resin

    Directory of Open Access Journals (Sweden)

    Flávio HB Aguiar

    2009-05-01

    Full Text Available Flávio HB Aguiar1, Kelly RM Andrade1, Débora AN Leite Lima1, Gláucia MB Ambrosano2, José R Lovadino11Department of Restorative Dentistry; 2Department of Social Dentistry/Statistics, Piracicaba Dental School, State University of Campinas, SP, BrazilAbstract: The aim of this in vitro study was to evaluate the influence of light-curing units and different sample thicknesses on the microhardness of a composite resin. Composite resin specimens were randomly prepared and assigned to nine experimental groups (n = 5: considering three light-curing units (conventional quartz tungsten halogen [QTH]: 550 mW/cm2 – 20 s; high irradiance QTH: 1160 mW/cm2 – 10 s; and light-emitting diode [LED]: 360 mW/cm2 – 40 s and three sample thicknesses (0.5 mm, 1 mm, and 2 mm. All samples were polymerized with the light tip 8 mm away from the specimen. Knoop microhardness was then measured on the top and bottom surfaces of each sample. The top surfaces, with some exceptions, were almost similar; however, in relation to the bottom surfaces, statistical differences were found between curing units and thicknesses. In all experimental groups, the 0.5-mm-thick increments showed microhardness values statistically higher than those observed for 1- and -2-mm increments. The conventional and LED units showed higher hardness mean values and were statistically different from the high irradiance unit. In all experimental groups, microhardness mean values obtained for the top surface were higher than those observed for the bottom surface. In conclusion, higher levels of irradiance or thinner increments would help improve hybrid composite resin polymerization.Keywords: photo-polymerization, light-curing distance, light-curing units, composite resin, composite thickness, microhardness

  10. Filler content influence on the positron annihilation response in an epoxy resin composite

    Energy Technology Data Exchange (ETDEWEB)

    Salgueiro, W. [IFIMAT-UNCentro, Tandil (Argentina); Somoza, A. [Comision de Investigaciones Cientificas de la Provincia de Buenos Aires, Tandil (Argentina); Goyanes, S. [Buenos Aires Univ. (Argentina). Dept. de Fisica; Dept. de Materiales, CNEA, Buenos Aires (Argentina); Rubiolo, G. [Buenos Aires Univ. (Argentina). Dept. de Fisica; Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Marzocca, A. [Buenos Aires Univ. (Argentina). Dept. de Fisica; Consolati, G. [Politecnico di Milano, Milan (Italy). Dipt. di Chimica Fisica Applicata

    2001-07-01

    Positron annihilation lifetime spectroscopy and mechanical properties tests were used to study the influence of the filler content on the epoxy resin DGEBA. Using a mechanical model recently developed by the authors of the present work, and the values of the long lifetime component it is possible to evaluate correctly the internal stresses introduced in the epoxy lattice for the filler. Additional information obtained from the analysis of the short-lived lifetime component is also presented. Specifically, in the case of the matrix charged with metallic particles, an interesting correlation between the associated intensity to this component and the filler volume fraction is shown. (orig.)

  11. Influence of Cobalte Octoate on Degree of Cure and Flexural Strength of an Unsaturated Polyester Resin

    Institute of Scientific and Technical Information of China (English)

    R; M; Gengan; K; Moodley

    2007-01-01

    1 Introduction In the GRP (Glass fibre Reinforced Product) industry Cobalt Octoate is the promoter of choice for cross-linking unsaturated polyester (UPE) and styrene monomer.UPE's are often prepared to contain a concentration of 0.04%-0.05% of Cobalt ions so that faster cross-linking of the resin is achieved and ultimately faster manufacturing of the GRP component is achieved.These products sometimes fail prematurely after being manufactured and dispatched to the end user.The influence of Cobalt Octoat...

  12. Influence of curing tip distance on resin composite Knoop hardness number, using three different light curing units.

    Science.gov (United States)

    Caldas, Danilo Biazzetto de Menezes; de Almeida, Janaina Bertoncelo; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho; Consani, Simonides

    2003-01-01

    This in vitro study evaluated the influence of curing tip distance on the Knoop Hardness Number (KHN) of a resin composite when using three different light curing units: (1) a halogen light (XL 1500 curing unit-3M), (2) a "softstart-polymerization" (Elipar Trilight curing in an exponential mode-ESPE) and (3) a PAC (Apolo 95E curing unit-DMD). The resin composite, Filtek Z250 (3M), was cured by these curing units at three light-tip distances from the resin composite: 0 mm, 6 mm and 12 mm. The resin composite specimens were flattened to their middle portion and submitted to 18 KHN measurements perspecimen. The results showed that for the Elipar Trilight unit, the hardness of the resin composite decreased as the light tip distance increased. The XL 1500 unit presented a significant decrease in hardness as the depth of cure of the resin composite increased. Apolo 95E caused a decrease in the resin composite hardness values when the depth of cure and light tip distance increased.

  13. Investigations of the Temperature Influence on Formation of Compounds from the BTEX Group During the Thermal Decomposition of Furan Resin

    Directory of Open Access Journals (Sweden)

    M. Kubecki

    2013-04-01

    Full Text Available Organic binders applied in foundry plants based on synthetic resins, from the one side influence obtaining the required technological properties by the moulding sand and - in consequence - obtaining good quality castings, and on the other side are the source of volatile organic compounds (VOC. Together with synthetic resins their hardeners, which although added in very small amounts emit during their thermal decomposition substances negatively influencing the natural environment, are also used. Both, resins and hardeners only at the influence of high temperatures accompanying moulds pouring with liquid metal generate harmful volatile organic compounds including compounds from the BTEX group. Investigations of the temperature influence on the kind and amount of organic compounds formed during the thermal decomposition of selected binders and hardeners and their mixtures allow to determine temperature ranges the most favourable for emitting harmful substances as well as to compare their emission from the selected materials. The aim of this study was the determination the temperature influence on formation substances from the BTEX group, during thermal decomposition of the selected binder, its hardener and their mixture. The BTEX group emission constitutes one of the basic criteria in assessing the harmfulness of materials applied for moulding and core sands and it can undergo changes in dependence of the applied system resin-hardener. Investigations were carried out on the specially developed system for the thermal decomposition of organic substances in the temperature range: 500ºC - 1300ºC, at the laboratory scale. The investigations subject was the furan resin, its hardener and hardened furan resin. The assessment of the emission degree of the BTEX group in dependence of the system subjected to the temperature influence was performed, within the studies. The temperature range, in which maximal amounts of benzene, toluene, ethylbenzene and

  14. Influence of Resin Composition on the Defect Formation in Alumina Manufactured by Stereolithography

    Directory of Open Access Journals (Sweden)

    Emil Johansson

    2017-02-01

    Full Text Available Stereolithography (SL is a technique allowing additive manufacturing of complex ceramic parts by selective photopolymerization of a photocurable suspension containing photocurable monomer, photoinitiator, and a ceramic powder. The manufactured three-dimensional object is cleaned and converted into a dense ceramic part by thermal debinding of the polymer network and subsequent sintering. The debinding is the most critical and time-consuming step, and often the source of cracks. In this study, photocurable alumina suspensions have been developed, and the influence of resin composition on defect formation has been investigated. The suspensions were characterized in terms of rheology and curing behaviour, and cross-sections of sintered specimens manufactured by SL were evaluated by SEM. It was found that the addition of a non-reactive component to the photocurable resin reduced polymerization shrinkage and altered the thermal decomposition of the polymer matrix, which led to a reduction in both delamination and intra-laminar cracks. Using a non-reactive component that decomposed rather than evaporated led to less residual porosity.

  15. Influence of the molecular structure on hydrolyzability of epoxy resins; Influence de la structure moleculaire sur l`hydrolysabilite des resines epoxyde

    Energy Technology Data Exchange (ETDEWEB)

    Pays, M.F.

    1996-12-31

    EDF has decided to use glass reinforced composites for certain pipework in Pressurized Water Reactors (service water, emergency-supplied service water, fine pipe works, etc...) as a replacement for traditional materials. In practice, steel is prone to rapid corrosion in these circuits; introducing composites could prove economically viable if their long term behaviour can be demonstrated. However, composite materials can undergo deterioration in service through hydrolysis of the resin or the fibre-matrix interface. Different resins can be chosen depending on the programmed use. A first study has covered the hydrolyzability of polyester and vinyl ester resins. The present document undertakes the resistance to hydrolysis of epoxy resins, concentrating on those reputed to withstand high temperatures. This research uses model monomer, linking the molecular structure of the materials to their resistance to hydrolysis. (author).

  16. Influence of Nd:YAG or Er:YAG laser surface treatment on microtensile bond strength of indirect resin composites to resin cement. Lasers surface treatment of indirect resin composites.

    Science.gov (United States)

    Caneppele, T M F; de Souza, A C Oliveira; Batista, G R; Borges, A B; Torres, C R G

    2012-09-01

    This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.

  17. Influence of inorganic filler content on the radiopacity of dental resin cements.

    Science.gov (United States)

    Furtos, Gabriel; Baldea, Bogdan; Silaghi-Dumitrescu, Laura; Moldovan, Marioara; Prejmerean, Cristina; Nica, Luminita

    2012-01-01

    Digital radiography was used to measure the radiopacity of 18 resin cements to determine the influence of inorganic filler content on radiopacity. Four disk specimens (n=4) of each light-curing cement were digitally radiographed alongside an aluminum step wedge using an intraoral sensor (XIOS Plus, Sirona, Germany), and their mean gray value measured. Percentage of filler by weight was determined using an analytical combustion furnace. Data were statistically analyzed using one-way ANOVA and Tukey's test (α=0.05). All materials were more radiopaque than dentin and 12 materials were more radiopaque than enamel. Filler percentage ranged between 17.36 to 53.56 vol% and radiopacity between 1.02 to 3.40 mm Al. There were no statistically significant differences in inorganic filler percentage and radiopacity among the different shades of the same material (p>0.05), but the highest radiopacity was measured for the material which contained a higher percentage of filler.

  18. Influence of polymerization mode and C-factor on cohesive strength of dual-cured resin cements

    NARCIS (Netherlands)

    Jongsma, L.A.; Kleverlaan, C.J.; Pallav, P.; Feilzer, A.J.

    2012-01-01

    Objectives The aim of this study is to determine the influence of the C-factor and the mode of polymerization on the cohesive strength of various dual-cure resin cements. Methods Three curing conditions were tested; chemical curing with free shrinkage conditions (C = 0), and constraint shrinkage con

  19. Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin

    Science.gov (United States)

    LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB

    2015-10-01

    Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450-500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation.

  20. The Influence of Nano-Al2O3 Additive on the Adhesion between Epoxy Resin and Steel Substrate

    Institute of Scientific and Technical Information of China (English)

    ZHAILan-lan; LINGGuo-ping

    2004-01-01

    The influence of nano-A1203 additive on the adhesion between epoxy resin and steel substrate has been investigated. The results of tensile testing indicated that the adhesion strength was increased dramatically by addition of Al2O3 nanoparticles in epoxy resin compared with that of the unmodified resin. The highest adhesion strength was obtained with 1 wt% nano-Al2O3 added in epoxy adhesive, more than two times higher than that of the unmodified. Scanning electronic microscope (SEM) revealed that a boundary layer exists between epoxy and steel substrate, energy spectrum analysis indicates there is enrichment of the nano-Al2O3 particle. Those results confirmed that the nano-Al2O3 additive was closely related to the change of interface morphology and the improvement of adhesion strength. The reason for adhesion improvement was also be discussed.

  1. The Influence of Nano-Al2O3 Additive on the Adhesion between Epoxy Resin and Steel Substrate

    Institute of Scientific and Technical Information of China (English)

    ZHAI Lan-lan; LING Guo-ping

    2004-01-01

    The influence of nano-Al2O3 additive on the adhesion between epoxy resin and steel substrate has been investigated. The results of tensile testing indicated that the adhesion strength was increased dramatically by addition of Al2O3 nanoparticles in epoxy resin compared with that of the unmodified resin. The highest adhesion strength was obtained with 1 wt% nano-Al2O3 added in epoxy adhesive, more than two times higher than that of the unmodified. Scanning electronic microscope (SEM) revealed that a boundary layer exists between epoxy and steel substrate, energy spectrum analysis indicates there is enrichment of the nano-Al2O3 particle. Those results confirmed that the nano-Al2O3 additive was closely related to the change of interface morphology and the improvement of adhesion strength. The reason for adhesion improvement was also be discussed.

  2. Influence of the material for preformed moulds on the polymerization temperature of resin materials for temporary FPDs.

    Science.gov (United States)

    Pott, Philipp-Cornelius; Schmitz-Wätjen, Hans; Stiesch, Meike; Eisenburger, Michael

    2017-08-01

    Temperature increase of 5.5 ℃ can cause damage or necrosis of the pulp. Increasing temperature can be caused not only by mechanical factors, e.g. grinding, but also by exothermic polymerization reactions of resin materials. The aim of this study was to evaluate influences of the form material on the intrapulpal temperature during the polymerization of different self-curing resin materials for temporary restorations. 30 provisonal bridges were made of 5 resin materials: Prevision Temp (Pre), Protemp 4 (Pro), Luxatemp Star (Lux), Structure 3 (Str) and an experimental material (Exp). Moulds made of alginate (A) and of silicone (S) and vacuum formed moulds (V) were used to build 10 bridges each on a special experimental setup. The intrapulpal temperatures of three abutment teeth (a canine, a premolar, and a molar,) were measured during the polymerization every second under isothermal conditions. Comparisons of the maximum temperature (TMax) and the time until the maximum temperature (tTMax) were performed using ANOVA and Tukey Test. Using alginate as the mould material resulted in a cooling effect for every resin material. Using the vacuum formed mould, TMax increased significantly compared to alginate (Pmaterial on tTMax. All of the mould materials are suitable for clinical use if the intraoral application time does not exceed the manufacturer's instructions for the resin materials.

  3. Thickness of CAD-CAM composite resin overlays influences fatigue resistance of endodontically treated premolars.

    Science.gov (United States)

    Magne, Pascal; Knezevic, Alena

    2009-10-01

    Evaluate the influence of composite resin CAD-CAM restoration thickness on the in vitro fatigue resistance and failure mode of overlay-type restoration in endodontically treated premolars. Thirty extracted premolars received root canal treatment followed by a standardized tooth preparation (1.5-, 2.5- or 3.5-mm cusp reduction, proximal gingival margins located 1.5mm below the CEJ, glass-ionomer base and immediately sealed dentin with Optibond FL). Restorations were milled using Cerec3 and FiltekMZ100 composite blocks. The intaglio surfaces of the overlays were sandblasted and silanated. Tooth preparations were sandblasted and etched before insertion of the restoration. All restorations were luted with Optibond FL and preheated FiltekZ100. A closed-loop servohydraulic unit was used for simulating cyclic isometric chewing at 5 Hz, starting with a load of 200 N (5000 cycles), followed by stages of 400, 600, 800, 1000, 1200 and 1400 N at a maximum of 30,000 cycles each. All samples were loaded until fracture or to a maximum of 185,000 cycles. Groups were compared using the Kaplan-Meier survival curves. None of the restored premolars with the 1.5-mm cusp overlap restoration withstood all 185,000 loading cycles. With 2.5- and 3.5-mm cusp overlap, the survival rate was 30% and 40%, respectively. The rate of fracture below the CEJ was 60%, 60% and 30% for 1.5, 2.5 and 3.5 mm of cusp overlap, respectively. Survival of restored premolars with 2.5- and 3.5-mm cusp coverage was not significantly different (p=.23). Thick FiltekMZ100 composite resin onlays showed higher fatigue resistance than thin ones and may be associated with fractures that are less subgingival.

  4. Heat treatment of a direct composite resin: influence on flexural strength

    Directory of Open Access Journals (Sweden)

    Caroline Lumi Miyazaki

    2009-09-01

    Full Text Available The purpose of this study was to evaluate the flexural strength of a direct composite, for indirect application, that received heat treatment, with or without investment. One indirect composite was used for comparison. For determination of the heat treatment temperature, thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were performed, considering the initial weight loss temperature and glass transition temperature (Tg. Then, after photoactivation (600 mW/cm² - 40 s, the specimens (10 x 2 x 2 mm were heat-treated following these conditions: 170ºC for 5, 10 or 15 min, embedded or not embedded in investment. Flexural strength was assessed as a means to evaluate the influence of different heat treatment periods and investment embedding on mechanical properties. The data were analyzed by ANOVA and Tukey's test (α = 0.05. TGA showed an initial weight loss temperature of 180ºC and DSC showed a Tg value of 157°C. Heat treatment was conducted in an oven (Flli Manfredi, Italy, after 37°C storage for 48 h. Flexural strength was evaluated after 120 h at 37°C storage. The results showed that different periods and investment embedding presented similar statistical values. Nevertheless, the direct composite resin with treatments presented higher values (178.7 MPa compared to the indirect composite resin (146.0 MPa and the same direct composite submitted to photoactivation only (151.7 MPa. Within the limitations of this study, it could be concluded that the heat treatment increased the flexural strength of the direct composite studied, leading to higher mechanical strength compared to the indirect composite.

  5. Composite resin's adhesive resistance to dentin: influence of Er:YAG laser focal distance variation.

    Science.gov (United States)

    Corona, Silmara Aparecida Milori; Atoui, Juliana Abdallah; Chimello, Daniela Thomazatti; Borsatto, Maria Cristina; Pecora, Jesus Djalma; Dibb, Regina Guenka Palma

    2005-04-01

    The aim of this study was to analyze in vitro the influence of Er:YAG laser focal distance variation on tensile bond strength of a composite resin to dentin. Although there are several studies using the Er:YAG laser for dentin treatment, there is a lack of available literature related to the Er:YAG laser focal distance variation. Sixty vestibular and lingual dentin surfaces from extracted human third molars, kept in a 0.4% azide sodium solution, were ground and assigned to six groups. The control group was conditioned with 35% phosphoric acid (CA). In the lased groups, the dentin surface treatment was performed by irradiation with Er:YAG laser (80 mJ/2 Hz), varying the focal distance (11, 12, 14, 16, and 17 mm), followed by acid etching. The Single Bond/Filtek Z250 (3M) resinous system was used for the specimen manufacture. The tensile bond strength tests were performed in a Universal Testing Machine with 50 kgf load cell and 0.5 mm/min cross head speed. The averages in MPa were: CA: 18.03 (+/-2.09); 11 mm; 9.92 (+/-3.34); 12 mm: 9.49 (+/-2.29); 14 mm: 10.99 (+/-3.45); 16 mm: 10.56 (+/-1.93); and 17 mm: 17.05 (+/-2.31). It was concluded that the application of Er:YAG laser in a defocused mode (17 mm) associated with acid etching was similar to the treatment of acid solely. Er:YAG laser irradiation in a focused (12 mm) and a defocused (11, 14, and 16 mm) mode coupled with acid conditioning produced the lowest values of adhesion.

  6. Influence of polymerization time and depth of cure of resin composites determined by Vickers hardness

    Directory of Open Access Journals (Sweden)

    Marco Lombardini

    2012-01-01

    Conclusion: Among the materials tested, the nanofilled and the nanohybrid resin composites were rather insensible to thickness variations. Miicrohybrid composites, instead, had features different from one another.

  7. Influence of volumetric shrinkage and curing light intensity on proximal contact tightness of class II resin composite restorations: in vitro study.

    NARCIS (Netherlands)

    El-Shamy, H.; Saber, M.H.; Dorfer, C.E.; El-Badrawy, W.; Loomans, B.A.C.

    2012-01-01

    BACKGROUND : Proximal contact tightness of class II resin composite restorations is influenced by a myriad of factors. Previous studies investigated the role of matrix band type and thickness, consistency of resin composite, and technique of placement. However, the effect of volumetric shrinkage of

  8. Influence of volumetric shrinkage and curing light intensity on proximal contact tightness of class II resin composite restorations: in vitro study.

    NARCIS (Netherlands)

    El-Shamy, H.; Saber, M.H.; Dorfer, C.E.; El-Badrawy, W.; Loomans, B.A.C.

    2012-01-01

    BACKGROUND : Proximal contact tightness of class II resin composite restorations is influenced by a myriad of factors. Previous studies investigated the role of matrix band type and thickness, consistency of resin composite, and technique of placement. However, the effect of volumetric shrinkage of

  9. Influence of matrix and filler fraction on biofilm formation on the surface of experimental resin-based composites.

    Science.gov (United States)

    Ionescu, Andrei; Brambilla, Eugenio; Wastl, Daniel S; Giessibl, Franz J; Cazzaniga, Gloria; Schneider-Feyrer, Sibylle; Hahnel, Sebastian

    2015-01-01

    The aim of this study was to investigate the impact of resin matrix chemistry and filler fraction on biofilm formation on the surface of experimental resin-based composites (RBCs). Specimens were prepared from eight experimental RBC formulations differing in resin matrix blend (BisGMA/TEGDMA in a 7:3 wt% ratio or UDMA/aliphatic dimethacrylate in a 1:1 wt% ratio) and filler fraction (no fillers; 65 wt% dental glass with an average diameter of 7 or 0.7 µm or 65 wt% SiO2 with an average diameter of 20 nm). Surface roughness, surface free energy, and chemical surface composition were determined; surface topography was visualized using atomic force microscopy. Biofilm formation was simulated under continuous flow conditions for a 48 h period using a monospecies Streptococcus mutans and a multispecies biofilm model. In the monospecies biofilm model, the impact of the filler fraction overruled the influence of the resin matrix, indicating lowest biofilm formation on RBCs with nano-scaled filler particles and those manufactured from the neat resin blends. The multispecies model suggested a more pronounced effect of the resin matrix blend, as significantly higher biofilm formation was identified on RBCs with a UDMA/dimethacrylate matrix blend than on those including a BisGMA/TEGDMA matrix blend but analogous filler fractions. Although significant differences in surface properties between the various materials were identified, correlations between the surface properties and biofilm formation were poor, which highlights the relevance of surface topography and chemistry. These results may help to tailor novel RBC formulations which feature reduced biofilm formation on their surface.

  10. Influence of ceramic thickness on mechanical properties and polymer structure of dual-cured resin luting agents.

    Science.gov (United States)

    Meng, Xiangfeng; Yoshida, Keiichi; Atsuta, Mitsuru

    2008-05-01

    To investigate the influence of ceramic thickness on the mechanical properties and polymer structure (degree conversion and cross-linking density) of three dual-cured resin luting agents. Three dual-cured resin luting agents [Linkmax HV (GC), Nexus 2 (Kerr), and Variolink IIHV (Ivoclar-Vivadent)] were polymerized with or without 800 mW/cm2 irradiation through 0-3-mm-thick GN-I (GC) machinable ceramic. Bar-shape specimens were subjected to three-point bending to determine flexural strength (FS) and elastic modulus (EM) after dry storage at 37 degrees C for 24 h. Knoop hardness was measured on the irradiated surface of disk-shaped specimens before (KHN1) and after (KHN2) storage of 100% ethanol solution at 37 degrees C for 24 h. KHN1 and KHN2 were estimated as indirect indicators of degree of conversion (DC) and cross-linking density, respectively. Data were analyzed by one-way ANOVA and Student-Newman-Keuls test for each luting agent, and four mechanical properties were subjected to regression analysis. For three resin luting agents with dual-cured mode, FS, EM, KHN1, and KHN2 decreased with the increase of ceramic thickness. FS except for Nexus 2 and EM for three resin luting agents had a positive linear relationship with both KHN1 and KHN2. The variables tested behaved differently. When the ceramic thickness increased, the chemical cured components of dual-cured resin luting agents did not produce significant compensation for all variables. Mechanical properties and polymer structure of dual-cured resin luting agents was dependent on the intensity of light irradiation.

  11. Influence of the silica fillers on the ageing of epoxy resins under irradiations; Etude de l'influence des charges de silice sur le vieillissement des resines epoxyde sous irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Benard, F.

    2004-12-17

    stiffening of the nano-metric silica filled resin and the reactions between the resin and the silica surface during irradiations. This study permits to assert that the silica fillers in the epoxy resins protect the network from the irradiations. (author) [French] L'objectif de ces travaux etait d'etudier l'influence de la silice sur le vieillissement des resines epoxyde sous irradiation. Les resines epoxyde obtenues par la reaction d'une polyamine aliphatique (la Triethyltetraamine) avec le prepolymere DGEBA sont difficilement analysables du fait de leur caractere insoluble et infusible. Des modeles chimiques de structures tres voisines de celle de la resine DGEBA/TETA synthetises purs et en presence de silice nanometrique sont analyses par les methodes classiques de chimie organique (RMN du liquide, SEC, Spectrometrie de masse Maldi-tof). Des differences de reactivite des amines primaires et secondaires en presence de silice nanometrique sont mises en evidence. Les analyses des modeles irradies montrent un phenomene majoritaire de coupures de liaisons C-O et C-N accompagnees par la formation d'extremites phenoliques, de terminaisons methylcetone, de fonctions amines primaires et secondaires et notamment d'une double liaison C=C en alpha d'un azote. La RMN {sup 1}H et la RMN {sup 13}C quantitative revelent un effet d'ecran du a la silice et mettent en evidence des reactions entre les especes chimiques reactives creees par les irradiations et la surface de la silice. Les analyses thermiques, thermomecaniques des differentes resines epoxyde en fonction de la dose d'irradiation et du type de silice montrent la diminution de la temperature de transition vitreuse, des temperatures des relaxations et de la densite de reticulation confirmant des phenomenes majoritaires de coupures de liaisons au cours des irradiations. En presence de silice nanometrique, la diminution de la densite de reticulation est ralentie. Ce phenomene peut s

  12. The influences of N-acetyl cysteine (NAC on the cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA-based dental resin

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2015-04-01

    Full Text Available Objectives. This study aimed to investigate the influences of N-acetyl cysteine (NAC on cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA dental resins.Methods. Experimental PMMA resin was prepared by incorporating various concentrations of NAC (0, 0.15, 0.3, 0.6 and 0.9 wt.%. MTT assay was performed to investigate viability of human dental pulp cells after exposure to extract of PMMA resin with or without NAC. Cell adhesion on resin specimens was examined with scanning electron microscopy. Degree of conversion was studied with Fourier Transform Infrared Spectroscopy (FTIR. Flexural strength, microhardness and surface roughness was evaluated using a universal testing machine, microhardness tester and optical profilometer, respectively.Results. Incorporation of NAC into PMMA resin significantly reduced its cytotoxicity and enhanced cell adhesion on its surface. NAC induced negative influences on the mechanical and physical properties of PMMA resin in a dose-dependent manner. The degree of conversion for all experimental PMMA resins reached as high as 72% after 24 h of polymerization. All the tested properties were maintained when the concentration of incorporated NAC was 0.15 wt.%.Conclusion. The addition of 0.15 wt.% NAC remarkably improved biocompatibility of PMMA resin without exerting significant negative influence on its mechanical and physical properties.

  13. The influences of N-acetyl cysteine (NAC) on the cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA)-based dental resin.

    Science.gov (United States)

    Jiao, Yang; Ma, Sai; Li, Jing; Shan, Lequn; Yang, Yanwei; Li, Meng; Chen, Jihua

    2015-01-01

    Objectives. This study aimed to investigate the influences of N-acetyl cysteine (NAC) on cytotoxicity and mechanical properties of Poly-methylmethacrylate (PMMA) dental resins. Methods. Experimental PMMA resin was prepared by incorporating various concentrations of NAC (0, 0.15, 0.3, 0.6 and 0.9 wt.%). MTT assay was performed to investigate viability of human dental pulp cells after exposure to extract of PMMA resin with or without NAC. Cell adhesion on resin specimens was examined with scanning electron microscopy. Degree of conversion was studied with Fourier Transform Infrared Spectroscopy (FTIR). Flexural strength, microhardness and surface roughness was evaluated using a universal testing machine, microhardness tester and optical profilometer, respectively. Results. Incorporation of NAC into PMMA resin significantly reduced its cytotoxicity and enhanced cell adhesion on its surface. NAC induced negative influences on the mechanical and physical properties of PMMA resin in a dose-dependent manner. The degree of conversion for all experimental PMMA resins reached as high as 72% after 24 h of polymerization. All the tested properties were maintained when the concentration of incorporated NAC was 0.15 wt.%. Conclusion. The addition of 0.15 wt.% NAC remarkably improved biocompatibility of PMMA resin without exerting significant negative influence on its mechanical and physical properties.

  14. Resin composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Lussi, Adrian;

    2014-01-01

    OBJECTIVE: To investigate how the modulus of elasticity of resin composites influences marginal quality in restorations submitted to thermocyclic and mechanical loading. METHODS: Charisma, Filtek Supreme XTE and Grandio were selected as they were found to possess different moduli of elasticity...... of resin composite (p=0.81) on the quality of dentine margins was observed, before or after loading. Deterioration of all margins was evident after loading (p....008). CONCLUSIONS: The resin composite with the highest modulus of elasticity resulted in the highest number of gap-free enamel margins but with an increased incidence of paramarginal enamel fractures. CLINICAL SIGNIFICANCE: The results from this study suggest that the marginal quality of restorations can...

  15. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  16. Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis.

    Science.gov (United States)

    Andreotti, Agda Marobo; Goiato, Marcelo Coelho; Moreno, Amália; Nobrega, Adhara Smith; Pesqueira, Aldiéris Alves; dos Santos, Daniela Micheline

    2014-01-01

    The aim of this study was to assess the effect of adding nanoparticles to N1 acrylic resin intended for artificial sclera, in terms of the color stability, microhardness, and flexural strength of the resin. Three hundred samples of N1 acrylic resin were used: 100 samples for color stability and microhardness tests (each test was performed on the opposite side of each sample), and 200 samples for flexural strength testing (100 samples before and after 1,008 hours of accelerated aging). Samples for each test were separated into ten groups (n=10), ie, without nanoparticles (control group) or with nanoparticles of zinc oxide, titanium dioxide (TiO₂), and barium sulfate at weight concentrations of 1%, 2%, and 2.5% (nanoparticle groups). Data were subjected to statistical analysis with nested analysis of variance and Tukey's test (PMicrohardness values increased after artificial aging, except for the control and zinc oxide groups. After aging, the 1%-2% TiO₂ groups had significantly higher microhardness values compared with the other nanoparticle groups. Before aging, there was a significant difference in flexural strength between the control and nanoparticle groups. After aging, the control and TiO₂ groups, regardless of concentration, showed the lowest flexural strength values. Incorporation of nanoparticles directly influenced the acrylic resin properties, with TiO₂ being the most influential nanoparticle in terms of the evaluated properties.

  17. The influence of stratification on color and appearance of resin composites.

    Science.gov (United States)

    Betrisey, Emilie; Krejci, Ivo; Di Bella, Enrico; Ardu, Stefano

    2016-05-01

    The aim of this in vitro study was to determine the influence of the order of composite layers' stratification on resin composites color and appearance when restoring an anterior composite tooth on the 3D color coordinates L*a*b* by use of a spectrophotometer. A total of 192 discs samples made of two different commercial available composite materials (Miris 2 and HRI) of enamel (E) and dentin (D) shade, each with a 1 mm thickness, were divided into 6 configurations. The superposition of 4 samples for a total of 16 specimens per group determined the investigated configurations. All groups showed significant (p stratification, measured from the buccal side and from the palatal side. Perceptible differences were detected between all groups except for E1DDE, EDDE1 and EDDD, independent of the background (white or black). The realization of the palatal layer with dentin composite shade did not change the final outcome within the limit of a total 4 mm thickness in comparison to the palatal layer with enamel composite shade.

  18. Can a soda-lime glass be used to demonstrate how patterns of strength dependence are influenced by pre-cementation and resin-cementation variables?

    LENUS (Irish Health Repository)

    Hooi, Paul

    2013-01-01

    To determine how the variability in biaxial flexure strength of a soda-lime glass analogue for a PLV and DBC material was influenced by precementation operative variables and following resin-cement coating.

  19. Influence of light-curing mode on the cytotoxicity of resin-based surface sealants

    Science.gov (United States)

    2014-01-01

    Background Surface sealants have been successfully used in the prevention of erosive tooth wear. However, when multiple tooth surfaces should be sealed, the light-curing procedure is very time-consuming. Therefore, the aim of this study was to investigate whether reduced light-curing time (while maintaining similar energy density) has an influence on resin-based surface sealant cytotoxicity. Methods Bovine dentine discs were treated as follows: group 1: untreated, groups 2–5: Seal&Protect and groups 6–9: experimental sealer. Groups 2 and 6 were light-cured (VALO LED light-curing device) for 40 s (1000 mW/cm2), groups 3 and 7 for 10 s (1000 mW/cm2), groups 4 and 8 for 7 s (1400 mW/cm2) and groups 5 and 9 for 3 s (3200 mW/cm2). Later, materials were extracted in culture medium for 24 h, and released lactate dehydrogenase (LDH) activity as a measure of cytotoxicity was determined photometrically after cells (dental pulp cells and gingival fibroblasts) were exposed to the extracts for 24 h. Three independent experiments, for both sample preparation and cytotoxicity testing, were performed. Results Overall, lowest cytotoxicity was observed for the unsealed control group. No significant influence of light-curing settings on the cytotoxicity was observed (p = 0.537 and 0.838 for pulp cells and gingival fibroblasts, respectively). No significant difference in the cytotoxicity of the two sealants was observed after light-curing with same light-curing settings (group 2 vs. 6, 3 vs. 7, 4 vs. 8 and 5 vs. 9: p > 0.05, respectively). Conclusions Shortening the light-curing time, while maintaining constant energy density, resulted in no higher cytotoxicity of the investigated sealants. PMID:24885810

  20. Influence of curing rate on softening in ethanol, degree of conversion, and wear of resin composite

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Peutzfeldt, Anne; Asmussen, Erik

    2011-01-01

    PURPOSE: To investigate the effect of curing rate on softening in ethanol, degree of conversion, and wear of resin composites. METHOD: With a given energy density and for each of two different light-curing units (QTH or LED), the curing rate was reduced by modulating the curing mode. Thus......, the irradiation of resin composite specimens (Filtek Z250, Tetric Ceram, Esthet-X) was performed in a continuous curing mode and in a pulse-delay curing mode. Wallace hardness was used to determine the softening of resin composite after storage in ethanol. Degree of conversion was determined by infrared...... spectroscopy (FTIR). Wear was assessed by a three-body test. Data were submitted to Levene's test, one and three-way ANOVA, and Tukey HSD test (alpha = 0.05). Results: Immersion in ethanol, curing mode, and material all had significant effects on Wallace hardness. After ethanol storage, resin composites...

  1. Influence of hydrophilic pre-treatment on resin bonding to zirconia ceramics.

    Science.gov (United States)

    Noro, Akio; Kameyama, Atsushi; Haruyama, Akiko; Takahashi, Toshiyuki

    2015-01-01

    Atmospheric plasma or ultraviolet (UV) treatment alters the surface characteristics of tetragonal zirconia polycrystal (TZP), increasing its hydrophilicity by reducing the contact angle against water to zero. This suggests that such treatment would increase the wettability of bonding resin. The purpose of this study was to determine how increasing the hydrophilicity of TZP through plasma irradiation, UV treatment, or application of ceramic primer affected initial bonding with resin composites. Here, the effect of each pre-treatment on the hydrophilicity of TZP surfaces was determined by evaluating change in shear bond strength. Plasma irradiation, UV, or ceramic primer pre-treatment showed no significant effect on bonding strength between TZP surfaces and resin composites. In addition, alumina blasting yielded no significant increase in bond strength. Plasma irradiation, UV treatment, or ceramic primer pre-treatment did not lead to significant increase in bond strength between TZP and resin composites.

  2. The influence of thermo-cycling and cyclical loading on metal/resin interfaces

    Science.gov (United States)

    Kountouras, Constantinos Georgiou

    This study investigated the behaviour of metal/resin laminates of dimethacrylate resins and cobalt chromium alloy (Co/Cr) when subjected to fatigue stressing by thermo-cycling and cyclical loading, after water storage. The veneering materials used were a microfine (Silux Plus) and a hybrid (Z100) composite, bonded to a Co/Cr alloy through an adhesive interface (Cesead opaque primer and body opaque resin). Characterisation of the two composite resins was carried out with particular attention to water sorption. Laminates were evaluated over a period up to six months, groups of ten specimens were load cycled alone (Ld) (up to 453,600 cycles at 5 Hz), thermo-cycled alone (Th) (up to 25,200 cycles between 4°C, 37°C and 60°C) load cycled and thermo-cycled (Ld/Th) (cycled as above). Following testing, laminates were assessed for their elastic modulus, examined microscopically and the adhesive interface was subjected to a dye penetration study. The microfine resin absorbed more water than the hybrid (2.88% and 1.84% by mass respectively) and lost more soluble material (0.61%, 0.19% of original mass respectively). The laminates of the different veneering resins exhibited differences in their elastic behaviour. The apparent flexural modulus of laminates made with the hybrid resin (initial: 482.3 +/- 69.1 GPa, week 24 Ld/Th; 544.7 +/- 70.3 GPa) was higher than those made with the microfine resin (initial: 288.1 +/- 44.4 GPa, week 24 Ld/Th; 353.7 +/- 47.5 GPa). The extension at failure of the hybrid resin laminates appeared to be lower than that of the microfine ones. However, little difference was seen in the stress at failure between groups. Week 24 Ld/Th; (Z100: 833.3 +/- 355.8 MPa, Silux Plus: 828.4 +/- 122.1 MPa). Both cohesive failure within the veneering resin and adhesive failures between the veneering resin and metal component were noted.

  3. The influence of FRCs reinforcement on marginal adaptation of CAD/CAM composite resin endocrowns after simulated fatigue loading.

    Science.gov (United States)

    Rocca, Giovanni Tommaso; Saratti, Carlo Massimo; Poncet, Antoine; Feilzer, Albert J; Krejci, Ivo

    2016-05-01

    To evaluate the marginal adaptation of endodontically treated molars restored with CAD/CAM composite resin endocrowns either with or without reinforcement by fibre reinforced composites (FRCs), used in different configurations. 32 human endodontically treated molars were cut 2 mm over the CEJ. Two interproximal boxes were created with the margins located 1 mm below the CEJ (distal box) and 1 mm over the CEJ (mesial box). All specimens were divided in four groups (n = 8). The pulp chamber was filled with: group 1 (control), hybrid resin composite (G-aenial Posterior, GC); group 2, as group 1 but covered by 3 meshes of E-glass fibres (EverStick NET, Stick Tech); group 3, FRC resin (EverX Posterior, GC); group 4, as group 3 but covered by 3 meshes of E-glass fibres. The crowns of all teeth were restored with CAD/CAM composite resin endocrowns (LAVA Ultimate, 3M). All specimens were thermo-mechanically loaded in a computer-controlled chewing machine (600,000 cycles, 1.6 Hz, 49 N and simultaneously 1500 thermo-cycles, 60 s, 5-55 °C). Marginal analysis before and after the loading was carried out on epoxy replicas by SEM at 200× magnification. For all the groups, the percentage values of perfect marginal adaptation after loading were always significantly lower than before loading (p 0.05). Within the limitations of this in vitro study, the use of FRCs to reinforce the pulp chamber of devitalized molars restored with CAD/CAM composite resin restorations did not significantly influenced their marginal quality.

  4. Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis

    Directory of Open Access Journals (Sweden)

    Andreotti AM

    2014-12-01

    Full Text Available Agda Marobo Andreotti, Marcelo Coelho Goiato, Amália Moreno, Adhara Smith Nobrega, Aldiéris Alves Pesqueira, Daniela Micheline dos Santos Araçatuba Dental School, São Paulo State University, Araçatuba, São Paulo, Brazil Abstract: The aim of this study was to assess the effect of adding nanoparticles to N1 acrylic resin intended for artificial sclera, in terms of the color stability, microhardness, and flexural strength of the resin. Three hundred samples of N1 acrylic resin were used: 100 samples for color stability and microhardness tests (each test was performed on the opposite side of each sample, and 200 samples for flexural strength testing (100 samples before and after 1,008 hours of accelerated aging. Samples for each test were separated into ten groups (n=10, ie, without nanoparticles (control group or with nanoparticles of zinc oxide, titanium dioxide (TiO2, and barium sulfate at weight concentrations of 1%, 2%, and 2.5% (nanoparticle groups. Data were subjected to statistical analysis with nested analysis of variance and Tukey’s test (P<0.05 significance level. Among the nanoparticle groups, the TiO2 groups showed better color stability at all concentrations. Microhardness values increased after artificial aging, except for the control and zinc oxide groups. After aging, the 1%–2% TiO2 groups had significantly higher microhardness values compared with the other nanoparticle groups. Before aging, there was a significant difference in flexural strength between the control and nanoparticle groups. After aging, the control and TiO2 groups, regardless of concentration, showed the lowest flexural strength values. Incorporation of nanoparticles directly influenced the acrylic resin properties, with TiO2 being the most influential nanoparticle in terms of the evaluated properties. Keywords: acrylic resins, eye, artificial, color, hardness, nanoparticles

  5. The influence of lining techniques on the marginal seal of Class II composite resin restorations.

    Science.gov (United States)

    Blixt, M; Coli, P

    1993-03-01

    Various sealing techniques using a light-curing dental adhesive (Scotchbond 2) and bulk application of a light-curing resin-bonded ceramic were examined in 203 Class II cavities. Different pretreatment procedures and lining materials were used, and in one series resin impregnation of the contraction gap was included. The presence of gaps or leakage was disclosed either by a dye or a fluorescent resin penetration technique. In many restorations, Scotchbond 2 and a light-curing glass-ionomer lining did not prevent gap formation at the cervical wall. The gap usually occurred between the liner and the dentin, with dye penetration into the dentin. Three liners, one containing polytrifluorethylene sodium fluoride and calcium fluoride, one containing polyamide resin, and one containing calcium hydroxide, did not prevent dye penetration to the dentin at all; good dentinal protection was frequently observed, however, in cavities treated with a hydrophilic shellac film prior to placement of a polystyrene liner. The best results were observed when dentinal treatment with this lining system was followed by resin impregnation of the contraction gap after the composite resin had set.

  6. Influence of resin properties to resist performance at ArF lithography

    Science.gov (United States)

    Yoon, Sangwoong; Kim, Myungsun; Lee, Hong; Kim, Do Y.; Kim, Young Hoon; Kim, Boo Deuk; Kim, Jae Hyun; Kim, Kyung-Mee; Lee, Shi Yong; Kim, Young Ho; Chon, Sang-Mun

    2004-05-01

    The ArF resist has been evaluated focusing on resin character such as molecular weight, monomer composition and polydispersity (Pd). The resin properties were investigated to elucidate that which parameter was affected to the line edge roughness (LER). The Pd was correlated with LER. As the Pd was large, the LER was small. The resin molecular weight and monomer composition were affected to their vertical profile. Low molecular weight portion rich resin resulted in round and t-top profile, whilst high molecular weight rich resin resulted in square profile. The amount of lower molecular weight fraction was changed by purification method. The lower molecular weight resin caused severe tapered profile. It was concluded that 1) shift of Mw to smaller and 2) higher content of low molecular size fraction lead to rounded and tapered pattern profile. Lot-to-lot stable good pattern profile has achieved by controlling polymer molecular weight and content of low molecular size fraction in small variation range.

  7. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    Science.gov (United States)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2016-06-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  8. The influence of monomeric resin and filler characteristics on the performance of experimental resin-based composites (RBCs) derived from a commercial formulation.

    LENUS (Irish Health Repository)

    Hahnel, Sebastian

    2012-04-01

    To explore experimental RBCs derived from a successful commercially available RBC (Grandio) to investigate resin monomer blend and filler parameters (volume fraction, density and diameter) on RBC performance.

  9. Influence of pre-heat treatment and different light-curing units on Vickers hardness of a microhybrid composite resin

    Science.gov (United States)

    Saade, E. G.; Bandeca, M. C.; Rastelli, A. N. S.; Bagnato, V. S.; Porto-Neto, S. T.

    2009-06-01

    The aim of this study was to evaluate the hardness of a dental composite resin submitted to temperature changes before photo-activation with two light-curing unite (LCUs). Five samples (4 mm in diameter and 2 mm in thickness) for each group were made with pre-cure temperatures of 37, 54, and 60°C. The samples were photo-activated with a conventional quartz-tungsten-halogen (QTH) and blue LED LCUs during 40 s. The hardness Vickers test (VHN) was performed on the top and bottom surfaces of the samples. According to the interaction between light-curing unit and different pre-heating temperatures of composite resin, only the light-curing unit provided influences on the mean values of initial Vickers hardness. The light-curing unit based on blue LED showed hardness mean values more homogeneous between the top and bottom surfaces. The hardness mean values were not statistically significant difference for the pre-cure temperature used. According to these results, the pre-heating of the composite resin provide no influence on Vickers hardness mean values, however the blue LED showed a cure more homogeneous than QTH LCU.

  10. Influence of light intensity on surface free energy and dentin bond strength of core build-up resins.

    Science.gov (United States)

    Shimizu, Y; Tsujimoto, A; Furuichi, T; Suzuki, T; Tsubota, K; Miyazaki, M; Platt, J A

    2015-01-01

    We examined the influence of light intensity on surface free energy characteristics and dentin bond strength of dual-cure direct core build-up resin systems. Two commercially available dual-cure direct core build-up resin systems, Clearfil DC Core Automix with Clearfil Bond SE One and UniFil Core EM with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in acrylic resin and the facial dentin surfaces were wet ground on 600-grit silicon carbide paper. Adhesives were applied to dentin surfaces and cured with light intensities of 0 (no irradiation), 200, 400, and 600 mW/cm(2). The surface free energy of the adhesives (five samples per group) was determined by measuring the contact angles of three test liquids placed on the cured adhesives. To determine the strength of the dentin bond, the core build-up resin pastes were condensed into the mold on the adhesive-treated dentin surfaces according to the methods described for the surface free energy measurement. The resin pastes were cured with the same light intensities as those used for the adhesives. Ten specimens per group were stored in water maintained at 37°C for 24 hours, after which they were shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. Two-way analysis of variance (ANOVA) and a Tukey-Kramer test were performed, with the significance level set at 0.05. The surface free energies of the adhesive-treated dentin surfaces decreased with an increase in the light intensity of the curing unit. Two-way ANOVA revealed that the type of core build-up system and the light intensity significantly influence the bond strength, although there was no significant interaction between the two factors. The highest bond strengths were achieved when the resin pastes were cured with the strongest light intensity for all the core build-up systems. When polymerized with a light intensity of 200 mW/cm(2) or less, significantly lower bond strengths were observed. CONClUSIONS: The

  11. Influence of Different Bonding Agents and Composite Resins on Fracture Resistance of Reattached Incisal Tooth Fragment

    Directory of Open Access Journals (Sweden)

    Davari AR.

    2014-03-01

    Full Text Available Statement of Problem: Reattachment of the fractured tooth fragment should be considered as a conservative treatment and valid alternative to a composite restoration. Purpose: This in vitro study was to evaluate the influence of different adhesives and composite resins on fracture resistance of dental fragment reattached to sectioned incisal edges. Materials and Method: 120 sound human maxillary central incisors were selected under standard conditions and randomly divided into 3 groups, 12 sound teeth were used as a control group and the remaining teeth were assigned to 3 groups (n=36 and each group into three subgroups (n=12. The incisal third of samples was sectioned using a diamond disk and the respective fragments were then reattached utilizing different intermediate restorative materials, namely: i adhesive materials alone (OptiBond S or OptiBond XTR or OptiBond All-in-One; ii Premise flowable composite and iii Point 4 composite in the one of mentioned adhesive interface. After storage for two weeks at 37°C and 100% humidity and then thermocycling; shear bond strength (SBS was recorded in kilogram force (kgf by applying a load in the middle incisal third with a Zwick Universal Testing Machine at a cross-head speed of 1 mm/min. Data was analyzed with one-way ANOVA and Tukey HSD (p< 0.05. Results: The control group had a significantly higher SBS than other groups (p= 0.001; the highest SBS values was obtained using the premise flowable composite and OptiBond S adhesive (112.44±30.46 Mpa; and the lowest with OptiBond All-in-One alone (33.97± 15.63 Mpa. Conclusion: Although, none of the tested materials provided fracture resistance similar to that found with the intact maxillary central incisors; utilizing the premise flowable composite and OptiBond S adhesive improved the SBS of the reattached fragment than other materials.

  12. Influence of curing agents on gelation and exotherm behaviour of an unsaturated polyester resin

    Indian Academy of Sciences (India)

    Raghu Raja Pandiyan Kuppusamy; Swati Neogi

    2013-12-01

    A judicious choice of curing agents such as initiator and promoter and their ratio to the resin can avoid reduced gel-time and shortened exothermic reactions in applications such as liquid compositemoulding processes. In this study, effects of different ratio of initiator and promoter to the unsaturated polyester resin on curing of the resin were investigated by measuring gel-time and peak exotherm using ASTM D2471 standards. Methyl ethyl ketone peroxide (MEKP) was used as an initiator and a cobalt salt was employed as an accelerator for the free radical polymerization of curing resin at ambient temperatures. It was observed that the resin gelation starts closely with the initial rise in exotherm temperature and time of gelation decreases with the increase in initiator or accelerator volume proportions. It was also found that the exotherm-peak and rate of temperature rise indicating that the curing rate increases with the initiator or accelerator proportions also increased. A nonlinear regression analysis of all geltime and cure data were performed to quantify the dependence of curing parameters on the volume proportions of accelerator and initiator. Thus, for this polymerization initiation system, the gel-time and cure parameters can be predicted for any initiator and cobalt levels within the ranges studied.

  13. Influence of glass and sisal fibers on the cure kinetics of unsaturated polyester resin

    Directory of Open Access Journals (Sweden)

    Vinicius Pistor

    2012-08-01

    Full Text Available The effect of grinded glass and sisal fibers (25 vol% on the cure kinetics of composites of unsaturated polyester resin (UPR was investigated by differential scanning calorimetry (DSC and scanning electron microscopy (SEM. The DSC analysis was carried out at four different heating rates (5, 10, 20 and 40 °C/min, and the cure enthalpy and activation energy (Ea were determined according to the Flynn-Wall-Ozawa (FWO method. The results showed that increasing heating rates promoted reduced reaction times. The sisal fiber-containing composites exhibit higher activation energy values for the cure process in comparison with the neat polyester resin and the glass fiber composites. This can be due to the presence of polar groups in the sisal components, which physically interact with the polyester resin and retard the cure reaction. Hence, as sisal fiber retarded the cure reaction of the UPR resin, it is suggested that the use of natural fibers in polymer matrix composites can affect the cure kinetics of the polyester resin.

  14. Influence of Hot-Etching Surface Treatment on Zirconia/Resin Shear Bond Strength

    Directory of Open Access Journals (Sweden)

    Pin Lv

    2015-11-01

    Full Text Available This study was designed to evaluate the effect of hot-etching surface treatment on the shear bond strength between zirconia ceramics and two commercial resin cements. Ceramic cylinders (120 units; length: 2.5 mm; diameter: 4.7 mm were randomly divided into 12 groups (n = 10 according to different surface treatments (blank control; airborne-particle-abrasion; hot-etching and different resin cements (Panavia F2.0; Superbond C and B and whether or not a thermal cycling fatigue test (5°–55° for 5000 cycles was performed. Flat enamel surfaces, mounted in acrylic resin, were bonded to the zirconia discs (diameter: 4.7 mm. All specimens were subjected to shear bond strength testing using a universal testing machine with a crosshead speed of 1 mm/min. All data were statistically analyzed using one-way analysis of variance and multiple-comparison least significant difference tests (α = 0.05. Hot-etching treatment produced higher bond strengths than the other treatment with both resin cements. The shear bond strength of all groups significantly decreased after the thermal cycling test; except for the hot-etching group that was cemented with Panavia F2.0 (p < 0.05. Surface treatment of zirconia with hot-etching solution enhanced the surface roughness and bond strength between the zirconia and the resin cement.

  15. Polymerisation processes in expoy resins under influence of free space environment

    Science.gov (United States)

    Kondyurin, A.; Lauke, B.; Kondyurina, I.

    A creation of large size constructions in space or on celestial bodies is possible by the way of chemical reactions of liquid viscous components under space environment conditions [1-2]. In particular, a new technology for large-size space module for electronic components, energy and materials production is developed on the basis of polymerisation technique. The factors of free space environment have a significant influence on the polymerisation processes. The polymerisation processes in active liquid components are sensitive to microgravitation, temperature variations (-150{ldots}+1500C), high vacuum (10-3{ldots}10-7 Pa), atomic oxygen flux (on LEO), UV and VUV irradiations, X-ray and γ -irradiations, high energy electron and ion fluxes. Experiments of polymerisation processes under simulated free space conditions were conducted. The influences of high vacuum, high energy ion beam and rf- and mw-plasma on polymerisation of epoxy resins were observed. The effects of low molecular components evaporations, free radical formations, additional chemical reactions and mixing processes during polymerisation were observed. Our results showed, that the space factors can initiate the polymerisation reaction in epoxy matrix of glass and carbon fibre composites. The result can be used for a technology for large size constructions on Earth orbit, in far space and on space bodies as for deployed antennas, solar sail stringers, solar shield stringers, frame for large-size space station, frame for Moon, Mars, asteroids bases, frame for space plant on Earth orbit and on other celestial bodies. The study was partially supported by Alexander von Humboldt Foundation (A. Kondyurin) and European Space Agency, ESTEC (contract 17083/03/NL/Sfe "Space Environmental Effects on the Polymerisation of Composite Structures"). 1. A.Kondyurin, B.Lauke, Polymerisation processes in simulated free space conditions, Proceedings of the 9th International Symposium on Materials in a Space Environment

  16. Influence of storage times on bond strength of resin cements to root canal

    Directory of Open Access Journals (Sweden)

    Matheus Coêlho Bandéca

    2010-03-01

    Full Text Available The resin cements are responsible to retention of the indirect materials decreasing marginal leakage, increasing failure resistance compared with conventional cementation. The cementation within root canal is very hard due unfavorable conditions regarding the application of adhesive techniques caused by inadequate access. Therefore, considering the possibility to decrease steps of cementation, this study was performed to evaluate the bond strength of self-adhesive resin cement (RelyX TM U100, 3M ESPE and resin cement combined with self-ecthing adhesive system (Panavia® F 2.0, Kuraray light-cured with Quartz Tungsten Halogen (QTH following storage at 37 °C immediately after light-curing, 24 and 48 hours and 7 days. The root canals were prepared to receive the glass fiber post in the depth of 10 mm, irrigated with 17% EDTA and NaOCl, rinsed with distilled water and dried using paper points. The roots were perpendicularly sectioned into approximately 1 mm thick sections, obtaining ninety-six slices (n = 12. The slices were trimmed using a cylindrical diamond bur in the proximal surfaces until it touched the post and attached into a device, which were mounted on a strength tester (Bisco and loaded in tension at a speed of 0.5 mm/min until failure occurred at specimens. The analysis of variance (ANOVA and Tukey's post-hoc tests showed significant statistical differences (P .05. The resin cements 24 and 48 hours after light-curing were statistically similar among themselves (P > .05. The both resin cement showed similar bond strength into root canal on different storage times. The highest bond strength values of the resin cements were showed 7 days after curing.

  17. Studies on the Influence of Monomers on the Performance Properties of Epoxy Acrylate Resin

    Directory of Open Access Journals (Sweden)

    Amrita Sharma

    2008-01-01

    Full Text Available Twelve blend samples were prepared by physical mixing of epoxy acrylate resins with various monomers viz. ethoxylated phenol monoacrylate (EOPA, tripropylene glycol diacrylate (TPGDA and trimethylol propane tri acrylate(TMPTA, having weight ratio of epoxy acrylate resin and monomers are 50:50, 60:40, 70:30, 80:20. These samples were cured under UV radiation using 5% photo initiator by weight. These blends were evaluated for mechanical, chemical & thermal properties. It was found that the sample having mono & tri functional monomers shows better properties than the samples having di functional monomer.

  18. Influence of the light-curing unit, storage time and shade of a dental composite resin on the fluorescence

    Science.gov (United States)

    Queiroz, R. S.; Bandéca, M. C.; Calixto, L. R.; Gaiao, U.; Cuin, A.; Porto-Neto, S. T.

    2010-07-01

    The aim of this study was to determine the influence of three light-curing units, storage times and colors of the dental composite resin on the fluorescence. The specimens (diameter 10.0 ± 0.1 mm, thickness 1.0 ± 0.1 mm) were made using a stainless steel mold. The mold was filled with the microhybrid composite resin and a polyethylene film covered each side of the mold. After this, a glass slide was placed on the top of the mold. To standardize the top surface of the specimens a circular weight (1 kg) with an orifice to pass the light tip of the LCU was placed on the top surface and photo-activated during 40 s. Five specimens were made for each group. The groups were divided into 9 groups following the LCUs (one QTH and two LEDs), storage times (immediately after curing, 24 hours, 7 and 30 days) and colors (shades: A2E, A2D, and TC) of the composite resin. After photo-activation, the specimens were storage in artificial saliva during the storage times proposed to each group at 37°C and 100% humidity. The analysis of variance (ANOVA) and Tukey’s posthoc tests showed no significant difference between storage times (immediately, 24 hours and 30 days) ( P > 0.05). The means of fluorescence had difference significant to color and light-curing unit used to all period of storage ( P 0.05).

  19. Influence of Sealer and Light-Curing Units on Push-Out Bond Strength Of Composite Resin to Weakened Roots.

    Science.gov (United States)

    Lima, Adriana Corrêa de; Rached-Junior, Fuad Jacob; Faria, Natália Spadini de; Messias, Danielle Cristine; Chaves, Carolina de Andrade Lima; Freitas, Jessica Vavassori de; Baratto-Filho, Flares; Silva-Sousa, Yara Teresinha Corrêa

    2016-01-01

    The aim of this study was to assess the influence of sealer and light-curing unit on regional bond strength of resin composite to the weakened roots. Ninety roots of incisors were experimentally weakened, subjected to biomechanical preparation and filled with either Endofill, AH Plus or MTA Fillapex The roots were desobturated e reinforced with resin composite and fiber post light-activated with one of the light sources: halogen at 600 mW/ cm2 (QTH-600), LED at 800 mW/ cm2 (LED-800) and LED at 1500 mW/ cm2 (LED-1500). The roots were sectioned in slices from cervical, middle and apical root-reinforcement regions and analyzed by push out test, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Bond strength data were analyzed using three-way ANOVA and Tukey´s test (α=0.05). Specimens filled with AH Plus had higher bond strength, followed by MTA Fillapex and Endofill (pfilling material in the dentinal tubules for all groups. The eugenol-containing sealer (Endofill) compromised the push-out bond strength of composite resin to the root dentin. Bond strength was favored in the cervical region, and when LED-1500 was used.

  20. Influence of radiopaque fillers on physicochemical properties of a model epoxy resin-based root canal sealer

    Directory of Open Access Journals (Sweden)

    Fabricio Mezzomo COLLARES

    2013-12-01

    Full Text Available Objective: To verify the influence of radiopaque fillers on an epoxy resin-based sealer. Material and Methods: Experimental sealers were formulated by adding 20%, 40%, 60%, 80%, 100% and 120% of calcium tungstate, ytterbium trifluoride or barium sulphate by weight to an epoxy-resin-base. Setting time, flow, film thickness, radiopacity, sorption, solubility, pH and push-out bond strength were evaluated. Results: The setting time ranged from 373 to 612.66 min, the flow varied from 13.81±0.49 to 22.49±0.37 mm, and the film thickness ranged from 16.67±5.77 to 33.33±11.54 µm. The lowest pH was 5.47±0.53, and the highest was 6.99±0.03. Radiopacity varied from 0.38±0.04 to 2.57±0.21 mmAl and increased with the amount of filler. Calcium tungstate sealers had a higher sorption and solubility than other sealers. There was no significant difference in the push-out bond strength among the fillers at the 120% concentration. CONCLUSION: The inorganic fillers evaluated and their concentrations affect the physicochemical properties of an epoxy resin-based root canal sealer.

  1. A new approach to influence contact angle and surface free energy of resin-based dental restorative materials.

    Science.gov (United States)

    Rüttermann, Stefan; Trellenkamp, Taina; Bergmann, Nora; Raab, Wolfgang H-M; Ritter, Helmut; Janda, Ralf

    2011-03-01

    The purpose of the present study was to identify novel delivery systems and active agents which increase the water contact angle and reduce the surface free energy when added to resin-based dental restorative materials. Two delivery systems based on zeolite or novel polymeric hollow beads (Poly-Pore), loaded with two low surface tension active agents (hydroxy functional polydimethylsiloxane and polydimethylsiloxane) or a polymerizable active agent (silicone polyether acrylate) were used to modify commonly formulated experimental dental resin composites. The non-modified resin was used as a standard (ST). Flexural strength, flexural modulus, water sorption, solubility, polymerization shrinkage, surface roughness Ra, contact angle θ, total surface free energy γS, and the apolar γSLW, polar γSAB, Lewis acid γS+ and base γS- components, and the active agents surface tensions γL were determined (Pmaterials had significantly higher θ but significantly lower γS, γSAB and γS- than the ST. A Poly-Pore/polydimethyl siloxane delivery system yielded the highest θ (110.9±3.5°) acceptable physical properties and the lowest values for γSLW and γS-. Among the modified materials the polymerizable materials containing active agents had the lowest γAB and the highest γS+ and γS-. Although not significant, both of the zeolite delivery systems yielded higher γSLW, γS+ and γS- but lower γSAB than the Poly-Pore delivery systems. Poly-Pore based delivery systems highly loaded with low surface tension active agents were found not to influence the physical properties but to significantly increase the water contact angle and thus reduce surface free energy of dental resin composites.

  2. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    Science.gov (United States)

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

  3. Influence of surface roughness on streptococcal adhesion forces to composite resins

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion

  4. The influence of ultrasound on removal of prefabricated metal post cemented with different resin cements

    Directory of Open Access Journals (Sweden)

    Atiyeh Feiz

    2013-01-01

    Conclusion: Ultrasonic energy did not decrease the retention of posts cemented with Panavia or Maxcem Elite cements. Furthermore, it seems that there is no significant difference between removal force of self-etch (Panavia and the self-etch self-adhesive (Maxcem Elite resin cements.

  5. Influence of surface roughness on streptococcal adhesion forces to composite resins

    NARCIS (Netherlands)

    Mei, Li; Busscher, Henk J; van der Mei, Henny C; Ren, Yijin

    2011-01-01

    OBJECTIVE: To determine streptococcal adhesion forces with composite resins with different surface roughness. METHODS: Polishing and grinding were applied to obtain smooth (roughness 20 nm), moderately rough (150 nm) and rough (350 nm) surfaces of two orthodontic, light-cured composites. Adhesion fo

  6. INFLUENCE OF IRRADIATION EXPOSURE TIME ON THE DEPTH CURE OF RESTORATIVE RESIN COMPOSITE

    Directory of Open Access Journals (Sweden)

    Francesca Fabiano

    2014-02-01

    Full Text Available A study was conducted to evaluate the degree of conversion by the hardness measurements of a commercial resin composite. The specimens were prepared according to ISO 4049 and photo-activated for 20s – 40s – 60s with a light-emitting diodes (LEDs. To establish the optimal increment technique mono-layers 1 mm and 2 mm thick were tested. The ratio bottom-to-top was assessed for the mono-layers groups. Vickers hardness profiles were measured for mono-layer, bi-layer and tri-layer along the cross-section. The microhardness map showed difference in the mechanical characteristic of overlying resin confirmed by SEM images analysis of the fracture mechanics. Curing effectiveness of resin composite is not only dependent on the curing light unit but also from thickness of the resin composite and the duration of the exposure. The data suggest that an exposure time of 40 s or higher is required to provide composites with a homogeneous and high hardness, moreover, a 1 mm buildup multi-layering technique results in adequate curing of the bottom layer and better mechanical properties.

  7. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging

    OpenAIRE

    Silami,Francisca Daniele Jardilino; Tonani,Rafaella; Alandia-Román,Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    Abstract The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm...

  8. Influence of aromatic amine hardeners in the cure kinetics of an epoxy resin used in advanced composites

    Directory of Open Access Journals (Sweden)

    Michelle Leali Costa

    2005-03-01

    Full Text Available Composite structures for aerospace applications are mainly made by the well-known prepreg technology. In order to achieve adequate prepreg processing schedules, and consequently maximum fiber strength utilization, one has to know in deep the cure kinetics of matrix, which held the fibers together. This work describes a procedure to study the cure kinetic and has as example how aromatic amine hardeners influence the cure kinetics of an epoxy resin used in advanced composites. The investigation was carried out by using the DSC technique and it was found that depending on the system used the cure kinetics of the formulation obeys order n or autocatalytic order.

  9. Influence of polyurethane resin dies on the fit and adaptation of full veneer crowns.

    Science.gov (United States)

    Lillywhite, Graeme R R; Vohra, Fahim

    2015-01-01

    Polyurethane resin is a possible alternative to type IV dental stone for fabrication of indirect restorations however its dimensional accuracy is questionable. The aim was to investigate the dimensional accuracy of silica filled polyurethane resin die material by evaluating the marginal fit and adaptation of indirect gold castings. Experimental, in vitro study. Totally 40 copper plated replicas of a nickel chrome master die analogous to a veneer gold crown preparation were made and impressions recorded using polyvinylsiloxane material. Twenty impressions were poured in type IV dental stone (control group (Vel-mix, Kerr, UK) and the remaining (n = 20) in silica filled polyurethane die material (test group) (Alpha Die MF, CA, USA). Gold castings were fabricated for each die using standardized techniques. The castings were seated on their respective copper plated dies, embedded in resin and sectioned. The specimens were analyzed by measuring marginal opening and the area beneath the casting at a ×63 magnification and using image analysis software. Data were analyzed using a Student's t-test. No significant difference was observed between the experimental groups (P > 0.05). The mean marginal opening for type IV, dental stone and polyurethane resin, was 57 ± 22.6 μm and 63.47 ± 27.1 μm, respectively. Stone displayed a smaller area beneath the casting (31581 ± 16297 μm 2 ) as compared to polyurethane resin (35003 ± 23039 μm 2 ). The fit and adaptation of indirect gold castings made on polyurethane and type IV dental stone dies were comparable.

  10. Influence of chlorhexidine on dentin adhesive interface micromorphology and nanoleakage expression of resin cements.

    Science.gov (United States)

    Stape, Thiago Henrique Scarabello; Menezes, Murilo De Sousa; Barreto, Bruno De Castro Ferreira; Naves, Lucas Zago; Aguiar, Flávio Henrique Baggio; Quagliatto, Paulo Sérgio; Martins, Luís Roberto Marcondes

    2013-08-01

    This study focused on adhesive interface morphologic characterization and nanoleakage expression of resin cements bonded to human dentin pretreated with 1% chlorhexidine (CHX). Thirty-two non-carious human third molars were ground flat to expose superficial dentin. Resin composite blocks were luted to the exposed dentin using one conventional (RelyX ARC) and one self-adhesive resin cement (RelyX U100), with/without CHX pretreatment. Four groups (n = 8) were obtained: control groups (ARC and U100); experimental groups (ARC/CHX and U100/CHX) were pretreated with 1% CHX prior to the luting process. After storage in water for 24 h, the bonded teeth were sectioned into 0.9 × 0.9 mm(2) sticks producing a minimum of 12 sticks per tooth. Four sticks from each tooth were prepared for hybrid layer evaluation by scanning electron microscope analysis. The remaining sticks were immersed in silver nitrate for 24 h for either nanoleakage evaluation along the bonded interfaces or after rupture. Nanoleakage samples were carbon coated and examined using backscattered electron mode. Well-established hybrid layers were observed in the groups luted with RelyX ARC. Nanoleakage evaluation revealed increase nanoleakage in groups treated with CHX for both resin cements. Group U100/CHX exhibited the most pronouncing nanoleakage expression along with porous zones adjacent to the CHX pretreated dentin. The results suggest a possible incompatibility between CHX and RelyX U100 that raises the concern that the use of CHX with self-adhesive cements may adversely affect resin-dentin bond.

  11. Influence of light-curing unit systems on shear bond strength and marginal microleakage of composite resin restorations

    Directory of Open Access Journals (Sweden)

    Juliano Fernandes Sassi

    2008-03-01

    Full Text Available The aim of the present study was to evaluate the influence of different photopolymerization (halogen, halogen soft-start and LED systems on shear bond strength (SBS and marginal microleakage of composite resin restorations. Forty Class V cavities (enamel and dentin margins were prepared for microleakage assessment, and 160 enamel and dentin fragments were prepared for the SBS test, and divided into 4 groups. Kruskal-Wallis and Wilcoxon tests showed statistically significant difference in microleakage between the margins (p 0.05 neither between substrates nor among groups. It was concluded that Soft-Start technique with high intensity end-light influenced negatively the cervical marginal sealing, but the light-curing systems did not influence adhesion.

  12. The influence of "C-factor" and light activation technique on polymerization contraction forces of resin composite

    Directory of Open Access Journals (Sweden)

    Sérgio Kiyoshi Ishikiriama

    2012-12-01

    Full Text Available OBJECTIVES: This study evaluated the influence of the cavity configuration factor ("C-Factor" and light activation technique on polymerization contraction forces of a Bis-GMA-based composite resin (Charisma, Heraeus Kulzer. MATERIAL AND METHODS: Three different pairs of steel moving bases were connected to a universal testing machine (emic DL 500: groups A and B - 2x2 mm (CF=0.33, groups C and D - 3x2 mm (CF=0.66, groups e and F - 6x2 mm (CF=1.5. After adjustment of the height between the pair of bases so that the resin had a volume of 12 mm³ in all groups, the material was inserted and polymerized by two different methods: pulse delay (100 mW/cm² for 5 s, 40 s interval, 600 mW/cm² for 20 s and continuous pulse (600 mW/cm² for 20 s. Each configuration was light cured with both techniques. Tensions generated during polymerization were recorded by 120 s. The values were expressed in curves (Force(N x Time(s and averages compared by statistical analysis (ANOVA and Tukey's test, p<0.05. RESULTS: For the 2x2 and 3x2 bases, with a reduced C-Factor, significant differences were found between the light curing methods. For 6x2 base, with high C-Factor, the light curing method did not influence the contraction forces of the composite resin. CONCLUSIONS: Pulse delay technique can determine less stress on tooth/restoration interface of adhesive restorations only when a reduced C-Factor is present.

  13. Influence of method and period of storage on the microtensile bond strength of indirect composite resin restorations to dentine

    Directory of Open Access Journals (Sweden)

    Fernanda Ribeiro Santana

    2008-12-01

    Full Text Available This study evaluated the influence of the method and period of storage on the adhesive bond strength of indirect composite resin to bovine dentin. Ninety bovine incisors were stored in three different solutions: 0.2% thymol, 10% formalin, and 0.2% sodium azide, during 3 periods of storage: 7 days, 30 days and 6 months, resulting in 9 groups (n = 10. The roots were cut off and the buccal surface was ground with #600-grit silicon carbide paper. The surface was conditioned with 37% phosphoric acid for 15 s and a composite resin restoration (TPH Spectrum was fixed using a one-bottle adhesive system (Adper Single Bond and a dual-cured resinous cement (Rely X ARC under a load of 500 g for 5 minutes. The samples were serially cut perpendicular to the bonded interface to obtain slices of 1.2 mm in thickness. Each slab was trimmed with a cylindrical diamond bur resulting in an hourglass shape with a cross-sectional area of approximately 1 mm². The microtensile bond strength (μTBS testing was performed in a testing machine (EMIC 2000 DL at a 0.5 mm/minute crosshead-speed until failure. After fracture, the specimens were examined under SEM to analyze the mode of fracture. μTBS Means were expressed in MPa and the data were analyzed by two-way ANOVA (3X3 and the Tukey test (α = 0.05. The storage times of 7 and 30 days produced no significant difference irrespective of the solution type. The formalin and thymol solutions, however, did have a negative influence on bond strength when the teeth were stored for 6 months.

  14. Space charge behaviour in an epoxy resin: the influence of fillers, temperature and electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Gallot-Lavallee, O [Laboratoire de Genie Electrique de Toulouse, Universite Paul Sabatier-118, Route de Narbonne, Toulouse 31062 (France); Teyssedre, G [Laboratoire de Genie Electrique de Toulouse, Universite Paul Sabatier-118, Route de Narbonne, Toulouse 31062 (France); Laurent, C [Laboratoire de Genie Electrique de Toulouse, Universite Paul Sabatier-118, Route de Narbonne, Toulouse 31062 (France); Rowe, S [Direction des Recherches Materiaux, Schneider Electric SA-20, Rue Henri Tarze, Grenoble 38050 (France)

    2005-06-21

    This study aims to characterize the behaviour of the space charge in an epoxy resin used as electrical insulation in systems such as transformers and bus bars. Temperature, field level, filler content and nature of the electrodes are the parameters that were considered. Space charge measurements were performed using the pulsed electro acoustic technique, in a range of field and temperature up to 40 kV mm{sup -1} and 72 deg. C, respectively, on gold-coated and un-coated samples. We discuss the possibility of performing space charge measurement on filled epoxy resin despite the piezoelectricity of quartz fillers. Under dc field we observed a quasi-symmetrical build-up of homocharges at both electrodes, followed by a substitution of the homocharges by heterocharges, mainly close to the cathode. In addition, we recorded the space charge behaviour just before breakdown on a filled sample at 72 deg. C under 12 kV mm{sup -1}.

  15. Staining susceptibility of methacrylate and silorane-based materials: influence of resin type and storage time

    Directory of Open Access Journals (Sweden)

    Leonardo Fernandes da Cunha

    2013-06-01

    Full Text Available Introduction: The color stability of composite resins is a fundamental factor in their clinical behavior. Objective: To evaluate the color stability of composite resins of different colors exposed to a cola-based soft drink after different storage periods. Additionally, three methacrylate-based materials and one silorane-based material were evaluated. Material and methods: Specimens of three methacrylate-based materials (Opallis EA3, DA3 and T-Neutral; Filtek Supreme XT A3E, A3D and CT; 4 Seasons A3 Enamel, A3 Dentin and High Value and one silorane-based material (Filtek P90 A3 were prepared, light-cured for 40 s, and manually polished with Sof-Lex discs. Samples were stored for 1 h, 24 h or 7 days. The color was evaluated by CIE-Lab system before and after immersion for 10 min in a cola-based soft drink. Color variation (∆E was calculated from individual values of L*, a* and b*, being considered imperceptible when < 1, clinically acceptable when ≤ 3.3, and clinically inacceptable when higher than 3.3. Data were evaluated by two-way Anova and Dunnett’s T3 tests (α = 0.05. Results: There were differences among the resins (p < 0.001, with an interaction effect being also observed (p < 0.001. Storage time was not significant (p = 0.246. P90 showed a ∆E smaller than one unit at all studied times. Supreme XT CT and 4 Seasons High Value showed higher ∆E, but not above the critical value of 3.3. The only material that showed ∆E higher than 3.3 was Opallis DA3 after 1 h of storage. Conclusion: The silorane-based composite resin showed smaller ∆E at the times studied.

  16. Heat Treatment Influences Monomer Conversion and Bond Strength of Indirect Composite Resin Restorations.

    Science.gov (United States)

    Magne, Pascal; Malta, Daniel Alexandre Menezes Pedrosa; Enciso, Reyes; Monteiro-Junior, Sylvio

    2015-12-01

    To assess the resin microtensile bond strength (MTBS) and the degree of conversion (DC) of indirect composite resin restorations polymerized with light and heat. Two direct (Filtek Z100 and Premise) and one indirect (Premise Indirect) composite resins were polymerized with a combination of light and heat (138°C for 20 min). For MTBS, 42 cylinders were fabricated (n = 7). After the surface treatment, cylinders were bonded to each other using adhesive resin (Optibond FL). Specimens were stored in water for 24 h. Another 15 cylinders (n = 5) were fabricated for determining degree of conversion using Fourier Transform Infrared Spectrometry immediately and at 24 h. The MTBS and the DC was submitted to two-way ANOVA. The interaction with existing data was explored with univariate ANOVA and two-way ANOVA. Tukey's HSD post-hoc test was used to detect pairwise differences (α = 0.05). The MTBS to light and heat polymerized Z100 was 75.7 MPa, significantly higher than that to Premise (58.6 MPa) and Premise Indirect (63.9 MPa). The immediate DC for Z100, Premise, and Premise Indirect were 51.0%, 68.7%, and 61.8%, respectively. The DC at 24 h ranged from 53.4% (Z100) to 72.8% (Premise Indirect) and significantly increased for Premise Indirect only. Comparison with previously published data revealed that the heat treatment increased both MTBS and DC of Premise and Premise Indirect. Z100 showed better bond strength but lower DC. Heat treatment and a 24-h delay before delivery can benefit DC of Premise Indirect. The increase in DC of Premise and Premise Indirect did not affect their bond strength.

  17. Influence of microleakage, surface roughness and biofilm control on secondary caries formation around composite resin restorations: an in situ evaluation

    Directory of Open Access Journals (Sweden)

    Fábio Garcia Lima

    2009-02-01

    Full Text Available This study was carried out to evaluate in situ the influence of microleakage, surface roughness and biofilm control on caries formation around composite resin restorations. During 28 days, 12 volunteers wore palatal devices containing bovine enamel slabs restored with composite resin. Restorations were made without leakage, when the adhesive system was applied, or with leakage, when adhesive system was omitted. Half of the restorations in each group were finished and the remaining were finished and polished. In one side of the palatal device, biofilm was left to accumulate over the restored slabs, and in the other side dental slabs were brushed, to allow biofilm removal. There was an extraoral application of 20% sucrose solution (8x/day over the enamel slabs. The formation of caries lesions (white spots was evaluated by visual inspection under stereomicroscopy. Additionally, the dental slabs were sectioned and observed under polarized light microscopy. Data were submitted to Kruskal-Wallis test and Spearman's correlation test at 5% significance level. Polishing and bonding were not significant factors regarding white spot formation (p>0.05. Biofilm control (brushing was associated with reduction of caries formation close to the restorations (p<0.01. Polarized light microscopy confirmed the visual inspection findings. These results suggest that while microleakage and surface roughness did not influence caries lesion formation, biofilm control may prevent the enamel demineralization.

  18. Chemical and morphological features of nanofilled composite resin: influence of finishing and polishing procedures and fluoride solutions.

    Science.gov (United States)

    de Oliveira, Ana Luísa Botta Martins; Domingos, Patrícia Aleixo Dos Santos; Palma-Dibb, Regina Guenka; Garcia, Patrícia Petromilli Nordi Sasso

    2012-02-01

    This study evaluated the influence of finishing and polishing procedures and different fluoride solutions on superficial morphology and chemistry of the nanofilled composite resin Supreme XT (3M) through the EDX analysis and SEM evaluation. Circular specimens (n = 30) of 10 mm diameter and 2 mm thickness were prepared, with half of the sample assays finished and polished with Super-Snap® sandpaper. The experimental groups were divided according to the presence or absence of finishing and polishing and solutions (artificial saliva, 0.05% of manipulated sodium fluoride solution, Fluordent Reach, Oral B, Fluorgard). Specimens were immersed in each respective solution for 1 min per day, during 60 days and stored in artificial saliva at 37 ± 1°C between immersion periods. Topography and chemical analysis was qualitative. It was observed that specimens submitted to finishing and polishing procedures had lower superficial degradation. Fluoride solutions promoted superficial alterations on specimens, being the highest degradation obtained with Fluordent Reach. It can be concluded that finishing and polishing procedures and the immersion media influence the superficial morphology of composite resin tested; the Fluordent Reach was the fluoride solution that most affected the material's surface.

  19. Influence of microleakage, surface roughness and biofilm control on secondary caries formation around composite resin restorations: an in situ evaluation.

    Science.gov (United States)

    Lima, Fábio Garcia; Romano, Ana Regina; Correa, Marcos Britto; Demarco, Flávio Fernando

    2009-01-01

    This study was carried out to evaluate in situ the influence of microleakage, surface roughness and biofilm control on caries formation around composite resin restorations. During 28 days, 12 volunteers wore palatal devices containing bovine enamel slabs restored with composite resin. Restorations were made without leakage, when the adhesive system was applied, or with leakage, when adhesive system was omitted. Half of the restorations in each group were finished and the remaining were finished and polished. In one side of the palatal device, biofilm was left to accumulate over the restored slabs, and in the other side dental slabs were brushed, to allow biofilm removal. There was an extraoral application of 20% sucrose solution (8x/day) over the enamel slabs. The formation of caries lesions (white spots) was evaluated by visual inspection under stereomicroscopy. Additionally, the dental slabs were sectioned and observed under polarized light microscopy. Data were submitted to Kruskal-Wallis test and Spearman's correlation test at 5% significance level. Polishing and bonding were not significant factors regarding white spot formation (p>0.05). Biofilm control (brushing) was associated with reduction of caries formation close to the restorations (p<0.01). Polarized light microscopy confirmed the visual inspection findings. These results suggest that while microleakage and surface roughness did not influence caries lesion formation, biofilm control may prevent the enamel demineralization.

  20. Influence of different manipulation methods on surface roughness of auto polymerized acrylic resin

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2009-10-01

    Full Text Available Objective: The aim of this study was to evaluate the surface roughness of acrylic resin according to the manipulation method.Methods: Sixty specimens were randomly divided into four groups (n=15 according to the manipulation method: G1 - addition with pressure, G2 - addition without pressure, G3 - mass with pressure and G4 - mass without pressure. After resin polymerization, all specimens were submitted to finishing with abrasive paper and mechanical polishing. Topographical surface analysis surfaces was performed twice on each sample using the rugosimeter. Results: The results were statistically analyzed and means were: G1 - 0,130μm; G2 - 0,120μm, G3 - 0,218μm e G4 - 0,192μm. ANOVA for one criterion and the Tukey test showed significant difference between G1 and G3, G2 and G3, G2 and G4. Conclusion: The manipulation method seems to affect the physical characteristics of auto polymerized acrylic resin. The addition manipulation method decreased the surface roughness.

  1. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    Science.gov (United States)

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

  2. Influence of the amount of UV component in daylight simulator on the color of dental composite resins.

    Science.gov (United States)

    Lu, Huan; Lee, Yong-Keun; Villalta, Patricia; Powers, John M; Garcia-Godoy, Franklin

    2006-11-01

    Color of fluorescent substances is influenced by the amount of ultraviolet (UV) component in the illumination. Color of fluorescent dental composite resins may change by the amount of UV component in the ambient light, but there have been few studies on this subject. The purpose of this study was to determine the differences in color and color parameters such as lightness, chroma, and hue of composite resins created by varying the amount of UV component of a pulsed-xenon source that is conditioned to approximate the Commission Internationale de l'Eclairage (CIE) standard illuminant D65. A spectrophotometer, in which the UV component of a daylight simulator could be adjusted, was developed. Eight light-polymerized dental composite resins, A3 shade, were studied. Five disk-shaped specimens, 10 x 3 mm, were prepared for each material. Color of specimens was measured on a reflection spectrophotometer over a white background relative to 3 illuminations, which had the same spectral power distribution of the CIE standard illuminant D65 in visible range, but different UV component. D65 indicated the illumination in which the UV component of the pulsed-xenon source was adjusted to the CIE standard illuminant D65 using a UV adjustment tile. UV-EXC indicated the illumination in which the UV component of the source was excluded with a UV filter. UV-INC indicated the illumination in which the UV component was included. Differences in color parameters by the illumination were analyzed with repeated-measures 1-way analysis of variance (ANOVA) by the brand of composite resins. Differences in color (DeltaE*(ab)) and color parameters such as lightness (DeltaL*), chroma (DeltaC*(ab)), and hue angle (Deltah) were analyzed with 3-way ANOVA, with the independent variables of brand of composite resin, combination of illuminations, and type of color parameters (alpha = .05). Color differences (DeltaE*(ab)) by the amount of UV component in the illuminations ranged between 0.3 and 1.4 for D

  3. Influence of atmospheric pressure low-temperature plasma treatment on the shear bond strength between zirconia and resin cement.

    Science.gov (United States)

    Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro

    2016-10-01

    Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  4. Influence of polymerization method, curing process, and length of time of storage in water on the residual methyl methacrylate content in dental acrylic resins.

    Science.gov (United States)

    Bayraktar, Gulsen; Guvener, Bora; Bural, Canan; Uresin, Yagiz

    2006-02-01

    This study compared the influence of different polymerization methods (heat, auto-, and microwave energy), different curing processes (in the case of heat- and autopolymerized specimens), and length of storage of the polymerized specimens in distilled water at 37 degrees C on the residual methyl methacrylate (MMA) content in dental acrylic resin specimens. Residual MMA of 120 resin specimens were measured using high-performance liquid chromatography. For the heat-polymerized resins, the lowest residual MMA content was obtained when they were given a long-term terminal boil and then stored in the distilled water for at least 1 day. For the autopolymerized resins, the lowest residual MMA content was obtained when they were additionally cured in water at 60 degrees C and then stored in the distilled water at least 1 day. For the microwave-polymerized resins, the lowest residual MMA content was obtained when they were stored in the distilled water at least 1 month. The lowest overall residual MMA content was obtained from heat-polymerized specimens that were given a long-term terminal boil cure and then stored in the distilled water at least 1 day. Different polymerization methods and curing processes have different effects on residual MMA content. It is thus shown that storing a dental acrylic resin specimen in distilled water at 37 degrees C is a simple but effective method of reducing its residual MMA content.

  5. Influence of bleaching agents on the microhardness of nanoparticle resin composite

    Directory of Open Access Journals (Sweden)

    Vanderlei Salvador Bagnato

    2009-01-01

    Full Text Available Objective: To assess the effect of bleaching agents on the microhardness of nanoparticle resin composite. Methods: Twenty-eight cylindrical test specimens (8x1mm of FiltekTM Supreme XT resin (3M/ESPE were prepared and divided into 5 groups. The initial Vickers microhardness was measured (load of 50 grams force for 30 seconds on the top surface of the test specimens. The groupswere treated and divided as follows: G1 – artificial saliva (21 days - control; G2 - 7% hydrogen peroxide gel applied for 4h/day, for 14 days; G3 - 10% carbamide peroxide for 4h/day, for 14 days: G4 – 35% hydrogen peroxide gel applied in three sessions of 30 minutes each, with an interval of one week (21 days between the sessions; G5 - 35% carbamide peroxide, three sessions of 30 minutes each, with an interval of one week (21 days between the sessions. The top surfaces of the test specimens received treatment and were submitted to the Vickers microhardness test. Results: The results obtained were submitted to the Analysis of Variance at a fixed criterion, at a level of significance of p=0.05. No significant differences were observed among the treatments tested (p=0.42 when compared with G1. Significant differences (Tukey test were found when the initial microhardness values were compared with the values after experimental treatments (p<0.01. Conclusion: The application of bleaching agents did not alter the microhardness of resin composites. Therefore, there is no need to change restorations after bleaching.

  6. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    Science.gov (United States)

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  7. Influence of a hydrophobic resin coating on the bonding efficacy of three universal adhesives.

    Science.gov (United States)

    Muñoz, Miguel Angel; Sezinando, Ana; Luque-Martinez, Issis; Szesz, Anna Luiza; Reis, Alessandra; Loguercio, Alessandro D; Bombarda, Nara Hellen; Perdigão, Jorge

    2014-05-01

    To evaluate the effect of an additional hydrophobic resin coating (HE) on the resin-dentine microtensile bond strengths (μTBS), nanoleakage (NL), and in situ degree of conversion (DC) of three universal adhesives used in the etch-and-rinse (ER) and the self-etch (SE) modes. Sixty caries-free extracted third molars were divided into 12 groups according to the combination of the factors adhesive (All-Bond Universal [ABU]; G-Bond Plus [GBP] and Scotchbond Universal [SBU]), adhesive strategy (ER and SE), and the use of HE (Heliobond; yes or no). After restorations were constructed, specimens were stored in water (37°C/24h) and sectioned into resin-dentine beams (0.8mm(2)) to be tested under tension (0.5mm/min). Selected beams from each tooth were used for DC quantification and for NL evaluation. Data from each adhesive were analyzed with two-way ANOVA and Tukey's test (α=0.05). ABU and GBP resulted in higher μTBS in the ER mode. The use of HE increased the μTBS of ABU and GBP only in the SE mode. Lower NL was observed for SBU and ABU in the ER mode+HE, and for GBP in the SE mode+HE. SBU and GBP showed higher DC when used in the ER mode, which was increased with HE application. The DC of ABU was similar in all conditions. The conversion of 1-step SE to 2-step SE may increase the μTBS and DC of current universal adhesives. The reduction in the NL is more dependent on the adhesive composition than on the bonding strategy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. THE INFLUENCE OF MIEX® RESIN FOR WATER TREATMENT EFFICIENCYIN A HYBRID MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    Mariola Rajca

    2014-10-01

    Full Text Available The paper presents the results of studies related to the effectiveness of removal of natural organic matter (NOM from water using hybrid membrane reactor in which ion exchange and ultrafiltration processes were performed. MIEX® resin by Orica Watercare and immersed ultrafiltration polyvinylidene fluoride capillary module ZeeWeed 1 (ZW 1 by GE Power&Water operated at negative pressure were used. The application of multifunctional reactor had a positive effect on the removal of contaminants and enabled the production of high quality water. Additionally, in refer to single stage ultrafiltration it minimalized the occurrence of membrane fouling.

  9. Influence of resin cement shade on the color and translucency of ceramic veneers

    OpenAIRE

    Daiana Kelly Lopes HERNANDES; ARRAIS,Cesar Augusto Galvão; LIMA, Erick; Paulo Francisco CESAR; Rodrigues,José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED...

  10. The influence of the cavity preparation design on marginal accuracy of laboratory-processed resin composite restorations.

    Science.gov (United States)

    Fonseca, Rodrigo Borges; Correr-Sobrinho, Lourenço; Fernandes-Neto, Alfredo Júlio; Quagliatto, Paulo Sérgio; Soares, Carlos José

    2008-03-01

    The aim of this study was to evaluate the influence of different cavity preparation designs on marginal accuracy of laboratory-processed resin composite restored teeth. Eighty mandibular human third molars were selected. There were two experimental factors, occlusal isthmus width (narrow vs wide) and cuspal coverage (inlay, one-cusp onlay, two-cusp onlay, and all-cusp onlay), resulting on eight groups (N = 10). Indirect composite restorations (SR Adoro, Ivoclar-Vivadent) were manufactured and positioned over each respective preparation. Marginal accuracy evaluation was accomplished using a stereomicroscope at three points on buccal, lingual, mesial, and distal regions with 40x magnification. The results showed significant differences (P = 0.00) with wide inlay showing the best overall marginal accuracy and narrow inlay the worst one. Two-way analysis of variance (ANOVA) showed significant differences when considering the factor occlusal isthmus width (P = 0.00). In general, preparations with wide occlusal isthmus presented better results than narrow ones, except for wide all-cusp onlays; however, the test failed to show differences when considering the cuspal coverage (P = 0.42) or the interaction between both factors (P = 0.30). The effect of occlusal width extension on marginal accuracy of indirect composite resin restorations is significant, with lower values of gaps width in wide preparations, but since in a clinical situation this would mean greater removal of sound tooth structure, less-aggressive preparations combined with other restorative procedures seem to be more feasible.

  11. The influence of four dual-cure resin cements and surface treatment selection to bond strength of fiber post

    Institute of Scientific and Technical Information of China (English)

    Chang Liu; Hong Liu; Yue-Tong Qian; Song Zhu; Su-Qian Zhao

    2014-01-01

    In this study, we evaluate the influence of post surface pre-treatments on the bond strength of four different cements to glass fiber posts. Eighty extracted human maxillary central incisors and canines were endodontically treated and standardized post spaces were prepared. Four post pre-treatments were tested:(i) no pre-treatment (NS, control), (ii) sandblasting (SA), (iii) silanization (SI) and (iv) sandblasting followed by silanization (SS). Per pre-treatment, four dual-cure resin cements were used for luting posts:DMG LUXACORE Smartmix Dual, Multilink Automix, RelyX Unicem and Panavia F2.0. All the specimens were subjected to micro push-out test. Two-way analysis of variance and Tukey post hoc tests were performed (a50.05) to analyze the data. Bond strength was significantly affected by the type of resin cement, and bond strengths of RelyX Unicem and Panavia F2.0 to the fiber posts were significantly higher than the other cement groups. Sandblasting significantly increased the bond strength of DMG group to the fiber posts.

  12. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging

    Science.gov (United States)

    Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel; Jones, Robert S.

    2012-10-01

    The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, pcomposite materials affect CP-OCT signal attenuation.

  13. Low shrinkage composite resins: influence on sealing ability in unfavorable C-factor cavities

    Directory of Open Access Journals (Sweden)

    Eliza Burlamaqui Klautau

    2011-02-01

    Full Text Available The present investigation observed the sealing ability of low shrinkage composite resins in large and deep cavities, placed and photocured in one increment. Large, deep cavities (5.0 mm diameter and 2.5 mm deep surrounded by enamel were prepared in bovine teeth, which were then divided into five groups. Groups 1, 2, 3 and 4: acid conditioning + Adper Single Bond (3M/ESPE, St Paul, MN, USA and restoration with Aelite LS Posterior (BISCO Inc. Schaumburg, IL, USA (G1; Filtek Z-350 (3M/ESPE,St Paul, MN, USA (G2; Filtek Z-350 Flow (3M/ESPE, St Paul, MN, USA (G3; Premisa (KERR Corporation, Orange, CA, USA (G4. Group 5: Silorane Adhesive system (3M/ESPE, St Paul, MN, USA + restoration with Filtek Low Shrinkage Posterior P90 (3M/ESPE, St Paul, MN, USA. After polymerization, the teeth were immersed in 0.5% basic fuchsine solution and immediately washed. Using the Imagetool Software, the extent of dye along the margins was calculated as a percentage of total perimeter. The restorations were then transversally sectioned and the depth of dye penetration was calculated in mm, using the same software. Kruskal-Wallis analysis for all groups showed no statistical differences for extent (p = 0.54 or depth (p = 0.8364 of dye penetration. According to this methodology, the so-called low shrinkage composite resins had the same sealing ability compared to regular and flowable nanocomposite materials.

  14. Influence of Pre-Sintered Zirconia Surface Conditioning on Shear Bond Strength to Resin Cement

    Directory of Open Access Journals (Sweden)

    Tomofumi Sawada

    2016-06-01

    Full Text Available This study analyzed the shear bond strength (SBS of resin composite on zirconia surface to which a specific conditioner was applied before sintering. After sintering of either conditioner-coated or uncoated specimens, both groups were divided into three subgroups by their respective surface modifications (n = 10 per group: no further treatment; etched with hydrofluoric acid; and sandblasted with 50 µm Al2O3 particles. Surfaces were characterized by measuring different surface roughness parameters (e.g., Ra and Rmax and water contact angles. Half of the specimens underwent thermocycling (10,000 cycles, 5–55 °C after self-adhesive resin cement build-up. The SBSs were measured using a universal testing machine, and the failure modes were analyzed by microscopy. Data were analyzed by nonparametric and parametric tests followed by post-hoc comparisons (α = 0.05. Conditioner-coated specimens increased both surface roughness and hydrophilicity (p < 0.01. In the non-thermocycled condition, sandblasted surfaces showed higher SBSs than other modifications, irrespective of conditioner application (p < 0.05. Adhesive fractures were commonly observed in the specimens. Thermocycling favored debonding and decreased SBSs. However, conditioner-coated specimens upon sandblasting showed the highest SBS (p < 0.05 and mixed fractures were partially observed. The combination of conditioner application before sintering and sandblasting after sintering showed the highest shear bond strength and indicated improvements concerning the failure mode.

  15. Influence of retainer design on two-unit cantilever resin-bonded glass fiber reinforced composite fixed dental prostheses: An in vitro and finite element analysis study

    NARCIS (Netherlands)

    Keulemans, F.; de Jager, N.; Kleverlaan, C.J.; Feilzer, A.J.

    2008-01-01

    Purpose: The aim of this study was to evaluate in vitro the influence of retainer design on the strenght of two-unit cantilever resin-bonded glass fiber-reinforced composite (FRC) fixed dental prostheses (FDP). Conclusion: A dual-wing retainer is the optimal design for replacement of a single premol

  16. Influence of water sorption on resin composite color and color variation amongst various composite brands with identical shade code: an in vitro evaluation

    NARCIS (Netherlands)

    S. Ardu; D. Gutemberg; I. Krejci; A.J. Feilzer; E. Di Bella; D. Dietschi

    2011-01-01

    Objective The aim of this study was to evaluate the influence of 1 week water storage on color stability of A2 enamel and dentine shade of 13 resin composites intended for anterior restorations and to evaluate the interchangeability of different composite brands of equal color shade. Methods 6 sampl

  17. Influence of retainer design on two-unit cantilever resin-bonded glass fiber reinforced composite fixed dental prostheses: An in vitro and finite element analysis study

    NARCIS (Netherlands)

    Keulemans, F.; de Jager, N.; Kleverlaan, C.J.; Feilzer, A.J.

    2008-01-01

    Purpose: The aim of this study was to evaluate in vitro the influence of retainer design on the strenght of two-unit cantilever resin-bonded glass fiber-reinforced composite (FRC) fixed dental prostheses (FDP). Conclusion: A dual-wing retainer is the optimal design for replacement of a single

  18. Influence of immediate dentin sealing techniques on cuspal deflection and fracture resistance of teeth restored with composite resin inlays.

    Science.gov (United States)

    Oliveira, L; Mota, E G; Borges, G A; Burnett, L H; Spohr, A M

    2014-01-01

    SUMMARY This research evaluated the influence of immediate dentin sealing (IDS) techniques on cuspal deflection and fracture resistance of teeth restored with composite resin inlays. Forty-eight maxillary premolars were divided into four groups: G1, sound teeth (control); G2, without IDS; G3, IDS with Clearfil SE Bond (CSE); and G4, IDS with CSE and Protect Liner F. The teeth from groups 2, 3, and 4 received mesio-distal-occlusal preparations. The impressions were made with vinyl polysiloxane, followed by provisional restoration and storage in water for seven days. The impressions were poured using type IV die stone, and inlays with Filtek Z250 composite resin were built over each cast. The inlays were luted with Panavia F. After storage in water for 72 hours, a 200-N load was applied on the occlusal surface using a metal sphere connected to a universal testing machine, and the cuspal deflection was measured with a micrometer. The specimens were then submitted to an axial load until failure. The following mean cuspal deflection (μm) and mean fracture resistance (N) followed by the same lowercase letter represent no statistical difference by analysis of variance and Tukey (p<0.05): cuspal deflection: G1, 3.1 ± 1.5(a); G2, 10.3 ± 4.6(b); G3, 5.5 ± 1.8(ac); and G4, 7.7 ± 5.1(bc); fracture resistance: G1, 1974 ± 708(a); G2, 1162 ± 474(b); G3, 700 ± 280(b); and G4, 810 ± 343(b). IDS with CSE allowed cuspal deflection comparable with that associated with sound teeth. The application of Protect Liner F did not contribute to a decrease in cuspal deflection. The IDS techniques did not influence the fracture resistance of teeth.

  19. Influence of aging solutions on wear resistance and hardness of selected resin-based dental composites.

    Science.gov (United States)

    Chladek, Grzegorz; Basa, Katarzyna; Żmudzki, Jarosław; Malara, Piotr; Nowak, Agnieszka J; Kasperski, Jacek

    2016-01-01

    The purpose of this study was to investigate the effect of different plasticizing aging solutions on wear resistance and hardness of selected universal resin-based dental composites. Three light cured (one nanofilled, two microhybride) and one hybride chemical cured composites were aged at 37 °C for 48 h in distillated water, ethyl alcohol solution or Listerine mouthwash. After aging the microhardness tests were carried out and then tribological tests were performed in the presence of aging solution at 37 °C. During wear testing coefficients of friction were determined. The maximal vertical loss in micrometers was determined with profilometer. Aging in all liquids resulted in a significant decrease in hardness of the test materials, with the largest values obtained successively in ethanol solution, mouthwash and water. The effect of the liquid was dependent on the particular material, but not the type of material (interpreted as the size of filler used). Introduction of mouthwash instead of water or ethanol solution resulted in a significant reduction in the coefficient of friction. The lowest wear resistance was registered after aging in ethanol and for the chemical cured hybrid composite, but the vertical loss was strongly material dependent. The effect of different aging solution, including commercial mouthrinse, on hardness and wear was material dependent, and cannot be deduced from their category or filler loading. There is no simple correlation between hardness of resin-based dental composites and their wear resistance, but softening of particular composites materials during aging leads to the reduction of its wear resistance.

  20. Influence of resin cement shade on the color and translucency of ceramic veneers

    Science.gov (United States)

    HERNANDES, Daiana Kelly Lopes; ARRAIS, Cesar Augusto Galvão; de LIMA, Erick; CESAR, Paulo Francisco; RODRIGUES, José Augusto

    2016-01-01

    ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3) layer on color change, translucency parameter (TP), and chroma of low (LT) and high (HT) translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent) was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick) under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE) of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B) and white (W) background readings was used for TP analysis, while chroma was calculated by the formula C* ab=(a*2+b*2)½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable. PMID:27556211

  1. Influence of resin cement shade on the color and translucency of ceramic veneers

    Directory of Open Access Journals (Sweden)

    Daiana Kelly Lopes HERNANDES

    Full Text Available ABSTRACT Objective This in vitro study evaluated the effect of two different shades of resin cement (RC- A1 and A3 layer on color change, translucency parameter (TP, and chroma of low (LT and high (HT translucent reinforced lithium disilicate ceramic laminates. Material and Methods One dual-cured RC (Variolink II, A1- and A3-shade, Ivoclar Vivadent was applied to 1-mm thick ceramic discs to create thin RC films (100 µm thick under the ceramics. The RC was exposed to light from a LED curing unit. Color change (ΔE of ceramic discs was measured according to CIEL*a*b* system with a standard illuminant D65 in reflectance mode in a spectrophotometer, operating in the light range of 360-740 nm, equipped with an integrating sphere. The color difference between black (B and white (W background readings was used for TP analysis, while chroma was calculated by the formula C*ab=(a*2+b*2½. ΔE of 3.3 was set as the threshold of clinically unacceptable. The results were evaluated by two-way ANOVA followed by Tukey's post hoc test. Results HT ceramics showed higher ΔE and higher TP than LT ceramics. A3-shade RC promoted higher ΔE than A1-shade cement, regardless of the ceramic translucency. No significant difference in TP was noted between ceramic discs with A1- and those with A3-shade cement. Ceramic with underlying RC showed lower TP than discs without RC. HT ceramics showed lower chroma than LT ceramics, regardless of the resin cement shade. The presence of A3-shade RC resulted in higher chroma than the presence of A1-shade RC. Conclusions Darker underlying RC layer promoted more pronounced changes in ceramic translucency, chroma, and shade of high translucent ceramic veneers. These differences may not be clinically differentiable.

  2. Bond strength between fiber posts and composite resin core: influence of temperature on silane coupling agents.

    Science.gov (United States)

    Novais, Veridiana Resende; Simamotos Júnior, Paulo Cézar; Rontani, Regina Maria Puppin; Correr-Sobrinho, Lourenço; Soares, Carlos José

    2012-01-01

    This study evaluated the effect of air drying temperature and different silane coupling agents on the bond strength between glass fiber posts and composite resin core. The post surface was cleaned with alcohol and treated with different silane coupling agents, being three prehydrolyzed silanes [Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE)] and one two-component silane [Silane Coupling Agent (Dentsply)]. Two post-silanization air drying temperatures, 23ºC and 60ºC, were applied. A cylindrical plastic matrix was placed around the silanized post and filled with composite resin. Each bonded post provided 7 slices for push-out testing. Each slice was loaded to failure under compression at a cross-head speed of 0.5 mm/min. Data were analyzed by two-way ANOVA and Scott-Knott tests (α=0.05). Dunnett's test was used to compare the mean of the control group with that of each experimental group. Scanning electron microscopy (SEM) was used to evaluate the interface of the fractured slices. For the 23ºC air drying temperature, the use of RelyX Ceramic Primer resulted in significantly lower bond strength than the other silane coupling agents, while the bond strength with Silane Coupling Agent was the highest of all groups. Only with Silane Coupling Agent, the bond strength for the 23ºC air drying temperature was significantly higher than that for 60ºC air drying. In conclusion, the use of warm air drying after silane application produced no increase in the bond strength between the fiber-reinforced composite post and the composite core. The two-component silane produced higher bond strength than all prehydrolyzed silanes when it was used with air drying at room temperature.

  3. Experimental study on influence of dimples on lubrication performance of glass fiber-epoxy resin composite under natural seawater lubrication

    Science.gov (United States)

    Wu, Shaofeng; Gao, Dianrong; Liang, Yingna; Chen, Bo

    2017-01-01

    Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/min. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.

  4. Experimental study on influence of dimples on lubrication performance of glass fiber-epoxy resin composite under natural seawater lubrication

    Science.gov (United States)

    Wu, Shaofeng; Gao, Dianrong; Liang, Yingna; Chen, Bo

    2016-08-01

    Bionic non-smooth surface is widely applied in metal and ceramics materials. In order to introduce this technology to high pressure seawater pump, the influence of bionic non-smooth surface on the engineering plastics used in pump should be investigated. The comparative tests are carried out with a ring-on-disc configuration under 800, 1000, 1200 and 1400 r/min in order to research the influence of the bionic non-smooth surface on glass fiber-epoxy resin composite(GF/EPR) under natural seawater lubrication. The disc surfaces are textured with five kinds of pits, which are semi-spherical, conical, cone-cylinder combined, cylindrical pits and through holes, respectively. A smooth surface is tested as reference. The results show that the lubrication performance of dimpled GF/EPR sample is much better than that of the smooth sample under all rotational speeds. The semi-spherical pits surface has more obvious friction reduction than the others, which shows that the least reduction is approximately 43.29% of smooth surface under 1200 r/min. However, the wear level is only marginally influenced by dimples. The surface morphology investigations disclose severe modifications caused by abrasive wear primarily. The results are helpful to vary friction properties of GF/EPR by non-smooth surface, or provide references to the design of non-smooth surfaces under certain condition.

  5. [Study on porcelain veneer restorations. 2. Influence of hydrofluoric acid on bonding strength at the porcelain-resin interface].

    Science.gov (United States)

    Gomi, A; Ikeda, M; Takeuchi, N; Ban, Y; Kamiya, K; Kanamori, K; Asai, T; Senda, A

    1990-06-01

    Recently, porcelain veneer restoratives have been introduced to the general practice, and their clinical performances have been confirmed through many longterm clinical investigations. It is expected that porcelain veneer restorations will perform successfully in esthetic, conservative and abhesive dentistry. It is an well known fact that the micro-mechanical bonding strength at the porcelain-resin interface which is achieved through the application of hydrofluoric acid to the porcelain surface is quite a strong bonding mechanism. However, there are very few studies reporting on the acid treatment of porcelain surfaces. The authors have been studying the influence of hydrofluoric acid on porcelain surfaces, and in our previous report we reported, the degrees of corroded porcelain treated with different concentrations of hydrofluoric acid for different durations of application. In the present study, shear bonding strength was measured between resin cements and porcelain surfaces treated with different concentrations (4, 6, 8%) of hydrofluoric acid and for different durations (1 to 24 min.), and the appropriate treatment of porcelain surfaces with regard to the bonding strength was determined. The results obtained were as follows. 1. As the treating time increased with any concentration (4, 6, 8%) of hydrofluoric acid, corrosion of the porcelain surface became more intense. Hardly any evidence of corrosion was observed on any porcelain surface treated for one minute, so it seems that the treatment of porcelain surfaces using 4 to 8% hydrofluoric acids should be continued for over three minutes. 2. Observation of the surface profile by SEM showed no significant differences between the surfaces treated for 3, 6, 12 and 24 minutes. 3. It was not clear as to how the differences of hydrofluoric acid concentrations (4, 6, 8%) plus the differences in the kinds of porcelain (Super Porcelain AAA, NORITAKE Co. Ltd., VMK 68, Vita Zahnfabrik Gmbh & Co., Cosmotech Porcelain, G

  6. The Influence of Surface Polish and Beverages on the Roughness of Nanohybrid and Microhybri Resin Composites

    Directory of Open Access Journals (Sweden)

    Sadeghi M

    2016-03-01

    Full Text Available Statement of the Problem: Surface roughness is a key factor in the aesthetics of restorative dentistry as it can determine the clinical quality and success of restorative materials. The chemical process of dissolution in the presence of mechanical forces can accelerate the surface roughness of tooth-coloured restorative materials. Objectives: To determine the degree of surface roughness of a microhybrid and a nanohybrid resin composite after polishing and immersion in various solutions. Materials and Methods: Two resin composites were used : a microhybrid (Gradia direct, GC, and a nanohybrid (Ice, SDI. A total of 54 disc-shaped specimens were prepared for each composite and immersed in distilled water incubated at 37 °C for 24 hours. After 24 h, the baseline measurement for surface roughness (Ra was performed and the specimens were divided into 3 groups of 18 and tested with unpolished or after polishing with Sof-Lex disc and Enhance point systems. Specimens in each group were subdivided into 3 subgroups (n = 6 and immersed in 3 solutions (distilled water, coffee, and cola for 7 days incubated at 37 °C. After 7 days, the specimens were rinsed with tap water for 10 seconds, dried with paper towel and Ra was measured again. Two randomly selected specimens of each group were sputter coated with gold and examined using a Field-Emission Scanning Electron Microscope (SEM. Results: Gradia direct showed a greater Ra than ice in all solutions for all polishing systems (p < 0.001. Specimens polished with Enhance point revealed a significantly greater roughness than Sof-Lex discs and both showed greater Ra than unpolished specimens. Specimens immersed in coffee exhibited significantly greater surface roughness than that of distilled water (p < 0.05 and cola (p < 0.001. Conclusions: Nano-hybrid composite showed a significantly smoother surface than microhybrid. Coffee exhibited the highest Ra compared to distilled water and cola. Enhance point revealed

  7. The influence of cavity preparation design on fracture strength and mode of fracture of laboratory-processed composite resin restorations.

    Science.gov (United States)

    Fonseca, Rodrigo Borges; Fernandes-Neto, Alfredo Julio; Correr-Sobrinho, Lourenco; Soares, Carlos Jose

    2007-10-01

    Removal of large amounts of sound tooth structure may result in a weakened restored tooth. Nevertheless, removal of tooth structure for cuspal coverage has been recommended to protect teeth restored with laboratory-processed composite resin (LPCR) from fracture. The purpose of this study was to evaluate the influence of different cavity preparation designs on fracture strength and modes of fracture of teeth restored with LPCR. Ninety anatomically similar human third mandibular molars were selected. There were 2 experimental factors, occlusal isthmus width (narrow versus wide) and cuspal coverage (inlay, 1-cusp onlay, 2-cusp onlay, and all-cusp onlay), and 1 control group that received no treatment, resulting in 9 groups (n=10). Indirect composite resin (SR Adoro) restorations were manufactured and adhesively cemented with Adper Single Bond 2 and Rely-X ARC. A compressive loading test (0.5 mm/min) was performed. The modes of fracture were classified according to 4 categories. One-way and 2-way ANOVA followed by Tukey-HSD test were used to statistically analyze the fracture load data (alpha =.05). The statistical analysis failed to show significant differences among restored groups but showed differences between these groups and the control group (P = .001). Two-way ANOVA failed to show any difference when considering the occlusal isthmus width alone (P = .98), cuspal coverage (P = .273), or the interaction between these factors (P = .972). Several teeth had fractures affecting a great amount of both restoration and tooth structure. This in vitro study showed restored teeth having similar fracture strength and fracture modes, suggesting that with the tested preparation designs, there is no advantage of cuspal coverage to protect LPCR restored teeth from fracture.

  8. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    Science.gov (United States)

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect.

  9. The influence of silane evaporation procedures on microtensile bond strength between a dental ceramic and a resin cement

    Directory of Open Access Journals (Sweden)

    Pereira Carolina

    2010-01-01

    Full Text Available Aim: To assess the influence of silane evaporation procedures on bond strength between a dental ceramic and a chemically activated resin cement. Materials and Methods: Eighteen blocks (6 mm Χ 14 mm Χ 14 mm of ceramic IPS Empress 2 were cemented (C and B to composite resin (InTen-S blocks using a chemical adhesive system (Lok. Six groups were analyzed, each with three blocks divided according to ceramic surface treatment: two control groups (no treatment, NT; 10% hydrofluoric acid plus silane Monobond-S dried at room temperature, HFS; the other four groups comprised different evaporation patterns (silane rinsed and dried at room temperature, SRT; silane rinsed in boiling water and dried as before, SBRT; silane rinsed with boiling water and heat dried at 50°C, SBH; silane dried at 50 ± 5°C, rinsed in boiling water and dried at room temperature, SHBRT. The cemented blocks were sectioned to obtain specimens for microtensile test 7 days after cementation and were stored in water for 30 days prior to testing. Fracture patterns were analyzed by optical and scanning electron microscopy. Statistics and Results: All blocks of NT debonded during sectioning. One way ANOVA tests showed higher bond strengths for HFS than for the other groups. SBRT and SBH were statistically similar, with higher bond strengths than SRT and SHBRT. Failures were 100% adhesive in SRT and SHBRT. Cohesive failures within the "adhesive zone" were detected in HFS (30%, SBRT (24% and SBH (40%. Conclusion: Silane treatment enhanced bond strength in all conditions evaluated, showing best results with HF etching.

  10. Influence of in situ post-bleaching times on resin composite shear bond strength to enamel and dentin.

    Science.gov (United States)

    Barbosa, Cinthia Maria; Sasaki, Robson Tetsuo; Flório, Flávia Martão; Basting, Roberta Tarkany

    2009-12-01

    To evaluate in situ the influence of time after treatment with a 16% carbamide peroxide home-use bleaching agent on the shear bond strength of resin-based composite to human enamel and dentin. 80 enamel slabs (E) and 80 dentin slabs (D) were obtained, embedded, flattened, sterilized and randomly fixed on the buccal surface of teeth in 20 volunteers. These specimens were submitted to treatment with a 16% carbamide peroxide bleaching agent (Pola Night) for 2 hours a day, for 3 weeks. The control group (C) consisted of slabs that were fixed on buccal tooth faces that did not receive any bleaching treatment. For the experimental groups, three slabs of E and three slabs of D were fixed to teeth of the same volunteers, and after bleaching treatment, the slabs were removed at different times: EI--immediate removal; E7--removal 7 days after treatment ended; E14--removal 14 days after treatment ended. After removal, the slabs were again embedded and microhybrid composite resin cylinders (Filtek Z250) were constructed and bonded using a one-bottle adhesive system (Single Bond) for shear bond strength tests. These tests were performed in a universal testing machine, with a speed of 0.5 mm/minute, with the data returned in MPa. The results were submitted to the ANOVA test. There were no significant differences with regards to the timespan for the E and D groups (P > 0.05). For the fracture mode analysis, there was a predominance of adhesive failures for Groups C, EI and E14 in enamel, with the same adhesive failures occurred for all groups in dentin. It was concluded that restorative procedures may be performed immediately after the end of the bleaching treatment.

  11. Influence of surface preparation on fracture load of resin composite-based repairs

    Science.gov (United States)

    Mateos-Palacios, Rocío; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda; Fons-Font, Antonio

    2015-01-01

    The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering. PMID:25810848

  12. Influence of surface preparation on fracture load of resin composite-based repairs.

    Science.gov (United States)

    Agustín-Panadero, Rubén; Mateos-Palacios, Rocío; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda; Fons-Font, Antonio

    2015-02-01

    The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering.

  13. Influence of fluoride- or triclosan-based desensitizing agents on adhesion of resin cements to dentin.

    Science.gov (United States)

    Dündar, Mine; Cal, Ebru; Gökçe, Bülent; Türkün, Murat; Ozcan, Mutlu

    2010-10-01

    Effect of desensitizers on the bond strength of resin cements to dentin was evaluated. Intact premolars (N = 90) were embedded in polymethyl methacrylate; dentin surfaces were exposed, and they were randomly divided into two main groups of cements (Duolink (D), Variolink II (V); n = 45 per group) and then into three desensitizer subgroups (n = 15 per subgroup). Teeth in controls (C) were treated according to cements' adhesion protocols; the other two groups received either fluoride- [Aqua-Prep F (F)] or triclosan-based [Seal&Protect (T)] desensitizers. Ceramic disks (Empress 2) were adhered; specimens were thermocycled (×5,000 cycles, 5-55 ± 1°C, dwell time 30 s) and subjected to shear bond strength test (MPa ± SD) in a universal testing machine (crosshead speed 1 mm/min). Failure types were classified using scanning electron microscope. For V, application of both desensitizers (29.6 ± 7.8 and 22.8 ± 2.8 for F and T, respectively) did not present significantly different results than that of the VC (21.2 ± 2.3; p > 0.05, one-way ANOVA). In D, F (20.6 ± 2.4) showed significantly higher results (p types.

  14. The influence of EI-21 redox ion-exchange resins on the secondary-coolant circuit water chemistry of vehicular nuclear power installations

    Science.gov (United States)

    Moskvin, L. N.; Rakov, V. T.

    2015-06-01

    The results obtained from testing the secondary-coolant circuit water chemistry of full-scale land-based prototype bench models of vehicular nuclear power installations equipped with water-cooled water-moderated and liquid-metal reactor plants are presented. The influence of copper-containing redox ionexchange resins intended for chemically deoxygenating steam condensate on the working fluid circulation loop's water chemistry is determined. The influence of redox ion-exchange resins on the water chemistry is evaluated by generalizing an array of data obtained in the course of extended monitoring using the methods relating to physicochemical analysis of the quality of condensate-feedwater path media and the methods relating to metallographic analysis of the state of a faulty steam generator's tube system surfaces. The deoxygenating effectiveness of the normal state turbine condensate vacuum deaeration system is experimentally determined. The refusal from applying redox ion-exchange resins in the condensate polishing ion-exchange filters is formulated based on the obtained data on the adverse effect of copper-containing redox ionexchange resins on the condensate-feedwater path water chemistry and based on the data testifying a sufficient effect from using the normal state turbine condensate vacuum deaeration system. Data on long-term operation of the prototype bench model of a vehicular nuclear power installation without subjecting the turbine condensate to chemical deoxygenation are presented.

  15. Influence of Different Types of Resin Luting Agents on Color Stability of Ceramic Laminate Veneers Subjected to Accelerated Artificial Aging.

    Science.gov (United States)

    Silami, Francisca Daniele Jardilino; Tonani, Rafaella; Alandia-Román, Carla Cecilia; Pires-de-Souza, Fernanda de Carvalho Panzeri

    2016-01-01

    The aim of this study was to evaluate the influence of accelerated aging (AAA) on the color stability of resin cements for bonding ceramic laminate veneers of different thicknesses. The occlusal surfaces of 80 healthy human molars were flattened. Ceramic laminate veneers (IPS e-max Ceram) of two thicknesses (0.5 and 1.0 mm) were bonded with three types of luting agents: light-cured, conventional dual and self-adhesive dual cement. Teeth without restorations and cement samples (0.5 mm) were used as control. After initial color evaluations, the samples were subjected to AAA for 580 h. After this, new color readouts were made, and the color stability (ΔE) and luminosity (ΔL) data were analyzed. The greatest color changes (pveneers were fixed with light-cured cement and the lowest when 1.0 mm veneers were fixed with conventional dual cement. There was no influence of the restoration thickness when the self-adhesive dual cement was used. When veneers were compared with the control groups, it was verified that the cement samples presented the greatest alterations (pcements. The changes in self-adhesive cement do not depend on restoration thickness.

  16. Color management of porcelain veneers: influence of dentin and resin cement colors

    NARCIS (Netherlands)

    Dozic, A.; Tsagkari, M.; Khashayar, G.; Aboushelib, M.

    2010-01-01

    Objective: Porcelain veneers have become an interesting treatment option to correct the shape and color of anterior teeth. Because of their limited thickness and high translucency, achieving a good color match is influenced by several variables. The aim of this work was to investigate the influence

  17. Influence of the curing method on the post-polymerization shrinkage stress of a composite resin

    Directory of Open Access Journals (Sweden)

    Leonardo Gonçalves Cunha

    2008-08-01

    Full Text Available The aim of this study was to evaluate the effect of different curing methods on the stress generated by the polymerization shrinkage of a restorative composite in two moments: immediately after light exposure and after 5 min. Photoactivation was performed using two different light sources: (1 xenon plasma arc (PAC light (1,500 mW/cm2 - 3s and (2 a quartz-tungsten-halogen (QTH light with three light-curing regimens: continuous exposure (40 s at 800 mW/cm2 - CL; soft-start (10 s at 150 mW/cm2 and 30 s at 800 mW/cm2 - SS and intermittent light [cycles of 4 s (2 s with light on at 600 mW/cm2 and 2 s of light off, for 80s - IL]. The composite resin was applied between two 5-mm diameter metallic rods, mounted in a servohydraulic machine. The maximum stress was recorded immediately after light exposure (FF and after 5 min (5F. The results were submitted to ANOVA and Tukey's test (5%. For each method, the results obtained in FF and 5F were, respectively: CL (3.58 and 4.46 MPa; SS (2.99 and 4.36 MPa; IL (3.11 and 4.32 MPa and PAC (0.72 and 3.27 MPa. The stress generated by the polymerization shrinkage during light exposure can be associated with the photoactivation method used. A significant increase in the stress level was observed during the post-curing period up to 5 min, for all evaluated methods.

  18. Bonding of composite resins to PEEK: the influence of adhesive systems and air-abrasion parameters.

    Science.gov (United States)

    Stawarczyk, Bogna; Taufall, Simon; Roos, Malgorzata; Schmidlin, Patrick R; Lümkemann, Nina

    2017-06-24

    The objective of the study was to investigate the tensile bond strength (TBS) to polyaryletheretherketone (PEEK) after different pretreatment and conditioning methods. Four hundred PEEK specimens were fabricated and allocated to the following air-abrasion methods (n 1 = 80/pretreatment): (i) 50 μm Al2O3 (0.05 MPa); (ii) 50 μm Al2O3 (0.35 MPa); (iii) 110 μm Al2O3 (0.05 MPa); (iv) 110 μm Al2O3 (0.35 MPa); and (v) Rocatec 110 μm (0.28 MPa). These pretreatments were combined with the following conditioning methods (n 2 = 20/pretreatment/conditioning): (a) visio.link (VL); (b) Monobond Plus/Heliobond (MH); (c) Scotchbond Universal (SU); and (d) dialog bonding fluid (DB). After veneering of all specimens with dialog occlusal and aging (28 days H2O, 37 °C + 20,000 thermal cycles, 5/55 °C), TBS was measured. Data was analysed using Kaplan-Meier survival analysis with Breslow-Gehan test and Cox-regressions. The major impact on TBS showed the conditioning, followed by the air-abrasion-pressure, while the grain size of the air-abrasion powder did not show any effect. Specimens air-abraded at 0.35 MPa showed the highest survival rates. However, within VL groups, this observation was not statistically significant. Within MH groups, pretreatment using 110 μm Al2O3 and 0.05 MPa resulted in higher survival rates compared to groups treated with 50 and 110 μm Al2O3 using a pressure of 0.35 MPa. The use of VL showed the highest survival rates between the adhesive systems and the TBS values higher than 25 MPa independent of the pretreatment method. As an exception, only VL showed significantly higher survival rates when compared to MH. The adequate choice of the adhesive system and higher pressures improved the TBS between PEEK and veneering resin composite. The particle size had no major impact. According to this study, best veneering of PEEK with dialog occlusal can be achieved by conditioning with visio.link in combination with the pretreatment of

  19. Influence of Light-Curing Mode on the Erosion Preventive Effect of Three Different Resin-Based Surface Sealants

    Directory of Open Access Journals (Sweden)

    Florian J. Wegehaupt

    2012-01-01

    Full Text Available Objectives. To investigate if reducing the light-curing time (while maintaining similar energy density of resin-based surface sealants influences their erosion-preventive potential and mechanical stability after thermomechanical loading. Methods. Dentine samples were treated as follows: group 1—untreated, groups 2–4—Seal&Protect, groups 5–7—experimental sealer, and groups 8–10—Syntac Classic system. Groups 2, 5 and 8 were light-cured for 10 s (1000 mW/cm2, groups 3, 6 and 9 for 7 s (1400 mW/cm2, and groups 4, 7, and 10 for 3 s (3200 mW/cm2. After water storage (7 d, first measurement was performed to evaluate baseline permeability of the sealants. After a thermomechanical loading (5000 cycles, 50/5°C, 12000 brushing strokes a second evaluation of permeability was conducted (measurement 2. Permeability was tested by storing the samples in HCl (pH 2.3; 24 h and measuring the dentine calcium release by atomic absorption spectroscopy. Results. For the first and second measurements, no influence of light-exposure time on permeability was observed (ANOVA: P>0.05. No significant difference in the stability of the respective sealants was observed when light-cured for different durations. Conclusion. Shortening the light-curing time, while maintaining energy density constant, has no influence on permeability and stability of the investigated sealants.

  20. Influence of enamel composite thickness on value, chroma and translucency of a high and a nonhigh refractive index resin composite.

    Science.gov (United States)

    Ferraris, Federico; Diamantopoulou, Sofia; Acunzo, Raffaele; Alcidi, Renato

    2014-01-01

    To evaluate the influence of thickness on the optical properties of two enamel shade composites, one with a high refractive index and one traditional. A medium value enamel shade was selected from the resin composites Enamel Plus HRi (UE2) and Enamel Plus HFO (GE2). Enamel Plus HRi is a high refractive index composite. Samples were fabricated in five different thicknesses: 0.3, 0.5, 1, 1.5 and 2 mm. Three specimens per material and thickness were fabricated. Three measurements per sample, over white, black and dentin composite background were generated with a spectrophotometer (Spectroshade Micro, MHT). Value, chroma, translucency and color differences (ΔE) of the specimens were calculated. RESULTS were analyzed by the Pearson correlation test, ANOVA and a post-hoc Tukey test. Increasing the thickness of the enamel layers decreased the translucency and the chroma of the substrate for both materials tested. For HRi the increase of the thickness resulted in an increase of the value, whereas for HFO it resulted in a reduction of the value. The two composites showed a significant difference in value for each thickness, but not in translucency and chroma. Color difference between them was perceptible in layers equal or higher than 0.5 mm. The high refractive index enamel (HRi) composite exhibits different optical behavior compared to the traditional one (HFO). HRi enamel composite behaves more like natural enamel as by increasing the thickness of the enamel layer, the value also increases.

  1. Influence of composition and powder/liquid ratio on setting characteristics and mechanical properties of autopolymerized hard direct denture reline resins based on methyl methacrylate and ethylene glycol dimethacrylate

    National Research Council Canada - National Science Library

    Yoshikazu OKUYAMA; Takanobu SHIRAISHI; Kazuhiro YOSHIDA; Tadafumi KUROGI; Ikuya WATANABE; Hiroshi MURATA

    2014-01-01

    We evaluated the influence of composition and powder/liquid (P/L) ratio on the setting characteristics and mechanical properties of autopolymerized hard direct denture reline resins composed of methyl methacrylate...

  2. Influence of chemical structures of benzodioxole-based coinitiators on the properties of the unfilled dental resin.

    Science.gov (United States)

    Shi, Suqing; Xiao, Pu; Wang, Kemin; Gong, Yongkuan; Nie, Jun

    2010-08-01

    To investigate the influence of chemical structures of benzodioxole-based coinitiator on the initiating reactivity and the mechanical properties of cured samples for the unfilled dental resin, a mixture of 2,2-bis[4-(2-hydroxy-3-methacryloxyprop-1-oxy)phenyl]propane (bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) (70/30 wt.%) was photoinduced by combinations of camphorquinone (CQ) and benzodioxole derivatives. 2-(N,N-Dimethylamino)ethyl methacrylate (DMEM) was used as control. The kinetics was monitored by a real-time Fourier transformation infrared spectroscopy (FTIR) and the dynamic mechanical analysis was performed on a dynamic mechanical analyzer (DMA). The cytotoxicity property of the cured samples was evaluated by MTT assay in vitro using VERO as reference cell lines. The results indicated that the 4-position phenyl ring substituents of the benzodioxole-based coinitiator had great influence on the initiating reactivity. Incorporating substituents with pi electron acceptors in the 4-position of phenyl ring led to the decrease of the rate of polymerization (R(p)) of the CQ/benzodioxole derivatives. However, the electron-donating substituents were useful to increase the reactivity. When compared with CQ/amine initiating systems, the combination of CQ and benzodioxole compounds caused lower R(p) but the comparable final double bond conversion. All the cured films initiated by CQ/benzodioxole derivatives had almost the same glass transition temperature (T(g)) and storage modulus. Indirect cytotoxicity assessment indicated low cytotoxicity of benzodioxole derivatives. These results were very useful for the design of benzodioxole derivatives with satisfactory reactivity and biocompatibility, and are very important for clinical applications.

  3. Evaluation of fracture resistance of indirect composite resin crowns by cyclic impact test: influence of crown and abutment materials.

    Science.gov (United States)

    Sakoguchi, Kenji; Minami, Hiroyuki; Suzuki, Shiro; Tanaka, Takuo

    2013-01-01

    This study evaluated the effect of abutment materials on the fracture resistance of composite crowns for premolars. Composite crowns were fabricated using two different indirect composite resin materials (Meta Color Prime Art or Estenia C&B) and cemented onto either a metal (Castwell M.C. 12) or composite resin (Build-It FR and FibreKor) abutment with resin cement (Panavia F2.0). Twenty-four specimens were fabricated for four groups (n=6 each) and subjected to 280-N cyclic impact loading at 1.0 Hz. The number of cycles which caused the composite crown to fracture was defined as its fracture resistance. All data were statistically analyzed using ANOVA and the Bonferroni test (α=0.05). Composite crowns cemented onto resin abutments showed higher fracture resistance than those cemented onto metal abutments.

  4. Influence of Curing Units and Indirect Restorative Materials on the Hardness of Two Dual-curing Resin Cements Evaluated by the Nanoindentation Test.

    Science.gov (United States)

    Kuguimiya, Rosiane Noqueira; Rode, Kátia Martins; Carneiro, Paula Mendes Acatauassú; Aranha, Ana Cecilia Corrêa; Turbino, Miriam Lacalle

    2015-06-01

    To evaluate the hardness of a dual-curing self-adhesive resin cement (RelyX U200) and a conventional dual-curing resin cement (RelyX ARC) cured with different light curing units of different wavelengths (Elipar Freelight 2 LED [430 to 480 nm, conventional], Bluephase LED [380 to 515 nm, polywave], AccuCure 3000 Laser [488 nm]) by means of the nanoindentation test. Bovine incisors were cleaned and then sectioned at the cementoenamel junction to remove the crown. After embedding in acrylic, dentin surfaces of the specimens were exposed and ground flat to standardize the surfaces. To simulate clinically placing indirect restorations, ceramic (IPS e.maxPress/Ivoclar Vivadent) or indirect composite resin (SR Adoro/Ivoclar Vivadent) slabs were cemented on dentin surfaces. The specimens were sectioned longitudinally at low speed under constant irrigation and then polished. In the positive control group, the cement was light cured without the interposition of indirect restorative material; in the negative control group, after the indirect restorative material was cemented, no light curing was performed, allowing only chemical polymerization of the cement. All specimens were stored in distilled water at 37°C for 7 days. Nanoindentadion hardness of the cement layer was measured under a 100-mN load. Data were statistically analyzed using ANOVA and Tukey's test (p < 0.05). Although the self-adhesive cement is technically simple, conventional cement showed the best polymerization performance. The polywave LED technology did not differ significantly from other light-curing units. The hardness of the resin cements evaluated was negatively influenced by the interposition of an indirect restorative material; only the LEDs were able to maintain the same degree of cement polymerization when an indirect restorative material was used. The photoactivation step is required during the cementation of indirect restorations to ensure adequate polymerization of dual-curing resin cements.

  5. 复合树脂外源性染色的影响因素%Influencing factors for extrinsic stainability of resin composite

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 邢文忠; 梁珊珊

    2012-01-01

    复合树脂在牙科学领域应用广泛,然而其颜色长期稳定性不佳成为复合树脂修复最大缺点之一.复合树脂成分、聚合程度、染色物质、表面粗糙度、染色去除方法等是影响复合树脂外源性染色的主要因素.本文对上述影响因素作一综述.%Resin composite is widely used in dentistry. However, their long-term instability of color has become one of the most disadvantages for restoration. The major influencing factors for extrinsic stainability of resin composite include the components of resin composite, the degree of conversion, colorants, surface roughness and processes for removing the stains. The object of the review is to summarize the influencing factors mentioned above.

  6. Surface roughness and hardness of a composite resin: influence of finishing and polishing and immersion methods

    Directory of Open Access Journals (Sweden)

    Ana Luísa Botta Martins de Oliveira

    2010-09-01

    Full Text Available This study evaluated the finishing and polishing effect on the surface roughness and hardness of the Filtek Supreme XT, in fluoride solutions. Specimens were prepared (n = 140 with half of the samples finished and polished with Super-Snap® disks. The experimental groups were divided according to the presence or absence of finishing and polishing and immersion solutions (artificial saliva, sodium fluoride solution at 0.05% - manipulated, Fluordent Reach, Oral B, Fluorgard. The specimens remained immersed in artificial saliva for 24 hours and were then subjected to initial analysis (baseline of surface roughness and Vickers microhardness. Next, they were immersed in different fluoride solutions for 1 min/day, for 60 days. Afterwards, a new surface roughness and microhardness reading was conducted. The data were submitted to a two-way ANOVA and Tukey's test (5% significance level. For the comparison of mean roughness and hardness at baseline and after 60 days, the paired Student t test was used. The results showed that the surface roughness and microhardness of the Filtek Supreme XT were influenced by the finishing and polishing procedure, independently of the immersion methods.

  7. Influence of silane content and filler distribution on chemical-mechanical properties of resin composites

    Directory of Open Access Journals (Sweden)

    Tathy Aparecida XAVIER

    2015-01-01

    Full Text Available This study investigated the influence of silane concentration and filler size distribution on the chemical-mechanical properties of experimental composites. Experimental composites with silane contents of 0%, 1% and 3% (in relation to filler mass and composites with mixtures of barium glass particles (median size = 0.4, 1 and 2 μm and nanometric silica were prepared for silane and filler analyses, respectively. The degree of conversion (DC was analyzed by FTIR. Biaxial flexural strength (BFS was tested after 24-h or 90-d storage in water, and fracture toughness, after 24 h. The data were subjected to ANOVA and Tukey’s test (p = 0.05. The DC was not significantly affected by the silane content or filler distribution. The 0% silane group had the lowest immediate BFS, and the 90-d storage time reduced the strength of the 0% and 3% groups. BFS was not affected by filler distribution, and aging decreased the BFS of all the groups. Silanization increased the fracture toughness of both the 1% and 3% groups, similarly. Significantly higher fracture toughness was observed for mixtures with 2 μm glass particles. Based on the results, 3% silane content boosted the initial strength, but was more prone to degradation after water storage. Variations in the filler distribution did not affect BFS, but fracture toughness was significantly improved by increasing the filler size.

  8. Influence of solvents on the bond strength of resin sealer to intraradicular dentin after retreatment

    Directory of Open Access Journals (Sweden)

    Marcelo PALHAIS

    Full Text Available Abstract This study evaluated the removal of filling material with ProTaper Universal Rotary Retreatment system (PTR combined with solvents and the influence of solvents on the bond strength (PBS of sealer to intraradicular dentin after canal reobturation. Roots were endodontically treated and distributed to five groups (n = 12. The control group was not retreated. In the four experimental groups, canals were retreated with PTR alone or in combination with xylol, orange oil, and eucalyptol. After filling material removal, two specimens of each group were analysed by SEM and µCT to verify the presence of filling remnants on root canal walls. The other roots were reobturated and sectioned in 1-mm-thick dentin slices that were subjected to the push-out test. Data were analysed by two-way ANOVA and Tukey’s test (α = 0.05. SEM and µCT analysis revealed that all retreatment techniques left filling remnants on canal walls. The control group (3.47 ± 1.21 presented significantly higher (p 0.05, and differed significantly from the group with eucalyptol (1.89 ± 0.63. The solvents reduced the PBS of the sealer to dentin and no retreatment technique promoted complete removal of filling material.

  9. Correlation of shear and dielectric ion viscosity of dental resins - Influence of composition, temperature and filler content.

    Science.gov (United States)

    Steinhaus, Johannes; Hausnerova, Berenika; Haenel, Thomas; Selig, Daniela; Duvenbeck, Fabian; Moeginger, Bernhard

    2016-07-01

    Shear viscosity and ion viscosity of uncured visible light-curing (VLC) resins and resin based composites (RBC) are correlated with respect to the resin composition, temperature and filler content to check where Dielectric Analysis (DEA) investigations of VLC RBC generate similar results as viscosity measurements. Mixtures of bisphenol A glycidyl methacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) as well as the pure resins were investigated and compared with two commercial VLC dental resins and RBCs (VOCO, Arabesk Top and Grandio). Shear viscosity data was obtained using a Haake Mars III, Thermo Scientific. Ion viscosity measurements performed by a dielectric cure analyzer (DEA 231/1 Epsilon with Mini IDEX-Sensor, Netzsch-Gerätebau). Shear viscosity depends reciprocally on the mobility of molecules, whereas the ion viscosity also depends on the ion concentration as it is affected by both ion concentration and mixture viscosity. Except of pure TEGDMA, shear and ion viscosities depend on the resin composition qualitatively in a similar manner. Furthermore, shear and ion viscosities of the commercial VLC dental resins and composites exhibited the same temperature dependency regardless of filler content. Application of typical rheological models (Kitano and Quemada) revealed that ion viscosity measurements can be described with respect to filler contents of up to 30vol.%. Rheological behavior of a VLC RBC can be characterized by DEA under the condition that the ion concentration is kept constant. Both methods address the same physical phenomenon - motion of molecules. The proposed relations allows for calculating the viscosity of any Bis-GMA-TEGDMA mixture on the base of the viscosities of the pure components. This study demonstrated the applicability of DEA investigations of VLC RBCs with respect to quality assurance purposes. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. The influence of the size and surface modification of TiO2 nanoparticles on the rheological properties of alkyd resin

    Directory of Open Access Journals (Sweden)

    Radoman Tijana

    2013-01-01

    Full Text Available Spherical TiO2 particles of different size were dispersed in alkyd resin based on soybean oil. Four samples of TiO2 particles were used, three commercial and one obtained by acid catalyzed hydrolysis of titanium tetraisopropoxide. The size of the synthesized nanoparticles was determined by transmission electron microscopy. Surface modification of TiO2 nanoparticles was performed with propyl gallate and lauryl gallate. The influence of the size of TiO2 nanoparticles, their concentration and type of the surface modification on the rheological properties of alkyd resin was investigated. The obtained results have shown that the viscosity of the prepared dispersions was higher than viscosity of the pure resin, it increases with decreasing particle diameter and decreases with frequency increase. Surface modified particles showed higher influence on the viscosity of alkyd resin than unmodified, because their hydrodynamic volume is higher due to the presence of the adsorbed gallates, leading to the increase of effective volume fraction of particles in dispersion. For the lowest TiO2 concentration, the viscosity was higher for sample modified with lauryl gallate, due to the higher thickness of the adsorbed layer. The increase of concentration, because of less dispersion stability of the particles modified with propyl gallate, leads to particles agglomeration. The presence of agglomerates, which was confirmed by a change in the slope of the functional dependence of storage modulus on loss modulus, leads to a rapid increase in viscosity. [Projekat Ministarstva nauke Republike Srbije, br. 172062 i br. 45020

  11. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties.

    Science.gov (United States)

    Aydogan Ayaz, Elif; Durkan, Rukiye

    2013-12-01

    The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (PMMA) denture-base resins. Specimens (n=10) were fabricated from a conventional heat-activated QC-20 (Qc-) and a microwave heat-activated Acron MC (Ac-) PMMA resins. Powder/liquid ratio followed the manufacturer's instructions for the control groups (Qc-c and Ac-c) and for the copolymer groups, the resins were prepared with 5% (-5), 10% (-10), 15% (-15) and 20% (-20) acrylamide contents, according to the molecular weight ratio, respectively. The flexural strength and flexural modulus were measured by a three-point bending test. The data obtained were statistically analyzed by Kruskal-Wallis test (α=0.05) to determine significant differences between the groups. The chemical structures of the resins were characterized by the nuclear magnetic resonance spectroscopy. Thermal stabilities were determined by thermogravimetric analysis (TGA) with a heating rate of 10 °C⋅min(-1) from 35 °C to 600 °C. Control groups from both acrylic resins showed the lowest flexural strength values. Qc-15 showed significant increase in the flexural strength when compared to Qc-c (PPMMA is increased by the insertion of AAm.

  12. INFLUENCE OF THERMAL AND NON—THERMAL EFFECTS OF ULTRASOUND ON ISOTHERMS OF PHENOL ON NKAⅡ RESIN

    Institute of Scientific and Technical Information of China (English)

    LIZhong; LIXiangbin; 等

    2000-01-01

    Adsorption equilibrium experiments of phenol on the NKA II resin are separately conducted in the presence and absence of ultrasound at ambient temperature.The isotherm of phenol on the polymer adsorbent in the presence of ultrasonic field is firstly reported.Results indicated that the isotherm of phenol determined in the presence of ultrasound is lower than that in the absence of ultrasound.In addition,experiments also show that the use of ultrasound to the adsorption system of the phenol aqueous solution and NKA Ⅱ resin could cause the rising of the temperature of the system in the order of 6-C.The effect of ultrasound on the isotherm of the phenol on the NKA Ⅱ resin mostly ascribes to the thermal effect and the non-thermal effect of ultrasonic field.and the role of the later is greater than that of the former.

  13. Influence of drying time of adhesive systems on the bond strength between resin cement and feldspathic ceramic

    OpenAIRE

    Feitosa, Sabrina Alves; Institute of Science and Technology – UNESP – Univ Estadual Paulista – School of Dentistry – Graduate Program in Restorative Dentistry (Prosthetic Dentistry Unit) – São José dos Campos – SP – Brazil.; Moura, Isabela Gomes; Institute of Science and Technology – UNESP – Univ Estadual Paulista – School of Dentistry – Graduate Program in Restorative Dentistry (Operative Dentistry Unit) – São José dos Campos – SP – Brazil.; Corazza, Pedro Henrique; Post-graduation Program in Dentistry – Dental School – University of Passo Fundo – Passo Fundo – RS – Brazil.; Bergolli, Cesar Dalmolin; Faculty of Dentistry – Prosthetic Dentistry Unit – Federal University of Pelotas (UFPEL) – RS – Brazil.; Pagani, Clóvis; Institute of Science and Technology – UNESP – Univ Estadual Paulista – School of Dentistry – Department of Restorative Dentistry – São José dos Campos – SP – Brazil.; Souza, Rodrigo Othavio A; Department of Restorative Dentistry – Division of Prosthodontics – Federal University of Rio Grande do Norte (UFRN) – Natal – RN – Brazil.; Valandro, Luiz Felipe; Rio Grande do Sul

    2016-01-01

    Objective: This study evaluated the effect of drying times of two total-etch & rinse adhesives on the resin bond strength to a feldsphatic ceramic, before and after aging. Material and Methods: Feldsphatic-ceramic CAD-CAM bars were cut into blocks (12×10×4 mm) with a cutting machine (N = 32). Impressions were made of each ceramic block with silicone putty material and the negative space was filled with a composite resin. The bonding ceramic surface was etched with hydrofluoric acid, silan...

  14. Epoxy resins.

    Science.gov (United States)

    Bray, P G

    1999-01-01

    Epoxy resins have an extraordinarily broad range of commercial applications, especially as protective surface coatings and adhesives. Epoxy resin systems include combinations of epoxy monomers, hardeners, reactive diluents, and/or a vast array of other additives. As a result, an epoxy resin system may have a number of chemical ingredients with the potential for attendant health hazards. Most, but not all, of these health hazards arise in the occupational setting. The most frequent adverse effects are irritation or allergic mechanisms involving the dermal and respiratory systems. Sensitization usually is caused by low molecular weight or short-chain compounds. This review discusses the diagnosis, treatment, and prevention of epoxy resin-related adverse health effects.

  15. Influence of Different Power Outputs of Er:YAG Laser on Shear Bond Strength of a Resin Composite to Feldspathic Porcelain

    Directory of Open Access Journals (Sweden)

    Mostafa Sadeghi

    2015-03-01

    Full Text Available Statement of the Problem: Porcelain may fracture or chip if exposed to any trau-mas and can be repaired by using a resin composite. Purpose: This study was aimed to evaluate the influences of Er:YAG laser on shear bond strength (SBS of resin composite to feldspathic porcelain. Materials and Method: Seventy-two porcelain blocks were divided into six groups (n=12: G1: no treatment (control group; G2: 9% hydrofluoric acid (HF; G3-6 were separately irradiated with Er:YAG laser using four energy parameters: 2W, 100mj (G3; 3W, 150mj (G4; 4W, 200mj (G5 and 5W, 250mj (G6, respectively; and 20 Hz frequency in long-pulse mode. After silane treatment, a resin composite rod was bonded to each of the porcelain block. The SBS was measured following storage and thermocycling. Data were analyzed by one-way ANOVA, Tamhane and Chi-Square tests. Results: The highest SBS (12.29±3.04 MPa was obtained with HF (G2. The lowest SBS (2.23±0.60 MPa was observed in G4, followed by G3 (1.96±0.76 MPa. G6 had a significantly higher SBS (8.00±2.22 MPa than other laser irradiation groups. Conclusion: Although, Er:YAG laser irradiation at 5W, 250mJ/20 Hz was effective in promoting adhesion of resin composite to feldspathic porcelain compared with the control group, it cannot be used as a safe alternative method to HF acid. Laser irradiation with the evaluated parameters in this study does not promote an effective adhesion on porcelain surface to create adequate bond for clinical use.

  16. Influence of Different Power Outputs of Er:YAG Laser on Shear Bond Strength of a Resin Composite to Feldspathic Porcelain

    Science.gov (United States)

    Sadeghi, Mostafa; Davari, Abdolrahim; Abolghasami Mahani, Amin; Hakimi, Hamid

    2015-01-01

    Statement of the Problem Porcelain may fracture or chip if exposed to any traumas and can be repaired by using a resin composite. Purpose This study was aimed to evaluate the influences of Er:YAG laser on shear bond strength (SBS) of resin composite to feldspathic porcelain. Materials and Method Seventy-two porcelain blocks were divided into six groups (n=12): G1: no treatment (control group); G2: 9% hydrofluoric acid (HF); G3-6 were separately irradiated with Er:YAG laser using four energy parameters: 2W, 100mj (G3); 3W, 150mj (G4); 4W, 200mj (G5) and 5W, 250mj (G6), respectively; and 20 Hz frequency in long-pulse mode. After silane treatment, a resin composite rod was bonded to each of the porcelain block. The SBS was measured following storage and thermocycling. Data were analyzed by one-way ANOVA, Tamhane and Chi-Square tests. Results The highest SBS (12.29±3.04 MPa) was obtained with HF (G2). The lowest SBS (2.23±0.60 MPa) was observed in G4, followed by G3 (1.96±0.76 MPa). G6 had a significantly higher SBS (8.00±2.22 MPa) than other laser irradiation groups. Conclusion Although, Er:YAG laser irradiation at 5W, 250mJ/20 Hz was effective in promoting adhesion of resin composite to feldspathic porcelain compared with the control group, it cannot be used as a safe alternative method to HF acid. Laser irradiation with the evaluated parameters in this study does not promote an effective adhesion on porcelain surface to create adequate bond for clinical use. PMID:25759855

  17. Influence of Backbone Structure on Properties of Directly Polymerized Phenoxy Resins from Epichlorohydrin and Various Aromatic Dihydric Phenols Monomers

    Institute of Scientific and Technical Information of China (English)

    CAI Hong-li; BI Da-wu; SHAO Ke; ZHONG Shuang-ling; NA Hui

    2007-01-01

    A series of phenoxy resins was directly prepared through the polymerization of each of the various aromatic dihydric phenols and epichlorohydrin. FTIR and 1H NMR spectra were recorded to characterize the structures of the resins. The GPC curves were used to determine the molecular weight distribution. In addition, the thermal properties of the resins were studied with differential scanning calorimetry ( DSC ) and thermal gravimetric analysis (TGA). The thermal stabilities of the polymers increased with the content of the benzene ring, pendant group increasing or biphe nyl groups emerging. The adhesive properties of the polymers were evaluated in terms of the lap shear strength with Fe-Fe adherends. The fracture mechanisms were determined by SEM observation and it was found that there was an important participation of cohesive fracture mechanisms. Also, it has been demonstrated that the extension of these micro-cohesive mechanisms is directly correlated with the adhesive strength. According to these results, the phenoxy resin containing biphenyl groups presented a higher adhesive strength and could improve the adhesive property of the epoxy/phenoxy system to a certain extent.

  18. Influence of halogen irradiance on short- and long-term wear resistance of resin-based composite materials.

    LENUS (Irish Health Repository)

    Bhamra, Gurcharn S

    2009-02-01

    The Oregon Health Science University (OHSU) four-chamber oral wear simulator was used to examine the impact of halogen irradiance on the short- and long-term wear behavior of four-methacrylate resin-based composites (RBCs). The hypothesis proposed was that exacerbated wear would occur following the long-term wear of RBCs irradiated under non-optimized irradiance conditions.

  19. The influence of FRCs reinforcement on marginal adaptation of CAD/CAM composite resin endocrowns after simulated fatigue loading

    NARCIS (Netherlands)

    Rocca, G.T.; Sarrati, C.M.; Poncet, A.; Feilzer, A.J.; Krejci, I.

    2016-01-01

    To evaluate the marginal adaptation of endodontically treated molars restored with CAD/CAM composite resin endocrowns either with or without reinforcement by fibre reinforced composites (FRCs), used in different configurations. 32 human endodontically treated molars were cut 2 mm over the CEJ. Two i

  20. SYNTHESIS OF METHYL TERT-BUTYL ETHER CATALYZED BY ACIDIC ION-EXCHANGE RESINS - INFLUENCE OF THE PROTON ACTIVITY

    NARCIS (Netherlands)

    PANNEMAN, HJ; BEENACKERS, AACM

    1995-01-01

    The catalytic activity of various strong acid ion-exchange resins on the synthesis of methyl tert-butyl ether (MtBE) from methanol and isobutene has been investigated. Relative to Amberlyst 15, Kastel CS 381 and Amberlyst CSP have similar rate constants, whereas Duolite ES 276 and Amberlyst XE 307 h

  1. The influence of FRCs reinforcement on marginal adaptation of CAD/CAM composite resin endocrowns after simulated fatigue loading

    NARCIS (Netherlands)

    Rocca, G.T.; Sarrati, C.M.; Poncet, A.; Feilzer, A.J.; Krejci, I.

    2016-01-01

    To evaluate the marginal adaptation of endodontically treated molars restored with CAD/CAM composite resin endocrowns either with or without reinforcement by fibre reinforced composites (FRCs), used in different configurations. 32 human endodontically treated molars were cut 2 mm over the CEJ. Two

  2. Behaviour of Water Droplets Under the Influence of a Uniform Electric Field in Nanocomposite Samples of Epoxy Resin/TiO2

    OpenAIRE

    Α. Bairaktari; M. Danikas; Zhao, X.; Cheng, Y.; Zhang, Y.

    2013-01-01

    In this paper nanocomposite samples of epoxy resin and TiO2 nanoparticles were investigated with water droplets on their surface. A uniform electric field was applied and the behaviour of the water droplets was observed. Parameters that were studied were the water conductivity, the droplet volume, the number of droplets and the droplet positioning with respect to (w.r.t.) the electrodes. All above mentioned parameters influence the flashover voltage of the samples. It is to be noted that – at...

  3. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties

    Institute of Scientific and Technical Information of China (English)

    Elif Aydogan Ayaz; Rukiye Durkan

    2013-01-01

    The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (PMMA) denture-base resins. Specimens (n510) were fabricated from a conventional heat-activated QC-20 (Qc-) and a microwave heat-activated Acron MC (Ac-) PMMA resins. Powder/liquid ratio followed the manufacturer’s instructions for the control groups (Qc-c and Ac-c) and for the copolymer groups, the resins were prepared with 5%(25), 10%(210), 15%(215) and 20%(220) acrylamide contents, according to the molecular weight ratio, respectively. The flexural strength and flexural modulus were measured by a three-point bending test. The data obtained were statistically analyzed by Kruskal-Wallis test (a50.05) to determine significant differences between the groups. The chemical structures of the resins were characterized by the nuclear magnetic resonance spectroscopy. Thermal stabilities were determined by thermogravimetric analysis (TGA) with a heating rate of 10 6C?min21 from 35 6C to 600 6C. Control groups from both acrylic resins showed the lowest flexural strength values. Qc-15 showed significant increase in the flexural strength when compared to Qc-c (P,0.01). Ac-10 and Ac-15 showed significance when compared to Ac-c (P,0.01). Acrylamide incorporation increased the elastic modulus in Qc-10, Qc-15 and Qc-20 when compared to Qc-c (P,0.01). Also significant increase was observed in Ac-10, Ac-15 and Ac-20 copolymer groups when compared to Ac-c (P,0.01). According to the 1H-nuclear magnetic resonance (NMR) results, acrylamide copolymerization was confirmed in the experimental groups. TGA results showed that the thermal stability of PMMA is increased by the insertion of AAm.

  4. INFLUENCE OF CARBON FIBER IN EPOXY RESIN CURING%碳纤维对环氧树脂固化反应过程的影响

    Institute of Scientific and Technical Information of China (English)

    高相南; 孙志杰; 顾轶卓; 张佐光

    2012-01-01

    For a middle temperature curing epoxy resin system and a high temperature curing one, the effect of types and surface chemical characteristics of fiber on the resin curing were studied using differential scanning calo- rimetry (DSC) and infrared spectrometry (IR). The results show that T300 and CCF-1 carbon fiber can accelerate the curing speed of epoxy E-51/2E4MZ resin system, especially at lower heating rate in lower constant temperature. For epoxy E-51/DDS resin system, the increase of the curing speed by the T300 carbon fiber is obvious at lower heating rate in lower constant temperature, while the influence of the CCF-1 carbon fiber on the resin curing can be ignored. This phenomenon results from the different active groups of sizing agent, which are involved in the curing reaction and affect the resin curing. Therefore, the influence of sizing agent in the resin curing should be considered in the composite material curing process.%以一种中温固化和一种高温固化环氧树脂体系为研究对象,采用差示扫描量热法(DSC)和红外光谱法(IR)对树脂及其碳纤维预浸料的固化反应过程进行了研究,重点考察了碳纤维种类及其表面化学特性对树脂固化反应的影响.结果表明,T300和CCF-1碳纤维对环氧E-51/咪唑体系的固化速度有加速作用,尤其在较低升温速率和较低恒温温度的情况下加速作用更为明显;对于环氧E-51/DDS体系,T300使树脂的固化速度增大,在较低升温速率和较低恒温温度的情况下表现更为明显,而CCF-1对该树脂体系的固化速度没有明显影响,这种差异与两种碳纤维上浆剂所含有的活性基团不同有关,纤维表面上浆剂中的活性基团参与了树脂的固化反应,从而影响树脂固化过程,因此复合材料固化过程的控制需要考虑碳纤维上浆剂对树脂固化反应的影响.

  5. Influence of Copper Layer Content in the Elastic and Damping Behavior of Glass-Fiber/Epoxy-Resin Composites

    Science.gov (United States)

    Carneiro, V. H.; Capela, P.; Teixeira, J. C.; Teixeira, S.; Cerqueira, F.; Macedo, F.; Ribas, L.; Soares, D.

    2016-12-01

    The impact in the elastic behavior and internal friction, caused by the introduction of Copper layers in Glass-Fiber/Epoxy Resin composites and temperature effects, were studied and evaluated recurring to Dynamic Mechanical Analysis. It is shown that the introduction of Copper layers increases the storage modulus of the composites and delays their glass transition temperature, however, it allows a faster transformation. Additionally, it is concluded that the introduction of Copper layers elevates the internal friction during the glass transition phase by the inversion of the deformation mechanism due to thermal expansion and increase in the Poisson's ratio of the epoxy resin to a value near 0.5 where its deformation is approximately isochoric. This increase in damping capacity is relevant in application with cyclic fatigue and mechanical vibration.

  6. Influence of zirconium hydrophosphate nanoparticles on porous structure and sorption capacity of the composites based on ion exchange resin

    OpenAIRE

    Dzyazko, Yuliya; Ponomarova, Ludmila; Volfkovich, Yurii; Tsirina, Valentina; Sosenkin, Valentin; Nikolska, Nadiya; Belyakov, Volodimir

    2016-01-01

    Evolution of swelling of gel-like strongly acidic resin and organic-inorganic composites based on this ionexchanger was investigated. Non-aggregated nanoparticles of zirconium hydrophosphate were found to provide size invariability of the polymer pores, which contain functional groups (up to 20 nm), the nanoparticle aggregates squeeze these pores (down to 3 nm). Owing to this, the nanocomposite shows higher break-through capacity during removal of Ni2+ from water, than the sample modified onl...

  7. Influence of Photoinitiator and Light-Curing Source on Bond Strength of Experimental Resin Cements to Dentin.

    Science.gov (United States)

    Segreto, Dario Raimundo; Naufel, Fabiana Scarparo; Brandt, William Cunha; Guiraldo, Ricardo Danil; Correr-Sobrinho, Lourenço; Sinhoreti, Mário Alexandre Coelho

    2016-01-01

    This study evaluated the bond strength (BS) of experimental resin cements formulated with different photoinitiators when activated by two kinds of light-curing units (LCUs) through a ceramic material. Seven resin blends with different camphorquinone (CQ) and/or phenylpropanedione (PPD) concentrations (weight) were prepared: C5: 0.5% CQ; C8: 0.8% CQ; P5: 0.5% PPD; P8: 0.8% PPD; C1P4: 0.1% CQ and 0.4% PPD; C4P1: 0.4% CQ and 0.1% PPD; C4P4: 0.4% CQ and 0.4% PPD. Two LCUs were used: one quartz-tungsten-halogen (QTH - 850 mW/cm²) and one light-emitting diode (LED - 1300 mW/cm²). The microtensile bond strength of each blend was assessed. Data were submitted to two-way ANOVA and Tukey's test (α=0.05). The BS values did not exhibit significant differences for LCUs, regardless of the photoinitiator type. Three cements showed significant differences: P5 and C5 had higher BS with QTH, and C4P1 with LED. For QTH, P5 showed the highest and C1P4 the lowest BS. For the LED, C4P1 showed the highest BS of all the cements. The results indicated that PPD was a viable alternative in the formulation of photocured resin cements, reducing or eliminating CQ that is yellowish without impairing the bond strength. Furthermore, both LED and QTH were effective in curing resin cements that contain PPD or CQ.

  8. Clinical study of the caries-preventive effect of resin-modified glass ionomer restorations: aging versus the influence of fluoride dentifrice.

    Science.gov (United States)

    de Moraes, Maria Denise Rodrigues; de Melo, Mary Anne Sampaio; Bezerra, Daniela da Silva; Costa, Luciana Scarlazzari; Saboía, Vicente de Paula Aragão; Rodrigues, Lidiany Karla Azevedo

    2016-05-01

    The use of fluoride-releasing materials could be compromised due to aging and might also be influenced by other ordinary sources of fluoride. The aim of the present study was to investigate the aging effect on caries development around resin-modified glass ionomer cement (RMGIC) restorations and the influence of fluoride dentifrice use in this process under the oral environment. A clinical study was performed in two phases of 14 days each. A total of 16 volunteers wore palatal devices containing dental slabs restored with either a composite resin or RMGIC, either aged or unaged by thermocycling. To simulate a clinical situation of high caries risk, the slabs were exposed to a 20% sucrose solution 10 times per day via the in situ model, where non-fluoride or a fluoride dentifrice was used. Integrated demineralization was determined by cross-sectional microhardness at both margins of the restoration: enamel and dentin. For enamel, higher demineralization around the composite restorations was observed, regardless of dentifrice or aging. For dentin, higher demineralization was observed around the aged composite restorations regardless of the dentifrice type used. The RMGIC restorations provided more enhanced protection against secondary caries for dentin under aging, and the fluoride dentifrice used in this condition had either no clinically relevance or only a minimal effect. © 2015 Wiley Publishing Asia Pty Ltd.

  9. Influence of surface sealant on the translucency of composite resin: effect of immersion time and immersion media

    Directory of Open Access Journals (Sweden)

    Patrícia Petromilli Nordi Sasso Garcia

    2008-06-01

    Full Text Available This study evaluated the effect of surface sealant on the translucency of composite resin immersed in different solutions. The study involved the following materials: Charisma, Fortify and coffee, Coca-Cola®, tea and artificial saliva as solutions. Sixty-four specimens (n = 8 were manufactured and immersed in artificial saliva at 37 ± 1 °C. Samples were immersed in the solutions for three times a day and re-immersed in artificial saliva until the translucency readings. The measurements were carried out at nine times: T1 - 24 hours after specimen preparation, T2 - 24 hours after immersion in the solutions, T3 - 48 hours and T4 to T9 - 7, 14, 21, 30, 60 and 90 days, respectively, after immersion. The translucency values were measured using a JOUAN device. The results were subjected to ANOVA and Tukey's test at 5%. The surface sealant was not able to protect the composite resin against staining, the coffee showed the strongest staining action, followed by tea and regarding immersion time, a significant alteration was noted in the translucency of composite resin after 21 days.

  10. Unidirectional Cordenka Fibre-Reinforced Furan Resin Full Biocomposite: Properties and Influence of High Fibre Mass Fraction

    Directory of Open Access Journals (Sweden)

    Talent Malaba

    2015-01-01

    Full Text Available A full biocomposite was fabricated from Cordenka CR fibre and furan resin. High fibre mass fractions (FMF were achieved by pressing the CR fibres into unidirectional sheets prior to incorporation into the resin. Results of testing indicated that the tensile properties of the biocomposite were improved by the initial increase of FMF from 51 to 64%, with a subsequent increase of FMF to 75% resulting in a deterioration of those properties. Examination of the tensile fracture surfaces with a scanning electron microscope (SEM revealed moderate deterioration in fibre-matrix adhesion after the initial increase of FMF. Further increase of the FMF to 75% was shown by SEM to result in worse fibre-matrix adhesion. On the other hand, the flexural, interlaminar-shear, and dynamic mechanical properties were adversely affected by the increase in fibre-mass fraction from 51 through 75%. These effects were mainly attributed to reduced fibre wetting that resulted in weakened fibre-matrix interfacial bonding and subsequent poor stress exchange at the fibre-matrix interface. Observations made with a digital microscope revealed normal crack behaviour in the laminated composite, and the shear fracture modes were I and II. This biocomposite has mechanical properties comparable to those of flax and glass fibre-reinforced furan resin biocomposites.

  11. Influence of Coating with Some Natural Based Materials on the Erosion Wear Behavior of Glass Fiber Reinforced Epoxy Resin

    Directory of Open Access Journals (Sweden)

    Aseel Basim Abdul Hussein

    2015-06-01

    Full Text Available In the present study, composites were prepared by Hand lay-up molding. The composites constituents were epoxy resin as a matrix, 6% volume fractions of glass fibers (G.F as reinforcement and 3%, 6% volume fractions of preparation natural material (Rice Husk Ash, Carrot Powder, and Sawdust as filler. Studied the erosion wear behavior and coating by natural wastes (Rice Husk Ash with epoxy resin after erosion. The results showed the non – reinforced epoxy have lower resistance erosion than natural based material composites and the specimen (Epoxy+6%glass fiber+6%RHA has higher resistance erosion than composites reinforced with carrot powder and sawdust at 30cm , angle 60°, grin size of sand 425µm , temperature 30Ċ , 300 gm salt content in 2liter of water and 15 hour. Coating specimen with mixed epoxy resin -RHA with particles size in the range (1.4-4.2 µm improves erosion wear resistance characteristics of the coated specimen, coating thickness was (16 ± 1 μm and after erosion at (15 hour the thickness was (10 μm .

  12. Bending characteristics of resin concretes

    Directory of Open Access Journals (Sweden)

    Ribeiro Maria Cristina Santos

    2003-01-01

    Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.

  13. Influence of cyclic loading on the adhesive effectiveness of resin-zirconia interface after femtosecond laser irradiation and conventional surface treatments.

    Science.gov (United States)

    Vicente, María; Gomes, Ana L; Montero, Javier; Rosel, Eva; Seoane, Vicente; Albaladejo, Alberto

    2016-01-01

    The aim of this study was to evaluate the influence of cyclic loading on the shear bond strength (SBS) of a self-adhesive resin cement to zirconia surfaces after femtosecond laser irradiation at different steps and several conventional surface treatments. One hundred fifty square-shaped zirconia samples were divided into five groups according their surface treatment: NT Group-no surface treatment; APA25 Group-airborne abrasion with 25 μm alumina particles; TSC Group-tribochemical silica coating; FS20 Group-femtosecond laser irradiation (800 nm, 4 mJ, 40 fs/pulse, 1 kHz, step 20); and FS40 Group-femtosecond laser irradiation (same parameters except step 40). Self-adhesive resin cement cylinders were bonded at the centre of the zirconia surface. For each experimental group, half of the specimens were subject to cyclic loading under 90 N (50.000 cycles, 3 cycles/sec) and the rest of the specimens were stored in distilled water at 37°C. All subgroups were tested for SBS with a universal testing machine at a crosshead speed of 0.5 mm/min, until fracture. The results were analyzed statistically. When cyclic loading was applied, all surface treatments had lower SBS values, except APA25. The four surface treatments had the same SBS values when cyclic loading was employed. Use of femtosecond laser irradiation could be an alternative to conventional surface treatments to achieve suitable adhesion zirconia and resin cements. Femtosecond laser irradiation at step 40 is preferable because it is more efficient and faster. © 2016 Wiley Periodicals, Inc.

  14. Influence Analysis of Contact Angle between Polyester Resin and Fibers under Different Temperature%温度对聚酯树脂与纤维的接触角影响分析

    Institute of Scientific and Technical Information of China (English)

    孙静; 杨浩邈; 王明刚; 谌夏

    2011-01-01

    This article was aimed at physicochemical interaction between polyester resin and glass fiber under composite processing conditions. The influences of temperature on surface tension of P65901 resin, P171-901 resin, 1777-G-6 resin, and then the contact angle between resin and ER fiber was investigated, based on what the thermodynamic work of adhesion was calculated. The relationship between the contact angle and time was observed. The results indicated that wetting between resin and fiber can be improved by increasing the temperature and lengthening the wetting time.%针对复合材料成型工艺条件下聚酯树脂与玻璃纤维表面的物理化学作用,研究了不同温度下P65-901树脂、P171-901树脂、1777-G-6树脂的表面张力;分析了升温过程中ER纤维与树脂的浸润特性;计算出纤维与树脂的热力学附着功,考察了纤维与树脂的粘附特性;观察了接触角随时间的变化关系.结果表明,升高温度、延长作用时间可有效改善纤维与树脂的浸润特性.

  15. Color difference of composite resins after cementation with different shades of resin luting cement.

    Science.gov (United States)

    Cengiz, Esra; Kurtulmus-Yilmaz, Sevcan; Karakaya, Izgen; Aktore, Huseyin

    2017-07-26

    The purpose of this study was to evaluate the color difference of nanohybrid and ormocer-based composite resins with different thicknesses when 4 different shades of resin luting cement were used. 56 disc specimens of each composite resin (Aelite aesthetic enamel, Ceram-X mono) with 0.5 and 1 mm thicknesses were fabricated. Baseline color measurements were performed using a clinical spectrophotometer. The specimens of each thicknesses of each resin were randomly divided into 4 groups according to the shades of resin luting cement (white/A1, yellow/universal/A3, transparent and white opaque) (n = 7). Mixed resin cement was applied onto the resin specimens using a Teflon mold in 0.1 mm thickness. Color measurements of cemented composite resin specimens were repeated and color difference (∆E) between baseline and after cementation measurements was calculated. ANOVA and Tukey's test were used for statistical analysis. The opaque shade had significantly increased ∆E values as compared to the other shades (p resins in terms of ∆E values. The shade of resin cement and the type of the resin affected the final color; however, the thickness of composite resin had no influence on the final color of restoration. Selecting the shade of resin luting cement before cementation of indirect composite laminate restoration is important to achieve final color match.

  16. Influence of energy density of different light sources on knoop hardness of a dual-cured resin cement

    Directory of Open Access Journals (Sweden)

    Evandro Piva

    2008-06-01

    Full Text Available The purpose of this study was to evaluate the Knoop hardness of a dual-cured resin-based luting cement irradiated with different light sources as well energy density through a ceramic sample. Three light-curing unit (LCUs were tested: tungsten halogen light (HAL, light-emitting diode (LED and xenon plasma-arc (PAC lamp. Disc-shaped specimens were fabricated from a resin-based cement (Enforce. Three energy doses were used by modifying the irradiance (I of each LCU and the irradiation time (T: 24 Jcm-2 (I/2x2T, 24 Jcm-2 (IxT and 48 Jcm-2 (Ix2T. Energy doses were applied through a 2.0-mm-thick ceramic sample (Duceram Plus. Three groups underwent direct irradiation over the resin cement with the different LCUs and a chemically-activated group served as a control. Thirteen groups were tested (n=10. Knoop hardness number (KHN means were obtained from cross-sectional areas. Two-way ANOVA and the Holm-Sidak method were used for statistical comparisons of activation mode and energy doses (a=5%. Application of 48 J.cm-2 energy dose through the ceramic using LED (50.5±2.8 and HAL (50.9±3.7 produced significantly higher KHN means (p<0.05 than the control (44.7±3.8. LED showed statistically similar performance to HAL. Only HAL showed a relationship between the increase of LCU energy dose and hardness increase.

  17. Influence of the interposition of ceramic spacers on the degree of conversion and the hardness of resin cements

    Directory of Open Access Journals (Sweden)

    Patricia Angelica Milani Calgaro

    2013-09-01

    Full Text Available This study evaluated: I the effect of photo-activation through ceramics on the degree of conversion (DC and on the Knoop hardness (KHN of light- and dual-cured resin cements; and II two different protocols for obtaining the spectra of uncured materials, to determine the DC of a dual-cured resin cement. Thin films of cements were photo-activated through ceramics [feldspathic porcelain (FP; lithium disilicate glass-ceramics of low translucency (e.max-LT, medium opacity (e.max-MO and high translucency (e.max-HT; glass-infiltrated alumina composite (IC and polycrystalline zirconia (ZR] with thicknesses of 1.5 and 2.0 mm. DC was analyzed by Fourier transform infrared (FTIR spectroscopy. Two protocols were used to obtain the spectra of the uncured materials: I base and catalyst pastes were mixed, and II thin films of base and catalyst pastes were obtained separately, and an average was obtained. KHN assessment was performed with cylindrical specimens. The results were analyzed by ANOVA and Tukey's test (α= 0.05. The light-cured cement showed higher DC (61.9% than the dual-cured cement (55.7%. The DC varied as follows: FP (65.4%, e.max-HT (65.1%, e.max-LT (61.8%, e.max-MO (60.9%, ZR (54.8%, and IC (44.9%. The light-cured cement showed lower KHN (22.0 than the dual-cured (25.6 cement. The cements cured under 1.5 mm spacers showed higher KHN (26.2 than when polymerized under 2.0 mm ceramics (21.3. Regarding the two protocols, there were significant differences only in three groups. Thus, both methods can be considered appropriate. The physical and mechanical properties of resin cements may be affected by the thickness and microstructure of the ceramic material interposed during photo-activation.

  18. Influence of post-cure treatments on hardness and marginal adaptation of composite resin inlay restorations: an in vitro study

    Directory of Open Access Journals (Sweden)

    Laiza Tatiana Poskus

    2009-12-01

    Full Text Available OBJECTIVES: The purpose of this study was to evaluate the Vickers hardness number (VHN and the in vitro marginal adaptation of inlay restorations of three hybrid composite resins (Filtek Z250, Opallis and Esthet-X subjected to two post-cure treatments. MATERIAL AND METHODS: For the microhardness test, three different groups were prepared in accordance with the post-cure treatments: control group (only light cure for 40 s, autoclave group (light cure for 40 s + autoclave for 15 min at 130ºC; and microwave group (light cure for 40 s + microwave for 3 min at 450 W. To assess the marginal adaptation, the composite resin was inserted incrementally into a mesial-occlusal-distal cavity brass mold and each increment light-cured for 40 s. A previous reading in micrometers was taken at the cervical wall, using a stereomicroscope magnifying glass equipped with a digital video camera and image-analysis software. Subsequently, the specimens were subjected to the post-cure treatments (autoclave and microwave and a reading was taken again at the cervical wall. Data were compared using ANOVA for the hardness test, split-plot ANOVA for the adaptation assessment and Tukey's test for multiple comparisons. A significance level of 5% was adopted for all analyses. RESULTS: The post-cure treatments increased the hardness of conventional composites (p<0.001 and the gap values of inlay restorations (p<0.01. Filtek Z250 showed higher hardness (p<0.001 and lower gap values than Opallis and Esthet-X (p<0.05. Gap values did not exceed 90 µm for any of the experimental conditions. CONCLUSION: The post-cure treatments increased the VHN and the gap values on the cervical floor of composite resin inlays. Moreover, Filtek Z250 showed the best results, with higher hardness and lower gap values.

  19. CHLORINE DIOXIDE TREATMENT OF SISAL FIBRE: SURFACE LIGNIN AND ITS INFLUENCES ON FIBRE SURFACE CHARACTERISTICS AND INTERFACIAL BEHAVIOUR OF SISAL FIBRE/PHENOLIC RESIN COMPOSITES

    Directory of Open Access Journals (Sweden)

    Linxin Zhong

    2010-11-01

    Full Text Available This paper describes an investigation of the influences of chlorine dioxide treatment on fibre surface lignin. The fibre surface characteristics and the interfacial behaviour of the sisal fibre/phenolic resin composites were also studied by SEM, AFM, and XPS. The results show that the surface of the untreated fibre contains a large amount of lignin with granular structure and non-granular structure. The surface lignin concentration is up to 51% for the untreated fibre, and then it decreases to 24% and 20% for fibres treated with 1.5 % and 2.0% chlorine dioxide, respectively. The removal of lignin from the fibre surface can enhance the interfacial strength of the composites, giving rise to increases by 36% and 28% in tensile strength and internal bonding strength. These results indicate that the surface properties of single sisal fibres can be tailored to improve the fibre/resin interface. Chlorine dioxide treatment has potential for surface modification of sisal fibre in engineering the interfacial behaviour of composites.

  20. Influence of Cavity Margin Design and Restorative Material on Marginal Quality and Seal of Extended Class II Resin Composite Restorations In Vitro.

    Science.gov (United States)

    Soliman, Sebastian; Preidl, Reinhard; Karl, Sabine; Hofmann, Norbert; Krastl, Gabriel; Klaiber, Bernd

    2016-01-01

    To investigate the influence of three cavity designs on the marginal seal of large Class II cavities restored with low-shrinkage resin composite limited to the enamel. One hundred twenty (120) intact human molars were randomly divided into 12 groups, with three different cavity designs: 1. undermined enamel, 2. box-shaped, and 3. proximal bevel. The teeth were restored with 1. an extra-low shrinkage (ELS) composite free of diluent monomers, 2. microhybrid composite (Herculite XRV), 3. nanohybrid composite (Filtek Supreme XTE), and 4. silorane-based composite (Filtek Silorane). After artificial aging by thermocycling and storage in physiological saline, epoxy resin replicas were prepared. To determine the integrity of the restorations' approximal margins, two methods were sequentially employed: 1. replicas were made of the 120 specimens and examined using SEM, and 2. the same 120 specimens were immersed in AgNO3 solution, and the dye penetration depth was observed with a light microscope. Statistical analysis was performed using the Kruskal-Wallis and the Dunn-Bonferroni tests. After bevel preparation, SEM observations showed that restorations did not exhibit a higher percentage of continuous margin (SEM-analysis; p>0.05), but more leakage was found than with the other cavity designs (pcomposite restorations and is no longer recommended. However, undermined enamel should be removed to prevent enamel fractures.

  1. The influence of caries disclosing agents and cavity disinfectants on microleakage of gingival floor of class V composite resin restorations

    Directory of Open Access Journals (Sweden)

    Safarcherati H

    2007-06-01

    Full Text Available Background and Aim: An important purpose of adhesive dentistry is restriction of cavity preparation to carious dentin removal and conservation of sound dentin. Application of caries disclosing agents and cavity disinfectants can help achieving this goal. The aim of this study was to evaluate the effect of caries disclosing agents and cavity disinfectants on microleakage of composite resin restorations. Materials and Methods: This experimental in-vitro study was performed on class V cavities in 48 extracted human sound premolars. The teeth were randomly divided into four equal groups. In group 1 caries detector dye (Seek, Ultradent, USA and in group 2 cavity disinfectant (Consepsis, Ultradent, USA were applied on dentinal surfaces. In group 3 both mentioned materials were applied. Group 4 was considered as control group. PQ1 bonding agent and Amelogen composite were used to restore the cavities. Gingival microleakage was assessed by dye penetration. Data were analyzed by Kruskall Wallis and Dunn tests. P<0.05 was the level of significance.Results: Group 2 showed the least and group 4 showed the highest microleakage;however no statistical significant difference was found among the groups.Conclusion: The use of caries disclosing agent (Seek and cavity disinfectant (Consepsis Liquid did not adversely affect the sealing ability of dentin bonding resins.

  2. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin.

    Science.gov (United States)

    Mendonça e Bertolini, Martinna de; Cavalcanti, Yuri Wanderley; Bordin, Dimorvan; Silva, Wander José da; Cury, Altair Antoninha Del Bel

    2014-01-01

    The effect of Candida albicans biofilms and methyl methacrylate (MMA) pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA) resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based), and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10) were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR) and scanning electron microscopy (SEM) analysis were performed on denture liners (n = 8). Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  3. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin

    Directory of Open Access Journals (Sweden)

    Martinna de Mendonça e Bertolini

    2014-01-01

    Full Text Available The effect of Candida albicans biofilms and methyl methacrylate (MMA pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based, and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10 were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR and scanning electron microscopy (SEM analysis were performed on denture liners (n = 8. Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01. Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01. The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  4. Influence of moisture absorption on the flexural properties of composites made of epoxy resin reinforced with low-content iron particles

    Indian Academy of Sciences (India)

    E SIDERIDIS; J VENETIS; E KYRIAZI; V KYTOPOULOS

    2017-08-01

    In this work, the effect of moisture absorption on the mechanical properties of particulate composite materials isstudied. Moisture absorption constitutes a main parameter affecting the thermomechanical behaviour of composites, since itcauses plasticization of the polymer matrix with a concurrent swelling. In the present work, the influence of water absorptionon the flexural properties of particle-reinforced composites was thoroughly investigated. It was found that during the processof moisture absorption there exists a variation of the flexural properties closely related to the degradation of the mechanicalbehaviour of the composite, as well as the percentage amount of moisture absorbed. Experiments were carried out withcomposite made of epoxy resin reinforced with low-content iron particles. The variation of ultimate stress, breaking strain,deflection, elastic modulus and Poisson ratio due to water absorption was examined.

  5. Behaviour of Water Droplets Under the Influence of a Uniform Electric Field in Nanocomposite Samples of Epoxy Resin/TiO2

    Directory of Open Access Journals (Sweden)

    Α. Bairaktari

    2013-10-01

    Full Text Available In this paper nanocomposite samples of epoxy resin and TiO2 nanoparticles were investigated with water droplets on their surface. A uniform electric field was applied and the behaviour of the water droplets was observed. Parameters that were studied were the water conductivity, the droplet volume, the number of droplets and the droplet positioning with respect to (w.r.t. the electrodes. All above mentioned parameters influence the flashover voltage of the samples. It is to be noted that – at least in some cases – the water droplet positioning w.r.t. the electrodes was more important in determining the flashover voltage than the droplet volume.

  6. Structural mass irregularities and fiber volume influence on morphology and mechanical properties of unsaturated polyester resin in matrix composi

    Directory of Open Access Journals (Sweden)

    Khalil Ahmed

    2015-11-01

    Full Text Available This paper presents the comparative results of a current study on unsaturated polyester resin (UPR matrix composites processed by filament winding method, with cotton spun yarn of different mass irregularities and two different volume fractions. Physical and mechanical properties were measured, namely ultimate stress, stiffness, elongation%. The mechanical properties of the composites increased significantly with the increase in the fiber volume fraction in agreement with the Counto model. Mass irregularities in the yarn structure were quantitatively measured and visualized by scanning electron microscopy (SEM. Mass irregularities cause marked decrease in relative strength about 25% and 33% which increases with fiber volume fraction. Ultimate stress and stiffness increases with fiber volume fraction and is always higher for yarn with less mass irregularities.

  7. Review: Resin Composite Filling

    OpenAIRE

    Desmond Ng; Jimmy C. M. Hsiao; Keith C. T. Tong; Harry Kim; Yanjie Mai; Keith H. S. Chan

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin ...

  8. 悬浮态乳液聚合条件对聚氯乙烯树脂颗粒特性的影响%Influence of Suspended Emulsion Polymerization Conditions on Particle Characteristics of Polyvinyl Chloride Resin

    Institute of Scientific and Technical Information of China (English)

    包永忠; 魏真理; 翁志学; 黄志明

    2003-01-01

    Suspended emulsion polymerization of vinyl chloride was carried out in a 5 L autoclave. The influenceof agitation, polymerization conversion, dispersant and surfactant on the average particle size (PS) and particle sizedistribution (PSD), particle morphology and porosity of polyvinyl chloride (PVC) resin was investigated. It showedthat the agitator had great influence on the smooth operation of polymerization, PS and PSD. The PS increasedand PSD became narrow as polymerization conversion became high. The porosity decreased with the increase ofconversion. A convenient choice of additives, both dispersants and non-ionic surfactants, allows one to adjust PSand PSD. The PS decreased with the addition of polyvinyl alcohol or hydroxypropyl methylcellulose dispersants,and increased with the addition of Span surfactants. The addition of dispersants or surfactants also affected themorphology and porosity of resin, and PVC resin with looser agglomeration and homogeneous distribution of primaryparticles was prepared.

  9. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness

    Science.gov (United States)

    Marović, Danijela; Šariri, Kristina; Demoli, Nazif; Ristić, Mira; Hiller, Karl-Anton; Škrtić, Drago; Rosentritt, Martin; Schmalz, Gottfried; Tarle, Zrinka

    2016-01-01

    Aim To determine if the addition of inert fillers to a bioactive dental restorative composite material affects its degree of conversion (DC), polymerization shrinkage (PS), and microhardness (HV). Methods Three amorphous calcium phosphate (ACP)-based composite resins: without added fillers (0-ACP), with 10% of barium-glass fillers (Ba-ACP), and with 10% of silica fillers (Si-ACP), as well as commercial control (Ceram•X, Dentsply DeTrey) were tested in laboratory conditions. The amount of ACP (40%) and the composition of the resin mixture (based on ethoxylated bisphenol A dimethacrylate) was the same for all ACP materials. Fourier transform infrared spectroscopy was used to determine the DC (n = 40), 20 min and 72 h after polymerization. Linear PS and Vickers microhardness (n = 40) were also evaluated. The results were analyzed by paired samples t test, ANOVA, and one-way repeated measures ANOVA with Student-Newman-Keuls or Tukey’s post-hoc test (P = 0.05). Results The addition of barium fillers significantly increased the DC (20 min) (75.84 ± 0.62%) in comparison to 0-ACP (73.92 ± 3.08%), but the addition of silica fillers lowered the DC (71.00 ± 0.57%). Ceram•X had the lowest DC (54.93 ± 1.00%) and linear PS (1.01 ± 0.24%) but the highest HV (20.73 ± 2.09). PS was significantly reduced (P < 0.010) in both Ba-ACP (1.13 ± 0.25%) and Si-ACP (1.17 ± 0.19%) compared to 0-ACP (1.43 ± 0.21%). HV was significantly higher in Si-ACP (12.82 ± 1.30) than in 0-ACP (10.54 ± 0.86) and Ba-ACP (10.75 ± 0.62) (P < 0.010). Conclusion Incorporation of inert fillers to bioactive remineralizing composites enhanced their physical-mechanical performance in laboratory conditions. Both added fillers reduced the PS while maintaining high levels of the DC. Silica fillers additionally moderately improved the HV of ACP composites. PMID:27815937

  10. INFLUENCE OF MOLECULAR STRUCTURES OF SECONDARY AMINE TERMINATED POLY(ESTER-AMINE)S ON THE CURING PERFORMANCE WITH EPOXY RESIN

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Five secondary amine terminated poly(ester-amine)s (defined as PEA) with controlled molecular structures were synthesized through reacting excessive piperazine with phthalicdiglycol diacrylate (PDDA) and 1,1,1-trimethylolpropane triacrylate (TMPTA) at a constant secondary amine/acrylate group ratio of 1.5/1 and at different PDDA/TMPTA molar ratios.Both IR and 1H-NMR spectra indicated that all acrylate groups were consumed in the reaction, based on which the structural parameters were calculated from the 1H-NMR spectra. With decreasing PDDA/TMPTA ratio, the content of secondary amine, degree of branching, molecular weight, Tg and Td increased accordingly. These polymers were further used as both crosslinkers and flexibilizers for a linear epoxy resin E51 to form cured films under ambient condition, The gel content,relative hardness and Tg of the resulting films increased as PEA molecules changed from linear to highly branching structures. Due to the flexibility of PEA molecules, all the films possessed excellent mechanical performance.

  11. High Surface-Enhanced Raman Scattering (SERS) Amplification Factor Obtained with Silver Printed Circuit Boards and the Influence of Phenolic Resins for the Characterization of the Pesticide Thiram.

    Science.gov (United States)

    Silva de Almeida, Francylaine; Bussler, Larissa; Marcio Lima, Sandro; Fiorucci, Antonio Rogério; da Cunha Andrade, Luis Humberto

    2016-07-01

    In this work, low-cost substrates with rough silver surfaces were prepared from commercial copper foil-covered phenolic board (CPB) and an aqueous solution of AgNO3, and were used for surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) measurements. A maximum SERS amplification factor of 1.2 × 10(7) was obtained for Rhodamine 6G (R6G), and use of the CPB resulted in a detection limit for Thiram pesticide of 0.5 µmol L(-1) The minimum detection level was limited by residual traces of phenolic groups that originated from the substrate resin, which became solubilized in the aqueous Ag(+) solution. It was found that the bands corresponding to the impurities had less influence in the Thiram analysis, which could be explained by the high affinity of sulfur for Ag surfaces. The influence of impurities in the SERS analyses therefore depended on the linkage between the rough silver surface and the analyte. The findings demonstrated the ease and effectiveness of using CPB to prepare a nanostructured surface for SERS. © The Author(s) 2016.

  12. Influência do eugenol na microdureza da resina composta utilizando sistemas adesivos atuais Influence of eugenol on the microhardness of composite resin using current bonding systems

    Directory of Open Access Journals (Sweden)

    André Rubio de SOUZA

    2000-09-01

    Full Text Available O objetivo deste trabalho foi avaliar, in vitro, se a utilização do cimento de óxido de zinco e eugenol exerce influência na microdureza da restauração de resina composta (Z100 realizada com dois sistemas adesivos (Scotchbond Multi-Purpose Plus® - sistema que remove o "smear layer", e o Clearfil Liner Bond 2® - adesivo que promove o tratamento do "smear layer", sem removê-lo totalmente. Para isto, foram utilizados 40 molares humanos hígidos que foram divididos igualmente em 4 grupos. Para cada adesivo havia um grupo controle (sem óxido de zinco e eugenol e outro onde foram realizadas e removidas as restaurações provisórias com cimento de óxido de zinco e eugenol. Após sete dias de armazenamento em estufa a 37ºC, os dentes foram cortados e mediu-se a microdureza da resina composta na região a 0,3 mm da interface dente-restauração em um microdurômetro SHIMADZU HMV 2000, com ponta penetradora Knoop de 50 gramas por 45 segundos. Os resultados obtidos foram analisados estatisticamente pela ANOVA (alfa = 1%, e verificou-se não haver diferença estatisticamente significante na microdureza da resina composta entre os grupos estudados.The zinc oxide-eugenol cement is still widely used as a temporary restorative material. Its use is known, however, to disturb the curing process of composite resins used in the final restoration. Nevertheless, with the development of dentin bonding systems, total etch is used to remove or treat the smear layer before the construction of the composite resin restoration. The purpose of this study was to evaluate if the zinc oxide-eugenol cement influenced the microhardness of composite resin (Z100 restorations used in association with either one of two bonding systems (Scotchbond Multi-Purpose Plus® and Clearfil Liner Bond 2®. Forty molars were divided into four groups. For each bonding material there was a control group that did not receive cement and a group that received a temporary zinc oxide

  13. Influence of free radicals signal from dental resins on the radio-induced signal in teeth in EPR retrospective dosimetry.

    Science.gov (United States)

    Levêque, Philippe; Desmet, Céline; Dos Santos-Goncalvez, Ana Maria; Beun, Sébastien; Leprince, Julian G; Leloup, Gaëtane; Gallez, Bernard

    2013-01-01

    In case of radiological accident, retrospective dosimetry is needed to reconstruct the absorbed dose of overexposed individuals not wearing personal dosimeters at the onset of the incident. In such a situation, emergency mass triage will be required. In this context, it has been shown that Electron Paramagnetic Resonance (EPR) spectroscopy would be a rapid and sensitive method, on the field deployable system, allowing dose evaluation of a great number of people in a short time period. This methodology uses tooth enamel as a natural dosimeter. Ionising radiations create stable free radicals in the enamel, in a dose dependent manner, which can be detected by EPR directly in the mouth with an appropriate resonator. Teeth are often subject to restorations, currently made of synthetic dimethacrylate-based photopolymerizable composites. It is known that some dental composites give an EPR signal which is likely to interfere with the dosimetric signal from the enamel. So far, no information was available about the occurrence of this signal in the various composites available on the market, the magnitude of the signal compared to the dosimetric signal, nor its evolution with time. In this study, we conducted a systematic characterization of the signal (intensity, kinetics, interference with dosimetric signal) on 19 most widely used composites for tooth restoration, and on 14 experimental resins made with the most characteristic monomers found in commercial composites. Although a strong EPR signal was observed in every material, a rapid decay of the signal was noted. Six months after the polymerization, the signal was negligible in most composites compared to a 3 Gy dosimetric signal in a tooth. In some cases, a stable atypical signal was observed, which was still interfering with the dosimetric signal.

  14. Influence of free radicals signal from dental resins on the radio-induced signal in teeth in EPR retrospective dosimetry.

    Directory of Open Access Journals (Sweden)

    Philippe Levêque

    Full Text Available In case of radiological accident, retrospective dosimetry is needed to reconstruct the absorbed dose of overexposed individuals not wearing personal dosimeters at the onset of the incident. In such a situation, emergency mass triage will be required. In this context, it has been shown that Electron Paramagnetic Resonance (EPR spectroscopy would be a rapid and sensitive method, on the field deployable system, allowing dose evaluation of a great number of people in a short time period. This methodology uses tooth enamel as a natural dosimeter. Ionising radiations create stable free radicals in the enamel, in a dose dependent manner, which can be detected by EPR directly in the mouth with an appropriate resonator. Teeth are often subject to restorations, currently made of synthetic dimethacrylate-based photopolymerizable composites. It is known that some dental composites give an EPR signal which is likely to interfere with the dosimetric signal from the enamel. So far, no information was available about the occurrence of this signal in the various composites available on the market, the magnitude of the signal compared to the dosimetric signal, nor its evolution with time. In this study, we conducted a systematic characterization of the signal (intensity, kinetics, interference with dosimetric signal on 19 most widely used composites for tooth restoration, and on 14 experimental resins made with the most characteristic monomers found in commercial composites. Although a strong EPR signal was observed in every material, a rapid decay of the signal was noted. Six months after the polymerization, the signal was negligible in most composites compared to a 3 Gy dosimetric signal in a tooth. In some cases, a stable atypical signal was observed, which was still interfering with the dosimetric signal.

  15. Adhesion of adhesive resin cements to dental zirconia ceramic and human dentin

    OpenAIRE

    YANG Bin

    2008-01-01

    In this work, the long-term bond strengths of adhesive resin cements to zirconia ceramic and human dentin were evaluated, and resin-ceramic and resin-dentin bonding mechanisms were investigated. In chapter 3, the influence of surface pre-treatment on the bonding durability of three resin cements (Super-Bond C&B resin cement : SB, Clearfil™ Esthetic cement: CEC, Chemiace II: CH) to zirconia ceramic was studied. Most importantly, the influence of chemical reactions of functional monomers in...

  16. Shear bond strength between alumina substrate and prosthodontic resin composites with various adhesive resin systems.

    Science.gov (United States)

    AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K

    2015-05-02

    With the increase in demand for cosmetics and esthetics, resin composite restorations and all-ceramic restorations have become an important treatment alternative. Taking into consideration the large number of prosthodontic and adhesive resins currently available, the strength and durability of these materials needs to be evaluated. This laboratory study presents the shear bond strengths of a range of veneering resin composites bonded to all-ceramic core material using different adhesive resins. Alumina ceramic specimens (Techceram Ltd, Shipley, UK) were assigned to three groups. Three types of commercially available prosthodontic resin composites [BelleGlass®, (BG, Kerr, CA, USA), Sinfony® (SF, 3 M ESPE, Dental Products, Germany), and GC Gradia® (GCG, GC Corp, Tokyo, Japan)] were bonded to the alumina substrate using four different adhesive resins. Half the specimens per group (N = 40) were stored dry for 24 hours, the remaining were stored for 30 days in water. The bonding strength, so-called shear bond strengths between composite resin and alumina substrate were measured. Data were analysed statistically and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Bond strengths were influenced by the brand of prosthodontic resin composites. Shear bond strengths of material combinations varied from 24.17 ± 3.72-10.15 ± 3.69 MPa and 21.20 ± 4.64-7.50 ± 4.22 at 24 h and 30 days, respectively. BG resin composite compared with the other resin composites provided the strongest bond with alumina substrate (p resin composite was found to have a lower bond strength than the other composites. The Weibull moduli were highest for BG, which was bonded by using Optibond Solo Plus adhesive resin at 24 h and 30 days. There was no effect of storage time and adhesive brand on bond strength. Within the limitations of this study, the shear bond strengths of composite resins to alumina substrate are related to the composite

  17. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  18. Color stability of different composite resin materials.

    Science.gov (United States)

    Falkensammer, Frank; Arnetzl, Gerwin Vincent; Wildburger, Angelika; Freudenthaler, Josef

    2013-06-01

    Data are needed to better predict the color stability of current composite resin materials. The purpose of this study was to evaluate the impact of different storage solutions on the color stability of different composite resin materials. Different restorative and adhesive composite resin specimens (dual-polymerizing self-adhesive resin cement, autopolymerizing resin-based composite resin, dual-polymerizing resin-based composite resin, nanohybrid composite resin, and microhybrid composite resin) were fabricated and stored in red wine, black tea, chlorhexidine, sodium fluoride, tea tree oil, or distilled water for 4 weeks at 37°C. Color parameters were measured with a colorimeter before and after storage. Total color differences and specific coordinate differences were expressed as ΔE, ΔL, Δa, and Δb. A 2-way and 1-way analysis of variance (ANOVA) with Bonferroni adjustment for multiple comparisons were applied for statistical calculations (α=.05). Red wine caused the most severe discoloration (ΔE >10), followed by black tea with perceptible (ΔE >2.6) to clinically unacceptable discoloration (ΔE >5.5). Colored mouth rinses discolored the materials to a lesser extent with clinically acceptable values. Dual-polymerizing resin adhesives showed a higher amount of discoloration. Current restorative and adhesive composite resin materials discolor over time under the influence of different storage solutions. The composition related to the polymerizing mode seemed to be a causative factor. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  19. 水分含量对脲醛呋喃树脂性能的影响分析%Study on the Influence of Moisture on Urea-Formaldehyde Furan Resin Properties

    Institute of Scientific and Technical Information of China (English)

    马文; 韩文; 何龙

    2014-01-01

    Paraformaldehyde has used instead of part of formaldehyde to form synthesis urea-formaldehyde furan resin. The influence of moisture on resin strength, free formaldehyde, viscosity, up time and stripping time have been investigated. The results showed that, with increasing water content, the strength of resin continued to decrease, free formaldehyde increased, the viscosity lowered, up time and stripping time for resin sand were all extending.%使用多聚甲醛代替部分甲醛水溶液合成不同水分含量的脲醛呋喃树脂,考察不同含水量对树脂强度、游离甲醛、粘度及树脂砂可使用时间、起模时间等性能的影响。结果表明,随着水分含量增多,脲醛呋喃树脂的强度下降、游离甲醛升高、粘度降低,树脂砂的可使用时间和起模时间延长。

  20. Influence of light-polymerization modes on the degree of conversion and mechanical properties of resin composites: a comparative analysis between a hybrid and a nanofilled composite.

    Science.gov (United States)

    da Silva, Eduardo Moreira; Poskus, Laiza Tatiana; Guimarães, José Guilherme Antunes

    2008-01-01

    This study analyzed the influence of the light polymerization mode on the degree of conversion (DC) and mechanical properties of two resin composites: a hybrid (Filtek P60) and a nanofilled composite (Filtek Supreme). The composites were light activated by three light polymerization modes (Standard-S: 650 mW/cm2 for 30 seconds; High intensity-H: 1000 mW/cm2 for 20 seconds and Gradual-G: 100 up to 1000 mW/cm2 for 10 seconds + 1000 mW/cm2 for 10 seconds). The DC (%) was measured by FT-Raman spectroscopy. Flexural strength and flexural modulus were obtained from bar-shaped specimens (1 x 2 x 10 mm) submitted to the three-point bending test. Microhardness was evaluated by Knoop indentation (KHN). Data were analyzed by ANOVA and Student-Newman-Keuls multiple range test and linear regression analysis. The results showed the following DC: H > S > G (p hybrid > nanofilled (p S = G (p hybrid composite presented higher flexural strength and flexural modulus than the nanofilled composite (p composites (p = 0.1605). The results suggest that nanofilled composites may present a lower degree of conversion and reduced mechanical properties compared to hybrid composites.

  1. Influence of eugenol on the push-out bond strengths of fiber posts cemented with different types of resin luting agents.

    Science.gov (United States)

    Özcan, Erhan; Çetin, Ali Riza; Capar, İsmail Davut; Tunçdemir, Ali Riza; Aydinbelge, Hale Ari

    2013-07-01

    This study evaluated the influence of eugenol on the push-out bond strengths of fiber posts cemented with different types of resin luting agents. Seventy-two extracted maxillary single-rooted canine teeth were randomly divided into two groups of 36 teeth. Group 1, the control group, was filled with gutta-percha only (i.e., did not receive eugenol), whereas group 2 was filled with a eugenol-containing sealer. All root canals were filled and each group was divided into three subgroups. The posts in each subgroup were cemented with the following materials: subgroup 1 with a 2-step self-etching adhesive system (Clearfil Liner Bond 2V + Panavia F); subgroup 2 with a 1-step self-etching adhesive (Panavia F); and subgroup 3 with a self-adhesive (Clearfil SA Cement). Dislodgement resistance was measured using a universal testing machine. All data were subjected to ANOVA using a factorial design and Tukey test (α = 0.05). The use of the eugenol-containing sealer significantly reduced the push-out bond strength of the fiber post (P eugenol-containing sealer (P eugenol than were the other evaluated groups when the fiber post was cemented in the canals filled with the eugenol-containing sealer.

  2. 磁性树脂对地下水中硝酸盐的去除效能及影响因素%Performance and influencing factors of nitrate removed by magnetic resin from ground water

    Institute of Scientific and Technical Information of China (English)

    刘成; 张谦; 姜成浩; 陈卫

    2014-01-01

    利用小试实验研究了磁性离子交换树脂对水中硝酸盐的去除效能,并探讨了地下水中常见有机物及无机离子对其去除效能的影响.结果表明,磁性离子交换树脂对纯水中20mg/L的NO3--N的交换容量为55.91mg/mL,且去除速率较快,10min基本达到去除平衡;地下水中的腐殖酸类有机物对NO3--N的去除基本没有影响,而常见阴离子具有较明显的影响,其影响程度为SO42->CO32->Cl->HCO3-;针对徐州某水厂地下水的去除研究表明,通水倍数为500BV时磁性离子交换树脂对地下水中NO3--N的去除率约为50%左右.综上,磁性离子交换树脂可以作为去除地下水中的硝酸盐一种处理技术.%The groundwater nitrate removal efficiency and its influence factors which were common organic and inorganic ions in the groundwater were studied by underbrush experiment. The research results showed that the exchange capacity of magnetic ion exchange resin in prepared 20mg/L of nitrate nitrogen(NO3--N) solution was 55.91mg/mL, and the magnetic ion exchange resin removal rate was faster than other common resins, which could get equilibrium in 10min. Humic acid had an unconspicuous influence on nitrate removal by magnetic ion exchange resin. On the contrary, common inorganic anions had more obvious influence, and the influence degree was SO42->CO32->Cl->HCO3-. The research on groundwater of a Xuzhou waterworks showed that magnetic ion exchange resin in the groundwater could remove about 50%NO3--N when the water ratio got to 500BV. In conclusion, magnetic ion exchange resin could be a processing technology on nitrate removal in the groundwater.

  3. The influence of fatigue loading on the quality of the cement layer and retention strength of carbon fiber post-resin composite core restorations.

    Science.gov (United States)

    Bolhuis, Peter; de Gee, Anton; Feilzer, Albert

    2005-01-01

    Clinical studies have shown that endodontically treated teeth restored with short posts or deficient ferrules show a high failure risk. This study. evaluated the influence of fatigue loading on the quality of the cement layer between prefabricated quartz coated carbon fiber posts with restricted length and the root canal wall in maxillary pre-molars. Two adhesive resin composite cements, chemical-cured Panavia 21 (Group 1) and dual-cured RelyX-ARC (Group 2), and one resin-modified glass-ionomer cement, chemical-cured RelyX (Group 3), delta were selected for this study. Post- and-core restorations were made on single-rooted human maxillary premolars from which the coronal sections were removed at the level of the proximal cemento-enamel junction (CEJ). Following endodontic treatment, a post-and-core restoration with 6-mm post length was prepared for each tooth. The posts were directly cemented into the root canal and, after applying an adhesive (Clearfil Photo Bond), they were built up with a core build-up composite (Clearfil Photo Core). For each group (n=8), half of the specimens were exposed to fatigue loading (10(6) load cycles) almost perpendicular to the axial axis (85 degrees), while the other half were used as the control. Three parallel, transverse root sections, 1.5-mm thick, were cut from each specimen at the apical, medial and coronal location. These sections were examined by Scanning Electron Microscopy (SEM) to evaluate the integrity of the cement layer, while the retention strength of the cemented post sections was determined with the push-out test. The multivariate results of MANOVA showed that the condition main effect (fatigue or control) was not significant (p=0.059); the two other main effects, type of cement and section location, were significant (p=0.001 and p=0.008). For both the push-out strength and SEM evaluation of the cement layer integrity, the results significantly improved from RelyX to RelyX-ARC to Panavia 21 and also from apical to

  4. Influence of 2% chlorhexidine on pH, calcium release and setting time of a resinous MTA-based root-end filling material.

    Science.gov (United States)

    Jacinto, Rogério Castilho; Linhares-Farina, Giane; Sposito, Otávio da Silva; Zanchi, César Henrique; Cenci, Maximiliano Sérgio

    2015-01-01

    The addition of chlorhexidine (CHX) to a resinous experimental Mineral Trioxide Aggregate (E-MTA) based root-end filling material is an alternative to boost its antimicrobial activity. However, the influence of chlorhexidine on the properties of this material is unclear. The aim of this study was to evaluate the influence of 2% chlorhexidine on the pH, calcium ion release and setting time of a Bisphenol A Ethoxylate Dimethacrylate/Mineral Trioxide Aggregate (Bis-EMA/MTA) based dual-cure experimental root-end filling material (E-MTA), in comparison with E-MTA without the addition of CHX and with conventional white MTA (W-MTA). The materials were placed in polyethylene tubes, and immersed in deionized water to determine pH (digital pH meter) and calcium ion release (atomic absorption spectrometry technique). The setting time of each material was analyzed using Gilmore needles. The data were statistically analyzed at a significance level of 5%. E-MTA + CHX showed an alkaline pH in the 3 h period of evaluation, the alkalinity of which decreased but remained as such for 15 days. The pH of E-MTA + CHX was higher than the other two materials after 7 days, and lower after 30 days (p MTA to levels statistically similar to W-MTA. E-MTA showed shorter initial and final setting time, compared with W-MTA (p MTA prevented setting of the material. The addition of CHX to E-MTA increased its pH and calcium ion release. However, it also prevented setting of the material.

  5. Review: Resin Composite Filling

    Science.gov (United States)

    Chan, Keith H. S.; Mai, Yanjie; Kim, Harry; Tong, Keith C. T.; Ng, Desmond; Hsiao, Jimmy C. M.

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  6. [Studies on the pour type resin for denture. (I) Mechanical properties (author's transl)].

    Science.gov (United States)

    Nagata, K

    1976-09-01

    The influence of crosslinking agents in syrup type resins on the several mechanical properties was studied. These data were compared with those commercially available heat-curing resin and powder-liquid pour type resins. Addition of 2 to 3 mol% of crosslinking agents to the syrup gave best results, which were between those of the heat-curing resin and the powder-liquid pour type resin.

  7. Influence of Al{sub 2}O{sub 3} nanoparticles on the isothermal cure of an epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Sanctuary, R; Baller, J; Zielinski, B; Becker, N; Krueger, J K; Philipp, M; Mueller, U; Ziehmer, M [University of Luxembourg, 162a avenue de la Faiencerie, L-1511 (Luxembourg)], E-mail: roland.sanctuary@uni.lu

    2009-01-21

    The influence of Al{sub 2}O{sub 3} nanoparticles on the curing of an epoxy thermoset based on diglycidyl ether of bisphenol A was investigated using temperature-modulated differential scanning calorimetry (TMDSC) and rheology. Diethylene triamine was used as a hardener. TMDSC not only allows for a systematic study of the kinetics of cure but simultaneously gives access to the evolution of the specific heat capacities of the thermosets. The technique thus provides insight into the glass transition behaviour of the nanocomposites and hence makes it possible to shed some light on the interaction between the nanoparticles and the polymer matrix. The Al{sub 2}O{sub 3} fillers are shown to accelerate the growth of macromolecules upon isothermal curing. Several mechanisms which possibly could be responsible for the acceleration are described. As a result of the faster network growth chemical vitrification occurs at earlier times in the filled thermosets and the specific reaction heat decreases with increasing nanoparticle concentration. Rheologic measurements of the zero-shear viscosity confirm the faster growth of the macromolecules in the presence of the nanoparticles.

  8. Influence of non-smooth surface on tribological properties of glass fiber-epoxy resin composite sliding against stainless steel under natural seawater lubrication

    Science.gov (United States)

    Wu, Shaofeng; Gao, Dianrong; Liang, Yingna; Chen, Bo

    2015-11-01

    With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite (GF/EPR) coupled with stainless steel 316L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.

  9. Influence of Non-smooth Surface on Tribological Properties of Glass Fiber-epoxy Resin Composite Sliding against Stainless Steel under Natural Seawater Lubrication

    Institute of Scientific and Technical Information of China (English)

    WU Shaofeng; GAO Dianrong; LIANG Yingna; CHEN Bo

    2015-01-01

    With the development of bionics, the bionic non-smooth surfaces are introduced to the field of tribology. Although non-smooth surface has been studied widely, the studies of non-smooth surface under the natural seawater lubrication are still very fewer, especially experimental research. The influences of smooth and non-smooth surface on the frictional properties of the glass fiber-epoxy resin composite (GF/EPR) coupled with stainless steel 316L are investigated under natural seawater lubrication in this paper. The tested non-smooth surfaces include the surfaces with semi-spherical pits, the conical pits, the cone-cylinder combined pits, the cylindrical pits and through holes. The friction and wear tests are performed using a ring-on-disc test rig under 60 N load and 1000 r/min rotational speed. The tests results show that GF/EPR with bionic non-smooth surface has quite lower friction coefficient and better wear resistance than GF/EPR with smooth surface without pits. The average friction coefficient of GF/EPR with semi-spherical pits is 0.088, which shows the largest reduction is approximately 63.18% of GF/EPR with smooth surface. In addition, the wear debris on the worn surfaces of GF/EPR are observed by a confocal scanning laser microscope. It is shown that the primary wear mechanism is the abrasive wear. The research results provide some design parameters for non-smooth surface, and the experiment results can serve as a beneficial supplement to non-smooth surface study.

  10. Structure Property Relationships of Biobased Epoxy Resins

    Science.gov (United States)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  11. RHEOLOGICAL MODIFICATION OF EPOXY RESINS WITH NANO SILICA PREPARED BY THE SOL-GEL PROCESS

    Institute of Scientific and Technical Information of China (English)

    Xia Wang; Jiang Li; Cheng-fen Long; Yun-zhao Yu

    1999-01-01

    Nano silica-modified epoxy resins were synthesized by the sol-gel process. The materials have the morphological structure of nano particales dispersed in the epoxy matrix. The dispersed phase formed a physical network in the resin and thus influenced the rheological behavior greatly. However, the nano silica did not show a significant influence on the mechanical properties of the cured resins.

  12. Influencing factors of the quality of PVC resins and solutions%PVC树脂质量的影响因素及控制措施

    Institute of Scientific and Technical Information of China (English)

    张阳; 刘志超

    2016-01-01

    According to the important factors that affect the quality of PVC resin production process ,analysis and put forward some solutions,stable product quality,and provide protection for the development and application of PVC resin market reputation.%根据PVC树脂生产过程中影响产品质量的重要因素,分析并提出一些解决措施,稳定了产品质量,为PVC树脂的研发应用以及市场信誉提供保障。

  13. [Radiopacity of composite resins].

    Science.gov (United States)

    Tamburús, J R

    1990-01-01

    The author studied the radiopacity of six composite resins, submitted to radiographic examination in standardized conditions, only with kilovoltage variations. Along with resins it was radiographed an aluminium penetrometer, to compare their optical densities. The results showed that kilovoltagem variations interfered in optical densities of the resins, being more pronounced in 50-55, 55-60 and 60-65 kilovoltages. Despite this, the relations of optical densities as compared with that of penetrometer steps kept unaltered most fo the kilovoltages used.

  14. Biocompatibility of composite resins

    OpenAIRE

    Sayed Mostafa Mousavinasab

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concern...

  15. 不同树脂核材料对纤维桩核修复后整体抗折强度的影响%Comparison of influence of resin core on overall bending strength of fiber post-core restoration

    Institute of Scientific and Technical Information of China (English)

    俞忠伟; 马燕

    2015-01-01

    目的 比较不同树脂核材料对纤维桩核修复后整体抗折强度的影响.方法 选择离体下颌第一前磨牙60颗,分别用3M光固化复合树脂P60、Medental双重固化树脂、Pulpdent双重固化树脂联合Viva碳纤维加强玻璃纤维桩行桩核修复,缓慢加载力同时观察离体牙受力的变化情况.结果 3M光固化复合树脂的抗折强度为(80.182±9.512)N,Medental双重固化树脂的抗折强度为(87.805±11.649)N,Pulpdent双重固化树脂的抗折强度为(85.458±10.845)N.组间比较,3M光固化复合树脂的抗折强度低于Medental双重固化树脂和Pulpdent双重固化树脂的抗折强度(t=5.758、3.084,均P<0.05),Medental双重固化树脂和Pulpdent双重固化树脂的抗折强度差异无统计学意义(t=0.718,P>0.05).3M光固化复合树脂组桩核断裂后伴有大面积的堆核树脂碎裂脱落.结论 采用双重固化树脂行纤维桩-树脂核修复大面积牙体硬组织缺损抗折强度优于高填料光固化复合树脂,且不易出现核碎裂脱落,是更理想的桩核修复核材料.%Objective To compare the influence of resin core on overall bending strength of fiber post-core restoration.Methods 60 mandibular first premolar extracted because of orthodontic treatment was selected.3M light -cured composite resin P60,medental dual-cured resin,pulpdent dual-cured resin combined with viva carbon fiber reinforced glass fiber post were applied.The changes of teeth in vitro were observed when strength was given on.Results The flexural strength of 3M light-cured composite resin was (80.182 ±9.512)N,Medental dual-cured resin was (87.805 ± 11.649) N,Pulpdent dual-cured resin was (85.458 ± 10.845) N.The flexural strength of 3 M light-cured composite resin was lower than that of medental dual-cured resin and pulpdent dual-cured resin (t =5.758,3.084,both P < 0.05).There was no statistical differences of flexural strength between medental dual-cured resin and pulpdent dual

  16. RESEARCH ON IMPROVED EPOXY RESINS.

    Science.gov (United States)

    another ’million-modulus’ epoxy resin. Cast resin properties from a series of epoxy resins hardened with several aromatic diamines are reported, but these data are sufficient to advance only speculative conclusions. (Author)

  17. The influence of finishing/polishing time and cooling system on surface roughness and microhardness of two different types of composite resin restorations

    OpenAIRE

    Kaminedi, Raja Rajeswari; Penumatsa, Narendra Varma; Priya, Tulasi; Baroudi, Kusai

    2014-01-01

    Objective: The aim of this study was to evaluate the effect of finishing time and polishing time on surface roughness and microhardness of nanofilled and hybrid resin composites. Materials and Methods: Hundred disk composite specimens from micro hybrid composite and nanohybrid composite were prepared, 50 for each type of composite. The specimens were divided into five groups according to the time of finishing and polishing (immediate, 15 min, 24 h and dry). Composite under the Mylar strip wit...

  18. The influence of different dispersion methods on the size of the aggregate of CNTs in epoxy resin for the manufacturing of carbon fiber reinforced composites

    Science.gov (United States)

    Barra, Giuseppina; Guadagno, Liberata; Simonet, Bartolome; Santos, Bricio

    2016-05-01

    Different industrial mixing methods and some of their combinations (1) ultrasound; (2) stirring; (3) (4) by roller machine, (5) by gears machine (6) Ultrasound radiation + high stirring were investigated for incorporating Multi walled Carbon nanotubes (MWCNT) into a resin based on an aeronautical epoxy precursor, cured with 4,4' diamine-dibenzylsulfone (DDS). The effect of different parameters, ultrasound intensity, number of cycles, type of blade, gears speed on the nanofiller dispersion were analyzed. The inclusion of the nanofiller in the resin causes a drastic increase in the viscosity, preventing the homogenization of the resin and a drastic increase in temperature in the zones closest to the ultrasound probe. To overcome these challenges, the application of high speed agitation simultaneously with the application of ultrasonic radiation was used. This allows on the one hand a homogeneous dispersion, on the other hand an improvement of the dissipation of heat generated by ultrasonic radiation. A comprehensive study with parameters like viscosity and temperature was performed. It is necessary a balance between viscosity and temperature. Viscosity must be low enough to facilitate the dispersion and homogenization of the nanofillers, whereas the temperature cannot be too high because of re-agglomerations

  19. Class I and Class II restorations of resin composite: an FE analysis of the influence of modulus of elasticity on stresses generated by occlusal loading

    DEFF Research Database (Denmark)

    Asmussen, Erik; Peutzfeldt, Anne

    2008-01-01

    was that the marginal stresses would decrease with increasing modulus of elasticity of the restoration. METHODS: A cylindrical tooth was modelled in enamel and dentin and fitted with a Class I or a Class II restoration of resin composite. In one scenario the restoration was bonded to the tooth, in another...... the restoration was left nonbonded. The resin composite was modelled with a modulus of elasticity of 5, 10, 15 or 20 GPa and loaded occlusally with 100 N. By means of the soft-ware program ABAQUS the von Mises stresses in enamel and dentin were calculated. RESULTS: In the bonded scenario, the maximum stresses...... in the enamel were located at the occlusal margins (range 7-11 MPa), and in the dentin centrally at the pulpal floor (range 3.4-5.5MPa). The stresses decreased with increasing modulus of elasticity of the resin composite. In the nonbonded scenario, the stresses were higher in the dentin and lower in the enamel...

  20. Influence of pyrolysis gas convective transport on the temperature field of thermally decomposing resin composite%热分解气体对流传输对树脂基复合材料温度场的影响

    Institute of Scientific and Technical Information of China (English)

    陈敏孙; 江厚满; 刘泽金

    2011-01-01

    The one-dimensional temperature field model of thermally decomposing resin composite irradiated by laser was solved with the commonly-used finite difference method.By comparing the simulation result with the experimental result which was reported by related literature, the influence of the pyrolysis gas convective transport on the temperature field of resin composite was studied.The analysis indicates that the simulation temperature field considering the convective transport of pyrolysis gas matches better than the simulation temperature field without considering the convective transport of pyrolysis gas with the experimental temperature, namely the convective transport of pyrolysis gas has a large influence on the temperature field of resin composite.Therefore, while constructing a three-dimensional temperature field model of thermally decomposing resin composite irradiated by laser, on the premise of without introducing any mechanical quantities, the convective transport of pyrolysis gas should be considered.%用有限差分法对激光辐照下复合材料树脂基热解时的一维温度场模型进行数值求解,将数值模拟结果与相关文献中给出的实验结果进行对比.结果表明:考虑了对流传输效应的数值模拟结果比没有考虑对流传输效应的数值模拟结果与实验结果符合的更好,即热分解气体的对流传输对树脂基复合材料的温度场有较大的影响.因此,在不引入力学量的前提下,建立激光辐照下复合材料树脂基热解时的三维温度场模型时,需要考虑热分解气体的对流传输效应.

  1. Influence of surface state on the mechanicalseal properties of the resin impregnated graphite composites%表面状态对浸树脂石墨复合材料密封性能的影响

    Institute of Scientific and Technical Information of China (English)

    朱振国; 陈杰; 徐红军; 白朔; 李汀; 任勇; 杜海峰; 吴峻峰

    2013-01-01

    The resin impregnated graphite composites were fabricated by impregnating with furan resin in graphite at high pressure. The composites were processed into seal ring for air seal performance test. Lathing, grinding and polishing were selected to get different surface state. The connection of surface state and material sealing properties was studied in detail. The results show the comprehensive performance of graphite was greatly improved by resin impregnated and the composites can be used as high -performance mechanical seal field. Seal performance of the composites is closely related to surface state. The unclosed of the O-ring caused by the surface morphology is the key factor influencing seal performance.%采用高压浸渍呋喃树脂工艺制备了浸树脂石墨复合材料,并将其加工成密封环进行气密性检验.利用车加工、磨加工及表面抛光等处理方法得到不同的材料表面状态,研究了表面状态与材料密封性能之间的关系.结果表明,浸树脂工艺能大幅提高材料的综合性能,可以作为高性能机械密封材料得到应用.材料的表面状态与其密封性能密切相关,表面微观形貌引起的O型胶圈封闭不严是影响材料密封性能的关键因素.

  2. Influence of light-exposure methods and depths of cavity on the microhardness of dual-cured core build-up resin composites

    Directory of Open Access Journals (Sweden)

    Keiichi YOSHIDA

    2014-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the Knoop hardness number (KHN of dual-cured core build-up resin composites (DCBRCs at 6 depths of cavity after 3 post-irradiation times by 4 light-exposure methods. Material and Methods: Five specimens each of DCBRCs (Clearfil DC Core Plus [DCP] and Unifil Core EM [UCE] were filled in acrylic resin blocks with a semi-cylindrical cavity and light-cured using an LED light unit (power density: 1,000 mW/cm2at the top surface by irradiation for 20 seconds (20 s, 40 seconds (40 s, bonding agent plus 20 seconds (B+20 s, or 40 seconds plus light irradiation of both sides of each acrylic resin block for 40 seconds each (120 s. KHN was measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours, 24 hours, and 7 days post-irradiation. Statistical analysis was performed using repeated measures ANOVA and Tukey's compromise post-hoc test with a significance level of p0.05. In DCP, and not UCE, at 24 hours and 7 days post-irradiation, the B+20 s method showed significantly higher KHN at all depths of cavity, except the depth of 0.5 mm (p<0.05. Conclusion: KHN depends on the light-exposure method, use of bonding agent, depth of cavity, post-irradiation time, and material brand. Based on the microhardness behavior, DCBRCs are preferably prepared by the effective exposure method, when used for a greater depth of cavity.

  3. Sorption kinetics of ethanol/water solution by dimethacrylate-based dental resins and resin composites.

    Science.gov (United States)

    Sideridou, Irini D; Achilias, Dimitris S; Karabela, Maria M

    2007-04-01

    In the present investigation the sorption-desorption kinetics of 75 vol % ethanol/water solution by dimethacrylate-based dental resins and resin composites was studied in detail. The resins examined were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), bisphenol A ethoxylated dimethacrylate (Bis-EMA), and mixtures of these monomers. The resin composites were prepared from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of the above-mentioned monomers. Ethanol/water sorption/desorption was examined in both equilibrium and dynamic conditions in two adjacent sorption-desorption cycles. For all the materials studied, it was found that the amount of ethanol/water sorbed or desorbed was always larger than the corresponding one reported in literature in case of water immersion. It was also observed that the chemical structure of the monomers used for the preparation of the resins directly affects the amount of solvent sorbed or desorbed, as well as sorption kinetics, while desorption rate was nearly unaffected. In the case of composites studied, it seems that the sorption/desorption process is not influenced much by the presence of filler. Furthermore, diffusion coefficients calculated for the resins were larger than those of the composites and were always higher during desorption than during sorption. Finally, an interesting finding concerning the rate of ethanol/water sorption was that all resins and composites followed Fickian diffusion kinetics during almost the whole sorption curve; however, during desorption the experimental data were overestimated by the theoretical model. Instead, it was found that a dual diffusion-relaxation model was able to accurately predict experimental data during the whole desorption curve. Kinetic relaxation parameters, together with diffusion coefficients, are reported

  4. Study on preparation and influence factors of expanded perlite/phenolic resin composite thermal insulation material%膨胀珍珠岩/酚醛复合保温材料的制备及影响因素研究

    Institute of Scientific and Technical Information of China (English)

    陈亚丽; 刘鹏; 朱方方

    2013-01-01

    以膨胀珍珠岩、酚醛树脂为原料,添加适量助剂,采用热压成型方法制备膨胀珍珠岩/酚醛树脂复合保温材料,探讨了酚醛树脂用量、压缩比、热压温度、保压时间和固化剂对复合材料性能的影响.实验表明,制备复合材料的优化条件为酚醛树脂用量40%、压缩比2.0、热压成型温度220℃、保压时间2h、固化剂(六亚甲基四胺)用量3%,所得复合保温材料的密度为309.56 kg/m3,导热系数为0.047 W/(m·K),抗折强度为1.147 MPa,抗压强度为1.331 MPa.%Using hot embossing method, the expanded perlite/phenolic resin composite insulation material was prepared based on expanded perlite and phenolic resin as raw material,and with addition of several kinds of supplementary reagents. The influence factors such as the amount of the phenolic resin.the compression ratio,the hot pressing temperature,the pressing time, and the cur ing agent on the properties of composites were discussed. The results showed that the optimized conditions for the composite prepa ration are that when the amount of the phenolic resin is 40%,the compression ratio is 2.0,the hot pressing temperature is 220 ℃., the pressing time is 2 h,and the curing agent (hexamine) is 3%. The density of the resulting material is 309.56 kg/m3, thermal conductivity is 0.047 W/(m·K) ,flexural strength is 1.147 MPa,and compressive strength is 1.331 MPa.

  5. Biocidal quaternary ammonium resin

    Science.gov (United States)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  6. Biocompatibility of composite resins

    Directory of Open Access Journals (Sweden)

    Sayed Mostafa Mousavinasab

    2011-01-01

    Full Text Available Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity.

  7. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    OpenAIRE

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the res...

  8. STUDIES ON THE BLEND OF POLYACRYLATE EMULSIONS AND TACKIFIER RESIN EMULSIONS

    Institute of Scientific and Technical Information of China (English)

    HU Shuwen; YANG Yukun

    1996-01-01

    A series of polyacrylate emulsions were blended with tackifier resin emulsions such as modified rosin emulsion, C5 resin and C9 resin emulsion. The miscibility of the polyacrylates and tackifier resins was investigated by means of SEM and visual observation. The phase diagrams of the miscibility change systematically with the polarity of polyacrylates and tackifier resins. The influence of the content of the tackifier resins on the adhesion properties of the polyacrylate emulsions were also studied. The results show that the 180℃ peel strength is improved as the amount of the tackifier resin increases and comes to a maximum at a specific content. The ball tack property decreases slightly and the hold strength changes complicatedly as the tackifier resin increases.

  9. Surface hardness evaluation of different composite resin materials: influence of sports and energy drinks immersion after a short-term period

    Directory of Open Access Journals (Sweden)

    Ugur Erdemir

    2013-04-01

    Full Text Available Objectives: This study evaluated the effect of sports and energy drinks on the surface hardness of different composite resin restorative materials over a 1-month period. Material and Methods: A total of 168 specimens: Compoglass F, Filtek Z250, Filtek Supreme, and Premise were prepared using a customized cylindrical metal mould and they were divided into six groups (N=42; n=7 per group. For the control groups, the specimens were stored in distilled water for 24 hours at 37°C and the water was renewed daily. For the experimental groups, the specimens were immersed in 5 mL of one of the following test solutions: Powerade, Gatorade, X-IR, Burn, and Red Bull, for two minutes daily for up to a 1-month test period and all the solutions were refreshed daily. Surface hardness was measured using a Vickers hardness measuring instrument at baseline, after 1-week and 1-month. Data were statistically analyzed using Multivariate repeated measure ANOVA and Bonferroni's multiple comparison tests (α=0.05. Results: Multivariate repeated measures ANOVA revealed that there were statistically significant differences in the hardness of the restorative materials in different immersion times (p<0.001 in different solutions (p<0.001. The effect of different solutions on the surface hardness values of the restorative materials was tested using Bonferroni's multiple comparison tests, and it was observed that specimens stored in distilled water demonstrated statistically significant lower mean surface hardness reductions when compared to the specimens immersed in sports and energy drinks after a 1-month evaluation period (p<0.001. The compomer was the most affected by an acidic environment, whereas the composite resin materials were the least affected materials. Conclusions: The effect of sports and energy drinks on the surface hardness of a restorative material depends on the duration of exposure time, and the composition of the material.

  10. Influence of Epoxy Resin on Partial Discharge Development under Non-uniform Field%环氧树脂材料对极不均匀场局部放电发展的影响研究

    Institute of Scientific and Technical Information of China (English)

    肖智刚; 董明; 任明; 张崇兴; 毕建刚; 阎春雨

    2015-01-01

    To research the influence of epoxy resin on the partial discharge development under non-uni-form field, we designed a partial discharge test system based on IEC 60270. Photomultiplier (PMT), Rogowski coil, and PDcheck were used to test the discharge characteristics of six typical defects, and their pulse spectra and PRPD spectra under different voltages were obtained. Through comparing the typi-cal characteristics of surface discharge and floating discharge, the discharge can be divided into three stag-es, which are glow discharge, electron avalanche discharge, and streamer discharge, and the influence of epoxy resin on the discharge was studied. The results show that the epoxy resin has little influence on the discharge in the initial stage of discharge, and epoxy resin would depress the development of dis-charge with the increase of voltage then eventually contribute to form more stable surface streamer dis-charge. The typical discharge spectra of metal particle at different positions were compared, the surface defect was simplified to equivalent circuit model, and the discharge difference of defects at positive and negative half cycle was explained.%为了研究环氧树脂材料对极不均匀场局部放电的影响特征,依据局部放电测量标准IEC 60270设计了一套局部放电测量回路,采用光电倍增管(PMT)、罗氏线圈以及PDcheck等多种手段对6种典型沿面及悬浮缺陷进行检测,获得了不同电压下空气中6种缺陷的放电脉冲图谱以及PRPD图谱。对比悬浮放电和沿面放电的典型特征,将放电分为辉光放电、电子崩放电、流注放电3个阶段,根据不同阶段下悬浮放电和沿面放电的特征,分析了环氧树脂材料对放电发展的影响。结果表明:在放电初始阶段环氧树脂对放电的影响较小,随着电压的增大,环氧树脂会阻碍放电的发展,到达一定阶段又有助于沿面流注的形成。对比分析了不同位置金属颗

  11. Water sorption/solubility of dental adhesive resins.

    Science.gov (United States)

    Malacarne, Juliana; Carvalho, Ricardo M; de Goes, Mario F; Svizero, Nadia; Pashley, David H; Tay, Franklin R; Yiu, Cynthia K; Carrilho, Marcela Rocha de Oliveira; de Oliveira Carrilho, Marcela Rocha

    2006-10-01

    This study evaluated the water sorption, solubility and kinetics of water diffusion in commercial and experimental resins that are formulated to be used as dentin and enamel bonding agents. Four commercial adhesives were selected along with their solvent-monomer combination: the bonding resins were of Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) systems, and the "one-bottle" systems, Adper Single Bond (SB) and Excite (EX). Five experimental methacrylate-based resins of known hydrophilicities (R1, R2, R3, R4 and R5) were used as reference materials. Specimen disks were prepared by dispensing the uncured resin into a mould (5.8mm x 0.8mm). After desiccation, the cured specimens were weighed and then stored in distilled water for evaluation of the water diffusion kinetics over a 28-day period. Resin composition and hydrophilicity (ranked by their Hoy's solubility parameters) influenced water sorption, solubility and water diffusion in both commercial and experimental dental resins. The most hydrophilic experimental resin, R5, showed the highest water sorption, solubility and water diffusion coefficient. Among the commercial adhesives, the solvated systems, SB and EX, showed water sorption, solubility and water diffusion coefficients significantly greater than those observed for the non-solvated systems, MP and SE (p<0.05). In general, the extent and rate of water sorption increased with the hydrophilicity of the resin blends. The extensive amount of water sorption in the current hydrophilic dental resins is a cause of concern. This may affect the mechanical stability of these resins and favor the rapid and catastrophic degradation of resin-dentin bonds.

  12. Mercuric iodide semiconductor detectors encapsulated in polymeric resin

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Joao F. Trencher; Santos, Robinson A. dos; Ferraz, Caue de M.; Oliveira, Adriano S.; Velo, Alexandre F.; Mesquita, Carlos H. de; Hamada, Margarida M., E-mail: mmhamada@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Disch, Christian; Fiederle, Michael [Albert-Ludwigs Universität Freiburg - UniFreibrug, Freiburg Materials Research Center - FMF, Freiburg (Germany)

    2015-07-01

    The development of new semiconductor radiation detectors always finds many setback factors, such as: high concentration of impurities in the start materials, poor long term stability, the surface oxidation and other difficulties discussed extensively in the literature, that limit their use. In this work was studied, the application of a coating resin on HgI2 detectors, in order to protect the semiconductor crystal reactions from atmospheric gases and to isolate electrically the surface of the crystals. Four polymeric resins were analyzed: Resin 1: 50% - 100%Heptane, 10% - 25% methylcyclohexane, <1% cyclohexane; Resin 2: 25% - 50% ethanol, 25% - 50% acetone, <2,5% ethylacetate; Resin 3: 50% - 100% methylacetate, 5% - 10% n-butylacetate; Resin 4: 50% - 100% ethyl-2-cyanacrylat. The influence of the polymeric resin type used on the spectroscopic performance of the HgI{sub 2} semiconductor detector is, clearly, demonstrated. The better result was found for the detector encapsulated with Resin 3. An increase of up to 26 times at the stability time was observed for the detectors encapsulated compared to that non-encapsulated detector. (author)

  13. Influence of synthetic conditions on o- cresol novolac resin%合成条件对邻甲酚系线形酚醛树脂的影响

    Institute of Scientific and Technical Information of China (English)

    杨金瑞; 丛培军; 邵永智; 余尚先

    2011-01-01

    采用双层反应设备,通过碱酸分步催化法合成了一系列纯邻甲酚和以邻甲酚为主成分的邻甲酚系线形酚醛树脂.利用GPC、NMR等研究了催化剂氢氧化钠的用量、醛酚比以及酚的种类和用量对树脂的分子质量(Mw)、分子质量分布(Mw/Mn)及抗碱性等的影响.结果表明,氢氧化钠用量达到酚总质量的0.4%、醛酚比接近于1时可合成分子质量高、分子质量分布窄的树脂.可利用醛酚比控制树脂的分子质量,可通过调整酚的种类和用量控制树脂的双邻位缩聚值(Ro-o)以及酚醛树脂的质量与其所含酚羟基质量之比值.合成的树脂可用于PS版、热敏CTP版以及LCD用抗蚀剂等.%A series of pure o - cresol novolac resins and novolac resins with o - cresol as main component were synthesized by base- acid stepwise catalyzed reaction using double -layer equipment. The effects of catalyst sodium hydroxide amounts, ratio of formaldehyde to phenol, kind and amount of phenol on the Mw, Mw/Mn and alkali resistance of the synthesized novolac were investigated by GPC and NMR. The result showed that o - cresol novolac with high Mw and narrow molecular weight distribution could be obtained when the amount of catalyst sodium hydroxide was at least 0.4% and the ratio of formaldehyde to phenol was close to 1. The Mw of synthesized novolac could be adjusted by the ratio of formaldehyde to phenol. The alkali - solublity and solvent properties of synthesized novolac could be controlled by the kind and amount of phenols . The synthesized products could be used for PS plates, heat -sensitive CTP plates and resist for LCD.

  14. Shear Bond Strength between Fiber-Reinforced Composite and Veneering Resin Composites with Various Adhesive Resin Systems.

    Science.gov (United States)

    AlJehani, Yousef A; Baskaradoss, Jagan K; Geevarghese, Amrita; AlShehry, Marey A; Vallittu, Pekka K

    2016-07-01

    The aim of this research was to evaluate the shear bond strength of different laboratory resin composites bonded to a fiber-reinforced composite substrate with some intermediate adhesive resins. Mounted test specimens of a bidirectional continuous fiber-reinforced substrate (StickNet) were randomly assigned to three equal groups. Three types of commercially available veneering resin composites - BelleGlass®, Sinfony®, and GC Gradia® were bonded to these specimens using four different adhesive resins. Half the specimens per group were stored for 24 hours; the remaining were stored for 30 days. There were 10 specimens in the test group (n). The shear bond strengths were calculated and expressed in MPa. Data were analyzed statistically, and variations in bond strength within each group were additionally evaluated by calculating the Weibull modulus. Shear bond values of those composites are influenced by the different bonding resins and different indirect composites. There was a significant difference in the shear bond strengths using different types of adhesive resins (p = 0.02) and using different veneering composites (p composite resin exhibited the lowest shear bond strength values when used with the same adhesive resins. The adhesive mode of failure was higher than cohesive with all laboratory composite resins bonded to the StickNet substructure at both storage times. Water storage had a tendency to lower the bond strengths of all laboratory composites, although the statistical differences were not significant. Within the limitations of this study, it was found that bonding of the veneering composite to bidirectional continuous fiber-reinforced substrate is influenced by the brand of the adhesive resin and veneering composite. © 2015 by the American College of Prosthodontists.

  15. Influence of air-abrasion executed with polyacrylic acid-Bioglass 45S5 on the bonding performance of a resin-modified glass ionomer cement.

    Science.gov (United States)

    Sauro, Salvatore; Watson, Timothy F; Thompson, Ian; Toledano, Manuel; Nucci, Cesare; Banerjee, Avijit

    2012-04-01

    The aim of this study was to test the microtensile bond strength (μTBS), after 6 months of storage in PBS, of a resin-modified glass ionomer cement (RMGIC) bonded to dentine pretreated with Bioglass 45S5 (BAG) using various etching and air-abrasion techniques. The RMGIC (GC Fuji II LC) was applied onto differently treated dentine surfaces followed by light curing for 30 s. The specimens were cut into matchsticks with cross-sectional areas of 0.9 mm(2). The μTBS of the specimens was measured after 24 h or 6 months of storage in PBS and the results were statistically analysed using two-way anova and the Student-Newman-Keuls test (α = 0.05). Further RMCGIC-bonded dentine specimens were used for interfacial characterization, micropermeability, and nanoleakage analyses by confocal microscopy. The RMGIC-dentine interface layer showed no water absorption after 6 months of storage in PBS except for the interdiffusion layer of the silicon carbide (SiC)-abraded/polyacrylic acid (PAA)-etched bonded dentine. The RMGIC applied onto dentine air-abraded with BAG/H(2)O only or with BAG/PAA-fluid followed by etching procedures (10% PAA gel) showed no statistically significant reduction in μTBS after 6 months of storage in PBS. The abrasion procedures performed using BAG in combination with PAA might be a suitable strategy to enhance the bonding durability and the healing ability of RMGIC bonded to dentine.

  16. Salivary contamination and post-cured resin/resin lute bond.

    Science.gov (United States)

    Stokes, A N; Pereira, B P

    1994-01-01

    A previous study has shown that sandblasting and silane priming a post-cured inlay resin gave a secure bond to dual-cure luting resin. To determine the influence of salivary contamination 4 additional groups of 15 post-cured resin discs were mounted in acrylic cylinders, their faces sandblasted with 50 microns alumina and silane primed. Surface treatments with saliva (sa), air/water spray (a/w), phosphoric acid gel (pa), and silane (si) followed in the order listed: A) control, no further treatment; B) sa, a/w; C) sa, a/w, si; D) sa, a/w, pa a/w; E) sa, a/w, pa, a/w, si. A 3.9 mm diameter column of dual-cure resin lute was then bonded to the dry stored in water surfaces. Specimens were stored in water for 2 weeks after which the dual-cure resin columns were sheared off the post-cured resin discs. Shear bond strengths were A) 19.2 +/- 3.7, B) 17.4 +/- 3.9, C) 16.7 +/- 3.1, D) 15.6 +/- 3.5, E) 15.4 +/- 2.3 MPa. One-way ANOVA and Duncan's Multiple Range Procedure showed groups D and E to be significantly lower than the uncontaminated control group A (p < 0.05). There were 2 adhesive failures in group B and all others were cohesive within the post-cured resin discs. This implies that air/water alone after salivary contamination is an unreliable cleansing method. The low shear bond values for Groups D and E may have been related to inadequate clearance of the phosphoric acid gel. It was concluded that salivary contamination adversely affected the quality of the bonds studied and decontamination using phosphoric acid gel resulted in significantly reduced shear bond strengths.

  17. Surface hardness evaluation of different composite resin materials: influence of sports and energy drinks immersion after a short-term period.

    Science.gov (United States)

    Erdemir, Ugur; Yildiz, Esra; Eren, Meltem Mert; Ozel, Sevda

    2013-01-01

    This study evaluated the effect of sports and energy drinks on the surface hardness of different composite resin restorative materials over a 1-month period. A total of 168 specimens: Compoglass F, Filtek Z250, Filtek Supreme, and Premise were prepared using a customized cylindrical metal mould and they were divided into six groups (N=42; n=7 per group). For the control groups, the specimens were stored in distilled water for 24 hours at 37°C and the water was renewed daily. For the experimental groups, the specimens were immersed in 5 mL of one of the following test solutions: Powerade, Gatorade, X-IR, Burn, and Red Bull, for two minutes daily for up to a 1-month test period and all the solutions were refreshed daily. Surface hardness was measured using a Vickers hardness measuring instrument at baseline, after 1-week and 1-month. Data were statistically analyzed using Multivariate repeated measure ANOVA and Bonferroni's multiple comparison tests (α=0.05). Multivariate repeated measures ANOVA revealed that there were statistically significant differences in the hardness of the restorative materials in different immersion times (pmaterials was tested using Bonferroni's multiple comparison tests, and it was observed that specimens stored in distilled water demonstrated statistically significant lower mean surface hardness reductions when compared to the specimens immersed in sports and energy drinks after a 1-month evaluation period (pmaterials were the least affected materials. The effect of sports and energy drinks on the surface hardness of a restorative material depends on the duration of exposure time, and the composition of the material.

  18. Tackification of textile preforms for resin transfer molding

    Institute of Scientific and Technical Information of China (English)

    Wuyunqiqige; YI; Xiao-su

    2005-01-01

    Tackified textile fiber preforms are used widely in resin transfer molding (RTM) to produce aerospace-grade composite parts. In the present study, a new tackifier was developed to improve RTM laminate performance. The influence of tackifier concentration on spring back, thermal properties and mechanical performance was studied . It has showed that the new tackifier was compatible with the matrix resin and improved the textile handling ability; the ILSS was slightly increased without decreasing of thermal properties, modulus and flexural strength.

  19. Study for highly functional resin (macroporous resin) superior in removing micro particles in PWR primary circuit: on-site test

    Energy Technology Data Exchange (ETDEWEB)

    Itou, A.; Kondo, K.; Kouzuma, Y., E-mail: ayumu_itou@kyuden.co.jp [Kyusyu Electric Power Co., Inc., Minami-ku, Fukuoka (Japan); Umehara, R.; Shimizu, Y., E-mail: Ruyji_Umehara@mhi.co.jp [Mitsubishi Heavy Industries, Ltd., Hyogo-ku, Kobe (Japan); Kogawa, N.; Nagamine, K., E-mail: nkogawa@ndc.hq.mhi.co.jp [Nuclear Development Corp., Tokaimura, Ibaraki (Japan)

    2010-07-01

    In Japanese PWR plants, efforts to remove particulate constituents containing radioactive cobalt which provides a source of radiation exposure, are needed. Performance evaluation study was conducted for macroporous resin which was said to possess excellent performance in removing particulate constituents and whose practical accomplishment at plants in USA was reported to be good. As one of the means for radiation exposure reduction in PWR, a study for application of crud removing resin to actual plant was executed by laboratory experiments using simulated crud (Fe{sub 3}O{sub 4} particle). In this study, following two mechanisms were demonstrated as the particle capturing mechanism of macroporous resin; physical trapping by fine pores on resin surface; electrical adsorption onto resin surface. In addition, in parallel to the study for application of macroporous resin to actual PWR plant, on-site study was planned to investigate the primary system water chemistry during various stages of actual plant operation and to research performance of particle capturing in detail. As the on-site study, column experiments, there water was let pass through the column, were planned for various operation stage (startup period, power operation period and shutdown period). A kind of conventional gel-type resin and three kinds of macroporous resin were examined for onsite tests. As to particulate capturing, basic knowledge regarding capturing efficiency and influence of water chemistry on capturing performance were ordered. Capturing performance of each resin tested became clear and was ordered by comparison. Effectiveness of macroporous resin with regard to crud removal in primary coolant was confirmed. (author)

  20. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments.

    Science.gov (United States)

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention.

  1. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  2. Flame Retardant Epoxy Resins

    Science.gov (United States)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  3. [Studies on the pour type resin for denture. (II) Curing shrinkage (author's transl)].

    Science.gov (United States)

    Nagata, K

    1976-09-01

    This study was to investigate the influence of concentration of crossliniking agents in the monomer and pressure applied on the curing shrinkage in pour type resins. A pressure could improve the dimentional accuracy in both case of the syrup and the power-liquid type resins, on the other hand crosslinking agents gave adversed effect on the dimentional accuracy of the pour type resins, especially on that of the group.

  4. Analysis of surface hardness of artificially aged resin composites

    Directory of Open Access Journals (Sweden)

    Denise Cremonezzi Tornavoi

    2012-02-01

    Full Text Available This study evaluated the effect of artificially accelerated aging (AAA on the surface hardness of eight composite resins: Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma, and Filtek Z100. Sixteen specimens were made from the test piece of each material, using an 8.0 × 2.0 mm teflon matrix. After 24 hours, eight specimens from each material were submitted to three surface hardness readings using a Shimadzu Microhardness Tester for 5 seconds at a load of 50 gf. The other eight specimens remained in the artificially accelerated aging machine for 382 hours and were submitted to the same surface hardness analysis. The means of each test specimen were submitted to the Kolmogorov-Smirnov test (p > 0.05, ANOVA and Tukey test (p < 0.05. With regard to hardness (F = 86.74, p < 0.0001 the analysis showed significant differences among the resin composite brands. But aging did not influence the hardness of any of the resin composites (F = 0.39, p = 0.53. In this study, there was interaction between the resin composite brand and the aging factors (F = 4.51, p < 0.0002. It was concluded that notwithstanding the type of resin, AAA did not influence surface hardness. However, with regard to hardness there was a significant difference among the resin brands.

  5. Paramagnetic epoxy resin

    Directory of Open Access Journals (Sweden)

    E. C. Vazquez Barreiro

    2017-01-01

    Full Text Available This work illustrates that macrocycles can be used as crosslinking agents for curing epoxy resins, provided that they have appropriate organic functionalities. As macrocycles can complex metal ions in their structure, this curing reaction allows for the introduction of that metal ion into the resin network. As a result, some characteristic physical properties of the metallomacrocycle could be transferred to the new material. The bisphenol A diglycidyl ether (BADGE, n = 0 and hemin (a protoporphyrin IX containing the Fe(III ion, and an additional chloride ligand have been chosen. The new material has been characterized by differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, Fourier Transform Infrared (FT-IR, Nuclear Magnetic Resonance (NMR, Transmission Electron Microscopy (TEM, and magnetic susceptibility measurements. Fe(III remains in the high-spin state during the curing process and, consequently, the final material exhibits the magnetic characteristics of hemin. The loss of the chlorine atom ligand during the cure of the resin allows that Fe(III can act as Lewis acid, catalyzing the crosslinking reactions. At high BADGE n = 0/hemin ratios, the formation of ether and ester bonds occurs simultaneously during the process.

  6. Influência do tipo de ponteira condutora de luz na microdureza de uma resina composta Influence of the different light-curing TIPS in the microhardness of a composite resin

    Directory of Open Access Journals (Sweden)

    Máx Dobrovolski

    2010-01-01

    Full Text Available O objetivo desta pesquisa foi avaliar a influência do tipo de ponteira condutora de luz na microdureza de uma resina composta micro-híbrida. Foram confeccionados 14 corpos de prova da resina composta Opallis (FGM com dimensões: 5 x 2 mm, divididos em dois grupos de acordo com a ponteira condutora de luz do aparelho fotoativador de lâmpada halógena Optilight Plus - GNATUS/300 mW.cm-2. GI - ponteira condutora de luz de fibra óptica; GII - ponteira condutora de luz de polímero. Após 24 horas, as medidas de microdureza foram efetuadas com um microdurômetro HMV 2000 (Shimadzu Japão. Cinco penetrações foram efetuadas em cada superfície (topo e base totalizando 10 penetrações para cada corpo de prova. A análise estatística dos resultados realizada por meio do teste de ANOVA não apresentou diferenças significativas entre os tipos de ponta condutora de luz nas superfícies avaliadas. A análise estatística demonstrou diferença significativa nos valores médios de microdureza superficial entre as superfícies de topo e de base, para ambas as ponteiras. Com base nos resultados obtidos, foi possível concluir que as ponteiras de luz não interferem na microdureza da resina composta, e que ambas apresentaram diferenças estatisticamente significativas nos valores de microdureza das superfícies topo e base.The aim of this study is to evaluate the influence of the light-curing tips on the microhardness of a micro-hybrid composite resin. Fourteen samples of Opallis (FGM composite resin with 5 x 2 mm were prepared. The specimens were divided into two groups according to the light-curing tips from a halogen light curing unit (Optilight Plus -GNATUS/300 mW.cm-2: GI - optical fiber light-curing; GII - polymer light-curing. After 24 hours, the microhardness measurements were determined using the HMV 2000 (Shimadzu Japan. Five measurements were made on each surface (top and bottom totalizing 10 indentations for each sample. Statistical analysis

  7. Dry PMR-15 Resin Powders

    Science.gov (United States)

    Vannucci, Raymond D.; Roberts, Gary D.

    1988-01-01

    Shelf lives of PMR-15 polymides lengthened. Procedure involves quenching of monomer reactions by vacuum drying of PRM-15 resin solutions at 70 to 90 degree F immediately after preparation of solutions. Absence of solvent eliminates formation of higher esters and reduces formation of imides to negligible level. Provides fully-formulated dry PMR-15 resin powder readily dissolvable in solvent at room temperature immediately before use. Resins used in variety of aerospace, aeronautical, and commercial applications.

  8. Resin regeneration device for condensate desalter

    Energy Technology Data Exchange (ETDEWEB)

    Segawa, Yoshihiro [Toshiba Engineering Co. Ltd., Kawasaki, Kanagawa (Japan); Hirose, Yuki

    1998-07-28

    The present invention provides a resin regeneration device for a condensate desalter of a nuclear power plant. Namely, both anionic and cationic exchange resins are supplied in a mixed state from a forwarding water desalting tower to an anionic resin regeneration tower. In the anionic resin generation tower, the resin is once separated to an anionic exchange region layer, a mixed resin layer and an cationic exchange resin layer in this order from the upper portion by water injected from a stirring water injection tube disposed at the bottom. Then, water is injected from a developing water injection tube disposed at the lower portion of the mixed resin layer to develop the cationic exchange resin layer and the mixed resin layer to the upper portion of the cationic resin regeneration tower. Subsequently, the amount of the injection of the developing water is reduced to such a flow rate that only the anionic exchange resin is precipitated. Then, a cationic exchange resin layer is formed at the upper portion and an anion exchange resin layer is formed at the lower portion of the developing water injection tube of the cationic resin regeneration tower. The anionic exchange resin is transferred to the anionic exchange resin regeneration tower in this state. According to the present invention, the mixed resin layer can be separated to anionic and cationic exchange resins easily and reliably. (I.S.)

  9. The influence of various surface treatment methods on the surface properties and bonding strength of acrylic resin%不同表面处理方式对丙烯酸树脂表面性状和粘接强度的影响

    Institute of Scientific and Technical Information of China (English)

    张丁华; 阮丹平; 吴春云

    2015-01-01

    ObjectiveTo study the influence of four kinds of resin surface treatment methods on the surface properties and bonding strength of acrylic resin.MethodsFirst, the silicone rubber /acrylic resin overlap joint model was prepared. Acrylic resin were randomly divided into 4 groups: control group, MMA group, Sandblasting group, MMA infiltration + sandblasting group. The change of surface properties of each resin was observed by scan electron microscope (SEM). The roughness of each group was measured by Hommel W5 portable roughness instrument. The bonding strength between resin and silicone rubber of each group was detected by a universal material testing machine.Results(1) SEM results showed that untreated resin surface had obvious grinding traces, and the trace was dissolved after the infiltration of MMA, and the surface was rough and uneven after sandblasting. (2) The roughness was as follows: the sandblasting group(3.12±0.02), MMA infiltration + sandblasting group(3.11±0.01) >the control group(0.73±0.01), MMA infiltration group(0.71±0.01). The difference was statistically significant (P sandblasting group(2.02±0.01) >MMA infiltration group(1.81±0.02) > control group(1.50±0.01). The difference was statistically significant (P对照组(0.73±0.01)μm和MMA浸润组(0.71±0.01)μm,且差异有统计学意义(P 喷砂组(2.02±0.01)MPa >MMA浸润组(1.81±0.02)MPa >对照组(1.50±0.01) MPa,且差异有统计学意义(P <0.05)。结论MMA单体浸润与喷砂的处理方式可以使丙烯酸树脂表面的形貌发生变化,更有利于硅橡胶与丙烯酸树脂的结合,获到良好的粘接效果,可在临床推广使用。

  10. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-09-28

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  11. Processing of indium (III) solutions via ion exchange with Lewatit K-2621 resin

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Diaz-Pavon, A.; Cerpa, A.; Alguacil, F. J.

    2014-10-01

    The processing of indium(III)-hydrochloric acid solutions by the cationic ion exchange Lewatit K-2621 resin has been investigated. The influence of several variables such as the hydrochloric acid and metal concentrations in the aqueous solution and the variation of the amount of resin added has been studied. Moreover, a kinetic study performed in the uptake of indium(III) by Lewatit K-2621, shows that either the film-diffusion and the particle-diffusion models fit the ion exchange process onto the resin, depending upon the initial metal concentration in the aqueous solution. The loaded resin could be eluted by HCl solutions at 20 degree centigrade. (Author)

  12. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    Science.gov (United States)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  13. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    LENUS (Irish Health Repository)

    Addison, Owen

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic.

  14. In vitro evaluation of failure loads of nonmetal cantilevered resin-bonded fixed dental prostheses

    NARCIS (Netherlands)

    van Dalen, A.; Feilzer, A.J.; Kleverlaan, C.J.

    2008-01-01

    Purpose: To evaluate in vitro the influence of fiber reinforcement on the failure loads of resin composite beams, simulating cantilevered two-unit resin-bonded fixed dental prostheses, and compare the results with similarly obtained failure loads of ZrO2 and CoCr beams of a comparable design. Materi

  15. Studies concerning the anion ex-change resins catalyzed esterification of epichlorohydrin with organic acids

    Directory of Open Access Journals (Sweden)

    E.I. Muresan

    2009-09-01

    Full Text Available The paper studies the esterification of carboxylic acids with epichlorohydrin over two macroporous strong base anion exchange resins with different polymer matrix. For both resins, the influence of reaction parameters (temperature, catalyst loading, molar ratio on the reaction rate and the yields of the two isomeric esters were investigated.

  16. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites

    NARCIS (Netherlands)

    T.T. Tauböck; A.J. Feilzer; W. Buchalla; C.J. Kleverlaan; I. Krejci; T. Attin

    2014-01-01

    This study investigated the influence of modulated photo-activation on axial polymerization shrinkage, shrinkage force, and hardening of light- and dual-curing resin-based composites. Three light-curing resin composites (SDR bulk-fill, Esthet X flow, and Esthet X HD) and one dual-curing material (Re

  17. In vitro evaluation of failure loads of nonmetal cantilevered resin-bonded fixed dental prostheses

    NARCIS (Netherlands)

    van Dalen, A.; Feilzer, A.J.; Kleverlaan, C.J.

    2008-01-01

    Purpose: To evaluate in vitro the influence of fiber reinforcement on the failure loads of resin composite beams, simulating cantilevered two-unit resin-bonded fixed dental prostheses, and compare the results with similarly obtained failure loads of ZrO2 and CoCr beams of a comparable design.

  18. Fracture strength and fatigue resistance of dental resin-based composites

    NARCIS (Netherlands)

    F. Keulemans; P. Palav; M.M.N. Aboushelib; A. van Dalen; C.J. Kleverlaan; A.J. Feilzer

    2009-01-01

    Objectives: The aim of this study was to evaluate in vitro the influence of fiber-reinforcement on the fracture strength and fatigue resistance of resin-based composites. Methods: One hundred rectangular bar-shaped specimens (2 mm × 2 mm × 25 mm) made of resin-based composite were prepared in a stai

  19. Disintegration and dissolution of spent radioactive cationic exchange resins using Fenton-like oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Zhong; Xu, Lejin [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Wang, Jianlong, E-mail: wangjl@tsinghua.edu.cn [Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • The spent radioactive resins could be oxidized by Fenton-like process. • The influencing factors on resin oxidation were evaluated. • Chemical oxygen demand (COD) reduction rate was more than 99%. • SEM and Raman spectrum were used to analyze the resins morphological change. - Abstract: The treatment and disposal of the spent radioactive resins is essential for the sustainable development of the nuclear industry. In this paper, the disintegration and dissolution of spent cationic resins were studied by Fenton-like process. The influencing factors on resin dissolution, such as pH, temperature, type and concentration of catalysts were evaluated. The results showed that the spent resins could be effectively dissolved at pH < 1, [Fe{sup 2+}] = 0.2 M and T = 97 ± 2 °C. Chemical oxygen demand (COD) reduction rate was more than 99%. The scanning electron microscopy and the Raman spectrum were used to observe the morphological changes of the spent resins during the dissolution process. Fenton-like oxidation is an efficient method for the volume reduction and stabilization of the spent resins before further immobilization.

  20. [Acrylic resin removable partial dentures

    NARCIS (Netherlands)

    Baat, C. de; Witter, D.J.; Creugers, N.H.J.

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of

  1. Evaluation of Resin Dissolution Using an Advanced Oxidation Process - 13241

    Energy Technology Data Exchange (ETDEWEB)

    Goulart de Araujo, Leandro; Vicente de Padua Ferreira, Rafael; Takehiro Marumo, Julio [Nuclear and Energy Research Institute, Av. Lineu Prestes, 2242., Sao Paulo, SP. (Brazil); Passos Piveli, Roque; Campos, Fabio [The Polytechnic School of the University of Sao Paulo, Av. Prof. Almeida Prado, 83, trav.2. Sao Paulo, SP (Brazil)

    2013-07-01

    The ion-exchange resin is widely used in nuclear reactors, in cooling water purification and removing radioactive elements. Because of the long periods of time inside the reactor system, the resin becomes radioactive. When the useful life of them is over, its re-utilization becomes inappropriate, and for this reason, the resin is considered radioactive waste. The most common method of treatment is the immobilization of spent ion exchange resin in cement in order to form a solid monolithic matrix, which reduces the radionuclides release into the environment. However, the characteristic of contraction and expansion of the resin limits its incorporation in 10%, resulting in high cost in its direct immobilization. Therefore, it is recommended the utilization of a pre-treatment, capable of reducing the volume and degrading the resin, which would increase the load capacity in the immobilization. This work aims to develop a method of degradation of ion spent resins from the nuclear research reactor of Nuclear and Energy Research Institute (IPEN/CNEN-SP), Brazil, using the Advanced Oxidative Process (AOP) with Fenton's reagent (hydrogen peroxide and ferrous sulphate as catalyst). The resin evaluated was a mixture of cationic (IR 120P) and anionic (IRA 410) resins. The reactions were conducted by varying the concentration of the catalyst (25, 50, 100 e 150 mM) and the volume of the hydrogen peroxide, at three different temperatures, 50, 60 and 70 deg. C. The time of reaction was three hours. Total organic carbon content was determined periodically in order to evaluate the degradation as a function of time. The concentration of 50 mM of catalyst was the most effective in degrading approximately 99%, using up to 330 mL of hydrogen peroxide. The most effective temperature was about 60 deg. C, because of the decomposition of hydrogen peroxide in higher temperatures. TOC content was influenced by the concentration of the catalyst, interfering in the beginning of the

  2. 添加剂对WPCB非金属组分树脂分离物热解脱溴的影响%Influence of additives on pyrolysis-debromination of NMFs resin in WPCB

    Institute of Scientific and Technical Information of China (English)

    刘欣; 柯义虎; 王银; 刘春玲; 董文生

    2012-01-01

    Influence of various additives on pyrolysis-debromination of resin in non-metal components (NMFs) in wasted printed circuit boards (WPCB) was investigated. The results show that urea additive can effectively promote removal of Br-containing flame retardant and the formation of gas phase HBr,bromomethane and bromoethane,increase amount of phenol and its derivative in pyrolysis-residue oil; and reduce amount of Br content in solid residue C. However,for DDM (4,4'-diaminodiphenylmethane) additive,although it can promote formation of phenol and its derivative,decrease gas products and increases liquid and solid products,it can not remove Br in NMFs resin of WPCB. For hexamethylenetetramine,in spite of removing Br-containing flame retardant and forming gas phase products such as HBr,methyl bromide,and ethyl bromide,decreases obviously liquid products such as phenol and its derivative,but find large amount of N-methylacetamide and N,N-dimethylformamide in liquid products. Besides,hexamethylenetetramine makes amount of liquid and solid products increase and that of gas products decrease.%研究了不同添加剂对废旧印刷线路板非金属组分(NMFs)中树脂分离物热解脱溴的影响,结果表明,以尿素为添加剂可以促使NMFs树脂分离物中含溴阻燃剂以HBr、溴甲烷和溴乙烷的形式脱除,同时,使热解油中苯酚和其他酚类物质的含量增加,而固体残碳中的溴含量减少;对对-二氨基二苯甲烷对废旧印刷线路板NMFs树脂分离物中含溴成分的脱除无促进作用,但可使热解油中苯酚和其他酚类物质的含量增加,同时使生成的气体量减少,液体和固体产物量增加;六亚甲基四胺尽管可以促使NMFs树脂分离物中含溴阻燃剂以HBr和溴甲烷、溴乙烷的形式脱除,但显著降低了热解油中苯酚和其他酚类物质的含量,同时有较多的N-甲基乙酰胺和N,N-二甲基甲酰胺生成,此外使得液体和固体产物量增加,但气体产物量减少.

  3. Effect of filler type and polishing on the discoloration of composite resin artificial teeth.

    Science.gov (United States)

    Imamura, Soichiro; Takahashi, Hidekazu; Hayakawa, Iwao; Loyaga-Rendon, Paola G; Minakuchi, Shunsuke

    2008-11-01

    In this study, the effects of filler type and polishing on the discoloration of composite resin artificial teeth were examined. Four types of experimental resins were prepared: one was a matrix resin, while the others were composite resins containing three different types of fillers (nano-sized silica filler with or without silanization, and prepolymerized filler). Specimens were immersed in distilled water, coffee, red wine, or curry. Color change after immersion was measured using a colorimeter. Color difference values (delta E) and changes in translucency parameter (delta TP) were statistically analyzed using three-way ANOVA and Tukey's comparison. On the influence of the polishing factor, statistically significant differences were neither observed in delta E nor delta TP between polished and non-polished tooth surfaces. On the contrary, the influences of filler type and discoloration medium, and their interaction thereof, were significant. With unsilanized filler, the delta E value of composite resin artificial teeth was significantly increased.

  4. The effect of resin thickness on polymerization characteristics of silorane-based composite resin

    Directory of Open Access Journals (Sweden)

    Sung-Ae Son

    2014-11-01

    Full Text Available Objectives This study examined the influence of the resin thickness on the polymerization of silorane- and methacrylate-based composites. Materials and Methods One silorane-based (Filtek P90, 3M ESPE and two methacrylate-based (Filtek Z250 and Z350, 3M ESPE composite resins were used. The number of photons were detected using a photodiode detector at the different thicknesses (thickness, 1, 2 and 3 mm specimens. The microhardness of the top and bottom surfaces was measured (n = 15 using a Vickers hardness with 200 gf load and 15 sec dwell time conditions. The degree of conversion (DC of the specimens was determined using Fourier transform infrared spectroscopy (FTIR. Scratched powder of each top and bottom surface of the specimen dissolved in ethanol for transmission FTIR spectroscopy. The refractive index was measured using a Abbe-type refractometer. To measure the polymerization shrinkage, a linometer was used. The results were analyzed using two-way ANOVA and Tukey's test at p < 0.05 level. Results The silorane-based resin composite showed the lowest filler content and light attenuation among the specimens. P90 showed the highest values in the DC and the lowest microhardness at all depth. In the polymerization shrinkage, P90 showed a significantly lower shrinkage than the rest two resin products (p < 0.05. P90 showed a significantly lower refractive index than the remaining two resin products (p < 0.05. Conclusions DC, microhardness, polymerization rate and refractive index linearly decreased as specimen thickness linearly increased. P90 showed much less polymerization shrinkage compared to other specimens. P90, even though achieved the highest DC, showed the lowest microhardness and refractive index.

  5. 21 CFR 177.1500 - Nylon resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nylon resins. 177.1500 Section 177.1500 Food and... Repeated Use Food Contact Surfaces § 177.1500 Nylon resins. The nylon resins listed in paragraph (a) of... packaging food, subject to the provisions of this section: (a) The nylon resins are manufactured...

  6. 21 CFR 177.2440 - Polyethersulfone resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethersulfone resins. 177.2440 Section 177.2440... Components of Articles Intended for Repeated Use § 177.2440 Polyethersulfone resins. Polyethersulfone resins... the purpose of this section, polyethersulfone resins are: (1)...

  7. 21 CFR 177.1655 - Polysulfone resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polysulfone resins. 177.1655 Section 177.1655 Food... of Single and Repeated Use Food Contact Surfaces § 177.1655 Polysulfone resins. Polysulfone resins... purpose of this section, polysulfone resins are: (1)...

  8. 21 CFR 177.1585 - Polyestercarbonate resins.

    Science.gov (United States)

    2010-04-01

    .... Polyestercarbonate resins may be safely used as articles or components of articles intended for use in producing... chloride such that the finished resins are composed of 45 to 85 molepercent ester, of which up to 55 mole... the resins. (3) Residual methylene chloride levels in poly-ester-carbonate resins. Poly-ester...

  9. 21 CFR 178.3930 - Terpene resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  10. Influence of Rubber Content in ABS Resin on Microstructure of PC/ABS Alloy%ABS树脂中胶含量对PC/ABS合金微观结构的影响

    Institute of Scientific and Technical Information of China (English)

    韩莹; 赵文杰

    2012-01-01

    本实验采用胶含量为60%的ABS接枝粉料与SAN树脂以不同比例进行共混,制备了胶含量范围为10%~55%的ABS树脂。将胶含量不同的ABS树脂与PC以30/70、50/50、70/30的比例利用熔融共混技术,制备了组成不同的PC/ABS共混物。利用SEM电镜观察了PC/ABS合金的微观结构。研究表明,ABS树脂含量为30%时,在合金中形成分散相;ABS树脂含量为70%时,形成连续相;ABS树脂含量为50%时与PC形成双连续相结构。在三种结构中,ABS树脂胶含量的增加都使合金的相形态变得更精细。%ABS resins with different rubber content ranged from 10% to 55% were prepared by melt blending ABS graft copolymer with 60% rubber content with SAN resins at different ratio, PC/ABS alloy with different composition were prepared by blending ABS resins with different rubber content with PC at different ratio. The microstructure of the PC/ ABS alloy was observed by SEM. The study showed that ABS resin was dispersed phase in the alloy when its cotent was 30% , and was continuous phase when its eotent was 70%. They formed continuous phase when ABS resin cotent was 50%. A-long with the increase of the rubber content in ABS resin, the photograph of alloy became more fine.

  11. Indirect resin composites

    Directory of Open Access Journals (Sweden)

    Nandini Suresh

    2010-01-01

    Full Text Available Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ′indirect resin composites,′ composite inlays,′ and ′fiber-reinforced composites.′

  12. Chromatography resin support

    Science.gov (United States)

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  13. Nonlinear time dependent behaviour of epoxy resins

    Science.gov (United States)

    Marotzke, C.; Feldmann, T.

    2016-07-01

    The nonlinear behaviour of epoxy resins is studied on standard tensile tests. A strain field measurement system is applied (Aramis) in order to monitor local strains. The residual strain is measured by recovering the specimens for up to 68 hours after unloading. The time span the specimen is exposed to load has a large influence on the creeping process and the residual strain after recovering. This is studied by comparison of instantaneous unloading with keeping the specimen under permanent load for thirty minutes. It is shown that moderate differences in the initial strain can lead to large differences in the creep behaviour as well as in the residual strain.

  14. Contact allergy to epoxy resin

    DEFF Research Database (Denmark)

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil

    2012-01-01

    . Objectives. To evaluate the prevalence of contact allergy to epoxy resin monomer (diglycidyl ether of bisphenol A; MW 340) among patients with suspected contact dermatitis and relate this to occupation and work-related consequences. Patients/methods. The dataset comprised 20 808 consecutive dermatitis...... in an educational programme. Conclusion. The 1% prevalence of epoxy resin contact allergy is equivalent to reports from other countries. The high occurrence of epoxy resin exposure at work, and the limited use of protective measures, indicate that reinforcement of the law is required....

  15. Synthesis and Characterization of Bio-Oil Phenol Formaldehyde Resin Used to Fabricate Phenolic Based Materials.

    Science.gov (United States)

    Cui, Yong; Hou, Xiaopeng; Wang, Wenliang; Chang, Jianmin

    2017-06-18

    In this study, bio-oil from the fast pyrolysis of renewable biomass was used as the raw material to synthesize bio-oil phenol formaldehyde (BPF) resin-a desirable resin for fabricating phenolic-based material. During the synthesis process, paraformaldehyde was used to achieve the requirement of high solid content and low viscosity. The properties of BPF resins were tested. Results indicated that BPF resin with the bio-oil addition of 20% had good performance on oxygen index and bending strength, indicating that adding bio-oil could modify the fire resistance and brittleness of PF resin. The thermal curing behavior and heat resistance of BPF resins were investigated by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Results showed that adding bio-oil had an impact on curing characteristics and thermal degradation process of PF resin, but the influence was insignificant when the addition was relatively low. The chemical structure and surface characteristics of BPF resins were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The analysis demonstrated that adding bio-oil in the amount of 20% was able to improve the crosslinking degree and form more hydrocarbon chains in PF resin.

  16. In Vitro Color Change of Three Dental Veneering Resins in Tea, Coffee and Tamarind Extracts

    Directory of Open Access Journals (Sweden)

    S. Muttagi

    2011-09-01

    Full Text Available Objective: To study the in vitro color changes of three dental resin veneering materials when immersed in tea, coffee and tamarind extracts.Materials and Methods: The color changes of heat polymerized tooth colored acrylic resin (Stellondetrey, B, F14, DPI Dental products of India Ltd, Mumbai, auto polymerized tooth colored acrylic resin (DPI, B, QV5, DPI Dental products of India Ltd, Mumbai andlight polymerized resin composite (Herculite XRV, Enamel A2, part no. 22860, lot no. 910437, Kerr Corporation, West Collins Avenue, Orange, CA, USA when immersed in water extracts of tea (Tata Tea Ltd. Bangalore, India, coffee (Tata Coffee Ltd. Coorg, Indiaand tamarind were evaluated using computer vision systems. The color images were recorded in R (red, G (green and B (blue form and converted into H (hue, S (saturationand V (value.Results: Significant color change occurred for auto polymerized tooth colored acrylic resin in tamarind extract, for heat polymerized tooth colored acrylic resin in tea extract andfor light polymerized resin composite in coffee extract. Auto polymerized tooth colored acrylic resin samples showed an overall higher color change. However, for all the material samples coffee extract produced more color change.Conclusion: These results suggest that the color stability of the resins is influenced by the presence of secondary metabolites such as tartaric acid, tannins, caffeine, saponins and phenols in tamarind, tea and coffee extracts.

  17. EPOXY RESIN TOUGHENED BY THERMOPLASTICS

    Institute of Scientific and Technical Information of China (English)

    FU Zengli; SUN Yishi

    1989-01-01

    Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the molecular weight and the terminal group of the thermoplastic modifier and the fracture toughness of the modified resin was carried out. The morphology of PSF modified epoxy resin was surveyed. With the same kind of PSF the structure of the epoxy resin and the toughening effect of PSF was also investigated. The fractography of PSF, particle modified epoxy was examined in detail with SEM. The contribution of every possible energy absorption process has been discussed. Crack pinning mechanism seems to be the most important toughening mechanism for tough ductile thermoplastic PSF particle modified epoxy system.

  18. Bulk-Fill Resin Composites

    DEFF Research Database (Denmark)

    Benetti, Ana Raquel; Havndrup-Pedersen, Cæcilie; Honoré, Daniel;

    2015-01-01

    the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization...... for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low......-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk...

  19. Epoxy hydantoins as matrix resins

    Science.gov (United States)

    Weiss, J.

    1983-01-01

    Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.

  20. Phase separation during radiation crosslinking of unsaturated polyester resin

    Science.gov (United States)

    Pucić, Irina; Ranogajec, Franjo

    2003-06-01

    Phase separation during radiation-initiated crosslinking of unsaturated polyester resin was studied. Residual reactivity of liquid phases and gels of partially cured samples was determined by DSC. Uncured resin and liquid phases showed double reaction exotherm, gels had a single maximum that corresponded to higher-temperature maximum of liquid parts. The lower-temperature process was attributed to styrene-polyester copolymerization. At higher temperatures, polyester unsaturations that remained unreacted due to microgel formation homopolymerized. FTIR revealed different composition of phases. In thicker samples, reaction heat influenced microgel formation causing delayed appearance of gel and faster increase in conversion.

  1. Influence of carbonization process on the performance of phenolic resin based carbon molecular sieve%炭化工艺对酚醛树脂基碳分子筛性能的影响

    Institute of Scientific and Technical Information of China (English)

    张放; 傅吉全

    2016-01-01

    Using commercial phenolic resin( PF)as the carbon source,F127 triblock polymer as the tem-plate ,the carbon molecular sieve was prepared. The effects of carbonization preparation technology on pore size distribution of carbon molecular sieve were investigated. The as-prepared samples were characterized by N2 adsorption-desorption. The results showed that the carbonization temperature,carbonization time, heating rate had great influence on the pore size distribution of the carbon molecular sieve. Under the preparation condition of carbonization rate 1 ℃·min-1 ,carbonization temperature 800 ℃ and carboniza-tion time 1 h,the pore size distribution of the carbon molecular sieve was the most concentrated,BET surface area,total pore capacity of a single point,and microporous volume of a single point adsorption were 716. 59 m2 ·g-1 ,0. 557 75 cm3 ·g-1 and 0. 301 81 cm3 ·g-1 ,respectively.%以工业酚醛树脂为碳源,三嵌段聚合物F127为模板剂,制备碳分子筛。采用N2吸附-脱附对制备的碳分子筛进行表征,研究炭化制备工艺对碳分子筛孔径分布的影响。结果表明,炭化温度、炭化时间和炭化升温速率对碳分子筛孔径分布影响较大。在炭化升温速率为1℃·min-1、炭化温度800℃和炭化时间1 h 条件下制备的碳分子筛孔径分布最为集中,BET 比表面积716.59 m2·g-1,单点总孔容0.55775 cm3·g-1,单点吸附微孔孔容0.30181 cm3·g-1。

  2. Karakteristik Komposit Resin Berkemampuan Mengalir

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The use of resin composites as posterior restoratives has markedly increased over the past decade. The patients demand for better esthetics, concerns related to possible mercury toxicity from amalgam and improvements in resin composite materials have significantly contributed the popularity of these materials. Early problems related to composites included excessive wear, less of anatomic form, post operative sensitivity, secondary caries and marginal leakage. Marginal adaptation still remains an unavoidable problem for composite restoration, especially at the gingival wall of cervical or Class II restoration. In an attempt to improve marginal sealing, many techniques and lining materials have been designed. To reduce stress generated by polymerization shrinkage, applying and curing of resin composites in layers is often recommended. Using a thick adhesive layer or low-viscosity resin may, due to its elastic properties, serve as a flexible intermediate layer and compensate for the polymerization stress created in resin composite. Flowable composites were created by retaining the same small particle size of traditional hybrid composite but reducing the filler content and allowing the increased resin to reduce the viscosity of the mixture. Flowable composites were introduced in 1996 as liners, fissure sealants and also in tunnel preparations. They have been suggested for Class I, II, III and V cavity restorations, preventive resin restorations and composite, porcelain and amalgam repairing. Their usage as a liner under high filled resins in posterior restorations has been shown to improve the adaptation of composites and effectively achieve clinically acceptable results. This article attempts to give a broad characteristics of different types of flowable composites. 

  3. Karakteristik Komposit Resin Berkemampuan Mengalir

    OpenAIRE

    Bambang Irawan

    2015-01-01

    The use of resin composites as posterior restoratives has markedly increased over the past decade. The patients demand for better esthetics, concerns related to possible mercury toxicity from amalgam and improvements in resin composite materials have significantly contributed the popularity of these materials. Early problems related to composites included excessive wear, less of anatomic form, post operative sensitivity, secondary caries and marginal leakage. Marginal adaptation still remains...

  4. New Low Cost Resin Systems

    Science.gov (United States)

    2006-05-31

    DGEBA ). 30 % of the epoxy groups of RDGE were reacted with the dihydroxyl acid and resulted 3.2 wt% phosphorous and a new epoxide equivalent weight...of 207. Adducts were also made with DGEBA and the dihydroxyl phosphorous based acid but resulted in a substantial increased viscosity and therefore...70 wt% with a standard DGEBA resin, this material accelerated the epoxy reaction too much to make a VaRTM processable resin. Due to the processing

  5. Modification of epoxy resins with thermoplastic segmented polycarbonate-based polyurethanes

    OpenAIRE

    Pavličević Jelena; Jovičić Mirjana; Simendić Vesna; Bera Oskar; Radičević Radmila; Špírková Milena

    2014-01-01

    In this work, epoxy hybrid materials were synthesized by addition of thermoplastic segmented aliphatic polyurethanes with good elastic properties. The modified epoxy samples were obtained by curing of previously homogenized mixture of prepared polyurethane melts, epoxy resin and crosslinking agent Jeffamine D-2000. The influence of different weight content of polyurethanes (5, 10 and 15 wt. % compared to pure epoxy resin) as well the influence of different ...

  6. Influence of activation modes on diametral tensile strength of dual-curing resin cements Influência dos métodos de ativação na resistência à tração diametral de cimentos resinosos duais

    Directory of Open Access Journals (Sweden)

    Renata Garcia Fonseca

    2005-12-01

    Full Text Available In metallic restorations, the polymerization of dual-curing resin cements depends exclusively on chemical activation. The effect of the lack of photoactivation on the strength of these cements has been rarely studied. This study evaluated the influence of activation modes on the diametral tensile strength (DTS of dual-curing resin cements. Base and catalyst pastes of Panavia F, Variolink II, Scotchbond Resin Cement, Rely X and Enforce were mixed and inserted into cylindrical metal moulds (4 x 2 mm. Cements were either: 1 not exposed to light (chemical activation = self-cured groups or 2 photoactivated through mylar strips (chemical and photo-activation = dual-cured groups (n = 10. After a 24 h storage in 37ºC distilled water, specimens were subjected to compressive load in a testing machine. A self-curing resin cement (Cement-It and a zinc phosphate cement served as controls. Comparative analyses were performed: 1 between the activation modes for each dual-curing resin cement, using Student’s t test; 2 among the self-cured groups of the dual-curing resin cements and the control groups, using one-way ANOVA and Tukey’s test (alpha = 0.05. The dual-cured groups of Scotchbond Resin Cement (53.3 MPa, Variolink II (48.4 MPa and Rely X (51.6 MPa showed higher DTS than that of self-cured groups (44.6, 40.4 and 44.5 MPa respectively (p 0.05. The self-cured groups of all the dual-curing resin cements presented statistically the same DTS as that of Cement-It (44.1 MPa (p > 0.05, and higher DTS than that of zinc phosphate (4.2 MPa. Scotchbond Resin Cement, Variolink II and Rely X depended on photoactivation to achieve maximum DTS. In the absence of light, all the dual-curing resin cements presented higher DTS than that of zinc phosphate and statistically the same as that of Cement-It (p > 0.05.Em restaurações metálicas, a polimerização dos cimentos resinosos duais depende exclusivamente da ativação química. Há poucas pesquisas sobre o efeito

  7. Adhesion of different resin cements to enamel and dentin.

    Science.gov (United States)

    Naumova, Ella A; Ernst, Saskia; Schaper, Katharina; Arnold, Wolfgang H; Piwowarczyk, Andree

    2016-01-01

    The purpose of this in vitro study was to compare the shear bond strength (SBS) of five different resin cements to human enamel and dentin under different storage conditions. Five resin cements and their dedicated systems were tested. Teeth were embedded, ground flat to expose enamel or dentin and polished with sandpaper. Adhesive systems were applied according to the manufacturers'instructions. V2A steel cylinders with were silicated, coated, and cemented onto the teeth. Specimens were stored at three different conditions and subsequently thermocycled. SBS was measured. Significant differences were observed between the tested resin cements depending on the tooth surface. Different storage conditions influenced the bond strength, independent of the tooth surface, in all test cements. The bond strength of all experimental materials to enamel is higher than that to dentin surfaces. Furthermore, the adhesiveness decreases after wetness (hydro-) and hydrothermal stress, regardless of the tooth surface.

  8. Preparation and properties of lignin-epoxy resin composite

    Directory of Open Access Journals (Sweden)

    Quanfu Yin

    2012-11-01

    Full Text Available A cross-linked biomass-polymer composite with a lignin content of up to 60% was prepared by blending lignin with an epoxy resin and polyamine using a hot press molding process. The characteristics of the curing reaction of lignin with epoxy resin were studied using DSC and FTIR analysis. The effect of molding temperature and molding pressure on the mechanical properties and microstructure of the lignin/epoxy resin composite was also studied by SEM, DMA, and TG analyses. The results showed that the epoxy resin can be cured by lignin, and the curing temperature for the blends can be reduced by the introduction of a polyamine cure agent. The properties of the composite, such as bending strength, impact strength, glass-transition temperature, and thermal stability, were evidently influenced by the molding process. A good interfacial combination was formed between lignin and epoxy resin. Increasing the molding temperature and pressure proved beneficial to achieve a better interfacial combination for the composite, and the degree of ductile fracture was increased in the fracture surface of the composite.

  9. CURING PROCESS OF PHOTOPOLYMER RESIN BOND DIAMOND TOOLS

    Institute of Scientific and Technical Information of China (English)

    GAO Tao; PENG Wei; YAO Chunyan

    2007-01-01

    Analytical simulation and corresponding proof-test are adopted to study the principle of the curing process of photopolymer resin diamond tools. The influence of the diamond as abrasives in photopolymer resin owing to the absorptivity of the diamond for the UV light on the photopolymer resin curing process is discussed. Based on the above, a kind of diamond tool-dicing blade is selected to analyze the curing process of photopolymer bond diamond tools. An analytical model of curing process is developed and a correlation curve between the depth of polymerization of the photopolymer resin diamond tools and the exposure time to represent the curing process of photopolymer bond dicing blade. A test is done to proof-test the validity of the analytical model and the correlation curve. The simulated data fit the experimental results, which demonstrates the analytical models and numerical algorithm are of high reliability. The analytical simulation method could possibly be used to optimize the curing cycle and improve the quality of the photopolymers resin bond diamond tools.

  10. In vitro evaluation of microleakage of class II packable composite resin restorations using flowable composite and resin modified glass ionomers as intermediate layers

    OpenAIRE

    Kishore Kumar Majety; Madhu Pujar

    2011-01-01

    Aim and Objectives : To evaluate the cervical marginal microleakage of class II packable composite resin restorations using flowable composite and resin modified glass ionomer as intermediate layers and whether the difference in the thickness of these intermediate layers would influence the microleakage. Materials and Methods : Standardized class II box only cavities (4 mm bucco lingual width 2 mm mesio distal depth with the gingival margin 1 mm above the cemento-enamel junction (CEJ) wer...

  11. Research on influencing factor of mechanical properties of SiC whisker toughened photosensitive resins%SiC晶须增韧光敏树脂的力学性能影响因素研究

    Institute of Scientific and Technical Information of China (English)

    刘永姜; 王爱玲; 朱丽梅; 王彪

    2009-01-01

    根据光固化成型技术(SL)工艺对光敏树脂的要求和光敏树脂的固化机理,选择匹配的单体三羟甲基丙烷三丙烯酸酯和光引发剂2-异丙基硫杂蒽酮,通过大量的试验合成光敏树脂.针对研制的光敏树脂力学性能不太理想的问题,利用经表面处理后的SiC晶须对树脂体系进行增韧试验,晶须的表面处理工艺和晶须含量(含量均指质量分数)对光固化复合材料力学性能的影响、晶须含量对光固化复合材料固化速度的影响进行分析.实验结果表明:改性后的光敏树脂力学性能有所提高;随着晶须含量的增加,固化速度明显变慢.%According to the demand of stereolithograghy for photosensitive resins and the solidified mechanism of photosensitive resins, the matching monomer-TMPTA, photoiniator-ITX were selected, and the photosensitive resins were synthesized by lots of experiments. As the mechanical properties of the synthesized photosensitive resins were unsatisfied, photosensitive resins were toughened using surface treated SiC whisker, and effect of surface treatment techniques and mass fraction of SiC whisker on mechanical properties of light-cured composite material and effect of SiC whisker' mass fraction on curing rate of 1 ight-cured composite material were studied The result indicates that mechanical properties of modified photosensitive resins increase, and curing rate becomes slow with mass fraction of SiC whisker increasing.

  12. Interaction analysis between slenderness ratio and resin content on mechanical properties of particleboard

    Institute of Scientific and Technical Information of China (English)

    Mohammad Arabi; Mehdi Faezipour; Mohammad Layeghi; Ali Akbar Enayati

    2011-01-01

    The interaction between particle size and resin content is one of the most important structural parameters that can influence the accuracy of predictions about wood-composite properties. We developed three kinds of equation (linear, quadratic, and exponential) for each mechanical property ofparticleboard based on slenderness ratio and resin content at a constant density (0.7g.cm).Results from SHAZAM software (version 9) suggested that the quadratic function was not significant, but the linear and exponential functions were significant. The interaction between particle size and resin content was analyzed by Maple 9 software. The results indicated that an exponential function can better describe the simultaneous effect of slenderness and resin content than a linear equation. Under constant resin content, particles with higher slenderness ratios increased more in modulus of rupture (MOR) and modulus of elasticity (MOE) than did particles with lower slenderness ratios. Edge withdrawal resistance (SWRe) values did not increase with increasing slenderness ratio.

  13. The effect of resin on the impact damage tolerance of graphite-epoxy laminates

    Science.gov (United States)

    Williams, J. G.; Rhodes, M. D.

    1981-01-01

    The effect of the matrix resin on the impact damage tolerance of graphite-epoxy composite laminates was investigated. The materials were evaluated on the basis of the damage incurred due to local impact and on their ability to retain compression strength in the presence of impact damage. Twenty-four different resin systems were evaluated. Five of the systems demonstrated substantial improvements compared to the baseline system including retention of compression strength in the presence of impact damage. Examination of the neat resin mechanical properties indicates the resin tensile properties influence significantly the laminate damage tolerance and that improvements in laminate damage tolerance are not necessarily made at the expense of room temperature mechanical properties. Preliminary results indicate a resin volume fraction on the order of 40 percent or greater may be required to permit the plastic flow between fibers necessary for improved damage tolerance.

  14. The influence of the preparation of lignin bio-resins used in oil spilled agglomeration; A influencia do uso da lignina na preparacao de bio-resinas utilizadas na aglomeracao de oleo derramado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Felipe T.; Pereira, Thaissa; Ferreira, Leticia P.; Delazare, Thais; Souza Junior, Fernando G. [Instituto de Macromoleculas Professora Eloisa Mano - IMA/Universidade Federal do Rio de Janeiro - UFRJ, RJ (Brazil)], e-mail: fernando_gomes@ima.ufrj

    2011-07-01

    Locate the oil, a source of energy that took millions of years to be formed is a task that requires much knowledge and technology, and large investments. However, during its operation, storage or transportation of oil, the risk of spills occurring in potential that can cause extensive damage to the environment. Experience of major accidental oil spills has shown the importance of damage to the environment, harming marine life, fishing and tourism. Thus this study aims to evaluate the use of renewable sources to create an 'absorbent green' by using the lignin, furfural and cardanol, being catalyzed by sulfuric acid. This bio-resin synthesized shows good chemical similarity with oil, because it has both aromatic and aliphatic compounds, thereby facilitating the strong physical interaction between the resin and oil, allowing the agglomeration process in the same lake environments. (author)

  15. The influence of the preparation of lignin bio-resins used in oil spilled agglomeration; A influencia do uso da lignina na preparacao de bioresinas utilizadas na aglomeracao de oleo derramado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Joao Felipe T.; Silva, Thaissa P.; Ferreira, Leticia P.; Delazare, Thais; Souza Junior, Fernando G. [Instituto de Macromoleculas Professora Eloisa Mano - IMA/Universidade Federal do Rio de Janeiro - UFRJ, RJ (Brazil)], e-mail: fernando_gomes@ima.ufrj.br

    2011-07-01

    Locate petroleum, an energy source which spent millions of years to be formed, requires a lot of knowledge and technology, beyond large investments. However, along extraction, storage or transport of oil, there is a real risk of spills take place, causing extensive damage to the environment. Experience acquired due to accidental oil spills shows the large extension of damage imposed to the environment, impacting marine life, fishing and even tourism. Thus this study proposes the use of renewable sources, aiming to create an {sup g}reen absorbent material{sup .} This material is obtained through a polycondensation among lignin, furfural and cardanol, catalyzed by a strong acid. Synthesized bio-resin presents a good chemical similarity with oil, due to the tuning of its aromatic / aliphatic compounds, producing a strong physical interaction between the resin and oil, making the agglomeration process easy and contributing for the cleanup of oil spilled on water. (author)

  16. Influence of different kinds of rosins and hydrogenated resins on the setting time of Grossman cements Influência de diferentes tipos de breus e resinas hidrogenadas sobre o tempo de endurecimento dos cimentos do tipo Grossman

    Directory of Open Access Journals (Sweden)

    Manoel Damião SOUSA NETO

    1999-01-01

    Full Text Available In this study, the effect on the setting time by the addition of different kinds of rosin and hydrogenated resin on the Grossman cement powder was evaluated. The experiments were carried out following the American Dental Association’s specification number 57 for root canal sealers. For this analysis, different Grossman cement powders were prepared using different rosins (X, WW and WG and hydrogenated resins (Staybelite and Staybelite ester 10. The study of the physicochemical properties of the Grossman cements obtained the different kinds of rosins and hydrogenated resins interference on the cement’s setting time. The hydrogenated resin, having a higher pH, increased the setting time of the cement when compared to the X, WW and WG rosins.No presente estudo, analisou-se o efeito da adição de diferentes tipos de breus e resinas hidrogenadas ao pó do cimento de GROSSMAN sobre o tempo de endurecimento. Os experimentos foram realizados de acordo com a Especificação 57 para materiais obturadores de canais radiculares da American Dental Association (ADA. Para análise, foram aviados pós do cimento de GROSSMAN com diferentes tipos de breu (X, WW e WG e resinas hidrogenadas (Stabylite e Stabylite éster 10. Os estudos das propriedades físico-químicas dos cimentos tipo GROSSMAN obtidos de diferentes tipos de breus e resinas hidrogenadas interferem no tempo de endurecimento do cimento. A resina hidrogenada, obtida do processo de hidrogenação tem o pH mais alto, provocando um aumento do tempo de endurecimento do cimento em relação aos breus tipo X, WW e WG, que têm pH mais ácido.

  17. 不同酸蚀粘接系统对流动树脂行窝沟封闭的影响%The influence of different etching adhesive systems on flowable resin used as pit and fissure sealant

    Institute of Scientific and Technical Information of China (English)

    李洁; 谷建琦; 王琳; 于雪; 董青

    2015-01-01

    Objective:To evaluate the effects of the flowable resin used as pit and fissure sealant using different etching adhesive systems.Methods:60 caries-free extracted human premolars were randomly divided into 4 groups(n =1 5)and treated by Gluma, NT and 3M-Z350 flowable resin(group A);Clearifil SE Bond adhesive and 3M-Z350 flowable resin(group B),phosphoric acid etching,3M-Z350 flowable resin and phosphoric acid etching(group C)and 3Mconcise sealant(group D)respectively.After pro-cessing the tooth surface the pit and fissue of 1 0 sample in each group were sealed.The microleakage was measured by 1 % methyl-ene blue staining(n =8).The material-enamel interface was observed by SEM(n =2).The shear bond strength of the column-shaped samples with the diameter and the height of 3 mm(n =5)on the mesial or dental surface was examined by a test machine. The sealant cartridges and flowable resin cartridges with the diameter and height of 4 mm were used for the crushing strength exami-nation(n =1 0).Results:There was no significant difference in the microleakage among the 4 groups.SEMobservation showed that the resin tags of group A were long and dense and the resin tags of group B were short and sparse,bubbles and cracks were found on the local site in group A and B.The resin tags of group C were long and thin,but combined with tooth tightly;the resin tags of group D were short and dense;the penetration was poor at the bottom of the fissures in the 4 groups.The shear bond strength of Group A was the highest(P 0.05).The compressive strength of flowable resin groups was higher than that of fissure seal-ant group(P <0.05).Conclusion:The shear bond strength and compressive strength of all-etching bonding system combined with flowable resin is superior to that of self-etching bonding system combined with flowable resin and the traditional sealant.Using Prime&Bond NT bond after acid etching may improve the shear bonding strength.%目的:探讨不同酸蚀粘接系统对流动树脂

  18. 树脂含量对芳纶防弹复合材料性能的影响%Influence of Different Resin Content on Twaron Ballistic Material Properties

    Institute of Scientific and Technical Information of China (English)

    方心灵; 吴中伟; 高虹; 刘元坤; 张静

    2012-01-01

    对不同树脂含量的芳纶纤维无纬布的力学性能和防弹性能进行了分析和测试,确定了最佳的树脂含量.结果表明:树脂含量在15% ~25%时,无纬布的拉伸强度、层间剥离强度以及冲击强度三项性能均表现优异,对应的防弹性能最好,这可为今后防弹复合材料的设计研究提供参考.%The paper studies mechanical properties and ballistic performance of different resin content of Twaron fiber no-woven cloth, the optimum resin content is determined. The results show that; the resin content is 15% -25% , the tensile strength, peeling strength and impact strength of no-woven cloth are better, ballistic performance of no-woven cloth is also better. This can provid useful information for the studies of ballistic material.

  19. Elution study of unreacted Bis-GMA, TEGDMA, UDMA, and Bis-EMA from light-cured dental resins and resin composites using HPLC.

    Science.gov (United States)

    Sideridou, Irini D; Achilias, Dimitris S

    2005-07-01

    In the present work the elution of residual monomers from light-cured dental resins and resin composites into a 75% ethanol:water solution was studied using High-Performance Liquid Chromatography (HPLC). The resins studied were made by light-curing of bisphenol A glycol dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), ethoxylated bisphenol A glycol dimethacrylate [Bis-EMA(4)] and mixtures of these monomers. The resin composites were made from two commercial light-cured restorative materials (Z100 MP and Filtek Z250), the resin matrix of which is based on copolymers of these monomers. The effect of the curing time on the amount of monomers eluted was investigated. The concentration of the extractable monomers was determined at several immersion periods from 3 h to 30 days. For all the materials studied, it was observed that the chemical structure of the monomers used for the preparation of the resins, which defines the chemical and physical structure of the corresponding resin, directly affects the amount of eluted monomers, as well as the time needed for the elution of this amount. In the case of composites, it seems that the elution process it is not influenced by the presence of filler. Copyright 2005 Wiley Periodicals, Inc.

  20. Influence of Fiber Sizing on the Interfacial Properties of Resin Matrix Composite%炭纤维上浆剂对树脂基复合材料界面性能影响

    Institute of Scientific and Technical Information of China (English)

    张宝艳; 石峰晖; 代志双; 陈祥宝

    2011-01-01

    分析了T300B、T700SC和NCF等不同类型炭纤维上浆剂的结构与性质,研究了上浆剂类型及其含量等对炭纤维/树脂间界面作用的影响.结果表明,不同类型炭纤维表面上浆剂的结构与性质不同,NCF纤维使用的GA#和GB#以及T700SC纤维的5#上浆剂热分解温度较高,优于NCF使用的JF#、T300B纤维的5#上浆剂,其中GA #和GB#上浆剂的初始热分解温度较高,JF#初始热分解温度最低.NCF-JF#纤维体系吸水率高而T300B和T700SC纤维的吸湿率较低.不同类型的纤维上浆剂对复合材料的室温以及高温干湿态层间剪切强度和玻璃化转变温度(Tg)有重要影响,T300B/BMI和T700SC/BMI复合材料体系具有较高的耐湿热性能保持率,NCF-GB/BMI复合材料具有最高的干态Tg;上浆量对复合材料的湿热和界面性能有一定影响,较低的上浆量利于保持纤维与树脂之间良好的界面剪切强度和湿热性能.%Sizings of T300B,T700SC and NCF carbon fibers were analyzed, the influence of the types and amounts of sizing on the carbon fiber/resin interfacial properties was discussed here. Results indicated that GA# and GB# sizing to NCF and 5# sizing to T700SC owned excellent thermal stability, and GB# sizing had the highest initial decomposition temperature while JF# sizing had the lowest initial decomposition temperature. NCF-JF# fiebr had the highest water absorption while T300B and T700SC had the lowest water absorption. The sizing had an effect on glass transition temperature and the interfacial strength of composite at room and hot/wet condition, NCF-GB# /BMI system had the highest glass transition temperature, and the low amount of sizing is helpful to keep composite with good interfacial adhesion and hot/wet properties.

  1. THE SYNTHESIS OF MODIFIED DIPHENYL OXIDE RESIN

    Institute of Scientific and Technical Information of China (English)

    MAOMingfei; LIUZhifang; 等

    2002-01-01

    Modified diphenyl oxide resin was synthesized by co-polymerization of unsaturated acid and diphenyl oxide derivants.And then modified bismaleimide resin and expoxide linear phenolic resin were added into modified diphenyl oxide resin to co-polymerized and modify once more.The system was applied in composites.Their properties wrer investigated and found that they met the requirements as a heat-resisting adhesive.

  2. Microstructure and mechanical properties of composite resins subjected to accelerated artificial aging.

    Science.gov (United States)

    dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes

    2013-01-01

    The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, psurface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.

  3. 21 CFR 872.3140 - Resin applicator.

    Science.gov (United States)

    2010-04-01

    ... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3140 Resin applicator. (a) Identification. A resin applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  4. Method of removing contaminants from plastic resins

    Science.gov (United States)

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  5. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  6. 21 CFR 177.1595 - Polyetherimide resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyetherimide resin. 177.1595 Section 177.1595... Components of Single and Repeated Use Food Contact Surfaces § 177.1595 Polyetherimide resin. The polyetherimide resin identified in this section may be safely used as an article or component of an...

  7. 21 CFR 177.1556 - Polyaryletherketone resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyaryletherketone resins. 177.1556 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1556 Polyaryletherketone resins. The poly...) resins (CAS Reg. No. 55088-54-5 and CAS Reg. No. 60015-05-6 and commonly referred to...

  8. 21 CFR 177.1555 - Polyarylate resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyarylate resins. 177.1555 Section 177.1555 Food... of Single and Repeated Use Food Contact Surfaces § 177.1555 Polyarylate resins. Polyarylate resins... contact with food in accordance with the following prescribed conditions: (a) Identity. Polyarylate...

  9. 21 CFR 177.1560 - Polyarylsulfone resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyarylsulfone resins. 177.1560 Section 177.1560... Components of Single and Repeated Use Food Contact Surfaces § 177.1560 Polyarylsulfone resins. Polyarylsulfone resins (CAS Reg. No. 79293-56-4) may be safely used as articles or components of articles...

  10. 40 CFR 721.9495 - Acrylosilane resins.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylosilane resins. 721.9495 Section... Substances § 721.9495 Acrylosilane resins. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as acrylosilane resins (PMNs P-95-1024/1040) are...

  11. 21 CFR 172.280 - Terpene resin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  12. 21 CFR 177.1680 - Polyurethane resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyurethane resins. 177.1680 Section 177.1680 Food... of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane...) For the purpose of this section, polyurethane resins are those produced when one or more of...

  13. STUDIES ON THE SORPTION OF MACROPOROUS PHOSPHONIC ACID RESIN FOR LANTHANUM

    Institute of Scientific and Technical Information of China (English)

    XiongChunhua; ChenYiyong; 等

    1998-01-01

    The influences of Medium pH,sorption temperature,sorption time,etc.on the sorption capacity of macroporous phosphonic acid resin for La3+ were determined.The sorption rate constant was k298=7.64×10-5 s-1. The complex ratio of phosphonic groups of the resin to La3+ was 3:1.The basic sorption parameters were determined. The sorption mechanism of macroporous phosphonic acid resin for La3+ was examined by chemical analysis and IR-spectrometry.

  14. PREPARATION AND PROPERTIES OF MACRO-POROUS CHELATE RESINS OF CROSSLINKED POLYSTYRENE BEARING DITHIOCARBAMATE GROUPS

    Institute of Scientific and Technical Information of China (English)

    CHEN Yiyong; GU Zhenmei

    1983-01-01

    The title resins (DTC resins) with high adsorption capacity were prepared. The influences of various reaction conditions of amination and dithiocarboxylation were examined. The adsorption capacities of the produced DTC resin for Hg2+, Cu2+, Zn2+ and Cd2+ are 4.40, 2.44, 1.77 and 1.36mmol/g, respectively. It is highly effective in collecting traces of heavy metal ions in water over a wide pH range. The conversion of the functional groups were confirmed by the IR-spectra and elementary analysis.

  15. Flexural properties of experimental nanofiber reinforced composite are affected by resin composition and nanofiber/resin ratio.

    Science.gov (United States)

    Vidotti, Hugo A; Manso, Adriana P; Leung, Victor; do Valle, Accácio L; Ko, Frank; Carvalho, Ricardo M

    2015-09-01

    To evaluate the influence of different resin blends concentrations and nanofibers mass ratio on flexural properties of experimental Poliacrylonitrile (PAN) nanofibers reinforced composites. Poliacrylonitrile (PAN) nanofibers mats were produced by electrospinning and characterized by tensile testing and scanning electron microscopy (SEM). Experimental resin-fiber composite beams were manufactured by infiltrating PAN nanofiber mats with varied concentrations of BisGMA-TEGDMA resin blends (BisGMA/TEGDMA: 30/70, 50/50 and 70/30weight%). The mass ratio of fiber to resin varied from 0% to 8%. Beams were cured and stored in water at 37°C. Flexural strength (FS), flexural modulus (FM) and work of fracture (WF) were evaluated by three-point bending test after 24h storage. The tensile properties of the PAN nanofibers indicated an anisotropic behavior being always higher when tested in a direction perpendicular to the rotation of the collector drum. Except for WF, the other flexural properties (FS and FM) were always higher as the ratio of BisGMA to TEGDMA increased in the neat resin beams. The addition of different ratios of PAN fibers did not affect FS and FM of the composite beams as compared to neat resin beams (p>0.05). However, the addition of fibers significantly increased the WF of the composite beams, and this was more evident for the blends with higher TEGDMA ratios (presin blends did not negatively affect the properties of the composite and resulted in an increase in toughness that is a desirable property for a candidate material for prosthodontics application. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  17. FORMULATION AND EVALUATION OF DICLOFENAC CONTROLLED RELEASE TABLETS EMPLOYING OLIBANUM RESIN

    Directory of Open Access Journals (Sweden)

    K.P.R. Chowdary and G. Rami Reddy *

    2012-04-01

    Full Text Available The objective of the study is to evaluate Olibanum resin, a natural resin polymer as matrix polymer for controlled release tablets and to design matrix tablets of diclofenac for controlled release. Matrix tablets of diclofenac were formulated employing Olibanum resin in different proportions of drug and polymer and the tablets were evaluated for drug release kinetics and mechanism .Two diluents namely lactose (water soluble and DCP (water insoluble were included in the formulations to assess their influence on drug release characteristics of olibanum resin matrix tablets. Matrix tablets were found t¬o be non- disint-egrating in water, acidic (pH 1.2 and alkaline (pH 7.4 fluids and were considered suitable for oral controlled release. Diclofenac release from the matrix tablets formulated was slow and spread over 24 h and depended on the concentration (% of olibanum resin in the matrix tablets and nature/type of diluent. As the concentration of olibanum resin in the matrix tablets was increased, drug release was decreased. Release was relatively faster with water soluble diluent lactose when compared to water insoluble diluent DCP at all concentrations of olibanum resin. Drug release from the tablets followed first order kinetics and followed non - Fickian (anomalous diffusion release mechanism. Good linear relationships were observed between percent polymer and release rate in each case. The results of the study thus indicated olibanum resin could be used as rate controlling matrix in design of controlled release tablets. Both water soluble and water insoluble diluents can be included in the olibanum resin matrix tablets without affecting its rate controlling efficiency. Matrix tablets formulated employing olibanum resin(DF2 are considered suitable for controlled release of diclofenac over 24 h (i.e. once-a-day administration.

  18. Repeated use of ion-exchange resin membranes in calcareous soils

    Science.gov (United States)

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2003-01-01

    This study compared the consistency of nutrient extraction among repeated cycles of ion-exchange resin membrane use. Two sandy calcareous soils and different equilibration temperatures were tested. No single nutrient retained consistent values from cycle to cycle in all treatments, although both soil source and temperature conferred some influence. It was concluded that the most conservative use of resin membranes is single-use.

  19. Occupational exposure to epoxy resins

    NARCIS (Netherlands)

    Terwoert, J.; Kersting, K.

    2014-01-01

    Products based on epoxy resins as a binder have become popular in various settings, among which the construction industry and in windmill blade production, as a result of their excellent technical properties. However, due to the same properties epoxy products are a notorious cause of allergic skin d

  20. Stochastic resin transfer molding process

    CERN Document Server

    Park, M

    2016-01-01

    We consider one-dimensional and two-dimensional models of stochastic resin transfer molding process, which are formulated as random moving boundary problems. We study their properties, analytically in the one-dimensional case and numerically in the two-dimensional case. We show how variability of time to fill depends on correlation lengths and smoothness of a random permeability field.

  1. Occupational exposure to epoxy resins

    NARCIS (Netherlands)

    Terwoert, J.; Kersting, K.

    2014-01-01

    Products based on epoxy resins as a binder have become popular in various settings, among which the construction industry and in windmill blade production, as a result of their excellent technical properties. However, due to the same properties epoxy products are a notorious cause of allergic skin

  2. [Epoxy resin systems and contact dermatitis].

    Science.gov (United States)

    Pietranek, Jolanta Eliza

    2007-01-01

    Contact dermatitis is the major chronic skin disease that represents a global health problem. Its prevalence has been significant increasing in the latest decades. Contact dermatitis substantially alters the social life of patients and affects their work productivity. Epoxy resin systems are a frequent cause of occupational allergic contact dermatitis. Epoxy resins have an extremely wide range of commercial applications. Epoxy resin systems include combinations of epoxy monomers, hardeners, reactive diluents, and/or a vast array of other additives. In occupational settings, sensitization occurs not only to resins, but also to hardeners and reactive diluents. In this article adverse effects of epoxy resin systems are discussed.

  3. SEM analysis of microstructure of adhesive interface between resin cement and dentin treated with self-etching primer.

    Science.gov (United States)

    Hirabayashi, Shigeru; Yoshida, Eiji; Hayakawa, Tohru

    2011-01-01

    The purpose of this study was to examine the microstructure of the adhesive interface between resin cement and dentin treated with a self-etching primer by SEM in order to clarify the adhesive efficiencies of four self-etch type resin cement systems, Bistite II (BII), Linkmax (LM), Panavia F2.0 (PF), and ResiCem (RC) to dentin. The fluidity and inorganic filler content of these cements were also determined to examine their influences on the adhesion. A hybrid layer with 0.5-1.5 µm thickness and many resin tags could be confirmed clearly at the interface between BII cement and dentin, but was not observed distinctly for the other resin cements. It was suggested that the hybrid layer and resin tags might contribute to the high adhesive efficiency for BII. As the fluidity of cement had been adjusted to be suitable for luting in all cements, it did not significantly influence the adhesive efficiency of cement.

  4. [Dimensional accuracy of microwave-cured denture base resin].

    Science.gov (United States)

    Uchida, K; Okamoto, F; Ogata, K; Sato, T

    1989-02-01

    Recently, microwave-cured denture base resin was developed, and the resin solved the problem of internal porosity which had been generated by curing the conventional denture base resins with microwave irradiation. In this study, the dimensional accuracy of microwave-cured denture base resin was compared with that of other denture base resins, such as pour-type resin, heat-cured resin and heat-shock resin. From the experiment, the following results were obtained. 1. Dimensional accuracy of microwave-cured denture base resin was better than that of heat-cured resin and heat-shock resin, and was similar to that of pour-type resin. 2. Dimensional accuracy of microwave-cured denture base resin by slow cooling method and rapid cooling method was almost the same. Those findings suggest that microwave-cured denture base resin is valuable in clinic.

  5. Photoacoustic analysis of dental resin polymerization

    Science.gov (United States)

    Coloiano, E. C. R.; Rocha, R.; Martin, A. A.; da Silva, M. D.; Acosta-Avalos, D.; Barja, P. R.

    2005-06-01

    In this work, we use the photoacoustic technique to monitor the curing process of diverse dental materials, as the resins chemically activated (RCA). The results obtained reveal that the composition of a determined RCA significantly alters its activation kinetics. Photoacoustic data also show that temperature is a significant parameter in the activation kinetics of resins. The photoacoustic technique was also applied to evaluate the polymerization kinetics of photoactivated resins. Such resins are photoactivated by incidence of continuous light from a photodiode. This leads to the polymerization of the resin, modifying its thermal properties and, consequently, the level of the photoacoustic signal. Measurements show that the polymerization of the resin changes the photoacoustic signal amplitude, indicating that photoacoustic measurements can be utilized to monitor the polymerization kinetic and the degree of polymerization of photoactivated dental resins.

  6. 表面处理对碳纤维复合材料导电性的影响%Influence of Surface Treatments on Conductive Properties of Carbon Fiber/Epoxy Resin Composites

    Institute of Scientific and Technical Information of China (English)

    陈红燕; 黄华波

    2014-01-01

    In order to improve the stability of electrical properties of carbon fiber /epoxy resin composites .The resistance-temperature property of carbon fiber/epoxy resin composites was investigated using carbon fiber ( CF ) mat treated with titanate coupling agent as conductive fillers .The result showed that as the CF fraction increased , the stability of dectrical resistance of composites was enhanced under temperature variation .In addition of the electric resistivity of composities was remarkly enhanced and temperature-dependent fluctuation of resistance value was langely decreased after the surface treatment of CF .%为提高碳纤维/环氧树脂复合材料电性能的稳定性,采用钛酸酯偶联剂对碳纤维表面进行了处理,研究了以短切碳纤维毡为导电填料、环氧树脂为基体的导电复合材料的电阻-温度特性。结果表明:随碳纤维含量的增高,复合材料的电阻在温度变化下的稳定性增强;碳纤维经表面处理后,其复合材料的电阻率显著降低,且电阻值随温度的波动性也大幅下降。

  7. 不同光固化方法对可压型及通用型树脂硬度的影响%Influence of two photoactivation modes on the hardness of packable and conventional resin-based composites

    Institute of Scientific and Technical Information of China (English)

    杨军英; 陈珊; 张盛炎; 王海燕

    2009-01-01

    BACKGROUND: Soft-start is a newly photoactivation mode, which has certain effect on composite resin. However, previous study mainly concentrated on the conventional resin-based composites, the reports regarding soft-start on packable resin-based composites is poorly understood. OBJECTIVE: It is assumed that soft-start photoactivation had effect on packable resin-based composites, in addition, to investigate its effect on the hardness of packable resin-based composites. DESIGN, TIME AND SETTING: A double factors design. The experiment was performed at the Department of Stomatology, First Affiliated Hospital, Sun Yat-sen University and Chemical Mine Metal Material Test Laboratory, Guangdong Inspection and Quarantine Technology Center in October 2007. MATERIALS: Three packable resin-based composites were Ecusphere-Carat (EC, DMG Company, Germany), Filtek P60 (P60, 3M EPSE Company, USA), Tetric Ceram HB (HB, Ivoclar Vivadent Company, Liechtenstein) and a conventional composite FiltekZ250 (Z250, 3M EPSE Company, USA). The color of composites was A3. METHODS: Three packable resin-based composites and a conventional composite were filling in a cylindrical container (7 mm diameter, 4 mm depth), to obtain 80 samples, and then were divided into different groups according to the composite and photoactivation mode (n=10). In the soft-start photoactivation, samples were irradiated by 300 mW/cm~2 for 10 s, and then 600 mW/cm~2 for 30 s. Standard photoactivation was irradiated with 600 mW/cm~2 for 40 s.MAIN OUTCOME MEASURES: The microhardness of the top and bottom of the specimens was determined by Vickers microhardness tester. RESULTS: Three packable composites had higher hardness values than conventional composite. Though soft-start photoactivation could decrease the hardness of packable composites, the difference had no significant difference to standard mode (P > 0.05). There was significant difference on the top hardness and on the bottom hardness of conventional composite

  8. Reducing resin content and board density without adversely affecting the mechanical properties of particleboard through controlling particle size

    Institute of Scientific and Technical Information of China (English)

    Mohammad Arabi; Mehdi Faezipour; Heydar Gholizadeh

    2011-01-01

    Density and resin content are two factors that have a significant effect on the production cost of wood composite.However,particle size affects resin content and density,which suggests that the interaction of these three factors can be manipulated to reduce the board density and resin content of particleboard without adversely influencing its mechai cal properties.Some mathematical functional forms based on resin content,board density and slenderness ratio were regressed and an appropriate form was chosen.According to analysis of the results using SHAZAM 9 software,the exponential function best fit the experimental data.Finally,"indifference curves" of mechanical properties were illustrated and analyzed.The results indicated that negative effects of density or resin content reduction on mechanical properties could be compensated for by controlling particles' slenderness ratio.Interestingly,increases in slenderness ratio compensated for the negative effects of decreases in resin content or board density on module of rupture (MOR) and module of elasticity (MOE).Moreover,this "compensation ratio" intensified as resin content or density decreased and/or as the MOR or MOE increased.On the other hand,reduction in slenderness ratio indicated a complementary effect on reducing internal bond (IB) strength,a result of decresses in resin content or density.Moreover,this "complementary ratio" was intensified as resin content or density decreased and/or as IB strength increased.

  9. Effect of dimethylpolysiloxane liquid on the cryogenic tensile strength and thermal contraction behavior of epoxy resins

    Science.gov (United States)

    Yi, Jin Woo; Lee, Yu Jin; Lee, Sang Bok; Lee, Wonoh; Um, Moon Kwang

    2014-05-01

    Dimethylpolysiloxane liquid was blended with diglycidyl ether of bisphenol-A epoxy resin including anhydride curing agent to improve the tensile strength of the epoxy resin at 77 K without any increase in its coefficient of thermal expansion (CTE). A bifunctional polymer, silicone-modified epoxy resin (SME), was also added to the mixture as a compatibilizer. The results of UV transmittance for the blend resin showed that the incorporation of the SME could stabilize effectively spherical domains of the siloxane liquid which was immiscible with the epoxy matrix. The tensile strengths of the blend resins at both room temperature and 77 K were measured and SEM analysis for the fractured cross sections was carried out to verify the toughening behavior of the liquid droplets. The results indicated that even small amount of addition of the siloxane liquid (0.05 phr) coupled with SME (20 phr) could enhance the tensile strength at 77 K by 77.6% compared to that of the neat epoxy resin. This improvement is attributed to the fact that the solid and s droplets can disperse the localized stress and interrupt the crack propagation by cavitation mechanism followed by multiple generation of numerous micro-deformation. From the CTE measurement, the siloxane liquid has no influence on the thermal contraction behavior of the blend resin.

  10. 硫酸二乙酯酸值对123树脂固化的影响研究%Influence of Acid Value in Diethyl Sulfate on the Curing Process of 123 Resin

    Institute of Scientific and Technical Information of China (English)

    罗雪梅; 左玉芬; 黄黎明; 秦蛟

    2001-01-01

    The curing process of 123 resin was studied by means of microcalorimetry with diethyl sulfate as a curing agent. The results show that the acid value(greater than 1 percent) of diethyl sulfate has an effect on the curing rate and cured degree. When acid values of diethyl sulfates vary in a proper range(less than 1 percent),curing rate,cured degree and curing heat of 123 resin will not be affected.The curing mechanism of 123 resin was studied through FTIR technique. It shows that with the deepening of cured degree,the magnitude of characteristic peaks of CC at 1 651 cm-1 、CH2 at 3 095~3 075 cm-1 and 3 040~3 010 cm-1 attenuates sharply,indicating that the cross-link reaction takes place on the non-saturated double bond within the CC group for monomers Ⅰ and Ⅱ.%用微热量热法研究了用不同酸值的硫酸二乙酯作固化剂时123树脂的固化过程,结果表明,酸值大于1%的硫酸二乙酯对123树脂的固化速率与固化反应深度有较大影响。当酸值小于1%时,固化的速率、深度和热效应基本不变。用FTIR研究了123树脂的固化机理,发现随着固化反应的加深,1 651 cm-1处的CC特征峰、3 095~3 075 cm-1和3 040~3 010 cm-1处的CH2特征峰强度明显减弱,表明交联反应发生在单体的不饱和双键处。

  11. Interactions of natural resins and pigments in works of art.

    Science.gov (United States)

    Poli, Tommaso; Piccirillo, Anna; Nervo, Marco; Chiantore, Oscar

    2017-10-01

    The degradation process involving the formation of metal soaps in drying oils is a well-known problem due to cations from pigments reacting with free fatty acids from the oil. The aggregation of these carboxylates in semi-crystalline structures can lead to eruptions through the paint layers and 'blooming' on the surface. In this work, the metal soaps formation in presence of natural resins has been assessed and studied by means of Fourier transform infrared spectroscopy with experiments concerning the ageing of drying oil and different natural resins (shellac, dammar and colophony) in the presence of common historic pigments (smalt, ochre, umber, azurite, lead white, zinc white and titanium white). Mixtures of resins and pigments have been exposed to photo-ageing in solar box up to 1000h, thermal ageing at 50°C up to 1100h and 6month of room conditions exposure as reference. The decrease in the intensity of the carbonyl band in the spectra, as well as the contemporary increase of the metal carboxylates (in the range from 1500 to 1650cm(-1)) absorption bands, were used as the main indicators of metal soap formation. It has been observed that some pigments, particularly zinc white and smalt, present a 'catalytic' effect favouring the simultaneous formation of associated oxalates. The formation of oxalates and different degradation products from natural resins in the presence of pigments is particularly important, as it deeply affects the removability of varnishes and, more generally, the cleaning processes. Moreover, it permanently modifies the interface between painting and varnish layers as well as the aesthetic aspects of the painted surfaces. The influence of natural resins reactivity with pigments and their role in the oxalate formation is an issue still unexplored. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Fissure sealant materials: Wear resistance of flowable composite resins.

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm(2) and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm(2)of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  13. Fissure sealant materials: Wear resistance of flowable composite resins

    Directory of Open Access Journals (Sweden)

    Sohrab Asefi

    2016-08-01

    Full Text Available Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow, Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists. A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics.

  14. Fissure sealant materials: Wear resistance of flowable composite resins

    Science.gov (United States)

    Asefi, Sohrab; Eskandarion, Solmaz; Hamidiaval, Shadi

    2016-01-01

    Background. Wear resistance of pit and fissure sealant materials can influence their retention. Wear characteristics of sealant materials may determine scheduling of check-up visits. The aim of this study was to compare wear resistance of two flowable composite resins with that of posterior composite resin materials. Methods. Thirty-five disk-shaped specimens were prepared in 5 groups, including two flowable composite resins (Estelite Flow Quick and Estelite Flow Quick High Flow), Filtek P90 and Filtek P60 and Tetric N-Ceram. The disk-shaped samples were prepared in 25-mm diameter by packing them into a two-piece aluminum mold and then light-cured. All the specimens were polished for 1minute using 600-grit sand paper. The samples were stored in distilled water at room temperature for 1 week and then worn by two-body abrasion test using "pin-on-disk" method (with distilled water under a 15-Nload at 0.05 m/s, for a distance of 100 meter with Steatite ceramic balls antagonists). A Profilometer was used for evaluating the surface wear. Data were analyzed with the one-way ANOVA. Results. Estelite Flow Quick exhibited 2708.9 ± 578.1 μm2 and Estelite Flow Quick High Flow exhibited 3206 ± 2445.1 μm2of wear but there were no significant differences between the groups. They demonstrated similar wear properties. Conclusion. Estelite flowable composite resins have wear resistance similar to nano- and micro-filled and micro-hybrid composite resins. Therefore, they can be recommended as pit and fissure sealant materials in the posterior region with appropriate mechanical characteristics. PMID:27651887

  15. Silver nanoparticles in resin luting cements: Antibacterial and physiochemical properties

    Science.gov (United States)

    Moreira, Francine-Couto-Lima; Alves, Denise-Ramos-Silveira; Estrela, Cyntia-Rodrigues-Araújo; Estrela, Carlos; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Lopes, Lawrence-Gonzaga

    2016-01-01

    Background Silver has a long history of use in medicine as an antimicrobial and anti-inflammatory agent. Silver nanoparticles (NAg) offer the possibility to control the formation oral biofilms through the use of nanoparticles with biocidal, anti-adhesive, and delivery abilities. This study aims to evaluate the antibacterial effect of resin luting cements with and without NAg, and their influence on color, sorption and solubility. Material and Methods NAg were incorporated to two dual-cured resin cements (RelyX ARC (RA) color A1 and RelyX U200 (RU) color A2) in two concentrations (0.05% and 0.07%, in weight), obtaining six experimental groups. Disc specimens (1x6mm) were obtained to verify the antibacterial effect against Streptococcus mutans in BHI broth after immersion for 1min, 5min, 1h, 6h, and 24h (n=3), through optical density readings. Specimens were evaluated for color changes after addition of NAg with a spectrophotometer (n=10). Sorption and solubility tests were also performed, considering storage in water or 75% ethanol for 28 days (n=5), according to ISO 4049:2010. Data were subjected to statistical analysis with ANOVA and Tukey (p=0.05). Results The optical density of the culture broths indicated bacterial growth, with and without NAg. NAg produced significant color change on the resin cements, especially in RA. Solubility values were very low for all groups, while sorption values raised with NAg. The cements with NAg did not show antibacterial activity against S. mutans. They also showed perceptible color change and higher sorption than the materials without NAg. Conclusions The resin luting cements with NAg addition did not show antibacterial activity against SS. mutans. They also showed perceptible color change and higher sorption than the materials without NAg. Key words:Silver, resin cements, products with antimicrobial action, solubility, color perception tests. PMID:27703610

  16. Resin Diterpenes from Austrocedrus chilensis

    Directory of Open Access Journals (Sweden)

    Verónica Rachel Olate

    2011-12-01

    Full Text Available Seventeen diterpenes belonging to the labdane, abietane and isopimarane skeleton classes were isolated from the resin of the Chilean gymnosperm Austrocedrus chilensis and identified by spectroscopic and spectrometric methods. The diterpene 12-oxo-labda-8(17,13E-dien-19 oic acid is reported for the first time as a natural product and 14 diterpenes are reported for the first time for the species.

  17. Evaluation of oil and grease removal by adsorptive polymeric resins in semi-industrial scale: influence of temperature; Avaliacao da remocao de oleos e graxas por resinas polimericas adsorventes em escala semi-industrial: influencia da temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luis F.S. de; Silva, Carla M.F. da; Queiros, Yure G.C.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: elucas@ima.ufrj.br

    2011-07-01

    The aim of this study was to evaluate the performance of polymeric resins packed in a fixed bed eluted in semi-industrial scale for oil and greases removal disposed in synthetic oily water in different temperature conditions. For this work, columns packed with vinyl and acryl polymer-base were tested and their efficiency of oil removal was evaluated by fluorimetry technique in two different temperatures: 25 and 60 deg C, in a flow rate condition of 200 mL/min. The experimental results were very good: the removal efficiencies were above 98% in both cases. At 60 deg C, the system keep the efficiency for a longer time: no significant loss in the efficiency was observed after eluting 1,000 times of the column bed volume at 25 deg C and 2,000, at 60 deg C. This result characterizes a great potential of application in the industry. (author)

  18. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    Science.gov (United States)

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words:Bond strength, self-adhesive cement, silane, dentin, indirect composite. PMID:26855700

  19. Bond strength of self-adhesive resin cements to different treated indirect composites.

    Science.gov (United States)

    Fuentes, M Victoria; Ceballos, Laura; González-López, Santiago

    2013-04-01

    The objective of this study was to determine microtensile bond strength (μTBS) to dentin of three self-adhesive and a total-etch resin cements used for luting different treated indirect composites. Composite overlays (Filtek Z250) were prepared. Their intaglio surfaces were ground with 600-grit SiC papers and randomly assigned to three different surface treatments: no treatment, silane application (RelyX Ceramic Primer), and silane agent followed by a bonding agent (Adper Scotchbond 1 XT). The composite overlays were luted to flat dentin surfaces of extracted human third molars using the following self-adhesive resin cements: RelyX Unicem, Maxcem Elite and G-Cem, and a total-etch resin cement, RelyX ARC. The bonded assemblies were stored in water (24 h, 37 °C) and subsequently prepared for μTBS testing. Beams of approximately 1 mm(2) were tested in tension at 1 mm/min in a universal tester (Instron 3345). Data were analyzed by two-way ANOVA and Student-Newman-Keuls tests (α = 0.05). A significant influence of the resin cement used was detected. Composite surface treatment and the interaction between the resin cement applied and surface treatment did not affect μTBS. Surface treatment of indirect resin composite did not improve the μTBS results of dentin/composite overlay complex. Self-adhesive resin cements tested obtained lower μTBS than the total-etch resin cement RelyX ARC. Specimens luted with Maxcem Elite exhibited the highest percentage of pretesting failures. Surface treatment of indirect resin composite with silane or silane followed by a bonding agent did not affect bond strength to dentin.

  20. Going greener: Synthesis of fully biobased unsaturated polyesters for styrene crosslinked resins with enhanced thermomechanical properties

    Directory of Open Access Journals (Sweden)

    C. S. M. F. Costa

    2017-11-01

    Full Text Available The main goal of this work was the development of fully biobased unsaturated polyesters (UPs that upon crosslinking with unsaturated monomers (UM could lead to greener unsaturated polyester resins (UPRs with similar thermomechanical properties to commercial fossil based UPR. After the successful synthesis of the biobased UPs, those were crosslinked with styrene (Sty, the most commonly used monomer, and the influence of the chemical structure of the UPs on the thermomechanical characteristics of UPRs were evaluated. The properties were compared with those of a commercial resin (Resipur 9837©. The BioUPRs presented high gel contents and contact angles that are similar to the commercial resin. The thermomechanical properties were evaluated by dynamic mechanical thermal analysis (DMTA and it was found that the UPR synthesized using propylene glycol (PG, succinic acid (SuAc and itaconic acid (ItAc presented very close thermomechanical properties compared to the commercial resin.

  1. 纳米二氧化钛对环氧树脂固化反应的影响%Influence of nano-TiO_2 on the curing reaction of epoxy resin

    Institute of Scientific and Technical Information of China (English)

    周红军; 李设桥; 李翠金; 郭清兵

    2012-01-01

    The curing kinetics of nano-TiO2 modified epoxy systems were investigated by nonisothermal differential scanning calorimetry(DSC).The relationship between activation energy and conversion rate of the curing reaction was studied by using the methods of Flynn-Wall-Ozawa and nonlinear Vyazovkin method(NLV)and the kinetics parameters were obtained by using Kissinger and Crane equation.The curing parameters of epoxy resin were determined by DSC curves at different heating rates.The results showed that nano-TiO2 could promote the curing reaction of epoxy resin,and decrease the activation energy,but did not change the curing reaction mechanism.%采用非等温DSC研究了纳米二氧化钛改性环氧树脂体系(EP)的固化动力学,采用Flynn-Wall-Ozawa和Vyazovkin非线性等转化率方法(NLV)法分析了固化活化能与转化率的关系,利用Kissinger和Crane方程研究了固化动力学参数,根据不同升温速率下DSC固化反应曲线确定了固化工艺参数。结果表明,纳米二氧化钛促进了环氧树脂的固化,降低了固化反应的活化能,但没有改变环氧树脂的固化机理。

  2. Structural changes in the irradiated dentin with Nd:YAG and Er:YAG lasers for cervical hypersensitivity treatment and their influence on the microtensile resistance in resin-dentin interface

    Science.gov (United States)

    Mota, Cláudia C. B. O.; Sena, Tatiane V. N. S.; Castro, Roseane F.; Araújo, Ana C. S.; Gomes, Anderson S. L.

    2016-02-01

    This study aimed to evaluate, in vitro, the structural changes in dentin surfaces irradiated with Er:YAG (2940 nm, 90 mJ, 2 Hz, 300 μs, spot diameter 0.9 mm, 60 s/cm2, using the handpiece at 6 cm of distance to surface) and Nd:YAG (1064 nm, 1 W, 10 Hz, 300 μs, optical fiber diameter 300 μm, 60 s/cm2, using the handpiece at 2 mm of distance to surface) lasers to the treatment of cervical hypersensitivity and the respective bond strength compromising of resin composite restorations over these surfaces. 45 bovine teeth were selected, and removed the enamel portion of the buccal surface for laser irradiation and restorative procedure. Samples were divided into three groups: G1: control, only fluoride therapy; G2: irradiated with Er:YAG laser; G3: irradiated with Nd:YAG laser. Samples were submitted to optical coherence tomography analysis and subsequently they were restored with resin composite and sectioned into sticks for microtensile tests of achievement. ANOVA analysis of variance for the maximum force (N) and strength (MPa), with a significance level of 5% was performed. It was observed that G3 presented lower performance of maximum force (38,8 +/- 11,3 N) and resistance (26,0 +/- 9,3 MPa), and the G2 presented better results (51,0 +/- 13,5 N and 36,5 +/- 10,1 MPa), but still lower than those one obtained for G1 (56,0 +/- 12,3 N and 43,5 +/- 8,6 MPa). Although both lasers are effective in the cervical hypersensitivity treatment, when the aesthetic factor is the priority, the use of Er:YAG is preferable.

  3. Adhesion Analysis of Resin/Resin Interface by Molecular Dynamics Simulation

    National Research Council Canada - National Science Library

    MIYAZAKI, Mariko; KANEGAE, Yoshiharu; IWASAKI, Tomio

    2012-01-01

    .... In this paper, a technique for using a molecular dynamics simulation to analyze the adhesion of the interface between adhesive and polyimide, that is the resin/resin interface, has been proposed...

  4. Scintillating 99Tc Selective Ion Exchange Resins

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  5. Influence of nano-silica content on fiexural properties of the aluminum borate whisker and silica filler composite resins%纳米二氧化硅含量对硼酸铝晶须-二氧化硅熔附体填料复合树脂弯曲性能的影响

    Institute of Scientific and Technical Information of China (English)

    张文云; 袁艳波; 陈庆华; 肖玉鸿; 李星星

    2011-01-01

    目的 研究正硅酸乙酯(TEOS)水解所得纳米二氧化硅(Si02)含量对硼酸铝晶须(AIBw)与SiO2熔附体填料复合树脂弯曲性能的影响.方法 采用TEOS溶胶一凝胶法制得纳米SiO2,按不同比例通过高温烧结使其熔附于AIBw表面,制作试样并测试其弯曲强度和弯曲弹性模量;利用透射电镜(TEM)观察高温处理过程对晶须表面形态的影响以及不同比例的熔附体形貌.结果 AlBw-SiO2熔附体复合填料可显著提高牙科复合树脂的弯曲性能:AlBw和SiO2的质量比为3:1时牙科复合树脂的弯曲强度达(130.29±8.38)MPa.结论 TEOS溶胶-凝胶法水解所得的纳米SiO2含量可改善AlBw-SiO2熔附体填料复合树脂的弯曲性能.%Objective To discuss the influence of nano-silica content which was hydrolyzed by tetraethyl orthosioate(TEOS) on the aluminum borate whisker(AlBw) and silica filler composite resins on flexural properties.Methods The nanometer-size silicon dioxide (SiO2) particles were prepared by sol-gel method based on tetraethyl orthosioate.Different proportion of AlBw and SiO2 were fused and attached onto the surface of AlBw through high temperature,then polymerized with resin matrix after surface siliconization and their flexural strength and flexural modulus were determined.The effects of heat treatment to the surface morphology of AlBw and the shapes of the mixture at various proportions were characterized by TEM.Results The flexural properties of dental composite resins with AlBw-SiO2 compound as inorganic fillers were significantly improved.The flexural property of a new type of dental composite resins was (130.29±8.38) MPa, when the mass ratio of AlBw and nano-SiO2 particle was 3:1.Conclusion Nano-silica content which was hydrolyzed by tetraethyl orthosioate improved flexural properties of the aluminum borate whisker and silica filler composite resins.

  6. Gold Loading on Ion Exchange Resins in Non-Ammoniacal Resin-Solution Systems

    OpenAIRE

    Abrar Muslim

    2010-01-01

    The loading of gold using strong base anion exchange resin in non-ammoniac resin-solution (NARS) systems has been studied. The loading of gold onto ion exchange resins is affected by polythionate concentration, and trithionate can be used as the baseline in the system. The results also show that resin capacity on gold loading increases due to the increase in the equilibrium thiosulfate concentration in the NARS system. Gold loading performances show the need of optimization the equilibrium co...

  7. Release and toxicity of dental resin composite

    OpenAIRE

    Saurabh K Gupta; Saxena, Payal; Pant, Vandana A.; Pant, Aditya B.

    2012-01-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies h...

  8. Relative Molecular Mass Distribution of BG Resins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Benzoguanamine-formaldehyde (BG-F) resins are a class of amino resins, which are important cross-linking agents for epoxy, alkyol and acrylic resins, etc. The cross-linking performance is the best one when the polymerization degree is 2-4. This paper discusses the effects of the pH value for polycondensation and the formaldehyde to benzoguanamine mole ratio in a methanol system, and compares the relative molecular mass distribution using the Flory statistics method.

  9. Epoxy Resins Modified with Vegetable Oils

    Institute of Scientific and Technical Information of China (English)

    P.Czub

    2007-01-01

    1 Results The application of modified natural oils, nontoxic, biodegradable and renewable materials, for the modification and the synthesis of epoxy resins were presented. Firstly, the application of epoxidized vegetable oils (soybean, rapeseed, linseed and sunflower):as reactive diluents for epoxy resins was proposed and studied[1-2]. Viscosity reducing ability of epoxidized oils was tested in the compositions with Bisphenol A based low-molecular-weight epoxy resins. The rheological behaviour of the mi...

  10. Improvement of Mechanical Properties of Noil Hemp Fiber Reinforced Polypropylene Composites by Resin Modification and Fiber Treatment

    Directory of Open Access Journals (Sweden)

    Zili Yan

    2013-01-01

    Full Text Available The present study aims to improve the reinforcement of hemp fibre to polypropylene (PP by simple resin modification and fibre treatment. Maleic anhydride grafted polypropylene (MAPP was used as resin modifier by direct mixing with PP, and hydrophobically modified hydroxyethyl cellulose (HMHEC was used as fibre treatment reagent by immersing fibre into its aqueous solution. The influences of fibre content, resin modification, and fibre treatment on the mechanical properties (tensile, flexural, and impact strengths of composites were investigated. The change of interfacial bonding between fibre and resin in composites caused by MAPP and HMHEC was studied by scanning electron microscopy and dynamic mechanical analysis. Resin modification and fibre treatment were effective to enhance the mechanical properties of the composites. The improvement in interfacial bonding is quantitatively evaluated with adhesion factor.

  11. Damping Properties of Flexible Epoxy Resin

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang; LIU Hanxing; OUYANG Shixi

    2008-01-01

    Amino-terminated polyethers and amino-terminated polyurethane were used as curing agent to cure the epoxy resin together and get a series of cured products. The damping properties of the composites were studied by DMA test at different measurement frequencies. Damping mechanical tests show that the flexible epoxy resin has higher loss factor than common epoxy. The highest loss factor reaches 1.57. Also the height and position of loss factor peak of the flexible epoxy resin varies by changing the content of amino-terminated polyethers. Results shows that the flexible epoxy resin can be used as damping polymer materials at room temperature or in common frequency range.

  12. Resin composites in minimally invasive dentistry.

    Science.gov (United States)

    Jacobsen, Thomas

    2004-01-01

    The concept of minimally invasive dentistry will provide favorable conditions for the use of composite resin. However, a number of factors must be considered when placing composite resins in conservatively prepared cavities, including: aspects on the adaptation of the composite resin to the cavity walls; the use of adhesives; and techniques for obtaining adequate proximal contacts. The clinician must also adopt an equally conservative approach when treating failed restorations. The quality of the composite resin restoration will not only be affected by the outline form of the preparation but also by the clinician's technique and understanding of the materials.

  13. Advanced resin systems for graphite epoxy composites

    Science.gov (United States)

    Gilwee, W. J.; Jayarajan, A.

    1980-01-01

    The value of resin/carbon fiber composites as lightweight structures for aircraft and other vehicle applications is dependent on many properties: environmental stability, strength, toughness, resistance to burning, smoke produced when burning, raw material costs, and complexity of processing. A number of woven carbon fiber and epoxy resin composites were made. The epoxy resin was commercially available tetraglycidylmethylene dianiline. In addition, composites were made using epoxy resin modified with amine and carboxyl terminated butadiene acrylonitrile copolymer. Strength and toughness in flexure as well as oxygen index flammability and NBS smoke chamber tests of the composites are reported.

  14. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  15. Curing Mechanism of Condensed Polynuclear Aromatic Resin and Thermal Stability of Cured Resin

    Institute of Scientific and Technical Information of China (English)

    Li Shibin; Sun Qiqian; Wang Yuwei; Wu Mingbo; Zhang Zailong

    2015-01-01

    In order to improve the thermal stability of condensed polynuclear aromatic (COPNA) resin synthesized from vacuum residue, 1,4-benzenedimethanol was added to cure COPNA resin. The curing mechanism was investigated by pro-ton nuclear magnetic resonance spectrometry, solid carbon-13 nuclear magnetic resonance spectrometry and Fourier trans-form infrared spectroscopy. Microstructures of the uncured and the cured COPNA resins were studied by scanning electron microscopy and X-ray diffractometry. The thermal stability of COPNA resins before and after curing was tested by thermo-gravimetric analysis. The element composition of the cured COPNA resin heated at different temperatures was analyzed by an element analyzer. The results showed that the uncured COPNA resin reacted with the cross-linking agent during the cur-ing process, and the curing mechanism was conifrmed to be the electrophilic substitution reaction. Compared with the un-cured COPNA resin, the cured COPNA resin had a smooth surface, well-ordered and streamlined sheet structure with more crystalline solids, better molecular arrangement and orientation. The weight loss process of the uncured and cured COPNA resins was divided into three stages. Carbon residue of the cured COPNA resin was 41.65%at 600℃, which was much higher than 25.02%of the uncured COPNA resin, which indicated that the cured COPNA resin had higher thermal stability.

  16. Irradiation modes' impact on radical entrapment in photoactive resins.

    Science.gov (United States)

    Leprince, J G; Lamblin, G; Devaux, J; Dewaele, M; Mestdagh, M; Palin, W M; Gallez, B; Leloup, G

    2010-12-01

    Different irradiation protocols are proposed to polymerize dental resins, and discordances remain concerning their impact on the material. To improve this knowledge, we studied entrapment of free radicals in unfilled Bis-GMA/TEGDMA (50:50 wt%) resin after light cure. The tested hypothesis was that various irradiation parameters (curing time, irradiance, and radiant exposure) and different irradiation modes (continuous and pulse-delay) led to different amounts of trapped free radicals. The analysis of cured samples (n = 3) by electron paramagnetic resonance (EPR) revealed that the concentrations of trapped free radicals significantly differed according to the curing protocol. When continuous modes with similar radiant exposure were compared, higher concentrations of trapped free radicals were measured for longer times with lower irradiance. Concerning pulse modes, the delay had no influence on trapped radical concentration. These results give new insights into the understanding of the photopolymerization process and highlight the relevance of using EPR when studying polymerization of dimethacrylate-based materials.

  17. 不同工艺参数对UF工业大麻秆刨花板性能的影响研究%Influence of Different Technical Parameters on the Properties of UF-resin-bonded Industrial-hemp-stalk-based Particleboard

    Institute of Scientific and Technical Information of China (English)

    李晓平; 杜官本; 吴章康

    2013-01-01

    工业大麻秆是一种优质的轻质非木质原料,利用脲醛树脂为胶黏剂可以制备出性能优良的刨花板产品.笔者主要分析不同的工艺参数,包括密度、热压时间、热压温度和施胶量对板材性能的影响.研究结果表明,密度和施胶量对板材性能的影响要比热压温度和热压时间明显,随着板材密度、热压温度和热压时间的增加,板材的力学性能大多先增加后减小;而随着施胶量的增加,板材的力学性能呈增加趋势.在目标密度0.55 g/cm3,施胶量10%,热压温度130℃或170℃条件下,板材的力学性能可达到国标普通刨花板的标准要求;当目标密度等于或高于0.65 g/cm3、施胶量等于或高于12%、热压温度在140~ 160℃、热压时间在20 ~ 45s/mm之间时,除TS外,板材的其他力学性能可达到国标室内装饰和家具用材的标准要求,并可与相同工艺条件下,目标密度为0.75 g/cm3的木质刨花板的各项性能相媲美.可见,工业大麻秆是一种优质的非木质原料,利用该原料在低温条件下制备低密度的刨花板是可行的.%The industrial hemp stalk is one kind of low-density non-wood materials and it can be used to make excellent hemp stalk based particleboard with urea formaldehyde (UF) resin.This paper mainly studies the influence of different parameters (different densities,press time,press temperature and UF-resin additive) on the properties of the particleboard.The results show that the density and UF-resin additive have greater influences on the properties of hemp stalk based particleboard comparing with the press time and press temperature,and with the increasing of density,press time and press temperature,the mechanical properties of the panel firstly increase and then decrease in most cases,while the properties improve as the resin additive increases.The mechanical properties of the particleboard of 0.55g/cm3 with 10% UF-resin at 130℃ or 170℃ can satisfy

  18. STUDY ON DETERMINATION OF TRACE Cu(Ⅱ) BY DDCT CHELATING RESIN PRECONCENTRATION AND THIN LAYER RESIN PHASE SPECTROPHOTOMETRY

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; YAN Yongsheng; SONG Huanyu; WANG Yun

    2006-01-01

    A new method for determination of Cu(Ⅱ) by DDCT chelating resin preconcentration and thin layer resin phase spectrophotometry was developed. The method has a high sensitivity (ε435 =3.6×105 L/mol· cm), which is 33 times higher than that of liquid phase spectrophotometry. It has a good selectivity (most coexisting ions could not influence determination) and an ideal precision [30μg Cu(Ⅱ), n=6, RSD= 1.67%]. The content of Cu(Ⅱ) in water, high purity rare earth and its oxide was determined. The detection limit of Cu(Ⅱ) is 5.3μg/L, and the linear range is 0~7.2 μg/ml. The result is satisfactory.

  19. Efeito do tratamento alcalino de fibras de juta no comportamento mecânico de compósitos de matriz epóxi The influence of alkaline treatment on jute fiber- reinforced epoxy resin composite

    Directory of Open Access Journals (Sweden)

    Eduardo N. Pires

    2012-01-01

    Full Text Available Neste trabalho foi avaliada a influência do tratamento químico de fibras vegetais nas propriedades mecânicas e dinâmico-mecânicas de resina epóxi reforçada com tecidos de fibras de juta. As fibras foram modificadas a partir de solução de hidróxido de sódio, e caracterizadas por microscopia eletrônica de varredura (MEV, espectrometria no infravermelho com transformada de Fourier (FTIR e resistência à tração. As análises de FTIR e MEV evidenciaram, respectivamente, que o tratamento alcalino promoveu a remoção parcial da hemicelulose e modificou a morfologia das fibras de juta. Amostras dos compósitos com fibras tratadas e não tratadas foram confeccionadas a partir da laminação manual seguida da moldagem por compressão. Compósitos com fibras tratadas apresentaram propriedades mecânicas e módulo de armazenamento maiores do que as da resina epóxi sem reforço e compósitos com fibras sem tratamento. As micrografias de microscopia eletrônica de varredura (MEV revelaram que compósitos com fibras tratadas possuem menor quantidade de vazios e menor quantidade de pull-out, sugerindo maior ades��o com a matriz polimérica do que os compósitos com fibras sem tratamento.This study was aimed at evaluating the efficiency of chemical treatment on the dynamic mechanical and mechanical properties of composite materials with jute fibers and epoxy matrix resin. The surfaces of the jute fibers were modified by contact with sodium hydroxide solutions, and characterized through scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR and tensile strength testing. The FTIR and SEM analysis evidenced that the alkaline treatment promoted removal of the hemicellulose and modification in the morphology of the jute fibers, respectively. Polymeric composites with untreated and treated jute fiber were prepared through hand lay-up process followed by compression molding. The treated jute fiber composites displayed

  20. Color stability of visible light cured composite resin after soft drink immersion

    Directory of Open Access Journals (Sweden)

    Alizatul Khairani Hasan

    2009-09-01

    Full Text Available Background: Composite resin is a tooth-colored filling material containing Bis-GMA which exhibits water sorption properties. People tend to consume soft drink with various colors. Water sorption properties can alter the color stability of composite resin purpose. Purpose: This study was to determine the influence of immersion durations of composite resin in soft drink on color stability. Methods: The visible-light cured hybrid composite resin and soft drink were used. Ten disk specimens (2.5 mm thickness and 15 mm diameter of composite resin were prepared and light cured for 20 seconds, then stored in distilled water for 24 hours at 37° C. The initial color of specimens were measured by Chromameter. After that, each specimen was immersed in 30 ml of soft drink up to 48, 72, and 96 hours at 37° C. The specimens’ color were measured again after each immersion. The color changes were calculated by CIE L*a*b* system formula. The data was analyzed by One-Way ANOVA and LSD (α = 0.05. Result: The ANOVA showed that the immersion durations of composite resin in soft drinks had significant influence on the color stability (p < 0.05. The LSD0.05 tests showed significant differences among all groups. The least color change was detected from the group of 48 hours immersion, while the greatest color change was from the group of 96 hours immersion. Conclusions: The immersion of composite resin in soft drinks influenced the color stability (began after 48 hours immersion.

  1. [Photoelastic stress analysis of root dentin with different composite resin post and core systems and crowns].

    Science.gov (United States)

    Takei, Hidenori

    2010-03-01

    Much research has been reported about post and core systems with composite resin, but the influence of the different types of prefabricated posts on the distribution of stress in the root has not yet been elucidated. It is necessary to clarify the influence of the relationship between core and crown materials to obtain combined restorations. The aim of this study is to analyze the influence of the combination of various post and core systems and different kinds of crown material on the stress distribution in the root. Six 2-dimensional photoelastic premolar models were designed. Three types of post and core systems (composite resin post and core, composite resin core with the fiber post, and composite resin core with a prefabricated stainless steel post) and two kinds of crown materials (metal and hybrid-type hard composite resin) were fabricated and cemented to each model. In these models, we applied a load of 200 N at an angle of 45 degrees to the tooth axis and analyzed the fringe order using a transmission polariscope. As a result, it has been clarified that the combination of the post and core and the crown plays an important role in preventing stress concentration within root Stress concentration can be prevented using a crown fabricated with a high-elastic modulus for the post and core with a high-elastic modulus, and a crown fabricated with a low-elastic modulus for the post and core with a low-elastic modulus.

  2. Dentine sealing provided by smear layer/smear plugs vs. adhesive resins/resin tags.

    Science.gov (United States)

    Carrilho, Marcela R; Tay, Franklin R; Sword, Jeremy; Donnelly, Adam M; Agee, Kelli A; Nishitani, Yoshihiro; Sadek, Fernanda T; Carvalho, Ricardo M; Pashley, David H

    2007-08-01

    The aim of this study was to evaluate the ability of five experimental resins, which ranged from hydrophobic to hydrophilic blends, to seal acid-etched dentine saturated with water or ethanol. The experimental resins (R1, R2, R3, R4, and R5) were evaluated as neat bonding agents (100% resin) or as solutions solvated with absolute ethanol (70% resin/30% ethanol). Fluid conductance was measured at 20 cm H(2)O hydrostatic pressure after sound dentine surfaces were: (i) covered with a smear layer; (ii) acid-etched; or (iii) bonded with neat or solvated resins, which were applied to acid-etched dentine saturated with water or ethanol. In general, the fluid conductance of resin-bonded dentine was significantly higher than that of smear layer-covered dentine. However, when the most hydrophobic neat resins (R1 and R2) were applied to acid-etched dentine saturated with ethanol, the fluid conductance was as low as that produced by smear layers. The fluid conductance of resin-bonded dentine saturated with ethanol was significantly lower than for resin bonded to water-saturated dentine, except for resin R4. Application of more hydrophobic resins may provide better sealing of acid-etched dentine if the substrate is saturated with ethanol instead of with water.

  3. Comparison of Cashew Nut Shell Liquid (CNS Resin with Polyester Resin in Composite Development

    Directory of Open Access Journals (Sweden)

    C. C. Ugoamadi

    2013-12-01

    Full Text Available Natural resins can compete effectively with the synthetic ones in composite development. In this research, cashew nuts were picked and processed for the extraction of the resin content. The resin (natural resin so obtained was mixed with cobalt amine (accelerator, methyl ethyl ketone peroxide (catalyst to develop two sets of composite specimens – specimens without fibres and specimens reinforced with glass fibres. This method of sample specimen development was repeated with polyester (synthetic resin. Compressive and tensile strength tests conducted proved that composites developed with cashew nut shell liquid (CNSL resin were comparable to those developed with polyester resin. In the results, CNSL has an ultimate compressive strength of 55MPa compared to that of polyester resin with an ultimate strength of 68MPa. The result of tensile strength proved cashew nut shell liquid resin (with ultimate strength of 44MPa to be better than polyester resin with 39MPa as ultimate tensile strength. This means that natural resins could be a better substitute for the synthetic ones when the required quantities of fibers (reinforcements and fillers are used in the fibre-reinforced plastic composite developments.

  4. 丁苯透明抗冲树脂雾度影响因素的研究%Research of Influencing Factors for Haze of Styrene - butadiene Block Transparent Impact Copolymer Resin

    Institute of Scientific and Technical Information of China (English)

    高鹏; 谢云发; 孔春艳

    2012-01-01

    将抚顺的丁苯透明抗冲树脂SBC-03与美国菲利浦斯的KR-03等产品的雾度指标对比,通过对分子结构及工艺条件的分析及试验,找出了影响抚顺SBC-03雾度的因素,确定了抚顺SBC-03的适宜工艺条件,使抚顺SBC-03的雾度指标达到美国菲利浦斯产品的标准.%Haze indices of styrene - butadiene block transparent impact copolymer resin SBC-03 from Fushun petrochemical company and Phillips KR-03 from United States were compared. Through analyzing and testing their molecular structure and technological conditions, influential factors for haze of SBC-03 from Fushun petrochemical company were discovered. Finally, the suitable process condition was determined, which can make haze of Fushun SBC-03 reach to the standard of Phillips KR-03.

  5. MODIFICATION OF X-5 RESIN AND ADSORPTION PROPERTY OF THE MODIFIED RESINS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Three polymeric adsorbents with hydrogen bonding acceptors, methylamine,N-methyl-acetamide and aminotri(hydroxymethyl)methane modified resins are synthesized fromchloromethylated X-5 resin. Adsorption isotherms of phenol and theophylline onto the three modifiedresins and the original X-5 resin from aqueous solution are measured. The results show thatadsorption of compounds with hydrogen bonding donor onto methylamine and N-methylacetamidemodified resins is enhanced as compared with that onto X-5 resin, and adsorption mechanismbetween the adsorbents and the adsorbates is mainly based on hydrogen bonding and hydrophobicinteraction. While adsorption of compounds with hydrogen bonding donor ontoaminotri(hydroxymethyl)methane modified resin is lowered as compared with that onto X-5 resin, andadsorption mechanism between the adsorbent and the adsorbates is mainly based on hydrophobicinteraction.

  6. TMI-2 purification demineralizer resin study

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J D; Osterhoudt, T R

    1984-05-01

    Study of the Makeup and Purification System demineralizers at TMI-2 has established that fuel quantities in the vessels are low, precluding criticality, that the high radioactive cesium concentration on the demineralizer resins can be chemically removed, and that the demineralizer resins can probably be removed from the vessels by sluicing through existing plant piping. Radiation measurements from outside the demineralizers establishing that there is between 1.5 and 5.1 (probably 3.3) lb of fuel in the A vessel and less than that amount in the B vessel. Dose rates up to 2780 R per hour were measured on contact with the A demineralizer. Remote visual observation of the A demineralizer showed a crystalline crust overlaying amber-colored resins. The cesium activity in solid resin samples ranged from 220 to 16,900 ..mu..Ci/g. Based on this information, researchers concluded that the resins cannot be removed through the normal pathway in their present condition. Studies do show that the resins will withstand chemical processing designed to rinse and elute cesium from the resins. The process developed should work on the TMI-2 resins.

  7. [Delayed asthma bronchiale due to epoxy resin].

    Science.gov (United States)

    Authried, Georg; Al-Asadi, Haifaa; Møller, Ulla; Sherson, David Lee

    2013-10-28

    Epoxy resin is a low molecular weight agent, which can cause both acute and delayed allergic reactions. However, it is known causing skin reactions with direct or airborne contact. Rarely it can cause airway reactions like asthma bronchiale. We describe a case of a windmill worker who developed delayed asthma bronchiale due to airborne contact with epoxy resin.

  8. Dental resin cure monitoring by inherent fluorescence

    Science.gov (United States)

    Li, Qun; Zhou, Jack X.; Li, Qingxiong; Wang, Sean X.

    2008-02-01

    It is demonstrated that the inherent fluorescence of a dental composite resin can be utilized to monitor the curing status, i.e. degree of conversion of the resin. The method does not require any sample preparation and is potentially very fast for real time cure monitoring. The method is verified by Raman spectroscopy analysis.

  9. Novel silica-based ion exchange resin

    Energy Technology Data Exchange (ETDEWEB)

    Gula, M.; Harvey, J.

    1996-12-31

    Shortcomings of chelating resins have been addressed by a new class of ion exchange resins called dual mechanism bifunctional polymers (DMBPs). DMBPs use hydrophilic cation exchange ligands with rapid uptake kinetics and use chelating ligands for selectivity for one or more metals; result is a resin that quickly recognizes and removes targeted metals from waste, remediation, and process streams. Eichrom`s Diphonix {reg_sign} resin is the first DMBP to be widely released as a commercial product; it is polystyrene based. Objective of this work is to synthesize commercial quantities of a silica-based ion exchange resin with the same or better metal ion selectivity, metal uptake kinetics, and acid stability as Diphonix. Feasibility was determined, however the process needs to be optimized. Studies at Eichrom and ANL of the performance of Diphonix resin over a broad range of HNO3 and HCl conditions and inorganic salt loadings are discussed together with the proposed method of incorporating similar characteristics into a silica-based resin. The new, silica-based resin functionalized with diphosphonic acid ligands can be used in environmental restoration and waste management situations involving processing of low-level, transuranic, and high-level radioactive wastes; it can also be used for processing liquid mixed waste including wastes contaminated with organic compounds.

  10. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    Science.gov (United States)

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study.

  11. Volumetric dimensional changes of dental light-cured dimethacrylate resins after sorption of water or ethanol.

    Science.gov (United States)

    Sideridou, Irini D; Karabela, Maria M; Vouvoudi, Evagelia Ch

    2008-08-01

    This study evaluated the influence of water and ethanol sorption on the volumetric dimensional changes of resins prepared by light curing of Bis-GMA, Bis-EMA, UDMA, TEGDMA or D(3)MA. The resin specimens (15mm diameterx1mm height) were immersed in water or ethanol 37+/-1 degrees C for 30 days. Volumetric changes of specimens were obtained via accurate mass measurements using Archimedes principle. The specimens were reconditioned by dry storage in an oven at 37+/-1 degrees C until constant mass was obtained and then immersed in water or ethanol for 30 days. The volumetric changes of specimens were determined and compared to those obtained from the first sorption. Resins showed similar volume increase during the first and second sorptions of water or ethanol. The volume increase due to water absorption is in the following order: poly-TEGDMA>poly-Bis-GMA>poly-UDMA>poly-Bis-EMA>poly-D(3)MA. On the contrary, the order in ethanol is poly-Bis-GMA>poly-UDMA>poly-TEGDMA>poly-Bis-EMA approximately poly-D(3)MA. The volume increase was found to depend linearly on the amount of water or ethanol absorbed. In the choice of monomers for preparation of composite resin matrix the volume increase in the resin after immersion in water or ethanol must be taken into account. Resins of Bis-EMA and D(3)MA showed the lowest values.

  12. Ethylated Urea - Ether - Modified Urea - Formaldehyde Resins,

    Directory of Open Access Journals (Sweden)

    Mathew Obichukwu EDOGA

    2006-07-01

    Full Text Available First, phenol - formaldehyde (PF and urea - formaldehyde (UFII resins were separately conventionally prepared in our laboratory. Also, UF resin synthesized from the acid modified synthesis procedure was synthesized in a purely acid medium of pH 1.0, FU molar ratio of 1.0 and at 50oC (one-stage acid modified-synthesis procedure. Subsequently, the UF resin II was modified during synthesis by incorporating ethylated urea-ether (EUER (i.e. UFIII and glycerol (GLYC (i.e. UFV cured with and without acid curing agent. The structural and physicochemical analyses of the various resin samples were carried out.The results showed that the unmodified UF resin (UF II synthesized in acid medium of pH 1.0, F/U molar ratio 1.0, and at 50oC, cured in absence of acid curing catalyst, showed features in their spectra which are consistent with a tri-, and/or tetra-substituted urea in the reaction to give a 3 - dimensional network cured UF resin. Modification of the UF resin(UF II with ethylated urea-ether and glycerol to produce UF resins III and respectively V prominently increased the absorbance of methylene and ether groups in the spectra which are consistent with increased hydrophobicity and improved hydrolytic stability. For the conventional UF resin (UF I, the only clear distinction between spectra for the UF resin II and UF resins (III/V is the presence of diminished peaks for methylene groups at 2.2 ppm. The relationship between the logarithmic viscosity of cured PF resin with time showed continuos dependence of viscosity with time during cure up to 70 minutes. Similar trends were shown by UF resins (III/V, cured in absence of acid catalyst. In contrast, the conventional UF resins I and UF IV (i.e. UF II cured with NH4CL showed abrupt discontinuity in viscosity with time just after about 20 minutes of cure.

  13. In vitro cytotoxicity of self-curing acrylic resins of different colors

    Directory of Open Access Journals (Sweden)

    Luciana Borges Retamoso

    2014-08-01

    Full Text Available OBJECTIVE: The aim of this study was to assess the in vitro cytotoxicity of acrylic resins of different colors over time. METHODS: Specimens were divided into 4 groups (n = 6 according to the color of the acrylic resin (Orto Class, Clássico, Campinas, São Paulo, Brazil: Group 1: clear acrylic resin; group 2: pink acrylic resin; group 3: blue acrylic resin and group 4: green acrylic resin. All specimens were fabricated according to the mass manipulation technique and submitted to mechanical polishing protocol. The control was performed with an amalgam specimen (C+, a glass specimen (C- and cell control (CC. Specimens were immersed in Minimum Eagle's Medium (MEM and incubated for 24 h at 37o C. The extracts from the experimental material were filtered and mixed with L929 fibroblast. Cytotoxicity was evaluated at 4 different times, 24, 48, 72 and 168 h. After contact, cells were incubated for 24 h and added to 100 µ of 0.01% neutral red dye. The cells were incubated for 3 h for pigment incorporation and fixed. Cells viability was determined by a spectroscopic (BioTek, Winooski, Vermont, USA with a 492-nm wavelength λ=492 nm. RESULTS: There were no statistical differences between the experimental groups and the CC and C- groups. CONCLUSION: Clear, pink, blue and green self-curing acrylic resins fabricated by means of the mass manipulation technique and mechanically polished are not cytotoxic. Neither the pigment added to the self-curing acrylic resin nor the factor of time influenced the cytotoxicity of the material.

  14. In vitro cytotoxicity of self-curing acrylic resins of different colors.

    Science.gov (United States)

    Retamoso, Luciana Borges; da Cunha, Taís de Morais Alves; Pithon, Matheus Melo; dos Santos, Rogério Lacerda; Martins, Fernanda Otaviano; Romanos, Maria Teresa Villela; Tanaka, Orlando Motohiro

    2014-01-01

    The aim of this study was to assess the in vitro cytotoxicity of acrylic resins of different colors over time. Specimens were divided into 4 groups (n = 6) according to the color of the acrylic resin (Orto Class, Clássico, Campinas, São Paulo, Brazil): Group 1, clear acrylic resin; Group 2, pink acrylic resin; Group 3, blue acrylic resin; and Group 4, green acrylic resin. All specimens were fabricated according to the mass manipulation technique and submitted to mechanical polishing protocol. The control was performed with an amalgam specimen (C+), a glass specimen (C-) and cell control (CC). Specimens were immersed in Minimum Eagle's Medium (MEM) and incubated for 24 h at 37ºC. The extracts from the experimental material were filtered and mixed with L929 fibroblast. Cytotoxicity was evaluated at four different times, 24, 48, 72 and 168 h. After contact, cells were incubated for 24 h and added to 100 µ of 0.01% neutral red dye. The cells were incubated for 3 h for pigment incorporation and fixed. Cells viability was determined by a spectroscopic (BioTek, Winooski, Vermont, USA) with a 492-nm wavelength λ=492 nm). There were no statistical differences between the experimental groups and the CC and C- groups. Clear, pink, blue and green self-curing acrylic resins fabricated by means of the mass manipulation technique and mechanically polished are not cytotoxic. Neither the pigment added to the self-curing acrylic resin nor the factor of time influenced the cytotoxicity of the material.

  15. EPOXY RESINS TOUGHENED WITH CARBOXYL TERMINATED POLYETHERS

    Institute of Scientific and Technical Information of China (English)

    YU Yunchao; LI Yiming

    1983-01-01

    Carboxyl terminated polyethers, the adducts of hydroxyl terminated polytetrahydrofuran and maleic anhydride, were used as toughener for epoxy resins. The morphology of the toughened resins was investigated by means of turbidity measurement, dynamic mechanical testing and scanning electron microscope observation. It turned out that the molecular weight and the carboxyl content of the polyether and the cure conditions are important factors, which affect the particle size of the polyether-rich domains and, in turn, the mechanical properties of the cured resin. Carboxyl terminated polytetrahydrofurans have a low glass transition temperature, and in appropriate amount they do not affect the thermal resistance of the resin. These advantages make them preferable as toughener for epoxy resins.

  16. Release and toxicity of dental resin composite.

    Science.gov (United States)

    Gupta, Saurabh K; Saxena, Payal; Pant, Vandana A; Pant, Aditya B

    2012-09-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined.

  17. Posterior adhesive composite resin: a historic review.

    Science.gov (United States)

    Fusayama, T

    1990-11-01

    Since development of the BIS-GMA composite resin, there have been many innovations to improve the physical properties for posterior use. Subsequent development of a caries detector and chemically adhesive composite resin has further revolutionally raised the value of composite resin restoration, replacing the traditional restorative system of mechanical approach by the new system of biological approach. In this system only the infected irreversibly deteriorated insensitive tissue, stainable with the caries detector, is removed painlessly. The cavity is immediately filled with the composite resin with no further tissue reduction for retention or resistance form or extension for prevention. Both enamel and dentin walls are etched by a single etchant without lining. The chemical adhesion to the cavity margin and wall minimizes the marginal failure in size and prevalence and prevents secondary caries penetration along the wall. The chemically adhesive composite resin is thus a useful restorative material much kinder to teeth than amalgam.

  18. Evaluation of Free Moisture in Resins used at the F- and H-Area Groundwater Treatment Units

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.I.

    2001-03-16

    The overall objective of this study was to determine the influence of total moisture content on the amount of free liquid released from two resins (CG-8 and Dowex 21K) and one absorbent (SP 400). An additional objective of this work was to provide some guidance as to how much moisture can be left with the resins before free-liquid is released from the materials. Finally, this work was intended to bench mark the standard vibration test (ASTM D999-96) to the amount of free-liquid measured in resins that had actually been shipped to Nevada Test Site in B-12 containers.

  19. Effect of natural fibers and bio-resins on mechanical properties in hybrid and non-hybrid composites

    Science.gov (United States)

    Fragassa, Cristiano

    2016-05-01

    The aim of the present experimental investigation was to perform a comparative analysis concerning the influence on mechanical properties of natural fibers and/or bio-resins in reinforced thermoset composites. Flax and basalt fibers were selected as natural reinforcements, as single constituents or in hybrid combination. Glass synthetic fibers were used for comparison. Eco-friendly matrixes, both epoxy or vinylester, were considered and compared with composites based on traditional resins. Samples were fabricated by hand lay-up and resin infusion techniques. Cures were accelerated and controlled by applying heat and pressure in autoclave. Tensile, flexural and impact tests were carried out according to ASTM standards.

  20. Reinforcement of Denture Base Resins

    Directory of Open Access Journals (Sweden)

    T Nejatiant

    2005-10-01

    Full Text Available Introduction: PMMA has been the most popular denture base material because of its advantages including good aesthetics, accurate fit, stability in the oral environment, easy laboratory and clinical manipulation and inexpensive equipments since the 1930’s. However, its fracture resistance is not satisfactory. Aim: The aim of this study is to improve the fracture resistance of denture bases made of PMMA by assessing the effect of resin type, packing and processing variables on biaxial flexural strength (BFS. Materials & methods: 930 discs, 12 mm diameter and 2 mm thick were prepared with the following variables: a. Veined (V and Plain (P PMMA. b. 5 different powder/liquid ratios by volume (1.5:1, 2:1, 2.5:1, 3:1, 3.5:1. c. Conventional (C and Injection packing methods (I. d. Dry heat (D Water bath (W; and e. different curing times. The discs were trimmed and stored in 37°C tap water for 50 hours before carrying out BFS test, according to BS EN ISO 1567: 2001. BFS test was carried out using a tensile-testing machine (Lloyd LRX, Lloyd instruments Ltd (Figure.1 b, with a x-head speed of 1mm/min. ONE-WAY ANOVA analysis and TUKEY’S comparison were carried out (MINITAB. The temperature within the curing baths and inside of curing resin was evaluated by using a thermocouple. Results: BFS of Powder/liquid ratio of 1.5:1 is significantly lower than the other four ratios. Among the last four ratios, 2.5:1 was the strongest one although the difference was not significant. BFS of the plain type of PMMA is significantly higher than the veined type.• BFS of conventionally packed PMMA discs was greater than the injectional packed ones and the difference is significant. Water bath cured resin showed a significant higher BFS compared with dry heat curing. • Changing the curing time in the dry heat bath from 7h @ 75º C and 2hrs @ 95º C to 5hrs @ 75º C and 3hrs @ 95º C and then 2hrs @ 95º C improves BFS of PMMA. In the water bath the trend is identical

  1. SYNTHESIS AND CHARACTERIZATION OF KRAFT LIGNIN-BASED EPOXY RESINS

    Directory of Open Access Journals (Sweden)

    Nour Eddine El Mansouri

    2011-05-01

    Full Text Available Epoxidization is an interesting way to develop a new application of lignin and therefore to improve its application potential. In this work, kraft lignin-based epoxy resins were obtained by the epoxidization reaction, using the kraft lignin recovered directly from pulping liquor and modified by a methylolation reaction. The methylolated lignins were obtained by the reaction of original kraft lignin with formaldehyde and glyoxal, which is a less volatile and less toxic aldehyde. 1H-NMR spectroscopy showed that methylolated kraft lignin has more hydroxymethyl groups than glyoxalated kraft lignin. For the epoxidization reaction we studied the influence of the lignin:NaOH (w/w ratio, temperature, and time of the reaction on the properties of the prepared epoxidized lignins. The structures of lignin-based epoxy resins were followed by epoxy index test and FTIR spectroscopy. Optimal conditions were obtained for lignin-based epoxy resin produced at lignin/NaOH = 1/3 at 70 ºC for 3h. Thermogravimetry analysis (TGA revealed that the epoxidization enhances the thermal stability of lignins and may allow a wider temperature range for applications with lignin epoxy-PF blends.

  2. Preparation of carbon brushes with thermosetting resin binder

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon brushes with a resin binder were prepared according to an industrial process and the effects of the molding pressure, grains size and cure temperature on the properties of brush samples were discussed. The results show that the bulk density,bending strength and Rockwell hardness increase, while resistivity decreases with increasing molding pressure. Cure temperature has much more influence on the properties of brushes than molding pressure and grains size. Isothermal differential scanning calorimetry(DSC) was used to estimate the degree of cure of resin binder and a novel method of using the true density to measure the degree of cure of resin binder was presented and discussed briefly. Based on optimal process parameters carbon brushes were manufactured, durability tests for brushes were carried out on an alternate current motor and scanning electron microscope(SEM)was adopted to observe the morphology of worn surface of brushes. The results show that a luster oxide film can be formed on the surface of brushes and their service life reaches 380 h.

  3. Shear bond strength of different surface treatments in bulk fill, microhybrid, and nanoparticle repair resins

    Directory of Open Access Journals (Sweden)

    de Jesus Tavarez RR

    2017-07-01

    Full Text Available Rudys Rodolfo de Jesus Tavarez,1 Lauber Jose dos Santos Almeida Júnior,2 Tayanne Christine Gomes Guará,1 Izabella Santos Ribeiro,1 Etevaldo Matos Maia Filho,1 Leily Macedo Firoozmand2 1Department of Restorative Dentistry, Ceuma University (CEUMA, 2Department of Dentistry I, University Federal of Maranhão (UFMA, São Luís, Maranhão, Brazil Objectives: The purpose of this study was to evaluate the influence of surface treatment and different types of composite resin on the microshear bond strength of repairs. Materials and methods: Seventy-two specimens (n=72 were prepared using a nanoparticle resin and stored in artificial saliva at 37 ± 1°C for 24 h. After this period, the specimens (n=24 were restored with microhybrid resin P60 (3M ESPE, nanoparticle resin Filtek Z350 (3M ESPE, and Bulk Fill Surefil SDR Flow (Dentsply composite resins. Previously, the surfaces of the samples were treated, forming the following subgroups (n=12: (A conditioned with 37% phosphoric acid for 30 s, and (B abrasioned with a diamond tip for 3 s and conditioned with 37% phosphoric acid. In all groups, before insertion of the composite resin, the adhesive system Adper Single Bond 2 was actively applied and photopolymerized for 20 s. Results: The microshear test was executed to assess bond strength. Kruskal–Wallis (p<0.05 and Mann–Whitney statistical tests showed significant statistical difference considering that the bulk-fill resin turned out to have a lower bond strength than the conventional nanoparticle and microhybrid composites. With regard to the technique, the roughening with diamond bur followed by the application of phosphoric acid exhibited values higher than the exclusive use of acid. Conclusion: The microshear bond strength of the composite resin repairs varies in accordance with the type of composite resin utilized, and roughening the surface increased the bond strength of these materials. Keywords: bulk-fill resins, composite resins, dental

  4. Influence of light curing source on microhardness of composite resins of different shades Influência da fonte de luz polimerizadora na microdureza da resina composta de diferentes cores

    Directory of Open Access Journals (Sweden)

    André Luiz Fraga Briso

    2006-01-01

    Full Text Available INTRODUCTION: The evolution of light curing units can be noticed by the different systems recently introduced. The technology of LED units promises longer lifetime, without heating and with production of specific light for activation of camphorquinone. However, further studies are still required to check the real curing effectiveness of these units. PURPOSE: This study evaluated the microhardness of 4 shades (B-0.5, B-1, B-2 and B-3 of composite resin Filtek Z-250 (3M ESPE after light curing with 4 light sources, being one halogen (Ultralux - Dabi Atlante and three LED (Ultraled - Dabi Atlante, Ultrablue - DMC and Elipar Freelight - 3M ESPE. METHODS: 192 specimens were distributed into 16 groups, and materials were inserted in a single increment in cylindrical templates measuring 4mm x 4mm and light cured as recommended by the manufacturer. Then, they were submitted to microhardness test on the top and bottom aspects of the cylinders. RESULTS: The hardness values achieved were submitted to analysis of variance and to Tukey test at 5% confidence level. It was observed that microhardness of specimens varied according to the shade of the material and light sources employed. The LED appliance emitting greater light intensity provided the highest hardness values with shade B-0.5, allowing the best curing. On the other hand, appliances with low light intensity were the least effective. It was also observed that the bottom of specimens was more sensitive to changes in shade. CONCLUSION: Light intensity of LED light curing units is fundamental for their good functioning, especially when applied in resins with darker shades.INTRODUCTION: A evolução dos aparelhos fotopolimerizadores pode ser notada nos diferentes sistemas introduzidos recentemente no mercado. A tecnologia apresentada pelos aparelhos LED promete maior tempo de vida útil, não gerar aquecimento e produzir luz específica para a ativação da canforoquinona. No entanto, ainda são necess

  5. 铸瓷固位钉对牙本质-树脂界面粘结强度的影响%Influence of all ceramic pin on the microtensile bond strength of a resin cement to dentin

    Institute of Scientific and Technical Information of China (English)

    景双林; 黄丽娟; 唐哲; 李琥; 张光东; 于金华

    2013-01-01

    目的:探讨自行研制的铸瓷固位钉对牙本质-复合树脂界面粘结强度的影响,为铸瓷固位钉进一步的临床应用提供实验依据.方法:将40颗离体牙随机分为4组:A组,铸瓷固位钉组;B组,金属自攻螺纹钉组;C组,复合树脂钉组;D组,树脂直接充填组.采用IPS e.max Press热压铸瓷系统制作铸瓷牙本质固位钉,制备标准化牙本质-固位钉-复合树脂块试件,微拉伸实验测试各组试件粘结强度,体视显微镜下观察试件断裂面形态.结果:A、B两组试件粘结强度显著高于C、D两组,差异有统计学意义(P<0.05);A组与B组、C组与D组组间粘结强度差异无统计学意义(P>0.05).A、C、D三组试件断裂模式以牙本质-树脂界面断裂为主,B组以牙本质内聚断裂为主.结论:作为一种新型牙本质固位钉,IPS e.max Press铸瓷固位钉可显著提升牙本质-复合树脂界面的粘结强度.%Objective:To evaluate the effects of self-made all ceramic pin on the micro tensile bond strength of a rensin cement to dentin.Methods:Forty extracted molars were selected and randomly divided into four groups,group A,B and C were prepared with an internal pin channel,then the all ceramic pins,self-threading retentive pins and resin composite pins were inserted into dentin respectively,group D was prepared with no internal retentive features.All subjuects were filled with composite resin.For the microtensile nontrimming technique,10 beam-shaped specimens per group were obtained.Each specimen was loaded in tension until failure and the fracture mode present were observed under stero-microscope.All the results were analyzed statistically.Results:The micro tensile bond strength of group A and B was statistically higher than that of group C and D (P < 0.05),while there were no significant difference between group A and B,or between group C and D (P > 0.05).The breakage modes were observed mainly between the dentin and adhesive interface in

  6. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    Science.gov (United States)

    Peutzfeldt, Anne; Lussi, Adrian

    2016-01-01

    This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM), High Power mode (HPM), or Xtra Power mode (XPM). Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2) (n = 17). Vickers hardness (HV) and indentation modulus (EIT) were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α = 0.05). Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p ≤ 0.0001). Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p ≤ 0.0021). However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement. PMID:28044129

  7. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    Directory of Open Access Journals (Sweden)

    Anne Peutzfeldt

    2016-01-01

    Full Text Available This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM, High Power mode (HPM, or Xtra Power mode (XPM. Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2 (n=17. Vickers hardness (HV and indentation modulus (EIT were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α=0.05. Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p≤0.0001. Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p≤0.0021. However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  8. Flexural strength of acrylic resins polymerized by different cycles

    Directory of Open Access Journals (Sweden)

    Débora Barros Barbosa

    2007-10-01

    Full Text Available Despite the large number of studies addressing the effect of microwave polymerization on the properties of acrylic resin, this method has received limited clinical acceptance. This study evaluated the influence of microwave polymerization on the flexural strength of a denture base resin. A conventional heat-polymerized (Clássico, a microwave-polymerized (Onda-Cryl and a autopolymerizing acrylic (Jet resins were used. Five groups were established, according to polymerization cycles: A, B and C (Onda-Cryl, short cycle - 500W/3 min, long - 90W/13 min + 500W/90 sec, and manufacturing microwave cycle - 320W/3 min + 0W/3 min + 720W/3 min; T (Clássico, water bath cycle - 74ºC/9h and Q (Jet, press chamber cycle - 50ºC/15 min at 2 bar. Ten specimens (65 x 10 x 3.3mm were prepared for each cycle. The flexural strength of the five groups was measured using a three-point bending test at a cross-head speed of 5 mm/min. Flexural strength values were analyzed by one-way ANOVA and the Tukey's test was performed to identify the groups that were significantly different at 5% level. The microwave-polymerized groups showed the highest means (p<0.05 for flexural strength (MPa (A = 106.97 ± 5.31; B = 107.57 ± 3.99; C = 109.63 ± 5.19, and there were no significant differences among them. The heat-polymerized group (T showed the lowest flexural strength means (84.40 ± 1.68, and differ significantly from all groups. The specimens of a microwavable denture base resin could be polymerized by different microwave cycles without risk of decreasing the flexural strength.

  9. Evaluation of Resin-Resin Interface in Direct Composite Restoration Repair

    Science.gov (United States)

    Stoleriu, S.; Andrian, S.; Pancu, G.; Nica, I.; Iovan, G.

    2017-06-01

    The aim of this study was to evaluate the resin-resin interface when a universal bonding agent was used in two different strategies in direct restoration repair. Two composite resins (a micro-filled hybrid and a nano-filled hybrid) as old restorations that have to be repair, a universal bonding agent and a micro-filled hybrid composite resin (different then that aged) as new material for repair were chosen for the study. Non-aged samples were used as control and aged samples were used as study groups. The universal bonding agent was applied in etch-and-rinse and in self-etch strategies. The interface between old and new composite resins was evaluated by SEM and the microleakage was assessed by scoring the dye penetration. Very good adaptation of the two different composite resins placed in direct contact in non-aged samples was recorded. No gaps or defects were visible and strong resin-resin contact was observed. After aging, enlargement of resin-resin junction were observed in most of the samples and a increased dye penetration was recorded irrespective of the strategy (etch-and-rinse or self-etch) used for bonding agent application.

  10. Restorative resins: abrasion vs. mechanical properties.

    Science.gov (United States)

    Jørgensen, K D

    1980-12-01

    The purpose of the present work was to examine whether it is possible by simple and reliable laboratory tests to evaluate the abrasion by food of Class 1 restorative resins. The results point to the following main conclusions: for the smooth-surface resins, i.e. the micro-filled composite and the unfilled resins, the Wallace hardness test appears to be a valid parameter for abrasion; the greater the depth of penetration of the Vickers diamond of this apparatus, the more severe abrasion is to be expected. The mode of abrasion in this type of resin is scratching. Porosity in the resins strongly enhances the abrasion. For the rough-surface resins, i.e. the conventional composites, a dual effect of the filler particles was concluded. The filler particles on the one hand protect the matrix against abrasion, but cause, on the other hand, in time an increase of the surface roughness of the composite and thereby via increased friction an increase of the abrasion. Considerations on possible ways to improve the present-day restorative resins are presented. It is stressed that the results obtained refer only to abrasion of Class 1 fillings by food.

  11. 21 CFR 175.270 - Poly(vinyl fluoride) resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly(vinyl fluoride) resins. 175.270 Section 175... Substances for Use as Components of Coatings § 175.270 Poly(vinyl fluoride) resins. Poly(vinyl fluoride... the purpose of this section, poly(vinyl fluoride) resins consist of basic resins produced by the...

  12. Melamine-modified urea formaldehyde resin for bonding particleboards

    Science.gov (United States)

    Chung-Yun Hse; Feng Fu; Hui Pan

    2008-01-01

    For the development of a cost-effective melamine-modified urea formaldehyde resin (MUF), the study evaluated the effects of reaction pH and melamine content on resin properties and bond performance of the MUF resin adhesive systems. Eight resins, each with three replicates, were prepared in a factorial experiment that included two formulation variables: two reaction...

  13. 21 CFR 177.2260 - Filters, resin-bonded.

    Science.gov (United States)

    2010-04-01

    ... Components of Articles Intended for Repeated Use § 177.2260 Filters, resin-bonded. Resin-bonded filters may... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, resin-bonded. 177.2260 Section 177.2260... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have...

  14. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfide resins. 177.2490 Section 177... Components of Articles Intended for Repeated Use § 177.2490 Polyphenylene sulfide resins. Polyphenylene sulfide resins (poly(1,4-phenylene sulfide) resins) may be safely used as coatings or components...

  15. 76 FR 4936 - Granular Polytetrafluoroethylene Resin From Italy

    Science.gov (United States)

    2011-01-27

    ... COMMISSION Granular Polytetrafluoroethylene Resin From Italy AGENCY: United States International Trade... antidumping duty order on granular polytetrafluoroethylene resin (``granular PTFE resin'') from Italy. DATES... on granular PTFE resin from Italy and Japan (75 FR 67082-67083 and 67105-67108, November 1,...

  16. Influence of Cure Shrinkage on Process-Induced Stress and Deformation in Thick Thermosetting Composites

    Science.gov (United States)

    1992-07-01

    unidirectional composite micromechanics model The constituent fiber properties (constant), the resin properties and chemical shrinkage (cure dependent...during cure. Changes in the resin properties directly influence the mechanical properties in the composite, and chemical shrinkage represents a...xA (5) The expansion coefficients, otL and or, are based on the micromechanics model utilizing constant fiber properties. cure dependent resin

  17. Impact of quantity of resin, C-factor, and geometry on resin composite polymerization shrinkage stress in Class V restorations.

    Science.gov (United States)

    Borges, A L S; Borges, A B; Xavier, T A; Bottino, M C; Platt, J A

    2014-01-01

    This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis. An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups. Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations. Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.

  18. Cobalt Ions Improve the Strength of Epoxy Resins

    Science.gov (United States)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  19. Catalytic Graphitization of Phenolic Resin

    Institute of Scientific and Technical Information of China (English)

    Mu Zhao; Huaihe Song

    2011-01-01

    The catalytic graphitization of thermal plastic phenolic-formaldehyde resin with the aid of ferric nitrate (FN) was studied in detail. The morphologies and structural features of the products including onion-like carbon nanoparticles and bamboo-shaped carbon nanotubes were investigated by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy measurements. It was found that with the changes of loading content of FN and residence time at 1000℃, the products exhibited various morphologies. The TEM images showed that bamboo-shaped carbon nanotube consisted of tens of bamboo sticks and onion-like carbon nanoparticle was made up of quasi-spherically concentrically closed carbon nanocages.

  20. Bonding auto-polymerising acrylic resin to acrylic denture teeth.

    LENUS (Irish Health Repository)

    Nagle, Susan

    2009-09-01

    This study investigated the effect of surface treatments on the shear bond strength of an auto-polymerising acrylic resin cured to acrylic denture teeth. The surface treatments included a combination of grit-blasting and\\/or wetting the surface with monomer. Samples were prepared and then stored in water prior to shear testing. The results indicated that the application of monomer to the surface prior to bonding did not influence the bond strength. Grit blasting was found to significantly increase the bond strength.

  1. Post-irradiation crosslinking of partially cured unsaturated polyester resin

    Energy Technology Data Exchange (ETDEWEB)

    Jurkin, Tanja [Ruder Boskovic Institute, POB 180, Zagreb (Croatia); Pucic, Irina [Ruder Boskovic Institute, POB 180, Zagreb (Croatia)]. E-mail: pucic@rudjer.irb.hr

    2006-09-15

    The post-irradiation crosslinking of unsaturated polyester (UP) resin samples irradiated to different doses was monitored during the 15-days period. The post-reaction sensitivity of three experimental techniques was evaluated. Significant changes were detected by extraction analysis that also included determination of the free styrene content. The most substantial changes were detected by differential scanning calorimetry, even up to 5 days after the irradiation. The sensitivity and reproducibility of FTIR was the lowest. The first two techniques detected the influence of particular reaction periods, at which the radiation crosslinking was terminated, on the post-reaction.

  2. Post-irradiation crosslinking of partially cured unsaturated polyester resin

    Science.gov (United States)

    Jurkin, Tanja; Pucić, Irina

    2006-09-01

    The post-irradiation crosslinking of unsaturated polyester (UP) resin samples irradiated to different doses was monitored during the 15-days period. The post-reaction sensitivity of three experimental techniques was evaluated. Significant changes were detected by extraction analysis that also included determination of the free styrene content. The most substantial changes were detected by differential scanning calorimetry, even up to 5 days after the irradiation. The sensitivity and reproducibility of FTIR was the lowest. The first two techniques detected the influence of particular reaction periods, at which the radiation crosslinking was terminated, on the post-reaction.

  3. Influence of Resin-based Composites Filled with Coal Gangue Fines on Tribological Performance%煤矸石粉掺量对树脂基复合材料摩擦学性能的影响

    Institute of Scientific and Technical Information of China (English)

    薛从强; 高诚辉; 何福善; 林有希; 郑开魁

    2015-01-01

    ln order to make ful use of waste materials, different coal gangue powder is added to resin-base as inorganic fil ers to re-search on green brake pads,together with bamboo fiber, magnesium whisker, calcium sulfate whisker, copper and graphite. Hot pressing is used in specimen preparation and its mechanical properties tribological performances are tested in the experiment. The results show that its hardness increases with the dosage increasement of coal gangue fines, while its impact strength is decreased slightly. As the amount of coal gangue fines increases, its friction coefficient increases accordingly. ln the phase of high temperature, coal gangue could improve the heat recession as wel as the stabilize friction coefficients. ln conclusion, the specimen, added coal gangue to, has good heat-durability and thermal stability. Coal gangue powder can promote the formation of the friction layer, and it is known in the experiment that specimen with 20%dosage has good synthetic properties.%为了充分利用废物研发绿色制动材料,以树脂为基体,不同掺量煤矸石粉作为无机填料,竹纤维作为增强相,添加镁盐晶须、硫酸钙晶须、铜粉和石墨,用热压成型的方法制备试样,测试试样的力学性能和摩擦学性能。结果表明,随着掺量的增加,洛氏硬度增大,而冲击强度略有下降。摩擦系数随掺量的增加而增大,高温阶段煤矸石粉可以改善热衰退性,稳定摩擦系数,有良好的耐热性和热稳定性。煤矸石粉可以促进摩擦层的形成,掺量为20%的试样具有较好的综合性能。

  4. Influence of production process of bimodal polyethylene resin on its crystallization behavior and mechanical properties%双峰PE生产工艺对其结晶行为和力学性能的影响

    Institute of Scientific and Technical Information of China (English)

    孙旭辉

    2013-01-01

    The influences of process parameters of the loop reactor and gas phase reactor on the crystallization behaviour and mechanical properties of bimodal polyethylene resin were studied by high temperature liquid phase gel permeation chromatography (GPC) instrument, wide angle X-ray diffractometer (WAXD) and tensile strength tester. The results show that the crystallinity of the resultant polymer decreases with extending residence time in the loop reactor, while the crystallinity of the polymer decreases with decreasing the molar ratio of H2 to C2H4 and increasing the molar ratio of 1-C4H8 to C2H4 and the allocation rate of the fluidized bed in the gas phase reactor. The tensile stress at yield and modulus of elasticity in tension of the bimodal polyethylene are reduced with the rise in the crystallinity and relative molecular mass of the resin.%  采用高温液相凝胶渗透色谱仪、广角X射线衍射仪和拉力机,研究了双峰聚乙烯(PE)生产中环管反应器和气相反应器的工艺参数对双峰PE产品的结晶行为和力学性能的影响。结果表明:环管反应器聚合产物的结晶度随停留时间的延长而减小,气相反应器产物的结晶度随n(H2)/n(C2H4)下降、n(1-C4H8)/n(C2H4)增大和床层分配率增加而减小,双峰PE的拉伸屈服应力和拉伸弹性模量随其结晶度和相对分子质量增加而减小。

  5. 外加电压对沥青碳纤维/ABS树脂复合材料导电性的影响%INFLUENCE OF EXTERNAL VOLTAGE ON THE CONDUCTIVITY OF COMPOSITES COMPOSED OF CARBON FIBERS AND ABS RESIN

    Institute of Scientific and Technical Information of China (English)

    梁晓怿; 凌立成; 吕春祥; 刘朗

    2001-01-01

    通用级沥青碳纤维与ABS树脂通过单螺杆挤出机共混后模压成型, 所制复合材料的电阻率随材料中纤维添加量的增多而迅速降低.当复合材料中纤维添加量较少时,材料的电流电压关系不满足欧姆定律所描述的线性关系,材料电阻随外电压的增大而减小.随着纤维含量的增加,材料电流电压关系的线性度逐渐增大.当纤维含量达到40 wt%时,材料电阻不随外电压的增大而变化,材料满足欧姆定律.经外加高电压处理后,材料电阻率发生永久性降低,其电流电压关系的线性度提高.隧道跃迁理论能够较好地解释上述现象.%Conductive ABS resin composites filled with general pitch-based carbon fibers were fabricated by hot-press moulding after raw materials were preblended through a single screw extruder. The composite resistivity decreases with fibers content going up. And the electrical current displays non-linear dependence on the external voltage acted on composites and the resistance of composites varies down with the raise of voltage, which implies that the composites don't meet Ohm's Law. When fibers fraction increases, the linearity between current and voltage goes up correspondingly. For the sample containing fillers of 40 wt%, its resistance remains constant and it satisfies Ohm's Law very well. It is interesting that the high voltage can result in the permanent reduction of composite resistance. And the voltage, which makes the permanent reduction of composites resistance, goes up with the increase of fillers loading. Moreover, the linearity of current and voltage rises after composites were treated by high voltage. All these phenomena can be explained by quantum tunneling model the results of this paper provide a new method for improving the conductivity and stability to varied voltage of composites.

  6. Luminous Efficient Compositions Based on Epoxy Resin

    Directory of Open Access Journals (Sweden)

    R.S. Palaiah

    2006-07-01

    Full Text Available Magnesium/sodium nitrate illuminating compositions with epoxy resin - E 605 have beenstudied for luminosity and luminous efficiency by varying fuel oxidizer ratio and binder content.The compositions have been evaluated for impact and friction sensitivities, burn rate, thermalcharacteristics, and mechanical properties. Flame temperature and combustion products areevaluated theoretically by using REAL program. Experimental results show that, luminosity,burn rate, and calorimetric value are higher for polyester resin-based compositions. The highluminous efficiency composition is achieved with magnesium/sodium nitrate ratio of 70/30 with4 per cent epoxy resin.

  7. Advanced Fibre Reinforced Methyl Nadicimide Resins .

    Directory of Open Access Journals (Sweden)

    Sarfaraz Alam

    1996-07-01

    Full Text Available Glass/carbon/kevlar-reinforced composites were fabricated using two structurally different methl nadicimide resins. The resin content of the laminates was in the range of 32-39 per cent. Interlaminar shear strength (ILSSand flexual strength (FS depended on the structure of the methyl nadicimide resins. A significant decrease in the ILSS was observed on treatment with boiling water for 500 h and on isothermal ageing at 300 degree celsius for 100,250 and 500 h. The limiting oxygen index (LOI was the lowest for laminates based on Kevlar fabrics (i.e.54 whereas the laminates based on glass/carbon showed very high LOI(>90.

  8. The flexible resin transfer molding (FRTM) process

    Science.gov (United States)

    Foley, Michael F.

    1992-12-01

    An innovative composite manufacturing process, FRTM, which is based on detailed cost analysis intended to be 'cost effective by design', is described. FRTM is based on a combination of the technical characteristics and respective favorable economics of diaphragm forming, and resin transfer molding. The process control system determines the optimal time for compaction and forming using an empirical resin polymerization model, a fluid flow model, and dielectric sensing of in-situ resin properties. The modified FRTM process is capable of producing high-quality parts with low thickness variation, low void content, and high fiber volume.

  9. Research on epoxy resin modified by boron phenolic resin%硼酚醛树脂对环氧树脂的改性研究

    Institute of Scientific and Technical Information of China (English)

    田鑫; 廖登雄; 李玲

    2016-01-01

    在环氧树脂中加入 BPF 进行改性,按照不同配比将 BPF /EP 配成稳定、均一的试样。对试样的凝胶时间和环氧值进行了测定,并计算出不同配比试样的反应活化能,探讨了不同配比对凝胶时间和环氧值的影响。对不同配比固化试样的氧指数和冲击强度进行了测试,结果显示,BPF 的加入能够明显改善环氧树脂的阻燃性能和冲击强度。当 BPF 的含量为40%(质量分数)时,固化物的氧指数为25.0。当 BPF /EP 固化比例为3∶7时,冲击强度最高,为40.3 kJ/m2。%Epoxy resin was modified by boron phenolic resin.The boron phenolic resin and epoxy resin were prepared to be stable and uniform samples according to different ratio.The gel time and epoxy value of the samples were measured and the activation energy of the samples were calculated.At the same time, the influence of different ratios on the gel time and epoxy value was discussed.The oxygen index and the impact strength of cured samples were tested which have different ratios.Results show that the flame re-tardant and impact strength of epoxy resin are improved with addition of boron phenolic resin.When the content of boron phenolic resin is 40% (mass fraction),the oxygen index of the cured was 25.0.When the curing rate of boron phenolic resin and epoxy resin is 3 ∶7,the highest impact strength is obtained which is 40.3 kJ/m2 .

  10. EP-toxicity test of saturated GT-73 resin and resin in grout

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, J.P.

    1985-04-24

    The results of EP-toxicity tests on mercury saturated Duolite{reg_sign} GT-73 cation exchange resin clarify options for the ultimate disposal of spent resin. Samples of GT-73 saturated with mercury passed the EP-toxicity test, indicating that fully spent resin may be classifed as ``solid``-not``hazardous``-waste and stored or disposed-of as such. Samples of GT-73 resin saturated with mercury and then incorporated into Portland Type 1 cement did not pass the EP-toxicity test and fall into the ``hazardous waste`` category. Samples of GT-73 resin less-than-saturated with mercury which were in corporated in Portland Type 1 cement passed the EP-toxicity test and may be classified as ``solid waste.`` Other commercially available materials are being investigated for incorporating fully spent GT-73 resin in a solid waste form.

  11. 义齿清洁剂对热固化型基托树脂物理及机械性能的影响%Influence of denture cleansers on physical and mechanical properties of heat-curing denture base resin

    Institute of Scientific and Technical Information of China (English)

    张燕萍; 周培刚; 吴凤鸣

    2014-01-01

    Objective To evaluate the colour stability,surface roughness and flexural strength of heat-curing denture base resin after using five denture cleansers.Methods Samples were prepared from heat-curing denture base resin and immersed in Polident,Victoria-C,Protefix,0.2% chlorhexidine gluconate ,Y-Kelin denture cleansers and distilled water.The color changes(ΔE),the roughness and the flexural strength were then measured.Results The color changes were significantly greater in the 0.2% chlorhexidine gluconate, Y-Kelin denture cleansers than in the control group.The ΔE values quantified by the NBS(National Bureau of Standards)were classi-fied as slight in all groups.When comparing the surface roughness and flexural strength,no statistically significant difference was found among the different immersion procedures.Conclusions Immersion in 0.2% chlorhexidine gluconate and Y-Kelin denture cleansers influenced the color stability of heat-curing denture base resin after a 180-day use,but it was clinically acceptable.Polident,Victoria-C, Protefix did not influence the properties.%目的:评价5种义齿清洁剂对热固化型基托树脂颜色稳定性、表面粗糙度、弯曲强度的影响。方法热固化型基托树脂试样浸泡于保丽净、澳多-C、Protefix、0.2%葡萄糖酸氯己定、雅克菱义齿清洁剂以及蒸馏水中一段时间后测量试样颜色的改变(ΔE)、粗糙度值、弯曲强度。结果0.2%葡萄糖酸氯己定、雅克菱义齿清洁剂对颜色改变较对照组显著较大;将ΔE值用 NBS(美国国家标准局)单位来表示,所有组对应的人色差感觉程度均为感觉轻微。对于表面粗糙度和弯曲强度,不同浸泡处理组间无统计学差异。结论热固化型基托树脂使用义齿清洁剂180 d 后,0.2%葡萄糖酸氯己定、雅克菱浸泡后颜色稳定性较差,但为临床可接受。保丽净、澳多-C、Protefix 对材料均无影响。

  12. Influence of Nano Composite Resin Repairing Gingival Wedge-shaped Defects on Periodontal Tissue%纳米复合树脂修复龈下楔状缺损后对患牙牙周组织的影响观察

    Institute of Scientific and Technical Information of China (English)

    杨玉慧

    2016-01-01

    Objective:To observe the influence of nano composite resin repairing gingival wedge-shaped defects on periodontal tissue.Methods:50 cases (50 teeth)of patients with wedge-shaped defects received nano-composite resin restoration in a hospital from May 2013 to April 2014 were selected.Observed the dental plaque index,gingival sulcus bleeding index,GCF,and aspartate aminotransferase (AST)level and alkaline phosphatase (ALP)level in gingival crevicular fluid before and after treatment in six months and 1 2 months. Results:After 6 months of restoration,the GCF level and gingival sulcus fluid AST level were significantly higher than those of before the restoration (P<0.05).After 12 months of restoration,the gingival sulcus bleeding index,GCF and gingival sulcus fluid AST levels were significantly higher than those of after 6 months of restoration (P<0.05).Conclusion:The influence of nano-composite resin restoration for gingival wedge-shaped defects on gingival periodontal tissue is small,and this effect did not cause the change of perio-dontal tissue,so the long-term effect is better,which is worthy of promotion and application.%目的::观察纳米复合树脂修复龈下楔状缺损对患牙牙周组织的影响。方法:选择2013年5月~2014年4月来某院行纳米复合树脂修复的楔状缺损的患者50例,患牙50颗。观察患牙修复前、修复后6个月及12个月的菌斑指数、龈沟出血指数、龈沟液量以及龈沟液中天冬氨酸转氨酶(AST)和碱性磷酸酶水平(ALP)。结果:修复后6个月患牙的龈沟液量和龈沟液中AST的水平显著高于修复前(P<0.05)。修复后12个月患牙龈沟出血指数、龈沟液量和龈沟液中 AST的水平显著高于修复后6个月(P<0.05)。结论:纳米复合树脂修复龈下缺损时对患牙牙周组织有影响,但是很小,而且这种影响未造成牙周骨组织的变化,因此远期效果比较好,值得推广应用。

  13. Avaliação in vitro da influência do polimento superficial de resina acrílica para aparelhos ortodônticos na adesão e remoção de Streptococcus mutans In vitro evaluation of the influence of resin acrylic surface polishing for orthodontic appliances on adhesion and removal of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Selma Sano Suga

    2005-02-01

    mechanical polishing and the microbilogical adhesion of Streptococcus mutans. The chemical and mechanical cleasing of the appliances was also checked. Forty eight appliances were prepared and divided into 3 groups. Each group was subdivided in 2 groups, concerning the different types of polishing. Group 1 control; Group 2 mechanical brushing of the acrylic resin plates with Denture Brush, Kolynos; Group 3 hygiene (chemical cleansing of the appliances by immersing them in sodiun perborate solution for 30 minutes (Fizzy Cleanser of Prosthetic and Orthodontic Appliances, " Fórmula & Ação" Pharmacy. By the statistical results, obtained from the described analysis, it was concluded that the polishing type performed in the internal surface of acrylic resin did not influence the adhesion of Streptococcus mutans. The inferential analysis, implemented by comparing the assessed groups, determined that there was a reduction in the removal of biofilm formed by the contamination of Streptococcus mutans in the groups. The chemical cleanser was more efficient than the mechanical brushing. However there was no difference between the subgroups, confirming that polishing type (chemical or mechanical did not influence the adhesion and removal of Streptococcus mutans.

  14. 5-year clinical performance of resin composite versus resin modified glass ionomer restorative system in non-carious cervical lesions

    DEFF Research Database (Denmark)

    Franco, Eduardo Batista; Benetti, Ana Raquel; Ishikiriama, Sérgio Kiyoshi

    2006-01-01

    To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions.......To comparatively assess the 5-year clinical performance of a 1-bottle adhesive and resin composite system with a resin-modified glass ionomer restorative in non-carious cervical lesions....

  15. A 24-month evaluation of amalgam and resin-based composite restorations

    DEFF Research Database (Denmark)

    McCracken, Michael S; Gordan, Valeria V; Litaker, Mark S

    2013-01-01

    Knowing which factors influence restoration longevity can help clinicians make sound treatment decisions. The authors analyzed data from The National Dental Practice-Based Research Network to identify predictors of early failures of amalgam and resin-based composite (RBC) restorations....

  16. Separation of hormonal and exogenous iodine in serum by means of a cation exchange resin

    NARCIS (Netherlands)

    Wiener, J.D.; Backer, E.T.

    1968-01-01

    The influence of iodine-containing compounds on the determination of iodoamino acids (IAA) and hormonal iodine (HI) in serum with a cation exchange resin has been studied. The IAA values were elevated by most of the compounds, though to a lesser degree than the protein-bound iodine. Of 15 chemically

  17. Magnetic ion-exchange resin treatment: Impact of water type and resin use

    OpenAIRE

    Mergen, Maxime Rodolphe Denis; Jefferson, Bruce; Parsons, Simon A.; Jarvis, Peter

    2008-01-01

    Three raw waters of fundamentally different natural organic matter (NOM) character were treated by magnetic resin using a bench-scale method designed to mimic how the resin is used in continuous operation. Increasing water hydrophobicity resulted in reduced dissolved organic carbon (DOC) removal with removal of 56%, 33% and 25% for waters containing 21%, 50% and 75% hydrophobic NOM, respectively. Study of consecutive resin uses showed that the NOM in the hydrophobic water ha...

  18. Compaction and Cure of Resin Film Infusion Prepregs

    OpenAIRE

    Thompson, Joseph E.

    2004-01-01

    Gutowski et al.'s model has been employed to describe the cure and consolidation of prepregs used for resin film infusion. Resin kinetics, rheology, flow and fiber deformation are considered. Resin kinetics are simulated with an isothermal autocatalytic-1 type relation. The non-Newtonian viscosity of the Cytec™ 754 resin is represented with a gel type expression. The one dimensional flow of resin through a deformable, partially saturated porous medium is studied. A nonlinear partial...

  19. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    Science.gov (United States)

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  20. The effect of tooth age on colour adjustment potential of resin composite restorations.

    Science.gov (United States)

    Tanaka, A; Nakajima, M; Seki, N; Foxton, R M; Tagami, J

    2015-02-01

    teeth groups (presin composite side) was significantly larger in older teeth than younger teeth (p0.05). Analysis of the light transmission properties indicated that older dentine transmitted more light, while younger dentine exhibited greater light diffusion and transmitted less light. The colour shifting effects at the border of the resin composite restorations were influenced by the age of the tooth. This behaviour might be influenced by the light transmission characteristics of dentine in restored teeth. The potential for colour adjustment of resin composite restorations may be less in older teeth than younger teeth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements.

    Science.gov (United States)

    Fuentes, María-Victoria; Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-02-01

    No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Bond strength values were significantly influenced by the resin cement used (pcomposite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Bond strength, self-adhesive cement, silane, dentin, indirect composite.

  2. (GSA) resin for removal and recovery o

    African Journals Online (AJOL)

    2011-05-30

    May 30, 2011 ... The adsorption of different metal ions on GSA resin follows the order: Cu2+ > Fe2+ > Zn2+ ..... midazolylazo group and its use in the separation of heavy metals. .... cosmetics formulations, drug delivery vehicle and waste water.

  3. Amine chemistry. Update on impact on resin

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, Gregory; Kellogg, Douglas [Siemens Industry, Inc., Rockford, IL (United States). Technology and Lab Services; Wilkes, Marty [Siemens Industry, Inc., Rockford, IL (United States). Water Technologies Div.

    2012-03-15

    Impurity removal in the steam cycle and the associated prevention of corrosion and/or fouling of system components are the goals of ion exchange resins. However, in many instances (such as a switch to amine chemistry or a change in product specifications), resins do not remove, and, in fact, contribute impurities to the steam cycle. This paper reviews recent data compiled to determine the direct and indirect effects of amines on ion exchange resins used in the power industry. Water chemistries have improved in recent years, in large part due to changes in chemistry and resins, but it is necessary to continue to develop products, processes and techniques to reduce impurities and improve overall water chemistry in power plant systems. (orig.)

  4. Indirect composite resin materials for posterior applications.

    Science.gov (United States)

    Shellard, E; Duke, E S

    1999-12-01

    Indirect composite resin restorations were introduced a number of years ago as possible alternatives to traditional metallic or ceramic-based indirect restorations. However, the earlier formulations did not provide evidence of improvement in mechanical and physical properties over chairside-placed direct composite resin materials. Because they required more tooth structure removal than direct restorations, their use became unpopular and was abandoned by most clinicians. Over the past few years, a new class of composite resin indirect materials has surfaced in the profession. Various technologies have been suggested as reinforcement mechanisms. Fibers, matrix modifications, and an assortment of innovations have been proposed for enhancing indirect composite resin restorations. Applications are from inlay restorations all the way to multi-unit fixed prostheses. This manuscript summarizes some of the progress made in this area. When available, data is presented to provide clinicians with guidelines and indications for the use of these materials.

  5. Light-cured resin for post patterns.

    Science.gov (United States)

    Waldmeier, M D; Grasso, J E

    1992-09-01

    A method of using light-cured acrylic resin as an alternative to the use of chemically-cured acrylic resins with elastomeric impressions for direct post patterns is presented. The GC Unifast LC acrylic resin is a powder/liquid type resin cured by exposure to visible light. The polymerization process has four stages before final curing: slurry, stringy, dough-like (plastic), and rubber-like (elastic). Advantages over current direct and indirect procedures include ease of manipulation of the material and no change in laboratory handling procedures. While in the dough-like state, the material can be contoured. In the rubber-like state, it is flexible to disengage from minor undercut areas.

  6. Phenolic Resin Sector Enters New Stage

    Institute of Scientific and Technical Information of China (English)

    Pu Zeshuang

    2007-01-01

    @@ Rapid output increase With the importation of new production technologies and the boom of large timber processing, insulation refractory material, composite material and foam plastics sectors in recent years, the phenolic resin production in China has developed rapidly.

  7. Feedback control of the vacuum-assisted resin transfer molding (VARTM) process

    Science.gov (United States)

    Heider, Dirk; Graf, A.; Fink, Bruce K.; Gillespie, John W., Jr.

    1999-02-01

    The Vacuum Assisted Resin Transfer Molding (VARTM) technique is a liquid-molding process that offers the potential to significantly reduce fabrication costs for large-scale composite structures. The VARTM workcell is used to evaluate control strategies and sensors such as SMARTweave to provide feedback for an intelligent control system. Current VARTM systems lack automated control systems resulting in part to part variability. This research presents a continuously controlled vacuum actuator system and the influence of vacuum gradients on resin flow front control.

  8. Effect of lipstick on composite resin color at different application times

    OpenAIRE

    Galvão,Avilmar Passos; Jacques,Letícia Borges; Dantas,Luciana; Mathias, Paula; Mallmann, André

    2010-01-01

    p.566-571 OBJECTIVES: The aim of this study was to evaluate the influence of the contact of two lipsticks, one with common fixer and one with ultra fixer, on the color of a composite resin immediately, 30 min and 24 h after photoactivation. MATERIAL AND METHODS: Ninety specimens were prepared with a composite resin, Filtek-Z350. Specimens were polished and divided into 9 groups (n=10) according to time elapsed after photoactivation (A- immediately; B- 30 min; C- 24 h) and the contact wi...

  9. Effect of lipstick on composite resin color at different application times

    OpenAIRE

    Avilmar Passos Galvão; Letícia Borges Jacques; Luciana Dantas; Paula Mathias; André Mallmann

    2010-01-01

    OBJECTIVES: The aim of this study was to evaluate the influence of the contact of two lipsticks, one with common fixer and one with ultra fixer, on the color of a composite resin immediately, 30 min and 24 h after photoactivation. MATERIAL AND METHODS: Ninety specimens were prepared with a composite resin, Filtek-Z350. Specimens were polished and divided into 9 groups (n=10) according to time elapsed after photoactivation (A- immediately; B- 30 min; C- 24 h) and the contact with lipstick (UF-...

  10. 40 CFR 414.40 - Applicability; description of the thermoplastic resins subcategory.

    Science.gov (United States)

    2010-07-01

    ... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORGANIC CHEMICALS, PLASTICS, AND SYNTHETIC FIBERS... (HDPE) Polyethylene Resin (LPDE) Polyethylene Resin, Scrap Polyethylene Resin, Wax (Low M.W...

  11. Impact of filler size and distribution on roughness and wear of composite resin after simulated toothbrushing

    Directory of Open Access Journals (Sweden)

    Gabriela Ulian de Oliveira

    2012-10-01

    Full Text Available OBJECTIVES: Nanofilled composite resins are claimed to provide superior mechanical properties compared with microhybrid resins. Thus, the aim of this study was to compare nanofilled with microhybrid composite resins. The null hypothesis was that the size and the distribution of fillers do not influence the mechanical properties of surface roughness and wear after simulated toothbrushing test. MATERIAL AND METHODS: Ten rectangular specimens (15 mm x 5 mm x 4 mm of Filtek Z250 (FZ2, Admira (A, TPH3 (T,Esthet-X (EX, Estelite Sigma (ES, Concept Advanced (C, Grandio (G and Filtek Z350 (F were prepared according to manufacturer's instructions. Half of each top surface was protected with nail polish as control surface (not brushed while the other half was assessed with five random readings using a roughness tester (Ra. Following, the specimens were abraded by simulated toothbrushing with soft toothbrushes and slurry comprised of 2:1 water and dentifrice (w/w. 100,000 strokes were performed and the brushed surfaces were reanalyzed. Nail polish layers were removed from the specimens so that the roughness (Ra and the wear could be assessed with three random readings (µm. Data were analyzed by ANOVA and Tukey's multiple-comparison test (α=0.05. RESULTS: Overall outcomes indicated that composite resins showed a significant increase in roughness after simulated toothbrushing, except for Grandio, which presented a smoother surface. Generally, wear ofnanofilled resins was significantly lower compared with microhybrid resins. CONCLUSIONS: As restorative materials suffer alterations under mechanical challenges, such as toothbrushing, the use of nanofilled materials seem to be more resistant than microhybrid composite resins, being less prone to be rougher and worn.

  12. Effect of exposure time on the polymerization of resin cement through ceramic.

    Science.gov (United States)

    AlShaafi, Maan M; AlQahtani, Mohammed Q; Price, Richard B

    2014-04-01

    This study measured the effects of using three different exposure times to cure one resin cement through two types of ceramic. One light-curing resin cement (Variolink II, Ivoclar Vivadent) was exposed for 20 s, 40 s, or 60 s with a BluePhase G2 light (Ivoclar Vivadent) on the high power setting through 1.0 mm of either ZirPress (ZR) or Empress Esthetic (EST) ceramic (Ivoclar Vivadent). The degree of conversion (DC) of the resin was measured 100 s after light exposure. The Knoop microhardness (KHN) was measured 5 min after light exposure and again after 24 h. The DC and KHN results were analyzed with ANOVA followed by Scheffe's post-hoc multiple comparison tests at α = 0.05. Increasing exposure time had a significant effect on the KHN and DC values for the resins exposed through both ceramics. As exposure times increased, the influence of the ceramic was reduced; however, the microhardness values were greater for the cement exposed through EST ceramic. When the exposure time was increased from 20 s to 40 s, microhardness values for the resin increased by 39.6% through the EST ceramic. When exposed for 60 s, there were no differences between the 100-s DC values or 5-min KHN values using either ceramic (p > 0.05). There was an excellent correlation between the DC at 100 s and the microhardness values measured at 5 min. Resin polymerization was greater through EST than ZR ceramic. At least 40 s to 60 s from the Blue- Phase G2 on high power mode is required to cure this resin cement through 1.0 mm of ceramic.

  13. Resin composites : Sandwich restorations and curing techniques

    OpenAIRE

    Lindberg, Anders

    2005-01-01

    Since the mid-1990s resin composite has been used for Class II restorations in stress-bearing areas as an alternative to amalgam. Reasons for this were the patients’ fear of mercury in dental amalgam and a growing demand for aesthetic restorations. During the last decades, the use of new resin composites with more optimized filler loading have resulted in reduced clinical wear. Improved and simplified amphiphilic bonding systems have been introduced. However, one of the main problems with res...

  14. Biocompatibility of Resin-based Dental Materials

    OpenAIRE

    Keyvan Moharamzadeh; Ian M. Brook; Richard van Noort

    2009-01-01

    Oral and mucosal adverse reactions to resin-based dental materials have been reported. Numerous studies have examined thebiocompatibility of restorative dental materials and their components, and a wide range of test systems for the evaluation of the biological effects of these materials have been developed. This article reviews the biological aspects of resin-based dental materials and discusses the conventional as well as the new techniques used for biocompatibility assessment of dental mat...

  15. Preliminary Study of Performance of TTA Resin

    Institute of Scientific and Technical Information of China (English)

    HUANG; Kun; MAO; Guo-shu

    2013-01-01

    TTA(thenoyl trifluoroacetone)extraction can effectively remove large amounts of uranium in the analysis of trace neptunium in the presence of large amounts of uranium.While it is not conducive to achieve the automation of the rapid analysis of neptunium with the TTA solution,the TTA resin was prepared and its properties were studied in this work.TTA resin in this work was a kind of mixture combining styrene-divinylbenzene skeleton with TTA

  16. Contraction stresses of composite resin filling materials.

    Science.gov (United States)

    Hegdahl, T; Gjerdet, N R

    1977-01-01

    The polymerization shrinkage of composite resin filling materials and the tensile stresses developed when the shrinkage is restrained were measured in an in vitro experiment. This allows an estimation to be made of the forces exerted upon the enamel walls of cavities filled with the resin in the acid etch technique. The results indicate that the stresses acting on the enamel are low compared to the tensile strength of the enamel.

  17. Clinical applications of preheated hybrid resin composite.

    Science.gov (United States)

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  18. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  19. Petroleum asphaltenes: Part 1. Asphaltenes, resins and the structure of petroleum; Les asphaltenes, composes petroliers. Partie 1: asphaltenes, resines et structure du petrole

    Energy Technology Data Exchange (ETDEWEB)

    Speight, J.G. [CD and W Inc., Laramine, Wyoming (United States)

    2004-07-01

    The definition of the nonvolatile constituents of petroleum (i.e., the asphaltene constituents, the resin constituents, and, to some extent, part of the oils fraction insofar as nonvolatile oils occur in residua and other heavy feedstocks) is an operational aid. It is difficult to base such separations on chemical or structural features. This is particularly true for the asphaltene constituents and the resin constituents, for which the separation procedure not only dictates the yield but can also dictate the quality of the fraction. For example, the use of different hydrocarbon liquids influences the yield by a considerable factor. The technique employed also dictates whether or not the asphaltene contains coprecipitated resins. This is based on the general definition that asphaltene constituents are insoluble in n -pentane (or in n-heptane) but resins are soluble n -pentane (or in n-heptane). The results of structural studies of asphaltene constituents are moving away from the older ideas that asphaltene constituents contained large polynuclear aromatic systems and there are a variety of functional types that also play a role in asphaltene behavior. The stability of petroleum is dependent upon the molecular relationships of the asphaltene and resin constituents and the balance with the other constituents of petroleum. Thus, the stability of petroleum can be represented by a three-phase system in which the asphaltene constituents, the aromatic fraction (including the resin constituents), and the saturate fraction are in a delicately balanced harmony. Various factors, such as oxidation, can have an adverse effect on the system, leading to instability or incompatibility as a result of changing the polarity, and bonding arrangements, of the species in crude oil. (author)

  20. Compósito de resina de poliéster insaturado com bagaço de cana-de-açúcar: influência do tratamento das fibras nas propriedades Unsaturated polyester resin composite with sugar cane bagasse: influence of treatment on the fibers properties

    Directory of Open Access Journals (Sweden)

    Elisabete M. S. Sanchez

    2010-09-01

    Full Text Available Neste trabalho foi avaliada a influência do tratamento de fibras de bagaço de cana-de-açúcar nas propriedades mecânicas e dinâmico-mecânicas, na estabilidade térmica, na densidade e absorção de água, quando utilizadas na preparação de compósitos com resinas de poliéster insaturado em comparação com a resina sem reforço. As fibras foram submetidas a tratamento químico com solução alcalina de hidróxido de sódio. O tratamento melhorou as propriedades de impacto, aumentou o módulo de elasticidade em flexão, não alterou significativamente o módulo de elasticidade em tração dos compósitos em relação à resina sem reforço e melhorou a compatibilidade fibra matriz quando comparada com compósitos com a fibra sem tratamento, o que pode ser observado nas fraturas de impacto analisadas por microscopia eletrônica de varredura. As superfícies das fibras também foram avaliadas por microscopia eletrônica de varredura.The aim of this work is to evaluate the influence of the sugar cane bagasse NaOH treatment in the mechanical and dynamic-mechanical properties, in the thermal stability, density and water absorption, when used in unsaturated polyester resin/sugar cane bagasse composite. The sugar cane bagasse was submitted to the chemical treatment with alkaline solution of NaOH. The treatment improves the impact and flexural elasticity modulus when compared with resin without fibers, in addition to the adhesion of the fibers with the matrices, but does not improve significantly the tensile elasticity modulus. The surfaces of the impact fracture were analyzed by SEM.

  1. Effects of Porous Polystyrene Resin Parameters on Candida antarctica Lipase B Adsorption, Distribution, and Polyester Synthesis Activity

    Energy Technology Data Exchange (ETDEWEB)

    Chen,B.; Miller, M.; Gross, R.

    2007-01-01

    Polystyrene resins with varied particle sizes (35 to 350-600 {mu}m) and pore diameters (300-1000 {angstrom}) were employed to study the effects of immobilization resin particle size and pore diameter on Candida antarctica Lipase B (CALB) loading, distribution within resins, fraction of active sites, and catalytic properties for polyester synthesis. CALB adsorbed rapidly (saturation time {<=}4 min) for particle sizes 120 {mu}m (pore size = 300 {angstrom}). Infrared microspectroscopy showed that CALB forms protein loading fronts regardless of resin particle size at similar enzyme loadings ({approx}8%). From the IR images, the fractions of total surface area available to the enzyme are 21, 33, 35, 37, and 88% for particle sizes 350-600, 120, 75, 35 {mu}m (pore size 300 {angstrom}), and 35 {mu}m (pore size 1000 {angstrom}), respectively. Titration with methyl p-nitrophenyl n-hexylphosphate (MNPHP) showed that the fraction of active CALB molecules adsorbed onto resins was {approx}60%. The fraction of active CALB molecules was invariable as a function of resin particle and pore size. At {approx}8% (w/w) CALB loading, by increasing the immobilization support pore diameter from 300 to 1000 {angstrom}, the turnover frequency (TOF) of {var_epsilon}-caprolactone ({var_epsilon}-CL) to polyester increased from 12.4 to 28.2 s{sup -1}. However, the {var_epsilon}-CL conversion rate was not influenced by changes in resin particle size. Similar trends were observed for condensation polymerizations between 1,8-octanediol and adipic acid. The results herein are compared to those obtained with a similar series of methyl methacrylate resins, where variations in particle size largely affected CALB distribution within resins and catalyst activity for polyester synthesis.

  2. Separation and purification of rebaudioside A from extract of Stevia Rebaudiana leaves by macroporous adsorption resins

    Directory of Open Access Journals (Sweden)

    Anvari Masoumeh

    2016-03-01

    Full Text Available The separation and purification of rebaudioside A from Stevia rebaudiana crude extracts (Steviosides by macroporous resin were optimized by Taguchi orthogonal array (OA experimental design methodology. This approach was applied to evaluate the influence of five factors (adsorption temperature, desorption time, elution solution ratio, adsorption volume and type of resin on the rebaudioside A yield. The percentage contribution of each factor was also determined. The results showed that elution solution ratio and adsorption volume made the greatest (59.6% and the lowest (1.3% contribution, respectively. The results showed that the Taguchi method is able to model the purification of rebaudioside A process well (R2 > 0.998 and can therefore be applied in future studies conducted in various fields. Adsorption temperature 35°C, desorption time 60min, elution solution ratio 3, adsorption volume 200ml and HPD-400 as resin were the best conditions determined by the Taguchi method.

  3. Effect of dentinal tubules and resin-based endodontic sealers on fracture properties of root dentin.

    Science.gov (United States)

    Jainaen, Angsana; Palamara, Joseph E A; Messer, Harold H

    2009-10-01

    To investigate the role of dentinal tubules in the fracture properties of human root dentin and whether resin-filled dentinal tubules can enhance fracture resistance. Crack propagation in human root dentin was investigated in 200 microm thick longitudinal samples and examined by light and scanning electron microscopy. 30 maxillary premolar teeth were prepared for work of fracture (Wf) test at different tubule orientations, one perpendicular and two parallel to dentinal tubules. Another 40 single canal premolars were randomly divided into four groups of 10 each: intact dentin, prepared but unobturated canal, canal obturated with epoxy rein (AH Plus/gutta percha), or with UDMA resin sealer (Resilon/RealSeal. The samples were prepared for Wf test parallel to dentinal tubules. Wf was compared under ANOVA with statistical significance set at pcanal preparation nor obturation using epoxy- or UDMA-based resins as sealer cements substantially influenced fracture properties of root dentin, despite extensive infiltration of dentinal tubules by both sealer cements.

  4. Assessing the effects of adsorptive polymeric resin additions on fungal secondary metabolite chemical diversity

    Science.gov (United States)

    González-Menéndez, Víctor; Asensio, Francisco; Moreno, Catalina; de Pedro, Nuria; Monteiro, Maria Candida; de la Cruz, Mercedes; Vicente, Francisca; Bills, Gerald F.; Reyes, Fernando; Genilloud, Olga; Tormo, José R.

    2014-01-01

    Adsorptive polymeric resins have been occasionally described to enhance the production of specific secondary metabolites (SMs) of interest. Methods that induce the expression of new chemical entities in fungal fermentations may lead to the discovery of new bioactive molecules and should be addressed as possible tools for the creation of new microbial chemical libraries for drug lead discovery. Herein, we apply both biological activity and chemical evaluations to assess the use of adsorptive resins as tools for the differential expression of SMs in fungal strain sets. Data automation approaches were applied to ultra high performance liquid chromatography analysis of extracts to evaluate the general influence in generating new chemical entities or in changing the production of specific SMs by fungi grown in the presence of resins and different base media. PMID:25379340

  5. Adsorption characteristics of thorium on silica-based anion exchange resins

    Institute of Scientific and Technical Information of China (English)

    陈彦良; 赵龙; 韦悦周; 何林锋; 唐方东

    2015-01-01

    To isolate and separate thorium from nitric acid solutions, three silica-based anion exchange resins were synthesized. Batch experiments were carried out to investigate adsorption behavior of thorium in nitric acid solutions. Adsorption at different concentrations of nitric acid and thorium, influence of contact time and coex-isting metal ions, and effect of NO–3 were investigated in detail. It was found that at high HNO3 concentrations, the resins exhibited higher adsorption capacity and better affinity towards thorium. The adsorption kinetics could be described by the pseudo-second order model equation, while the adsorption isotherms were well cor-related by the Langmuir model. The maximum capacity towards thorium species on SiPyR-N4 was evaluated at 27–28 mg/g-resin. The thermodynamic parameters indicated the adsorption was an exothermic reaction. The presence of NO–3 was found to promote the retention of the thorium species.

  6. Role of Interphase in the Mechanical Behavior of Silica/Epoxy Resin Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yi Hua

    2015-06-01

    Full Text Available A nanoscale representative volume element has been developed to investigate the effect of interphase geometry and property on the mechanical behavior of silica/epoxy resin nanocomposites. The role of interphase–matrix bonding was also examined. Results suggested that interphase modulus and interfacial bonding conditions had significant influence on the effective stiffness of nanocomposites, while its sensitivities with respect to both the thickness and the gradient property of the interphase was minimal. The stiffer interphase demonstrated a higher load-sharing capacity, which also increased the stress distribution uniformity within the resin nanocomposites. Under the condition of imperfect interfacial bonding, the effective stiffness of nanocomposites was much lower, which was in good agreement with the documented experimental observations. This work could shed some light on the design and manufacturing of resin nanocomposites.

  7. Effect of surface characteristics on adherence of S. mutans biofilms to indirect resin composites.

    Science.gov (United States)

    Ikeda, Masaomi; Matin, Khairul; Nikaido, Toru; Foxton, Richard M; Tagami, Junji

    2007-11-01

    The purpose of this study was to evaluate the adherence of biofilms to the surfaces of two indirect resin composites, Estenia C&B and Gradia. Slabs were prepared from the materials, and then either ground with 800-grit silicon carbide paper or polished with diamond pastes up to 1 microm. Artificial biofilms of Streptococcus mutans were grown on the composite slabs in an artificial mouth system for 20 hours. Thereafter, the amounts of retained biofilm on the surfaces were measured after sonication. Surface characteristics of the resins--such as surface roughness, amount of residual monomers, and distribution of filler particles--were examined. Two-way ANOVA revealed that the amount of retained biofilm varied (pcomposition and surface roughness of the material. In particular, biofilm adherence was lowest on Estenia C&B slabs when polished with diamond pastes up to 1 microm. It was thus concluded that the surface roughness and composition of a resin composite influenced biofilm adherence.

  8. Spectroscopic and mechanical properties of dental resin composites cured with different light sources

    Science.gov (United States)

    Conti, C.; Giorgini, E.; Landi, L.; Putignano, A.; Tosi, Giorgio

    2005-06-01

    The aim of this study was to determine the effectiveness of polymerization in order to achieve an adequate clinical composite filling. Photopolymerization of new micro matrix restorative resin composite, Esthet-x, shade A3, from Dentsply Corp., was performed with plasma xenon, halogen and light emitting diode (LED) lamps. The degree of conversion (DC) of the resins was determined by means of middle, near infrared and Raman spectroscopy in transmittance and in DRIFT modes. The resin conversion was influenced by the nature of the light source, the distance from the irradiated surface, the exposure time and the depth from the surface. High DC values were obtained with all lamps but they resulted almost constant with the depth only in the LED unit. Micro-hardness and differential thermal analysis were in satisfactory agreement with DC data.

  9. A sorption study of Pd(II on aminomethylphosphonic purolite resin S-940

    Directory of Open Access Journals (Sweden)

    CARMEN PADURARU

    2005-10-01

    Full Text Available Many methods for the preconcentration-recovery of platinic metals are based on complexing sorbents. As platinic metals have a high tendency to form complexes, the complex-forming sorbents are particularly useful. This study concerns the sorption of Pd(II on aminomethylphosphonic Purolite S-940 resin. In order to establish the optimum conditions of Pd(II sorption on S-940 resin, the influence of the following experimental conditions: solution pH, Pd(II initial concentration and temperature were studied. The yield of Pd(II recovery wasmaximum in buffer solutions of pH 3–5 and decreases with increasing initial concentration of the solution. The equilibrium distribution of Pd(II between the two phases (sorbent and solution is described by the Langmuir model of monomolecular layer adsorption. The thermodynamic quantities characteristic for the Pd(II sorption process suggest an affinity of the Purolite resin S-940 for Pd(II.

  10. Influence of microstructure of Al2O3@ZnO on thermal conductivity of epoxy resin composite by hydrothermal method%水热法制备Al2O3@ZnO颗粒微观形貌及其对环氧树脂基复合材料导热性能的影响

    Institute of Scientific and Technical Information of China (English)

    曹冰; 傅仁利; 汤晔; 张鹏飞; 刘超

    2015-01-01

    ZnO was coated on the surface of Al2O3 by hydrothermal method to prepare Al2O3@ZnO while different microstructures of ZnO coating layer grew on it by controlling the synthesis conditions. This paper focused on the pH in the growth solution which had a great influence on the coating results and microstructure of ZnO coating layer, then the thermal conductivity of epoxy resin filled with Al2O3@ZnO was studied. The research results show that with the increase of pH, the homogeneity and compactness of the coating layer is better which mean the coating effects of ZnO on Al2O3 are better. The microstructure of ZnO on the surface of Al2O3@ZnO changes from globular to starlike and then hedgehog-like, meanwhile, the thermal conductivity of epoxy resin filled with Al2O3@ZnO is also improved and the result is best when the pH is 10, which is 10.3% better than that of the epoxy resin filled with untreated Al2O3.%采用水热法在Al2O3颗粒表面包覆ZnO制备Al2O3@ZnO颗粒,并通过控制合成条件在Al2O3颗粒表面制备出了具有不同微观形貌的ZnO包覆层。还探讨了水热合成中生长液的pH值对ZnO的包覆层生长过程以及对ZnO包覆层生长形貌的影响,研究了Al2O3@ZnO颗粒填充环氧树脂对环氧基复合材料导热性能的影响。研究结果表明:随着pH的升高,ZnO包覆层的均匀性和致密性越好,即包覆的效果越好。Al2O3@ZnO颗粒表面ZnO的形态从颗粒状到星状最后到刺球状转变,随之填充 Al2O3@ZnO 颗粒的环氧基复合材料的热导率也逐渐提高。采用pH=10时所制备的Al2O3@ZnO颗粒填充环氧树脂,其热导率相对于未处理Al2O3填充的环氧树脂提高了10.3%。

  11. 琼脂糖-DEAE离子交换介质的配基密度和孔径对BSA吸附的影响%Influences of ligand density and pore size on BSA adsorption on agarose-based DEAE-ion-exchange resins

    Institute of Scientific and Technical Information of China (English)

    卢慧丽; 林东强; 姚善泾

    2011-01-01

    Ion exchange chromatography (IEC) is a common and powerful technique for the purification of proteins. The ligand density and pore size of the resins have significant effects on the separation behaviors of protein. In the present work, three kinds of crossed-linked agarose gel with different agarose concentrations were used as the matrices to represent various pore sizes, and anionic ligand, diethylaminothyl (DEAE), was coupled with different ligand densities. The preparation conditions, including the reaction temperature, time, DEAE concentration and NaOH concentration, were optimized to control the ionic exchange capacity. A series of DEAE resins with different ligand densities and pore sizes were obtained. The adsorption isotherms and kinetics of bovine serum albumin (BSA) were measured on these resins. The saturated adsorption capacity increased with the increasing of ligand densities and the decreasing of pore sizes at the range tested. For the adsorption kinetics, the pore size influenced significantly the effective pore diffusivities. The results demonstrated that both the pore size and ligand density affect the static and dynamic adsorption. The pore size dominates the diffusion and mass transfer of protein, while the ligand density affects the interactions between ligand and protein.%离子交换色谱是蛋白质分离纯化的有效方法之一,配基密度和介质孔径是影响蛋白质吸附的关键因素.采用3种不同琼脂糖浓度的凝胶为基质,具有不同的平均孔径,分别偶联上阴离子交换配基DEAE,通过调控反应条件,包括反应温度、反应时间、碱浓度和DEAE浓度,得到了不同配基密度和介质孔径的系列DEAE离子交换介质.考察了牛血清白蛋白(BSA)的静态和动态吸附性能,发现随配基密度增加或介质孔径减小,BSA饱和吸附容量有所增大;对于吸附动力学,介质孔径显著影响有效扩散系数.结果表明,配基密度和介质孔径共同决定了蛋白

  12. Dynamic Mechanical Properties and Thermal Effect of an Epoxy Resin Composite, Encapsulation's Element of a New Electronic Component

    Science.gov (United States)

    Rmili, W.; Deffarges, M. P.; Chalon, F.; Ma, Z.; Leroy, R.

    2013-11-01

    Epoxy resin is used in many industrial applications principally in the microelectronic field to protect integrated circuits. However, these components are subject to various environments such as moisture and thermal fluctuations during packaging. Consequently, mechanical, physical and chemical properties of the resin can be affected. For an epoxy resin composite designed for a future application, an evaluation of the relevant properties was carried out using a dynamic mechanical analyzer and a thermogravimetric analysis (TGA) instrument. The surface morphology was investigated using scanning electron microscopy to examine the impact of post-cured treatment through evolution of the rigidity and of the glass transition temperature. Subsequently, a temperature classification was proposed to define the temperature limit for safe use of the material. Finally, temperature degradation was observed and confirmed by TGA tests. Results from all of these analyses bring understanding to the phenomenon of thermal degradation and its influence on the stability of the epoxy resin composite.

  13. Influence of a cobalt-chromium metal framework on surface roughness and Knoop hardness of visible light-polymerized acrylic resins Influência de estrutura metálica de cobalto-cromo na rugosidade e dureza Knoop superficiais de resinas acrílicas polimerizadas por luz visível

    Directory of Open Access Journals (Sweden)

    Joane Augusto de Souza Júnior

    2006-06-01

    Full Text Available Although visible light-polymerized acrylic resins have been used in removable partial dentures, it is not clear whether the presence of a metal framework could interfere with their polymerization, by possibly reflecting the light and affecting important properties, such as roughness and hardness, which would consequently increase biofilm accumulation. The aim of this study was to compare the roughness and Knoop hardness of a visible light-polymerized acrylic resin and to compare these values to those of water-bath- and microwave-polymerized resins, in the presence of a metal framework. Thirty-six specimens measuring 30.0 x 4.0 ± 0.5 mm of a microwave- (Onda Cryl, a visible light- (Triad and a water-bath-polymerized (Clássico (control acrylic resins containing a cobalt-chromium metal bar were prepared. After processing, specimens were ground with 360 to 1000-grit abrasive papers in a polishing machine, followed by polishing with cloths and 1-µm diamond particle suspension. Roughness was evaluated using a profilometer (Surfcorder SE 1700 and Knoop hardness (Kg/mm² was assayed using a microhardness tester (Shimadzu HMV 2000 at distances of 50, 100, 200, 400 and 800 µm from the metal bar. Roughness and Knoop hardness means were submitted to two-way ANOVA and compared by Tukey and Kruskal Wallis tests at a 5% significance level Statistically significant differences were found (p0.05. Within the limitations of this in vitro study, it was concluded that the presence of metal did not influence roughness and hardness values of any of the tested acrylic resins.Resinas acrílicas polimerizadas por luz visível têm sido indicadas para a confecção de próteses parciais removíveis. Entretanto, não há estudos determinando se a presença de estrutura metálica interfere ou não na polimerização, considerando que essa estrutura pode refletir a luz e afetar propriedades como rugosidade e dureza e, consequentemente, facilitar o acúmulo de biofilme

  14. Adsorption of Zinc and Cyanide from Cyanide Effluents on Anionic Ion-exchange Resin

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ya-li; FANG Tao; YU Xian-jin

    2013-01-01

    The adsorption of zinc and cyanide from cyanide effluents onto strong and weak basic anion exchange resins was studied in a batch adsorption system.Factors influencing the adsorption rates such as resin selection,resin amounts,contact time and temperature were studied and scanning electron microscopy-energy disperse spectroscopy(SEM-EDS) was used in the analysis.The present study shows that the adsorption capacity of resin 201 ×7 is better than that of resin 301.The adsorption process was relatively fast and came to equilibrium after 60 min.The kinetic data were analyzed with three models and the pseudo-second-order kinetic model was found to agree with the experimental data well.The equilibrium data could also be described well by Langmuir isotherm model.Thermodynamic parameters such as enthalpy change(△H0),free energy change(△G0) and entropy change(△S0) were calculated and the adsorption process was spontaneous and endothermic.

  15. Sorption Efficiency of a New Sorbent towards Cadmium(II: Methylphosphonic Acid Grafted Polystyrene Resin

    Directory of Open Access Journals (Sweden)

    Nacer Ferrah

    2013-01-01

    Full Text Available A new chelating polymeric sorbent has been developed using polystyrene resin grafted with phosphonic acid. After characterization by FTIR and elementary analysis, the new resin has been investigated in liquid-solid extraction of cadmium(II. The results indicated that phosphonic resin could adsorb Cd(II ion effectively from aqueous solution. The adsorption was strongly dependent on the pH of the medium and the optimum pH value level for better sorption was between 3.2 and 5.2. The influence of other analytical parameters including contact time, amount of resin, metal ion concentration, and the presence of some electrolytes was investigated. The maximum uptake capacity of Cd(II ions was 37,9 mg·g−1 grafted resin at ambient temperature, at an initial pH value of 5.0. The overall adsorption process was best described by pseudo second-order kinetic. When Freundlich and Langmuir isotherms were tested, the latter had a better fit with the experimental data. Furthermore, more than 92% of Cd(II could be eluted by using 1.0 mol·L−1 HCl in one cycle.

  16. The effect of preheating and opacity on the sorption and solubility of a composite resin.

    Science.gov (United States)

    Castro, Fabrício Luscino Alves de; Pazinatto, Flávia Bittencourt; de Lima, Érick; Cesar, Paulo Francisco; Reges, Rogério Vieira

    2016-01-01

    This study evaluated the influence of material opacity and preheating on the sorption and solubility of a composite resin material. A commercially available composite resin and an 8 × 2-mm circular metallic matrix were used to fabricate a total of 60 specimens in 6 shades, of which 3 had conventional opacity (CA2, CA3, and CA3.5) and 3 were opaque (OA2, OA3, and OA3.5). Specimens were prepared at a room temperature of 25°C or preheated to 60°C (n = 5 per shade at each temperature). The specimens were weighed 3 times: M1, dried for 24 hours at 37°C; M2, stored for 7 days in 75% ethanol at 37°C; and M3, dried for an additional 24 hours at 37°C. The weights were used to calculate the sorption and solubility of the composite resin and were analyzed using 2-way analysis of variance and Tukey tests (α = 5%). Composite resin specimens heated at 60°C yielded lower values of sorption and solubility than did specimens prepared at 25°C (P composite shades were found to be similar (P > 0.05), except for shade CA2, which presented a greater mean solubility value than OA2 (P = 0.004). Therefore, preheating was beneficial, as it lowered both the sorption and solubility of the evaluated composite resin, but opacity had little effect on these properties.

  17. Adsorption behavior of ytterbium (Ⅲ) on gel-type weak acid resin

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zhanwang; XIONG Chunhua

    2011-01-01

    The adsorption and desorption behaviors of Yb(Ⅲ) on gel-type weak acid resin (110) were investigated. The influence of operational conditions such as contact time, initial concentration of Yb(Ⅲ), initial pH of solution and temperature on the adsorption of Yb(Ⅲ) were also examined. The results showed that the optimal adsorption condition of 110 resin for Yb(Ⅲ) was achieved at pH=5.5 in HAc-NaAc medium. The maximum uptake capacity of Yb(ⅢI) was 265.8 mg/g at 298 K. Yb(Ⅲ) could be eluted by using 3.0 mol/L HCI solution and the 110 resin could be regenerated and reused. The adsorption of Yb(Ⅲ) followed the Langmuir isotherm, and the correlation coefficients were evaluated. Various thermodynamic parameters such as standard enthalpy change (△H), standard entropy change (△S) and standard free energy change (△G) were evaluated. The adsorption of Yb(Ⅲ) on the 110 resin was found to be endothermic in nature. Thomas model was successfully applied to experimental data to predict the breakthrough curves and to determine the characteristics parameters of the column useful for process design. And the resin sample both before and after adsorption was described by IR spectroscopy.

  18. Adsorption behavior and mechanism of cadmium on strong-acid cation exchange resin

    Institute of Scientific and Technical Information of China (English)

    WANG Fei; WANG Lian-jun; LI Jian-sheng; SUN Xiu-yun; HAN Wei-qing

    2009-01-01

    The adsorption behavior of Cd2+ on 001×7 strong-acid cation exchange resin was studied with the static adsorption method. The adsorption process was analyzed from thermodynamics and kinetics aspects. The influences of experimental parameters such as pH, temperature, initial concentration and adsorption rate were investigated. The experimental results show that in the studied concentration range, 001×7 resin has a good sorption ability for Cd2+, and the equilibrium adsorption data fit to Freundlich isotherms. The adsorption is an exothermic process which runs spontaneously. Kinetic analysis shows that the adsorption rate is mainly governed by liquid film diffusion. The best adsorption condition is pH 4-5. The saturated resin can be regenerated by 3 mol/L nitric acid, and the desorption efficiency is over 98%. The maximal static saturated adsorption capacity is 355 mg/g (wet resin) at 293 K. The adsorption mechanism of Cd2+ on 001×7 resin was discussed based on IR spectra.

  19. Chemical Stablilisation of Sand : Part VIII Furan Resins as Dune and Coastal Sand Stabiliser

    Directory of Open Access Journals (Sweden)

    Ram Gopal

    1990-04-01

    Full Text Available Studies on furan resin as dune sand stabiliser are presented. Influence of acid catalysts, viz. phenol disulphonic acid, sulphuric acid, hydrochloric acid and phosphoric acid and other catalysts, viz. trichlorotoluene and benzoyl chloride along with promoters, zinc chloride and ferric chloride, on the strength of stabilised furan resin-sand specimens has been discussed. Optimisation studies on resin content, catalysts and promoters and curing conditions have revealed that maximum strength of 260 kg/cm/sup 2/ of the standard specimens made by compaction of coastal sand using furan resins (10 per cent, sulphuric acid (9N, 30 per cent and a curing time of 2 hr at 40 degree Centigrade is higher than the 170 kg/cm/sup 2/ of specimens made of Rajasthan desert sand. Sandy patches stabilised by seepage technique recorded a maximum strength of 125 kg/cm/sup 2/. Physico-chemical characteristics of this system and effect of environment on stabilised specimens have also been studied and field trials conducted successfully. This resin-catalyst system would be extremely useful in humid and saline field (coastal areas for different military applications.

  20. Synthesis of antibacterial methacrylate monomer derived from thiazole and its application in dental resin.

    Science.gov (United States)

    Luo, Weixun; Huang, Qiting; Liu, Fang; Lin, Zhengmei; He, Jingwei

    2015-09-01

    A non-quaternary ammonium antibacterial methacrylate monomer MEMT derived from thiazole was synthesized and applied into UDMA/TEGDMA dental resin with a series of mass fraction (10 wt%, 20 wt%, and 30 wt%). Double bond conversion, polymerization shrinkage, water sorption, solubility, flexural strength and modulus, and antibacterial activity of MEMT containing resin formulations were investigated with UDMA/TEGDMA as control resin. The results showed that MEMT containing dental resin had higher double bond conversion than control resin. Compared with control polymer, all MEMT containing polymer had comparable or lower polymerization shrinkage, water sorption and solubility, except for the polymer with 30 wt% of MEMT which had higher water sorption and solubility than control polymer. The MEMT had no influence on flexural strength and modulus before water immersion, but all MEMT containing polymers had lower flexural strength and modulus than control polymer after water immersion. The MEMT could endow dental polymer with obvious antibacterial activity by immobilizing MEMT into the polymeric network.

  1. Diphonix{trademark} Resin: A review of its properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chiarizia, R.; Horwitz, E.P. [Argonne National Lab., IL (United States); Alexandratos, S.D. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry; Gula, M.J. [Eichrom Industies, Inc., Darien, IL (United States)

    1995-12-31

    The recently developed Diphonix{trademark} resin is a new multifunctional chelating ion exchange resin containing seminally substituted diphosphonic acid ligands chemically bonded to a styrene-based polymeric matrix. Diphonix can be regarded as a dual mechanism polymer, with a sulfonic acid cation exchange group allowing for rapid access, mostly non-specific, of ions into the polymeric network, and the diphosphonic acid group responsible for specificity (recognition) for a number of metal cations. The Diphonix resin exhibits an extraordinarily strong affinity for actinides, especially in the tetra- and hexavalent oxidation states. It has potential applications in TRU and mixed waste treatment and characterization, and in the development of new procedures for rapid actinide preconcentration and separation from environmental samples. Metal uptake studies have been extended to alkaline earth cations, to transition and post transition metal species, and to metal sorption from neutral or near neutral solutions. Also the kinetic behavior of the resin has been investigated in detail. Influence of the most commonly occurring matrix constituents (Na, Ca, Al, Fe, hydrofluoric, sulfuric, oxalic and phosphoric acids) on the uptake of actinide ions has been measured. This review paper summarizes the most important results studies on the Diphonix resin and gives an overview of the applications already in existence or under development in the fields of mixed waste treatment, actinide separation procedures, treatment of radwaste from nuclear power plants, and removal of iron from copper electrowinning solutions.

  2. Tailoring of novolac resins for photoresist applications using a two-step synthesis procedure

    Science.gov (United States)

    Baehr, Guenther; Westerwelle, Ulrich; Gruetzner, Gabi

    1997-07-01

    In this paper we report the development of novolak resins suitable for the formulation of positive and negative acting photoresists, which beneficially can be applied in micro- electronical-mechanical systems (MEMS). Based on an extensive screening program, selected properties of the novolaks have been optimized. Special emphasis has been laid on high chemical stability in strongly alkaline systems. The type of the phenolic compounds as well as the arrangement of the phenol moieties within the polymer chain has shown great influence on the resin properties and the performance of the resulting photoresists. The novolak resins have been prepared in laboratory scale and pilot scale using an optimized known two-step synthetic procedure. This procedure ensures for novolaks with reduced polydispersivities and allows the reproduction of the resin quality within a narrow tolerance interval. According to this synthetic procedure novolaks with particular arrangements of the phenolic moieties have been prepared. Novolak resins with alternating and semi-alternating structures have been shown to form a new polymeric matrix for the preparation of special positive and negative tone photoresists. These formulations meet the high requirements of electroplating processes with respect to the accuracy of the structural transformation, layer thickness and metal deposition conditions.

  3. [Classification and several mechanical properties of core composite resins].

    Science.gov (United States)

    Yamada, T; Hosoda, H; Tsurugai, T

    1990-03-01

    According to the classification proposed by Hosoda, six core resins could be divided into two categories on the basis of the elemental composition and size distribution of filler particles by SEM observation and EDX analysis. Furthermore, several mechanical properties of the resins were determined. The following facts were found: Bell Feel Core, Clearfil Core, Clearfil PhotoCore, Core Max, and Core Max II resins were classified as a semihybrid resin, and Microrest Core resin as a hybrid type resin. The elements detected in the resins by the EDX were Si, Zr, Al, Ba and La. The mechanical properties of the resins were shown to be highly stable at one day or one week after curing. The mechanical properties of the resins suggest that the subsequent crown preparation and impression taking should be postponed until the next appointment.

  4. Clinical Evaluation of Indirect Composite Resin Restorations Cemented with Different Resin Cements.

    Science.gov (United States)

    Marcondes, Maurem; Souza, Niélli; Manfroi, Fernanda Borguetti; Burnett, Luiz Henrique; Spohr, Ana Maria

    2016-01-01

    To clinically evaluate the performance of indirect composite resin restorations cemented with conventional and self-adhesive resin cements over a 12-month period. Ten patients fulfilled all the inclusion criteria. Twenty-four composite resin restorations were performed using an indirect technique and cemented with a resin cement (RelyX ARC) or a self-adhesive resin cement (RelyX U100). Two independent evaluators analyzed the restorations using modified USPHS criteria after periods of two weeks and 6 and 12 months. Statistical significance between the cements at each timepoint was evaluated with the Wilcoxon test and between timepoints with the Mann-Whitney test, both at a significance level of 5%. Fisher's exact test was used to assess the occurrence of absolute failures. No statistically significant differences were found between the groups at the same timepoint nor between groups at different timepoints. The only significant difference was found for color match for both groups after 12 months. After 12 months, indirect composite resin restorations cemented with self-adhesive resin cement performed similarly to those cemented with conventional resin cement.

  5. Imide modified epoxy matrix resins

    Science.gov (United States)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  6. Bulk-filled posterior resin restorations based on stress-decreasing resin technology

    DEFF Research Database (Denmark)

    van Dijken, Jan W.V.; Pallesen, Ulla

    2017-01-01

    This randomized study evaluated a flowable resin composite bulk-fill technique in posterior restorations and compared it intraindividually with a conventional 2-mm resin composite layering technique over a 6-yr follow-up period. Thirty-eight pairs of Class II restorations and 15 pairs of Class I...... restorations were placed in 38 adults. In all cavities a single-step self-etch adhesive (Xeno V) was applied. In the first cavity of each pair, the flowable resin composite (SDR) was placed, in bulk increments of up to 4 mm. The occlusal part was completed with a layer of nanohybrid resin composite (Ceram X...... mono). In the second cavity of each pair, the hybrid resin composite was placed in 2-mm increments. The restorations were evaluated using slightly modified US Public Health Service (USPHS) criteria at baseline and then annually for a time period of 6 yr. After 6 yr, 72 Class II restorations and 26...

  7. Thermal rearrangement of novolak resins used in microlithography

    Science.gov (United States)

    Hardy, Ricky; Zampini, Anthony; Monaghan, Michael J.; O'Leary, Michael J.; Cardin, William J.; Eugster, Timothy J.

    1995-06-01

    Changes in phenolic-formaldehyde resin properties are described in terms of thermal exposure. At high temperature, resin molecular weight, dissolution properties and chemical composition change depending on the presence or absence of monomers. Without monomer in the resin melt at 220 degree(s)C, resin molecular weight increases with a corresponding decrease in dissolution rate. In the presence of monomer, molecular weight generally decreases. Dissolution rate may fluctuate depending on the monomer mixture. Three,five- Xylenol and 2,3,5-trimethylphenol co-monomers induced the most extreme changes in resin properties with thermal treatment. Resin degradation-recombination processes suggest a classical Friedel-Craft rearrangement mechanism.

  8. Tc-99 Ion Exchange Resin Testing

    Energy Technology Data Exchange (ETDEWEB)

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  9. Fixation of metallic sulfosalicylate complexes on an anionic exchange resin; Fixation de complexes metalliques sulfosalicylate dans une resine echangeuse d'anions

    Energy Technology Data Exchange (ETDEWEB)

    Cahuzac, S. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-06-01

    Since sulfosalicylate ions have acid-base properties, sulfosalicylate complexes have an apparent stability which varies with the ph. As a result, the fixation of sulfo-salicylates on an anionic exchange resin depends on the ph of the solution in equilibrium with the resin. This research has been aimed at studying the influence of the ph on the fixation on an anionic exchange resin (Dowex 1 x 4) of sulfosalicylate anions on the one hand, and of metallic sulfosalicylate complexes on the other hand. In the first part of this work, a determination has been made, by frontal analysis of the distribution of sulfosalicylate ions in the resin according to the total sulfosalicylate I concentration in the aqueous solution in equilibrium with the resin. The exchange constants of these ions between the resin and the solution have been calculated. In the second part, a study has been made of the fixation of anionic sulfosalicylate complexes of Fe(III), Al(III), Cr(III), Cu(II), Ni(II), Co(II), Zn(II), Mn(II), Cd(II), Fe(II) and UO{sub 2}{sup 2+}. By measuring the partition coefficients of these different elements between the resin and the solution it has been possible to give interpretation for the modes of fixation of the metallic ions, and to calculate their exchange constant between the resin and the solution. The relationship has been established for each metallic element studied, between its partition coefficient, the ph and the total concentration of the complexing agent in solution. Such a relationship makes it possible to predict, for given conditions, the nature of the species in solution and in the resin, as well as the partition coefficient of a metallic, element. Finally, in the third part of the work, use has been made of results obtained previously, to carry out some separations (Ni{sup 2+} - Co{sup 2+}; Ni{sup 2+} - Co{sup 2+} - Cu{sup 2+}; UO{sub 2}{sup 2+} - Fe{sup 3+}; UO{sub 2}{sup 2+} - Cr{sup 3+}; UO{sub 2}{sup 2+} - Cu{sup 2+}; UO{sub 2}{sup 2+} - Ni{sup 2

  10. Thermal cycling effects on adhesion of resin-bovine enamel junction among different composite resins.

    Science.gov (United States)

    Chen, Wen-Cheng; Ko, Chia-Ling; Wu, Hui-Yu; Lai, Pei-Ling; Shih, Chi-Jen

    2014-10-01

    Thermal cycling is used to mimic the changes in oral cavity temperature experienced by composite resins when used clinically. The purpose of this study is to assess the thermal cycling effects of in-house produced composite resin on bonding strength. The dicalcium phosphate anhydrous filler surfaces are modified using nanocrystals and silanization (w/NP/Si). The resin is compared with commercially available composite resins Filtek Z250, Z350, and glass ionomer restorative material GIC Fuji-II LC (control). Different composite resins were filled into the dental enamel of bovine teeth. The bond force and resin-enamel junction graphical structures of the samples were determined after thermal cycling between 5 and 55°C in deionized water for 600 cycles. After thermal cycling, the w/NP/Si 30wt%, 50wt% and Filtek Z250, Z350 groups showed higher shear forces than glass ionomer GIC, and w/NP/Si 50wt% had the highest shear force. Through SEM observations, more of the fillings with w/NP/Si 30wt% and w/NP/Si 50wt% groups flowed into the enamel tubule, forming closed tubules with the composite resins. The push-out force is proportional to the resin flow depth and uniformity. The push-out tubule pore and resin shear pattern is the most uniform and consistent in the w/NP/Si 50wt% group. Accordingly, this developed composite resin maintains great mechanical properties after thermal cycling. Thus, it has the potential to be used in a clinical setting when restoring non-carious cervical lesions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. GC-MS analysis of penta- and tetra-cyclic triterpenes from resins of Pistacia species. Part II. Pistacia terebinthus var. Chia.

    Science.gov (United States)

    Assimopoulou, A N; Papageorgiou, V P

    2005-10-01

    Pistacia species contain oleoresins with bioactive triterpenes. In this study triterpenes, including minor components, were identified and quantified in both neutral and acidic fractions of Pistacia terebinthus var. Chia resin, grown exclusively in Chios island (Greece), collected traditionally, as well as using stimulating agents (liquid collection). It was proved that these two resin samples were composed of several different minor triterpenes, while major constituents were similar but in different proportions. Compounds that differentiated two resin samples of P. lentiscus and P. terebinthus var. Chia, both traditionally collected, were detected, in order to identify the nature of resins present in archaeological materials. In the traditionally collected resin, 37 triterpenes were identified, 12 in the acidic and 25 in the neutral fraction. In the liquid collection resin 10 compounds were identified in the acidic and 23 in the neutral fraction, while 16 compounds were not contained in the traditionally collected resin. The main triterpenes in both resin samples collected traditionally and using stimulating agents were: isomasticadienonic acid (23.6 and 26.3% w[sol ]w of the triterpenic fraction, respectively), 28-norolean-17-en-3-one (16.3 and 17.5% w[sol ]w of the triterpenic fraction, respectively) and masticadienonic acid (5.8 and 6.0% w[sol ]w of the triterpenic fraction). In this study the qualitative and quantitative composition of triterpenes was compared in the Pistacia lentiscus and P. terebinthus var. Chia resin samples collected with the traditional and new liquid techniques, and also triterpenes in resins of P. terebinthus obtained by the traditional technique and using stimulating agents. The aim of the study was also to examine whether the collection technique influenced the triterpenes contained in P. terebinthus var. Chia resin samples.

  12. Synthesis and Demulsibility of the Terpolymer Demulsifier of Acryl Resin

    Institute of Scientific and Technical Information of China (English)

    KANG,Wan-Li; MENG,Ling-Wei; ZHANG,Hong-Yan; LIU,Shu-Ren

    2008-01-01

    Terpolymer demulsifier of acryl resin has been synthesized through solution polymerization with water as a dissolvent,potassium persulfate as an initiator and the monomers of methyl methacrylate,butyl acrylate and acrylic acid as starting materials.The effects of the reaction temperature,dripping time,the amount of monomers and initiator on the dehydration rate of the demulsifier were investigated by an orthogonal experiment.It shows that the stronger influence on the dehydration rate among six factors is reaction temperature,dripping time,and amount of catalyst,while monomer has weak influence.The performance of the demulsifier was evaluated under different demulsification time,temperatures and concentrations of the screened demulsifiers.The result shows that the dehydration rate of the demulsifier can reach over 67%,which is better than that by the emulsion polymerization way.

  13. Clinical evaluation of a flowable resin composite and flowable compomer for preventive resin restorations.

    Science.gov (United States)

    Qin, Man; Liu, HongSheng

    2005-01-01

    This clinical study evaluated the retention and caries protection of a flowable resin composite (Flow Line) and a flowable compomer (Dyract Flow) used in preventive resin restorations as compared to the conventional preventive resin technique which uses a resin composite (Brilliant) and a sealant (Concise). This study observed 205 permanent molars with small carious cavities less than 1.5 mm in width, which were obtained from 165 children aged 7 to 15 years. Flowable resin composite was used to treat 75 teeth, and 71 teeth were treated with flowable compomer in both cavities and caries-free fissures. For the control group, 59 teeth were treated with resin composite in cavities and sealant in caries-free fissures. The teeth were evaluated at 3, 6, 12, 18 and 24-month intervals. After three months, all 205 treated teeth were completely intact. After six months, 66 of the 71 teeth treated with flowable resin composite and 65 of the 70 teeth treated with flowable compomer were complete, compared to 57 of the 58 teeth treated with the conventional preventive resin technique. After 12 months, 60 of the 67 teeth treated with flowable resin composite and 61 of the 67 teeth treated with flowable compomer were complete, compared to 51 of the 55 teeth treated with the conventional preventive resin technique. After 18 months, 53 of the 61 teeth treated with flowable resin composite and 54 of the 62 teeth treated with flowable compomer were complete, compared to 47 of the 53 teeth treated with the conventional preventive resin technique. After 24 months, 49 of the 58 teeth treated with flowable resin composite and 45 of the 57 teeth treated with flowable compomer were complete, compared to 42 of the 52 teeth treated with the conventional preventive resin technique. There were no statistically significant differences in retention rates among all groups after 3, 6, 12, 18 or 24-months (p>0.05). One tooth treated with flowable resin composite and one tooth treated with flowable

  14. Ponderosa pine resin defenses and growth: metrics matter.

    Science.gov (United States)

    Hood, Sharon; Sala, Anna

    2015-11-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree's ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine (Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow

  15. Biocompatibility of polymethylmethacrylate resins used in dentistry.

    Science.gov (United States)

    Gautam, Rupali; Singh, Raghuwar D; Sharma, Vinod P; Siddhartha, Ramashanker; Chand, Pooran; Kumar, Rakesh

    2012-07-01

    Biocompatibility or tissue compatibility describes the ability of a material to perform with an appropriate host response when applied as intended. Poly-methylmethacrylate (PMMA) based resins are most widely used resins in dentistry, especially in fabrication of dentures and orthodontic appliances. They are considered cytotoxic on account of leaching of various potential toxic substances, most common being residual monomer. Various in vitro and in vivo experiments and cell based studies conducted on acrylic based resins or their leached components have shown them to have cytotoxic effects. They can cause mucosal irritation and tissue sensitization. These studies are not only important to evaluate the long term clinical effect of these materials, but also help in further development of alternate resins. This article reviews information from scientific full articles, reviews, or abstracts published in dental literature, associated with biocompatibility of PMMA resins and it is leached out components. Published materials were searched in dental literature using general and specialist databases, like the PubMED database.

  16. Comparison of adsorption equilibrium of fructose, glucose and sucrose on potassium gel-type and macroporous sodium ion-exchange resins.

    Science.gov (United States)

    Nobre, C; Santos, M J; Dominguez, A; Torres, D; Rocha, O; Peres, A M; Rocha, I; Ferreira, E C; Teixeira, J A; Rodrigues, L R

    2009-11-03

    Adsorption equilibrium of fructose, glucose and sucrose was evaluated on sulfonated poly(styrene-co-divinylbenzene) cation-exchange resins. Two types of resins were used: potassium (K+) gel-type and sodium (Na+) macroporous resins. Influence of the cation and effect of the resin structure on adsorption were studied. The adsorption isotherms were determined by the static method in batch mode for mono-component and multi-component sugar mixtures, at 25 and 40 degrees C, in a range of concentrations between 5 and 250 g L(-1). All adsorption isotherms were fitted by a linear model in this range of concentrations. Sugars were adsorbed in both resins by the following order: fructose > glucose > sucrose. Sucrose was more adsorbed in the Na+ macroporous resin, glucose was identically adsorbed, and fructose was more adsorbed in the K+ gel-type resin. Data obtained from the adsorption of multi-component mixtures as compared to the mono-component ones showed a competitive effect on the adsorption at 25 degrees C, and a synergetic effect at 40 degrees C. The temperature increase conducted to a decrease on the adsorption capacity for mono-component sugar mixtures, and to an increase for the multi-component mixtures. Based on the selectivity results, K+ gel-type resin seems to be the best choice for the separation of fructose, glucose and sucrose, at 25 degrees C.

  17. Effect of graphene oxide sheet size on the curing kinetics and thermal stability of epoxy resins

    Science.gov (United States)

    Wang, Xiao; Jin, Jie; Song, Mo; Lin, Yue

    2016-10-01

    This work revealed the influences of graphene oxide (GO) sheet size on the curing kinetics and thermal stability of epoxy resins. A series of GO/epoxy nanocomposites were prepared by the incorporation of three different sized GO sheets, namely GO-1, GO-2 and GO-3, the average size of which was 10.79 μm, 1.72 μm and 0.70 μm, respectively. The morphologies of the nanocomposites were observed by field emission gun scanning electron microscope. The dispersion quality of each sized GO was comparable in the epoxy matrix. The curing kinetics was investigated by means of differential scanning calorimetry and analyzed based on kinetics model. Addition of a small amount of GO (0.1 wt%) exhibited strong catalytic effect on the curing reaction of epoxy resin. The activation energy was reduced by 18.9%, 28.8% and 14.6% with addition of GO-1, GO-2 and GO-3, respectively. GO-2 with medium size (1.72 μm) showed the most effective catalysis on the cure. The thermal stability of the cured resins was evaluated based on thermogravimetric analysis. GO/epoxy nanocomposites showed improved thermal stability in the range of 420 °C-500 °C, compared with the pure resin. A ˜ 4% more residue was obtained in each of the incorporated system. The variations of GO sheet size did not influence the enhancement effect on the thermal stability.

  18. Work of adhesion of resin on treated lithia disilicate-based ceramic.

    Science.gov (United States)

    Della Bona, Alvaro; Shen, Chiayi; Anusavice, Kenneth J

    2004-05-01

    This study is to test the hypothesis that chemical etching and silane coating of a ceramic surface will influence the work of adhesion (WA) of adhesive resin to dental ceramic. A hot-pressed lithia disilicate-based ceramic was used as a model material to investigate the influence of probing media and surface treatments on WA using a dynamic contact angle analyzer. Eighty ceramic specimens were randomly divided into eight experimental groups and treated as follows: (1 and 3) as polished; (2 and 4) etched with 9.5% hydrofluoric acid (HF) for 1 min; (5) etched with 4% acidulated phosphate fluoride (APF) for 2 min; (6) silane coated; (7) etched with HF for 1 min and silane coated; (8) etched with APF for 2 min and silane coated. Advancing and receding contact angles (theta(a) and theta(r)) were measured using high purity water (gamma = 72.6 mN/m) for groups 1 and 2, and a liquid resin (gamma = 39.7) for groups 3-8 as probing liquids. The liquid resin medium yielded a lower WA than water. Silanization produced a significantly lower WA (p < 0.001) than non-silanated surfaces. Etching alone consistently yielded a greater WA for all surface treatments (p < 0.001). The silanated ceramic surface exhibited a lower surface energy and did not enhance bonding to the liquid resin by work of adhesion.

  19. 反应物结构对酚醛凝胶及其气凝胶的影响%Influence of Reactants Structure on Phenolic Resins Gel and Aerogel

    Institute of Scientific and Technical Information of China (English)

    林治峰; 郑剑; 罗运军; 李国平

    2011-01-01

    To investigate the influence of reactant structure on gel process and aerogel structure,aerogels were prepared with different reaction systems.The influence of reactant structure on gel process was investigated,and the structure of aerogels was also investigated by means of scanning electron microscope(SEM) and surface area and pore size analyzer.The results show that reactivity and steric effect of reactants affect the gelation time together.Gel can not be formed if reactants were chosen wrongly.Aerogel structure is different with the change of reaction system.The surface area of 5-methyl furfural resorcinol(MR-F) aerogel is 25% bigger than that of resorcinol furfural(RF) aerogel,and the micropore surface area and pore volume of MR-F aerogel are 3.6 times and 9.6 times bigger than those of RF aerogel respectively.%为研究反应物酚与醛的结构对酚醛凝胶过程及其气凝胶结构的影响,采用不同的酚与醛制备出了多种气凝胶。研究了反应物结构对凝胶过程的影响,并通过扫描电镜和孔径分析仪等仪器详细研究了气凝胶的结构。结果表明,酚醛反应的凝胶时间受反应物的活性及位阻效应共同影响,反应体系选择不当可能导致无法凝胶。采用不同的酚-醛体系,所得气凝胶结构也不同。5-甲基间苯二酚-糠醛(MR-F)气凝胶较间苯二酚-糠醛(RF)气凝胶的比表面积增加25%,而微孔比表面积和体积分别增加了3.6倍和9.6倍。

  20. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Science.gov (United States)

    2010-07-01

    ... thermosetting resins subcategory. 414.50 Section 414.50 Protection of Environment ENVIRONMENTAL PROTECTION... Thermosetting Resins § 414.50 Applicability; description of the thermosetting resins subcategory. The provisions... the products classified under SIC 28214 thermosetting resins including those resins and resin...