WorldWideScience

Sample records for ion-conducting polymer films

  1. Lithium ion conducting solid polymer blend electrolyte based on bio ...

    Indian Academy of Sciences (India)

    Lithium ion conducting polymer blend electrolyte films based on poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP) with different Mwt% of lithium nitrate (LiNO3) salt, using a solution cast technique, have been prepared. The polymer blend electrolyte has been characterized by XRD, FTIR, DSC and impedance ...

  2. Synthesis and ion conduction mechanism on hot-pressed sodium ion conducting nano composite polymer electrolytes

    Directory of Open Access Journals (Sweden)

    Angesh Chandra

    2016-05-01

    Full Text Available Synthesis and ion conduction studies on SiO2 dispersed hot-pressed sodium ion conducting nano-composite polymer electrolytes (100 − x[70PEO:30NaHCO3] + xSiO2, where x is in wt.%, are reported. The nano-composite polymer electrolytes (NCPEs are cast by the dispersion of nano-filler SiO2 using a hot-press method in place of the traditional solution-cast technique. The effect of nano-filler SiO2 is characterized with the help of some basic ion transport parameters viz. ionic conductivity, ionic mobility, mobile ion concentration and activation energy measurements. The material characterization and polymer–salt/SiO2 complexation are reported with the help of XRD, FTIR, SEM, DSC and TGA studies. Based on SPE host and NCPE OCC, a solid state polymeric battery fabrication and cell-potential discharge characteristics are also reported at different load conditions.

  3. Lithium ion conducting solid polymer blend electrolyte based on bio ...

    Indian Academy of Sciences (India)

    properties within the polymer compositions. Over 30% of commercial polymers used worldwide are polymer blends. (Utracki 1990). The polymer blends are useful in a vari- ety of high performance applications such as drug delivery, tissue engineering and permeable membranes for separation technology (Todd et al 2005).

  4. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  5. Lithium ion conducting solid polymer blend electrolyte based on bio ...

    Indian Academy of Sciences (India)

    −4 Scm−1 has been observed for the composition of 70 PVA:30 PVP:25 Mwt% of LiNO3 with low activa- .... XRD pattern of (a) 70 PVA:30 PVP, (b) 70 PVA: .... charge carriers and also to the increase in the amorphous nature of the polymer electrolyte which reduces the energy barrier there by facilitating the ion trans- port.

  6. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    Science.gov (United States)

    2008-01-20

    difluoroalkoxyborane compounds were applied as additives to solid polymeric electrolytes comprising PEO as polymer matrix and 10 mol. % of lithium salt. In all...compounds and on composite electrolytes with supramolecular anion receptors. 15. SUBJECT TERMS EOARD, Power, Electrochemistry...BF3 33 II. COMPOSITE ELECTROLYTES WITH SUPRAMOLECULAR ANION RECEPTORS 43 II.1. Introduction 39 II.2 Experimental 44 II.3 Results and discussion

  7. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    Science.gov (United States)

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    (+)) and other ions can also be transported. If we can optimize the crystal structures, this could offer further improvements in terms of both conductivity and the working temperature range. Another useful characteristic of PCP/MOFs is their wide application to materials fabrication. We can easily prepare heterodomain crystal systems, such as core-shell or solid solution. Other anisotropic morphologies (thin film, nanocrystal, nanorod, etc.,) are also possible, with retention of the ion conductivity. The flexible nature also lets us design morphology-dependent ion-conduction behaviors that we cannot observe in the bulk state. We propose (1) multivalent ion and anion conductions with the aid of redox activity and defects in structures, (2) control of ion transport behavior by applying external stimuli, (3) anomalous conductivity at the hetero-solid-solid interface, and (4) unidirectional ion transport as in the ion channels in membrane proteins. In the future, scientists may use coordination polymers not only to achieve higher conductivity but also to control ion behavior, which will open new avenues in solid-state ionics.

  8. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  9. Ion-conductivity of thin film Li-Borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abouzari, M.R.S.

    2007-12-17

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi{sub 2}O.(1-y)B{sub 2}O{sub 3} with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10{sup -10} {omega}{sup -1}cm{sup -1} and 2.5 x 10{sup -6} {omega}{sup -1}cm{sup -1} when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but

  10. Ion-conductivity of thin film Li-Borate glasses

    International Nuclear Information System (INIS)

    Abouzari, M.R.S.

    2007-01-01

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi 2 O.(1-y)B 2 O 3 with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10 -10 Ω -1 cm -1 and 2.5 x 10 -6 Ω -1 cm -1 when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but we have also found that the depression arises from the nature of ionic motions. The model

  11. Investigation of Electrochemical Studies of Magnesium Ion Conducting Poly(vinyl alcohol)-Poly(vinyl pyrrolidone) Based Blend Polymers.

    Science.gov (United States)

    Jeyabanu, K; Siva, V; Nallamuthu, N; Selvanayagam, S; Bahadur, S Asath; Manikandan, A

    2018-02-01

    Polymer blend electrolytes based on magnesium ion conducting PVA-PVP-MgCl2 polymer were prepared at different compositions by solution casting techniques. The prepared films were characterised by various techniques such as XRD and FTIR. Amorphous nature and structural coordination of polymer electrolyte were confirmed by X-ray diffraction and Fourier transform infrared spectroscopy studies. The ionic conductivity of the prepared polymer electrolytes were analysed through ac impedance spectroscopy. The highest conductivity was found to be in the order of ~10-6 Scm-1 at an ambient temperature for the composition of 50PVA:50PVP:5 wt% MgCl2. Conductivity versus temperature plot was found to follow an Arrhenius nature. The dielectric behaviour and ionic transport properties of the polymer electrolytes were also analyzed.

  12. Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte

    Science.gov (United States)

    Arya, Anil; Sharma, A. L.

    2018-04-01

    In this paper, we have studied the structural, microstructural, electrical, dielectric properties and ion dynamics of a sodium-ion-conducting solid polymer electrolyte film comprising PEO8-NaPF6+  x wt. % succinonitrile. The structural and surface morphology properties have been investigated, respectively using x-ray diffraction and field emission scanning electron microscopy. The complex formation was examined using Fourier transform infrared spectroscopy, and the fraction of free anions/ion pairs obtained via deconvolution. The complex dielectric permittivity and loss tangent has been analyzed across the whole frequency window, and enables us to estimate the DC conductivity, dielectric strength, double layer capacitance and relaxation time. The presence of relaxing dipoles was determined by the addition of succinonitrile (wt./wt.) and the peak shift towards high frequency indicates the decrease of relaxation time. Further, relations among various relaxation times ({{τ }{{\\varepsilon \\prime}}}>~{{τ }tanδ }>{{τ }z}>{{τ }m} ) have been elucidated. The complex conductivity has been examined across the whole frequency window; it obeys the Universal Power Law, and displays strong dependency on succinonitrile content. The sigma representation ({{σ }\\prime\\prime}~versus~{{σ }\\prime} ) was introduced in order to explore the ion dynamics by highlighting the dispersion region in the Cole–Cole plot ({{\\varepsilon }\\prime\\prime}~versus~{{\\varepsilon }\\prime} ) in the lower frequency window; increase in the semicircle radius indicates a decrease of relaxation time. This observation is accompanied by enhancement in ionic conductivity and faster ion transport. A convincing, logical scheme to justify the experimental data has been proposed.

  13. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  14. Anisotropic Lithium Ion Conductivity in Single-Ion Diblock Copolymer Electrolyte Thin Films

    NARCIS (Netherlands)

    Aissou, Karim; Mumtaz, Muhammad; Usluer, Özlem; Pécastaings, Gilles; Portale, Giuseppe; Fleury, Guillaume; Cloutet, Eric; Hadziioannou, Georges

    Well-defined single-ion diblock copolymers consisting of a Li-ion conductive poly(styrenesulfonyllithium(trifluoromethylsulfonyl)imide) (PSLiTFSI) block associated with a glassy polystyrene (PS) block have been synthesized via reversible addition fragmentation chain transfer polymerization.

  15. Ion-conductive polymer membranes containing 1-butyl-3-methylimidazolium trifluoromethanesulfonate and 1-ethylimidazolium trifluoromethanesulfonate

    Czech Academy of Sciences Publication Activity Database

    Schauer, Jan; Sikora, Antonín; Plíšková, M.; Mališ, J.; Mazúr, P.; Paidar, M.; Bouzek, K.

    2011-01-01

    Roč. 367, 1/2 (2011), s. 332-339 ISSN 0376-7388 R&D Projects: GA ČR GA203/08/0465 Institutional research plan: CEZ:AV0Z40500505 Keywords : 1-butyl-3-methylimidazolium trifluoromethanesulfonate * 1-ethylmethylimidazolium trifluoromethanesulfonate * polymer electrolyte membrane Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.850, year: 2011

  16. Single-ion conducting polymer-silicate nanocomposite electrolytes for lithium battery applications

    International Nuclear Information System (INIS)

    Kurian, Mary; Galvin, Mary E.; Trapa, Patrick E.; Sadoway, Donald R.; Mayes, Anne M.

    2005-01-01

    Solid-state polymer-silicate nanocomposite electrolytes based on an amorphous polymer poly[(oxyethylene) 8 methacrylate], POEM, and lithium montmorillonite clay were fabricated and characterized to investigate the feasibility of their use as 'salt-free' electrolytes in lithium polymer batteries. X-ray scattering and transmission electron microscopy studies indicate the formation of an intercalated morphology in the nanocomposites due to favorable interactions between the polymer matrix and the clay. The morphology of the nanocomposite is intricately linked to the amount of silicate in the system. At low clay contents, dynamic rheological testing verifies that silicate incorporation enhances the mechanical properties of POEM, while impedance spectroscopy shows an improvement in electrical properties. With clay content ≥15 wt.%, mechanical properties are further improved but the formation of an apparent superlattice structure correlates with a loss in the electrical properties of the nanocomposite. The use of suitably modified clays in nanocomposites with high clay contents eliminates this superstructure formation, yielding materials with enhanced performance

  17. Network type sp3 boron-based single-ion conducting polymer electrolytes for lithium ion batteries

    Science.gov (United States)

    Deng, Kuirong; Wang, Shuanjin; Ren, Shan; Han, Dongmei; Xiao, Min; Meng, Yuezhong

    2017-08-01

    Electrolytes play a vital role in modulating lithium ion battery performance. An outstanding electrolyte should possess both high ionic conductivity and unity lithium ion transference number. Here, we present a facile method to fabricate a network type sp3 boron-based single-ion conducting polymer electrolyte (SIPE) with high ionic conductivity and lithium ion transference number approaching unity. The SIPE was synthesized by coupling of lithium bis(allylmalonato)borate (LiBAMB) and pentaerythritol tetrakis(2-mercaptoacetate) (PETMP) via one-step photoinitiated in situ thiol-ene click reaction in plasticizers. Influence of kinds and content of plasticizers was investigated and the optimized electrolytes show both outstanding ionic conductivity (1.47 × 10-3 S cm-1 at 25 °C) and high lithium transference number of 0.89. This ionic conductivity is among the highest ionic conductivity exhibited by SIPEs reported to date. Its electrochemical stability window is up to 5.2 V. More importantly, Li/LiFePO4 cells with the prepared single-ion conducting electrolytes as the electrolyte as well as the separator display highly reversible capacity and excellent rate capacity under room temperature. It also demonstrates excellent long-term stability and reliability as it maintains capacity of 124 mA h g-1 at 1 C rate even after 500 cycles without obvious decay.

  18. Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte.

    Science.gov (United States)

    Ahn, Junsung; Jang, Ho Won; Ji, Hoil; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2018-04-11

    Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd 0.2 Ce 0.8 O 1.9-δ (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.

  19. Sol-gel preparation of ion-conducting ceramics for use in thin films

    International Nuclear Information System (INIS)

    Steinhauser, M.I.

    1992-12-01

    A metal alkoxide sol-gel solution suitable for depositing a thin film of La 0.6 Sr 0.4 CoO 3 on a porous substrate has been developed; such films should be useful in fuel cell electrode and oxygen separation membrane manufacture. Crack-free films have been deposited on both dense and porous substrates by dip-coating and spin-coating techniques followed by a heat treatment in air. Fourier transform infrared spectroscopy was used to determine the chemical structure of metal alkoxide solution system. X-ray diffraction was used to determine crystalline phases formed at various temperatures, while scanning electron microscopy was used to determine physical characteristics of the films. Surface coatings have been successfully applied to porous substrates through the control of the substrate pore size, deposition parameters, and firing parameters. Conditions have been defined for which films can be deposited, and for which the physical and chemical characteristics of the film can be improved. A theoretical discussion of the chemical reactions taking place before and after hydrolysis in the mixed alkoxide solutions is presented, and the conditions necessary for successful synthesis are defined. Applicability of these films as ionic and electronic conductors is discussed

  20. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Films

    DEFF Research Database (Denmark)

    Fluri, Aline; Gilardi, Elisa; Karlsson, Maths

    2017-01-01

    Solid oxide oxygen ion and proton conductors are a highly important class of materials for renewable energy conversion devices like solid oxide fuel cells. Ba2In2O5 (BIO) exhibits both oxygen ion and proton conduction, in a dry and humid environment, respectively. In a dry environment......, the brownmillerite crystal structure of BIO exhibits an ordered oxygen ion sublattice, which has been speculated to result in anisotropic oxygen ion conduction. The hydrated structure of BIO, however, resembles a perovskite and the protons in it were predicted to be ordered in layers. To complement the significant...... theoretical and experimental efforts recently reported on the potentially anisotropic conductive properties in BIO, we measure here both the proton and oxygen ion conductivity along different crystallographic directions. Using epitaxial thin films with different crystallographic orientations, the charge...

  2. Electrophysical behavior of ion-conductive organic-inorganic polymer system based on aliphatic epoxy resin and salt of lithium perchlorate

    Science.gov (United States)

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Matkovska, Olga; Demchenko, Valeriy; Lebedev, Eugene; Boiteux, Gisele; Serghei, Anatoli

    2014-12-01

    In the present work, ion-conductive hybrid organic-inorganic polymers based on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol (DEG) and lithium perchlorate (LiClO4) were synthesized. The effect of LiClO4 content on the electrophysical properties of epoxy polymers has been studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS). The effect of LiClO4 content on the structure has been studied by wide-angle X-ray scattering (WAXS). It was found that LiClO4 impacts on the structure of the synthesized hybrid epoxy polymers, probably, by formation of coordinative complexes {ether oxygen-lithium cations-ether oxygen} as evidenced from a significant increase in their glass transition temperatures with increasing LiClO4 concentration and WAXS studies. The presence of ether oxygen in DEG macromolecules provides a transfer mechanism of the lithium cations with the ether oxygen similar to polyethylene oxide (PEO). Thus, the obtained hybrid polymers have high values of ionic conductivity σ' (approximately 10-3 S/cm) and permittivity ɛ' (6 × 105) at elevated temperatures (200°C). On the other hand, DEG has higher heat resistance compared to PEO that makes these systems perspective as solid polymer electrolytes able to operate at high temperature.

  3. Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate).

    Science.gov (United States)

    Gebreyesus, Merhawi Abreha; Purushotham, Y; Kumar, J Siva

    2016-07-01

    Ion conducting polymer electrolytes composed of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), poly(methyl methacrylate) (PMMA) and lithium triflate (LiTf) were prepared using the solution casting method. Structural change and complex formation in the blend electrolyte systems were confirmed from the X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) studies. Thermal properties of the samples were investigated by the differential scanning calorimetry (DSC) technique. The ionic conductivity of these polymer electrolytes was studied by impedance spectroscopy at various temperatures ranging from 303-393 K. The results reveal that the ionic conductivity of the polymer blend electrolytes depends on the PVdF-HFP:PMMA composition as well as the temperature. Maximum room temperature conductivity of [Formula: see text] S cm(-1) was achieved with 22.5 wt.% PMMA. The blending of PVdF-HFP with PMMA improved the thermal stability and ionic conductivity of the polymer electrolyte. Estimated transference numbers suggest the charge transport is predominantly ionic.

  4. Thiol-ene synthesis and characterization of lithium bis(malonato)borate single-ion conducting gel polymer electrolytes.

    Science.gov (United States)

    Weber, Ryan L; Mahanthappa, Mahesh K

    2017-10-25

    The development of high capacity anodes and high voltage cathodes for advanced lithium-ion batteries motivates the search for new polymer electrolytes that exhibit superior electrochemical stabilities and high ionic conductivities. We report a convenient, three-step synthesis of lithium bis(non-8-enyl-malonato)borate (LiBNMB) as a α,ω-diene monomer, which undergoes thermally initiated thiol-ene crosslinking polymerizations in propylene carbonate to yield gel polymer electrolytes with high lithium ion concentrations (∼0.9 M). By conducting these crosslinking polymerizations using mixtures of di- and tri-thiols and LiBNMB with [thiol] : [ene] = 1 : 1, we synthesized a series of gel networks with dynamic elastic moduli ranging from G' = 40-79 kPa that increase monotonically with trifunctional crosslinker content. While ionic conductivities for these polymer gels measured by electrochemical impedance spectroscopy at 22 °C are σ = 0.82-2.5 × 10 -6 S cm -1 , we show that the conductivity of propylene carbonate-solvated lithium ions though the bulk of these gel electrolytes is 8.5 × 10 -5 S cm -1 independent of crosslinker density. However, the conductivities of the gel interfaces depend sensitively on crosslinker content, suggesting the importance of segmental rearrangement dynamics at the electrode interface in limiting the rate of ion motion. Thus, the design of highly conductive polymer electrolytes for advanced batteries demands careful design of both the internal and interfacial properties of these new materials.

  5. Ion conducting solid polymer electrolytes based on polypentafluorostyrene-b-polyether-b-polypentafluorostyrene prepared by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Jannasch, P.; Hvilsted, Søren

    2004-01-01

    .3. The bromoisobutyrate functionalized polyether macroinitiators with molecular masses (M-n) of approx. 10 000 enabled the addition of between 15 and 39 wt.% flanking PFS as found by H-1 NMR. In a similar fashion monomethoxy PEG ( MPEG, Mn 5 000) was added 50 wt.% PFS. Polymer electrolytes were prepared by complexing...... blocks (T-g -65 degreesC) were immiscible and resulted in phase separation providing an elastomeric material in form of a physically cross-linked polyether network, even when the PFS block consisted of only about four monomer units. The salted triblock copolymers of PEGPG demonstrated conductivities...

  6. Active Mine Batteries with Long Shelf-Life. 1. Development of Li-Ion Conducting Polymeric Anode Films

    Science.gov (United States)

    1991-04-10

    by making a polymer composite with either UV polymerzed poly(glycol)diacrylate (PGDA), or with poly(ethylene)oxide ( PEO ). 1.3 ELECTROLYTE PURITY... electrolytes were treated as noted above. The electrolyte compositions for Experiments 1 through 4 are given in Table 1. The MEEP polymer electrolyte was...Experiment 3, it was necessary to first dissolve the PEO in warm THF. The solutions used to prepare the coatings for this experiment have the composition

  7. Multivalent ion conducting solids

    Energy Technology Data Exchange (ETDEWEB)

    Imanaka, N. [Osaka Univ., Suita, Osaka (Japan). Dept. of Applied Chemistry

    2008-07-01

    Solid electrolytes possess important characteristics for industrial applications. Only a single ionic species can macroscopically migrate in these solids. This paper described a the new NASICON (M-Zr-Nb-P-O) type system, exhibiting an exceptionally high level of trivalent M3+ ion conductivity on polycrystalline solids. The partial substitution of the smaller higher valent Nb5+ ion for Zr4+ stabilized the NASICON phase and realized the M3+ ion conduction in the NASICON structure. It was concluded that the conductivities of the series are comparable to those of the practically applied solid electrolytes of oxide anion conductors of YSZ and CSZ. 3 refs., 2 figs.

  8. Physically cross-linked polymer binder based on poly(acrylic acid) and ion-conducting poly(ethylene glycol-co-benzimidazole) for silicon anodes

    Science.gov (United States)

    Lim, Sanghyun; Lee, Kukjoo; Shin, Inseop; Tron, Artur; Mun, Junyoung; Yim, Taeeun; Kim, Tae-Hyun

    2017-08-01

    The practical applications of Si electrodes in lithium-ion batteries are limited since they undergo large changes in volume during charge and discharge, and consequently become highly deteriorated. A novel binder system holding silicon particles together and preventing disintegration of the electrode during operation hence needs to be developed to enable reliable cycleability. In the current work, such a new polymer binder system, based on poly(acrylic acid) (PAA) and poly(ethylene glycol-co-benzimidazole) (PEGPBI), is developed for silicon anodes. The physical crosslinking using acid-base interactions between PAA and PBI, together with the ion-conducting PEG group, yields physical properties for the resulting PAA-PEGPBI-based anodes that are better than those of electrodes based on the currently available PAA binder, and yields good cell performances. A Si-based electrode with high loading levels of 1.0-1.3 mg cm-2 (0.7-0.91 Si mg cm-2) is reliably manufactured using specifically PAA-PEGPBI-2, which is made with 2 wt% of PEGPBI relative to PAA, and shows a very high capacity value of 1221 mAh g-1 at a rate of 0.5 C after 50 cycles, and a high capacity value of more than 1600 mAh g-1 at a high rate of 2 C.

  9. Conductivity enhancement in K{sup +}-ion conducting dry Solid Polymer Electrolyte (SPE): [PEO: KNO{sub 3}]: A consequence of KI dispersal and nano-ionic effect

    Energy Technology Data Exchange (ETDEWEB)

    Kesharwani, Priyanka; Sahu, Dinesh K.; Mahipal, Y.K.; Agrawal, R.C., E-mail: rakesh_c_agrawal@yahoo.co.in

    2017-06-01

    Flexible films of dry Solid Polymer Electrolytes (SPEs): [PEO: KNO{sub 3}] in varying salt concentrations have been hot-press cast. Salt concentration dependent conductivity study revealed two SPE films: [95PEO: 5KNO{sub 3}] and [70PEO: 30KNO{sub 3}] exhibiting relatively higher room temperature conductivity (σ{sub rt}) ∼ 2.76 × 10{sup -7} S/cm and ∼4.31 × 10{sup -7} S/cm respectively. In order to increase σ{sub rt} further, two strategies have been adopted. Firstly, fractional amount of KI has been dispersed as IInd-phase active filler into above two SPE film compositions which acted as Ist-phase host and Composite Polymer Electrolyte (CPE) films were hot-press cast. Filler particle concentration dependent conductivity study identified CPE films: [(95PEO: 5KNO{sub 3}) + 7KI] and [(70PEO: 30KNO{sub 3}) + 10 KI] as optimum conducting films with σ{sub rt} ∼ 6.15 × 10{sup -6} S/cm and ∼3.98 × 10{sup -6} S/cm respectively. σ{sub rt}-enhancement of approximately an order of magnitude was achieved by this approach. In second approach, dry powder mixture of (KNO{sub 3} + KI), in ratio that of above two CPE films, were subjected to high energy ball-milling separately for different durations prior to casting the films again. The conductivity measurements as a function of milling time identified CPE films: [(95PEO: 5KNO{sub 3}) + 7KI] and [(70PEO: 30KNO{sub 3}) + 10 KI] in which two respective (KNO{sub 3} + KI) ratios milled for 4- and 6-h, exhibited almost similar value of σ{sub rt} ∼ 2.09 × 10{sup -5} S/cm. This approach increased σ{sub rt} further by ∼3–6 fold. The reason attributed for this has been Nano–ionic effect introduced at the interphase boundaries between KNO{sub 3} and KI, as a consequence of milling. These films have been referred to as milled CPE films. Subsequently, all the optimum conducting SPE and CPE (unmilled/milled) films were subjected to various characterization studies in order to evaluate their utility in potential All

  10. Preparation and characterization of structures of oxygen-ion-conductive thin-film membranes; Herstellung und Charakterisierung von sauerstoffionenleitenden Duennschichtmembranstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Betz, Michael

    2010-07-01

    In power plants using Oxyfuel technology, fossil fuels are combusted with pure oxygen. This leads to carbon dioxide of high purity, which is necessary for its transport and storage. Oxygen separation by means of perovskitic membranes have great potential to decrease the efficiency losses caused by the allocation of the enormous amounts of oxygen. The aim of this work is the preparation and characterisation of thin film membranes on porous substrates and the analysis of their oxygen permeation properties. Therefore the material system A{sub 0,68}Sr{sub 0,3}Fe{sub 0,8}Co{sub 0,2}O{sub 3-{delta}} (A68SFC) was analysed, where the A-site was substituted with Lanthanides (La, Pr, Nd, Eu, Sm, Gd, Dy, Er) or alkaline earth metals (Ba, Ca). After an extensive characterisation, the selection was reduced to the substitutions with La, Pr and Nd. Other compounds could not meet the demands with regard to phase purity, chemical stability or extension behaviour. All analyses were conducted in comparison to Ba{sub 0,5}Sr{sub 0,5}Co{sub 0,8}Fe{sub 0,2}O{sub 3-{delta}} (BSCF) which is known to exhibit higher permeation rates, but is more sensitive to stability issues. The dependency of permeation rates on membrane thickness or oxygen partial pressures on both membrane surfaces is discussed by means of permeation measurements conducted on bulk BSCF membranes. These cannot be described completely by the Wagner equation. This is due to changes of the driving force originating from influences of the surface reaction kinetics and concentration polarisation on the membrane surface, which are not considered. Porous substrates for asymmetric membranes were manufactured by tape casting and warm pressing. The application of the functional layer was performed via screen printing. Permeation measurements show that the asymmetric structures exhibit higher permeation rates in comparison to bulk membranes with L=1 mm. The moderate increase can be attributed to the low gas permeability of the

  11. study in polymer thin films

    Indian Academy of Sciences (India)

    TECS

    carry out a careful study of steady state conduction of poly- styrene (PS) thin film thermo-electrets sandwiched be- tween metal electrodes both in doped and undoped forms. 2. Experimental. 2.1 Sample preparation. Polystyrene supplied by Polymer Chemical Industry,. Mumbai and naphthalene by S.G. Sisco Pvt Ltd., New ...

  12. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, M. [Shenzhen Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Song, Shenhua, E-mail: shsonguk@aliyun.com [Shenzhen Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Gu, Kunming; Tang, Jiaoning [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Zhang, Zhongyi [Advanced Polymer and Composites (APC) Research Group, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, Hampshire (United Kingdom)

    2015-05-15

    Graphical abstract: - Highlights: • The minimum T{sub m} and χ{sub c} values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same.

  13. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    International Nuclear Information System (INIS)

    Ravi, M.; Song, Shenhua; Gu, Kunming; Tang, Jiaoning; Zhang, Zhongyi

    2015-01-01

    Graphical abstract: - Highlights: • The minimum T m and χ c values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same

  14. Functional Films from Silica/Polymer Nanoparticles

    Directory of Open Access Journals (Sweden)

    Tânia Ribeiro

    2014-05-01

    Full Text Available High performance functional coatings, based on hybrid organic/inorganic materials, are being developed to combine the polymer flexibility and ease of processing with the mechanical properties and versatility of inorganic materials. By incorporating silica nanoparticles (SiNPs in the polymeric matrices, it is possible to obtain hybrid polymer films with increased tensile strength and impact resistance, without decreasing the flexural properties of the polymer matrix. The SiNPs can further be used as carriers to impart other functionalities (optical, etc. to the hybrid films. By using polymer-coated SiNPs, it is possible to reduce particle aggregation in the films and, thus, achieve more homogeneous distributions of the inorganic components and, therefore, better properties. On the other hand, by coating polymer particles with silica, one can create hierarchically structured materials, for example to obtain superhydrophobic coatings. In this review, we will cover the latest developments in films prepared from hybrid polymer/silica functional systems.

  15. In-situ Plasticized Cross-linked Polymer Composite Electrolyte Enhanced with Lithium-ion Conducting Nanofibers for Ambient All-Solid-State Lithium-ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Chaoyi; Zhu, Pei; Jia, Hao; Zhu, Jiadeng; Selvan, R. Kalai; Li, Ya; Dong, Xia; Du, Zhuang; Angunawela, Indunil; Wu, Nianqiang; Dirican, Mahmut

    2018-04-29

    Solid electrolytes have been gaining attention recently for the development of next-generation Li-ion batteries due to the substantial improvements in stability and safety. Among various types of solid electrolytes, composite solid electrolytes (CSEs) exhibit both high ionic conductivity and excellent interfacial contact with the electrodes. Incorporating active nanofibers into the polymer matrix demonstrates an effective method to fabricate CSEs. However, current CSEs based on traditional poly(ethylene oxide) (PEO) polymer suffer from the poor ionic conductivity of PEO and agglomeration effect of inorganic fillers at high concentrations, which limit further improvements in Li+ conductivity and electrochemical stability. Herein, we synthesize a novel PEO based cross-linked polymer (CLP) as the polymer matrix with naturally amorphous structure and high room-temperature ionic conductivity of 2.40 × 10-4 S cm-1. Li0.3La0.557TiO3 (LLTO) nanofibers incorporated composite solid electrolytes (L-CLPCSE) exhibit enhanced ionic conductivity without showing filler agglomeration. The high content of Li-conductive nanofibers improves the mechanical strength, ensures the conductive networks, and increases the total Li+ conductivity to 3.31 × 10-4 S cm-1. The all-solid-state Li|LiFePO4 batteries with L-CLPCSE are able to deliver attractive specific capacity of 147 mAh g-1 at room temperature, and no evident dendrite is found at the anode/electrolyte interface after 100 cycles.

  16. Oxygen diffusion in bilayer polymer films

    DEFF Research Database (Denmark)

    Poulsen, Lars; Zebger, Ingo; Tofte, Jannik Pentti

    2004-01-01

    through the film of poly(ethylene-co-norbornene) and into the polystyrene film was monitored using the phosphorescence of singlet oxygen as a spectroscopic probe. To analyze the data, it was necessary to solve Fick's second law of diffusion for both polymer films. Tractable analytical and numerical...

  17. Conductivity, XRD, and FTIR studies of New Mg2+-ion-conducting solid polymer electrolytes: [PEG: Mg(CH3COO)2

    International Nuclear Information System (INIS)

    Polu, Anji Reddy; Kumar, Ranveer; Causin, Valerio; Neppalli, Ramesh

    2011-01-01

    Solid polymer electrolytes based on poly (ethylene glycol) (PEG) doped with Mg(CH 3 COO) 2 have been prepared by using the solution-casting method. The X-ray diffraction patterns of PEG with Mg(CH 3 COO) 2 salt indicated a decrease in the degree of crystallinity with increasing concentration of the salt. The complexation of Mg(CH 3 COO) 2 salt with the polymer was confirmed by using Fourier transform infrared spectroscopy (FTIR) studies. The ionic conductivity was measured for the [PEG: Mg(CH 3 COO) 2 ] system in the frequency range 50 Hz - 1 MHz. The addition of Mg salt was found to improve the ionic conductivity significantly. The 15-wt-% Mg(CH 3 COO) 2 -doped system had a maximum conductivity of 1.07 x 10 -6 S/cm at 303 K. The conductance spectrum shows two distinct regions: a dc plateau and a dispersive region. The temperature dependence of the ionic conductivity reveals the conduction mechanism to be an Arrhenius-type thermally activated process.

  18. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  19. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  20. Three methods for in situ cross-linking of polyvinyl alcohol films for application as ion-conducting membranes in potassium hydroxide electrolyte. [battery separators

    Science.gov (United States)

    Philipp, W. H.; Hsu, L. C.

    1979-01-01

    Three methods of in situ cross-linking polyvinyl alcohol films are presented. They are: (1) acetalization with a dialdehyde such as glutaraldehyde, (2) acetalization with aldehyde groups formed by selective oxidative cleaving of the few percent of 1,2 diol units present in polyvinyl alcohol, and (3) cross-linking by hydrogen abstraction by reaction with hydrogen atoms and hydroxyl radicals from irradiated water. For the third method, improvement in film conductivity in KOH solution at the expense of mechanical strength is obtained by the presence of polyacrylic acid in the polyvinyl alcohol films. Resistivities in 45 percent KOH are given for in situ cross-linked films prepared by each of the three methods.

  1. New Fabrication Technique of Conductive Polymer / Insulating Polymer Composite Films

    Science.gov (United States)

    Abe, Yayoi; Mathur, Paramatma Chandra; Bhatnagar, Pramod Kumar; Tada, Kazuya; Onoda, Mitsuyoshi

    The electrochemical polymerization of pyrrole on an ITO (indium-tin oxide) coated glass electrode with an insulating film of poly(vinyl alcohol), PVA produces a flexible composite polymer film with electrical, optical and electrochemical properties very similar to polypyrrole (PPy). The rate of electrochemical polymerization depends on the diffusion of the electrolyte across the PVA film to the ITO electrode. Especially, the solvent with hydrophilic nature easily penetrates into the PVA film. By applying this new process, we demonstrate a unique method to form electrically conductive pattern in PVA film. It will be possible to develop electrodes for electrical stimulation of the nervous system using conducting polymer, PPy. Then, by using similar technique we have fabricated poly (3,4-ethylenedioxythiophene), PEDOT/PVA composite films and investigated their electrochemical basic properties.

  2. Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler

    Science.gov (United States)

    Hema, M.; Tamilselvi, P.

    2016-09-01

    The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress-strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10-3 S cm-1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.

  3. Preparation and characterization of gradient polymer films

    International Nuclear Information System (INIS)

    Smith, S.C.

    1987-01-01

    Gradient polymers are multicomponent polymers whose chemical constitution varies with depth in the sample. Although these polymers may possess unique mechanical, optical, and barrier properties they remain relatively unexplored. This work is a study of the preparation of gradient polymers by sequential exposure of films to a diffusing monomer followed by electron beam irradiation. Initial experiments involved immersion of poly(vinyl chloride) (PVC) films in styrene or n-butyl methacrylate (BMA) for various time periods followed by irradiation with 1 or 10 megarads of accelerated electrons. A significant amount of poly(n-butyl methacrylate) (PBMA) formed in PVC/BMA systems, but little polystyrene could be found in the PVC/styrene films. A second set of experiments involved immersion of PVC and polyethylene (PE) films in BMA for 20, 40, 60, and 720 minutes followed by irradiation with 10 megarads of electrons. These films were then characterized using optical microscopy, quantitative transmission Fourier transform infrared spectroscopy (FTIR), and a depth profiling procedure based on quantitative attenuated total reflection (ATR) FTIR. It was concluded that the mechanism of PBMA formation in the polyethylene films was a result of events immediately following irradiation. Atmospheric oxygen diffusing into irradiated films trapped free radicals at the film surfaces. This was followed by storage in an evacuated desiccator where unintentional exposure to BMA vapor took place. This BMA reacted with free radicals that remained within the film cores, polymerizing to PBMA

  4. Multifunctional scanning ion conductance microscopy

    OpenAIRE

    Page, Ashley; Perry, David; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional...

  5. Substrate morphology repetition in 'thick' polymer films

    International Nuclear Information System (INIS)

    Pietsch, Ullrich; Panzner, Tobias; Pfeiffer, Franz; Robinson, Ian K.

    2005-01-01

    Using Grazing-incidence small-angle scattering (GISAXS) technique we investigated the surface morphology of polymer films spin-coated on different silicon substrates. As substrates we used either technologically smooth silicon wafers or the same silicon wafer coated with thin aluminium or gold films which show a granular structure at the surface. Although the polymer thickness exceeds 300nm the GISAXS pattern of the film shows the same in-plane angle distribution Δ2Θ as the underlying substrate. Annealing the polymer films at a temperature above its glass transition temperature Δ2Θ changed from a broad to a narrow distribution as it is typically for films on pure silicon. The experiment can be interpreted by roughness replication and density fluctuation within the polymer film created while spin-coating at room temperature. Due to the low segment mobility there are density fluctuations which repeat the surface morphology of the substrate. Above the glass temperature the polymer density can be homogenized independently from the morphology of the substrate

  6. Dewetting dynamics in miscible polymer-polymer thin film mixtures

    Science.gov (United States)

    Besancon, Brian M.; Green, Peter F.

    2007-06-01

    Thin polystyrene films supported by oxidized silicon (SiOx/Si) substrates may be unstable or metastable, depending on the film thickness, h, and can ultimately dewet the substrate when heated above their glass transition. In the metastable regime, holes nucleate throughout the film and subsequently grow due to capillary driving forces. Recent studies have shown that the addition of a second component, such as a copolymer or miscible polymer, can suppress the dewetting process and stabilize the film. We examined the hole growth dynamics and the hole morphology in thin film mixtures composed of polystyrene and tetramethyl bisphenol-A polycarbonate (TMPC) supported by SiOx/Si substrates. The hole growth velocity decreased with increasing TMPC content beyond that expected from changes in the bulk viscosity. The authors show that the suppression of the dewetting velocity is primarily due to reductions in the capillary driving force for dewetting and to increased friction at the substrate-polymer interface. The viscosity, as determined from the hole growth dynamics, decreases with decreasing film thickness, and is connected to a depression of the glass transition of the film.

  7. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...... and strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer based MEMS-devices. (C) 2007 Elsevier B.V. All rights reserved....

  8. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  9. Lithium ion conducting ionic electrolytes

    Science.gov (United States)

    Angell, C.A.; Xu, K.; Liu, C.

    1996-01-16

    A liquid, predominantly lithium-conducting, ionic electrolyte is described which has exceptionally high conductivity at temperatures of 100 C or lower, including room temperature. It comprises molten lithium salts or salt mixtures in which a small amount of an anionic polymer lithium salt is dissolved to stabilize the liquid against recrystallization. Further, a liquid ionic electrolyte which has been rubberized by addition of an extra proportion of anionic polymer, and which has good chemical and electrochemical stability, is described. This presents an attractive alternative to conventional salt-in-polymer electrolytes which are not cationic conductors. 4 figs.

  10. PEO + PVP blended polymer composite films for multifunctional ...

    Indian Academy of Sciences (India)

    has been noticed from PEO + PVP : Ni2+ polymer film at 373 K. Emission analysis of Co2+: PEO + PVP poly- mer film has exhibited a ... suggested that these TM ions doped PEO + PVP polymer films are found to be potential multifunctional materi- ..... tion of semicircle with the real axis the bulk resistance of the polymer ...

  11. Controlling Film Morphology in Conjugated Polymer

    Science.gov (United States)

    Park, Lee Y.; Munro, Andrea M.; Ginger, David S.

    2009-01-01

    We study the effects of patterned surface chemistry on the microscale and nanoscale morphology of solution-processed donor/acceptor polymer-blend films. Focusing on combinations of interest in polymer solar cells, we demonstrate that patterned surface chemistry can be used to tailor the film morphology of blends of semiconducting polymers such as poly-[2-(3,7-dimethyloctyloxy)-5-methoxy-p-phenylenevinylene] (MDMO-PPV), poly-3-hexylthiophene (P3HT), poly[(9,9-dioctylflorenyl-2,7-diyl)-co-benzothiadiazole)] (F8BT), and poly(9,9-dioctylfluorene-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-1,4-phenylendiamine) (PFB) with the fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We present a method for generating patterned, fullerene-terminated monolayers on gold surfaces, and use microcontact printing and Dip-Pen Nanolithography (DPN) to pattern alkanethiols with both micro- and nanoscale features. After patterning with fullerenes and other functional groups, we backfill the rest of the surface with a variety of thiols to prepare substrates with periodic variations in surface chemistry. Spin coating polymer:PCBM films onto these substrates, followed by thermal annealing under nitrogen, leads to the formation of structured polymer films. We characterize these films with Atomic Force Microscopy (AFM), Raman spectroscopy, and fluorescence microscopy. The surface patterns are effective in guiding phase separation in all of the polymer:PCBM systems investigated, and lead to a rich variety of film morphologies that are inaccessible with unpatterned substrates. We demonstrate our ability to guide pattern formation in films thick enough of be of interest for actual device applications (up to 200 nm in thickness) using feature sizes as small as 100 nm. Finally, we show that the surface chemistry can lead to variations in film morphology on length scales significantly smaller than those used in generating the original surface patterns. The variety of

  12. Variation in viscosity and ion conductivity of a polymer–salt complex ...

    Indian Academy of Sciences (India)

    The ion conductivity shows a strong increase for an irradiation of. 35 kGy. DSC studies indicate a decrease in crystallinity with gamma dose. Keywords. Gamma irradiation; polymer electrolyte; viscosity; ion conductivity. PACS Nos 61.82.Pv; 66.30.Dn; 47.57.Ng; 81.70.Pg. 1. Introduction. When polymers are exposed to high ...

  13. Charge transfer processes in conducting polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Malev, Valery V; Kondratiev, Veniamin V [Department of Chemistry, St. Petersburg State University, St. Petersburg (Russian Federation)

    2006-02-28

    The available models of charge transfer processes in electroactive polymer films are considered. Examples of interpretation of the data of electrochemical measurements using model approaches are given. The emphasis is placed on the interpretation of the results on the impedance of modified electrodes. On this basis, conclusions concerning the most topical research problems and the description of the processes in question are drawn.

  14. Multifunctional scanning ion conductance microscopy.

    Science.gov (United States)

    Page, Ashley; Perry, David; Unwin, Patrick R

    2017-04-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential-time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science.

  15. Multifunctional scanning ion conductance microscopy

    Science.gov (United States)

    Page, Ashley; Unwin, Patrick R.

    2017-01-01

    Scanning ion conductance microscopy (SICM) is a nanopipette-based technique that has traditionally been used to image topography or to deliver species to an interface, particularly in a biological setting. This article highlights the recent blossoming of SICM into a technique with a much greater diversity of applications and capability that can be used either standalone, with advanced control (potential–time) functions, or in tandem with other methods. SICM can be used to elucidate functional information about interfaces, such as surface charge density or electrochemical activity (ion fluxes). Using a multi-barrel probe format, SICM-related techniques can be employed to deposit nanoscale three-dimensional structures and further functionality is realized when SICM is combined with scanning electrochemical microscopy (SECM), with simultaneous measurements from a single probe opening up considerable prospects for multifunctional imaging. SICM studies are greatly enhanced by finite-element method modelling for quantitative treatment of issues such as resolution, surface charge and (tip) geometry effects. SICM is particularly applicable to the study of living systems, notably single cells, although applications extend to materials characterization and to new methods of printing and nanofabrication. A more thorough understanding of the electrochemical principles and properties of SICM provides a foundation for significant applications of SICM in electrochemistry and interfacial science. PMID:28484332

  16. Ion conductivity of nasicon ceramics

    International Nuclear Information System (INIS)

    Hoj, J.W.; Engell, J.

    1989-01-01

    The Nasicon ss ,Na 1 + X Zr 2 Si X P 3 - X O 12 o , X , 3, includes some of the best solid state sodium conductors known today. Compositions in the interval 1.6 , X , 2.6 show conductivities comparable to the best β double-prime-alumina ceramics. It is well known that the ion conductivity of β-alumina is strongly dependent on the texture of the ceramic. Here a similar behavior is reported for Nasicon ceramics. Ceramics of the bulk composition Na 2.94 Zr 1.49 Si 2.20 P 0.80 O 10.85 were prepared by a gel method. The final ceramics consist of Nasicon crystals with x = 2.14 and a glass phase. The grain size and texture of the ceramics were controlled by varying the thermal history of the gel based raw materials and the sintering conditions. The room temperature resistivity of the resulting ceramics varies from 3.65*10 3 ohm cm to 1.23*10 3 ohm cm. Using the temperature comparison method and estimates of the area of grain boundaries in the ceramics, the resistivity of the Nasicon phase is estimated to be 225 ohm cm at 25 degrees C. B 2 O 3 - or Al 2 O 3 -doping of the glass bearing Nasicon ceramic lower the room temperature resistivity by a factor 2 to 5. The dopants do not substitute into the Nasicon phase in substantial amounts

  17. study in polymer thin films

    Indian Academy of Sciences (India)

    TECS

    reported that conductivity of PS increases with concentra- tion of benzoic acid. Polymer composites based on charge transfer complex of phenothiazine and iodine with poly- styrene prepared in different weight ratios have been characterized by FTIR, XRD, mechanical, microstructure and electrical properties (d.c. as well as ...

  18. Membranes and Films from Polymers.

    Science.gov (United States)

    Blumberg, Avrom A.

    1986-01-01

    Provides background information on polymeric films and membranes including production methods, special industrial and medical applications, laboratory preparation, and an experimental investigation of a porous cellulose acetate membrane. Presents a demonstration to distinguish between high- and low-density polyethylene. (JM)

  19. Dispersion of Polymer-Grafted Nanorods in Polymer Films

    Science.gov (United States)

    Frischknecht, Amalie L.; Hore, Michael J. A.; Composto, Russell J.

    2013-03-01

    Gold nanorods (NRs) exhibit unique optical properties, i.e. their surface plasmon resonances, which can be tuned by the separation between the NRs. One strategy for controlling the assembly of NRs in a polymer film is to coat them with a polymer brush. The resulting dispersion or aggregation of the rods depends on the details of their interactions, which we examine using both theory and experiment. Classical density functional theory (DFT) and self-consistent field theory calculations of the structure of the brush around an isolated NR in a polymer melt predict a gradual transition from a ``wet'' to a ``dry'' brush as the NR radius, the grafting density, and/or the ratio of matrix to brush chain lengths is increased. DFT calculations of the interaction free energy between two NRs find an attractive well at intermediate NR separations. The strength of the attraction increases as the brushes become more dry. Including the van der Waals attractions between the NRs gives an estimate of their total interaction free energy, which can be used to predict when the NRs are dispersed or aggregated. A dispersion map shows good agreement between DFT calculations and experimental observations. Our calculations can be used as a guide to the design rules for tuning NR assembly in polymer films.

  20. Glass Transition of Miscible Binary Polymer-Polymer Thin Films

    Science.gov (United States)

    Besancon, Brian M.; Soles, Christopher L.; Green, Peter F.

    2006-08-01

    The average glass transition temperatures, Tg, of thin homopolymer films exhibit a thickness dependence, Tg(h), associated with a confinement effect and with polymer-segment interface interactions. The Tg’s of completely miscible thin film blends of tetramethyl bisphenol-A polycarbonate (TMPC) and deuterated polystyrene (dPS), supported by SiOx/Si, decrease with decreasing h for PS weight fractions ϕ>0.1. This dependence is similar to that of PS and opposite to that of TMPC thin films. Based on an assessment of Tg(h,ϕ), we suggest that the Tg(h,ϕ) of miscible blends should be rationalized, additionally, in terms of the notion of a self-concentration and associated heterogeneous component dynamics.

  1. Development of polymer films by the coalescence of polymer particles in powdered and aqueous polymer-modified mortars

    International Nuclear Information System (INIS)

    Afridi, M.U.K.; Ohama, Y.; Demura, K.; Iqbal, M.Z.

    2003-01-01

    This paper evaluates and compares the coalescence of polymer particles (continuous polymer films formation) in powdered polymer-modified mortars (PPMMs) and aqueous polymer-modified mortars (APMMs). Polymer-modified mortars (PMMs) using various redispersible polymer powders (powdered cement modifiers) and polymer dispersions (aqueous cement modifiers) were prepared by varying the polymer-cement ratio (P/C) and were tested for the characterization of polymer films using a scanning electron microscope (SEM) after curing for 28 days. It is concluded from the test results that mortar constituents of unmodified mortar (UMM) are loosely joined with each other due to the absence of polymer films, thus having a structure with comparatively lower mechanical and durability characteristics. By contrast, mortar constituents in PPMMs and APMMs are compactly joined with each other due to the presence of interweaving polymer films, thereby forming a monolithic structure with improved mechanical and durability characteristics. However, the results make obvious the poor coalescence of polymer particles or development of inferior quality polymers films in PPMMs as compared to that observed in APMMs. Moreover, PPMMs show less uniform distribution of polymer films as compared to that in APMMs. Different powdered cement modifiers have different film-forming capabilities. However, such difference is hardly recognized in aqueous cement modifiers. The polymer films in PPMMs and APMMs may acquire different structures. They may appear as mesh-like, thread-like, rugged, dense or fibrous with fine or rough surfaces. Development of coherent polymer films is not well pronounced at a P/C of 5% in PPMMs, whereas sometimes coherent polymer films are observed at a P/C of 5% in APMMs. At a P/C of 10% or more, fully developed, coherent polymer films are observed in both PPMMs and APMMs

  2. Making waves in a photoactive polymer film

    Science.gov (United States)

    Gelebart, Anne Helene; Jan Mulder, Dirk; Varga, Michael; Konya, Andrew; Vantomme, Ghislaine; Meijer, E. W.; Selinger, Robin L. B.; Broer, Dirk J.

    2017-06-01

    Oscillating materials that adapt their shapes in response to external stimuli are of interest for emerging applications in medicine and robotics. For example, liquid-crystal networks can be programmed to undergo stimulus-induced deformations in various geometries, including in response to light. Azobenzene molecules are often incorporated into liquid-crystal polymer films to make them photoresponsive; however, in most cases only the bending responses of these films have been studied, and relaxation after photo-isomerization is rather slow. Modifying the core or adding substituents to the azobenzene moiety can lead to marked changes in photophysical and photochemical properties, providing an opportunity to circumvent the use of a complex set-up that involves multiple light sources, lenses or mirrors. Here, by incorporating azobenzene derivatives with fast cis-to-trans thermal relaxation into liquid-crystal networks, we generate photoactive polymer films that exhibit continuous, directional, macroscopic mechanical waves under constant light illumination, with a feedback loop that is driven by self-shadowing. We explain the mechanism of wave generation using a theoretical model and numerical simulations, which show good qualitative agreement with our experiments. We also demonstrate the potential application of our photoactive films in light-driven locomotion and self-cleaning surfaces, and anticipate further applications in fields such as photomechanical energy harvesting and miniaturized transport.

  3. Polymer Based Thin Film Screen Preparation Technique

    Science.gov (United States)

    Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Saatsakis, G.; Karabotsos, A.; Panayiotakis, G. S.; Kandarakis, I.

    2017-11-01

    Phosphor screens, mainly prepared by electrophoresis, demonstrate brightness equal to the standard sedimentation on glass or quartz substrate process and are capable of very high resolution. Nevertheless, they are very fragile, the shape of the screen is limited to the substrate shape and in order to achieve adequate surface density for application in medical imaging, a significant quantity of the phosphor will be lost. Fluorescent films prepared by the dispersion of phosphor particles into a polymer matrix could solve the above disadvantages. The aim of this study is to enhance the stability of phosphor screens via the incorporation of phosphor particles into a PMMA (PolyMethyl MethAcrylate) matrix. PMMA is widely used as a plastic optical fiber, it shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range. Different concentrations of PMMA in MMA (Methyl Methacrylate) were examined and a 37.5 % w/w solution was used for the preparation of the thin polymer film, since optical quality characteristics were found to depend on PMMA in MMA concentration. Scanning Electron Microscopy (SEM) images of the polymer screens demonstrated high packing density and uniform distribution of the phosphor particles. This method could be potentially used for phosphor screen preparation of any size and shape.

  4. Radiation-induced reactions in polymer films

    Science.gov (United States)

    Biscoglio, Michael Benedict

    Since the 1950's, there has been a considerable interest in the effects of ionizing radiation on the physical properties of polymer systems. Radiation induced chemical changes that were found to be helpful in producing specialty polymers, but also potentially harmful by degrading the physical performance of the material. Therefore, solute molecules, which act as excited state quenchers, and free radical scavengers, have been incorporated into the polymers in order to regulate the crosslinking, scission and desaturation reactions. This work is focused on using spectroscopic techniques to characterize the physical properties of polymeric media and the reactions occurring within them following pulsed radiolysis. This is done primarily by using arene doped polymer films which have highly absorbing excited states and radical ions that are easily monitored by transient studies. The probes are used to characterize the polymeric microenvironment, to monitor reaction rates, and to interfere in the radical reactions. Photophysical and photochemical characterization of partially crystalline polyethylene complements data previously obtained by conventional physical techniques for polymer characterization. Probe molecules are excluded from crystalline zones and distributed in a networked structure of amorphous zones. Upon high energy radiolysis, it is found that polyolefin systems efficiently donate all radical ions and excited states to the solute molecules, even when the energy is absorbed within the polymer crystalline zones. Studies of the subsequent reactions of the solute excited states and radical ions reveal information about their long term effectiveness as protectants. It is found that highly excited states formed by the recombination of solute radical ions are energetic enough to cause dissociation of halo-arenes. Also, arenes are found to become attached to the polymer chain through a polymer-aryl radical intermediate. These intermediates have been isolated and

  5. Scanning Tunneling Microscopy analysis of space-exposed polymer films

    Science.gov (United States)

    Kalil, Carol R.; Young, Philip R.

    1993-01-01

    The characterization of the surface of selected space-exposed polymer films by Scanning Tunneling Microscopy (STM) is reported. Principles of STM, an emerging new technique for materials analysis, are reviewed. The analysis of several films which received up to 5.8 years of low Earth orbital (LEO) exposure onboard the NASA Long Duration Exposure Facility (LDEF) is discussed. Specimens included FEP Teflon thermal blanket material, Kapton film, and several experimental polymer films. Ultraviolet and atomic oxygen-induced crazing and erosion are described. The intent of this paper is to demonstrate how STM is enhancing the understanding of LEO space environmental effects on polymer films.

  6. Multiple High Voltage Pulse Stressing of Polymer Thick Film Resistors

    Directory of Open Access Journals (Sweden)

    Busi Rambabu

    2014-01-01

    Full Text Available The purpose of this paper is to study high voltage interactions in polymer thick film resistors, namely, polyvinyl chloride- (PVC- graphite thick film resistors, and their applications in universal trimming of these resistors. High voltages in the form of impulses for various pulse durations and with different amplitudes have been applied to polymer thick film resistors and we observed the variation of resistance of these resistors with high voltages. It has been found that the resistance of polymer thick film resistors decreases in the case of higher resistivity materials and the resistance of polymer thick film resistor increases in the case of lower resistivity materials when high voltage impulses are applied to them. It has been also found that multiple high voltage pulse (MHVP stressing can be used to trim the polymer thick film resistors either upwards or downwards.

  7. Polymer compositions, polymer films and methods and precursors for forming same

    Science.gov (United States)

    Klaehn, John R; Peterson, Eric S; Orme, Christopher J

    2013-09-24

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  8. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  9. Optical patterning in azobenzene polymer films.

    Science.gov (United States)

    Stiller, B; Geue, T; Morawetz, K; Saphiannikova, M

    2005-09-01

    Thin azobenzene polymer films show a very unusual property, namely optically induced material transport. The underlying physics for this phenomenon has not yet been thoroughly explained. Nevertheless, this effect enables one to inscribe different patterns onto film surfaces, including one- and two-dimensional periodic structures. Typical sizes of such structures are of the order of micrometers, i.e. related to the interference pattern made by the laser used for optical excitation. In this study we have measured the mechanical properties of one- and two-dimensional gratings, with a high lateral resolution, using force-distance curves and pulse force mode of the atomic force microscope. We also report on the generation of considerably finer structures, with a typical size of 100 nm, which were inscribed onto the polymer surface by the tip of a scanning near-field optical microscope used as an optical pen. Such inscription not only opens new application possibilities but also gives deeper insight into the fundamentals physics underlying optically induced material transport.

  10. Electron beam curable polymer thick film

    International Nuclear Information System (INIS)

    Nagata, Hidetoshi; Kobayashi, Takashi

    1988-01-01

    Currently, most printed circuit boards are produced by the selective etching of copper clads laminated on dielectric substrates such as paper/phenolic resion or nonwoven glass/epoxy resin composites. After the etchig, various components such as transistors and capacitors are mounted on the boards by soldering. But these are troublesome works, therefore, as an alternative, printing method has been investigated recently. In the printing method, conductor circuits and resistors can be made by printing and curing of the specially prepared paste on dielectric substrates. In the near future, also capacitors are made by same method. Usually, conductor paste, resistor paste and dielectric paste are employed, and in this case, the printing is screen printing, and the curing is done thermally. In order to avoid heating and the deterioration of substrates, attention was paid to electron beam curing, and electron beam curable polymer thick film system was developed. The electron beam curable paste is the milled mixture of a filler and an electron beam curable binder of oligomer/monomer. The major advantage of electron beam curable polymer thick film, the typical data of a printed resistor of this type and its trial are reported. (K.I.)

  11. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O...... absorbance spectrum of the films is nearly identical with that of the native polymer, the average molecular weight of the films is a little less than half that of the starting material. Potential strategies for defeating this mass change are discussed....

  12. Glassy dynamics and heterogeneity of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Inoue, Rintaro; Kawashima, Kazuko; Miyazaki, Tsukasa; Matsuba, Go; Nishida, Koji; Tsukushi, Itaru; Shibata, Kaoru; Hino, Masahiro

    2009-01-01

    We review our recent studies on glassy dynamics and glass transition of polymer thin films using neutron and X-ray reflectivity and inelastic neutron techniques. In the last decade extensive studies have been performed on polymer thin films to reveal very interesting but unusual properties such as reduction in the glass transition temperature T g with film thickness and negative thermal expansivity for thin films below about 25 nm, and often some contradictory experimental results have been reported. It is believed that a key to solve the controversial situation is to disclose heterogeneous structure or multi-layer structure in polymer thin films. In the review, therefore, we summarize our recent experimental results by neutron and X-ray reflectivity and inelastic neutron scattering, focusing on the dynamic heterogeneity in polymer thin films. (author)

  13. Process optimization of ultrasonic spray coating of polymer films

    DEFF Research Database (Denmark)

    Bose, Sanjukta; Keller, Stephan Sylvest; Boisen, Anja

    2013-01-01

    In this work we have performed a detailed study of the influence of various parameters on spray coating of polymer films. Our aim is to produce polymer films of uniform thickness (500 nm to 1 μm) and low roughness compared to the film thickness. The coatings are characterized with respect...... these two regimes, where we obtain a film of desired quality. Both with increasing nozzle-substrate distance and temperature, the deposition moves from a wet state to a dry regime. Similar results are also achieved for solvents with low boiling points. Finally, we study film formation during spray coating...

  14. Preparation of redox polymer cathodes for thin film rechargeable batteries

    Science.gov (United States)

    Skotheim, Terje A.; Lee, Hung S.; Okamoto, Yoshiyuki

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  15. Photopatterning of heterostructured polymer Langmuir-Blodgett films

    International Nuclear Information System (INIS)

    Li Tiesheng; Mitsuishi, Masaya; Miyashita, Tokuji

    2008-01-01

    Heterostructured polymer Langmuir-Blodgett (LB) film prepared by using poly(N-dodecylacrylamide-co-t-butyl 4-vinylphenyl carbonate) (p(DDA-tBVPC53)) and poly(N-neopentyl methacrylamide-co-9-anthrylmethyl methacrylate) (p(nPMA-AMMA10)) polymer LB films which can act as photogenerator layers were investigated. Patterns with a resolution of 0.75 μm were obtained on heterostructured polymer LB films composed of 4 layers of p(nPMA-AMMA10) LB film (top layers) and 40 layers of p(DDA-tBVPC53) LB film (under layers) on a silicon wafer by deep UV irradiation followed by development with 1% tetramethylammonium hydroxide aqueous solution. The sensitivity of the heterostructured polymer LB films was improved without loss of the resolution compared with p(DDA-tBVPC53) LB film. The etch resistance of the heterostructured polymer LB films was sufficiently good to allow patterning of a copper film suitable for photomask fabrication

  16. Oxide interfaces with enhanced ion conductivity

    NARCIS (Netherlands)

    Leon, C.; Santamaria, J.; Boukamp, Bernard A.

    2013-01-01

    The new field of nano-ionics is expected to yield large improvements in the performance of oxide-based energy generation and storage devices based on exploiting size effects in ion conducting materials. The search for novel materials with enhanced ionic conductivity for application in energy devices

  17. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  18. Renewable Natural Polymer Thin Films and Their Interactions with Biomacromolecules

    OpenAIRE

    Wang, Chao

    2014-01-01

    Natural polymers from renewable resources have attracted increasing interest as candidates for renewable energy and functional materials. In this work, the interactions between natural polymer thin films and biomacromolecules were studied via surface analysis techniques, such as a quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR) and atomic force microscopy (AFM). Chitinase activity on regenerated chitin (RChitin) films was studied by QCM-...

  19. Continuous production of functionalized polymer particles employing the phase separation in polymer blend films.

    Science.gov (United States)

    Park, ChooJin; Hyun, Dong Choon; Lim, Min-Cheol; Kim, Su-Jeong; Kim, Young-Rok; Paik, Hyun-Jong; Jeong, Unyong

    2011-08-17

    This study reports a continuous prepartion of spherical or hemispherical polymer particles simply utilizing the phase separation in polymer blend films during the coating process. We took an advantage of the strong phase separation between a water-soluble crystalline polymer as a matrix and hydrophobic polymers as minor components. We demonstrated the prepartion of water-soluble polystyrene (PS) particles, nitrilotriacetic acid (NTA)-functionalized PS particles for protein separation, and semiconducting poly(3-hexylthiophene) (P3HT) particles. The sizes of the particles could be controlled by adjusting the film thickness and weight fraction of the minor component polymers in the blend film. It provides a simple facile way to prepare polymer particles in a continous process. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rapid synthesis of flexible conductive polymer nanocomposite films

    International Nuclear Information System (INIS)

    Blattmann, C O; Sotiriou, G A; Pratsinis, S E

    2015-01-01

    Polymer nanocomposite films with nanoparticle-specific properties are sought out in novel functional materials and miniaturized devices for electronic and biomedical applications. Sensors, capacitors, actuators, displays, circuit boards, solar cells, electromagnetic shields and medical electrodes rely on flexible, electrically conductive layers or films. Scalable synthesis of such nanocomposite films, however, remains a challenge. Here, flame aerosol deposition of metallic nanosliver onto bare or polymer-coated glass substrates followed by polymer spin-coating on them leads to rapid synthesis of flexible, free-standing, electrically conductive nanocomposite films. Their electrical conductivity is determined during their preparation and depends on substrate composition and nanosilver deposition duration. Accordingly, thin (<500 nm) and flexible nanocomposite films are made having conductivity equivalent to metals (e.g. 5  × 10 4 S cm −1 ), even during repetitive bending. (paper)

  1. Nano indentation of particulate and polymer films

    International Nuclear Information System (INIS)

    Akram, Aisha

    2001-01-01

    A detailed knowledge of the formation and rupture mechanisms of agglomerates is essential when seeking to model equipment designed to produce and process such agglomerated particulate solids. In the work to be described the nano-indentation of two-dimensional agglomerate films was carried out in order to establish a means of identifying the generic breakage mechanisms of agglomerated systems. Data analysis techniques are developed that enable the individual inter-particle junction strengths to be calculated for a model system consisting of rather mono-dispersed colloidal silica particles (20-24 nm diameter) bound with a poly(methyl methacrylate). Applied load and penetration depth data in the range (10 mN and 500 nm respectively) are provided as a function of loading time during a continuous loading. It is argued that these data enable the sequence of the discrete binder bridge failures to be observed thus giving a quantitative indication of the breakage mechanism of this agglomerate system as well as reflect the agglomerate structure. The secondary objective of this work was to produce a range of agglomerates with different mechanical properties, without changing the type and amount of binder or prime particles used in the system. This was achieved by altering the mechanical properties of the binder, poly(methyl methacrylate), by the use of a variety of solvents. From data obtained using nano-indentation on thin films of the treated polymer, brittle and ductile forms of poly(methyl methacrylate) could be distinguished. These trends are reflected, to some degree, in the mechanical response of the agglomerated layers. (author)

  2. Confinement enhances dispersion in nanoparticle-polymer blend films.

    Science.gov (United States)

    Chandran, Sivasurender; Begam, Nafisa; Padmanabhan, Venkat; Basu, J K

    2014-05-08

    Polymer nanocomposites constitute an important class of materials whose properties depend on the state of dispersion of the nanoparticles in the polymer matrix. Here we report the first observations of confinement-induced enhancement of dispersion in nanoparticle-polymer blend films. Systematic variation in the dispersion of nanoparticles with confinement for various compositions and matrix polymer chain dimensions has been observed. For fixed composition, strong reduction in glass transition temperature, Tg, is observed with decreasing blend-film thickness. The enhanced dispersion occurs without altering the polymer-particle interactions and seems to be driven by enhanced matrix-chain orientation propensity and a tendency to minimize the density gradients within the matrix. This implies the existence of two different mechanisms in polymer nanocomposites, which determines their state of dispersion and glass transition.

  3. Microwave assisted click chemistry on a conductive polymer film

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hansen, Thomas S.; Larsen, Niels Bent

    2011-01-01

    Microwave (MW) irradiation has been used to accelerate the functionalization of an azide functional poly(3,4-ethylenedioxythiophene) film by click chemistry. The absorption of MW energy by the conductive polymer has been exploited for localized activation of the reaction on the polymer surface...

  4. Building Ion-Conduction Highways in Polymeric Electrolytes by Manipulating Protein Configuration.

    Science.gov (United States)

    Fu, Xuewei; Li, Chunhui; Wang, Yu; Kovatch, Lucas Paul; Scudiero, Louis; Liu, Jin; Zhong, Weihong

    2018-02-07

    Solid polymer electrolytes play a critical role in the development of safe, flexible, and all-solid-state energy storage devices. However, the low ion conductivity has been the primary challenge impeding them from practical applications. Here, we propose a new biotechnology to fabricate novel protein-ceramic hybrid nanofillers for simultaneously boosting the ionic conductivity, mechanical properties, and even adhesion properties of solid polymer electrolytes. This hybrid nanofiller is fabricated by coating ion-conductive soy proteins onto TiO 2 nanoparticles via a controlled denaturation process in appropriate solvents and conditions. It is found that the chain configuration and protein/TiO 2 interactions in the hybrid nanofiller play critical roles in improving not only the mechanical properties but also the ion conductivity, electrochemical stability, and adhesion properties. Particularly, the ion conductivity is improved by one magnitude from 5 × 10 -6 to 6 × 10 -5 S/cm at room temperature. To understand the possible mechanisms, we perform molecular simulation to study the chain configuration and protein/TiO 2 interactions. Simulation results indicate that the denaturation environment and procedures can significantly change the protein configuration and the protein/TiO 2 interactions, both of which are found to be critical for the ion conductivity and mechanical properties of the resultant solid composite electrolytes. This study indicates that biotechnology of manipulating protein configuration can bring novel and promising strategies to build unique ion channels for fast ion conduction in solid polymer electrolytes.

  5. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  6. “Electro-Click” on Conducting Polymer Films

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Lind, Johan Ulrik; Daugaard, Anders Egede

    An azide substituted 3,4-ethylenedioxythiophene monomer is polymerised to yield a PEDOT like polymer with available azide groups (Figure 1). The azide groups enable post polymerization functionalization of the conducting polymer using a 1,3 dipolar cycloaddition reaction – also denoted “click...... chemistry”. This facilitates the addition of compounds that can otherwise not withstand the polymerization conditions. Several biological active molecules have been attached and tested on the films. Furthermore conducting polymer microelectrodes can electrochemically generate the catalyst required...... for their own functionalization with high spatial resolution. Interdigitated microelectrodes prepared from the azide-containing conducting polymer were selectively functionalized in sequence by two alkyne-modified fluorophores by control of the applied potentials. “Electro-click” on conducting polymer films...

  7. Controlled release of tocopherols from polymer blend films

    Science.gov (United States)

    Obinata, Noe

    Controlled release packaging has great potential to increase storage stability of foods by releasing active compounds into foods continuously over time. However, a major limitation in development of this technology is the inability to control the release and provide rates useful for long term storage of foods. Better understanding of the factors affecting active compound release is needed to overcome this limitation. The objective of this research was to investigate the relationship between polymer composition, polymer processing method, polymer morphology, and release properties of active compounds, and to provide proof of principle that compound release is controlled by film morphology. A natural antioxidant, tocopherol was used as a model active compound because it is natural, effective, heat stable, and soluble in most packaging polymers. Polymer blend films were produced from combination of linear low density polyethylene (LLDPE) and high density polyethylene (HDPE), polypropylene (PP), or polystyrene (PS) with 3000 ppm mixed tocopherols using conventional blending method and innovative blending method, smart blending with a novel mixer using chaotic advection. Film morphologies were visualized with scanning electron microscopy (SEM). Release of tocopherols into 95% ethanol as a food simulant was measured by UV/Visible spectrophotometry or HPLC, and diffusivity of tocopherols in the polymers was estimated from this data. Polymer composition (blend proportions) and processing methods have major effects on film morphology. Four different types of morphologies, dispersed, co-continuous, fiber, and multilayer structures were developed by either conventional extrusion or smart blending. With smart blending of fixed polymer compositions, different morphologies were progressively developed with fixed polymer composition as the number of rod rotations increased, providing a way to separate effects of polymer composition and morphology. The different morphologies

  8. Fast sodium ion conductivity in supertetrahedral phosphidosilicates.

    Science.gov (United States)

    Johrendt, Dirk; Haffner, Arthur; Hatz, Anna Katharina; Moudrakovski, Igor; Lotsch, Bettina Valeska

    2018-04-03

    Fast sodium ion conductors are key components of sodium-based all-solid-state batteries which hold promise as safe systems for large-scale storage of electrical power. Here, we report the synthesis, crystal structure determination and Na+ ion conductivities of six new sodium ion conductors, the phosphidosilicates Na19Si13P25, Na23Si19P33, Na23Si28P45, Na23Si37P57, LT-NaSi2P3 and HT-NaSi2P3, which are entirely based on earth-abundant elements. The new structures exhibit SiP4 tetrahedra assembling interpenetrating networks of T3 to T5 supertetrahedral clusters which can be hierarchically assigned to sphalerite- or diamond-type structures. 23Na solid-state NMR spectra and geometrical pathway analysis indicate Na+ ion mobility between the supertetrahedral cluster networks. Electrochemical impedance spectroscopy revealed Na+ ion conductivities up to σ (Na+) = 4 ∙ 10-4 Scm-1 with an activation energy of Ea = 0.25 eV in HT-NaSi2P3 at 25 °C. The conductivities increase with the size of the supertetrahedral clusters due to the dilution of Na+ ions as the charge density of the anionic supertetrahedral networks decreases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanostructures on spin-coated polymer films controlled by solvent composition and polymer molecular weight

    Energy Technology Data Exchange (ETDEWEB)

    Dario, Aline F.; Macia, Henrique B.; Petri, Denise F.S., E-mail: dfsp@iq.usp.br

    2012-12-01

    In this study we systematically investigated how the solvent composition used for polymer dissolution affects the porous structures of spin-coated polymers films. Cellulose acetate butyrate (CAB) and poly(methyl methacrylate) with low (PMMA-L) and high (PMMA-H) molecular weights were dissolved in mixtures of acetone (AC) and ethyl acetate (EA) at constant polymer concentration of 10 g/L The films were spin-coated at a relative air humidity of 55 {+-} 5%, their thickness and index of refraction were determined by means of ellipsometry and their morphology was analyzed by atomic force microscopy. The dimensions and frequency of nanocavities on polymer films increased with the acetone content ({phi}{sub AC}) in the solvent mixture and decreased with increasing polymer molecular weight. Consequently, as the void content increased in the films, their apparent thicknesses increased and their indices of refraction decreased, creating low-cost anti-reflection surface. The void depth was larger for PMMA-L than for CAB. This effect was attributed to different activities of EA and AC in CAB or PMMA-L solution, the larger mobility of chains and the lower polarity of PMMA-L in comparison to CAB. - Highlights: Black-Right-Pointing-Pointer Nanostructures in spin-coated polymer films depend on the solvent vapor pressure. Black-Right-Pointing-Pointer Anti-reflection polymer films are produced at high solvent vapor pressure. Black-Right-Pointing-Pointer Only shallow cavities are obtained in films of polymers with high molecular weight.

  10. Dynamic studies of nano-confined polymer thin films

    Science.gov (United States)

    Geng, Kun

    Polymer thin films with the film thickness (h0 ) below 100 nm often exhibit physical properties different from the bulk counterparts. In order to make the best use of polymer thin films in applications, it is important to understand the physical origins of these deviations. In this dissertation, I will investigate how different factors influence dynamic properties of polymer thin films upon nano-confinement, including glass transition temperature (Tg), effective viscosity (etaeff) and self-diffusion coefficient (D ). The first part of this dissertation concerns the impacts of the molecular weight (MW) and tacticity on the Tg's of nano-confined polymer films. Previous experiments showed that the Tg of polymer films could be depressed or increased as h0 decreases. While these observations are usually attributed to the effects of the interfaces, some experiments suggested that MW's and tacticities might also play a role. To understand the effects of these factors, the Tg's of silica-based poly(alpha-methyl styrene) (PalphaMS/SiOx) and poly(methyl methacrylate) (PMMA/SiOx) thin films were studied, and the results suggested that MW's and tacticities influence Tg in nontrivial ways. The second part concerns an effort to resolve the long-standing controversy about the correlation between different dynamics of polymer thin films upon nano-confinement. Firstly, I discuss the experimental results of Tg, D and etaeff of poly(isobutyl methacrylate) films supported by silica (PiBMA/SiOx). Both T g and D were found to be independent of h 0, but etaeff decreased with decreasing h 0. Since both D and etaeff describe transport phenomena known to depend on the local friction coefficient or equivalently the local viscosity, it is questionable why D and etaeff displayed seemingly inconsistent h 0 dependencies. We envisage the different h0 dependencies to be caused by Tg, D and etaeff being different functions of the local T g's (Tg,i) or viscosities (eta i). By assuming a three

  11. Characterization of Thin Films for Polymer Solar Cells

    DEFF Research Database (Denmark)

    Tromholt, Thomas

    of solar cells with low embedded time, material, and energy consumption as compared to silicon solar cells. Consequently, different demonstration products of small mobile gadgets based on polymer solar cells have been produced, which are fully competitive with conventional energy technologies, illustrating...... time of the cell is highly increased. An alternative approach is to increase the photo stability of the cell components, and especially the light absorbing conjugated polymer has been subject to extensive attention. The photo stability of conjugated polymers varies by orders of magnitude from type...... to type depending on the chemical structure of the material and consequently, the lifetime is highly influenced by the polymer stability. Photochemical degradation of polymers, i.e. degradation of thin films of polymer in the ambient under light exposure, is a technique normally applied to evaluate...

  12. Microbic destruction of radionuclide-containing polymer films

    International Nuclear Information System (INIS)

    Markov, G.S.; Smirnov, I.V.; Romanovskij, V.N.; Tret'yakov, V.E.; Khramov, N.N.; Nugaeva, N.D.; Lebedeva, E.V.

    2002-01-01

    Processes of microbic destruction of polymeric paints are of interest, as they can be used for decontamination of radioactive painted surfaces. Biodestruction of polymeric films on the basis of flax drying oil using spawn microfungi, i.e. Aspergillus, Penicillium, Trichoderma, Cladosporium, Alternaria, was studied. It is shown that some of the microfungi strains chosen feature a high enough resistance to ionizing radiations. When insignificant amounts of substances that can be easily uptaken by fungi are placed on the surface of the films, communities of the microfungi strains chosen can be use for destruction of polymer films. The destroyed portions of the films can be easily removed after hot water treatment [ru

  13. Dielectric breakdown in silica-amorphous polymer nanocomposite films: the role of the polymer matrix.

    Science.gov (United States)

    Grabowski, Christopher A; Fillery, Scott P; Westing, Nicholas M; Chi, Changzai; Meth, Jeffrey S; Durstock, Michael F; Vaia, Richard A

    2013-06-26

    The ultimate energy storage performance of an electrostatic capacitor is determined by the dielectric characteristics of the material separating its conductive electrodes. Polymers are commonly employed due to their processability and high breakdown strength; however, demands for higher energy storage have encouraged investigations of ceramic-polymer composites. Maintaining dielectric strength, and thus minimizing flaw size and heterogeneities, has focused development toward nanocomposite (NC) films; but results lack consistency, potentially due to variations in polymer purity, nanoparticle surface treatments, nanoparticle size, and film morphology. To experimentally establish the dominant factors in broad structure-performance relationships, we compare the dielectric properties for four high-purity amorphous polymer films (polymethyl methacrylate, polystyrene, polyimide, and poly-4-vinylpyridine) incorporating uniformly dispersed silica colloids (up to 45% v/v). Factors known to contribute to premature breakdown-field exclusion and agglomeration-have been mitigated in this experiment to focus on what impact the polymer and polymer-nanoparticle interactions have on breakdown. Our findings indicate that adding colloidal silica to higher breakdown strength amorphous polymers (polymethyl methacrylate and polyimide) causes a reduction in dielectric strength as compared to the neat polymer. Alternatively, low breakdown strength amorphous polymers (poly-4-vinylpyridine and especially polystyrene) with comparable silica dispersion show similar or even improved breakdown strength for 7.5-15% v/v silica. At ∼15% v/v or greater silica content, all the polymer NC films exhibit breakdown at similar electric fields, implying that at these loadings failure becomes independent of polymer matrix and is dominated by silica.

  14. Dry-film polymer waveguide for silicon photonics chip packaging.

    Science.gov (United States)

    Hsu, Hsiang-Han; Nakagawa, Shigeru

    2014-09-22

    Polymer waveguide made by dry film process is demonstrated for silicon photonics chip packaging. With 8 μm × 11.5 μm core waveguide, little penalty is observed up to 25 Gbps before or after the light propagate through a 10-km long single-mode fiber (SMF). Coupling loss to SMF is 0.24 dB and 1.31 dB at the polymer waveguide input and output ends, respectively. Alignment tolerance for 0.5 dB loss increase is +/- 1.0 μm along both vertical and horizontal directions for the coupling from the polymer waveguide to SMF. The dry-film polymer waveguide demonstrates promising performance for silicon photonics chip packaging used in next generation optical multi-chip module.

  15. Fabrication of flexible polymer dispersed liquid crystal films using conducting polymer thin films as the driving electrodes

    International Nuclear Information System (INIS)

    Kim, Yang-Bae; Park, Sucheol; Hong, Jin-Who

    2009-01-01

    Conducting polymers exhibit good mechanical and interfacial compatibility with plastic substrates. We prepared an optimized coating formulation based on poly(3,4-ethylenedioxythiophene) (PEDOT) and 3-(trimethoxysilyl)propyl acrylate and fabricated a transparent electrode on poly(ethylene terephthalate) (PET) substrate. The surface resistances and transmittance of the prepared thin films were 500-600 Ω/□ and 87% at 500 nm, respectively. To evaluate the performance of the conducting polymer electrode, we fabricated a five-layer flexible polymer-dispersed liquid crystal (PDLC) device as a PET-PEDOT-PDLC-PEDOT-PET flexible film. The prepared PDLC device exhibited a low driving voltage (15 VAC), high contrast ratio (60:1), and high transmittance in the ON state (60%), characteristics that are comparable with those of conventional PDLC film based on indium tin oxide electrodes. The fabrication of conducting polymer thin films as the driving electrodes in this study showed that such films can be used as a substitute for an indium tin oxide electrode, which further enhances the flexibility of PDLC film

  16. Influence of substrate and film thickness on polymer LIPSS formation

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jing; Nogales, Aurora; Ezquerra, Tiberio A. [Instituto de Estructura de la Materia (IEM-CSIC), Serrano 121, Madrid 28006 (Spain); Rebollar, Esther, E-mail: e.rebollar@csic.es [Instituto de Química Física Rocasolano (IQFR-CSIC), Serrano 119, Madrid 28006 (Spain)

    2017-02-01

    Highlights: • The estimation of temperature upon pulse accumulation shows that a small positive offset is caused by each individual pulse. • Number of pulses needed for LIPSS formation in PS thin films depends on polymer thickness. • Thermal conductivity and diffusivity of supporting substrate influence the onset for LIPSS formation and their quality. • Quality of LIPSS is affected by the substrate optical properties. - Abstract: Here we focus on the influence of both, substrate and film thickness on polymer Laser Induced Periodic Surface Structures (LIPSS) formation in polymer films. For this aim a morphological description of ripples structures generated on spin-coated polystyrene (PS) films by a linearly polarized laser beam with a wavelength of 266 nm is presented. The influence of different parameters on the quality and characteristics of the formed laser-induced periodic surface structures (LIPSS) was investigated. We found that well-ordered LIPSS are formed either on PS films thinner than 200 nm or thicker than 400 nm supported on silicon substrates as well as on thicker free standing films. However less-ordered ripples are formed on silicon supported films with intermediate thicknesses in the range of 200–380 nm. The effect of the thermal and optical properties of the substrate on the quality of LIPSS was analyzed. Differences observed in the fluence and number of pulses needed for the onset of surface morphological modifications is explained considering two main effects which are: (1) The temperature increase on polymer surface induced by the action of cumulative laser irradiation and (2) The differences in thermal conductivity between the polymer and the substrate which strongly affect the heat dissipation generated by irradiation.

  17. Piezoelectric PVF2 Polymer Films and Devices.

    Science.gov (United States)

    1981-11-01

    through two sources. One was the Kureha Corp. of Japan. The Kureha PVF 2 was either 9 or 25 microns thick. As received, it was uniformly electroded on...that of gold. We fabricated gold electrodes on the film samples by vacuum deposition. In the case of Kureha films, the aluminum electrodes were first...film obtained through the Kureha Corp. of Japan. The fabrication process followed the procedure described in Section Ilt-B, with the PVF2 being cut

  18. Patterned Fluorescence Images with Indigo Precursors in Polymer Film

    International Nuclear Information System (INIS)

    Yoon, Bora; Oh, Eun Hae; Lee, Chan Woo; Kim, Jongman

    2013-01-01

    We have developed a new strategy for the generation of patterned fluorescence images in polymer film. A fluorescent acetyl protected indole 6 was transformed to a nonfluorescent indigo dye 7 by UV irradiation. In addition, a t-Boc protected fluorescent indigo molecule 8 was also converted to a nonfluorescent indigo derivative 7 under a chemical amplification condition. Photomasked UV irradiation of the precursor molecules allowed efficient generation of patterned fluorescence images in polymer film. The strategy described in current investigation is believed to be an important addition to the fluorescent patterning technology

  19. Patterned Fluorescence Images with Indigo Precursors in Polymer Film

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Bora; Oh, Eun Hae; Lee, Chan Woo; Kim, Jongman [Hanyang Univ., Seoul (Korea, Republic of)

    2013-04-15

    We have developed a new strategy for the generation of patterned fluorescence images in polymer film. A fluorescent acetyl protected indole 6 was transformed to a nonfluorescent indigo dye 7 by UV irradiation. In addition, a t-Boc protected fluorescent indigo molecule 8 was also converted to a nonfluorescent indigo derivative 7 under a chemical amplification condition. Photomasked UV irradiation of the precursor molecules allowed efficient generation of patterned fluorescence images in polymer film. The strategy described in current investigation is believed to be an important addition to the fluorescent patterning technology.

  20. Study of PEDOT conductive polymer films by admittance measurements

    International Nuclear Information System (INIS)

    Tamburri, Emanuela; Sarti, Stefano; Orlanducci, Silvia; Terranova, Maria Letizia; Rossi, Marco

    2011-01-01

    Research highlights: → Microwave technique to measure the conductivity of PEDOT films. → PEDOT conductivity depends on its mesoscopic scale structure and oxidation level. → Raman spectroscopy and SEM analysis to study structure and morphology of PEDOT. → Microwave measurements allow determination of the macroscopic scale conductivity. → Microwave measurements overcome problems related to the local structural defects and inhomogeneities of PEDOT. - Abstract: In this paper we propose the use of a microwave technique to measure the conductivity of poly(3,4-ethylenedioxythiophene) (PEDOT) films. The PEDOT layers were prepared by electropolymerization from aqueous solutions using both poly(sodium 4-styrene sulphonate) (NaPSS) and sodium dodecyl sulphate (NaDS) acting as monomer solubilizer and dopant for the polymer. The conductive properties of a series of samples produced under different synthesis conditions and characterized by different structures have been investigated by microwave measurements in the frequency range from 40 MHz to 40 GHz by using a Corbino disc geometry. Such technique allows to estimate the mean conductivity of the polymer samples overcoming the limitations of the measuring configurations typically imposed by the conventional d.c. measurements. The morphology of PEDOT films and the structure of polymer chains were studied by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. The correlated morphological, structural and microwave analysis enabled us to evidence several factors that affect the macroscopic scale conductivity of the polymer sample films and to identify the conditions for preparation of PEDOT films with functional properties relevant to technological applications.

  1. Comparative study of EB and UV cured polymer films

    International Nuclear Information System (INIS)

    Ali, M.A.; Akhtar, F.; Idriss Ali, K.M.

    1999-01-01

    A number of formulations were developed with urethane diacrylate oligomers in combination with several reactive diluent monomers of different functionalities in the presence of certain co-diluent co-monomers. Thin polymer films were prepared with these formulated solutions using either electron beam (EB) or ultraviolet (UV) radiation. Physical, mechanical and thermal properties of the radiation cured films were studied and correlated with the glass transition temperature (Tg) of the homopolymer of diluents and co-diluents. Tensile properties (strength and elongation) were almost double with the UV-cured films than those of the EB-cured films of the similar formulation. Thermal behavior was also found to be different in these two systems. The co-monomers played significant role to produce more shape recovery films than the oligomer/diluent system. The co-diluents also induced shape recovery character in the film whose Tg values are lower than 0 degree C. This is unique

  2. Analytical model describes ion conduction in fuel cell membranes

    Science.gov (United States)

    Herbst, Daniel; Tse, Steve; Witten, Thomas

    2014-03-01

    Many fuel cell designs employ polyelectrolyte membranes, but little is known about how to tune the parameters (water level, morphology, etc.) to maximize ion conductivity. We came up with a simple model based on a random, discrete water distribution and ion confinement due to neighboring polymer. The results quantitatively agree with molecular dynamics (MD) simulations and explain experimental observations. We find that when the ratio of water volume to polymer volume, Vw /Vp , is small, the predicted ion self-diffusion coefficient scales roughly as Dw T√{Vw /Vp } exp(- ⋯Vp /Vw) , where Dw T is the limiting value in pure water at temperature T . At high water levels the model also agrees with MD simulation, plateauing to Dw T . The model predicts a maximum conductivity at a water level higher than is typically used, and that it would be beneficial to increase water retention even at the expense of lower ion concentration. Also, membranes would conduct better if they phase-separated into water-rich and polymer-rich regions. US ARMY MURI #W911NF-10-1-0520.

  3. Nanostructure investigation of polymer solutions, polymer gels, and polymer thin films

    Science.gov (United States)

    Lee, Wonjoo

    This thesis discusses two systems. One is structured hydrogels which are hydrogel systems based on crosslinked poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) containing micelles which form nanoscale pores within the PDMAEMA hydrogel. The other is nanoporous block copolymer thin films where solvent selectivity is exploited to create nanopores in PS-b-P4VP thin films. Both of these are multicomponent polymer systems which have nanoscale porous structures. 1. Small angle neutron scattering of micellization of anionic surfactants in water, polymer solutions and hydrogels. Nanoporous materials have been broadly investigated due to the potential for a wide range of applications, including nano-reactors, low-K materials, and membranes. Among those, molecularly imprinted polymers (MIP) have attracted a large amount of interest because these materials resemble the "lock and key" paradigm of enzymes. MIPs are created by crosslinking either polymers or monomers in the presence of template molecules, usually in water. Initially, functional groups on the polymer or the monomer are bound either covalently or noncovalently to the template, and crosslinking results in a highly crosslinked hydrogel. The MIPs containing templates are immersed in a solvent (usually water), and the large difference in the osmotic pressure between the hydrogel and solvent removes the template molecules from the MIP, leaving pores in the polymer network containing functionalized groups. A broad range of different templates have been used ranging from molecules to nanoscale structures inclucing stereoisomers, virus, and micelles. When micelles are used as templates, the size and shape before and after crosslinking is an important variable as micelles are thermodynamic objects whose structure depends on the surfactant concentration of the solution, temperature, electrolyte concentration and polymer concentration. In our research, the first goal is to understand the micellization of anionic

  4. Polymer film strain gauges for measuring large elongations

    Science.gov (United States)

    Kondratov, A. P.; Zueva, A. M.; Varakin, R. S.; Taranec, I. P.; Savenkova, I. A.

    2018-02-01

    The paper shows the possibility to print polymer strain gages, microstrip lines, coplanar waveguides, and other prints for avionics using printing technology and equipment. The methods of screen and inkjet printing have been complemented by three new operations of preparing print films for application of an electrically conductive ink layer. Such additional operations make it possible to enhance the conductive ink layer adhesion to the film and to manufacture strain gages for measuring large elongations.

  5. Dynamics of Polymer Thin Film Mixtures

    Science.gov (United States)

    Besancon, Brian M.; Green, Peter F.; Soles, Christopher L.

    2006-03-01

    We examined the influence of film thickness and composition on the glass transition temperature (Tg) and mean square atomic displacements (MSD) of thin film mixtures of deuterated polystyrene (dPS) and tetramethyl bisphenol-A polycarbonate (TMPC) on Si/SiOx substrates using incoherent elastic neutron scattering (ICNS). The onset of dissipative motions, such as those associated with the glass transition and sub-Tg relaxations, are manifested as ``kinks'' in the curve of elastic intensity (or MSD) versus temperature. From the relevant kinks, the Tg was determined as a function of composition and of film thickness. The dependence of the Tg on film thickness exhibited qualitatively similar trends, at a given composition, as determined by the ICNS and ellipsometry measurements. However, with increasing PS content, the values of Tg measured by INS were consistently larger then those measured by ellipsometry. These results are examined in light of existing models on the thin film glass transition and component blend dynamics.

  6. Vacuum deposited polymer films: Past, present, and future applications

    Energy Technology Data Exchange (ETDEWEB)

    Affinito, J.; Martin, P.; Gross, M.; Bennett, W.

    1994-11-01

    Two extremely high rate processes have been developed for the vacuum deposition of polymer thin films. Dubbed the PML (for Polymer Multi-Layer) and LML (for Liquid Multi-Layer) processes, the PML technique was originally developed for the manufacture of polymer/aluminum surface mount capacitors while the LML method arose from a need to fabricate lithium polymer batteries. These processes have since been found to be compatible with most other vacuum deposition techniques in, integrated, in-line coating processes. Battelle has developed an extensive program, and a great deal of hardware, to pursue a wide variety of PML and LML applications which integrate these two process technologies with other, conventional, vacuum deposition methods. The historical development of the technologies is reviewed and the Battelle PML/LML facilities are described. Current Battelle work involving solar thermal control films, PML QWOTs, and polymer/metal high reflectors are also discussed. Battelle PML work that is just starting, involving non-linear optical materials/devices, lithium polymer battery fabrication, electrochromic devices, and polymer/oxide multilayers, is discussed as well.

  7. Ionic drift velocity measurement on hot-pressed Ag ion conducting ...

    Indian Academy of Sciences (India)

    batteries.1–5 The first ion conducting SPE: poly(ethylene oxide) PEO : Li. +. –salt complex was discovered in 1973.1. Since then, large numbers of polymer electrolyte .... In case of normal ionic solids (e.g., alkali/silver halides), the extent of ionic conductivity predominantly depends on con- centration of the point defects (viz., ...

  8. Ionic drift velocity measurement on hot-pressed Ag ion conducting ...

    Indian Academy of Sciences (India)

    The ion conducting glassy superionic solid is one of the best solid electrolytes for the solid-state battery applica- tions but it is very difficult to handle at room temperature because of its glassy phase. In the recent years, to overcome these problems, glass-polymer electrolytes (GPEs) have been proposed.7–9 The ion ...

  9. Polymer Thick-Film Sensors: Possibilities for Smartcard Biometrics

    NARCIS (Netherlands)

    Henderson, N.J.; Papakostas, T.V.; White, N.M.; Hartel, Pieter H.

    In this paper the potential of polymer thick-film sensors are assessed for use as biometric sensors on smartcards. Piezoelectric and piezoresistive sensors have been printed on flexible polyester, then bonded to smartcard blanks. The tactile interaction of a person with these sensors has been

  10. Structuring of Thin-Film Polymer Mixtures upon Solvent Evaporation

    NARCIS (Netherlands)

    Schaefer, C.; Michels, J. J.; van der Schoot, P.

    2016-01-01

    We theoretically study the impact of solvent evaporation on the dynamics of isothermal phase separation of ternary polymer solutions in thin films. In the early stages we obtain a spinodal length scale that decreases with time under the influence of ongoing evaporation. After that rapid demixing

  11. Free Surface Relaxations of Star Shaped Polymer Films

    Energy Technology Data Exchange (ETDEWEB)

    Glynos, Emmanoui; Johnson, Kyle J.; Frieberg, Bradley R.; Chremos, Alexandros; Narayanan, Suresh; Sakellariou, Georgios; Green, Peter F.

    2017-11-28

    The surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 degrees above the bulk glass transition temperature Tgbulk. This behavior, exhibited by star-shaped polystyrenes (SPSs) with functionality f = 8-arms and molecular weights per arm Marm < Me (Me is the entanglement molecular weight), is shown by molecular dynamics simulations to be associated with a preferential localization of these macromolecules at the free surface. This new phenomenon is in notable contrast to that of linear chain polymer thin film systems where the surface relaxations are enhanced in relation to the bulk; this enhancement persists only for a limited temperature range above the bulk Tgbulk. Evidence of the slow surface dynamics, compared to the bulk, for temperatures well above Tg and at length and time scales not associated with the glass transition has not previously been reported for polymers

  12. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  13. Free Surface Relaxations of Star-Shaped Polymer Films

    Energy Technology Data Exchange (ETDEWEB)

    Glynos, Emmanouil; Johnson, Kyle J.; Frieberg, Bradley; Chremos, Alexandros; Narayanan, Suresh; Sakellariou, Georgios; Green, Peter F.

    2017-11-01

    The surface relaxation dynamics of supported star-shaped polymer thin films are shown to be slower than the bulk, persisting up to temperatures at least 50 K above the bulk glass transition temperature Tgbulk. This behavior, exhibited by star-shaped polystyrenes with functionality f=8 arms and molecular weights per arm Marmpolymer thin film systems, where the surface relaxations are enhanced in relation to the bulk; this enhancement persists only for a limited temperature range above the bulk Tgbulk. Evidence of the slow surface dynamics, compared to the bulk, for temperatures well above Tg and at length and time scales not associated with the glass transition has not previously been reported for polymers.

  14. Co-polymer Films for Sensors

    Science.gov (United States)

    Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)

    2012-01-01

    Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.

  15. Optical anisotropy in films of photoaddressable polymers

    Czech Academy of Sciences Publication Activity Database

    Cimrová, Věra; Neher, D.; Kostromine, S.; Bieringer, T.

    1999-01-01

    Roč. 32, č. 25 (1999), s. 8496-8503 ISSN 0024-9297 R&D Projects: GA AV ČR KSK2050602 Keywords : photoaddressable polymers * light-induced birefringence Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.534, year: 1999

  16. Scanning Ion Conductance Microscopy of Live Keratinocytes

    International Nuclear Information System (INIS)

    Hegde, V; Mason, A; Saliev, T; Smith, F J D; McLean, W H I; Campbell, P A

    2012-01-01

    Scanning ion conductance microscopy (SICM) is perhaps the least well known technique from the scanning probe microscopy (SPM) family of instruments. As with its more familiar counterpart, atomic force microscopy (AFM), the technique provides high-resolution topographic imaging, with the caveat that target structures must be immersed in a conducting solution so that a controllable ion current may be utilised as the basis for feedback. In operation, this non-contact characteristic of SICM makes it ideal for the study of delicate structures, such as live cells. Moreover, the intrinsic architecture of the instrument, incorporating as it does, a scanned micropipette, lends itself to combination approaches with complementary techniques such as patch-clamp electrophysiology: SICM therefore boasts the capability for both structural and functional imaging. For the present observations, an ICnano S system (Ionscope Ltd., Melbourn, UK) operating in 'hopping mode' was used, with the objective of assessing the instrument's utility for imaging live keratinocytes under physiological buffers. In scans employing cultured HaCaT cells (spontaneously immortalised, human keratinocytes), we compared the qualitative differences of live cells imaged with SICM and AFM, and also with their respective counterparts after chemical fixation in 4% paraformaldehyde. Characteristic surface microvilli were particularly prominent in live cell imaging by SICM. Moreover, time lapse SICM imaging on live cells revealed that changes in the pattern of microvilli could be tracked over time. By comparison, AFM imaging on live cells, even at very low contact forces (< nN), could not routinely image microvilli: rather, an apparently convolved image of the underlying cytoskeleton was instead prevalent. We note that the present incarnation of the commercial instrument falls some way behind the market leading SPMs in terms of technical prowess and scanning speed, however, the intrinsic non-obtrusive nature of

  17. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Science.gov (United States)

    Schaubroeck, David; De Smet, Jelle; Willems, Wouter; Cools, Pieter; De Geyter, Nathalie; Morent, Rino; De Smet, Herbert; Van Steenbeerge, Geert

    2016-07-01

    Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  18. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  19. Spatial Heterogeneity of Glassy Polymer Films

    NARCIS (Netherlands)

    Sîretanu, Igor; Saadaoui, Hassan; Chapel, Jean Paul; Drummond, Carlos

    2015-01-01

    By studying the morphology of polystyrene films subjected to a fast structuration method, we demonstrate the spatial heterogeneity of their surface viscoelasticity at temperatures well below the glass transition temperature, Tg. Our results point to a nonrandom arrangement of zones of different

  20. Highly thermal-stable, plasma-polymerized BCB polymer film

    International Nuclear Information System (INIS)

    Kawahara, J; Nakano, A; Kinoshita, K; Harada, Y; Tagami, M; Tada, M; Hayashi, Y

    2003-01-01

    A new plasma-enhanced organic monomer-vapour polymerization (plasma polymerization) method has been developed. It was used to make a divinyl siloxane bis-benzocyclobutene (DVS-BCB) polymer film for Cu dual-damascene interconnects that had high thermal stability and a low dielectric constant, k = 2.6. The method consists of the vaporization of organic monomers, transportation of monomers in the gas phase, and polymerization by plasma to make the polymer film. The method eliminates polymer oxidation of DVS-BCB during the polymerization in high vacuum, which improves the film's thermal stability. The thermal stability of plasma-polymerized BCB (p-BCB) exceeded 400 deg. C because of the higher deposition temperature, and the film had a high resistance to Cu diffusion at 400 deg. C annealing. The narrow-pitched Cu/BCB damascene lines showed a 35% reduction in line capacitance compared with Cu/SiO 2 ones. The p-BCB is shown to be a strong candidate for Cu/low-k interconnects

  1. Conductive Polymer Porous Film with Tunable Wettability and Adhesion

    Directory of Open Access Journals (Sweden)

    Yuqi Teng

    2015-04-01

    Full Text Available A conductive polymer porous film with tunable wettability and adhesion was fabricated by the chloroform solution of poly(3-hexylthiophene (P3HT and [6,6]-phenyl-C61-butyricacid-methyl-ester (PCBM via the freeze drying method. The porous film could be obtained from the solution of 0.8 wt%, whose pore diameters ranged from 50 nm to 500 nm. The hydrophobic porous surface with a water contact angle (CA of 144.7° could be transferred into a hydrophilic surface with CA of 25° by applying a voltage. The water adhesive force on the porous film increased with the increase of the external voltage. The electro-controllable wettability and adhesion of the porous film have potential application in manipulating liquid collection and transportation.

  2. Plasma deposition of polymer composite films incorporating nanocellulose whiskers

    Science.gov (United States)

    Samyn, P.; Airoudj, A.; Laborie, M.-P.; Mathew, A. P.; Roucoules, V.

    2011-11-01

    In a trend for sustainable engineering and functionalization of surfaces, we explore the possibilities of gas phase processes to deposit nanocomposite films. From an analysis of pulsed plasma polymerization of maleic anhydride in the presence of nanocellulose whiskers, it seems that thin nanocomposite films can be deposited with various patterns. By specifically modifying plasma parameters such as total power, duty cycle, and monomer gas pressure, the nanocellulose whiskers are either incorporated into a buckled polymer film or single nanocellulose whiskers are deposited on top of a polymeric film. The density of the latter can be controlled by modifying the exact positioning of the substrate in the reactor. The resulting morphologies are evaluated by optical microscopy, AFM, contact angle measurements and ellipsometry.

  3. Manufacturing polymer thin films in a micro-gravity environment

    Science.gov (United States)

    Vera, Ivan

    1987-01-01

    This project represents Venezuela's first scientific experiment in space. The apparatus for the automatic casting of two polymer thin films will be contained in NASA's Payload No. G-559 of the Get Away Special program for a future orbital space flight in the U.S. Space Shuttle. Semi-permeable polymer membranes have important applications in a variety of fields, such as medicine, energy, and pharmaceuticals and in general fluid separation processes, such as reverse osmosis, ultrafiltration, and electrodialysis. The casting of semi-permeable membranes in space will help to identify the roles of convection in determining the structure of these membranes.

  4. Contact mechanics studies of polymer thin film adhesion

    Science.gov (United States)

    McSwain, Rachel Lynn

    The work presented in this dissertation focuses on using the unique abilities of the JKR technique to probe the interfacial interactions of two independent polymer systems. To perform these studies, modifications were made to the JKR technique, including the integration of a thermal cycle to enable testing of thermally initiated interfacial interactions between two materials. Another enhancement of the JKR technique involved incorporation of cyclic testing to study crack growth under fatigue conditions. These additions to the JKR technique were used in the analysis of interfacial interactions of poly(tetramethyl bisphenol-A polycarbonate) (TMPC) and poly(ethylene oxide) (PEO). Adhesion tests were performed on thin layers of PEO sandwiched between layers of TMPC, which were heated in contact above the melting temperature of the PEO and cooled back to room temperature before a cyclic fatigue test was performed. Additional characterization of the bulk and interfacial properties of this blend showed that these two polymers are miscible. From these studies, the interfacial interaction of the TMPC and PEO was found to be controlled by the PEO-mediated mixing of the TMPC layers. In a second set of experiments, a model film consisting of a layer of acrylic diblock copolymer micelles was used to study the processes involved in the transfer of a viscoelastic film from a weakly adhesive elastomer substrate to a more strongly adhesive hemispherical glass indenter. Transfer of the film during tensile loading of the indenter began with expansion of a cavity at the film/elastomer interface, followed by subsequent delamination of the film at this interface. Criteria for cavity expansion and delamination are expressed in terms of the energy release rate. The critical energy release rate for cavity expansion increases linearly with the film thickness. A critical film thickness was identified above which films are able to peel from the elastomeric substrate over a region outside the

  5. Study of ordered macroporous polymer films by templating breath figures

    Science.gov (United States)

    Song, Lulu

    2005-11-01

    Macroporous films with highly ordered pore patterns have many potential applications. Some examples include microstructured electrode surfaces, photonic band gap materials and filters for cell sorting and bio-interfaces. In this dissertation we discuss a "moist-casting" method to prepare hexagonally-ordered macroporous films with pore sizes in the range of sub-micron to several microns, where condensed water droplets ("breath figures") work as templates. Compared with other templating methods, this one is fast and simple. Well-ordered porous films can be obtained in tens of seconds and the pore size can be easily tailored and dynamically controlled by adjusting the casting conditions. More importantly, there is no need to remove the templates; water droplets just evaporate when the casting processes are finished. This study was carried out with the intention of characterizing the structures, understanding film-formation processes and exploring special properties and possible applications. For the structural characterization, film morphology was studied in detail by normal optical microscopy and laser scanning confocal microscopy (LSCM). Several interesting features have been revealed. Meanwhile, the degree of the order of the porous structures were characterized both in real space via Voronoi diagram and bond-orientational correlation function, and in reciprocal space via Fraunhofer diffraction pattern. To further understand the mechanism, the evaporation of the polymer solutions during the film formation was studied by monitoring their mass over time. Besides, the evolution of breath figures formed on the evaporating polymer solutions was in-situ recorded via a high-speed camera coupled to an optical microscope. Combined with the information on the film structures obtained via LSCM, explanations for some detailed features have been attempted. Wetting property of these films was studied in some detail. The films exhibited "lotus effect", mimicking natural non

  6. Transparent lithiated polymer films for thermal neutron detection

    Energy Technology Data Exchange (ETDEWEB)

    Mabe, Andrew N., E-mail: andrew.n.mabe@gmail.com [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Auxier, John D. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Urffer, Matthew J. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Penumadu, Dayakar [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Schweitzer, George K. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Miller, Laurence F. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-09-11

    Novel water-soluble {sup 6}Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using {sup 6}Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum {sup 6}Li loading obtained that resulted in a transparent film was 4.36% by mass ({sup 6}Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of {sup 6}Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein. -- Highlights: • A transparent polymer scintillator containing 3.85 wt% {sup 6}Li has been synthesized. • This class of polymeric thermal neutron scintillation detector is water-soluble. • Salicylic acid, presumably in the form of lithium salicylate, is used as a fluor. • The material emits 373 photons/α ({sup 241}Am) and an average of 139 photons/β ({sup 36}Cl). • The material emits 360 photons per thermal neutron capture event.

  7. THERMO-VISCOELASTIC CHARACTERIZATION OF POLYMER LAMINATE FILMS

    Directory of Open Access Journals (Sweden)

    Eliza Truszkiewicz

    2016-02-01

    Full Text Available The investigated material - laminate is intended as a substrate for small electronic components, electrodes and printed circuits, which are processed onto the laminate prior to thermoforming. The placement of the electronic components and the connecting circuits must be carefully designed to prevent damage during the thermoforming. The thermo-viscoelastic behavior of a polymer laminate film was characterized by mechanical measurements to obtain data for material modeling. The strain was measured using digital image correlation. The film is anisotropic and is able to deform to strains up to 60%.

  8. Physics and technology of optical storage in polymer thin films

    DEFF Research Database (Denmark)

    Ramanujam, P.S.; Hvilsted, Søren; Ujhelyi, F.

    2001-01-01

    We discuss different strategies for optical storage of information in polymeric films. An outline of the existing trends is given. The synthesis and characterization of side-chain azobenzene polyester films for holographic storage of information is described. A compact holographic memory card...... system based on polarization holography is described. A storage density of greater than 10MB/cm2 has been achieved so far, with a potential increase to 100MB/cm(2) using multiplexing techniques and software correction. Finally the role of surface relief in azobenzene polymers on irradiation...

  9. Anisotropic Liquid Microcapsules from Biomimetic Self-Folding Polymer Films.

    Science.gov (United States)

    Zakharchenko, Svetlana; Ionov, Leonid

    2015-06-17

    We demonstrated a novel approach for the fabrication of anisotropic capsules with liquid content using biomimetic self-folding thermoresponsive polymer films. The behavior of self-folding films is very similar to actuation in plants, where nonhomogenous swelling results in complex movements such as twisting, bending, or folding. This approach allows the design of anisotropic liquid capsules with rodlike and dumbbell-like morphologies. We found that these capsules are able to assemble into different complex structures, such as nematic-like one and 3D network depending on their morphology.

  10. Polymer Substrates For Lightweight, Thin-Film Solar Cells

    Science.gov (United States)

    Lewis, Carol R.

    1993-01-01

    Substrates survive high deposition temperatures. High-temperature-resistant polymers candidate materials for use as substrates of lightweight, flexible, radiation-resistant solar photovoltaic cells. According to proposal, thin films of copper indium diselenide or cadmium telluride deposited on substrates to serve as active semiconductor layers of cells, parts of photovoltaic power arrays having exceptionally high power-to-weight ratios. Flexibility of cells exploited to make arrays rolled up for storage.

  11. Seeding of polymer substrates for nanocrystalline diamond film growth

    Czech Academy of Sciences Publication Activity Database

    Kromka, Alexander; Babchenko, Oleg; Kozak, Halyna; Hruška, Karel; Rezek, Bohuslav; Ledinský, Martin; Potměšil, Jiří; Michalka, M.; Vaněček, Milan

    2009-01-01

    Roč. 18, 5-8 (2009), s. 734-739 ISSN 0925-9635 R&D Projects: GA AV ČR KAN400100701; GA AV ČR KAN400100652 Institutional research plan: CEZ:AV0Z10100521 Keywords : nanocrystalline diamond films * chemical vapor deposition * polymer * sscanning electron spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.822, year: 2009

  12. Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition

    OpenAIRE

    Kwon, Oh-Yun; Na, Hyun-Jun; Kim, Hyung-Jun; Lee, Dong-Won; Nam, Song-Min

    2012-01-01

    Two types of ceramic-polymer composite thick films were deposited on Cu substrates by an aerosol deposition process, and their properties were investigated to fabricate optimized ceramic-based polymer composite thick films for application onto integrated substrates with the advantage of plasticity. When polymers with different mechanical properties, such as polyimide (PI) and poly(methyl methacrylate) (PMMA), are used as starting powders together with α-Al2O3 powder, two types of composite fi...

  13. Thin aligned organic polymer films for liquid crystal devices

    International Nuclear Information System (INIS)

    Foster, Kathryn Ellen

    1997-01-01

    This project was designed to investigate the possibility of producing alignment layers for liquid crystal devices by cross-linking thin films containing anisotropic polymer bound chromophores via irradiation with polarised ultraviolet light. Photocross-linkable polymers find use in microelectronics, liquid crystal displays, printing and UV curable lacquers and inks; so there is an increasing incentive for the development of new varieties of photopolymers in general. The synthesis and characterisation of two new photopolymers that are suitable as potential alignment layers for liquid crystal devices are reported in this thesis. The first polymer contains the anthracene chromophore attached via a spacer unit to a methacrylate backbone and the second used a similarly attached aryl azide group. Copolymers of the new monomers with methyl methacrylate were investigated to establish reactivity ratios in order to understand composition drift during polymerisation. (author)

  14. The scanning probe microscopy study of thin polymer films

    International Nuclear Information System (INIS)

    Harron, H.R.

    1995-08-01

    Scanning Tunnelling Microscopy and Atomic Force Microscopy were used systematically to investigate the morphology, uniformity, coverage and structure of the thin films of several commercially important insulating polymers. Despite the poorly conducting nature of the polymer sample, detailed and convincing images of this class of materials were achieved by STM without the need to coat the samples with a conductive layer. The polymer regions of the sample were further investigated by the use of surface profiling with 'line scans'. The fluctuations of the amplitude therein enabled important film characteristics to be assessed. An environmental stage was designed for the STM to enable the effect of various vapour-sample interactions to be observed during the imaging process. Using the data from the environmental stage in addition to the surface profiling with line scans, an insight into the conduction mechanism and image interpretation was gained. Results suggest that the water content of the sample and its immediate surroundings is an important factor in achieving reliable STM images in air. The initial study culminated with the observation by STM alone of the plasticizer induced crystallization of uncoated PC thin films. The 'amorphous' PC films were observed before crystallization and small ordered regions in roughly the same proportion as that predicted by diffraction studies [Prietschk, 1959 and Schnell, 1964] were imaged. This has never been observed by a microscopy technique. Furthermore, images of the crystalline film contained elongated units that were attributed to the lamellae formations that form the basic building blocks of polymer spherulites. The study continued with the AFM imaging of the growth of crystalline entities in a PC film, without the need for harsh sample treatment or metal coating. A method of casting and crystallizing the films was developed such that the growth was predominantly in two dimensions and consequently ideal for observation by

  15. Effects of mechanical properties of polymer on ceramic-polymer composite thick films fabricated by aerosol deposition

    Science.gov (United States)

    Kwon, Oh-Yun; Na, Hyun-Jun; Kim, Hyung-Jun; Lee, Dong-Won; Nam, Song-Min

    2012-05-01

    Two types of ceramic-polymer composite thick films were deposited on Cu substrates by an aerosol deposition process, and their properties were investigated to fabricate optimized ceramic-based polymer composite thick films for application onto integrated substrates with the advantage of plasticity. When polymers with different mechanical properties, such as polyimide (PI) and poly(methyl methacrylate) (PMMA), are used as starting powders together with α-Al2O3 powder, two types of composite films are formed with different characteristics - surface morphologies, deposition rates, and crystallite size of α-Al2O3. Through the results of micro-Vickers hardness testing, it was confirmed that the mechanical properties of the polymer itself are associated with the performances of the ceramic-polymer composite films. To support and explain these results, the microstructures of the two types of polymer powders were observed after planetary milling and an additional modeling test was carried out. As a result, we could conclude that the PMMA powder is distorted by the impact of the Al2O3 powder, so that the resulting Al2O3-PMMA composite film had a very small amount of PMMA and a low deposition rate. In contrast, when using PI powder, the Al2O3-PI composite film had a high deposition rate due to the cracking of PI particles. Consequently, it was revealed that the mechanical properties of polymers have a considerable effect on the properties of the resulting ceramic-polymer composite thick films.

  16. Controlled antiseptic release by alginate polymer films and beads.

    Science.gov (United States)

    Liakos, Ioannis; Rizzello, Loris; Bayer, Ilker S; Pompa, Pier Paolo; Cingolani, Roberto; Athanassiou, Athanassia

    2013-01-30

    Biodegradable polymeric materials based on blending aqueous dispersions of natural polymer sodium alginate (NaAlg) and povidone iodine (PVPI) complex, which allow controlled antiseptic release, are presented. The developed materials are either free standing NaAlg films or Ca(2+)-cross-linked alginate beads, which properly combined with PVPI demonstrate antibacterial and antifungal activity, suitable for therapeutic applications, such as wound dressing. Glycerol was used as the plasticizing agent. Film morphology was studied by optical and atomic force microscopy. It was found that PVPI complex forms well dispersed circular micro-domains within the NaAlg matrix. The beads were fabricated by drop-wise immersion of NaAlg/PVPI/glycerol solutions into aqueous calcium chloride solutions to form calcium alginate beads encapsulating PVPI solution (CaAlg/PVPI). Controlled release of PVPI was possible when the composite films and beads were brought into direct contact with water or with moist media. Bactericidal and fungicidal properties of the materials were tested against Escherichia coli bacteria and Candida albicans fungi. The results indicated very efficient antibacterial and antifungal activity within 48 h. Controlled release of PVPI into open wounds is highly desired in clinical applications to avoid toxic doses of iodine absorption by the wound. A wide variety of applications are envisioned such as external and internal wound dressings with controlled antiseptic release, hygienic and protective packaging films for medical devices, and polymer beads as water disinfectants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Influence of organoclay type on morphology of polymer films

    International Nuclear Information System (INIS)

    Gama, D.B.; Tavares, A.A.; Silva, D.F.A; Silva, S.M.L; Andrade, D.L.A.C.S.

    2011-01-01

    In this work, bentonite clay from Paraiba has been purified (removed organic matter) and then modified with the surfactants, cetyl trimethyl ammonium bromide (Cetremide) and hexadecyl tributyl phosphonium bromide (phosphonium) to obtain organoclays to be incorporated into polymer films. The clays were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and infrared spectroscopy (FTIR) and films by X-ray diffraction (XRD). The results showed that the interplanar basal distance of the bentonite modified with salts, and phosphonium Cetremide, showed higher values than the natural bentonite, thus confirming the intercalation of organic cations between the clay galleries and thus to obtain organoclays and that the type of organoclay influence the morphology of the films obtained. (author)

  18. Plasma-polymerized SiOx deposition on polymer film surfaces for preparation of oxygen gas barrier polymeric films

    International Nuclear Information System (INIS)

    Inagaki, N.

    2003-01-01

    SiOx films were deposited on surfaces of three polymeric films, PET, PP, and Nylon; and their oxygen gas barrier properties were evaluated. To mitigate discrepancies between the deposited SiOx and polymer film, surface modification of polymer films was done, and how the surface modification could contribute to was discussed from the viewpoint of apparent activation energy for the permeation process. The SiOx deposition on the polymer film surfaces led to a large decrease in the oxygen permeation rate. Modification of polymer film surfaces by mans of the TMOS or Si-COOH coupling treatment in prior to the SiOx deposition was effective in decreasing the oxygen permeation rate. The cavity model is proposed as an oxygen permeation process through the SiOx-deposited Nylon film. From the proposed model, controlling the interface between the deposited SiOx film and the polymer film is emphasized to be a key factor to prepare SiOx-deposited polymer films with good oxygen gas barrier properties. (author)

  19. Polymers films with indandione derivatives as alternatives to azobenzene polymers for optical patterning

    Energy Technology Data Exchange (ETDEWEB)

    Stiller, B. [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany)], E-mail: busti@rz.uni-potsdam.de; Saphiannikova, M. [Leibniz Institute of Polymer Research, Hohe Strasse 6, D-01069 Dresden (Germany); Morawetz, K. [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany); Ilnytskyi, J. [Institute for Condensed Matter Physics, 1 Svientsitskii Str., 79011, Lviv (Ukraine); Neher, D. [University of Potsdam, Institute of Physics, Am Neuen Palais 10, 14469 Potsdam (Germany); Muzikante, I. [Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, Riga, LV 1063 (Latvia); Pastors, P.; Kampars, V. [Riga Technical University, Azenes Str. 14/24, Riga LV-1048 (Latvia)

    2008-10-31

    Surface relief gratings (SRGs) on organic thin films are studied extensively for both scientific interest and in relevance to the applications. Among the chromophores being used the azobenzenes showed the best performance, but the use of alternative photo-sensitive groups provides better general understanding of the phenomena. A thermodynamic theory and molecular dynamics simulations of photoinduced effects are discussed. In this study we use indandione derivatives, known as promising materials for photonics applications, as an alternative to the azobenzenes. We consider their photoreactions when incorporated into a polymer film. One of interesting features is the spectral dependence of the diffraction of indandione containing gratings, which is observed and discussed.

  20. The Glass Transition of Miscible Binary Polymer-Polymer Thin Films

    Science.gov (United States)

    Green, Peter; Besancon, Brian; Soles, Christopher

    2007-03-01

    Studies of the glass transition temperatures, Tg, of completely miscible thin film blends of tetramethyl bisphenol-A polycarbonate (TMPC) and deuterated polystyrene (dPS), supported by SiOx/Si, were examined using spectroscopic ellipsometry (SE) and incoherent elastic neutron scattering (INS). While both sets of measurements independently reveal that Tg exhibits qualitatively similar trends with film thickness, h, there were important quantitative differences, which depended on composition. The Tgs measured by INS were consistently larger than those determined by SE for PS weight fractions φ>0.1. These observations are rationalized in terms of theory based on the notion of a self- concentration and reveal evidence of heterogeneous component behavior in these miscible polymer-polymer systems.

  1. Studies on polymer thin film structure by X-ray and neutron reflectivity and grazing incidence small angle scattering

    International Nuclear Information System (INIS)

    Ogawa, Hiroki; Kanaya, Toshiji

    2011-01-01

    We have reviewed structure studies of polymer thin films using synchrotron radiation X-ray and neutron reflectivity as well as recently developed grazing incidence small-angle X-ray and neutron scattering, including studies on polymer thin films with embedded ordered nanometer cells, distribution of glass transition temperature Tg in thin polystyrene films, and dewetting process of polymer blend thin films. (author)

  2. Application of Thin Films of Conjugated Polymers in Novel LED's and Liquid Crystal 'Light Valves'

    National Research Council Canada - National Science Library

    MacDiarmid, A

    1997-01-01

    .... Flexible, completely organic polymer dispersed liquid crystal light valves have been fabricated from transparent plastic substrates on which a conducting film of polypyrrole has been deposited...

  3. Surface analysis of the selective excimer laser patterning of a thin PEDOT:PSS film on flexible polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); De Smet, Jelle; Willems, Wouter [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium); Cools, Pieter; De Geyter, Nathalie; Morent, Rino [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering, Ghent University, Sint-Pietersnieuwstraat 41, B-9000 Ghent (Belgium); De Smet, Herbert; Van Steenbeerge, Geert [Center for Microsystems Technology (CMST), imec and Ghent University, Technologiepark 15, B-9052 Ghent (Belgium)

    2016-07-15

    Highlights: • Laser patterning of thin film PEDOT:PSS on polymer foils is characterized in great detail. • PEDOT:PSS does not need to be fully removed to create electrically insulating patterns. • The underlying polymer foil influences the ablation behavior. - Abstract: Fast patterning of highly conductive polymers like PEDOT:PSS (poly (3,4-ethylene dioxythiophene): polystyrene sulfonate) with lasers can contribute to the development of industrial production of liquid crystal displays on polymer foils. In this article, the selective UV laser patterning of a PEDOT:PSS film on flexible polymer films is investigated. Based on their optical properties, three polymer films are investigated: polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and cellulose triacetate (TAC). Ablation parameters for a 110 nm PEDOT:PSS film on these polymer films are optimized. A detailed study of the crater depth, topography and surface composition are provided using optical profilometry, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The electrical insulation of the lines is measured and correlated to the crater analyses for different laser settings. Finally, potential ablation parameters for each of the polymer films are derived.

  4. Selectively Patterning Polymer Opal Films via Microimprint Lithography.

    Science.gov (United States)

    Ding, Tao; Zhao, Qibin; Smoukov, Stoyan K; Baumberg, Jeremy J

    2014-11-01

    Large-scale structural color flexible coatings have been hard to create, and patterning color on them is key to many applications, including large-area strain sensors, wall-size displays, security devices, and smart fabrics. To achieve controlled tuning, a micro-imprinting technique is applied here to pattern both the surface morphology and the structural color of the polymer opal films (POFs). These POFs are made of 3D ordered arrays of hard spherical particles embedded inside soft shells. The soft outer shells cause the POFs to deform upon imprinting with a pre-patterned stamp, driving a flow of the soft polymer and a rearrangement of the hard spheres within the films. As a result, a patterned surface morphology is generated within the POFs and the structural colors are selectively modified within different regions. These changes are dependent on the pressure, temperature, and duration of imprinting, as well as the feature sizes in the stamps. Moreover, the pattern geometry and structural colors can then be further tuned by stretching. Micropattern color generation upon imprinting depends on control of colloidal transport in a polymer matrix under shear flow and brings many potential properties including stretchability and tunability, as well as being of fundamental interest.

  5. Permeation of gases through electron-beam-irradiated polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Hidetoshi; Muraoka, Michiaki; Tanaka, Kazuhiro; Okamoto, Ken-ichi

    1988-06-01

    The permeation of CO/sub 2/, CH/sub 4/, O/sub 2/, N/sub 2/, SF/sub 6/, and He was measured at 35deg C in electron-beam-irradiated polymer films such as 1,2-polybutadiene (PB), polycarbonate (PC), polydimethylsiloxane (PDMS), poly(ethylene terephthalate) (PET), poly(4-methylpentene-1) (PMP), and polypropylene (PP). The permeability coefficients of the gases in PB decreased and those in PP increased with increasing irradiation dose, while those of PC, PDMS, PET, and PMP were virtually unaffected by irradiation. These results were attributed to the radiation effects of crosslinking in PB and degradation in PP. PC, PDM, PET, and PMP were insensitive to radiation, which accounts for the little change in permeation behavior. The decreases in permeability coefficients of the gases in irradiated PB films were attributed to changes in diffusivity, while solubility was not greatly affected. The dependence of permeability coefficients on crosslinking density of the irradiated PB films was also discussed. Decreases in permeability and diffusion coefficients were interpreted as due to decrease of free-volume content by crosslinking. The diffusion coefficient showed an approximately exponential relationship to the reciprocal of the average molecular weight between crosslinks (M-bar/sub c/) over a range of M-bar/sub c/ between 200 and 20000. This suggests that the free-volume of the crosslinked polymer may be proportional to M-bar/sub c/.

  6. Polymer Brush Grafted Nanoparticles and Their Impact on the Morphology Evolution of Polymer Blend Films

    Science.gov (United States)

    Chung, Hyun-Joong; Ohno, Kohji; Composto, Russell

    2013-03-01

    We present an novel pathway to control the location of nanoparticles (NPs) in phase-separating polymer blend films containing poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN). Because hydrophobic polymer phases have a small interfacial energy, ~1 mJ/m2, subtle changes in the NP surface functionality can be used to guide NPs to either the interface between immiscible polymers or into one of the phases. Based on this idea, we designed a class of NPs grafted with PMMA brushes. These PMMA brushes were grown from the NP surface by atom transfer radical polymerization (ATRP), which results in chains terminated with chlorine atoms. The chain end can be substituted with protons (H) by dehalogenation. As a result, the NPs are strongly segregated at the interface when grafted PMMA chains are short (Mn =1.8K) and the end group is Cl, whereas NPs partition into PMMA-rich phase when chains are long (Mn =160K) and/or when chains are terminated with hydrogen. The Cl end groups and shorter chain length cause an increase in surface energy for the NPs. The increase in surface energy of short-chained NPs can be attributed to (i) an extended brush conformation (entropic) and/or (ii) a high density of ``unfavorable'' end groups (enthalpic). Finally, the impact of NPs on the morphological evolution of the polymer blend films will be discussed. Ref: H.-J.Chung et al., ACS Macro Lett. 1(1), 252-256 (2012).

  7. Direct and Indirect Polymer-Polymer Interfacial Slip Measurements in Multilayered Films

    Science.gov (United States)

    Lee, Patrick C.; Park, Hee Eon; Macosko, Christopher W.

    2008-07-01

    Significant slip can occur during flow of two immiscible polymers due to reduced entanglements at their interface. The slip is of practical importance because of its effect on morphology and adhesion of these multi-phase materials, such as disordered two-phase blends and multilayer films. In this research, we are investigating the amount of polymer-polymer slip over a range of shear stresses from rheological measurements (i.e., indirect method) and visualization measurements (i.e., direct method) on co-extruded multilayer films. Two types of alternately layered blends were chosen: polypropylene (PP)/polystyrene (PS) and polyethylene (PE)/fluoropolymer (FP) blends. The multilayer samples of both PP/PS and PE/FP blends were prepared in a co-extrusion setup (Zhao and Macosko J. Rheol. 2002) at 200 and 210 °C, respectively, in order to match viscosity and linear viscoelasticity. To study the polymer-polymer interfacial slip over a wide stress range, three types of rheometers were used: an in-line slit-die rheometer, a rotational parallel-disk rheometer, and a sliding-plates rheometer (SPR). It was observed that the viscosity of a multilayer sample is lower than the harmonic average viscosity of two neat polymers for both PP/PS and PE/FP and decreases with the number of layers above a certain critical shear stress. Two visualization techniques, (i) the SPR with a glass top plate and (ii) a high temperature shearing cell, were utilized to prove the slip. The slip velocity (i.e., the amount of macroscopic velocity discontinuity at the interface) with respect to shear stress was calculated from each rheological and visualization methods and compared.

  8. The scanning probe microscopy study of thin polymer films

    CERN Document Server

    Harron, H R

    1995-01-01

    spherulites fibrils was influenced by the chemical nature of the solvent Results reported here confirm that the fibril structure and spherulite size was significantly affected by the chemical nature of the plasticizing solvent. Detailed observations of the spherulites are included herein. A tapping mode AFM was used in conjunction with the usual contact mode AFM to image the fine spherulitic lamellae structure. It was found that the AFM operated in the tapping mode was less destructive than when operated in the contact mode and gave higher resolution images of the lamellae structure. The lamellae were found to be structurally very similar to the features observed in the study using STM indicating that under certain circumstances, the STM was less destructive over the 'insulating' polymer than the contact mode AFM. technique. Furthermore, images of the crystalline film contained elongated units that were attributed to the lamellae formations that form the basic building blocks of polymer spherulites. The study...

  9. Structure and Morphology Control in Thin Films of Conjugated Polymers for an Improved Charge Transport

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2013-11-01

    Full Text Available The morphological and structural features of the conjugated polymer films play an important role in the charge transport and the final performance of organic optoelectronics devices [such as organic thin-film transistor (OTFT and organic photovoltaic cell (OPV, etc.] in terms of crystallinity, packing of polymer chains and connection between crystal domains. This review will discuss how the conjugated polymer solidify into, for instance, thin-film structures, and how to control the molecular arrangement of such functional polymer architectures by controlling the polymer chain rigidity, polymer solution aggregation, suitable processing procedures, etc. These basic elements in intrinsic properties and processing strategy described here would be helpful to understand the correlation between morphology and charge transport properties and guide the preparation of efficient functional conjugated polymer films correspondingly.

  10. π-Donors microstructuring on surface of polymer film by their noncovalent interactions with iodine

    Energy Technology Data Exchange (ETDEWEB)

    Traven, Valerii F., E-mail: valerii.traven@gmail.com [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Ivanov, Ivan V.; Dolotov, Sergei M. [Mendeleev University of Chemical Technology, Moscow 125047, Miusskaya sq., 9 (Russian Federation); Veciana, Jaume Miro; Lebedev, Victor S. [Institut de Ciencia de Materials de Barcelona–CSIC, Campus de la UAB, 08193, Bellaterra (Spain); Shulga, Yurii M.; Khasanov, Salavat S. [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Acad. N.N. Semenov Prosp., 1, Chernogolovka, 142432 (Russian Federation); Medvedev, Michael G. [A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Vavilova str., 28 (Russian Federation); Laukhina, Elena E. [The Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, ICMAB-CSIC, Bellaterra, 08193 (Spain)

    2015-06-15

    Noncovalent (charge transfer) interaction between perylene and iodine in polycarbonate film provides formation of microstructured perylene layer on the polymer surface upon exposure of polymer film which contains dissolved perylene to solvent + iodine vapors. The prepared bilayer film possesses a sensing effect to iodine vapors which can be observed by both fluorescence and electrical conductivity changes. Similar bilayer films have been prepared also with anthracene and phenothiazine as π-donors with use of different polymer matrixes. Interaction of iodine with polycyclic aromatic hydrocarbons (PAH) has also been studied by the M06-2x DFT calculations for better understanding of phenomenon of π-donors microstructuring on surface of polymer film. - Highlights: • Preparation of bilayer polymer films with π-donors on surface for the first time. • π-Donor phase purity is confirmed by XRD, IR spectroscopy, SEM. • Perylene bilayer polymer films possess fluorescence. • Perylene bilayer polymer films loss fluorescence under iodine vapors. • Perylene bilayer polymer films possess electrical conductivity when treated by iodine vapors.

  11. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    International Nuclear Information System (INIS)

    Ben Dkhil, S.; Bourguiga, R.; Davenas, J.; Cornu, D.

    2012-01-01

    Highlights: ► Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. ► We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. ► The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. ► We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV–visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V oc and short-circuit current density J sc are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  12. Silicon nanowires in polymer nanocomposites for photovoltaic hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ben Dkhil, S., E-mail: sadok.bendekhil@gmail.com [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Bourguiga, R. [Laboratoire Physique des Materiaux, Structures et Proprietes Groupe Physique des Composants et Dispositifs Nanometriques, 7021 Jarzouna, Bizerte (Tunisia); Davenas, J. [Ingenierie des Materiaux Polymeres, IMP, UMR CNRS 5223, Universite Claude Bernard - Lyon 1, 15, boulevard Latarjet, 69622 Villeurbanne (France); Cornu, D. [Institut Europeen des Membranes, UMR CNRS 5635, Ecole Nationale superieure de Chimie, Universite de Montpellier, 1919 route de Mende, F34000 Montpellier (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Hybrid solar cells based on blends of poly(N-vinylcarbazole) and silicon nanowires have been fabricated. Black-Right-Pointing-Pointer We have investigated the charge transfer between PVK and SiNWs by the way of the quenching of the PVK photoluminescence. Black-Right-Pointing-Pointer The relation between the morphology of the composite thin films and the charge transfer between SiNWs and PVK has been examined. Black-Right-Pointing-Pointer We have investigated the effects of SiNWs concentration on the photovoltaic characteristics leading to the optimization of a critical SiNWs concentration. - Abstract: Hybrid thin films combining the high optical absorption of a semiconducting polymer film and the electronic properties of silicon fillers have been investigated in the perspective of the development of low cost solar cells. Bulk heterojunction photovoltaic materials based on blends of a semiconductor polymer poly(N-vinylcarbazole) (PVK) as electron donor and silicon nanowires (SiNWs) as electron acceptor have been studied. Composite PVK/SiNWs films were cast from a common solvent mixture. UV-visible spectrometry and photoluminescence of the composites have been studied as a function of the SiNWs concentration. Photoluminescence spectroscopy (PL) shows the existence of a critical SiNWs concentration of about 10 wt % for PL quenching corresponding to the most efficient charge pair separation. The photovoltaic (PV) effect has been studied under illumination. The optimum open-circuit voltage V{sub oc} and short-circuit current density J{sub sc} are obtained for 10 wt % SiNWs whereas a degradation of these parameters is observed at higher SiNWs concentrations. These results are correlated to the formation of aggregates in the composite leading to recombination of the photogenerated charge pairs competing with the dissociation mechanism.

  13. Polymer assisted deposition of electrochromic tungsten oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kalagi, S.S. [Govindram Seksaria Science College, Belgaum 590006, Karnataka (India); Dalavi, D.S.; Pawar, R.C.; Tarwal, N.L.; Mali, S.S. [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Patil, P.S., E-mail: psp_phy@unishivaji.ac.i [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2010-03-18

    We report the synthesis of structurally and uniformly deposited porous tungsten oxide (WO{sub 3}) thin films for the first time by the novel route of polymer assisted deposition (PAD) using ammonium tungstate as a precursor with polyvinyl alcohol (PVA) as an additive. The effect of deposition parameters on the morphological, optical and electrochemical performance of the thin films is investigated. WO{sub 3} thin films were characterized for their structural, morphological, optical and electrochromic properties. XRD result indicates monoclinic phase of WO{sub 2.92}. FT-Raman studies show high intensity peaks centered at 997 cm{sup -1}and 798 cm{sup -1}. SEM results indicate that there is uniform deposition of porous WO{sub 3}-PVA agglomerates on the transparent substrates. SEM data show low dense structure of an average grain size of about 1 {mu}m. Electrochromic studies reveal highly reversible and the stable nature of the thin films. Transmission data show an optical modulation density of 46.57% at 630 nm with an excellent reversibility of 89% and an electrochromic coloration efficiency of 36 cm{sup 2}/C.

  14. Schwann cell interactions with polymer films are affected by groove geometry and film hydrophilicity

    International Nuclear Information System (INIS)

    Mobasseri, S A; Downes, S; Terenghi, G

    2014-01-01

    We have developed a biodegradable polymer scaffold made of a polycaprolactone/polylactic acid (PCL/PLA) film. Surface properties such as topography and chemistry have a vital influence on cell–material interactions. Surface modifications of PCL/PLA films were performed using topographical cues and UV–ozone treatment to improve Schwann cell organisation and behaviour. Schwann cell attachment, alignment and proliferation were evaluated on the grooved UV–ozone treated and non-treated films. Solvent casting of the polymer solution on patterned silicon substrates resulted in films with different groove shapes: V (V), sloped (SL) and square (SQ) shapes. Pitted films, with no grooves, were prepared as a negative control. The UV–ozone treatment was performed to increase hydrophilicity. The process specifications for UV–ozone treatment were evaluated and 5 min radiation time and 6 cm distance to the UV source were suggested as the optimal practise. When cultured on grooved films, Schwann cells elongated on the V and SL shape grooves without crossing over, and grew in the direction of the grooves. However, there was less elongation with more crossing over on the SQ shape grooves. The maximum cell length (511 μm) was observed on the treated V-grooved films. The cells cultured on pitted UV–ozone treated surfaces showed random arrangements with no increase in length. We have demonstrated that the synergic effects of physical cues combined with UV–ozone treatment have the potential to enhance Schwann cell morphology and alignment. (paper)

  15. Electrochemomechanical Behaviour of Bilayer and Trilayer Films with PEDOT and PPY Conducting Polymers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    2008-01-01

    A detailed study on bilayer and trilayer films prepared with polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymers is reported. Both polymers are doped with dodecyl benzenesulfonate (DBS) anions. These multi layer films were prepared electrochemically so that the PEDOT...

  16. Slippage and nanorheology of thin liquid polymer films

    International Nuclear Information System (INIS)

    Bäumchen, Oliver; Fetzer, Renate; Klos, Mischa; Lessel, Matthias; Marquant, Ludovic; Hähl, Hendrik; Jacobs, Karin

    2012-01-01

    Thin liquid films on surfaces are part of our everyday life; they serve, e.g., as coatings or lubricants. The stability of a thin layer is governed by interfacial forces, described by the effective interface potential, and has been subject of many studies in recent decades. In recent years, the dynamics of thin liquid films has come into focus since results on the reduction of the glass transition temperature raised new questions on the behavior of especially polymeric liquids in confined geometries. The new focus was fired by theoretical models that proposed significant implication of the boundary condition at the solid/liquid interface on the dynamics of dewetting and the form of a liquid front. Our study reflects these recent developments and adds new experimental data to corroborate the theoretical models. To probe the solid/liquid boundary condition experimentally, different methods are possible, each bearing advantages and disadvantages, which will be discussed. Studying liquid flow on a variety of different substrates entails a view on the direct implications of the substrate. The experimental focus of this study is the variation of the polymer chain length; the results demonstrate that inter-chain entanglements and in particular their density close to the interface, originating from non-bulk conformations, govern the liquid slip of a polymer. (paper)

  17. Development of technology for the large-scale preparation of 60Co polymer film source

    International Nuclear Information System (INIS)

    Udhayakumar, J.; Pardeshi, G.S.; Gandhi, Shymala S.; Chakravarty, Rubel; Kumar, Manoj; Dash, Ashutosh; Venkatesh, Meera

    2008-01-01

    60 Co sources (∼37 kBq) in the form of a thin film are widely used in position identification of perforation in offshore oil-well explorations. This paper describes the large-scale preparation of such sources using a radioactive polymer containing 60 Co. 60 Co was extracted into chloroform containing 8-hydroxyquinoline. The chloroform layer was mixed with polymethyl methacrylate (PMMA) polymer. A large film was prepared using the polymer solution containing the complex. The polymer film was then cut into circular sources, mounted on a source holder and supplied to various users

  18. Pulsed laser thin film growth of di-octyl substituted polyfluorene and its co-polymers

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.K.; Ghosh, K.; Kahol, P.K. [Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, MO 65897 (United States); Yoon, J. [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Guha, S. [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)], E-mail: guhas@missouri.edu

    2008-08-30

    Matrix-assisted pulsed laser deposition (PLD) allows a controlled layer-by-layer growth of polymer films. Di-octyl substituted polyfluorene (PF8) and its copolymers were deposited as thin films using matrix-assisted PLD by employing a KrF excimer laser with a fluence of 125 mJ/pulses. The optical and structural properties of these films are compared with spincoated films via Raman spectroscopy, absorption and photoluminescence. The Raman spectra of both PLD and spincoated films are similar indicating that the polymer films deposited via PLD maintain their molecular structure. Both the spincoated and the PLD grown PF8 films that were cast from toluene show the presence of the {beta} phase. Benzothiadiazole substituted PF8 (F8BT) and butyl phenyl-substituted PF8 (PFB) PLD grown films show a slightly broader emission compared to the spincoated films, which is attributed to an enhanced intermolecular interaction in the PLD grown thin films.

  19. Pulsed laser thin film growth of di-octyl substituted polyfluorene and its co-polymers

    International Nuclear Information System (INIS)

    Gupta, R.K.; Ghosh, K.; Kahol, P.K.; Yoon, J.; Guha, S.

    2008-01-01

    Matrix-assisted pulsed laser deposition (PLD) allows a controlled layer-by-layer growth of polymer films. Di-octyl substituted polyfluorene (PF8) and its copolymers were deposited as thin films using matrix-assisted PLD by employing a KrF excimer laser with a fluence of 125 mJ/pulses. The optical and structural properties of these films are compared with spincoated films via Raman spectroscopy, absorption and photoluminescence. The Raman spectra of both PLD and spincoated films are similar indicating that the polymer films deposited via PLD maintain their molecular structure. Both the spincoated and the PLD grown PF8 films that were cast from toluene show the presence of the β phase. Benzothiadiazole substituted PF8 (F8BT) and butyl phenyl-substituted PF8 (PFB) PLD grown films show a slightly broader emission compared to the spincoated films, which is attributed to an enhanced intermolecular interaction in the PLD grown thin films

  20. Pulsed laser thin film growth of di-octyl substituted polyfluorene and its co-polymers

    Science.gov (United States)

    Gupta, R. K.; Ghosh, K.; Kahol, P. K.; Yoon, J.; Guha, S.

    2008-08-01

    Matrix-assisted pulsed laser deposition (PLD) allows a controlled layer-by-layer growth of polymer films. Di-octyl substituted polyfluorene (PF8) and its copolymers were deposited as thin films using matrix-assisted PLD by employing a KrF excimer laser with a fluence of 125 mJ/pulses. The optical and structural properties of these films are compared with spincoated films via Raman spectroscopy, absorption and photoluminescence. The Raman spectra of both PLD and spincoated films are similar indicating that the polymer films deposited via PLD maintain their molecular structure. Both the spincoated and the PLD grown PF8 films that were cast from toluene show the presence of the β phase. Benzothiadiazole substituted PF8 (F8BT) and butyl phenyl-substituted PF8 (PFB) PLD grown films show a slightly broader emission compared to the spincoated films, which is attributed to an enhanced intermolecular interaction in the PLD grown thin films.

  1. Structural and Electrical Properties of Graphene Oxide-Doped PVA/PVP Blend Nanocomposite Polymer Films

    Directory of Open Access Journals (Sweden)

    S. K. Shahenoor Basha

    2018-01-01

    Full Text Available Graphene oxide (GO nanoparticles were incorporated in PVA/PVP blend polymers for the preparation of nanocomposite polymer films by the solution cast technique. XRD, FTIR, DSC, SEM, and UV-visible studies were performed on the prepared nanocomposite polymer films. XRD revealed the amorphous nature of the prepared films. Thermal analysis of the nanocomposite polymer films was analyzed by DSC. SEM revealed the morphological features and the degree of roughness of the samples. DC conductivity studies were under taken on the samples, and the conductivity was found to be 6.13 × 10−4 S·cm−1 for the polymer film prepared at room temperature. A solid-state battery has been fabricated with the chemical composition of Mg+/(PVA/PVP  :  GO/(I2 + C + electrolyte, and its cell parameters like power density and current density were calculated.

  2. Impact of polymer film thickness and cavity size on polymer flow during embossing : towards process design rules for nanoimprint lithography.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; King, William P. (Georgia Institute of Technology, Atlanta, GA); Sun, Amy Cha-Tien; Rowland, Harry D. (Georgia Institute of Technology, Atlanta, GA)

    2006-08-01

    This paper presents continuum simulations of polymer flow during nanoimprint lithography (NIL). The simulations capture the underlying physics of polymer flow from the nanometer to millimeter length scale and examine geometry and thermophysical process quantities affecting cavity filling. Variations in embossing tool geometry and polymer film thickness during viscous flow distinguish different flow driving mechanisms. Three parameters can predict polymer deformation mode: cavity width to polymer thickness ratio, polymer supply ratio, and Capillary number. The ratio of cavity width to initial polymer film thickness determines vertically or laterally dominant deformation. The ratio of indenter width to residual film thickness measures polymer supply beneath the indenter which determines Stokes or squeeze flow. The local geometry ratios can predict a fill time based on laminar flow between plates, Stokes flow, or squeeze flow. Characteristic NIL capillary number based on geometry-dependent fill time distinguishes between capillary or viscous driven flows. The three parameters predict filling modes observed in published studies of NIL deformation over nanometer to millimeter length scales. The work seeks to establish process design rules for NIL and to provide tools for the rational design of NIL master templates, resist polymers, and process parameters.

  3. Osteoselection supported by phase separated polymer blend films.

    Science.gov (United States)

    Gulsuner, Hilal Unal; Gengec, Nevin Atalay; Kilinc, Murat; Erbil, H Yildirim; Tekinay, Ayse B

    2015-01-01

    The instability of implants after placement inside the body is one of the main obstacles to clinically succeed in periodontal and orthopedic applications. Adherence of fibroblasts instead of osteoblasts to implant surfaces usually results in formation of scar tissue and loss of the implant. Thus, selective bioadhesivity of osteoblasts is a desired characteristic for implant materials. In this study, we developed osteoselective and biofriendly polymeric thin films fabricated with a simple phase separation method using either homopolymers or various blends of homopolymers and copolymers. As adhesive and proliferative features of cells are highly dependent on the physicochemical properties of the surfaces, substrates with distinct chemical heterogeneity, wettability, and surface topography were developed and assessed for their osteoselective characteristics. Surface characterizations of the fabricated polymer thin films were performed with optical microscopy and SEM, their wettabilities were determined by contact angle measurements, and their surface roughness was measured by profilometry. Long-term adhesion behaviors of cells to polymer thin films were determined by F-actin staining of Saos-2 osteoblasts, and human gingival fibroblasts, HGFs, and their morphologies were observed by SEM imaging. The biocompatibility of the surfaces was also examined through cell viability assay. Our results showed that heterogeneous polypropylene polyethylene/polystyrene surfaces can govern Saos-2 and HGF attachment and organization. Selective adhesion of Saos-2 osteoblasts and inhibited adhesion of HGF cells were achieved on micro-structured and hydrophobic surfaces. This work paves the way for better control of cellular behaviors for adjustment of cell material interactions. © 2014 Wiley Periodicals, Inc.

  4. Applications of interface controlled pulsed-laser deposited polymer films in field-effect transistors

    Science.gov (United States)

    Adil, Danish; Ukah, Ndubuisi; Guha, Suchi; Gupta, Ram; Ghosh, Kartik

    2010-03-01

    Matrix assisted pulsed laser evaporation, a derivative of pulsed laser deposition (PLD), is an alternative method of depositing polymer and biomaterial films that allows homogeneous film coverage of high molecular weight organic materials for layer-by-layer growth without any laser induced damage. Polyfluorene (PF)-based conjugated polymers have attracted considerable attention in organic field-effect transistors (FETs). A co-polymer of PF (PFB) was deposited as a thin film using matrix assisted PLD employing a KrF excimer laser. Electrical characteristics of FETs fabricated using these PLD grown films were compared to those of FETs using spin-coated films. We show that threshold voltages, on/off ratios, and charge carrier motilities are significantly improved in PLD grown films. This is attributed to an improved dielectric-polymer interface.

  5. Electric Transport Phenomena of Nanocomposite Organic Polymer Thin Films

    Science.gov (United States)

    Jira, Nicholas C.; Sabirianov, Ildar; Ilie, Carolina C.

    We discuss herein the nanocomposite organic thin film diodes for the use of plasmonic solar cells. This experimental work follows the theoretical calculations done for plasmonic solar cells using the MNPBEM toolbox for MatLab. These calculations include dispersion curves and amount of light scattering cross sections for different metallic nanoparticles. This study gives us clear ideas on what to expect from different metals, allowing us to make the best choice on what to use to obtain the best results. One specific technique for light trapping in thin films solar cells utilizes metal nanoparticles on the surface of the semiconductor. The characteristics of the metal, semiconductor interface allows for light to be guided in between them causing it to be scattered, allowing for more chances of absorption. The samples were fabricated using organic thin films made from polymers and metallic nanoparticles, more specifically Poly(1-vinylpyrrolidone-co-2-dimethylaminoethyl methacrylate) copolymer and silver or gold nanoparticles. The two fabrication methods applied include spin coating and Langmuir-Blodgett technique. The transport properties are obtained by analyzing the I-V curves. We will also discuss the resistance, resistivity, conductance, density of charge carriers. SUNY Oswego SCAC Grant.

  6. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  7. Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells

    KAUST Repository

    Dimitrov, Stoichko

    2016-01-13

    The lifetime of singlet excitons in conjugated polymer films is a key factor taken into account during organic solar cell device optimization. It determines the singlet exciton diffusion lengths in polymer films and has a direct impact on the photocurrent generation by organic solar cell devices. However, very little is known about the material properties controlling the lifetimes of singlet excitons, with most of our knowledge originating from studies of small organic molecules. Herein, we provide a brief summary of the nature of the excited states in conjugated polymer films and then present an analysis of the singlet exciton lifetimes of 16 semiconducting polymers. The exciton lifetimes of seven of the studied polymers were measured using ultrafast transient absorption spectroscopy and compared to the lifetimes of seven of the most common photoactive polymers found in the literature. A plot of the logarithm of the rate of exciton decay vs. the polymer optical bandgap reveals a medium correlation between lifetime and bandgap, thus suggesting that the Energy Gap Law may be valid for these systems. This therefore suggests that small bandgap polymers can suffer from short exciton lifetimes, which may limit their performance in organic solar cell devices. In addition, the impact of film crystallinity on the exciton lifetime was assessed for a small bandgap diketopyrrolopyrrole co-polymer. It is observed that the increase of polymer film crystallinity leads to reduction in exciton lifetime and optical bandgap again in agreement with the Energy Gap Law.

  8. Introduction of Functional Structures in Nano-Scales into Engineering Polymer Films Using Radiation Technique

    International Nuclear Information System (INIS)

    Maekawa, Y.

    2010-01-01

    Introduction of functional regions in nanometer scale in polymeric films using γ-rays, EB, and ion beams are proposed. Two approaches to build nano-scale functional domains in polymer substrates are proposed: 1) Radiation-induced grafting to transfer nano-scale polymer crystalline structures (morphology), acting as a nano-template, to nano-scale graft polymer regions. The obtained polymers with nano structures can be applied to high performance polymer membranes. 2) Fabrication of nanopores and functional domains in engineering plastic films using ion beams, which deposit the energy in very narrow region of polymer films. Hydrophilic grafting polymers are introduced into hydrophobic fluorinated polymers, cross-linked PTFE (cPTFE) and aromatic hydrocarbon polymer, poly(ether ether ketone (PEEK), which is known to have lamella and crystallite in the polymer films. Then, the hierarchical structures of graft domains are analyzed by a small angle neutron scattering (SANS) experiment. From these analyses, the different structures and the different formation of graft domains were observed in fluorinated and hydrocarbon polymer substrates. the grafted domains in the cPTFE film, working as an ion channel, grew as covering the crystallite and the size of domain seems to be similar to that of crystallite. On the other hand, the PEEK-based PEM has a smaller domain size and it seems to grow independently on the crystallites of PEEK substrate. For nano-fabrication of polymer films using heavy ion beams, the energy distribution in radial direction, which is perpendicular to ion trajectory, is mainly concerned. For penumbra, we re-estimated effective radius of penumbra, in which radiation induced grafting took place, for several different ion beams. We observed the different diameters of the ion channels consisting of graft polymers. The channel sizes were quite in good agreement with the effective penumbra which possess the absorption doses more than 1 kGy. (author)

  9. Modification of polymer films by the nuclear track method

    International Nuclear Information System (INIS)

    Akap'ev, G.N.; Apel', P.Yu.; Vorob'ev, E.D.

    1989-01-01

    Some possibilities of the nuclear track method are shown: for example, the nuclear membranes with biporous structure in a monolithic polymer film. The permeability of this membranes is 2-5 times higher compared with the conventional nuclear membranes. The nuclear membranes with conical or funnel-shaped pores allow to increase the permeability of membranes (∼30-50%) for certain ratios between the pore radii on the two sides of the membrane (r 1 /r 2 =1.5-4.0). The composite nuclear membrane consisting of a thin selective layer and of a high porosity support allow one to solve the problem of increasing the permeability of the nuclear membranes. 6 refs.; 3 figs

  10. Conductivity of oriented bis-azo polymer films

    DEFF Research Database (Denmark)

    Apitz, D.; Bertram, R.P.; Benter, N.

    2006-01-01

    The conductivity properties of electro-optic photoaddressable, dense bis-ozo chromophore polymer films are investigated by using samples corona poled at various temperatures. A dielectric spectrometer is applied to measure the frequency dependence of the conductivity at different temperatures...... before and after heating the material to above the glass transition temperature. The results show that the orientation of the chromophores changes the charge-carrier mobility. Ionic conductivity dominates in a more disordered configuration of the material, while the competing process of hole hopping...... takes over as a transition to a liquid-crystalline phase occurs when the material is heated to much higher than the gloss transition temperature. Such micro-crystallization strongly enhances the conductivity....

  11. Decohesion Kinetics of PEDOT:PSS Conducting Polymer Films

    KAUST Repository

    Dupont, Stephanie R.

    2013-10-17

    The highly conductive polymer PEDOT:PSS is a widely used hole transport layer and transparent electrode in organic electronic devices. To date, the mechanical and fracture properties of this conductive polymer layer are not well understood. Notably, the decohesion rate of the PEDOT:PSS layer and its sensitivity to moist environments has not been reported, which is central in determining the lifetimes of organic electronic devices. Here, it is demonstrated that the decohesion rate is highly sensitive to the ambient moisture content, temperature, and mechanical stress. The kinetic mechanisms are elucidated using atomistic bond rupture models and the decohesion process is shown to be facilitated by a chemical reaction between water molecules from the environment and strained hydrogen bonds. Hydrogen bonds are the predominant bonding mechanism between individual PEDOT:PSS grains within the layer and cause a significant loss in cohesion when they are broken. Understanding the decohesion kinetics and mechanisms in these films is essential for the mechanical integrity of devices containing PEDOT:PSS layers and yields general guidelines for the design of more reliable organic electronic devices. Decohesion rate in PEDOT:PSS conducting films is studied under varied environmental conditions. The moisture content in the environment is the most important factor accelerating the decohesion in the PEDOT:PSS layer, which is detrimental for device reliability. The findings on the decohesion rate and mechanisms, elucidated by atomic kinetic models, are essential for the design of more reliable organic electronic devices containting PEDOT:PSS layers. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity

    KAUST Repository

    Chen, Mark S.

    2013-10-22

    Controlling solid-state order of π-conjugated polymers through macromolecular design is essential for achieving high electronic device performance; yet, it remains a challenge, especially with respect to polymer-packing orientation. Our work investigates the influence of backbone coplanarity on a polymer\\'s preference to pack face-on or edge-on relative to the substrate. Isoindigo-based polymers were synthesized with increasing planarity by systematically substituting thiophenes for phenyl rings in the acceptor comonomer. This increasing backbone coplanarity, supported by density functional theory (DFT) calculations of representative trimers, leads to the narrowing of polymer band gaps as characterized by ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and cyclic voltammetry. Among the polymers studied, regiosymmetric II and TII polymers exhibited the highest hole mobilities in organic field-effect transistors (OFETs), while in organic photovoltaics (OPVs), TBII polymers that display intermediate levels of planarity provided the highest power conversion efficiencies. Upon thin-film analysis by atomic force microscropy (AFM) and grazing-incidence X-ray diffraction (GIXD), we discovered that polymer-packing orientation could be controlled by tuning polymer planarity and solubility. Highly soluble, planar polymers favor face-on orientation in thin films while the less soluble, nonplanar polymers favor an edge-on orientation. This study advances our fundamental understanding of how polymer structure influences nanostructural order and reveals a new synthetic strategy for the design of semiconducting materials with rationally engineered solid-state properties. © 2013 American Chemical Society.

  13. Interfacial characteristics of binary polymer blend films spread at the air-water interface.

    Science.gov (United States)

    Kawaguchi, Masami

    2017-09-01

    The interfacial characteristics of binary polymer blend films spread at the air-water interface are reviewed, focusing on their surface pressures, interfacial structures, and dilational moduli as a function of the miscibility. Miscible polymer blend films show thermodynamic, structural, and dynamic properties which are a combination of those from both components in the polymer blend present at the air-water interface. No preferential adsorption is observed and the behavior does not depend on the surface concentration regime. In contrast, for immiscible polymer blend films, preferential adsorption of one polymer phase occurs at the air-water interface and the interfacial characteristics in the semi-dilute and concentrated regimes are strongly controlled by one of the components of the adsorbed polymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Selective Photophysical Modification on Light-Emitting Polymer Films for Micro- and Nano-Patterning

    Directory of Open Access Journals (Sweden)

    Xinping Zhang

    2016-02-01

    Full Text Available Laser-induced cross-linking in polymeric semiconductors was utilized to achieve micro- and nano-structuring in thin films. Single- and two-photon cross-linking processes led to the reduction in both the refractive index and thickness of the polymer films. The resultant photonic structures combine the features of both relief- and phase-gratings. Selective cross-linking in polymer blend films based on different optical response of different molecular phases enabled “solidification” of the phase-separation scheme, providing a stable template for further photonic structuring. Dielectric and metallic structures are demonstrated for the fabrication methods using cross-linking in polymer films. Selective cross-linking enables direct patterning into polymer films without introducing additional fabrication procedures or additional materials. The diffraction processes of the emission of the patterned polymeric semiconductors may provide enhanced output coupling for light-emitting diodes or distributed feedback for lasers.

  15. Mesoscopic Iron-Oxide Nanorod Polymer Nanocomposite Films

    Science.gov (United States)

    Ferrier, Robert; Ohno, Kohji; Composto, Russell

    2012-02-01

    Dispersion of nanostructures in polymer matrices is required in order to take advantage of the unique properties of the nano-sized filler. This work investigates the dispersion of mesoscopic (200 nm long) iron-oxide rods (FeNRs) grafted with poly(methyl methacrylate) (PMMA) brushes having molecular weights (MWs) of 3.7K, 32K and 160K. These rods were then dispersed in either a poly(methyl methacrylate) or poly(oxyethylene) (PEO) matrix film so that the matrix/brush interaction is either entropic (PMMA matrix) or enthalpic and entropic (PEO matrix). Transmission electron microscopy (TEM) was used to determine the dispersion of the FeNRs in the polymer matrix. The results show that the FeNRs with the largest brush were always dispersed in the matrix, whereas the rods with the shorter brushes always aggregated in the matrix. This suggests that the brush MW is a critical parameter to achieve dispersion of these mesoscopic materials. This work can be extended to understand the dispersion of other types of mesocopic particles

  16. Structure-processing-property correlations in thin films of conjugated polymer nanocomposites and blends

    Science.gov (United States)

    Sreeram, Arvind

    Conjugated polymers have found several applications in recent years, in energy conversion and storage devices such as organic light emitting diodes, solar cells, batteries, and super capacitors. Thin films of polymers used for these applications need to be mechanically and thermally stable to withstand the harsh operating conditions. Although there is significant information on the optoelectronic properties of many of these polymers, there are only few studies on their mechanical properties. There is little information in the literature on how processing of these films influence mechanical properties. In the first part of this study, poly(p-phenylene vinylene) (PPV) films were prepared by thermolytic conversion of poly[p -phenylene (tetrahydrothiophenium)ethylene chloride] precursor films, at different temperatures and the kinetics of reaction was investigated using thermogravimetry and Fourier transform infrared (FTIR) spectroscopy. The mechanical properties of the films, studied using nanoindentation, showed a dependence on the extent of conversion and chemical composition of the films. The presence of chemical defects (e.g., carbonyl groups, detected using FTIR spectroscopy), was also found to have a noticeable effect on the modulus and hardness of the films. The storage modulus, E', and plasticity decreased with an increase in conversion, whereas the loss modulus, E", showed the opposite trend. Both the precursor and the fully-converted PPV films were found to have significantly lower E" than E', consistent with the glassy nature of the polymers at room temperature. In the second part of the study, polyacetylene films were synthesized by acid-catalyzed dehydration reaction of poly(vinyl alcohol) (PVA) precursor films. The kinetics of this reaction was monitored by thermogravimetry. The chemical structure of the conjugated polymer films was characterized by Raman and IR spectroscopy. Polyacetylene films incorporated with 1-propyl-3-methylimidazolium ionic liquid

  17. Li ion conductivities in boro-tellurite glasses

    Indian Academy of Sciences (India)

    Lithium ion conductivity has been investigated in a boro-tellurite glass system, LiCl.LiBO 2 ⋅ TeO2.In the absence of LiCl, the conductivity increases with increasing non-bridging oxygen (NBO) concentration. LiCl addition has little influence on total conductivity although the observed barriers are low. Formation of LiCl ...

  18. Local variation of fragility and glass transition temperature of ultra-thin supported polymer films.

    Science.gov (United States)

    Hanakata, Paul Z; Douglas, Jack F; Starr, Francis W

    2012-12-28

    Despite extensive efforts, a definitive picture of the glass transition of ultra-thin polymer films has yet to emerge. The effect of film thickness h on the glass transition temperature T(g) has been widely examined, but this characterization does not account for the fragility of glass-formation, which quantifies how rapidly relaxation times vary with temperature T. Accordingly, we simulate supported polymer films of a bead-spring model and determine both T(g) and fragility, both as a function of h and film depth. We contrast changes in the relaxation dynamics with density ρ and demonstrate the limitations of the commonly invoked free-volume layer model. As opposed to bulk polymer materials, we find that the fragility and T(g) do not generally vary proportionately. Consequently, the determination of the fragility profile--both locally and for the film as a whole--is essential for the characterization of changes in film dynamics with confinement.

  19. Adhesion and friction in polymer films on solid substrates: conformal sites analysis and corresponding surface measurements.

    Science.gov (United States)

    An, Rong; Huang, Liangliang; Mineart, Kenneth P; Dong, Yihui; Spontak, Richard J; Gubbins, Keith E

    2017-05-21

    In this work, we present a statistical mechanical analysis to elucidate the molecular-level factors responsible for the static and dynamic properties of polymer films. This analysis, which we term conformal sites theory, establishes that three dimensionless parameters play important roles in determining differences from bulk behavior for thin polymer films near to surfaces: a microscopic wetting parameter, α wx , defined as the ratio of polymer-substrate interaction to polymer-polymer interaction; a dimensionless film thickness, H*; and dimensionless temperature, T*. The parameter α wx introduced here provides a more fundamental measure of wetting than previous metrics, since it is defined in terms of intermolecular forces and the atomic structure of the substrate, and so is valid at the nanoscale for gas, liquid or solid films. To test this theoretical analysis, we also report atomic force microscopy measurements of the friction coefficient (μ), adhesion force (F A ) and glass transition temperature (T g ) for thin films of two polymers, poly(methyl methacrylate) (PMMA) and polystyrene (PS), on two planar substrates, graphite and silica. Both the friction coefficient and the glass transition temperature are found to increase as the film thickness decreases, and this increase is more pronounced for the graphite than for the silica surface. The adhesion force is also greater for the graphite surface. The larger effects encountered for the graphite surface are attributed to the fact that the microscopic wetting parameter, α wx , is larger for graphite than for silica, indicating stronger attraction of polymer chains to the graphite surface.

  20. Side-group size effects on interfaces and glass formation in supported polymer thin films

    Science.gov (United States)

    Xia, Wenjie; Song, Jake; Hsu, David D.; Keten, Sinan

    2017-05-01

    Recent studies on glass-forming polymers near interfaces have emphasized the importance of molecular features such as chain stiffness, side-groups, molecular packing, and associated changes in fragility as key factors that govern the magnitude of Tg changes with respect to the bulk in polymer thin films. However, how such molecular features are coupled with substrate and free surface effects on Tg in thin films remains to be fully understood. Here, we employ a chemically specific coarse-grained polymer model for methacrylates to investigate the role of side-group volume on glass formation in bulk polymers and supported thin films. Our results show that bulkier side-groups lead to higher bulk Tg and fragility and are associated with a pronounced free surface effect on overall Tg depression. By probing local Tg within the films, however, we find that the polymers with bulkier side-groups experience a reduced confinement-induced increase in local Tg near a strongly interacting substrate. Further analyses indicate that this is due to the packing frustration of chains near the substrate interface, which lowers the attractive interactions with the substrate and thus lessens the surface-induced reduction in segmental mobility. Our results reveal that the size of the polymer side-group may be a design element that controls the confinement effects induced by the free surface and substrates in supported polymer thin films. Our analyses provide new insights into the factors governing polymer dynamics in bulk and confined environments.

  1. Correlation of morphology and barrier properties of thin microwave plasma polymer films on metal substrate

    International Nuclear Information System (INIS)

    Barranco, V.; Carpentier, J.; Grundmeier, G.

    2004-01-01

    The barrier properties of thin model organosilicon plasma polymers layers on iron are characterised by means of electrochemical impedance spectroscopy (EIS). Tailored thin plasma polymers of controlled morphology and chemical composition were deposited from a microwave discharge. By the analysis of the obtained impedance diagrams, the evolution of the water uptake φ, coating resistance and polymer capacitance with immersion time were monitored and the diffusion coefficients of the water through the films were calculated. The impedance data correlated well with the chemical structure and morphology of the plasma polymer films with a thickness of less than 100 nm. The composition of the films were determined by means of infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The morphology of the plasma polymer surface and the interface between the plasma polymer and the metal were characterised using atomic force microscopy (AFM). It could be shown that, at higher pressure, the film roughness increases which is probably due to the adsorption of plasma polymer nanoparticles formed in the plasma bulk and the faster film growth. This leads to voids with a size of a few tens of nanometers at the polymer/metal interface. The film roughness increases from the interface to the outer surface of the film. By lowering the pressure and thereby slowing the deposition rate, the plasma polymers perfectly imitate the substrate topography and lead to an excellent blocking of the metal surface. Moreover, the ratio of siloxane bonds to methyl-silyl groups increases which implies that the crosslink density is higher at lower deposition rate. The EIS data consistently showed higher coating resistance as well as lower interfacial capacitance values and a better stability over time for the film deposited at slower pressure. The diffusion coefficient of water in thin and ultra-thin plasma

  2. Flexible Surface Acoustic Wave Device with AlN Film on Polymer Substrate

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2012-01-01

    Full Text Available Surface acoustic wave device with c-axis-oriented aluminum nitride (AlN piezoelectric thin films on polymer substrates can be potentially used for development of flexible sensors, flexible microfluidic applications, microsystems, and lab-on-chip systems. In this work, the AlN films have been successfully deposited on polymer substrates using the DC reactive magnetron-sputtering method at room temperature, and the XRD, SEM, and AFM methods reveal that low deposition pressure is beneficial to the highly c-axis-oriented AlN film on polymer substrates. Studies toward the development of AlN thin film-based flexible surface acoustic wave devices on the polymer substrates are initiated and the experimental and simulated results demonstrate the devices showing the acoustic wave velocity of 9000–10000 m/s, which indicate the AlN lamb wave.

  3. Femtosecond Laser Desorption of Thin Polymer Films from a Dielectric Surface

    Directory of Open Access Journals (Sweden)

    Mercadier L.

    2013-11-01

    Full Text Available We desorb polymer films from fused silica with a femtosecond laser and characterize the results by atomic force microscopy. Our study as a function of beam geometry and energy reveals two ways of achieving spatially controlled nanodesorption.

  4. Ellipsometry based imaging techniques for nanoscale characterization of heterogeneous polymer films

    NARCIS (Netherlands)

    Cumurcu, Aysegul

    2014-01-01

    In this thesis, hybrid methods for nanoscale characterization of heterogeneous thin polymer films were discussed. Essentially two ellipsometry based hybrid methods were established or further developed, respectively, namely electrochemical imaging ellipsometry (EC-IE) and scanning near field

  5. Measuring the Thickness and Elastic Properties of Electroactive Thin-film Polymers Using Platewave Dispersion Data

    Science.gov (United States)

    El-Azab, A.; Mal, A. K.; Bar-Cohen, Y.; Lih, S.

    1996-01-01

    Electroactive thin-film polymers are candidate sensors and actuators materials [1,2]. They are also finding a significant potential for applications in muscle mechanisms and micro-electro-mechanical systems (MEMS).

  6. Application of Thin Films of Conjugated Polymers in Novel LED's and Liquid Crystal 'Light Valves'

    National Research Council Canada - National Science Library

    MacDiarmid, A

    1997-01-01

    Light emitting electroluminescent devices have been studied in which the conjugated light emitting polymer is separated on both sides from the device electrodes by a film of non-conducting polyaniline...

  7. Preparation of Composite Films of a Conjugated Polymer and C60NWs and Their Photovoltaic Application

    Directory of Open Access Journals (Sweden)

    Takatsugu Wakahara

    2016-01-01

    Full Text Available Composite films of conjugated polymers, such as poly[2-methoxy-5-(3′,7′-dimethyloctyloxy-1,4-phenylenevinylene] (MDMO-PPV and poly(3-hexylthiophene (P3HT, with C60 nanowhiskers (C60NWs were prepared. The photoluminescence originating from the conjugated MDMO-PPV polymers was effectively quenched in the composite film, indicating a strong interaction between the conjugated polymer and C60NWs. The photovoltaic devices were fabricated using C60NW (conjugated polymer composite films, resulting in a power conversion efficiency of ~0.01% for P3HT with short length thin C60NWs, which is higher than that previously reported for thick C60 nanorods. The present study gives new guidance on the selection of the type of C60NWs and the appropriate polymer for new photovoltaic devices.

  8. POLYMER COMPOSITE FILMS WITH SIZE-SELECTED METAL NANOPARTICLES FABRICATED BY CLUSTER BEAM TECHNIQUE

    DEFF Research Database (Denmark)

    Ceynowa, F. A.; Chirumamilla, Manohar; Popok, Vladimir

    2017-01-01

    Formation of polymer films with size-selected silver and copper nanoparticles (NPs) is studied. Polymers are prepared by spin coating while NPs are fabricated and deposited utilizing a magnetron sputtering cluster apparatus. The particle embedding into the films is provided by thermal annealing...... after the deposition. The degree of immersion can be controlled by the annealing temperature and time. Together with control of cluster coverage the described approach represents an efficient method for the synthesis of thin polymer composite layers with either partially or fully embedded metal NPs....... Combining electron beam lithography, cluster beam deposition and thermal annealing allows to form ordered arrays of metal NPs on polymer films. Plasticity and flexibility of polymer host and specific properties added by coinage metal NPs open a way for different applications of such composite materials...

  9. Flat indentation of a viscoelastic polymer film on a rigid substrate

    International Nuclear Information System (INIS)

    Choi, Seung Tae; Lee, Seung Ryoon; Earmme, Youn Young

    2008-01-01

    A systematic method of flat indentation was developed to measure the elastic and viscoelastic properties of polymer films. A flat indentation problem on an elastic film perfectly bonded to a rigid substrate was revisited, from which the relationship between the applied force and the penetration depth was obtained in a simple form. Application of the elastic-viscoelastic correspondence principle converts the force-depth relationship for elastic films to the Laplace transform of that for viscoelastic films. Indentation experiments with a flat diamond tip were performed on polymer films (SU-8 and NR4-8000P). Analysis of the measured data with the viscoelastic force-depth relationship provides the shear moduli, Poisson's ratios, and relaxation moduli of these films. Viscoplastic deformations produced in the films that underwent the flat indentation process were quantified by measuring the residual deformation after unloading with an atomic force microscope

  10. Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer film

    DEFF Research Database (Denmark)

    Smith, Cameron; Lind, Johan Ulrik; Christiansen, Mads Brøkner

    2011-01-01

    We present the enhanced transduction of a photonic crystal dye laser for gas sensing via deposition of an additional swelling polymer film. Device operation involves swelling of the polymer film during exposure to specific gases, leading to a change in total effective refractive index. Experimental...... in its application to other intracavity-based detection schemes to enable gas sensing. © 2011 Optical Society of America....

  11. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films

    Directory of Open Access Journals (Sweden)

    Sarah Loebner

    2016-12-01

    Full Text Available We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

  12. Thin Films Formed from Conjugated Polymers with Ionic, Water-Soluble Backbones

    NARCIS (Netherlands)

    Voortman, Thomas P; Chiechi, Ryan C

    2015-01-01

    This paper compares the morphologies of films of conjugated polymers in which the backbone (main chain) and pendant groups are varied between ionic/hydrophilic and aliphatic/hydrophobic. We observe that conjugated polymers in which the pendant groups and backbone are matched, either ionic-ionic or

  13. Ultrathin Au film on polymer surface for surface plasmon polariton waveguide application

    Science.gov (United States)

    Liu, Tong; Ji, Lanting; He, Guobing; Sun, Xiaoqiang; Wang, Fei; Zhang, Daming

    2017-11-01

    Formation of laterally continuous ultrathin gold films on polymer substrates is a technological challenge. In this work, the vacuum thermal evaporation method is adopted to form continuous Au films in the thickness range of 7-17 nm on polymers of Poly(methyl-methacrylate-glycidly-methacrylate) and SU-8 film surface without using the adhesion or metallic seeding layers. Absorption spectrum, scanning electron microscope and atomic force microscope images are used to characterize the Au film thickness, roughness and optical loss. The result shows that molecular-scale structure, surface energy and electronegativity have impacts on the Au film morphology on polymers. Wet chemical etching is used to fabricate 7-nm thick Au stripes embedded in polymer claddings. These long-range surface plasmon polariton waveguides demonstrate the favorable morphological configurations and cross-sectional states. Through the end-fire excitation method, propagation losses of 6-μm wide Au stripes are compared to theoretical values and analyzed from practical film status. The smooth, patternable gold films on polymer provide potential applications to plasmonic waveguides, biosensing, metamaterials and optical antennas.

  14. Layer-by-layer assembly of clay-filled polymer nanocomposite thin films

    Science.gov (United States)

    Jang, Woo-Sik

    2008-10-01

    A variety of functional thin films can be produced using the layer-by-layer assembly technique. In this work, assemblies of anionic clay and cationic polymer were studied with regard to film growth and gas barrier properties. A simple, yet flexible robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown and studied on poly(ethylene terephthalate) film or a silicon wafer. After 30 clay polymer bilayers were deposited, the resulting transparent film had an oxygen transmission rate (OTR) below 0.005 cm3/m2/day/atm. This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a "brick wall" nanostructure comprised of completely exfoliated clay bricks in polymeric "mortar". The growth of polymer and clay assemblies is then shown to be controlled by altering the pH of polyethylenimine (PEI). Growth, oxygen permeability, and mechanical behavior of clay-PEI assemblies were studied as a function of pH in an effort to tailor the behavior of these thin films. Thicker deposition at high pH resulted in reduced oxygen permeability and lower modulus, which highlights the tailorability of this system.

  15. Drying of semicrystalline polymers: Mathematical modeling and experimental characterization of poly(vinyl alcohol) films

    OpenAIRE

    Wong, Sim-Siong; Altınkaya, Sacide; Mallapragada, Surya K.

    2004-01-01

    A mathematical model was developed to predict the drying mechanism of semicrystalline polymers involving multiple solvents. Since drying of semicrystalline polymers can be accompanied by changes in polymer degree of crystallinity, the model integrates crystallization kinetics and the Vrentas-Duda diffusion model to provide a better understanding of the mechanism. The model considers the effect of external conditions such as temperature, film shrinkage and diffusion and evaporation of multiple...

  16. Development of transparent thin film transistors on PES polymer substrates

    International Nuclear Information System (INIS)

    Yun, Eui-Jung; Jung, Jin-Woo; Ko, Kyung-Nam; Song, Young-Wook; Nam, Hyoung; Cho, Nam-Ihn

    2010-01-01

    In this study, we demonstrate ZnO-based transparent thin film transistors (TTFT's) implemented on polyethersulfone (PES) polymer substrates. For the developed TTFT's, radio-frequency magnetron sputter techniques were used to deposit Al-doped ZnO (AZO) at zero oxygen partial pressures for the source, the drain, and the gate-contact electrodes, undoped ZnO at low oxygen partial pressures for the active p-type layer, and SiO 2 for the gate dielectric. The TTFT's were processed at room temperature (RT), except for a 100 .deg. C sputtering step to deposit the AZO source, drain, and gate-contact electrodes. The devices have bottom-gate structures with top contacts, are optically transparent, and operate in an enhancement mode with a threshold voltage of +13 V, a mobility of 0.1 cm 2 /Vs, an on-off ratio of about 0.5 x 10 3 and, a sub-threshold slope of 4.1 V/decade.

  17. Micro-patterned films of bio-functionalized conducting polymers for cellular engineering.

    Science.gov (United States)

    SooHyun Park; Abidian, Mohammad R; Majd, Sheereen

    2017-07-01

    Conducting polymers (CPs) are easy to process and have tunable physical and chemical properties including conductivity, volume, color, and hydrophobicity. Therefore, these organic polymers are attractive in a broad spectrum of bioelectronic applications ranging from implantable electrodes to biosensors and actuators. Patterned films of CPs, especially with various surface chemistries, provide versatile and sophisticated building-blocks for bioelectronics. In this context, we recently introduced a simple and efficient technique of hydrogel-mediated electropolymerization to directly pattern films of PPy (polypyrrole) with spatially-addressable chemistries. This technique employs a topographically patterned hydrogel stamp to deliver polymer precursors to the surface of electrode during the PPy electropolymerization. This method enables easy incorporation of different molecules into CP film during the polymerization. Herein, we aim to extend the scope of hydrogel-mediated electropolymerization to pattern other types of CPs and to explore the potential of bio-functionalized CP films for cell adhesion studies. Using this method, patterned films of two distinct CPs, PPy and PEDOT, were generated with a number of dopants. The produced films were characterized for morphology, impedance, and chemical composition. Patterned CP films were bio-functionalized by incorporation of a laminin peptide into these films. Lastly, the resultant substrates were tested for cell adhesion where laminin-doped CP showed a higher level of cell adhesion compared to PSS (polystyrene sulfonate)-doped CP films. These results together demonstrate the potential application of patterned films of bio-functionalized CPs for cellular engineering.

  18. Properties of a-C:H:O plasma polymer films deposited from acetone vapors

    Energy Technology Data Exchange (ETDEWEB)

    Drabik, M., E-mail: martin.drabik@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Celma, C. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland); Kousal, J.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Hegemann, D. [Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen (Switzerland)

    2014-12-31

    To gain insight into the deposition and stability of oxygen-containing plasma polymer films, the properties of amorphous oxygenated hydrocarbon (a-C:H:O) plasma polymer coatings deposited from acetone vapors under various experimental conditions are investigated. Apart from the discharge power, the influence of the reactive carbon dioxide (CO{sub 2}) gas on the structure of the resulting films is studied. It is found by characterization using X-ray Photoelectron Spectroscopy and Fourier-Transform Infrared Spectroscopy that the experimental conditions particularly influence the amount of oxygen in the deposited a-C:H:O plasma polymer films. The O/C elemental ratio increases with increasing amount of CO{sub 2} in the working gas mixture (up to 0.2 for 24 sccm of CO{sub 2} at 30 W) and decreases with increasing RF discharge power (down to 0.17 for 50 W). Furthermore, the nature of bonds between the oxygen and carbon atoms has been examined. Only low amounts of double and triple bonded carbon are observed. This has a particular influence on the aging of the plasma polymer films which is studied both in ambient air and in distilled water for up to 4 months. Overall, stable a-C:H:O plasma polymer films are deposited comprising low amounts (up to about 5%) of ester/carboxyl groups. - Highlights: • Hydrocarbon plasma polymer films with variable oxygen content can be prepared. • Stable oxygenated hydrocarbon plasma polymers contain max 5% of ester/carboxyl groups. • Acetone-derived plasma polymer films can be used as permanent hydrophilic surfaces.

  19. Characterization of Homopolymer and Polymer Blend Films by Phase Sensitive Acoustic Microscopy

    Science.gov (United States)

    Ngwa, Wilfred; Wannemacher, Reinhold; Grill, Wolfgang

    2003-03-01

    CHARACTERIZATION OF HOMOPOLYMER AND POLYMER BLEND FILMS BY PHASE SENSITIVE ACOUSTIC MICROSCOPY W Ngwa, R Wannemacher, W Grill Institute of Experimental Physics II, University of Leipzig, 04103 Leipzig, Germany Abstract We have used phase sensitive acoustic microscopy (PSAM) to study homopolymer thin films of polystyrene (PS) and poly (methyl methacrylate) (PMMA), as well as PS/PMMA blend films. We show from our results that PSAM can be used as a complementary and highly valuable technique for elucidating the three-dimensional (3D) morphology and micromechanical properties of thin films. Three-dimensional image acquisition with vector contrast provides the basis for: complex V(z) analysis (per image pixel), 3D image processing, height profiling, and subsurface image analysis of the polymer films. Results show good agreement with previous studies. In addition, important new information on the three dimensional structure and properties of polymer films is obtained. Homopolymer film structure analysis reveals (pseudo-) dewetting by retraction of droplets, resulting in a morphology that can serve as a starting point for the analysis of polymer blend thin films. The outcome of confocal laser scanning microscopy studies, performed on the same samples are correlated with the obtained results. Advantages and limitations of PSAM are discussed.

  20. Photochemical Degradation Of Polymer Films On Metals As Studied By Fourier Transform Infrared (FTIR) Spectroscopy

    Science.gov (United States)

    Webb, John D.; Schissel, Paul; Czanderna, Alvin; Chughtai, Abdul R.; Smith, Dwight M.

    1981-10-01

    An experimental approach to the study of polymer film photodegradation by Fourier transform infrared (FT-IR) spectroscopy, with simultaneous UV irradiation under varying thermal and environmental parameters, has been developed. Reflection spectra from metal-backed polycarbonate films undergoing irradiation in a test chamber illustrate the system's capability. Early degradative events in polycarbonate are revealed by differences in these spectra.

  1. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Zhijian Tan

    2016-05-01

    Full Text Available The use of plastic film in agriculture has the serious drawback of producing vast quantities of waste. In this work, films were prepared from natural fibers and biodegradable polymers as potential substitutes for the conventional non-biodegradable plastic film used as mulching material in agricultural production. The physical properties (e.g., mechanical properties, heat preservation, water permeability, and photopermeability and degradation characteristics (evaluated by micro-organic culture testing and soil burial testing of the films were studied in both laboratory and field tests. The experimental results indicated that these fiber/polymer films exhibited favorable physical properties that were sufficient for use in mulching film applications. Moreover, the degradation degree of the three tested films decreased in the following order: fiber/starch (ST film > fiber/poly(vinyl alcohol (PVA film > fiber/polyacrylate (PA film. The fiber/starch and fiber/PVA films were made from completely biodegradable materials and demonstrated the potential to substitute non-biodegradable films.

  2. Investigation of optical properties of aluminium oxide doped polystyrene polymer nanocomposite films

    Science.gov (United States)

    Bhavsar, Shilpa; Patel, Gnansagar B.; Singh, N. L.

    2018-03-01

    In the present work, a simple solution casting method was utilized to synthesize aluminium oxide (Al2O3) doped polystyrene (PS) polymer nanocomposite films. As synthesized films were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultra violet (UV)-visible spectroscopy, photoluminescence (PL) method and scanning electron microscopy (SEM). The crystalline nature of the films was found to decrease after incorporation of filler in the polymer matrix as revealed by XRD results. A new carbonyl group was appeared in the FTIR spectra and confirmed the charge transfer reaction between filler and polymer matrix. The decrease in the band gap was found with the filler concentration in the synthesized polymer nanocomposite films. Photoluminescence emission spectra of nanocomposites were observed at 411 nm, 435 nm and 462 nm, respectively in violet-blue region which indicates interaction between the dopant and the polymer matrix. The PL emission spectra of polymer nanocomposite films with 3 wt% of Al2O3 filler exhibited higher peak intensity. The Al2O3 filler dispersion is found to reduce band gap and promote luminescence property in polystyrene. SEM analysis indicates the agglomeration of Al2O3 nanoparticles into PS matrix at higher concentration.

  3. Effect of silver nanoparticles on photo-induced reorientation of azo groups in polymer films

    International Nuclear Information System (INIS)

    Zhou Jingli; Yang Jianjun; Sun Youyi; Zhang Douguo; Shen Jing; Zhang Qijin; Wang Keyi

    2007-01-01

    A series of polymer films containing azo groups and silver nanoparticles were prepared. Photo-induced reorientation of the film was conducted under irradiation of polarized light with wavelength at 365 nm, 442 nm and 532 nm, respectively. The influence of the concentration of dopant silver on the reorientation of the azo groups was studied. An enhancement of about 50% for the reorientation rate and about 70% for the reorientation amplitude was achieved. From a comparison of the enhancement obtained by irradiating with three different light sources, it was realized that the mechanism for enhancement of reorientation of azo groups is due to plasmon resonance of silver nanoparticles doped in the polymer films

  4. Dichroic dye-dependent studies in guest-host polymer-dispersed liquid crystal films

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Praveen, E-mail: pmalik100@yahoo.co [Department of Physics, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab (India); Raina, K.K. [Liquid Crystal Group, Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala 147004, Punjab (India)

    2010-01-01

    Guest-host polymer-dispersed liquid crystal (GHPDLC) films were prepared using a nematic liquid crystal, photo-curable polymer and dichroic dye (anthraquinone blue) by polymerization-induced phase separation (PIPS) technique. Non-ionic dichroic dye (1%, 2% and 4% wt./wt. ratio) was taken as guest in PDLC host. Polarizing microscopy shows that in the absence of electric field, liquid crystal (LC) droplets in polymer matrix mainly exhibit bipolar configuration, however, relatively at higher field, maltese-type crosses were observed. Our results show that approx1% dye-doped PDLC film shows better transmission and faster response times over pure polymer-dispersed nematic liquid crystal (PDNLC) and higher concentrated (2% and 4%) GHPDLC films.

  5. Thickness Dependence of Failure in Ultra-thin Glassy Polymer Films

    Science.gov (United States)

    Bay, Reed; Shimomura, Shinichiro; Liu, Yujie; Ilton, Mark; Crosby, Alfred

    The physical properties of polymer thin films change as the polymer chains become confined. Similar changes in mechanical properties have been observed, though these critical properties have only been explored a limited extent and with indirect methods. Here, we use a recently developed method to measure the complete uniaxial stress strain relationship of polymer thin films of polystyrene films (PS, Mw =130kg/mol, 490kg/mol, and 853kg/mol) as a function of thickness (20 nm-220nm). In this method, we hold a `dog-bone' shaped film on water between a flexible cantilever and a movable rigid boundary, measuring force-displacement from the cantilever deflection. From our measurements, we find that the modulus decreases as the PS chains become confined. The PS thin films exhibit ``ideal perfectly plastic'' behavior due to crazing, which differs from the typical brittle response of bulk PS. The draw stress due to crazing decreases with film thickness. These results provide new fundamental insight into how polymer behavior is altered due to structural changes in the entangled polymer network upon confinement. NSF DMR 1608614.

  6. Synthesis and characterization of nanoscale polymer films grafted to metal surfaces

    Science.gov (United States)

    Galabura, Yuriy

    Anchoring thin polymer films to metal surfaces allows us to alter, tune, and control their biocompatibility, lubrication, friction, wettability, and adhesion, while the unique properties of the underlying metallic substrates, such as magnetism and electrical conductivity, remain unaltered. This polymer/metal synergy creates significant opportunities to develop new hybrid platforms for a number of devices, actuators, and sensors. This present work focused on the synthesis and characterization of polymer layers grafted to the surface of metal objects. We report the development of a novel method for surface functionalization of arrays of high aspect ratio nickel nanowires/micronails. The polymer "grafting to" technique offers the possibility to functionalize different segments of the nickel nanowires/micronails with polymer layers that possess antagonistic (hydrophobic/hydrophilic) properties. This method results in the synthesis of arrays of Ni nanowires and micronails, where the tips modified with hydrophobic layer (polystyrene) and the bottom portions with a hydrophilic layer (polyacrylic acid). The developed modification platform will enable the fabrication of switchable field-controlled devices (actuators). Specifically, the application of an external magnetic field and the bending deformation of the nickel nanowires and micronails will make initially hydrophobic surface more hydrophilic by exposing different segments of the bent nanowires/micronails. We also investigate the grafting of thin polymer films to gold objects. The developed grafting technique is employed for the surface modification of Si/SiO2/Au microprinted electrodes. When electronic devices are scaled down to submicron sizes, it becomes critical to obtain uniform and robust insulating nanoscale polymer films. Therefore, we address the electrical properties of polymer layers of poly(glycidyl methacrylate) (PGMA), polyacrylic acid (PAA), poly(2-vinylpyridine) (P2VP), and polystyrene (PS) grafted to

  7. Alumina particles doped in a polymer film act as scatterers for random laser generation

    Science.gov (United States)

    Cao, Dan; Huang, Dengfeng; Zhang, Xiaoqiang; Zeng, Shumao; Parbey, Joseph; Liu, Shenye; Wang, Chuanke; Yi, Tao; Li, Tingshuai

    2018-02-01

    Lasing can be achieved with a system that has randomly distributed particles that act as scatterers in polymer films doped with laser dyes; a strict resonant cavity is not required. In this study, alumina particles and Rhodamine 6G dye were dispersed in polyvinyl pyrrolidone solutions as slurry to prepare thin films by a spin-coating method. These films were then pumped as a laser generator using a pulsed Nd:YLF laser. The results indicate that film thickness had an obvious affect on laser emission, and the lasing intensity increased with the pump energy, which tended to increase and then decrease with film thickness. An optical model based on the fabricated films was established to analyze light coupling with the films and possible distribution of light in films.

  8. Fabrication of Superhydrophobic and Luminescent Rare Earth/Polymer complex Films.

    Science.gov (United States)

    Wang, Zefeng; Ye, Weiwei; Luo, Xinran; Wang, Zhonggang

    2016-04-18

    The motivation of this work is to create luminescent rare earth/polymer films with outstanding water-resistance and superhydrophobicity. Specifically, the emulsion polymerization of styrene leads to core particles. Then core-shell-structured polymer nanoparticles are synthesized by copolymerization of styrene and acrylic acid on the core surface. The coordination reaction between carboxylic groups and rare earth ions (Eu(3+) and Tb(3+)) generates uniform spherical rare earth/polymer nanoparticles, which are subsequently complexed with PTFE microparticles to obtain micro-/nano-scaled PTFE/rare earth films with hierarchical rough morphology. The films exhibit large water contact angle up to 161° and sliding angle of about 6°, and can emit strong red and green fluorescence under UV excitation. More surprisingly, it is found that the films maintain high fluorescence intensity after submersed in water and even in aqueous salt solution for two days because of the excellent water repellent ability of surfaces.

  9. Surface plasmon resonance image sensor module of spin-coated silver film with polymer layer.

    Science.gov (United States)

    Son, Jung-Han; Lee, Dong Hun; Cho, Yong-Jin; Lee, Myung-Hyun

    2013-11-01

    Prism modules of 20 nm-, 40 nm-, and 60 nm-thick spin-coated silver films both without and with an upper 100 nm-thick spin-coated polymer layer were fabricated for surface plasmon resonance (SPR) image sensor applications. The prism modules were applied to an SPR image sensor system. The coefficients of determination (R2s) for the 20 nm-, 40 nm- and 60 nm-thick silver films without the polymer layer were 0.9231, 0.9901, and 0.9889, respectively, and with the polymer layer 0.9228, 0.9951, and 0.9880, respectively when standard ethanol solutions with 0.1% intervals in the range of 20.0% to 20.5% were applied. The upper polymer layer has no effect on the R2. The prism modules of the 40-nm-thick spin-coated silver films had the highest R2 value of approximately 0.99. The durability of the 40 nm-thick spin-coated silver film with the 100 nm-thick polymer layer is much better than that without the upper low-loss polymer layer. The developed SPR image sensor module of the 40 nm-thick spin-coated silver film with the upper 100 nm-thick low-loss polymer film is expected to be a very cost-effective and robust solution because the films are formed at low temperatures in a short period of time without requiring a vacuum system and are very durable.

  10. Synthesis and characterization thin films of conductive polymer (PANI) for optoelectronic device application

    Energy Technology Data Exchange (ETDEWEB)

    Jarad, Amer N., E-mail: amer78malay@yahoo.com.my; Ibrahim, Kamarulazizi, E-mail: kamarul@usm.my; Ahmed, Nasser M., E-mail: nas-tiji@yahoo.com [Nano-optoelectronic Research and Technology Laboratory School of physics, University of Sains Malaysia, 11800 Pulau Pinang (Malaysia)

    2016-07-06

    In this work we report preparation and investigation of structural and optical properties of polyaniline conducting polymer. By using sol-gel in spin coating technique to synthesize thin films of conducting polymer polyaniline (PANI). Conducting polymer polyaniline was synthesized by the chemical oxidative polymerization of aniline monomers. The thin films were characterized by technique: Hall effect, High Resolution X-ray diffraction (HR-XRD), Fourier transform infrared (FTIR) spectroscopy, Field emission scanning electron microscopy (FE-SEM), and UV-vis spectroscopy. Polyaniline conductive polymer exhibit amorphous nature as confirmed by HR-XRD. The presence of characteristic bonds of polyaniline was observed from FTIR spectroscopy technique. Electrical and optical properties revealed that (p-type) conductivity PANI with room temperature, the conductivity was 6.289×10{sup −5} (Ω.cm){sup −1}, with tow of absorption peak at 426,805 nm has been attributed due to quantized size of polyaniline conducting polymer.

  11. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures

    International Nuclear Information System (INIS)

    Onoda, Mitsuyoshi; Abe, Yayoi; Tada, Kazuya

    2009-01-01

    Poly(vinyl alcohol), PVA, produces a flexible composite polymer film with electrical, optical and electrochemical properties very similar to those of polypyrrole (PPy). The rate of electrochemical polymerization depends on the diffusion rate of the electrolyte across the PVA film to the indium tin oxide (ITO) electrode. In particular, a solvent with a hydrophilic nature easily penetrates into the PVA film. By applying this new process, we demonstrate a unique method of forming an electrically conductive pattern in PVA film. It will be possible to develop electrodes for electrical stimulation of the nervous system using the conducting polymer, PPy. Then, by applying a similar technique, we fabricated poly(3,4-ethylenedioxythiophene), PEDOT/PVA, composite films and investigated their basic electrochemical properties. Moreover, in this study, in order to develop a novel cell-culture system which makes it possible to communicate with cultured cells, fibroblasts were cultured on PPy- and PEDOT-coated ITO conductive glass plates for 7 days. The result reveals that the PPy and PEDOT films support the secretory functions of the cells cultured on its surface. The PPy- and PEDOT-coated electrodes may be useful to culture the cells on.

  12. New fabrication technique of conductive polymer/insulating polymer composite films and evaluation of biocompatibility in neuron cultures

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, Mitsuyoshi, E-mail: onoda@eng.u-hyogo.ac.j [Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, University of Hyogo, Himwji Shosha Campus, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan); Abe, Yayoi; Tada, Kazuya [Department of Electrical Engineering and Computer Sciences, Graduate School of Engineering, University of Hyogo, Himwji Shosha Campus, 2167 Shosha, Himeji, Hyogo 671-2280 (Japan)

    2009-11-30

    Poly(vinyl alcohol), PVA, produces a flexible composite polymer film with electrical, optical and electrochemical properties very similar to those of polypyrrole (PPy). The rate of electrochemical polymerization depends on the diffusion rate of the electrolyte across the PVA film to the indium tin oxide (ITO) electrode. In particular, a solvent with a hydrophilic nature easily penetrates into the PVA film. By applying this new process, we demonstrate a unique method of forming an electrically conductive pattern in PVA film. It will be possible to develop electrodes for electrical stimulation of the nervous system using the conducting polymer, PPy. Then, by applying a similar technique, we fabricated poly(3,4-ethylenedioxythiophene), PEDOT/PVA, composite films and investigated their basic electrochemical properties. Moreover, in this study, in order to develop a novel cell-culture system which makes it possible to communicate with cultured cells, fibroblasts were cultured on PPy- and PEDOT-coated ITO conductive glass plates for 7 days. The result reveals that the PPy and PEDOT films support the secretory functions of the cells cultured on its surface. The PPy- and PEDOT-coated electrodes may be useful to culture the cells on.

  13. Investigating the crystal growth behavior of biodegradable polymer blend thin films using in situ atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-01-01

    Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...

  14. A wrinkling-based method for investigating glassy polymer film relaxation as a function of film thickness and temperature

    Science.gov (United States)

    Chung, Jun Young; Douglas, Jack F.; Stafford, Christopher M.

    2017-10-01

    We investigate the relaxation dynamics of thin polymer films at temperatures below the bulk glass transition Tg by first compressing polystyrene films supported on a polydimethylsiloxane substrate to create wrinkling patterns and then observing the slow relaxation of the wrinkled films back to their final equilibrium flat state by small angle light scattering. As with recent relaxation measurements on thin glassy films reported by Fakhraai and co-workers, we find the relaxation time of our wrinkled films to be strongly dependent on film thickness below an onset thickness on the order of 100 nm. By varying the temperature between room temperature and Tg (≈100 °C), we find that the relaxation time follows an Arrhenius-type temperature dependence to a good approximation at all film thicknesses investigated, where both the activation energy and the relaxation time pre-factor depend appreciably on film thickness. The wrinkling relaxation curves tend to cross at a common temperature somewhat below Tg, indicating an entropy-enthalpy compensation relation between the activation free energy parameters. This compensation effect has also been observed recently in simulated supported polymer films in the high temperature Arrhenius relaxation regime rather than the glassy state. In addition, we find that the film stress relaxation function, as well as the height of the wrinkle ridges, follows a stretched exponential time dependence and the short-time effective Young's modulus derived from our modeling decreases sigmoidally with increasing temperature—both characteristic features of glassy materials. The relatively facile nature of the wrinkling-based measurements in comparison to other film relaxation measurements makes our method attractive for practical materials development, as well as fundamental studies of glass formation.

  15. Boundary-induced segregation in nanoscale thin films of athermal polymer blends.

    Science.gov (United States)

    Teng, Chih-Yu; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2016-05-18

    The surface segregation of binary athermal polymer blends confined in a nanoscale thin film was investigated by dissipative particle dynamics. The polymer blend included linear/linear, star/linear, bottlebrush/linear, and rod-like/linear polymer systems. The segregation was driven by purely entropic effects and two different mechanisms were found. For the linear/linear and star/linear polymer blends, the smaller sized polymers were preferentially segregated to the boundary because their excluded volumes were smaller than those of the matrix polymers. For the bottlebrush/linear and rod-like/linear polymer blends, the polymers with a larger persistent length were preferentially segregated to the boundary because they favored staying in the depletion zone by alignment with the wall. Our simulation outcome was consistent with experimental results and also agreed with theoretical predictions - that is, a surface excess dictated by the chain ends for the branch/linear system. These consequences are of great importance in controlling the homogeneity and surface properties of polymer blend thin films.

  16. Polarized absorption spectra of aromatic radicals in stretched polymer film. 3. Radical ions of acridine and phenazine

    Energy Technology Data Exchange (ETDEWEB)

    Sekigucki, K.; Hiratsuka, H.; Tanizaki, Y.; Hatano, Y.

    1980-02-21

    Radical anions and cations of acridine and phenazine have been prepared in polymer film by ..gamma..-ray irradiation at 77 K. For the preparation of radical anions the sample was incorporated into polyethylene film by sec-butylamine, while for radical cations poly(vinyl chloride) film and sec-butyl chloride were used. Polarized absorption spectra of these radical ions have been measured in stretched polymer film and analyzed qualitatively in terms of molecular orbital calculations.

  17. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    International Nuclear Information System (INIS)

    Biederman, H.; Holland, L.

    1983-01-01

    Fluorocarbon films have been prepared by plasma polymerization of CF 4 using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an r.f. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF 4 [25%]-argon[75%] mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF 4 [87%]-argon[13%] were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF 4 as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an EAS study. The sheet resistivity of the metal/polymer film complexes was determined. (orig.)

  18. Size and interface effects on several kinetic and thermodynamic properties of polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lang, X.Y. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China); Zhu, Y.F. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China); Jiang, Q. [Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, and Department of Materials Science and Engineering, Jilin University, Changchun 130025 (China)]. E-mail: jiangq@jlu.edu.cn

    2006-12-05

    Size and interface effects on kinetic and thermodynamic properties (shear viscosity [{eta}(T,D)], surface tension [{gamma}(T,D)] and thermal expansion coefficient [{beta}(T,D)]) of thin polymer films at temperature T have been modeled based on free volume model and size-dependent function for mean-square displacement of molecules in thin polymer films at glass transition temperature {sigma} {sub g} {sup 2}(D), where D denotes the thickness of thin films. In terms of these models, {eta}(T,D), {beta}(T,D) and {gamma}(T,D) functions are predicted to decrease or increase as D decreases in comparison with the corresponding bulk values, depending on free surface effect and film/substrate interface interaction strength. The predictions are in agreement with available experimental measurements of polystyrene and polybutadiene thin films.

  19. Specular and Diffuse Reflectance of Phase-Separated Polymer Blend Films.

    Science.gov (United States)

    Nallapaneni, Asritha; Shawkey, Matthew D; Karim, Alamgir

    2017-06-01

    Diffuse reflectors have various applications in devices ranging from liquid crystal displays to light emitting diodes, to coatings. Herein, specular and diffuse reflectance from controlled phase separation of polymer blend films, a well-known self-organization process, are studied. Temperature-induced spinodal phase separation of polymer blend films in which one of the components is selectively extracted is shown to exhibit enhanced surface roughness as compared to unextracted films, leading to a notable increase of diffuse reflectance. Diffuse reflectance of UV-visible light from such selectively leached phase-separated blend films is determined by a synergy of varying lateral scale of phase separation (≈200 nm to 1 μm) and blend film surface roughness (0-40 nm). These critical parameters are controlled by tuning annealing time (0.5-3 h) and temperature (140, 150, 160 °C) of phase separation. Angle-resolved diffuse reflection studies show that the surface-roughened polymer films exhibit diffuse reflectance up to 40° from normal incident light in contrast to optically uniform as-cast films that exhibit largely specular reflectance. Furthermore, the intensity of the diffusively reflected light can be enhanced (300-700 nm) or reduced (220-300 nm) significantly by coating the leached phase-separated films with a thin silver over layer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle J. [Department; Glynos, Emmanouil [Department; Maroulas, Serafeim-Dionysios [Department; Narayanan, Suresh [Advanced; Sakellariou, Georgios [Department; Green, Peter F. [Department; National

    2017-09-07

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g., sensing, energy conversion) of these materials influences other properties. One challenge is to understand the effects of nanoparticles on the viscosity of nanoscale thick polymer films. A new mechanism that contributes to an enhancement of the viscosity of nanoscale thick polymer/nanoparticle films is identified. We show that while the viscosities of neat homopolymer poly(2-vinylpyridine) (P2VP) films as thin as 50 nm remained the same as the bulk, polymer/nanoparticle films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were comparable to the bulk values. These results - NP proximities and suppression of their dynamics - suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for nanoscale applications.

  1. Hydrothermal Synthesis and Processing of Barium Titanate Nanoparticles Embedded in Polymer Films.

    Science.gov (United States)

    Toomey, Michael D; Gao, Kai; Mendis, Gamini P; Slamovich, Elliott B; Howarter, John A

    2015-12-30

    Barium titanate nanoparticles embedded in flexible polymer films were synthesized using hydrothermal processing methods. The resulting films were characterized with respect to material composition, size distribution of nanoparticles, and spatial location of particles within the polymer film. Synthesis conditions were varied based on the mechanical properties of the polymer films, ratio of polymer to barium titanate precursors, and length of aging time between initial formulations of the solution to final processing of nanoparticles. Block copolymers of poly(styrene-co-maleic anhydride) (SMAh) were used to spatially separate titanium precursors based on specific chemical interactions with the maleic anhydride moiety. However, the glassy nature of this copolymer restricted mobility of the titanium precursors during hydrothermal processing. The addition of rubbery butadiene moieties, through mixing of the SMAh with poly(styrene-butadiene-styrene) (SBS) copolymer, increased the nanoparticle dispersion as a result of greater diffusivity of the titanium precursor via higher mobility of the polymer matrix. Additionally, an aminosilane was used as a means to retard cross-linking in polymer-metalorganic solutions, as the titanium precursor molecules were shown to react and form networks prior to hydrothermal processing. By adding small amounts of competing aminosilane, excessive cross-linking was prevented without significantly impacting the quality and composition of the final barium titanate nanoparticles. X-ray diffraction and X-ray photoelectron spectroscopy were used to verify nanoparticle compositions. Particle sizes within the polymer films were measured to be 108 ± 5 nm, 100 ± 6 nm, and 60 ± 5 nm under different synthetic conditions using electron microscopy. Flexibility of the films was assessed through measurement of the glass transition temperature using dynamic mechanical analysis. Dielectric permittivity was measured using an impedance analyzer.

  2. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors.

    Science.gov (United States)

    Samant, Saumil P; Grabowski, Christopher A; Kisslinger, Kim; Yager, Kevin G; Yuan, Guangcui; Satija, Sushil K; Durstock, Michael F; Raghavan, Dharmaraj; Karim, Alamgir

    2016-03-01

    Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.

  3. Photo-Induced Bending Behavior of Post-Crosslinked Liquid Crystalline Polymer/Polyurethane Blend Films.

    Science.gov (United States)

    Pang, Xinlei; Xu, Bo; Qing, Xin; Wei, Jia; Yu, Yanlei

    2018-01-01

    Photoresponsive blend films with post-crosslinked liquid crystalline polymer (CLCP) as a photosensitive component and flexible polyurethane (PU) as the matrix are successfully fabricated. After being uniaxially stretched, even at low concentration, the azobenzene-containing CLCP effectively transfers its photoresponsiveness to the photoinert PU matrix, resulting in the fast photo-induced bending behavior of whole blend film thanks to the effective dispersion of CLCP. Specifically, the blend film shows photo-induced deformations upon exposure to unpolarized UV light at ambient temperature. The film unbends after thermal treatment, and the randomly orientated mesogens in the film can be realigned by the mechanical stretching, which endows the film with a reversible deformation behavior. The photosensitive blend film possesses favorable mechanical property and good processability at low cost, and it is a promising candidate for a new generation of actuators. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of graphite loading on the electrical and mechanical properties of Poly (Ethylene Oxide)/Poly (Vinyl Chloride) polymer films

    Science.gov (United States)

    Hajar, M. D. S.; Supri, A. G.; Hanif, M. P. M.; Yazid, M. I. M.

    2017-10-01

    In this study, films consisting of a blend of poly (ethylene oxide)/poly (vinyl chloride) (PEO/PVC) and a conductive filler, graphite were prepared and characterized for their mechanical and electrical properties. Solid polymer blend films based on PEO/PVC (50/50 wt%/wt%) with different graphite loading were prepared by using solution casting technique. Electrical conductivity results discovered the conductivity increased with increasing of filler loading. However, increasing amount of graphite loading led to a decreased in tensile strength and young’s modulus of PEO/PVC/Graphite polymer films. The dispersion of graphite and mechanism of conductive path in the polymer films were also investigated by scanning electron microscopy (SEM). The morphology of the PEO/PVC/Graphite polymer films shows that agglomeration occurred to complete the connection of conductive path, thus improving the conductivity behavior of the polymer films.

  5. Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films

    Science.gov (United States)

    Arya, Anil; Sharma, A. L.

    2018-01-01

    Free-standing solid polymer nanocomposite (PEO-PVC)  +  LiPF6-TiO2 films have been prepared through a standard solution-cast technique. The improvement in structural, microstructural and electrochemical properties has been observed on the dispersion of nanofiller in polymer salt complex. X-ray diffraction studies clearly reflect the formation of complex formation, as no corresponding salt peak appeared in the diffractograms. The Fourier transform infrared analysis suggested clear and convincing evidence of polymer-ion, ion-ion and polymer-ion-nanofiller interaction. The highest ionic conductivity of the prepared solid polymer electrolyte (SPE) films is ~5  ×  10-5 S cm-1 for 7 wt.% TiO2. The linear sweep voltammetry provides the electrochemical stability window of the prepared SPE films, about ~3.5 V. The ion transference number has been estimated, t ion  =  0.99 through the DC polarization technique. Dielectric spectroscopic studies were performed to understand the ion transport process in polymer electrolytes. All solid polymer electrolytes possess good thermal stability up to 300 °C. Differential scanning calorimetry analysis confirms the decrease of the melting temperature and signal of glass transition temperature with the addition of nanofiller, which indicates the decrease of crystallinity of the polymer matrix. An absolute correlation between diffusion coefficient (D), ion mobility (µ), number density (n), double-layer capacitance (C dl), glass transition temperature, melting temperature (T m), free ion area (%) and conductivity (σ) has been observed. A convincing model to study the role of nanofiller in a polymer salt complex has been proposed, which supports the experimental findings. The prepared polymer electrolyte system with significant ionic conductivity, high ionic transference number, and good thermal and voltage stability could be suggested as a potential candidate as electrolyte cum separator for the fabrication of a

  6. Second harmonic generation from corona-poled polymer thin films ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... We characterize thermal stability of second harmonic generation (SHG) properties of four different Y-type polymers poled using corona poling method. These polymers are based on donor–acceptor–donor-type repeating unit with different aromatic moieties acting as donors and dicyanomethylene acting as ...

  7. Second harmonic generation from corona-poled polymer thin films ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Abstract. We characterize thermal stability of second harmonic generation (SHG) properties of four different Y-type polymers poled using corona poling method. These polymers are based on donor–acceptor–donor-type repeating unit with different aromatic moieties acting as donors and dicyanomethylene ...

  8. Protein immobilization on epoxy-activated thin polymer films: effect of surface wettability and enzyme loading.

    Science.gov (United States)

    Chen, Bo; Pernodet, Nadine; Rafailovich, Miriam H; Bakhtina, Asya; Gross, Richard A

    2008-12-02

    A series of epoxy-activated polymer films composed of poly(glycidyl methacrylate/butyl methacrylate/hydroxyethyl methacrylate) were prepared. Variation in comonomer composition allowed exploration of relationships between surface wettability and Candida antartica lipase B (CALB) binding to surfaces. By changing solvents and polymer concentrations, suitable conditions were developed for preparation by spin-coating of uniform thin films. Film roughness determined by AFM after incubation in PBS buffer for 2 days was less than 1 nm. The occurrence of single CALB molecules and CALB aggregates at surfaces was determined by AFM imaging and measurements of volume. Absolute numbers of protein monomers and multimers at surfaces were used to determine values of CALB specific activity. Increased film wettability, as the water contact angle of films increased from 420 to 550, resulted in a decreased total number of immobilized CALB molecules. With further increases in the water contact angle of films from 55 degrees to 63 degrees, there was an increased tendency of CALB molecules to form aggregates on surfaces. On all flat surfaces, two height populations, differing by more than 30%, were observed from height distribution curves. They are attributed to changes in protein conformation and/or orientation caused by protein-surface and protein-protein interactions. The fraction of molecules in these populations changed as a function of film water contact angle. The enzyme activity of immobilized films was determined by measuring CALB-catalyzed hydrolysis of p-nitrophenyl butyrate. Total enzyme specific activity decreased by decreasing film hydrophobicity.

  9. Photoisomerization of amphiphilic azobenzene derivatives in Langmuir Blodgett films prepared as polyion complexes, using ionic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Shembekar, Vishakha R. [Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai-400 076 (India); Contractor, A.Q. [Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai-400 076 (India); Major, S.S. [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400 076 (India); Talwar, S.S. [Department of Physics, Indian Institute of Technology, Bombay, Mumbai-400 076 (India)]. E-mail: chsstia@phy.iitb.ac.in.z

    2006-07-03

    Polyion complexation in mixed Langmuir and Langmuir Blodgett (LB) films of photochromic amphiphilic azobenzene carboxylic acids, 11-[4-(4-hexylphenyl)azo] phenoxyundecanoic acid, 11-(4-phenylazo)phenoxyundecanoic acid, and diamine grafted poly(methylmethaacrylate) polymers has been studied. Monolayer behaviour of the pure components and mixed films was studied through pressure-area isotherms and LB films were characterized by spectroscopic, X-ray diffraction and Atomic force microscopy techniques. Aggregation (H-type), often observed in LB films of pure amphiphilic azo acids, was partly avoided in the mixed LB films as indicated by absorption spectral studies. Photoisomerization of the polyion complexed LB films was also studied. The results altogether demonstrate that amine grafted polymer enter into a polyion complexation with azo acid carboxylate group. LB films could be obtained by transfer of the composite monolayers and these LB films exhibited different levels of aggregation of the azo acids. Reversible photoisomerization was observed in LB films with unaggregated azo acid.

  10. Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications

    KAUST Repository

    Yue, Wan

    2016-09-28

    Two new alternating copolymers, PAIIDBT and PAIIDSe have been prepared by incorporating a highly electron deficient azaisoindigo core. The molecular structure and packing of the monomer is determined from the single crystal X-ray diffraction. Both polymers exhibit high EAs and highly planar polymer backbones. When polymers are used as the semiconducting channel for solution-processed thin film transistor application, good properties are observed. A–A type PAIIDBT exhibits unipolar electron mobility as high as 1.0 cm2 V−1 s−1, D–A type PAIIDSe exhibits ambipolar charge transport behavior with predominately electron mobility up to 0.5 cm2 V−1 s−1 and hole mobility to 0.2 cm2 V−1 s−1. The robustness of the extracted mobility values are also commented on in detail. Molecular orientation, thin film morphology and energetic disorder of both polymers are systematically investigated.

  11. Delocalization Drives Free Charge Generation in Conjugated Polymer Films

    Energy Technology Data Exchange (ETDEWEB)

    Rumbles, Garry [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Reid, Obadiah G [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Pace, Natalie A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-19

    We demonstrate that the product of photoinduced electron transfer between a conjugated polymer host and a dilute molecular sensitizer is controlled by the structural state of the polymer. Ordered semicrystalline solids exhibit free charge generation, while disordered polymers in the melt phase do not. We use photoluminescence (PL) and time-resolved microwave conductivity (TRMC) measurements to sweep through polymer melt transitions in situ. Free charge generation measured by TRMC turns off upon melting, whereas PL quenching of the molecular sensitizers remains constant, implying unchanged electron transfer efficiency. The key difference is the intermolecular order of the polymer host in the solid state compared to the melt. We propose that this order-disorder transition modulates the localization length of the initial charge-transfer state, which controls the probability of free charge formation.

  12. Ion-conduction mechanisms in NaSICON-type membranes for energy storage and utilization

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Ihlefeld, Jon F. [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States); Bartelt, Norman Charles [Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sandia National Laboratories, Albuquerque, NM (United States)

    2015-10-01

    Next generation metal-ion conducting membranes are key to developing energy storage and utilization technologies like batteries and fuel ce lls. Sodium super-ionic conductors (aka NaSICON) are a class of compounds with AM 1 M 2 (PO 4 ) 3 stoichiometry where the choice of "A" and "M" cation varies widely. This report, which de scribes substitutional derivatives of NZP (NaZr 2 P 3 O 12 ), summarizes the accomplishments of a Laboratory D irected Research and Development (LDRD) project to analyze transport mec hanisms using a combination of in situ studies of structure, composition, and bonding, com bined with first principles theory and modeling. We developed an experimental platform and applied methods, such as synchrotron- based X-ray spectroscopies, to probe the electronic structure of compositionally well-controlled NaSICON films while in operation ( i.e ., conducting Na ions exposed to oxygen or water va por atmospheres). First principles theory and modeling were used to interpret the experimental observations and develop an enhanced understanding of atomistic processes that give rise to, and affect, ion conduction.

  13. Polymer Mixtures and Films: Free Volume as a Driving Force for Miscibility and Glassiness

    Science.gov (United States)

    DeFelice, Jeffrey

    The microscopic characteristics of polymer molecules are connected with many macro- scopic and mechanical properties of their liquid (pure or mixed) and solid states. How these properties are affected by the different molecular attributes of polymers is of particular interest for practical applications of polymer materials. In Part I of this thesis, the thermodynamics of polymer/supercritical CO2 mixtures and blends of linear and branched polymers are modeled using a lattice based equation of state approach. Analyses of trends in the pure component physical properties lead to insight regarding how changes in molecular architecture and/or isotopic labeling affect the relative compatibilities of the mixtures. This approach is also applied to the mixed state to predict the enthalpic and entropic changes of mixing, from which, information is provided about the role of pure component properties in controlling the underlying thermodynamics of the mixtures. In Part II, the focus of this thesis turns to how interfacial effects can shift a number of physical properties in glass forming fluids relative to those of the pure bulk material. One of the most notable deviations from bulk behavior that has been reported for these systems is a change in the glass transition temperature (Tg). In this work, interfacial effects on Tg are probed in film and polymer/additive systems using a simple kinetic lattice model that simulates free volume and mobility in glass forming fluids. For films, the thickness-dependent behavior of Tg is characterized for different types of interfaces, including films that are substrate supported, free- standing, and 'stacked'. Connections are drawn between the size of the region of enhanced mobility near a free surface and the distribution of local Tg values across a film. For polymer/additive systems, where the "interface" is dispersed throughout the material, trends in additive induced Tg changes are analyzed with respect to additive concentration and

  14. Epitaxial growth and lithium ion conductivity of lithium-oxide garnet for an all solid-state battery electrolyte.

    Science.gov (United States)

    Kim, Sangryun; Hirayama, Masaaki; Taminato, Sou; Kanno, Ryoji

    2013-09-28

    Epitaxial thin films of Al-doped Li7La3Zr2O12 (LLZO) with a cubic garnet-type structure were successfully synthesized using pulsed laser deposition to investigate the lithium ion conduction in grains. Two orientations of the films were obtained depending on the Gd3Ga5O12 (GGG) substrate orientation, LLZO(001)/GGG(001) and LLZO(111)/GGG(111). The ionic conductivities in the grains of the (001) and (111) films were 2.5 × 10(-6) and 1.0 × 10(-5) S cm(-1) at 298 K, respectively, which were lower than those of polycrystalline LLZO of over 10(-4) S cm(-1). X-ray reflectometry and inductively coupled plasma mass spectrometry revealed a large amount of Al(3+) of over 0.6 moles substituted for Li(+). These results indicate that the Al(3+) substitution in the LLZO lattice decreases the number of movable lithium ions and blocks the three-dimensional lithium migration pathway. The lattice mismatch between the film and the substrate induced the lattice distortion of the LLZO, resulting in different conductivities between the (001) and (111) films. The epitaxial-film model system directly clarified a substantial impact of the Al substitution and the lattice distortion on the lithium ion conductivity in the LLZO.

  15. Adsorption of Aromatic Compounds on a QCM System Coated with Polymer Films

    International Nuclear Information System (INIS)

    Hwang, Min-Jin; Shim, Wang-Geun; Moon, Hee

    2013-01-01

    A quartz crystal microbalance (QCM) system coated with poly (isobutylene), polystyrene, and poly (methyl methacrylate) has been prepared to measure the adsorption amounts of benzene, toluene, and p-xylene at very low pressures. The resonant frequency shift of the QCM system is proportional to the increase in pressure in all experiments. The Henry's constants for all adsorbates on the polymer films are obtained from experimental data and compared with the minimum adsorption potential energies between adsorbates and the polymer films. In general, there is an explicit correlation between adsorption amount and the minimum adsorption potential energy

  16. Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Rebollar, Esther; Castillejo, Marta [Instituto de Quimica Fisica Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); Vazquez de Aldana, Javier R.; Moreno, Pablo [Grupo de Investigacion en Microprocesado de Materiales con Laser, Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca (Spain); Perez-Hernandez, Jose A. [Centro de Laseres Pulsados Ultracortos Ultraintensos, CLPU, Plaza de la Merced s/n, 37008 Salamanca (Spain); Ezquerra, Tiberio A. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain)

    2012-01-23

    This work demonstrates the formation of femtosecond laser induced periodic surface structures (LIPSS) by multipulse irradiation with the fundamental and 3rd harmonic of a linearly polarized Ti:sapphire laser (795 and 265 nm) on thin films of the polymers poly (ethylene terephthalate), poly (trimethylene terephthalate), and poly (carbonate bisphenol A) prepared by spin-coating. LIPSS, inspected by atomic force microscopy, are formed upon multiple pulse UV and IR irradiation with wavelength-sized period in a narrow range of fluences below the ablation threshold. Control and tunability of the size and morphology of the periodic structures become thus possible ensuring photochemical integrity of polymer films.

  17. A flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators

    International Nuclear Information System (INIS)

    Ju, Woo-Eon; Moon, Yong-Ju; Park, Cheon-Ho; Choi, Seung Tae

    2014-01-01

    To provide tactile feedback on flexible touch screens, transparent relaxor ferroelectric polymer film vibrators were designed and fabricated in this study. The film vibrator can be integrated underneath a transparent cover film or glass, and can also produce acoustic waves that cause a tactile sensation on human fingertips. Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] polymer was used as the relaxor ferroelectric polymer because it produces a large strain under applied electric fields, shows a fast response, and has excellent optical transparency. The natural frequency of this tactile-feedback touch screen was designed to be around 200–240 Hz, at which the haptic perception of human fingertips is the most sensitive; therefore, the resonance of the touch screen at its natural frequency provides maximum haptic sensation. A multilayered relaxor ferroelectric polymer film vibrator was also demonstrated to provide the same vibration power at reduced voltage. The flexible P(VDF-TrFE-CTFE) film vibrators developed in this study are expected to provide tactile sensation not only in large-area flat panel displays, but also in flexible displays and touch screens. (papers)

  18. Building non-tortuous ion-conduction pathways using self-assembled block copolymers

    Science.gov (United States)

    Kim, Onnuri; Park, Moon Jeong

    Ion-containing polymers with self-assembled morphologies are becoming important ingredients of a wide range of electrochemical devices such as lithium-ion batteries, fuel cells and electroactive actuators. Although several studies have reported the relationship between morphologies and ion transport properties of such polymers, the most of quantitative analysis have been limited to two-dimensional morphologies as they occupy a large window of the phase diagrams. In present study, we investigated the effects of morphology on the ion transport efficiency with a focus on three-dimensional symmetry. A range of three-dimensional self-assembled morphologies, i.e., ill-defined cubic, orthorhombic network (O70) , and face-centered cubic phases (fcc) were achieved for a single sulfonated block copolymer upon the addition of non-stoichiometric ionic liquids. The type of three-dimensional lattice was found out to play a crucial role in determining the ion transport properties of composite membranes, where the most efficient ion-conduction was demonstrated for fcc phases with lowest tortuosity of 1 over orthorhombic networks phases (tortuosity:1.5). This intriguing result suggests a new avenue to designing polymer electrolytes with improved transport properties.

  19. Structural and morphological modifications of polymer thin film in the presence of nonsolvent

    Energy Technology Data Exchange (ETDEWEB)

    Talukdar, Hrishikesh, E-mail: hiasst@yahoo.in; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Thin films of sodium poly(acrylic acid) salt (Na-PAA) have been investigated to obtain the modification of the out-of-plane structure and surface morphology in the presence of toluene which is considered as nonsolvent for Na-PAA. X-ray reflectivity analysis show that the out-of-plane thickness of the Na-PAA film increases if the film is kept for longer time inside the toluene. For the thicker film the effect of toluene is more pronounced than the thinner one. Surface morphology obtained from the atomic force microscopy shows that the top surface becomes relatively rough after the dipping of the Na-PAA film inside toluene. Although toluene is nonsolvent for Na-PAA molecules, however, the effect of restructuring of the nanometer-thick polymer film cannot be ignored. The reason for such structural modification has been proposed.

  20. Structural and morphological modifications of polymer thin film in the presence of nonsolvent

    Science.gov (United States)

    Talukdar, Hrishikesh; Kundu, Sarathi

    2016-05-01

    Thin films of sodium poly(acrylic acid) salt (Na-PAA) have been investigated to obtain the modification of the out-of-plane structure and surface morphology in the presence of toluene which is considered as nonsolvent for Na-PAA. X-ray reflectivity analysis show that the out-of-plane thickness of the Na-PAA film increases if the film is kept for longer time inside the toluene. For the thicker film the effect of toluene is more pronounced than the thinner one. Surface morphology obtained from the atomic force microscopy shows that the top surface becomes relatively rough after the dipping of the Na-PAA film inside toluene. Although toluene is nonsolvent for Na-PAA molecules, however, the effect of restructuring of the nanometer-thick polymer film cannot be ignored. The reason for such structural modification has been proposed.

  1. Self-destruction and dewetting of thin polymer films the role of interfacial tensions

    CERN Document Server

    Reiter, G; Sharma, A

    2003-01-01

    We present real-time optical microscopy observations of the pattern evolution in self-destruction and subsequent dewetting of thin polymer films based on experiments with polydimethylsiloxane films sandwiched between silicon wafers and aqueous surfactant solutions. A clear scenario consisting of four distinct stages has been identified: amplification of surface fluctuations, break-up of the film and formation of holes, growth and coalescence of holes, and droplet formation and ripening. Besides a linear dependence on film viscosity and surface tension, the time tau for film rupture varied significantly with film thickness h (tau approx h sup 5), as expected from theory. While the role of long-range forces is dominant only in the first stage, the later stages are controlled by the combination of interfacial tensions resulting in the contact angle characterizing the three-phase contact line. During the first stage, the characteristic distance of the pattern remains constant, represented by a time-independent wa...

  2. Infiltrating semiconducting polymers into self-assembled mesoporous titania films for photovoltaic applications

    Energy Technology Data Exchange (ETDEWEB)

    Coakley, K.M.; McGehee, M.D. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205 (United States); Liu, Y. [Department of Chemistry, Stanford University, Stanford, CA 94305 (United States); Frindell, K.L.; Stucky, G.D. [Department of Chemistry, University of California at Santa Barbara, Santa Barbara, CA 93106 (United States)

    2003-04-01

    Interpenetrating networks of organic and inorganic semiconductors are attractive for photovoltaic cells because electron transfer between the two semiconductors splits excitons. In this paper we show that films of titania with a uniform distribution of pore sizes can be made using a block copolymer as a structure-directing agent, and that 33 % of the total volume of the film can be filled with a semiconducting polymer. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  3. Effect of interface on surface morphology and proton conduction of polymer electrolyte thin films.

    Science.gov (United States)

    Ohira, Akihiro; Kuroda, Seiichi; Mohamed, Hamdy F M; Tavernier, Bruno

    2013-07-21

    To understand the relationship between surface morphology and proton conduction of polymer electrolyte thin films, perfluorinated ionomer Nafion® thin films were prepared on different substrates such as glassy carbon (GC), hydrophilic-GC (H-GC), and platinum (Pt) as models for the ionomer film within a catalyst layer. Atomic force microscopy coupled with an electrochemical (e-AFM) technique revealed that proton conduction decreased with film thickness; an abrupt decrease in proton conductance was observed when the film thickness was less than ca. 10 nm on GC substrates in addition to a significant change in surface morphology. Furthermore, thin films prepared on H-GC substrates with UV-ozone treatment exhibited higher proton conduction than those on untreated GC substrates. However, Pt substrates exhibited proton conduction comparable to that of GCs for films thicker than 20 nm; a decrease in proton conduction was observed at ∼5 nm thick film but was still much higher than for carbon substrates. These results indicate that the number of active proton-conductive pathways and/or the connectivity of the proton path network changed with film thickness. The surface morphology of thinner films was significantly affected by the film/substrate interface and was fundamentally different from that of the bulk thick membrane.

  4. Nanoparticle induced wetting of polymer films and self-assembled multilayers of nanocomponents

    Science.gov (United States)

    Krishnan, R. S.

    The control of dewetting for thin polymer films is a technical challenge and of significant academic interest. Although studies have been published on the wetting of polymer films in the presence of nanoparticles, the underlying physics is still a matter of debate. In this work, we report a systematic study of improved wetting behavior of thin polymer films containing nanoparticles, as a function of nanoparticle size and concentration. An enthalpy matched system consisting of polystyrene nanoparticles in linear polystyrene is used to show that nanoparticles are uniformly distributed in the film after spin coating and drying, however on annealing the film above its bulk glass transition temperature the nanoparticles segregate strongly to the solid substrate. We find that for a wide range of film thicknesses and nanoparticle sizes, approximately monolayer substrate coverage of nanoparticles is required for strong dewetting inhibition. We also show that cadmium selenide quantum dots inhibit dewetting of both polystyrene and PMMA thin films. Moreover, TEM microscopy images indicate that CdSe quantum dots segregate primarily to the air surface. Gain of configuration entropy of the melt linear chains promotes segregation of nanoparticles to the substrate, as occurs for polystyrene nanoparticles. However, for CdSe nanoparticles this is offset by surface energy terms which promote segregation of the nanoparticles to the air surface. We argue that this is due to the inert low-energy Oleic acid brush introduced to promote organic compatibility of the quantum dot surfaces. Finally, we use the nanoparticle induced wetting of a polymer film due to the self-assembly of nanoparticles at the interface to construct the layered assembly of polymer-nanoparticle sandwich films. We report an alternative route to multilayer nanostructures where the layered self-assembly of the constituents is driven by the interplay between entropy, due to architectural differences, and surface energy

  5. High throughput in situ scattering of roll-to-roll coated functional polymer films

    DEFF Research Database (Denmark)

    Andreasen, Jens Wenzel

    2017-01-01

    The development of conjugated polymers for organic electronics and photovoltaics has relied heavily on advanced X-ray scattering techniques almost since the earliest studies in the field. Almost from the beginning, structural studies focused on how the polymers self-organize in thin films......, and the relation between chemical configuration of the polymer, structure and performance. This chapter presents the latest developments where structural analysis is applied as in situ characterization of structure formation during roll-to-roll coating of photoactive layers for solar cells....

  6. Enhancement of electrical conductivity of ion-implanted polymer films

    International Nuclear Information System (INIS)

    Brock, S.

    1985-01-01

    The electrical conductivity of ion-implanted films of Nylon 66, Polypropylene (PP), Poly(tetrafluoroethylene) (Teflon) and mainly Poly (ethylene terephthalate) (PET) was determined by DC measurements at voltages up to 4500 V and compared with the corresponding values of pristine films. Measurements were made at 21 0 C +/- 1 0 C and 65 +/- 2% RH. The electrical conductivity of PET films implanted with F + , Ar + , or As + ions at energies of 50 keV increases by seven orders of magnitude as the fluence increases from 1 x 10 18 to 1 x 10 20 ions/m 2 . The conductivity of films implanted with As + was approximately one order greater than those implanted with Ar + , which in turn was approximately one-half order greater than those implanted with F + . The conductivity of the most conductive film ∼1 S/m) was almost 14 orders of magnitude greater than the pristine PET film. Except for the three PET samples implanted at fluences near 1 x 10 20 ions/m 2 with F + , Ar + , and As + ions, all implanted films were ohmic up to an electric field strength of 600 kV/m. The temperature dependence of the conductivity of the three PET films implanted near a fluence of 1 x 10 20 ions/m 2 was measured over the range of 80 K < T < 300 K

  7. PEO + PVP blended polymer composite films for multifunctional ...

    Indian Academy of Sciences (India)

    polymeric materials have been characterized by vibrating sample magnetometre (VSM) system in understanding their magnetic properties. Further, these materials exhibit a para- magnetic behaviour from the host film and ferromagnetism from the doped films. In addition, ionic conductivity and dielectric properties have also ...

  8. Increased drug load and polymer compatibility of bilayered orodispersible films

    NARCIS (Netherlands)

    Visser, J. Carolina; Weggemans, Oekie A. F.; Boosman, Rene J.; Loos, Katja U.; Frijlink, Henderik W.; Woerdenbag, Herman J.

    2017-01-01

    The addition of enalapril maleate to a casting solution for orodispersible films (ODFs) containing hypromellose and carbomer 974P as film forming agents (standard casting solution, SCS) caused a dose dependent reduction of the viscosity. This phenomenon was a serious problem in the preparation of

  9. Synthesis and Properties of a Photopatternable Lithium-Ion Conducting Solid Electrolyte.

    Science.gov (United States)

    Choi, Christopher S; Lau, Jonathan; Hur, Janet; Smith, Leland; Wang, Chunlei; Dunn, Bruce

    2018-01-01

    One of the important considerations for the development of on-chip batteries is the need to photopattern the solid electrolyte directly on electrodes. Herein, the photopatterning of a lithium-ion conducting solid electrolyte is demonstrated by modifying a well-known negative photoresist, SU-8, with LiClO 4 . The resulting material exhibits a room temperature ionic conductivity of 52 µS cm -1 with a wide electrochemical window (>5 V). Half-cell galvanostatic testing of 3 µm thin films spin-coated on amorphous silicon validates its use for on-chip energy-storage applications. The modified SU-8 possesses excellent mechanical integrity, is thermally stable up to 250 °C, and can be photopatterned with micrometer-scale resolution. These results present a promising direction for the integration of electrochemical energy storage in microelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Positron Annihilation Spectroscopy of High Performance Polymer Films under CO2 Pressure

    Energy Technology Data Exchange (ETDEWEB)

    C.A. Quarles; John R. Klaehn; Eric S. Peterson; Jagoda M. Urban-Klaehn

    2010-08-01

    Positron annihilation Lifetime and Doppler broadening measurements are reported for six polymer films as a function of carbon dioxide absolute pressure ranging from 0 to 45 psi. Since the polymer films were thin and did not absorb all positrons, corrections were made in the lifetime analysis for the absorption of positrons in the positron source and sample holder using the Monte Carlo transport code MCNP. Different polymers are found to behave differently. Some polymers studied form positronium and some, such as the polyimide structures, do not. For those samples that form positronium an interpretation in terms of free volume is possible; for those that don’t form positronium, further work is needed to determine how best to describe the behavior in terms of the bulk positron annihilation parameters. Some polymers exhibit changes in positron lifetime and intensity under CO2 pressure which may be described by the Henry or Langmuir sorption models, while the positron response of other polymers is rather insensitive to the CO2 pressure. The results demonstrate the usefulness of positron annihilation spectroscopy in investigating the sorption of CO2 into various polymers at pressures up to about 3 atm.

  11. Clay platelet partition within polymer blend nanocomposite films by EFTEM.

    Science.gov (United States)

    Linares, Elisângela M; Rippel, Márcia M; Galembeck, Fernando

    2010-12-01

    Transmission electron microscopy (TEM) is the main technique used to investigate the spatial distribution of clay platelets in polymer nanocomposites, but it has not often been successfully used in polymer blend nanocomposites because the high contrast between polymer phases impairs the observation of clay platelets. This work shows that electron spectral imaging in energy-filtered TEM (EFTEM) in the low-energy-loss spectral crossover region allows the observation of platelets on a clear background. Separate polymer domains are discerned by imaging at different energy losses, above and below the crossover energy, revealing the material morphology. Three blends (natural rubber [NR]/poly(styrene-butyl acrylate) [P(S-BA)], P(S-BA)/poly(vinyl chloride) [PVC], and NR/starch) were studied in this work, showing low contrast between the polymer phases in the 40-60 eV range. In the NR/P(S-BA) and P(S-BA)/PVC blend nanocomposites, the clay platelets accumulate in the P(S-BA) phase, while in the P(S-BA)/PVC nanocomposites, clay is also found at the interfaces. In the NR/starch blend, clay concentrates at the interface, but it also penetrates the two polymer phases. These observations reveal that nanostructured soft materials can display complex morphochemical patterns that are discerned thanks to the ability of EFTEM to produce many contrast patterns for the same sample.

  12. Facile Assembly of Aligned Magnetic Nanoparticle Chains in Polymer Nanocomposite Films by Magnetic Flow Coating.

    Science.gov (United States)

    Yuan, Hongyi; Zvonkina, Irina J; Al-Enizi, Abdullah M; Elzatahry, Ahmed A; Pyun, Jeffrey; Karim, Alamgir

    2017-03-29

    Magnetic nanoparticle chains are found in biosystems, such as in the brain of migratory birds. Inspired by natural assemblies, in a novel approach, the facile assembly of magnetically aligned polymer grafted cobalt nanoparticle (MPGNP) chains in thin polymer films was accomplished by using low strength permanent magnets directly during the flow-casting process. Unlike previous studies of MPGNP chain alignment in the high viscosity melt phase, the high mobility of such dispersed MPGNPs during casting by magnetic flow coating of polystyrene (PS) nanocomposite thin films from a dispersion allowed for formation of well-aligned MPGNP chains at the PS film/air interface. Both spherical (symmetric) and cylindrical (asymmetric) MPGNP aligned chains were obtained with distinct properties. The average chain length and width, number of particles per chain, spacing between parallel chains, and chain alignment were quantified using surface probe and electron microscopy, and grazing incidence X-ray. The aligned chains did not randomize when annealed above the film glass temperature, apparently due to the high translational entropic barrier for macroscopic (GISAXS) chain realignment. The Young's bending modulus of the aligned MPGNP nanocomposite films as revealed by a thin film wrinkling metrology showed that the elastic modulus along the chain axis direction was higher for the film with the cylindrical but not the spherical MPGNP chains. This suggests that PGNP chain flexural properties depend on asymmetry of the local MPGNP unit, much like the persistence length "stiffness" effect of polymer chains. The ferromagnetic nature of the aligned PGMNP chains resulted in film rotation, as well as repulsive and attractive translation under an applied external magnetic field. Such magnetically responsive films can be useful for sensors and other applications.

  13. Effect of low-molecular-weight beta-cyclodextrin polymer on release of drugs from mucoadhesive buccal film dosage forms.

    Science.gov (United States)

    Arakawa, Yotaro; Kawakami, Shigeru; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2005-09-01

    We investigated the effect of low-molecular-weight beta-cyclodextrin (beta-CyD) polymer on in vitro release of two drugs with different lipophilicities (i.e., lidocaine and ketoprofen) from mucoadhesive buccal film dosage forms. When beta-CyD polymer was added to hydroxypropylcellulose (HPC) or polyvinylalcohol (PVA) film dosage forms, the release of lidocaine into artificial saliva (pH 5.7) was reduced by 40% of the control. In contrast, the release of ketoprofen from the polymer film was enhanced by addition of beta-CyD polymer to the vehicle. When lidocaine and ketoprofen was incubated with beta-CyD polymer in the artificial saliva, concentration of free lidocaine molecules decreased in a beta-CyD polymer concentration-dependent manner. The association constant with beta-CyD polymer was 6.9+/-0.6 and 520+/-90 M(-1) for lidocaine and ketoprofen, respectively. Retarded release of the hydrophilic lidocaine by beta-CyD polymer might be due to the decrease in thermodynamic activity by inclusion complex formation, whereas enhanced release of the lipophilic ketoprofen by the beta-CyD polymer might be due to prevention of recrystallization occurring after contacting the film with aqueous solution. Thus, effects of low-molecular-weight beta-CyD polymer to the drug release rate from film dosage forms would vary according to the strength of interaction with and the solubility of active ingredient.

  14. Influence of plasma discharge on the structure of polytetrafluoroethylene film and step coverage on polymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Grytsenko, K.P. [Institute of Semiconductor Physics, 45 Nauki pr., Kyiv, 03028 (Ukraine); Institute of Photonics, Laser and Plasma Technology, University of Applied Sciences Wildau, F.-Engels-Str. 63, 15745, Wildau (Germany)], E-mail: d_gryts@isp.kiev.ua; Lytvyn, P.M. [Institute of Semiconductor Physics, 45 Nauki pr., Kyiv, 03028 (Ukraine); Friedrich, J.; Schulze, R.D. [Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205 Berlin (Germany); Schrader, S. [Institute of Photonics, Laser and Plasma Technology, University of Applied Sciences Wildau, F.-Engels-Str. 63, 15745, Wildau (Germany)

    2007-09-15

    Polytetrafluoroethylene (PTFE) films have been deposited onto polycarbonate (PC) substrates from the products of PTFE evaporation, activated by a cloud of accelerated electrons. A 40.68 MHz glow discharge was used during the deposition process. The polymer films have been characterised by XPS, FTIR and AFM. The use of the low power plasma during film growth led to the formation of PTFE films with modified structure. Films are amorphous and contain more cross-links, but in general, the structure of their macromolecules is still linear. An increase of RF-power leads to the formation of films with large amount of double bonds and enhanced internal stresses. Deposition of PTFE on PC without plasma treatment led to the formation of PTFE clusters up to 50 nm in diameter. The RMS roughness of the films, deposited without plasma, was about 4 nm, while the films deposited with plasma treatment had a roughness of 1.5 nm. The use of plasma has an additional effect if a PTFE coating is deposited on the PC substrate with submicrometer-sized steps. Without plasma the steps retain a rectangular shape. Deposited with the RF-discharge the PTFE layers resemble plasma-polymerised films. Under certain conditions the deposited films can fill trenches in the substrate like a wetting liquid, while under other conditions they avoid trenches and grow in between them.

  15. Tellurite glass thin films on silica and polymer using UV (193 nm) pulsed laser ablation

    International Nuclear Information System (INIS)

    Zhao Zhanxiang; Jose, Gin; Jha, Animesh; Steenson, Paul; Bamiedakis, Nikos; Penty, Richard V; White, Ian H

    2011-01-01

    Erbium-doped tellurite glass thin films were deposited using excimer (193 nm) laser ablation onto two different types of substrates: silica and polymer-coated silica for engineering optical integrated active-passive devices. The deposition conditions were optimized for both substrates in order to produce high-quality rare-earth (Er 3+ ) ion-doped glass thin films with low propagation loss. The optical and spectroscopic properties of the deposited films, namely transmittance, fluorescence, lifetime as well as refractive indices at 633 nm were measured and analysed in detail.

  16. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    International Nuclear Information System (INIS)

    McAnally, Gerard David

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm -1 ) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are presented. A new band in the spectrum (1131 cm -1 ) is assigned to a complex vibration using a density functional calculation. Depth profiling through a polymer film on to the silver layer showed the SERS signals arise from the silver surface only. The profiles show the effects of refraction on the beam, and the adverse affect on the depth resolution. Silver films were used to obtain SERS spectra from a 40 nm thin-film coating on PET, without interference from the PET layer. The use of an azo dye probe as a marker to detect the coating is described. Finally, a novel method for the synthesis of a SERS-active vinyl-benzotriazole monomer is reported. The monomer was incorporated into a thin-film coating and the SERS spectrum obtained from the polymer. (author)

  17. Influence of an acrylic polymer blend on the physical stability of film-coated theophylline pellets.

    Science.gov (United States)

    Kucera, Shawn; Shah, Navnit H; Malick, A Waseem; Infeld, Martin H; McGinity, James W

    2009-01-01

    The purpose of this study was to investigate the physical stability of a coating system consisting of a blend of two sustained release acrylic polymers and its influence on the drug release rate of theophylline from coated pellets. The properties of both free films and theophylline pellets coated with the polymer blend were investigated, and the miscibility was determined via differential scanning calorimetry. Eudragit RS 30 D was plasticized by the addition of Eudragit NE 30 D, and the predicted glass transition temperature (T(g)) of the blend was similar to the experimental values. Sprayed films composed of a blend of Eudragit NE 30 D/Eudragit RS 30 D (1:1) showed a water vapor permeability six times greater than films containing only Eudragit NE 30 D. The presence of quaternary ammonium functional groups from the RS 30 D polymer increased the swellability of the films. The films prepared from the blend exhibited stable permeability values when stored for 1 month at both 25 degrees C and 40 degrees C, while the films which were composed of only Eudragit NE 30 D showed a statistically significant decrease in this parameter when stored under the same conditions. Eudragit NE 30 D/Eudragit RS 30 D (1:1)-sprayed films decreased in elongation from 180% to 40% after storage at 40 degrees C for 1 month, while those stored at 25 degrees C showed no change in elongation. In coated pellets, the addition of Eudragit RS 30 D to the Eudragit NE 30 D increased the theophylline release rate, and the pellets were stable when stored at 25 degrees C for a period of up to 3 months due to maintenance of the physico-mechanical properties of the film. Pellets stored at 40 degrees C exhibited a decrease in drug release rate over time as a result of changes in film physico-mechanical properties which were attributed to further coalescence and densification of the polymer. When the storage temperature was above the T(g) of the composite, instabilities in both drug release rate and

  18. Porous polymer film calcium ion chemical sensor and method of using the same

    Science.gov (United States)

    Porter, M.D.; Chau, L.K.

    1991-02-12

    A method of measuring calcium ions is disclosed wherein a calcium sensitive reagent, calcichrome, is immobilized on a porous polymer film. The reaction of the calcium sensitive reagent to the Ca(II) is then measured and concentration determined as a function of the reaction. 1 figure.

  19. All-fiber maskless lithographic technology to form microcircular interference pattern on Azo polymer film

    Science.gov (United States)

    Kim, Junki; Jung, Yongmin; Oh, Kyunghwan; Chun, Chaemin; Hong, Jeachul; Kim, Dongyu

    2005-03-01

    We report a novel all-fiber, maskless lithograpic technology to form various concentric grating patterns for micro zone plate on azo polymer film. The proposed technology is based on the interference pattern out of the cleaved end of a coreless silica fiber (CSF)-single mode fiber (SMF) composite. The light guided along SMF expands into the CSF segment to generate various circular interference patterns depending on the length of CSF. Interference patterns are experimentally observed when the CSF length is over a certain length and the finer spacing between the concentric rings are obtained for a longer CSF. By using beam propagation method (BPM) package, we could further investigated the concentric interference patterns in terms of intensity distribution and fringe spacing as a function of CSF length. These intereference patterns are directly projected over azo polymer film and their intensity distrubution formed surface relief grating (SRG) patterns. Compared to photoresist films azo polymer layers produce surface relief grating (SRG), where the actual mass of layer is modulated rather than refractive index. The geometric parameters of the CSF length as well as diameter and the spacing between the cleaved end of a CSF and azo polymer film, were found to play a major role to generate various concentric structures. With the demonstration of the circular SRG patterns, we confirmed that the proposed technique do have an ample potential to fabricate micro fresnel zone plate, that could find applications in lens arrays for optical beam formings as well as compact photonic devices.

  20. Modeling solvent evaporation during thin film formation in phase separating polymer mixtures.

    Science.gov (United States)

    Cummings, John; Lowengrub, John S; Sumpter, Bobby G; Wise, Steven M; Kumar, Rajeev

    2018-03-07

    Preparation of thin films by dissolving polymers in a common solvent followed by evaporation of the solvent has become a routine processing procedure. However, modeling of thin film formation in an evaporating solvent has been challenging due to a need to simulate processes at multiple length and time scales. In this work, we present a methodology based on the principles of linear non-equilibrium thermodynamics, which allows systematic study of various effects such as the changes in the solvent properties due to phase transformation from liquid to vapor and polymer thermodynamics resulting from such solvent transformations. The methodology allows for the derivation of evaporative flux and boundary conditions near each surface for simulations of systems close to the equilibrium. We apply it to study thin film microstructural evolution in phase segregating polymer blends dissolved in a common volatile solvent and deposited on a planar substrate. Effects of the evaporation rates, interactions of the polymers with the underlying substrate and concentration dependent mobilities on the kinetics of thin film formation are studied.

  1. Molecular dynamics simulations of the embedding of a nano-particle into a polymer film

    International Nuclear Information System (INIS)

    Ochoa, J G Diaz; Binder, K; Paul, W

    2006-01-01

    In this work we report on molecular dynamics simulations of the embedding process of a nano-particle into a polymeric film as a function of temperature. This process has been employed experimentally in recent years to test for a shift of the glass transition of a material due to the confined film geometry and to test for the existence of a liquid-like layer on top of a glassy polymer film. The embedding process is governed thermodynamically by the prewetting properties of the polymer on the nano-particle. We show that the dynamics of the process depends on the Brownian motion characteristics of the nano-particle in and on the polymer film. It displays large sample to sample variations, suggesting that it is an activated process. On the timescales of the simulation an embedding of the nano-particle is only observed for temperatures above the bulk glass transition temperature of the polymer, agreeing with experimental observations on noble metal clusters of comparable size

  2. Substructure formation during pattern transposition from substrate into polymer blend film

    NARCIS (Netherlands)

    Cyganik, P; Budkowski, A; Steiner, U; Rysz, J; Bernasik, A; Walheim, S; Postawa, Z; Raczkowska, J

    A chemical pattern on a substrate is transposed into thin films of a ternary polymer blend during spin-casting from a common solvent. One of the blend components intercalates at interfaces between the other two phases to reduce their interfacial energy. As a result, an extensive substructure is

  3. Spectral and time-resolved properties of photoinduced hydroxyquinolines doped thin polymer films

    Science.gov (United States)

    Mehata, Mohan Singh

    2018-01-01

    Quinoline and its derivatives have a wide range of biological and pharmacological activities. Quinoline ring is used to design functional materials (quinoline derivatives) for OLEDs and field-induce electrooptics. It possesses antibacterial, antifungal, antimalarial, cardiotonic, anthelmintic, anti-inflammatory, anticonvulsant and analgesic activity. Here, we have examined photoexcitation dynamics of 6-hydroxyquinoline (6-HQ) doped in polymer films of polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA) and cellulose acetate (CA) at atmospheric conditions. The absorption maximum of 6-HQ in polymer films was observed at 333 ± 1 nm, whereas fluorescence (FL) maximum fell in the range of 365-371 nm. In PVA film, in addition to the typical FL, a band maximum at 432 nm appeared as a result of an excited-state intermolecular proton transfer (ESIPT) reaction facilitated in the hydrogen-bonded complex formed in the ground state between 6-HQ:PVA. The multi-exponential decay behavior of 6-HQ in all the three polymer films indicates a nanoscale heterogeneity of the polymer environments.

  4. A study on the microstructural parameters of 550 keV electron irradiated Lexan polymer films

    International Nuclear Information System (INIS)

    Hareesh, K.; Pramod, R.; Petwal, V. C.; Dwivedi, Jishnu; Sangappa; Sanjeev, Ganesh

    2012-01-01

    Lexan polymer films irradiated with 550 keV Electron Beam (EB) were characterized using Wide Angle Xray Scattering (WAXS) data to study the microstructural parameters. The crystal imperfection parameters like crystal size , lattice strain (g in %) and enthalpy (α) have been determined by Line Profile Analysis (LPA) using Fourier method of Warren.

  5. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  6. Static and kinetic friction of strongly confined polymer films under shear

    NARCIS (Netherlands)

    Hirz, S; Subbotin, A; Frank, C; Hadziioannou, G

    1996-01-01

    In the present work, we investigate the dependence of relaxational processes in strongly confined polymer liquids as a function of the molecular mass and of the confining film thickness, both theoretically and experimentally. A qualitative agreement is observed between the theoretical predictions

  7. Research on the electronic and optical properties of polymer and other organic molecular thin films

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The main goal of the work is to find materials and methods of optimization of organic layered electroluminescent cells and to study such properties of polymers and other organic materials that can be used in various opto-electronic devices. The summary of results obtained during the first year of work is presented. They are: (1) the possibility to produce electroluminescent cells using a vacuum deposition photoresist technology for commercial photoresists has been demonstrated; (2) the idea to replace the polyaryl polymers by other polymers with weaker hole conductivity for optimization of electroluminescent cells with ITO-Al electrodes has been suggested. The goal is to obtain amorphous processable thin films of radiative recombination layers in electroluminescent devices; (3) procedures of preparation of high-quality vacuum-deposited poly (p-phenylene) (PPP) films on various substrates have been developed; (4) it was found for the first time that the fluorescence intensity of PPP films depends on the degree of polymerization; (5) the role of interfaces between organic compounds, on one side, and metals or semiconductors, on the other side, has been studied and quenching of the fluorescence caused by semiconductor layer in thin sandwiches has been observed; (6) studies of the dynamics of photoexcitations revealed the exciton self-trapping in quasi-one-dimensional aggregates; and (7) conditions for preparation of highly crystalline fullerene C{sub 60} films by vacuum deposition have been found. Composites of C{sub 60} with conjugated polymers have been prepared.

  8. Orientation phenomena in chromophore DR1-containing polymer films and their non-linear optical response

    International Nuclear Information System (INIS)

    Moencke, Doris; Mountrichas, Grigoris; Pispas, Stergios; Kamitsos, Efstratios I.

    2011-01-01

    The effectiveness of chromophore alignment in polymer films following corona poling can be assessed by the generated second harmonic signal. Optimization of the stability and strength of this nonlinear optical response may improve with a better understanding of the underlying principal order phenomena. Structural analysis by vibrational, optical, and 1 H NMR spectroscopy reveals side chain tacticity, aggregation effects, and changes in orientation as a function of temperature. Co-polymers with the functionalized chromophore Disperse Red 1 methacrylate (MDR1) were prepared for three different methacrylate types. High side chain polarity and short side chain length increase generally chromophore aggregation in films, whereas the very long poly-ether side chains in PMEO based co-polymers are wrapped separately around the DR1 entities. Side chain tacticity depends on space requirements, but also on the capacity of side groups to form OH-bridges. Side chain tacticity might present an additional parameter for the assessment of chromophore aggregation and poling induced alignments. Stepwise heating of co-polymer films causes an increase in the number of random over ordered side chain arrangements. Cross-linking by anhydride formation is observed after heating the methacrylic acid based co-polymer.

  9. Electrical studies on silver based fast ion conducting glassy materials

    International Nuclear Information System (INIS)

    Rao, B. Appa; Kumar, E. Ramesh; Kumari, K. Rajani; Bhikshamaiah, G.

    2014-01-01

    Among all the available fast ion conductors, silver based glasses exhibit high conductivity. Further, glasses containing silver iodide enhances fast ion conducting behavior at room temperature. Glasses of various compositions of silver based fast ion conductors in the AgI−Ag 2 O−[(1−x)B 2 O 3 −xTeO 2 ] (x=0 to1 mol% in steps of 0.2) glassy system have been prepared by melt quenching method. The glassy nature of the compounds has been confirmed by X-ray diffraction. The electrical conductivity (AC) measurements have been carried out in the frequency range of 1 KHz–3MHz by Impedance Analyzer in the temperature range 303–423K. The DC conductivity measurements were also carried out in the temperature range 300–523K. From both AC and DC conductivity studies, it is found that the conductivity increases and activation energy decreases with increasing the concentration of TeO 2 as well as with temperature. The conductivity of the present glass system is found to be of the order of 10 −2 S/cm at room temperature. The ionic transport number of these glasses is found to be 0.999 indicating that these glasses can be used as electrolyte in batteries

  10. Scanning Ion Conductance Microscopy for Studying Biological Samples

    Directory of Open Access Journals (Sweden)

    Irmgard D. Dietzel

    2012-11-01

    Full Text Available Scanning ion conductance microscopy (SICM is a scanning probe technique that utilizes the increase in access resistance that occurs if an electrolyte filled glass micro-pipette is approached towards a poorly conducting surface. Since an increase in resistance can be monitored before the physical contact between scanning probe tip and sample, this technique is particularly useful to investigate the topography of delicate samples such as living cells. SICM has shown its potential in various applications such as high resolution and long-time imaging of living cells or the determination of local changes in cellular volume. Furthermore, SICM has been combined with various techniques such as fluorescence microscopy or patch clamping to reveal localized information about proteins or protein functions. This review details the various advantages and pitfalls of SICM and provides an overview of the recent developments and applications of SICM in biological imaging. Furthermore, we show that in principle, a combination of SICM and ion selective micro-electrodes enables one to monitor the local ion activity surrounding a living cell.

  11. The role of polymer films on the oxidation of magnetite nanoparticles

    Science.gov (United States)

    Letti, C. J.; Paterno, L. G.; Pereira-da-Silva, M. A.; Morais, P. C.; Soler, M. A. G.

    2017-02-01

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe3O4-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe3O4-np/PSS)n with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe3O4-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe3O4-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe3O4-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite.

  12. Quantifying the stress relaxation modulus of polymer thin films via thermal wrinkling.

    Science.gov (United States)

    Chan, Edwin P; Kundu, Santanu; Lin, Qinghuang; Stafford, Christopher M

    2011-02-01

    The viscoelastic properties of polymer thin films can have a significant impact on the performance in many small-scale devices. In this work, we use a phenomenon based on a thermally induced instability, termed thermal wrinkling, to measure viscoelastic properties of polystyrene films as a function of geometric confinement via changes in film thickness. With application of the appropriate buckling mechanics model for incompressible and geometrically confined films, we estimate the stress-relaxation modulus of polystyrene films by measuring the time-evolved wrinkle wavelength at fixed annealing temperatures. Specifically, we use time-temperature superposition to shift the stress relaxation curves and generate a modulus master curve for polystyrene films investigated here. On the basis of this master curve, we are able to identify the rubbery plateau, terminal relaxation time, and viscous flow region as a function of annealing time and temperatures that are well-above its glass transition. Our measurement technique and analysis provide an alternative means to measure viscoelastic properties and relaxation behavior of geometrically confined polymer films.

  13. Novel Ordered Crown Ether-Containing Polyimides for Ion Conduction

    Science.gov (United States)

    Irvin, Jennifer A.; Stasko, Daniel; Fallis, Stephen; Guenthner, Andrew J.; Webber, Cynthia; Blackwell, John; Chvalun, Sergei N.

    2003-01-01

    We report the synthesis and characterization of thermally-stable polyimides for use as battery and fuel cell electrolyte membranes. Dianhydrides used were 1,4,5,8- naphthalenetetracarboxylic dianhydride and/or 4,4'-(hexafluoroisopropylidene)diphthalic anhydride. Diamines used were anti-4,4-diaminodibenzo-l8-crown-6, 4,4'- diaminodibenzo-24-crown-8, 2,2-bis(4-aminophenyl)hexafluoropropane, and/or 2,5- diaminobenzenesulfonic acid. The polymers were characterized using electrochemical impedance spectroscopy (EIS), thermal analysis and X-ray diffraction. Polymers containing the hexafluoroisopropylidene (HFIP) group were soluble in common organic solvents, while polymers without the HFIP group were very poorly soluble. Sulfonation yields polymers that are sparingly soluble in aqueous base and/or methanol. Degree of sulfonation, determined by titration, was between one and three sulfonate groups per repeat unit. Proton conductivity was determined as a function of water content, with a maximum conductivity of l x 10(exp -2) per centimeter when fully hydrated. Crown ether-containing polymers exhibit a high degree of order that may be indicative of crown ether channel formation, which may facilitate Li(+) transport for use in battery membranes.

  14. Styromal based polymer films modified with copper microparticles

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2016-12-01

    Full Text Available A method for the synthesis of polymeric film based on a copolymer of styrene and maleic anhydride (stiromal and oligodiol was suggested. Block copolymer of ethylene glycol and propylene glycol was used as oligodiol. It was shown that synthesized materials have moderate water swelling capacity in and ion-exchange properties. Static exchange capacity in 0.1 mol/L NaOH aqueous solution is within the interval of 1.44–1.76 mmol/g. At air-dry state films have a tensile strength of 4–6.6 MPa and an elongation at break tensile 38–61 %. The effect of stiromal molecular weight and oligodiol type, and conditions of film formation on ion-exchange and physical-mechanical properties of the films was studied. The synthesized material appeared to be able to sorb Cu2+-ions from neutral and acidic solutions. The distribution coefficient in case of sorption from slightly acidic solution with Cu2+ concentration of 50 mg/L was 48–50. Composite material with a metal submicroparticles uniformly distributed in the polymeric matrix was obtained by chemical reduction of copper ions sorbed. It was found that the film acquires electric conductivity, as a result of filling of metal particles, which allows copper electrodeposition on the film surface.

  15. Ion-conducting ceramic apparatus, method, fabrication, and applications

    Science.gov (United States)

    Yates, Matthew [Penfield, NY; Liu, Dongxia [Rochester, NY

    2012-03-06

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors.

  16. Luminescent Polymer Composite Films Containing Coal-Derived Graphene Quantum Dots.

    Science.gov (United States)

    Kovalchuk, Anton; Huang, Kewei; Xiang, Changsheng; Martí, Angel A; Tour, James M

    2015-12-02

    Luminescent polymer composite materials, based on poly(vinyl alcohol) (PVA), as a matrix polymer and graphene quantum dots (GQDs) derived from coal, were prepared by casting from aqueous solutions. The coal-derived GQDs impart fluorescent properties to the polymer matrix, and the fabricated composite films exhibit solid state fluorescence. Optical, thermal, and fluorescent properties of the PVA/GQD nanocomposites have been studied. High optical transparency of the composite films (78 to 91%) and excellent dispersion of the nanoparticles are observed at GQD concentrations from 1 to 5 wt %. The maximum intensity of materials photoluminescence has been achieved at 10 wt % GQD content. These materials could be used in light emitting diodes (LEDs), flexible electronic displays, and other optoelectronic applications.

  17. Entropy driven spontaneous formation of highly porous films from polymer-nanoparticle composites

    International Nuclear Information System (INIS)

    Korampally, Venumadhav; Yun, Minseong; Rajagopalan, Thiruvengadathan; Gangopadhyay, Keshab; Gangopadhyay, Shubhra; Dasgupta, Purnendu K

    2009-01-01

    Nanoporous materials have become indispensable in many fields ranging from photonics, catalysis and semiconductor processing to biosensor infrastructure. Rapid and energy efficient process fabrication of these materials is, however, nontrivial. In this communication, we describe a simple method for the rapid fabrication of these materials from colloidal dispersions of Polymethyl Silsesquioxane nanoparticles. Nanoparticle-polymer composites above the decomposition temperature of the polymer are examined and the entropic gain experienced by the nanoparticles in this rubric is harnessed to fabricate novel highly porous films composed of nanoparticles. Optically smooth, hydrophobic films with low refractive indices (as low as 1.048) and high surface areas (as high as 1325 m 2 g -1 ) have been achieved with this approach. In this communication we address the behavior of such systems that are both temperature and substrate surface energy dependent. The method is applicable, in principle, to a variety of nanoparticle-polymer systems to fabricate custom nanoporous materials.

  18. Synthetic Reference Materials Based on Polymer Films for the Control of Welding Fumes Composition

    Science.gov (United States)

    Kuznetsova, O. V.; Kuznetsova, A. N.; Begunova, L. A.

    2017-04-01

    Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Welders are exposed to a variety of metal fumes, including manganese that may elevate the risk for neurological diseases. The control of metals concentration in the air of the working area is difficult due to the lack of reference materials. The creation of reference materials of welding fumes composition is a challenge due to chemical characteristics of their physical properties. Synthetic samples in a form of the polymer film containing powder particles of welding fumes were create. Studies on the selection of the polymer were done. Experiments proved that the qualitative materials of synthetic welding fumes are obtained by using polyvinyl alcohol. The metals concentration in the samples was determined by X-ray fluorescence analysis. The obtained data demonstrates indirectly the uniform distribution of welding fumes powder particles on the polymer film.

  19. Anomalous transmission through heavily doped conducting polymer films with periodic subwavelength hole array

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-08-01

    We observed resonantly enhanced (or anomalous transmission) terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF 6 molecules [PPy(PF6)]. The anomalous transmission spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the resonantly enhanced transmission peaks are broader in the exotic metallic PPy(PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, indicating that the surface plasmon polaritons on the PPy(PF6) film surfaces have higher attenuation.

  20. Characterisation and vapour sensing properties of spin coated thin films of anthracene labelled PMMA polymer

    Energy Technology Data Exchange (ETDEWEB)

    Capan, I., E-mail: inci.capan@gmail.com [Balikesir University, Faculty of Art and Sciences, Department of Physics, Cagis Campus, 10145 Balikesir (Turkey); Tarimci, C., E-mail: Celik.Tarimci@eng.ankara.edu.tr [Ankara University, Faculty of Engineering, Department of Engineering Physics, 06100, Ankara (Turkey); Erdogan, M., E-mail: merdogan@balikesir.edu.tr [Balikesir University, Faculty of Art and Sciences, Department of Physics, Cagis Campus, 10145 Balikesir (Turkey); Hassan, A.K., E-mail: A.Hassan@shu.ac.uk [Materials and Engineering Research Institute, Sheffield Hallam University, Sheaf Building, Pond Street, Sheffield S1 1WB (United Kingdom)

    2009-05-05

    In the present article thin films of poly (methyl methacrylate) (PMMA) polymer labelled with anthracene (Ant-PMMA) prepared by spin coating are characterised by UV-visible spectroscopy, surface plasmon resonance (SPR), spectroscopic ellipsometry (SE) and Atomic Force Microscopy (AFM) and their organic vapour sensing properties are investigated. Ant-PMMA films' thickness are determined by performing theoretical fitting to experimental data measured using SPR and SE. Results obtained show that the spin-cast films are of good uniformity with an average thickness of 6-8 nm. Organic vapour sensing properties are studied using SPR technique during exposures to different volatile organic compounds (VOCs). Ant-PMMA films' response to the selected VOCs has been examined in terms of solubility parameters and molar volumes of the solvents, and the films were found to be largely sensitive to benzene vapour compared to other studied analytes.

  1. Characterisation and vapour sensing properties of spin coated thin films of anthracene labelled PMMA polymer

    International Nuclear Information System (INIS)

    Capan, I.; Tarimci, C.; Erdogan, M.; Hassan, A.K.

    2009-01-01

    In the present article thin films of poly (methyl methacrylate) (PMMA) polymer labelled with anthracene (Ant-PMMA) prepared by spin coating are characterised by UV-visible spectroscopy, surface plasmon resonance (SPR), spectroscopic ellipsometry (SE) and Atomic Force Microscopy (AFM) and their organic vapour sensing properties are investigated. Ant-PMMA films' thickness are determined by performing theoretical fitting to experimental data measured using SPR and SE. Results obtained show that the spin-cast films are of good uniformity with an average thickness of 6-8 nm. Organic vapour sensing properties are studied using SPR technique during exposures to different volatile organic compounds (VOCs). Ant-PMMA films' response to the selected VOCs has been examined in terms of solubility parameters and molar volumes of the solvents, and the films were found to be largely sensitive to benzene vapour compared to other studied analytes.

  2. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Hemalatha, K.; Gowtham, G. K.; Somashekarappa, H., E-mail: drhssappa@gmail.com [Department of Physics, Yuvaraja’s College, University of Mysore, Mysore 570 005, Karnataka (India); Mahadevaiah,; Urs, G. Thejas; Somashekar, R. [Department of Studies in Material Sciences, University of Mysore, Mysore 570 006, Karnataka (India)

    2016-05-23

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO{sub 4}) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO{sub 4}. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements in these films show that the conductivity increases as the concentration of CuSO{sub 4} increases. These films were suitable for electro chemical applications.

  3. BN Nanosheet/Polymer Films with Highly Anisotropic Thermal Conductivity for Thermal Management Applications.

    Science.gov (United States)

    Wu, Yuanpeng; Xue, Ye; Qin, Si; Liu, Dan; Wang, Xuebin; Hu, Xiao; Li, Jingliang; Wang, Xungai; Bando, Yoshio; Golberg, Dmitri; Chen, Ying; Gogotsi, Yury; Lei, Weiwei

    2017-12-13

    The development of advanced thermal transport materials is a global challenge. Two-dimensional nanomaterials have been demonstrated as promising candidates for thermal management applications. Here, we report a boron nitride (BN) nanosheet/polymer composite film with excellent flexibility and toughness prepared by vacuum-assisted filtration. The mechanical performance of the composite film is highly flexible and robust. It is noteworthy that the film exhibits highly anisotropic properties, with superior in-plane thermal conductivity of around 200 W m -1 K -1 and extremely low through-plane thermal conductivity of 1.0 W m -1 K -1 , making this material an excellent candidate for thermal management in electronics. Importantly, the composite film shows fire-resistant properties. The newly developed unconventional flexible, tough, and refractory BN films are also promising for heat dissipation in a variety of applications.

  4. Multi-length scale porous polymer films from hypercrosslinked breath figure arrays.

    Science.gov (United States)

    Ding, Lei; Zhang, Aijuan; Li, Wenqing; Bai, Hua; Li, Lei

    2016-01-01

    Multi-length scale porous polymer (MLSPP) films were fabricated using commercially available polystyrene (PS) via static breath figure (BF) process and sequent hypercrosslinking reaction. One level of ordered pores in microscale were introduced using static BF process, and the other level in nanoscale were produced by the sequent Friedel-Crafts hypercrosslinking reaction. The chemical structure of the PS MLSPP film was investigated by Fourier transformation infrared spectrometry and solid state nuclear magnetic resonance, and the morphology of the film was observed with electron microscopes. The MLSPP films showed large specific surface areas and excellent chemical and thermal stabilities, owing to the micropores and the crosslinked chemical structure produced by the Friedel-Crafts reaction. The methodology reported in this paper is a template-free, low cost and general strategy for the preparation of MLSPP films, which has potential applications in the areas of environment and energy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Preparation of a Thermally Light-Transmittance-Controllable Film from a Coexistent System of Polymer-Dispersed and Polymer-Stabilized Liquid Crystals.

    Science.gov (United States)

    Guo, Shu-Meng; Liang, Xiao; Zhang, Cui-Hong; Chen, Mei; Shen, Chen; Zhang, Lan-Ying; Yuan, Xiao; He, Bao-Feng; Yang, Huai

    2017-01-25

    Polymer-dispersed liquid crystal (PDLC) and polymer-stabilized liquid crystal (PSLC) systems are the two primary distinct systems in the field of liquid crystal (LC) technology, and they are differentiated by their unique microstructures. Here, we present a novel coexistent system of polymer-dispersed and polymer-stabilized liquid crystals (PD&SLCs), which forms a homeotropically aligned polymer network (HAPN) within the LC droplets after a microphase separation between the LC and polymer matrix and combines the advantages of both the PDLC and PSLC systems. Then, we prepare a novel thermally light-transmittance-controllable (TLTC) film from the PD&SLC system, where the transmittance can be reversibly changed through thermal control from a transparent to a light-scattering state. The film also combines the advantageous features of flexibility and a potential for large-scale manufacturing, and it shows significant promise in future applications from smart windows to temperature sensors.

  6. Making Glasses Conduct: Electrochemical Doping of Redox-Active Polymer Thin Films

    Science.gov (United States)

    Boudouris, Bryan

    Optoelectronically-active macromolecules have been established as promising materials in myriad organic electronic applications (e.g., organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices). To date, however, the majority of the work surrounding these materials has focused on materials with a great deal of conjugation along their macromolecular backbones and with varying degrees of crystalline structure. Here, we describe an emerging class of macromolecular charge conductors, radical polymers, that: (1) do not contain conjugation and (2) are completely amorphous glasses. Radical polymers contain non-conjugated macromolecular backbones and stable radical sites along the side chains of the electronically-active materials. In contrast to conjugated polymer systems, these materials conduct charge in the solid state through oxidation-reduction (redox) reactions along these pendant groups. Specifically, we demonstrate that controlling the chemical functionality of the pendant groups and the molecular mobility of the macromolecular backbones significantly impacts the charge transport ability of the pristine (i.e., not doped) radical polymers species. Through proper control of these crucial parameters, we show that radical polymers can have electrical conductivity and charge mobility values on par with commonly-used conjugated polymers. Importantly, we also highlight the ability to dope radical polymers with redox-active small molecule species. This doping, in turn, increases the electrical conductivity of the glassy radical polymer thin films in a manner akin to what is observed in traditional conjugated polymer systems. In this way, we establish a means by which to fabricate optically-transparent and colorless thin film glasses capable of conducting charge in a rather rapid manner. We anticipate that these fundamental insights will prove crucial in developing new transparent conducting layers for future electronic applications.

  7. Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Kulshrestha, N., E-mail: niharikakul@gmail.com; Chatterjee, B.; Gupta, P.N., E-mail: guptapn07@yahoo.co.in

    2014-05-01

    Highlights: • Polyvinyl alcohol (PVA). • Ammonium thiocyanate (NH{sub 4}SCN). • Electrical conductivity. • Fractals. - Abstract: In this communication, films of polyvinyl alcohol (PVA) polymer complexed with ammonium thiocyanate (NH{sub 4}SCN) salt were studied. XRD (X-ray diffraction) was used to study the complexation of salt with the polymer matrix and amorphicity in the films. DSC (differential scanning calorimetry) studies showed that the glass transition temperatures (T{sub g}) of the PVA:NH{sub 4}SCN complexed films were less than pristine PVA. Raman analysis was analyzed in order to study the change in the vibrational bands due to the complexation of salt with PVA. Optical micrographs confirm the fractal formation in 75:25 and 70:30 PVA:NH{sub 4}SCN films. Ionic transference number was estimated by Wagner's polarization method and its large value indicates that conduction takes place mainly due to mobile ionic species. Maximum conductivity ∼10{sup −3} S/cm at room temperature was obtained for 70:30 ratio of PVA: NH{sub 4}SCN polymer electrolyte films.

  8. Characterization and electrical properties of polyvinyl alcohol based polymer electrolyte films doped with ammonium thiocyanate

    International Nuclear Information System (INIS)

    Kulshrestha, N.; Chatterjee, B.; Gupta, P.N.

    2014-01-01

    Highlights: • Polyvinyl alcohol (PVA). • Ammonium thiocyanate (NH 4 SCN). • Electrical conductivity. • Fractals. - Abstract: In this communication, films of polyvinyl alcohol (PVA) polymer complexed with ammonium thiocyanate (NH 4 SCN) salt were studied. XRD (X-ray diffraction) was used to study the complexation of salt with the polymer matrix and amorphicity in the films. DSC (differential scanning calorimetry) studies showed that the glass transition temperatures (T g ) of the PVA:NH 4 SCN complexed films were less than pristine PVA. Raman analysis was analyzed in order to study the change in the vibrational bands due to the complexation of salt with PVA. Optical micrographs confirm the fractal formation in 75:25 and 70:30 PVA:NH 4 SCN films. Ionic transference number was estimated by Wagner's polarization method and its large value indicates that conduction takes place mainly due to mobile ionic species. Maximum conductivity ∼10 −3 S/cm at room temperature was obtained for 70:30 ratio of PVA: NH 4 SCN polymer electrolyte films

  9. Exploration of Solvent Effects On Morphology of Polyaniline & Other Polymer Films Deposited Through RIR-MAPLE

    Science.gov (United States)

    Barraza, Enrique; Stiff-Roberts, Adrienne

    Through the use of aromatic solvents with varying numbers of hydroxyl and methyl moieties, there is an opportunity to positively impact morphology of polymer films deposited through emulsion-based Resonant-Infrared Matrix-Assisted Pulsed Laser Evaporation (RIR-MAPLE). These more complex solvents may result in smaller emulsified particles within the target, such that smoother films are achieved. We hypothesize the amphiphilic nature of polymers, like doped Polyaniline, requires a solvent with the same solubility to form a stable emulsion target. Control over the emulsion and resulting film properties can yield beneficial device properties, like low contact resistance. Our hypothesis is also tested against hydrophobic polymers, like P3HT, which have been deposited successfully using RIR-MAPLE with chlorobenzenes as the solvent family. We propose that the addition of hydroxyl moieties to the aromatic ring of the solvent should also yield more control over the film morphology. Atomic force microscopy, UV-Vis absorbance, and dark current density-voltage measurements of the resulting films will be reported, as well as a discussion of how these results relate to previously understood paradigms in RIR-MAPLE deposition.

  10. Improvement of the homogeneity of protein-imprinted polymer films by orientated immobilization of the template

    International Nuclear Information System (INIS)

    Liu Lijian; Zheng Jingjing; Fang Guijie; Xie Weihong

    2012-01-01

    Highlights: ► MPH was genetically modified at its C-terminal with (Gly-Ser) 5 –Cys. ► MPH-L was immobilized with fixed orientation via disulfide chemistry. ► The immobilized MPH-L retained the activity of MPH. ► MPH-L formed a homogeneous template. ► Homogeneous MIP film was obtained with orientated immobilization of the template. - Abstract: A method for preparing homogeneous protein-imprinted polymer films with orientated immobilization of template is described. The template methyl parathion hydrolase (MPH) was modified with a peptide linker (Gly-Ser) 5 –Cys and was immobilized on a cover glass with a fixed orientation via the linker. The activity of the fusion enzyme (MPH-L) was evaluated by determining the product's absorbance at 405 nm (A 405 ). Both the free and the immobilized MPH-L showed higher retention of the bioactivity than the wide type enzyme (MPH-W) as revealed by the A 405 values for MPH-L free /MPH-W free (1.159/1.111) and for MPH-L immobilized /MPH-W immobilized (0.348/0.118). The immobilized MPH-L also formed a more homogeneous template stamp compared to the immobilized MPH-W. The molecularly imprinted polymer films prepared with the immobilized MPH-L exhibited high homogeneity with low Std. Deviations of 80 and 200 from the CL intensity mean volumes which were observed for batch-prepared films and an individual film, respectively. MPH-L-imprinted polymer film also had a larger template binding capacity indicated by higher CL intensity mean volume of 3900 INT over 2500 INT for MPH-W-imprinted films. The imprinted film prepared with the orientated immobilization of template showed an imprinting factor of 1.7, while the controls did not show an imprinting effect.

  11. A directly patternable click-active polymer film via initiated chemical vapor deposition (iCVD)

    International Nuclear Information System (INIS)

    Im, Sung Gap; Kim, Byeong-Su; Tenhaeff, Wyatt E.; Hammond, Paula T.; Gleason, Karen K.

    2009-01-01

    A new 'click chemistry' active functional polymer film was directly obtained from a commercially available monomer of propargyl acrylate (PA) via easy, one-step process of initiated chemical vapor deposition (iCVD). Fourier transform infrared (FTIR) spectra confirmed that significant amount of the click-active acetylene functional group was retained after the iCVD process. The degree of crosslinking could be controlled by intentionally adding crosslinker, such as ethylene glycol diacrylate (EGDA) that was polymerized with PA to form click-active, completely insoluble copolymer. The formed iCVD polymers could also be grafted on various inorganic substrates with silane coupling agents. These crosslinking and grafting techniques give iCVD polymers chemical and mechanical stability, which allows iCVD polymers applicable to various click chemistry without any modification of reaction conditions. Pre-patterned iCVD polymer could be obtained via photolithography and an azido-functionalized dye molecule was also successfully attached on iCVD polymer via click chemistry. Moreover, pPA film demonstrated sensitivity to e-beam irradiation, which enabled clickable substrates having nanometer scale patterns without requiring the use of an additional e-beam resist. Direct e-beam exposure of this multifunctional iCVD layer, a 200 nm pattern, and QD particles were selectively conjugated on the substrates via click chemistry. Thus, iCVD pPA has shown dual functionality as of 'clickable' e-beam sensitive material.

  12. Development of an automatic smear sampler and a polymer film for surface radioactive contamination assay

    International Nuclear Information System (INIS)

    Seo, B.-K.; Lee, K.-W.; Woo, Z.-H.; Jeong, K.-S.; Oh, W.-Z.; Han, M.-J.

    2004-01-01

    Measurement of the surface contamination by an indirect method is subject to the various kinds of error according to the sampling person and needs much time and effort in the sampling and assay. In this research, an automatic smear sampler is developed. It improved efficiency for assay work of surface contamination level achieved periodically in a radiation controlled area. Using an automatic smear sampler developed, it is confirmed that radioactive contaminated materials are uniformly transferred to smear paper more than any sampling method by an operator. Also, Solid scintillation proximity membranes were prepared for measuring the amount of radioactive contamination in laboratories contaminated by the low energy beta-ray emitter, such as 3 H and 14 C. Polysulfone scintillation proximity membranes were prepared by impregnating Cerium Activated Yttrium Silicate (CAYS), an inorganic fluor, in a membrane structure. The inorganic fluor-impregnated membranes were applied to detect the radioactive surface contamination. The preparation of membranes was divided into two processes. A supporting polymer film was made of casting solutions consisting of polysulfone and solvent, their cast film being solidified by vacuum evaporation. CAYS-dispersed polymer solutions were cast over the first, solidified polymer films and coagulated either by evaporating solvent in the solution with non-solvent in a coagulation bath. The prepared membranes had two distinguished, but tightly attached, double layers : one is the supporting layer of dense polymer film and the other results revealed that the prepared membranes were efficient to monitor radioactive contamination with reliable counting ability. For enhancement of pick-up and measurement efficiency, the membrane was prepared with the condition of different membrane solidification. The scintillation produced by interaction with radiation and CAYS was measured with photomultiplier tube. The test results showed that the prepared

  13. Spectroelectrochemical Sensors: New Polymer Films for Improved Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Laura K.; Seliskar, Carl J.; Bryan, Samuel A.; Heineman, William R.

    2014-10-31

    The selectivity of an optical sensor can be improved by combining optical detection with electrochemical oxidation or reduction of the target analyte to change its spectral properties. The changing signal can distinguish the analyte from interferences with similar spectral properties that would otherwise interfere. The analyte is detected by measuring the intensity of the electrochemically modulated signal. In one form this spectroelectrochemical sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Sensitivity relies in part on a large change in molar absorptivity between the two oxidation states used for electrochemical modulation of the optical signal. A critical part of the sensor is the ion selective film. It should preconcentrate the analyte and exclude some interferences. At the same time the film must not interfere with the electrochemistry or the optical detection. Therefore, since the debut of the sensor’s concept one major focus of our group has been developing appropriate films for different analytes. Here we report the development of a series of quaternized poly(vinylpyridine)-co-styrene (QPVP-co-S) anion exchange films for use in spectroelectrochemical sensors to enable sensitive detection of target anionic analytes in complex samples. The films were either 10% or 20% styrene and were prepared with varying degrees of quaternized pyridine groups, up to 70%. Films were characterized with respect to thickness with spectroscopic ellipsometry, degree of quaternization with FTIR, and electrochemically and spectroelectrochemically using the anions ferrocyanide and pertechnetate.

  14. Spectroelectrochemical sensors: new polymer films for improved sensitivity

    Science.gov (United States)

    Morris, Laura K.; Seliskar, Carl J.; Bryan, Samuel A.; Heineman, William R.

    2014-10-01

    The selectivity of an optical sensor can be improved by combining optical detection with electrochemical oxidation or reduction of the target analyte to change its spectral properties. The changing signal can distinguish the analyte from interferences with similar spectral properties that would otherwise interfere. The analyte is detected by measuring the intensity of the electrochemically modulated signal. In one form this spectroelectrochemical sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Sensitivity relies in part on a large change in molar absorptivity between the two oxidation states used for electrochemical modulation of the optical signal. A critical part of the sensor is the ion selective film. It should preconcentrate the analyte and exclude some interferences. At the same time the film must not interfere with the electrochemistry or the optical detection. Therefore, since the debut of the sensor's concept one major focus of our group has been developing appropriate films for different analytes. Here we report the development of a series of quaternized poly(vinylpyridine)-co-styrene (QPVP-co-S) anion exchange films for use in spectroelectrochemical sensors to enable sensitive detection of target anionic analytes in complex samples. The films were either 10% or 20% styrene and were prepared with varying degrees of quaternized pyridine groups, up to 70%. Films were characterized with respect to thickness with spectroscopic ellipsometry, degree of quaternization with FTIR, and electrochemically and spectroelectrochemically using the anions ferrocyanide and pertechnetate.

  15. Physical and thermal properties of 8 MeV electron beam irradiated HPMC polymer films

    Science.gov (United States)

    Sangappa; Demappa, T.; Mahadevaiah; Ganesha, S.; Divakara, S.; Pattabi, Manjunath; Somashekar, R.

    2008-09-01

    Microstructural modification in hydroxypropyl methylcellulose (HPMC) polymer films induced by electron irradiation is studied. Irradiation was performed in air at room temperature using a 8 MeV electron accelerator at doses of 25, 50, 75 and 100 kGy. Irradiation can be used to crosslink or degrade the desired component or to fix the polymer morphology. Changes in microstructural parameters, crystallinity and thermal properties in virgin and irradiated HPMC films have been studied using wide angle X-ray scattering data and differential scanning calorimetry. The heat of fusion and the degree of crystallinity are found to be highest for unirradiated HPMC and the crystallite size is larger in virgin HPMC films.

  16. MeV ion beam interaction with polymer films containing cross-linking agents

    International Nuclear Information System (INIS)

    Evelyn, A. L.

    1999-01-01

    Polymer films containing cross linking enhancers were irradiated with MeV alpha particles to determine the effects of MeV ion beam interaction on these materials. The contributed effects from the electronic and nuclear stopping powers were separated by irradiating stacked thin films of polyvinyl chloride (PVC), polystyrene (PS) and polyethersulfone (PES). This layered system allowed most of the effects of the electronic energy deposited to be experienced by the first layers and the last layers to receive most of the effects of the nuclear stopping power. RGA, Raman microprobe analysis, RBS and FTIR measured changes in the chemical structures of the irradiated films. The characterization resolved the effects of the stopping powers on the PVC, PS and PES and the results were compared with those from previously studied polymers that did not contain any cross linking agents

  17. Uses of polymer-alanine film/ESR dosimeters in dosimetry of ionizing radiation

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfeng; Dai Jinxian; Lu Ting; Chen Ruyi; Yang Hua

    1993-01-01

    Alanine ESR dosimetry is a reliable method, used in a various fields of ionizing radiation. The polymer-alanine film/ESR dosimeters of 0.3 -0.4 mm thickness were prepared and their dosimetric properties were studied for 60 Co γ photons and 3 - 5 MeV electrons in the dose range from 20 Gy to 100 kGy. The results show that under normal conditions the alanine calibration curves are linear in the dose range from 100 Gy to 10kGy. The dose profiles at the electron radiation field were measured with the film alanine dosimeters. The polymer-alanine film dosimeters were used for ion implantation of 400 keV ion implantor. Their dose response and energy dependence were investigated initially. (Author)

  18. ITO films with enhanced electrical properties deposited on unheated ZnO-coated polymer substrates

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Lavareda, G.; Fortunato, E.; Alves, H.; Goncalves, A.; Varela, J.; Nascimento, R.; Amaral, A.

    2005-01-01

    Indium tin oxide (ITO) films were deposited by radio frequency (rf)-plasma enhanced reactive thermal evaporation (rf-PERTE) at room temperature on intrinsic ZnO/polymer substrates to enhance their electrical and structural properties. The polymer substrate used is polyethylene terephthalate (PET). The thickness of the ZnO films varied in the range 50-150 nm. The average thickness of the ITO films is of about 170 nm. Results show that ITO deposited on bare PET substrates exhibit: an average visible transmittance of about 85% and an electrical resistivity of 5.6 x 10 -2 Ω cm. ITO on ZnO/PET substrates show the optical quality practically preserved and the resistivity decreased to a minimum value of 1.9x10 -3 Ω cm for ZnO layers 125 nm thick. The electrical properties of ITO on ZnO/PET are largely improved by the increase in carrier mobility

  19. Current-dependent anisotropic conductivity of locally assembled silver nanoparticles in hybrid polymer films.

    Science.gov (United States)

    Goel, Pooja; Vinokur, Rostislav; Weichold, Oliver

    2010-12-15

    The electrical behaviour of hybrid poly(ethylene terephthalate) films containing localised, percolating networks of silver nanoparticles separated by pure polymer is studied. The films resemble an array of parallel wires in the submicron range and, thus, exhibit anisotropic conductivity. In the high-conductivity direction at low amplitudes, the films show Ohmic behaviour, while at moderate voltage, non-linearity and a decreasing resistance is observed. The samples were found to heat up during the measurements and the deviation from Ohm's law coincides with the Tg of the polymer. Microstructural analysis of the samples revealed an irreversible agglomeration of the particles at moderate voltages leading to the formation of filaments with higher metallic character than the random particle network. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H., E-mail: dehu2010@gmail.com [Department of Physics, Mangalore University, Mangalagangothri - 574 199 (India)

    2016-05-23

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence of compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.

  1. Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films

    Science.gov (United States)

    Luchnikov, V.; Kumar, K.; Stamm, M.

    2008-03-01

    Hollow-core toroidal micro-cavities are obtained by self-rolling of double-layer (polyvinyl pyridine/polystyrole) polymer films. Rolling of the bilayer is due to preferential swelling of polyvinyl pyridine in water solution of dodecyl benzene sulfonic acid. The tube formation proceeds from a circular opening in the film made by photolithography or by mechanical scratching. Toroid equilibrium dimensions are determined by the balance of the elastic energy relaxation via the film scrolling and the work of the in-plane stretching that is due to increasing radius of the toroid. The principle features of the micro-toroid formation process are captured by a simple analytical model. The inner walls of the cavities can be made metal coated. For this aim, the polymer bilayer can be metallized by vacuum sputtering prior to lithographic patterning and rolling of the bilayer. The toroids with metallic inner surfaces are promising for the future research as IR-frequency range resonators.

  2. An Examination of Radiation Induced Tensile Failure of Stressed and Unstressed Polymer Films Flown on MISSE-6

    Science.gov (United States)

    Miller, Sharon K.; Sechkar, Edward A.

    2012-01-01

    Thin film polymers are used in many spacecraft applications for thermal control (multilayer insulation and sunshields), as lightweight structural members (solar array blankets, inflatable/deployable structures) and have been proposed for propulsion (solar sails). Polymers in these applications are often under a tensile load and are directly exposed to the space environment, therefore it is important to understand the effect of stress in combination with the environment on the durability of these polymer films. The purpose of the Polymer Film Tensile Experiment, flown as part of Materials International Space Station Experiment 6 (MISSE 6), was to expose a variety of polymer films to the low Earth orbital environment under both relaxed and tension conditions. This paper describes the results of post flight tensile testing of these samples.

  3. Second harmonic generation from corona-poled polymer thin films ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... (ITO) glass substrates were pre-cleaned with dimethyl formamide (DMF), distilled water, methanol and acetone thoroughly in ultrasonic bath. 3 wt% chloroform solution of the polymer was filtered through 0.25μ teflon filter to remove undissolved particles and then the solution was spin casted on ITO glass ...

  4. Polymer Films with Ion-Synthesized Cobalt and Iron Nanoparticles

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2014-01-01

    The current paper presents an overview and analysis of data obtained on a few sets of polymer samples implanted by iron and cobalt. The low-energy (40 keV) implantations were carried out into polyimide and polyethyleneterephthalate with fluences between 2.5x10e16-1.5x10e17 cm-2. The samples were...

  5. Soft X-ray fluorescence measurements of irradiated polymer films

    Science.gov (United States)

    Winarski, R. P.; Ederer, D. L.; Pivin, J.-C.; Kurmaev, E. Z.; Shamin, S. N.; Moewes, A.; Chang, G. S.; Whang, C. N.; Endo, K.; Ida, T.

    1998-11-01

    Fluorescent soft X-ray carbon Kα emission spectra (XES) have been used to characterize the bonding of carbon atoms in polyimide (PI) and polycarbosilane (PCS) films. The PI films have been irradiated with 40 keV nitrogen or argon ions, at fluences ranging from 1 × 10 14 to 1 × 10 16 cm -2. The PCS films have been irradiated with 5 × 10 15 carbon ions cm -2 of 500 keV and/or annealed at 1000°C. We find that the fine structure of the carbon XES of the PI films changes with implanted ion fluence above 1 × 10 14 cm -2 which we believe is due to the degradation of the PI into amorphous C:N:O. The width of the forbidden band as determined from the high-energy cut-off of the C Kα X-ray excitation decreases with the ion fluence. The bonding configuration of free carbon precipitates embedded in amorphous SiC which are formed in PCS after irradiation with C ions or combined treatments (irradiation and subsequent annealing) is close to either to that in diamond-like films or in silicidated graphite, respectively.

  6. Hydrophobicity studies of polymer thin films with varied CNT concentration

    Science.gov (United States)

    M. Rodzi, N. H.; M. Shahimin, M.; Poopalan, P.; Man, B.; M. Nor, M. N.

    2013-12-01

    Surface functionalization studies for re-creating a `Lotus Leaf' effect (superhydrophobic) have been carried out for the past decade; looking for the material which can provide high transparency, low energy surface and high surface roughness. Fabrication of polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWCNT) hybrid thin film variations on glass to produce near-superhydrophobic surfaces is presented in this paper. There are three important parameters studied in producing hydrophobic surfaces based on the hybrid thin films; concentration of PDMS, concentration of MWCNT and droplet sizes. The study is carried out by using PDMS of varied cross linker ratio (10:1, 30:1 and 50:1) with MWCNT concentration of 1mg, 10mg and 15mg for 0.5 μl, 2.0 μl, 5.0 μl and 10 μl droplet sizes. The resulting hybrid thin films show that hydrophobicity increased with increasing cross linker ratio and MWCNT percentage in the PDMS solution. A near superhydrophobic surface can be created when using 15 mg of MWCNT with 50:1 cross linker ratio PDMS thin films, measured on 10 μl droplet size. The hybrid thin films produced can be potentially tailored to the application of biosensors, MEMS and even commercial devices.

  7. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  8. Aligned silane-treated MWCNT/liquid crystal polymer films

    International Nuclear Information System (INIS)

    Cervini, Raoul; Simon, George P; Ginic-Markovic, Milena; Matisons, Janis G; Huynh, Chi; Hawkins, Stephen

    2008-01-01

    We report on a method to preferentially align multiwall carbon nanotubes (MWCNTs) in a liquid crystalline matrix to form stable composite thin films. The liquid crystalline monomeric chains can be crosslinked to form acrylate bridges, thereby retaining the nanotube alignment. Further post-treatment by ozone etching of the composite films leads to an increase in bulk conductivity, leading to higher emission currents when examined under conducting scanning probe microscopy. The described methodology may facilitate device manufacture where electron emission from nanosized tips is important in the creation of new display devices

  9. Fabrication of polypeptide-based piezoelectric composite polymer film

    International Nuclear Information System (INIS)

    Farrar, Dawnielle; West, James E.; Busch-Vishniac, Ilene J.; Yu, Seungju M.

    2008-01-01

    A new class of molecular composite piezoelectric material was produced by simultaneous poling and curing of a homogeneous solution comprising poly(γ-benzyl α,L-glutamate) and methylmethacrylate via corona discharge methods. This film exhibited high piezoelectricity (d 33 = 23 pC N -1 ), and its mechanical characteristics (modulus = 450 MPa) were similar to those of low molecular weight poly(methylmethacrylate). As it is produced via solution-based fabrication processes, the composite film is conducive to miniaturization for small sensors with integrated electronics, and could also potentially be used in piezoelectric coating applications

  10. Peel resistance characterization of localized polymer film bonding via thin film adhesive thermally activated by scanned CO2 laser

    Science.gov (United States)

    Dowding, Colin; Dowding, Robert; Griffiths, Jonathan; Lawrence, Jonathan

    2013-06-01

    Thermal laser polymer bonding is a non-contact process for the joining of polymer laminates using thermally activated adhesives. Conventional, contact based bonding techniques suffer from mechanical wear, geometric inflexibility and poor energy efficiency. The application of lasers offers the potential for highly localized delivery of energy and increased process flexibility whilst achieving controlled and repeatable bonding of polymer laminates in a contact free process. Unlike previously reported techniques, here it is reported that laser based non-contact bonding is both viable and highly desirable due to the increased levels of control it affords the user. In this work, laser polymer bonding of 75 μm thick linear low density polyethylene (LLDPE) film backed with a thermally activated adhesive to a 640 μm thick polypropylene (PP) substrate was conducted using continuous wave 10.6 μm laser radiation and scanning galvanometric optics. The effect of laser power and scanning traverse speed on the peel resistance properties of the bonded polymer laminates is presented, with a threshold specific energy density for successful adhesive activation determined.

  11. Electron beam and gamma ray irradiated polymer electrolyte films: Dielectric properties

    Directory of Open Access Journals (Sweden)

    S. Raghu

    2016-04-01

    Full Text Available In this study, polymer electrolyte films were irradiated with electron beam (EB and Gamma ray (GR at 50 and 150 kGy. The induced chemical changes in films due to irradiations have been confirmed from the Fourier Transform Infra red (FT-IR spectra. The X-ray Diffractometry (XRD results show that crystallinity decreases by ∼20% in EB and ∼10% in GR irradiated films respectively compared to non-irradiated film. The micro structural arrangement was investigated by Scanning Electronic Microscopy (SEM and the images reveal that there is a substantial improvement in the surface morphology in irradiated films. The real (ε′ and imaginary (ε″ dielectric constant and AC conductivity are found to increase with increase in irradiation dose. Improved dielectric properties and conductivity (1.74 x 10−4 & 1.15 x 10−4 S/cm, respectively, for EB and GR irradiated films at room temperature after irradiation and it confirm that EB and GR irradiation can be simple and effective route to obtaining highly conductive polymer electrolytes. From this study it is confirm that EB is more effectiveness than GR irradiation.

  12. Temperature- and thickness-dependent elastic moduli of polymer thin films

    Directory of Open Access Journals (Sweden)

    Ao Zhimin

    2011-01-01

    Full Text Available Abstract The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T and thickness (h-dependent elastic moduli of polymer thin films Ef(T,h is developed with verification by the reported experimental data on polystyrene (PS thin films. For the PS thin films on a passivated substrate, Ef(T,h decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*, at which thickness Ef(T,h deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ.

  13. Memory and threshold switching in thin film PMMA polymer

    International Nuclear Information System (INIS)

    Rabah, K.V.O.

    1995-05-01

    Threshold switching between two impedance states have been observed at room temperature in a polymethylmethacrylate (PMMA) thin film sandwiched between two evaporated Al-metal electrodes. The cell's I-V characteristics were found to exhibit memory property. (author). 19 refs, 4 figs

  14. Laser structuring of thin-film solar cells on polymers

    Science.gov (United States)

    Gečys, P.; Račiukaitis, G.; Gedvilas, M.; Selskis, A.

    2009-04-01

    A permanent growth of the thin-film electronics market stimulates the development of versatile technologies for patterning thin-film materials on flexible substrates. High repetition rate lasers with a short pulse duration offer new possibilities for high efficiency structuring of conducting, semi-conducting and isolating films. Lasers with the picosecond pulse duration were applied in structuring the complex multilayered Cu(InGa)Se{2} (CIGS) solar cells deposited on the polyimide substrate. The wavelength of laser radiation was adjusted depending on optical properties both of the film and the substrate. A narrow processing window of laser fluence and pulse overlap was estimated with both 1064 nm and 355 nm irradiation to remove the molybdenum backcontact off the substrate. The selective removal of ITO, ZnO and CIGS layers was achieved with 355 nm irradiation in the multilayer structure of CIGS without significant damage to the underneath layers. Use of the flat-top laser beam profile should prevent inhomogeneity in ablation. The EDS analysis did not show residues of molybdenum projected onto the walls of ablated channel due to melt extrusion. Processing with picosecond lasers should not cause degradation of photo-electrical properties of the solar cells but verification is required.

  15. Reversible Formation of Silver Clusters and Particles in Polymer Films

    National Research Council Canada - National Science Library

    Gaddy, G. A; Korchev, A. S; McLain, Jason L; Black, J. R; Mills, German; Bratcher, Matthew S; Slaten, B. L

    2004-01-01

    .... The formation of Ag clusters and particles is monitored using UV-VIS spectroscopy. Films treated with H2O2 exhibit bleaching of the UV-VIS signals corresponding to Ag clusters and Ag particles that were generated during the photo reduction...

  16. Vapor-phase-synthesized fluoroacrylate polymer thin films: thermal stability and structural properties.

    Science.gov (United States)

    Christian, Paul; Coclite, Anna Maria

    2017-01-01

    In this study, the thermal, chemical and structural stability of 1 H ,1 H ,2 H ,2 H -perfluorodecyl acrylate polymers (p-PFDA) synthetized by initiated chemical vapor deposition (iCVD) were investigated. PFDA polymers are known for their interesting crystalline aggregation into a lamellar structure that induces super-hydrophobicity and oleophobicity. Nevertheless, when considering applications which involve chemical, mechanical and thermal stresses, it is important to know the limits under which the crystalline aggregation and the resulting polymer properties are stable. For this, chemical, morphological and structural properties upon multiple heating/cooling cycles were investigated both for linear PFDA polymers and for differently strong cross-linked alterations thereof. Heat treatment leaves the chemical composition of the linear PFDA polymers largely unchanged, while a more ordered crystalline structure with smoother morphology is observed. At the same time, the hydrophobicity and the integrity of the polymer deteriorate upon heating. The integrity and hydrophobicity of cross-linked p-PFDA films was preserved likely because of the lack of internal strain due to the coexistence of both crystalline and amorphous phases. The possibility to finely tune the degree of cross-linking can therefore expand the application portfolio in which PFDA polymers can be utilized.

  17. Polymer Stress-Gradient Induced Migration in Thin Film Flow Over Topography

    Science.gov (United States)

    Tsouka, Sophia; Dimakopoulos, Yiannis; Tsamopoulos, John

    2014-11-01

    We consider the 2D, steady film flow of a dilute polymer solution over a periodic topography. We examine how the distribution of polymer in the planarization of topographical features is affected by flow intensity and physical properties. The thermodynamically acceptable, Mavrantzas-Beris two-fluid Hamiltonian model is used for polymer migration. The resulting system of differential equations is solved via the mixed FE method combined with an elliptic grid generation scheme. We present numerical results for polymer concentration, stress, velocity and flux of components as a function of the non-dimensional parameters of the problem (Deborah, Peclet, Reynolds and Capillary numbers, ratio of solvent viscosity to total liquid viscosity and geometric features of the topography). Polymer migration to the free surface is enhanced when the cavity gets steeper and deeper. This increases the spatial extent of the polymer depletion layer and induces strong banding in the stresses away from the substrate wall, especially in low polymer concentration. Macromolecules with longer relaxation times are predicted to migrate towards the free surface more easily, while high surface tension combined with a certain range of Reynolds numbers affects the free surface deformations. Work supported by the General Secretariat of Research & Technology of Greece through the program ``Excellence'' (Grant No. 1918) in the framework ``Education and Lifelong Learning'' co-funded by the ESF.

  18. Effect of a Polymercaptan Material on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films

    OpenAIRE

    Yujian Sun; Cuihong Zhang; Le Zhou; Hua Fang; Jianhua Huang; Haipeng Ma; Yi Zhang; Jie Yang; Lan-Ying Zhang; Ping Song; Yanzi Gao; Jiumei Xiao; Fasheng Li; Kexuan Li

    2016-01-01

    Polymer-dispersed liquid crystal (PDLC) films were prepared by the ultraviolet-light-induced polymerization of photopolymerizable monomers in nematic liquid crystal/chiral dopant/thiol-acrylate reaction monomer composites. The effects of the chiral dopant and crosslinking agents on the electro-optical properties of the PDLC films were systematically investigate. While added the chiral dopant S811 into the PDLC films, the initial off-state transmittance of the films was decreased. It was found...

  19. [Influence of P3HT : PCBM film formation process on the performance of polymer solar cells].

    Science.gov (United States)

    Zhou, Jian-Ping; Chen, Xiao-Hong; Xu, Zheng

    2011-10-01

    The performance of heterojunction polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) and [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) blends was investigated by changing P3HT : PCBM film fabrication procedures with fast growth and slow growth methods, respectively. The optimal time of slow growth of P3HT : PCBM films was gotten after we systematically changed spin-coating time and preset time before annealing blended films. When P3HT = PCBM film was spin coated at the speed of 800RPM and spin time ranged from 50 to 80 sec, and then put in petri dish for 30 min before annealing blended films, the power conversion efficiency (PCE) of PSCs reached 3%. Yet PCE of PSCs based on P3HT : PCBM with fast-growth was only 1.8%. The improved PCE is attributable to the reasonable phase-separation between P3HT and PCBM blended film, which boosted carriers transport and hop. The result indicates that half an hour of preset time for P3HT : PCBM films before annealing can efficiently finish the slow-growth of blended films, which can save time and decrease cost to fabricate efficient PSCs.

  20. Measurement of time-dependent adhesion between a polymer film and a flat indenter tip

    International Nuclear Information System (INIS)

    Choi, S T; Lee, S R; Earmme, Y Y

    2008-01-01

    We revisited an elasticity problem of flat indentation on an elastic film bonded to a rigid substrate and obtained the force-depth relation in a simple form. With the obtained force-depth relation, Kendall's elastic equilibrium theory of adhesion was extended to the adhesion between a flat tip and a compressible elastic film. Thus, the thermodynamic work of adhesion at the moment of debonding of a flat tip from an elastic film was expressed in terms of pull-off force, elastic constants and geometric parameters. It is worth noting that the obtained relation for elastic films is still valid for viscoelastic films if viscoelastic losses are limited to the process zone of debonding. This makes it possible to study the time-dependent adhesion of viscoelastic polymer films. Indentation experiments with a flat diamond tip were performed on SU-8 films, and the results verified that the extended form of Kendall's theory correctly compensates the effect of the finite thickness of the films on the work of adhesion. The indentation results also showed that the work of adhesion is strongly dependent on the unloading velocity of the tip, while indentation depth and dwell time have only minor effects on the work of adhesion

  1. In-situ ATR-FTIR for characterization of thin biorelated polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Müller, M., E-mail: mamuller@ipfdd.de [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Technical University of Dresden (TUD), Department of Chemistry and Food Chemistry, 01062 Dresden (Germany); Torger, B. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Technical University of Dresden (TUD), Department of Chemistry and Food Chemistry, 01062 Dresden (Germany); Bittrich, E. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Kaul, E.; Ionov, L. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Technical University of Dresden (TUD), Department of Chemistry and Food Chemistry, 01062 Dresden (Germany); Uhlmann, P. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Stamm, M. [Leibniz Institute of Polymer Research Dresden (IPF Dresden), Hohe Straße 6, 01069 Dresden (Germany); Technical University of Dresden (TUD), Department of Chemistry and Food Chemistry, 01062 Dresden (Germany)

    2014-04-01

    We present and review in-situ-attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic data from thin biorelated polymer films useful for the modification and functionalization of polymer and inorganic materials and discuss their applications related to life sciences. A special ATR mirror attachment operated by the single-beam-sample-reference (SBSR) concept and housing a homebuilt thermostatable flow cell was used, which allows for appropriate background compensation and signal to noise ratio. ATR-FTIR data on the reactive deposition of dopamine on inorganic model surfaces are shown. Information on the structure and deposition pathway for such bioinspired melanin-like films is provided. ATR-FTIR data on thermosensitive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) is then presented. The thermotropic hydration and hydrogen bonding behavior of PNIPAAM brush films is described. Finally, ATR-FTIR data on biorelated polyelectrolyte multilayers (PEM) are given together with details on PEM growth and detection. Applications of these latter films for biopassivation/activation and local drug delivery are addressed.

  2. SAXS Studies of TiO2 Nanoparticles in Polymer Electrolytes and in Nanostructured Films

    Directory of Open Access Journals (Sweden)

    Sigrid Bernstorff

    2010-11-01

    Full Text Available Polymer electrolytes as nanostructured materials are very attractive components for batteries and opto-electronic devices. (PEO8ZnCl2 polymer electrolytes were prepared from PEO and ZnCl2. The nanocomposites (PEO8ZnCl2/TiO2 themselves contained TiO2 nanograins. In this work, the influence of the TiO2 nanograins on the morphology and ionic conductivity of the nanocomposite was systematically studied by transmission small-angle X-ray scattering (SAXS simultaneously recorded with wide-angle X-ray diffraction (WAXD and differential scanning calorimetry (DSC at the synchrotron ELETTRA. Films containing nanosized grains of titanium dioxide (TiO2 are widely used in the research of optical and photovoltaic devices. The TiO2 films, prepared by chemical vapor deposition and e-beam epitaxy, were annealed in hydrogen atmospheres in the temperature range between 20 °C and 900 °C in order to study anatase-rutile phase transition at 740 °C. Also, grazing-incidence small angle X-ray scattering (GISAXS spectra for each TiO2 film were measured in reflection geometry at different grazing incident angles. Environmentally friendly galvanic cells, as well as solar cells of the second generation, are to be constructed with TiO2 film as working electrode, and nanocomposite polymer as electrolyte.

  3. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers.

    Science.gov (United States)

    Buck, Maren E; Schwartz, Sarina C; Lynn, David M

    2010-09-11

    We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films

  4. Release and Skin Permeation of Scopolamine From Thin Polymer Films in Relation to Thermodynamic Activity.

    Science.gov (United States)

    Kunst, Anders; Lee, Geoffrey

    2016-04-01

    The object was to demonstrate if the diffusional flux of the drug out of a drug-in-adhesive-type matrix and its subsequent permeation through an excised skin membrane is a linear function of the drug's thermodynamic activity in the thin polymer film. The thermodynamic activity, ap(*), is defined here as the degree of saturation of the drug in the polymer. Both release and release/permeation of scopolamine base from 3 different poylacrylate pressure-sensitive adhesives (PSAs) were measured. The values for ap(*) were calculated using previous published saturation solubilities, wp(s), of the drug in the PSAs. Different rates of release and release/permeation were determined between the 3 PSAs. These differences could be accounted for quantitatively by correlating with ap(*) rather than the concentration of the drug in the polymer films. At similar values for ap(*) the same release or release/permeation rates from the different polymers were measured. The differences could not be related to cross-linking or presence of ionizable groups of the polymers that should influence diffusivity. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Dispersion of PMMA-grafted, mesoscopic iron-oxide rods in polymer films.

    Science.gov (United States)

    Ferrier, Robert C; Huang, Yun; Ohno, Kohji; Composto, Russell J

    2016-03-07

    This study investigates the parameters that affect the dispersion of polymer grafted mesoscopic iron-oxide rods (FeMRs) in polymer matrices. FeMRs (212 nm long by 36 nm in diameter) are grafted with poly(methyl methacrylate) (PMMA) at three different brush molecular weights: 3.7 kg mol(-1), 32 kg mol(-1), and 160 kg mol(-1). Each FeMR sample was cast in a polymer thin film consisting of either PMMA or poly(ethylene oxide) (PEO) each at a molecular weight much higher or much lower than the brush molecular weight. We find that the FeMRs with 160 kg mol(-1) brush disperse in all matrices while the FeMRs with 32 kg mol(-1) and 3.7 kg mol(-1) brushes aggregate in all matrices. We perform simple free energy calculations, taking into account steric repulsion from the brush and van der Waals attraction between FeMRs. We find that there is a barrier for aggregation for the FeMRs with the largest brush, while there is no barrier for the other FeMRs. Therefore, for these mesoscopic particles, the brush size is the main factor that determines the dispersion state of FeMRs in polymer matrices with athermal or weakly attractive brush-matrix interactions. These studies provide new insight into the mechanisms that affect dispersion in polymer matrices of mesoscopic particles and therefore guide the design of composite films with well-dispersed mesoscopic particles.

  6. High-Pressure CO2 Sorption in Polymers of Intrinsic Microporosity under Ultrathin Film Confinement

    KAUST Repository

    Ogieglo, Wojciech

    2018-03-12

    Ultrathin microporous polymer films are pertinent to the development and further spread of nanotechnology with very promising potential applications in molecular separations, sensors, catalysis, or batteries. Here, we report high-pressure CO2 sorption in ultrathin films of several chemically different polymers of intrinsic microporosity (PIMs), including the prototypical PIM-1. Films with thicknesses down to 7 nm were studied using interference-enhanced in situ spectroscopic ellipsometry. It was found that all PIMs swell much more than non-microporous polystyrene and other high-performance glassy polymers reported previously. Furthermore, chemical modifications of the parent PIM-1 strongly affected the swelling magnitude. By investigating the behavior of relative refractive index, nrel, it was possible to study the interplay between micropores filling and matrix expansion. Remarkably, all studied PIMs showed a maximum in nrel at swelling of 2-2.5% indicating a threshold point above which the dissolution in the dense matrix started to dominate over sorption in the micropores. At pressures above 25 bar, all PIMs significantly plasticized in compressed CO2 and for the ones with the highest affinity to the penetrant, a liquidlike mixing typical for rubbery polymers was observed. Reduction of film thickness below 100 nm revealed pronounced nanoconfinement effects and resulted in a large swelling enhancement and a quick loss of the ultrarigid character. On the basis of the partial molar volumes of the dissolved CO2, the effective reduction of the Tg was estimated to be ∼200 °C going from 128 to 7 nm films.

  7. Non-Vacuum Processed Polymer Composite Antireflection Coating Films for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Abdullah Uzum

    2016-08-01

    Full Text Available A non-vacuum processing method for preparing polymer-based ZrO2/TiO2 multilayer structure antireflection coating (ARC films for crystalline silicon solar cells by spin coating is introduced. Initially, ZrO2, TiO2 and surface deactivated-TiO2 (SD-TiO2 based films were examined separately and the effect of photocatalytic properties of TiO2 film on the reflectivity on silicon surface was investigated. Degradation of the reflectance performance with increasing reflectivity of up to 2% in the ultraviolet region was confirmed. No significant change of the reflectance was observed when utilizing SD-TiO2 and ZrO2 films. Average reflectance (between 300 nm–1100 nm of the silicon surface coated with optimized polymer-based ZrO2 single or ZrO2/SD-TiO2 multilayer composite films was decreased down to 6.5% and 5.5%, respectively. Improvement of photocurrent density (Jsc and conversion efficiency (η of fabricated silicon solar cells owing to the ZrO2/SD-TiO2 multilayer ARC could be confirmed. The photovoltaic properties of Jsc, the open-circuit photo voltage (VOC, the fill factor (FF, and the η were 31.42 mA cm−2, 575 mV, 71.5% and 12.91%. Efficiency of the solar cells was improved by the ZrO2-polymer/SD-TiO2 polymer ARC composite layer by a factor of 0.8% with an increase of Jsc (2.07 mA cm−2 compared to those of fabricated without the ARC.

  8. A comparative study of oxygen transmission rates through polymer films based on fluorescence quenching

    DEFF Research Database (Denmark)

    Siró, Istvan; Plackett, David; Sommer-Larsen, Peter

    2010-01-01

    Information on oxygen permeability through polymer films is essential for some applications, especially in food packaging where the control of oxygen levels can be critical in avoiding food spoilage. A permeability testing device using fluorescence-based optical oxygen sensing was developed...... as a potential new instrument for measuring the oxygen permeability of packaging films. The fluorescence-based permeability tester was validated against two existing commercial oxygen permeability measuring devices, the Mocon Ox-Tran 2/20 and PBI-Dansensor OPT-5000. Oxygen transmission rates (OTR) of polylactide...... (PLA) and nanoclay-reinforced PLA films, as well as polyethylene/poly(ethylene terephthalate) (PE/PET) and polypropylene/poly(ethylene terephthalate) (PP/PET) laminated films were determined at 23°C and 50% relative humidity using each of these instruments. No significant differences were observed...

  9. Chemical solution deposition of YBCO thin film by different polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T{sub c} = 90 K as well as high J{sub c} (0 T, 77 K) over 3 MA/cm{sup 2}.

  10. Molecular Weight Effects on the Glass Transition and Confinement Behavior of Polymer Thin Films.

    Science.gov (United States)

    Xia, Wenjie; Hsu, David D; Keten, Sinan

    2015-08-01

    Nanoscale polymer thin films exhibit strong confinement effects on Tg arising from free surfaces. However, the coupled influence of molecular weight (MW) and surface effects on Tg is not well understood for low MW film systems below the entanglement length. Utilizing atomistically informed coarse-grained molecular dynamics simulations for poly(methyl methacrylate) (PMMA), it is demonstrated that the decrease in free-standing film Tg with respect to bulk is more significant for low MW compared to high MW systems. Investigation of the local interfacial properties reveals that the increase in the local free volume near the free surface is greater for low MW, explaining the MW dependence of Tg -confinement behaviors. These findings corroborate recent experiments on low MW films, and highlight the relationship between nanoconfinement phenomena and local free volume effects arising from free surfaces. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation

    Science.gov (United States)

    Herring, Helen

    2003-01-01

    Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.

  12. Nanoscale direct mapping of localized and induced noise sources on conducting polymer films

    Science.gov (United States)

    Shekhar, Shashank; Cho, Duckhyung; Lee, Hyungwoo; Cho, Dong-Guk; Hong, Seunghun

    2015-12-01

    The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in increased NT, which is explained by the structural deformation at high bias-voltages. On photo-illumination, the ordered-phase-regions exhibited a rather large increase in the conductivity and NT. Presumably, the illumination released carriers from deep-traps which should work as additional noise-sources. These results show that our methods provide valuable insights into noise-sources and, thus, can be powerful tools for basic research and practical applications of conducting polymer films.The localized noise-sources and those induced by external-stimuli were directly mapped by using a conducting-AFM integrated with a custom-designed noise measurement set-up. In this method, current and noise images of a poly(9,9-dioctylfluorene)-polymer-film on a conducting-substrate were recorded simultaneously, enabling the mapping of the resistivity and noise source density (NT). The polymer-films exhibited separate regions with high or low resistivities, which were attributed to the ordered or disordered phases, respectively. A larger number of noise-sources were observed in the disordered-phase-regions than in the ordered-phase regions, due to structural disordering. Increased bias-voltages on the disordered-phase-regions resulted in

  13. Influence of metallic and semiconducting nanostructures on the optical properties of dye-doped polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, M., E-mail: mdatcu@infim.ro; Matei, E.

    2016-09-01

    Dye-doped polymer thin films were obtained by spin-coating of 8% polyvinylpyrrolidone (PVP) solutions (in ethanol). Ni or ZnO nanowires were incorporated in Rhodamine 6G doped polymer films (10{sup −4} M dye concentration). Optical and morphological properties of simple dye-doped polymer films and films containing metallic or semiconducting nanostructures were investigated. Optical microscopy and scanning electron microscopy were used to image the nanowires. The presence of Ni nanowires induces a small shift (2–3 nm) to longer wavelengths on the emission band of Rh 6G doped PVP film. The ZnO nanowires' presence was confirmed by X-ray diffraction measurements. An enhancement of the emission of the dye doped polymer is induced by the semiconducting structures. - Highlights: • Rhodamine 6G doped polyvinylpyrrolidone thin films were obtained by spin-coating. • Ni or ZnO nanowires were incorporated in Rhodamine 6G doped polymer films. • Ni nanowires' presence induces a shift to shorter wavelengths on the emission band. • Enhancement of dye-doped polymer emission induced by the semiconducting structures.

  14. Synthesis of environmentally responsive organic materials by application of ion track holes in polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Omichi, Hideki; Yoshida, Masaru; Asano, Masaharu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Katakai, Ryoichi; Spohr, R.; Vetter, J.

    1997-03-01

    Polymer films were irradiated by heavy ion beams and etched by a concentrated alkali solution to produce particle track membranes (PTMs). Then the PTMs were chemically modified by grafting such monomers as amino acid group containing methacryloyl and N-isopropylacrylamide the polymers of which are known as environmentally responsive hydrogels. The size of pores of the modified PTMs under different temperatures in water was followed by electron microscopy. The pore was controlled from an open state to a completely closed state by changing temperature. The conductivity through the membrane was measured by changing the temperature of the cell. (author)

  15. Water soluble cellulose acetate: a versatile polymer for film coating.

    Science.gov (United States)

    Wheatley, Thomas A

    2007-03-01

    The objective of this study was to investigate the use of water soluble cellulose acetate (WSCA) as a film coating material for tablets. Aspirin (ASA) tablets were prepared by direct compression and coated with either WSCA or HPMC (hydroxypropyl methylcellulose) dispersions. Coatings of 1-3%, depending on the intended application, were applied to the model drug (ASA) tablets employing a side-vented coating pan. Free films of WSCA, prepared by cast method, are crystal clear and, depending on the viscosity grade, are flexible, strong and durable. WSCA has the capability of forming free films without plasticizers and the films dry at room temperature. Glass transition temperature, Tg, was determined by differential scanning calorimetry. The Tg of WSCA is significantly higher relative to HPMC. Inclusion of plasticizer lowers the Tg of WSCA and effective plasticizers were PEG 400 and glycerin. Low viscosity WSCA was more soluble in water (25-30%) relative to medium viscosity WSCA (10-15%). WSCA solutions exhibited no increase in viscosity with an increase in temperature. Samples of coated (WSCA and HPMC) tablets and uncoated ASA cores were packaged for stability studies at room and elevated temperature storage. Physical stability of ASA tablets coated with 2:1 LV: MV (low viscosity: medium viscosity) WSCA formulations was better when compared to tablets coated with HPMC. Dissolution stability of WSCA coated ASA was similar to the physical stability results. After three months at elevated temperature (35 and 45 degrees C), the WSCA coated tablets complied with USP dissolution requirements for ASA, while the HPMC coated tablets did not. There was no difference in moisture (weight) gain of ASA tablets coated with either WSCA or HPMC. The WSCA coated tablets were not sticky or tacky, while the HPMC coated tablets were tacky and stuck together.

  16. Plasma polymer films of tetravinylsilane modified by UV irradiation

    Czech Academy of Sciences Publication Activity Database

    Čech, V.; Lichovníková, S.; Trivedi, R.; Peřina, Vratislav; Zemek, Josef; Mikulík, P.; Caha, O.

    2010-01-01

    Roč. 205, Suppl. 1 (2010), S177-S181 ISSN 0257-8972. [Asian-European International Conference on Plasma Surface Engineering/7./ - AEPSE 2009. Busan , 20.09.2009-25.09.2009] Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10480505 Keywords : thin film * PECVD * tetravinylsilane * UV irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.135, year: 2010

  17. Structure and interaction of polymer thin films with supercritical carbon dioxide

    Science.gov (United States)

    Sirard, Stephen Michael

    2003-06-01

    An understanding of colloid stability in CO2 as well as the interaction of CO2 with polymer thin films is necessary for the intelligent design of CO2-based processes for future materials applications. In-situ spectroscopic ellipsometry (SE) was used to measure the thickness and optical properties of nanoscale poly(dimethylsiloxane) (PDMS) and poly(methyl methacrylate) films exposed to compressed CO2 . Both the sorption and CO2-induced dilation of the thin films were measured simultaneously with SE and deviations between the thin films and the corresponding bulk films may be attributed to excess CO 2 at the free interface as well as the influence of film confinement and the compressible nature of CO2 on the orientation and mobility of the polymers. SE was also used to measure sorption equilibrium and kinetics and CO2-induced dilation of polyimide (6FDA-DAM:DABA 2:1) thin films to determine how a gas separation membrane's structure affects its susceptibility to CO2-induced plasticization. Both thermal annealing and chemical crosslinking reduced the polymer dilation to prevent large increases in the CO2 diffusion coefficient at high CO2 pressures. The CO2 permeability and polymer free volume strongly depend on the annealing temperature, and different effects are observed for the crosslinked and uncrosslinked membranes and for the thick and thin membranes. Neutron reflectivity (NR) and SE were used to characterize the structure of end-grafted d-PDMS brushes on SiOx wafers exposed to compressed CO2. NR revealed two distinct regions in the segment density profile as a function of distance from the surface. The thickness and volume fraction profiles for the brush change much more with solvent quality than has been seen in previous studies with incompressible solvents, due to the high asymmetry in the intermolecular interactions, as well as the large compressibility and free volume differences between the polymer segments and the solvent. Turbidity versus time measurements

  18. Structural, chemical and electrical characterisation of conductive graphene-polymer composite films

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Barry; Spencer, Steve J.; Belsey, Natalie A. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Faris, Tsegie [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Cronin, Harry [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Silva, S. Ravi P. [Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Sainsbury, Toby; Gilmore, Ian S. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Stoeva, Zlatka [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Pollard, Andrew J., E-mail: andrew.pollard@npl.co.uk [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom)

    2017-05-01

    Graphical abstract: Secondary Ion Mass Spectrometry (SIMS) imaging of the dispersion of graphene within graphene-polymer composites using the Na{sup +} signal. - Highlights: • Relation of properties of graphene flakes with electrical properties of composite. • Standardised characterisation method for structural properties of graphene flakes. • Structural and chemical characterisation of commercial graphene flakes. • ToF-SIMS used to determine dispersion of graphene in polymer. - Abstract: Graphene poly-acrylic and PEDOT:PSS nanocomposite films were produced using two alternative commercial graphene powders to explore how the graphene flake dimensions and chemical composition affected the electrical performance of the film. A range of analytical techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), were employed to systematically analyse the initial graphene materials as well as the nanocomposite films. Electrical measurements indicated that the sheet resistance of the films was affected by the properties of the graphene flakes used. To further explore the composition of the films, ToF-SIMS mapping was employed and provided a direct means to elucidate the nature of the graphene dispersion in the films and to correlate this with the electrical analysis. These results reveal important implications for how the dispersion of the graphene material in films produced from printable inks can be affected by the type of graphene powder used and the corresponding effect on electrical performance of the nanocomposites. This work provides direct evidence for how accurate and comparable characterisation of the graphene material is required for real-world graphene materials to develop graphene enabled films and proposes a measurement protocol for comparing graphene materials that can be used for international

  19. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya

    2012-06-19

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films. The axial position of the dye molecules across the thickness of the film was determined with a resolution of 12 nm by analyzing astigmatic fluorescence images. The average relaxation times of the rotating molecules do not depend on the overall thickness of the film between 20 and 110 nm. The relaxation times also do not show any dependence on the axial position within the films for the film thickness between 70 and 110 nm. In addition to the rotating molecules we observed a fraction of spatially diffusing molecules and completely immobile molecules. These molecules indicate the presence of thin (<5 nm) high-mobility surface layer and low-mobility layer at the interface with the substrate. (Figure presented) © 2012 American Chemical Society.

  20. Frictional behaviour of polymer films under mechanical and electrostatic loads

    International Nuclear Information System (INIS)

    Ginés, R; Christen, R; Motavalli, M; Bergamini, A; Ermanni, P

    2013-01-01

    Different polymer foils, namely polyimide, FEP, PFA and PVDF were tested on a setup designed to measure the static coefficient of friction between them. The setup was designed according to the requirements of a damping device based on electrostatically tunable friction. The foils were tested under different mechanically applied forces and showed reproducible results for the static coefficient of friction. With the same setup the measurements were performed under an electric field as the source of the normal force. Up to a certain electric field the values were in good agreement. Beyond this field discrepancies were found. (paper)

  1. On fabrication procedures of Li-ion conducting garnets

    Energy Technology Data Exchange (ETDEWEB)

    Hanc, Emil [The Mineral and Energy Economy Research Institute, Polish Academy of Sciences, ul. Wybickiego 7, 31-261 Kraków (Poland); Zając, Wojciech, E-mail: wojciech.zajac@agh.edu.pl [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland); Lu, Li; Yan, Binggong; Kotobuki, Masashi [Materials Science Group, Department of Mechanical Engineering, National University of Singapore (Singapore); Ziąbka, Magdalena [AGH University of Science and Technology, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków (Poland); Molenda, Janina [AGH University of Science and Technology, Faculty of Energy and Fuels, al. Mickiewicza 30, 30-059 Kraków (Poland)

    2017-04-15

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li{sub 7}La{sub 3}Zr{sub 2}O{sub 12} electrolyte by means of the pulsed laser deposition technique.

  2. On fabrication procedures of Li-ion conducting garnets

    Science.gov (United States)

    Hanc, Emil; Zając, Wojciech; Lu, Li; Yan, Binggong; Kotobuki, Masashi; Ziąbka, Magdalena; Molenda, Janina

    2017-04-01

    Ceramic oxides exhibiting high lithium-ion mobility at room temperature receive broad attention as candidate electrolytes for lithium batteries. Lithium-stuffed garnets from the Li7La3Zr2O12 group seem to be especially promising because of their high ionic conductivity at room temperature and their electrochemical stability. In this work, we discuss factors that affect formation of the garnet in its bulk form or in the form of thick and thin films. We demonstrate that zinc oxide can be applied as a sintering aid that facilitate the formation of the highly conducting cubic Li7La3Zr2O12 garnet phase in a single-step sintering procedure. Based on our experience with the single-step sintering experiments, we successfully fabricated a thick-film membrane consisting of a garnet solid electrolyte using the tape casting technique. In order to reduce the thickness of the electrolyte even further we investigated the fabrication of a thin-film Li7La3Zr2O12 electrolyte by means of the pulsed laser deposition technique.

  3. Characterization of conducting polymer films grown via surface polymerization by ion-assisted deposition

    Science.gov (United States)

    Tepavcevic, Sanja

    2006-04-01

    Optimization of photonic and electronic devices based on conductive polymers, such as polythiophene and polyphenyl, requires the development of processing methods that can control both film chemistry and morphology on the nanoscale. One such method is explored in this thesis: surface polymerization by ion-assisted deposition (SPIAD). Polythiophene and polyphenyl thin films are grown on a silicon surface by SPIAD which uses hyperthermal, mass-selected thiophene cations coincident with alpha-thermal beam of aterthiophene (3T) or p-terphenyl (3P) neutrals. Mass spectrometry and x-ray photoelectron spectroscopy are used to verify polymerization of both 3T and 3P. The optimal conditions for the most efficient polymerization reaction and film growth are found by varying ion/neutral ratio and ion energy. The electronic structures of these films are probed by ultraviolet photoelectron spectroscopy (UPS) and polarized near-edge x-ray absorption fine structure spectroscopy (NEXAFS). The conducting polymer films formed by SPIAD display new valence band features resulting from a reduction in both their band gap and barrier to hole injection. These changes in film electronic structure result from an increase in the electron conjugation length and other changes in film structure induced by SPIAD. Scanning electron microscopy and x-ray diffraction are used to demonstrate that SPIAD can control the overall polythiophene and polyphenyl film morphology through the mediation of adsorption, diffusion, sublimation (desorption), and other thermal film growth events by ion-induced processes including polymerization, sputtering, bond breakage, and energetic mixing. Predicting the electronic properties, growth mechanism and morphology of the SPIAD films should be possible through computer simulations of the controlling phenomenon. Study with first principles density functional theory-molecular dynamics (DFT-MD) simulations indicates that polymerization and fragmentation of ions and

  4. Confinement Effects on Host Chain Dynamics in Polymer Nanocomposite Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Kyle J. [Department; Glynos, Emmanouil [Department; Maroulas, Serafeim-Dionysios [Department; Narayanan, Suresh [Advanced; Sakellariou, Georgios [Department; Green, Peter F. [Department; National

    2017-09-06

    Incorporating nanoparticles (NPs) within a polymer host to create polymer nanocomposites (PNCs) while having the effect of increasing the functionality (e.g.: sensing, energy conversion) of these materials, introduces additional complications with regard to the processing-morphology-function behavior. A primary challenge is to understand and control the viscosity of a PNC with decreasing film thickness confinement for nanoscale applications. Using a combination of X-ray photon correlation spectroscopy (XPCS) and X-ray standing wave based resonance enhanced XPCS to study the dynamics of neat poly-2-vinyl pyridine (P2VP) chains and the nanoparticle dynamics, respectively, we identified a new mechanism that dictates the viscosity of PNC films in the nanoscale regime. We show that while the viscosities of neat P2VP films as thin as 50 nm remained the same as the bulk, PNC films containing P2VP brush-coated gold NPs, spaced 50 nm apart, exhibited unprecedented increases in viscosities of over an order of magnitude. For thicker films or more widely separated NPs, the chain dynamics and viscosities were equal to the bulk values. These results -NP proximities and suppression of their dynamics -suggest a new mechanism by which the viscosities of polymeric liquids could be controlled for 2D and 3D nanoscale applications.

  5. Development of polymer-bound fast-dissolving metformin buccal film with disintegrants.

    Science.gov (United States)

    Haque, Shaikh Ershadul; Sheela, Angappan

    2015-01-01

    Fast-dissolving drug-delivery systems are considered advantageous over the existing conventional oral dosage forms like tablets, capsules, and syrups for being patient friendly. Buccal films are one such system responsible for systemic drug delivery at the desired site of action by avoiding hepatic first-pass metabolism. Metformin hydrochloride (Met), an antidiabetic drug, has poor bioavailability due to its high solubility and low permeability. The purpose of the study reported here was to develop a polymer-bound fast-dissolving buccal film of metformin to exploit these unique properties. In the study, metformin fast-dissolving films were prepared by the solvent-casting method using chitosan, a bioadhesive polymer. Further, starch, sodium starch glycolate, and microcrystalline cellulose were the disintegrants added to different ratios, forming various formulations (F1 to F7). The buccal films were evaluated for various parameters like weight variation, thickness, folding endurance, surface pH, content uniformity, tensile strength, and percentage of elongation. The films were also subjected to in vitro dissolution study, and the disintegration time was found to be less than 30 minutes for all formulations, which was attributed to the effect of disintegrants. Formulation F6 showed 92.2% drug release within 6 minutes due to the combined effect of sodium starch glycolate and microcrystalline cellulose.

  6. Development of polymer-bound fast-dissolving metformin buccal film with disintegrants

    Science.gov (United States)

    Haque, Shaikh Ershadul; Sheela, Angappan

    2015-01-01

    Fast-dissolving drug-delivery systems are considered advantageous over the existing conventional oral dosage forms like tablets, capsules, and syrups for being patient friendly. Buccal films are one such system responsible for systemic drug delivery at the desired site of action by avoiding hepatic first-pass metabolism. Metformin hydrochloride (Met), an antidiabetic drug, has poor bioavailability due to its high solubility and low permeability. The purpose of the study reported here was to develop a polymer-bound fast-dissolving buccal film of metformin to exploit these unique properties. In the study, metformin fast-dissolving films were prepared by the solvent-casting method using chitosan, a bioadhesive polymer. Further, starch, sodium starch glycolate, and microcrystalline cellulose were the disintegrants added to different ratios, forming various formulations (F1 to F7). The buccal films were evaluated for various parameters like weight variation, thickness, folding endurance, surface pH, content uniformity, tensile strength, and percentage of elongation. The films were also subjected to in vitro dissolution study, and the disintegration time was found to be less than 30 minutes for all formulations, which was attributed to the effect of disintegrants. Formulation F6 showed 92.2% drug release within 6 minutes due to the combined effect of sodium starch glycolate and microcrystalline cellulose. PMID:26491321

  7. Development of polymer-bound fast-dissolving metformin buccal film with disintegrants

    Directory of Open Access Journals (Sweden)

    Haque SE

    2015-10-01

    Full Text Available Shaikh Ershadul Haque, Angappan Sheela Materials Chemistry Division, Centre for Nanomaterials, School of Advanced Sciences, VIT University, Vellore, India Abstract: Fast-dissolving drug-delivery systems are considered advantageous over the existing conventional oral dosage forms like tablets, capsules, and syrups for being patient friendly. Buccal films are one such system responsible for systemic drug delivery at the desired site of action by avoiding hepatic first-pass metabolism. Metformin hydrochloride (Met, an antidiabetic drug, has poor bioavailability due to its high solubility and low permeability. The purpose of the study reported here was to develop a polymer-bound fast-dissolving buccal film of metformin to exploit these unique properties. In the study, metformin fast-dissolving films were prepared by the solvent-casting method using chitosan, a bioadhesive polymer. Further, starch, sodium starch glycolate, and microcrystalline cellulose were the disintegrants added to different ratios, forming various formulations (F1 to F7. The buccal films were evaluated for various parameters like weight variation, thickness, folding endurance, surface pH, content uniformity, tensile strength, and percentage of elongation. The films were also subjected to in vitro dissolution study, and the disintegration time was found to be less than 30 minutes for all formulations, which was attributed to the effect of disintegrants. Formulation F6 showed 92.2% drug release within 6 minutes due to the combined effect of sodium starch glycolate and microcrystalline cellulose. Keywords: chitosan, sodium starch glycolate, microcrystalline cellulose, drug-delivery system, immediate release

  8. Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.

    2002-01-01

    Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  9. Characteristics of Electro-Optic Device Using Conducting Polymers, Polythiophene and Polypyrrole Films

    Science.gov (United States)

    Kaneto, Keiichi; Yoshino, Katsumi; Inuishi, Yoshio

    1983-07-01

    Detailed characteristics of electro-optic elements (color switching and memory) utilizing the spectral change of conducting polymers by electrochemical doping and undoping are studied. The response time of color switching, for example, red≤ftrightarrowblue in polythiophene film in the electrolyte of LiBF4/acetonitrile is 30˜100 msec under the applied voltages of -2.0{≤ftrightarrow}+4.0 V vs. Li plate. More than 103 cycles of color switch are observed quite reproducibly. Three color states of yellow green, dark brown and blue are demonstrated for polypyrrole film.

  10. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  11. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    CERN Document Server

    Nasef, M M

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T sub m and T sub c) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (DELTA H sub m) and the degree of crystallinity (X sub c) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved b...

  12. Preparation and Characterization of Potentially Antimicrobial Polymer Films Containing Starch Nano- and Microparticles

    Directory of Open Access Journals (Sweden)

    Paulius Pavelas DANILOVAS

    2014-09-01

    Full Text Available The forming conditions of biodegradable polymer films containing iodine-modified starch particles as well as the properties of the obtained films were investigated. Cationic cross-linked starch microparticles and cationic starch nanoparticles were dispersed in cellulose acetate and hydroxyethyl cellulose solution, respectively, and composite films were spin-casted. The obtained films were characterized and their mechanical properties were assessed. The cellulose acetate solution has been found to be an appropriate matrix for the dispersion of dry modified starch microparticles, but not in the case of nanoparticles. Starch nanoparticles were obtained in an aqueous medium, and the mechanical properties of the formed cellulose acetate films are significantly reduced by water present in the casting solution. It has been estimated that a fairly high amount of nanoparticles (18 wt% can be immobilized into films of water-soluble hydroxyethyl cellulose without markedly affecting the mechanical properties of the films. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.5426

  13. Morphologies and Thermal Variability of Patterned Polymer Films with Poly(styrene-co-maleic anhydride

    Directory of Open Access Journals (Sweden)

    Pieter Samyn

    2014-03-01

    Full Text Available Patterned films of poly(styrene-co-maleic anhydride copolymers were deposited by dip-coating from acetone solutions. A qualitative study of the film morphologies shows the formation of polymer spheres with smaller diameters at higher amounts of maleic anhydride (MA, and long-fibrous features at higher molecular weights. Upon heating, the films progressively re-assemble with short- and long-fibrous structures as a function of heating time and temperature. In parallel, the film morphologies are quantified by image processing and filtering techniques. The differential scanning calorimetry confirms the higher glass transition temperatures with increasing amount of MA. The analysis with Raman spectroscopy shows interactions between the molecules in solution and effects of ring-opening (hydrolysis and ring-closure (formation of MA during drying of the films. The water contact angles on the patterned films are within the hydrophilic range. They mainly correlate with the amount of MA moieties calculated from spectroscopy, while the roughness parameters have a minor effect. The variations in film patterns illustrate the self-assemble ability of the copolymers and confirm a heterogeneous molecular structure, as previously assumed.

  14. Constrained swelling of polymer networks: characterization of vapor-deposited cross-linked polymer thin films

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Choukourov, A.; Dušková-Smrčková, Miroslava; Biederman, H.

    2014-01-01

    Roč. 47, č. 13 (2014), s. 4417-4427 ISSN 0024-9297 R&D Projects: GA ČR GAP101/12/1306 Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer * elasticity Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.800, year: 2014

  15. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements

    Science.gov (United States)

    Cunico, F. J.; Marquez, J. C.; Hilke, H.; Skrifvars, M.; Seoane, F.

    2013-04-01

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  16. Studying the Performance of Conductive Polymer Films as Textile Electrodes for Electrical Bioimpedance Measurements

    International Nuclear Information System (INIS)

    Cunico, F J; Marquez, J C; Hilke, H; Skrifvars, M; Seoane, F

    2013-01-01

    With the goal of finding novel biocompatible materials suitable to replace silver in the manufacturing of textile electrodes for medical applications of electrical bioimpedance spectroscopy, three different polymeric materials have been investigated. Films have been prepared from different polymeric materials and custom bracelets have been confectioned with them. Tetrapolar total right side electrical bioimpedance spectroscopy (EBIS) measurements have been performed with polymer and with standard gel electrodes. The performance of the polymer films was compared against the performance of the gel electrodes. The results indicated that only the polypropylene 1380 could produce EBIS measurements but remarkably tainted with high frequency artefacts. The influence of the electrode mismatch, stray capacitances and large electrode polarization impedance are unclear and they need to be clarified with further studies. If sensorized garments could be made with such biocompatible polymeric materials the burden of considering textrodes class III devices could be avoided.

  17. Polymer Light-Emitting Diode Prepared by Floating-Off Film-Transfer Technique

    KAUST Repository

    Park, Jihoon

    2015-12-22

    © 2015 Copyright Taylor & Francis Group, LLC. Floating-off film-transfer technique was used for the formation of semiconducting polymer multi-layers and the effect on the performance of polymer light-emitting diode (PLED) was studied. This method made it possible to avoid the solvent compatibility problem that was typically encountered in successive coating of polymeric multilayer by solution processing. F8BT and MEH-PPV were used for electron transporting layer (ETL) and for emissive layer, respectively. Current-voltage-luminance characteristics and luminescence efficiency results showed that the insertion of ETL by floating-off film-transfer technique followed by proper heat treatment resulted in a significant improvement in PLED operation due to its electron-transporting and hole-blocking abilities.

  18. Structure and Physical Properties of Polymer Composite Films Doped with Fullerene Nanoparticles

    Directory of Open Access Journals (Sweden)

    R. M. Ahmed

    2011-01-01

    Full Text Available Fullerene C60 has stimulated intense interest for scientific, industrial, and medical community because of its unique structure and properties. In the present study we prepared fullerene-doped nanocomposite films based on PMMA, PVAc, and PMMA/PVAc blend. Observations made by transmission electron microscope (TEM showed the uniform dispersion of C60 nanoparticles in the polymer matrices. Also, X-ray diffraction measurements indicated that C60 has a tendency to form crystallites in the polymer matrices. In addition, the concentration effect of fullerene C60 was investigated using optical absorption and photoluminescence spectroscopy. The spectroscopic properties of such films recommended their application in photonics and solar energy conversion.

  19. Development of miniaturized pH biosensors based on electrosynthesized polymer films.

    Science.gov (United States)

    Segut, Olivier; Lakard, Boris; Herlem, Guillaume; Rauch, Jean-Yves; Jeannot, Jean-Claude; Robert, Laurent; Fahys, Bernard

    2007-08-06

    A new type of pH biosensor was developed for biological applications. This biosensor was fabricated using silicon microsystem technology and consists in two platinum microelectrodes. The first microelectrode was coated by an electrosynthesized polymer and acted as the pH sensitive electrode when the second one was coated by a silver layer and was used as the reference electrode. Then, this potentiometric pH miniaturized biosensor based on electrosynthesized polypyrrole or electrosynthesized linear polyethylenimine films was tested. The potentiometric responses appeared reversible and linear to pH changes in the range from pH 4 to 9. More, the responses were fast (less than 1 min for all sensors), they were stable in time since PPy/PEI films were stable during more than 30 days, and no interference was observed. The influence of the polymer thickness was also studied.

  20. Light induced conch-shaped relief in an azo-polymer film

    Science.gov (United States)

    Watabe, Mizuki; Juman, Guzhaliayi; Miyamoto, Katsuhiko; Omatsu, Takashige

    2014-03-01

    We have discovered that a novel chiral structured surface relief (termed `conch'-shaped surface relief) with a height of over 1 μm can be formed in an azo-polymer film merely by employing circularly polarized optical vortex irradiation with a total angular momentum of j = +/-2. The temporal evolution of the conch-shaped surface relief in the azo-polymer film was also observed. The results provide physical insight into how the angular momentum of light is transferred to a material through mass transport by cis-trans photo-isomerization. Such conch-shaped surface reliefs with chirality, in which functional chemical composites can be doped, enable new applications, such as planar chiral metamaterials, plasmonic holograms, and identification of chiral chemical composites.

  1. Improving information density in ferroelectric polymer films by using nanoimprinted gratings

    Science.gov (United States)

    Martínez-Tong, Daniel E.; Soccio, Michela; Rueda, Daniel R.; Nogales, Aurora; García-Gutiérrez, Mari Cruz; Ezquerra, Tiberio A.

    2015-03-01

    The development of polymer non-volatile memories depends on the effective fabrication of devices with high density of information. Well-defined low aspect ratio nanogratings on thin films of poly(vinylidene fluoride-trifluoroethylene) copolymers can be fabricated by using Nanoimprint Lithography (NIL). By using these nanogratings, an improved management of writing and reading information can be reached as revealed by Piezoresponse Force Microscopy (PFM). Structural investigation by means of Grazing Incidence X-ray (GIX) scattering techniques indicates that the physical confinement generated by nanoimprint promotes the development of smaller and edge-on oriented crystals. Our results evidence that one-dimensional nanostructuring can be a straightforward approach to improve the control of the polarization in ferroelectric polymer thin films.

  2. Indigo Carmine Dye-Polymer Nanocomposite Films For Optical Limiting Applications

    Science.gov (United States)

    Sreeja, S.; Mayadevi, S.; Suresh, S. R.; Frobel, P. G. Louie; Smijesh, N.; Philip, Reji; Muneera, C. I.

    2011-10-01

    Nanocomposite films of an organic dye-polymer (Indigo Carmine-PVA) system were fabricated and their optical limiting behaviour was investigated under excitation with 532 nm laser pulses of 5 ns temporal width using the open aperture Z-scan technique. The samples displayed optical limiting behavior under the experimental conditions. The Atomic Force Microscopic (AFM) analysis of the surface topography revealed homogeneous distribution of nanoclustered aggregates grown within the polymer matrix and an average roughness of ˜2.02 nm for the surface. The estimated values of the effective nonlinear absorption coefficient, βeff (˜10-7-10-8 cm/W) marked up to the highest reported ones in literature in the nanosecond regime. The results indicate that these nanocomposite films are potential materials for optical limiting devices used for the protection of human eyes and other delicate optical sensors from laser induced optical damage.

  3. A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine-Melanin Hollow Nanoparticles Join Polymers.

    Science.gov (United States)

    Wang, Yang; Su, Jing; Li, Ting; Ma, Piming; Bai, Huiyu; Xie, Yi; Chen, Mingqing; Dong, Weifu

    2017-10-18

    Ultraviolet (UV) light is known to be harmful to human health and cause organic materials to undergo photodegradation. In this Research Article, bioinspired dopamine-melanin solid nanoparticles (Dpa-s NPs) and hollow nanoparticles (Dpa-h NPs) as UV-absorbers were introduced to enhance the UV-shielding performance of polymer. First, Dpa-s NPs were synthesized through autoxidation of dopamine in alkaline aqueous solution. Dpa-h NPs were prepared by the spontaneous oxidative polymerization of dopamine solution onto polystyrene (PS) nanospheres template, followed by removal of the template. Poly(vinyl alcohol) (PVA)/Dpa nanocomposite films were subsequently fabricated by a simple casting solvent. UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of Dpa-s versus Dpa-h NPs. In contrast to PVA/Dpa-s films, PVA/Dpa-h films exhibit stronger UV-shielding capabilities and can almost block the complete UV region (200-400 nm). The excellent UV-shielding performance of the PVA/Dpa-h films mainly arises from multiple absorption because of the hollow structure and large specific area of Dpa-h NPs. Moreover, the wall thickness of Dpa-h NPs can be simply controlled from 28 to 8 nm, depending on the ratio between PS and dopamine. The resulting films with Dpa-h NPs (wall thickness = ∼8 nm) maintained relatively high transparency to visible light because of the thinner wall thickness. The results indicate that the prepared Dpa-h NPs can be used as a novel UV absorber for next-generation transparent UV-shielding materials.

  4. Highly aligned conjugated polymer films prepared by rotation coating for high-performance organic field-effect transistors

    Science.gov (United States)

    Van Tho, Luu; Park, Won-Tae; Choi, Eun-Young; Noh, Yong-Young

    2017-04-01

    Recently, exceptionally high field-effect mobility in organic field-effect transistors (OFETs) has been fabricated using semiconducting films with one-dimensionally aligned, highly planar electron donor-acceptor copolymers, within the channel of transistors. Here, we propose an extremely simple coating method, called rotation coating, for preparing highly aligned, conjugated polymer thin films for applications in various organic electronic devices. We realize highly aligned polymer films using various conjugated polymers and applied the films as active layers for high-performance OFETs. Significantly high field-effect mobility values of 1.45 ± 0.46 cm2/Vs have been achieved for rotation coated diketopyrrolopyrrole-thieno[3,2-b]thiophene copolymer films.

  5. Investigation of Polymer Thick-film Piezoresistors for Medical Wrist Rehabilitation and Artificial Knee Load Sensors

    OpenAIRE

    Jacq, Caroline; Maeder, Thomas; Emery, Simon; Simoncini, Matteo; Meurville, Eric; Ryser, Peter

    2014-01-01

    Readily-available and low-cost commercial polymer-based composite materials, such as standard epoxy-fibreglass printed circuit board (PCB) substrates and resin-carbon thick-film piezoresistors, were evaluated as a solution for medical force sensors, such as a wrist rehabilitation device and an implantable wireless artificial knee force sensor. We show that such materials have high sensitivity, and sufficient short-term stability – provided careful mechanical design and materials selection are...

  6. Radiolysis of organic triphenylmethane, anthraquinone, xanthene, oxazine, thiazine, and azo dyes in polymers films

    International Nuclear Information System (INIS)

    Khabarov, V.N.; Kozlov, L.L.; Molin, A.A.; Mekhanik, T.V.

    1989-01-01

    The effect of the oxygen in the air and the temperature on radiochemical processes of decolorization of triphenylmethane, anthraquinone, xanthene, oxazine, thiazine, and azo dyes in polymer matrices of different chemical natures was studied. The rate of radiation decolorization for most of the dyes increases in irradiation in the presence of O 2 , which is hypothetically due to oxidation of the dye by singlet oxygen. The organic dyes exhibit the highest radiation stability in polyethylene terephthalate and polystyrene films

  7. Synthesis and characterization of polymer-silica hybrid latexes and sol-gel-derived films

    Energy Technology Data Exchange (ETDEWEB)

    Petcu, Cristian; Purcar, Violeta [National Research-Development Institute for Chemistry and Petrochemistry-ICECHIM, Polymer Department, Splaiul Independentei 202, 6th district, 060021, Bucharest (Romania); Ianchiş, Raluca, E-mail: ralumoc@yahoo.com [National Research-Development Institute for Chemistry and Petrochemistry-ICECHIM, Polymer Department, Splaiul Independentei 202, 6th district, 060021, Bucharest (Romania); Spătaru, Cătălin-Ilie; Ghiurea, Marius; Nicolae, Cristian Andi [National Research-Development Institute for Chemistry and Petrochemistry-ICECHIM, Polymer Department, Splaiul Independentei 202, 6th district, 060021, Bucharest (Romania); Stroescu, Hermine [Institute of Physical Chemistry “Ilie Murgulescu” of the Romanian Academy, Splaiul Independentei 202, 060021, Bucharest (Romania); Atanase, Leonard-Ionuţ [University Apollonia, “Acad. Ioan Haulica” Research Institute, Iasi (Romania); Frone, Adriana Nicoleta; Trică, Bogdan; Donescu, Dan [National Research-Development Institute for Chemistry and Petrochemistry-ICECHIM, Polymer Department, Splaiul Independentei 202, 6th district, 060021, Bucharest (Romania)

    2016-12-15

    Highlights: • Si-based polymer is distributed onto the silica surface of sol-gel hybrid films. • FT-IR spectra of sol-gel derived materials confirmed the different chemical structure. • Hydrophobicity increased due to the increasing number of alkyl groups attached to the surface. - Abstract: Sol-gel derived organic-inorganic hybrid systems were obtained by applying alkaline-catalyzed co-hydrolysis and copolycondensation reactions of tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), isobutyltriethoxysilane (IBTES), diethoxydimethylsilane (DMDES), and vinyltriethoxysilane (VTES), respectively, into a polymer latex functionalized with vinyltriethoxysilane (VTES). The properties of the latex hybrid materials were analyzed by FTIR, water contact angle, environmental scanning electron microscopy (ESEM), TEM and AFM analysis, respectively. FT-IR spectra confirmed that the chemical structures of the sol-gel derived organic-inorganic materials are changed as function of inorganic precursor and Si−O−Si networks are formed during the co-hydrolysis and copolycondensation reactions. The water contact angle on the sol-gel latex film containing TEOS + VTES increased to 135° ± 2 compared to 65° ± 5 for the blank latex, due VTES incorporation into latex material. TGA curves of hybrid sample modifies against neat polymer, the thermal stability being influenced by the presence of the inorganic partner. ESEM analysis showed that the latex hybrid films prepared with different inorganic precursors were formed and the Si-based polymers were distributed on the surface of the dried sol-gel hybrid films. TEM and AFM photos revealed that the latex emulsion morphology was modified due to the VTES incorporation into system.

  8. Controlling interfacial film formation in mixed polymer-surfactant systems by changing the vapor phase.

    Science.gov (United States)

    Mokhtari, Tahereh; Pham, Quoc Dat; Hirst, Christopher; O'Driscoll, Benjamin M D; Nylander, Tommy; Edler, Karen J; Sparr, Emma

    2014-08-26

    Here we show that transport-generated phase separation at the air-liquid interface in systems containing self-assembling amphiphilic molecules and polymers can be controlled by the relative humidity (RH) of the air. We also show that our observations can be described quantitatively with a theoretical model describing interfacial phase separation in a water gradient that we published previously. These phenomena arises from the fact that the water chemical potential corresponding to the ambient RH will, in general, not match the water chemical potential in the open aqueous solution. This implies nonequilibrium conditions at the air-water interface, which in turn can have consequences on the molecular organization in this layer. The experimental setup is such that we can control the boundary conditions in RH and thereby verify the predictions from the theoretical model. The polymer-surfactant systems studied here are composed of polyethylenimine (PEI) and hexadecyltrimethylammonium bromide (CTAB) or didecyldimethylammonium bromide (DDAB). Grazing-incidence small-angle X-ray scattering results show that interfacial phases with hexagonal or lamellar structure form at the interface of dilute polymer-surfactant micellar solutions. From spectroscopic ellipsometry data we conclude that variations in RH can be used to control the growth of micrometer-thick interfacial films and that reducing RH leads to thicker films. For the CTAB-PEI system, we compare the phase behavior of the interfacial phase to the equilibrium bulk phase behavior. The interfacial film resembles the bulk phases formed at high surfactant to polymer ratio and reduced water contents, and this can be used to predict the composition of interfacial phase. We also show that convection in the vapor phase strongly reduces film formation, likely due to reduction of the unstirred layer, where diffusive transport is dominating.

  9. Perfluorocyclobutyl polymer thin-film composite membrane fabrication, plasticization and physical aging

    Science.gov (United States)

    Zhou, Jinxiang

    My research consists of three parts: 1) study of perfluorocyclobutyl (PFCB) thin film formation, 2) development and characterization of PFCB thin-film composite membranes, and 3) elucidation of the roles that plasticization and physical aging play on PFCB thin-film performance. In part 1, I conducted comprehensive research to understand how PFCB thin films form by the method of dip coating. Through the control of solvents, polymer solution concentrations, and withdrawal speeds, a series of PFCB thin films were formed on silicon wafers. Film thickness and refractive index were characterized by ellipsometry. Results suggested that when the withdrawal speeds are higher than 50 mm/min, film thickness increases with increasing withdrawal speeds, as it is predicted in the proposed extension of the Landau-Levich model. When the withdrawal speeds are lower than 50 mm/min, film thickness increases with decreasing withdrawal speeds, which could be explained by the phenomenon of PFCB surface excess. Subsequent surface tension studies proved the existence of this surface excess. Surface images of these films were measured by atomic force microscope. Films prepared from tetrahydrofuran and chloroform yielded uniform nanolayers. However, films prepared using acetone as solvent yielded a partial dewetting pattern, which could be explained by a surface depletion layer of pure solvent between the bulk PFCB/acetone solution and the substrate. Based on the knowledge generated in part 1, I developed, from scratch, procedures to prepare PFCB TFC membranes that were free of major defects. I used mathematical models based on resistance in series to predict composite membrane performance. In many cases, surface defects are the major reason for poor separation ability of TFC membranes. Mathematical analysis showed that the surface defects are less critical in thinner films but are still an important factor causing selectivity loss. Surface defects occur mainly from polymer dewetting on the

  10. Blue electroluminescence nanodevice prototype based on vertical ZnO nanowire/polymer film on silicon substrate

    International Nuclear Information System (INIS)

    He Ying; Wang Junan; Chen Xiaoban; Zhang Wenfei; Zeng Xuyu; Gu Qiuwen

    2010-01-01

    We present a polymer-complexing soft template technique to construct the ZnO-nanowire/polymer light emitting device prototype that exhibits blue electrically driven emission with a relatively low-threshold voltage at room temperature in ambient atmosphere, and the ZnO-nanowire-based LED's emission wavelength is easily tuned by controlling the applied-excitation voltage. The nearly vertically aligned ZnO-nanowires with polymer film were used as emissive layers in the devices. The method uses polymer as binder in the LED device and dispersion medium in the luminescence layer, which stabilizes the quasi-arrays of ZnO nanowires embedding in a thin polymer film on silicon substrate and passivates the surface of ZnO nanocrystals, to prevent the quenching of luminescence. Additionally, the measurements of electrical properties showed that ZnO-nanowire/polymer film could significantly improve the conductivity of the film, which could be attributed to an increase in both Hall mobility and carrier concentration. The results indicated that the novel technique is a low-cost process for ZnO-based UV or blue light emission and reduces the requirement for achieving robust p-doping of ZnO film. It suggests that such ZnO-nanowire/polymer-based LEDs will be suitable for the electro-optical application.

  11. Thickness-Dependent Surfactant Behavior in Trilayer Polymer Films

    Science.gov (United States)

    Sun, Yan; Shull, Kenneth; Wang, Jin

    2010-03-01

    The ability for thin liquid films to wet and remain thermodynamically stable on top of one another is a fundamental challenge in developing high quality paints, coatings, adhesives, and other industrial products. Since intermolecular interactions and interfacial energies dominate in the film thickness regime from tens to hundreds of nanometers, it is desirable to tune these long-range and short-range forces in a simple, controllable manner. Starting from an unstable model homopolymer bilayer (poly(styrene)/poly(4-vinylpyridine)), we demonstrate that sandwiching an additional homopolymer layer (poly(4-bromostyrene)) between the two layers can provide needed surfactancy. As the thickness of this center layer is increased, the full trilayer transitions from unstable (thin) to stable (moderate) to unstable (thick). We experimentally show using x-ray standing waves generated via total external reflection (TER-XSW), atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) that this behavior can be directly attributed to the autophobic dewetting phenomenon, in which the surfactant layer is thin enough to remain stable but thick enough to shield the neighboring layers, highlighting a general approach to stabilizing multilayer systems.

  12. Additive behavior in ultrathin polymer films investigated by ToF-SIMS

    International Nuclear Information System (INIS)

    Medard, N.; Bertrand, P.

    2004-01-01

    This work is part of a European research program aiming at the detection and quantification by ToF-SIMS of additives at polymer surfaces. An antioxidant has been mixed with different amorphous polymer solutions, and layers of different thickness ( w ) was seen to play a key role. This was pointed out during the analyses of a polystyrene series with M w from 8300 to 63 000 g/mol and with a constant additive concentration (1 wt.%). These results indicate that a correlation may be found between the polymer chain dimension and the critical film thickness. The change of the macrochain conformation, from a mainly surface perpendicular orientation towards a more parallel orientation below the critical thickness, is evoked to explain these results

  13. Effect of Film-Forming Polymers on Release of Naftifine Hydrochloride from Nail Lacquers

    Directory of Open Access Journals (Sweden)

    Indrė Šveikauskaitė

    2017-01-01

    Full Text Available The successful topical therapy of onychomycosis depends on effective drug release and penetration into nail, which can be achieved by using an adequately developed delivery system. This study evaluated and compared effect of film-forming polymers Eudragit RL100, Eudragit RS100, and ethyl cellulose on naftifine hydrochloride release from experimental nail lacquer formulations. Quality of formulations was evaluated by determining drying time and water resistance. Interactions between active pharmaceutical ingredient and excipients were investigated using microcalorimetry and FT-IR. Optimization of nail lacquer formulations was performed by naftifine hydrochloride release testing. Release of naftifine hydrochloride increased with increasing concentration of Eudragit RL100. Plasticizer triacetin affected the release of naftifine hydrochloride, when Eudragit RS100 polymer was used. Ethyl cellulose polymer was determined to be not applicable for naftifine hydrochloride nail lacquer formulations. Two compositions of nail lacquers were optimized and could be used in further development of transungual delivery systems.

  14. Influence of relative humidity during coating on polymer deposition and film formation.

    Science.gov (United States)

    Macchi, Elena; Felton, Linda A

    2016-08-20

    The influence of relative humidity in the pan during coating on polymer deposition and film formation was investigated. Four tablet substrates, differing in hydrophobicity, porosity, and surface roughness, were prepared and coated with Eudragit(®) RS/RL 30 D (8:2 ratio). The spray rate and atomization air pressure were varied to create two distinct micro-environmental conditions in the coating pan. PyroButton data logging devices placed directly in the pan were found to more accurately reflect the relative humidity to which tablets were exposed in comparison to measurements taken at the exhaust. Polymer deposition was shown to be influenced by the properties of the substrate, rather than the processing conditions used during coating, with higher polymer weight gains observed for the more porous tablets. Differences in the film-tablet interface and in the release performance of the coated products, however, were attributed to both the relative humidity in the pan and tablet porosity. Overall, this study demonstrated that a more humid coating process (86% vs 67%) promoted surface dissolution and physical mixing of the tablet ingredients with the forming film and the extent of this phenomenon was dependent on the tablet porosity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Mesoporous silicon oxide films and their uses as templates in obtaining nanostructured conductive polymers

    Science.gov (United States)

    Salgado, R.; Arteaga, G. C.; Arias, J. M.

    2018-04-01

    Obtaining conductive polymers (CPs) for the manufacture of OLEDs, solar cells, electrochromic devices, sensors, etc., has been possible through the use of electrochemical techniques that allow obtaining films of controlled thickness with positive results in different applications. Current trends point towards the manufacture of nanomaterials, and therefore it is necessary to develop methods that allow obtaining CPs with nanostructured morphology. This is possible by using a porous template to allow the growth of the polymeric materials. However, prior and subsequent treatments are required to separate the material from the template so that it can be evaluated in the applications mentioned above. This is why mesoporous silicon oxide films (template) are essential for the synthesis of nanostructured polymers since both the template and the polymer are obtained on the electrode surface, and therefore it is not necessary to separate the material from the template. Thus, the material can be evaluated directly in the applications mentioned above. The dimensions of the resulting nanostructures will depend on the power, time and technique used for electropolymerization as well as the monomer and the surfactant of the mesoporous film.

  16. RESEARCH ON THE ELECTRONIC AND OPTICAL PROPERTIES OF POLYMER AND OTHER ORGANIC MOLECULAR THIN FILMS

    Energy Technology Data Exchange (ETDEWEB)

    ALEXEI G. VITUKHNOVSKY; IGOR I. SOBELMAN - RUSSIAN ACADEMY OF SCIENCES

    1995-09-06

    Optical properties of highly ordered films of poly(p-phenylene) (PPP) on different substrates, thin films of mixtures of conjugated polymers, of fullerene and its composition with polymers, molecular J-aggregates of cyanine dyes in frozen matrices have been studied within the framework of the Agreement. Procedures of preparation of high-quality vacuum deposited PPP films on different substrates (ITO, Si, GaAs and etc.) were developed. Using time-correlated single photon counting technique and fluorescence spectroscopy the high quality of PPP films has been confirmed. Dependence of structure and optical properties on the conditions of preparation were investigated. The fluorescence lifetime and spectra of highly oriented vacuum deposited PPP films were studied as a function of the degree of polymerization. It was shown for the first time that the maximum fluorescence quantum yield is achieved for the chain length approximately equal to 35 monomer units. The selective excitation of luminescence of thin films of PPP was performed in the temperature range from 5 to 300 K. The total intensity of luminescence monotonically decreases with decreasing temperature. Conditions of preparation of highly cristallyne fullerene C{sub 60} films by the method of vacuum deposition were found. Composites of C{sub 60} with conjugated polymers PPV and polyacetylene (PA) were prepared. The results on fluorescence quenching, IR and resonant Raman spectroscopy are consistent with earlier reported ultrafast photoinduced electron transfer from PPV to C{sub 60} and show that the electron transfer is absent in the case of the PA-C{sub 60} composition. Strong quenching of PPV fluorescence was observed in the PPV-PA blends. The electron transfer from PPV to PA can be considered as one of the possible mechanisms of this quenching. The dynamics of photoexcitations in different types of J-aggregates of the carbocyanine dye was studied at different temperatures in frozen matrices. The optical

  17. High strength films from oriented, hydrogen-bonded "graphamid" 2D polymer molecular ensembles.

    Science.gov (United States)

    Sandoz-Rosado, Emil; Beaudet, Todd D; Andzelm, Jan W; Wetzel, Eric D

    2018-02-27

    The linear polymer poly(p-phenylene terephthalamide), better known by its tradename Kevlar, is an icon of modern materials science due to its remarkable strength, stiffness, and environmental resistance. Here, we propose a new two-dimensional (2D) polymer, "graphamid", that closely resembles Kevlar in chemical structure, but is mechanically advantaged by virtue of its 2D structure. Using atomistic calculations, we show that graphamid comprises covalently-bonded sheets bridged by a high population of strong intermolecular hydrogen bonds. Molecular and micromechanical calculations predict that these strong intermolecular interactions allow stiff, high strength (6-8 GPa), and tough films from ensembles of finite graphamid molecules. In contrast, traditional 2D materials like graphene have weak intermolecular interactions, leading to ensembles of low strength (0.1-0.5 GPa) and brittle fracture behavior. These results suggest that hydrogen-bonded 2D polymers like graphamid would be transformative in enabling scalable, lightweight, high performance polymer films of unprecedented mechanical performance.

  18. Mixed-Penetrant Sorption in Ultra-Thin Films of Polymer of Intrinsic Microporosity PIM-1

    KAUST Repository

    Ogieglo, Wojciech

    2017-10-12

    Mixed penetrant sorption into ultra-thin films of a super-glassy polymer of intrinsic microporosity (PIM-1) was studied for the first time by using interference-enhanced in-situ spectroscopic ellipsometry. PIM-1 swelling and the concurrent changes in its refractive index were determined in ultra-thin (12 - 14 nm) films exposed to pure and mixed penetrants. The penetrants included water, n-hexane and ethanol and were chosen based on their significantly different penetrant-penetrant and penetrant-polymer affinities. This allowed studying microporous polymer responses at diverse ternary compositions and revealed effects such as competition for the sorption sites (for water / n-hexane or ethanol / n-hexane) or enhancement in sorption of typically weakly sorbing water in the presence of more highly sorbing ethanol. The results reveal details of the mutual sorption effects which often complicate comprehension of glassy polymers\\' behavior in applications such as high-performance membranes, adsorbents or catalysts. Mixed-penetrant effects are typically very challenging to study directly and their understanding is necessary owing to a broadly recognized inadequacy of simple extrapolations from measurements in pure component environment.

  19. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Dynamic Mechanical Properties of Bio-Polymer Graphite Thin Films

    Science.gov (United States)

    Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Munirah Abdullah, Nur; Abdullah, M. F. L.

    2017-08-01

    Waste cooking oil is used as the main substances in producing graphite biopolymer thin films. Biopolymer is produce from the reaction of bio-monomer and cross linker with the ratio of 2:1 and addition of graphite with an increment of 2% through a slip casting method. The morphological surface properties of the samples are observed by using Scanning Electron Microscope (SEM). It is shown that the graphite particle is well mixed and homogenously dispersed in biopolymer matrix. Meanwhile, the mechanical response of materials by monitoring the change in the material properties in terms of frequency and temperature of the samples were determined using Dynamic Mechanical Analysis (DMA). The calculated cross-linked density of biopolymer composites revealed the increment of graphite particle loading at 8% gives highest results with 260.012 x 103 M/m3.

  1. Aquatic biofouling prevention by electrically charged nanocomposite polymer thin film membranes.

    Science.gov (United States)

    de Lannoy, Charles-François; Jassby, David; Gloe, Katie; Gordon, Alexander D; Wiesner, Mark R

    2013-03-19

    Electrically conductive polymer-nanocomposite (ECPNC) tight nanofiltration (NF) thin film membranes were demonstrated to have biofilm-preventing capabilities under extreme bacteria and organic material loadings. A simple route to the creation and application of these polyamide-carbon nanotube thin films is also reported. These thin films were characterized with SEM and TEM as well as FTIR to demonstrate that the carbon nanotubes are embedded within the polyamide and form ester bonds with trimesoyl chloride, one of the monomers of polyamide. These polymer nanocomposite thin film materials boast high electrical conductivity (∼400 S/m), good NaCl rejection (>95%), and high water permeability. To demonstrate these membranes' biofouling capabilities, we designed a cross-flow water filtration vessel with insulated electrical leads connecting the ECPNC membranes to an arbitrary waveform generator. In all experiments, conducted in highly bacterially contaminated LB media, flux tests were run until fluxes decreased by 45 ± 3% over initial flux. Biofilm-induced, nonreversible flux decline was observed in all control experiments and a cross-flow rinse with the feed solution failed to induce flux recovery. In contrast, flux decrease for the ECPNC membranes with an electric potential applied to their surface was only caused by deposition of bacteria rather than bacterial attachment, and flux was fully recoverable following a short rinse with the feed solution and no added cleaning agents. The prevention of biofilm formation on the ECPNC membranes was a long-term effect, did not decrease with use, and was highly reproducible.

  2. Coefficient of Friction Between Carboxymethylated Hyaluronic Acid-Based Polymer Films and the Ocular Surface.

    Science.gov (United States)

    Colter, Jourdan; Wirostko, Barbara; Coats, Brittany

    2017-12-01

    Hyaluronic acid-based polymer films are emerging as drug-delivery vehicles for local and continuous drug administration to the eye. The highly lubricating hyaluronic acid increases comfort, but displaces films from the eye, reducing drug exposure and efficacy. Previous studies have shown that careful control of the surface interaction of the film with the eye is critical for improved retention. In this study, the frictional interaction of a carboxymethylated, hyaluronic acid-based polymer (CMHA-S) with and without methylcellulose was quantified against ovine and human sclera at three axial loads (0.3, 0.5, and 0.7 N) and four sliding velocities (0.3, 1.0, 10, and 30 mm/s). Static coefficients of friction significantly increased with rate (P Friction became more rate-dependent when methylcellulose was added to CMHA-S. Kinetic coefficient of friction was not affected by rate, and averaged 0.15 ± 0.1. Methylcellulose increased CMHA-S static and kinetic friction by 60% and 80%, respectively, but was also prone to wear during testing. These data suggest that methylcellulose can be used to create a friction differential on the film, but a potentially increased degradation rate with the methylcellulose must be considered in the design.

  3. Effect of plasma fluorination variables on the deposition and growth of partially fluorinated polymer over PMMA films

    Directory of Open Access Journals (Sweden)

    Giovana da Silva Padilha

    2013-01-01

    Full Text Available In this work, an investigation was made of the modification of film surface of Poly(methylmethacrylate (PMMA using the plasma polymerization technique. PMMA films 10 µm thick were obtained by Spin-Coating starting from a chloroform solution (15.36% w/w. The films were exposed to the plasma of CHF3 at different gas pressures and exposure times to increase the thickness of fluorinated polymers onto PMMA films. The plasma fluorinated optical films were characterized by gravimetry, FTIR-ATR, contact angle of wetting, SEM and AFM. The surface fluorination of PMMA films can be inferred by the increase in contact angle under all experimental conditions, and confirmed with FTIR-ATR analysis. Gravimetry showed an increase of the fluorinated polymer layer over PMMA films, being 1.55 µm thick at 0.7 torr and 40 minutes of plasma exposure. The SEM analysis showed a well-defined layer of fluorinated polymer, with fluorine being detected in the EDS analysis. The film roughness for the fluorinated polymers was around of 200 Å, quite satisfactory for a 1.55 µm cladding.

  4. Analysis of thin-film polymers using attenuated total internal reflection-Raman microspectroscopy.

    Science.gov (United States)

    Tran, Willie; Tisinger, Louis G; Lavalle, Luis E; Sommer, André J

    2015-01-01

    Two methods commonly employed for molecular surface analysis and thin-film analysis of microscopic areas are attenuated total reflection infrared (ATR-IR) microspectroscopy and confocal Raman microspectroscopy. In the former method, the depth of the evanescent probe beam can be controlled by the wavelength of light, the angle of incidence, or the refractive index of the internal reflection element. Because the penetration depth is proportional to the wavelength of light, one could interrogate a smaller film thickness by moving from the mid-infrared region to the visible region employing Raman spectroscopy. The investigation of ATR Raman microspectroscopy, a largely unexplored technique available to Raman microspectroscopy, was carried out. A Renishaw inVia Raman microscope was externally modified and used in conjunction with a solid immersion lens (SIL) to perform ATR Raman experiments. Thin-film polymer samples were analyzed to explore the theoretical sampling depth for experiments conducted without the SIL, with the SIL, and with the SIL using evanescent excitation. The feasibility of micro-ATR Raman was examined by collecting ATR spectra from films whose thickness measured from 200 to 60 nm. Films of these thicknesses were present on a much thicker substrate, and features from the underlying substrate did not become visible until the thin film reached a thickness of 68 nm.

  5. New lithium-ion conducting perovskite oxides related to (Li, La)TiO3

    Indian Academy of Sciences (India)

    Unknown

    work on lithium-ion conducting perovskite oxides containing d0 cations. Keywords. Lithium ion conductors; lithium–lanthanum perovskites; lithium– lanthanum titanates. 1. Introduction. There is a continuous search for new materials exhibiting high lithium ion conductivity in view of their potential technological application as ...

  6. Lateral phase separation in polymer-blend thin films: surface bifurcation.

    Science.gov (United States)

    Coveney, Sam; Clarke, Nigel

    2014-06-01

    We use simulations of a binary polymer blend confined between selectively attracting walls to identify and explain the mechanism of lateral phase separation via a transient wetting layer. We first show that equilibrium phases in the film are described by one-dimensional phase equilibria in the vertical (depth) dimension, and demonstrate that effective boundary conditions imposed by the film walls pin the film profile at the walls. We then show that, prior to lateral phase separation, distortion of the interface in a transient wetting layer is coupled to lateral phase separation at the walls. Using Hamiltonian phase portraits, we explain a "surface bifurcation mechanism" whereby the volume fraction at the walls evolves and controls the dynamics of the phase separation. We suggest how solvent evaporation may assist our mechanism.

  7. Auto-Optimization of Dewetting Rates by Rim Instabilities in Slipping Polymer Films

    Science.gov (United States)

    Reiter, Günter; Sharma, Ashutosh

    2001-10-01

    We investigated the instability of the moving rim in dewetting of slipping polymer films. Small fluctuations of the width of the rim get spontaneously amplified since narrower sections of the rim move faster than wider ones due to frictional forces being proportional to the width of the rim. Instability leads eventually to an autocontrol of the rim width by the continuous formation of droplets with a mean size proportional to the initial film thickness. Surprisingly, the mean dewetting velocity at late stages, averaged over the length of the rim, was found to be constant. Thus, the instability of the rim enabled a more efficient, i.e., faster, ``drying'' of the substrate. Nonslipping films did not show this instability.

  8. Thin polymer films prepared by plasma immersion ion implantation and deposition

    International Nuclear Information System (INIS)

    Rangel, Elidiane C.; Silva, Paulo A.F.; Mota, Rogerio P.; Schreiner, Wido H.; Cruz, Nilson C.

    2005-01-01

    This work describes an investigation of the properties of polymer films prepared by plasma immersion ion implantation and deposition. Films were synthesized from low pressure benzene glow discharges, biasing the samples with 25 kV negative pulses. The total energy deposited in the growing layer was varied tailoring simultaneously pulse frequency and duty cycle. The effect of the pulse characteristics on the chemical composition and mechanical properties of the films was studied by X-ray photoelectron spectroscopy (XPS) and nanoindentation, respectively. Analysis of the deconvoluted C 1s XPS peaks demonstrated that oxygen was incorporated in all the samples. The chemical modifications induced structural reorganization, characterized by chain cross-linking and unsaturation, affecting material properties. Hardness and plastic resistance parameter increased under certain bombardment conditions. An interpretation is proposed in terms of the total energy delivered to the growing layer

  9. Formation of nanocrystalline diamond in polymer like carbon films deposited by plasma CVD.

    Science.gov (United States)

    Bhaduri, A; Chaudhuri, P

    2009-09-01

    Conventional plasma enhanced chemical vapour deposition (PECVD) method is generally not suitable for the growth of nanocrystalline diamond (NCD) films. However, our study shows that conditions favourable for powder formation help to grow large amount of nanocrystallites in conventional PECVD. With CH4 as the carbon source gas, dilution with Ar and moderate (50 W) rf power enhances formations of powders (nanoparticles) and C2 dimers within the plasma. On the other hand, with pure CH4 or with hydrogen diluted CH4, powder formation as also NCD growth is hindered. It is proposed that the nanoparticles formed in the plasma act as the "islands" while the C2 dimers are the "seeds" for the NCD growth. The structure of the films deposited on the grounded anode under different conditions of dilution has been studied. It is observed that with high Ar dilution the films contain NCD embedded in polymer like carbon (PLC) matrix.

  10. Electrical four-point probing of spherical metallic thin films coated onto micron sized polymer particles

    Energy Technology Data Exchange (ETDEWEB)

    Pettersen, Sigurd R., E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no; Stokkeland, August Emil; Zhang, Zhiliang; He, Jianying, E-mail: sigurd.r.pettersen@ntnu.no, E-mail: jianying.he@ntnu.no [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Kristiansen, Helge [NTNU Nanomechanical Lab, Department of Structural Engineering, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim (Norway); Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway); Njagi, John; Goia, Dan V. [Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5814 (United States); Redford, Keith [Conpart AS, Dragonveien 54, NO-2013 Skjetten (Norway)

    2016-07-25

    Micron-sized metal-coated polymer spheres are frequently used as filler particles in conductive composites for electronic interconnects. However, the intrinsic electrical resistivity of the spherical thin films has not been attainable due to deficiency in methods that eliminate the effect of contact resistance. In this work, a four-point probing method using vacuum compatible piezo-actuated micro robots was developed to directly investigate the electric properties of individual silver-coated spheres under real-time observation in a scanning electron microscope. Poly(methyl methacrylate) spheres with a diameter of 30 μm and four different film thicknesses (270 nm, 150 nm, 100 nm, and 60 nm) were investigated. By multiplying the experimental results with geometrical correction factors obtained using finite element models, the resistivities of the thin films were estimated for the four thicknesses. These were higher than the resistivity of bulk silver.

  11. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dongsook [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Huang, Aaron [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Olsen, Bradley D. [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA

    2016-11-04

    The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  12. Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films

    Science.gov (United States)

    Matsui, Tatsunosuke; Vardeny, Z. Valy; Agrawal, Amit; Nahata, Ajay; Menon, Reghu

    2006-02-01

    We observed resonantly-enhanced terahertz transmission through two-dimensional (2D) periodic arrays of subwavelength apertures with various periodicities fabricated on metallic organic conducting polymer films of polypyrrole heavily doped with PF6 molecules [PPy(PF6)]. The "anomalous transmission" spectra are in good agreement with a model involving surface plasmon polariton excitations on the film surfaces. We also found that the `anomalous transmission' peaks are broader in the exotic metallic PPy (PF6) films compared to those formed in 2D aperture array in regular metallic films such as silver, showing that the surface plasmon polaritons on the PPy (PF6) film surfaces have higher attenuation.

  13. Polymer-assisted deposition of films and preparation of carbon nanotube arrays using the films

    Science.gov (United States)

    Luo, Hongmei; Li, Qingwen; Bauer, Eve; Burrell, Anthony Keiran; McCleskey, Thomas Mark; Jia, Quanxi

    2013-07-16

    Carbon nanotubes were prepared by coating a substrate with a coating solution including a suitable solvent, a soluble polymer, a metal precursor having a first metal selected from iron, nickel, cobalt, and molybdenum, and optionally a second metal selected from aluminum and magnesium, and also a binding agent that forms a complex with the first metal and a complex with the second metal. The coated substrate was exposed to a reducing atmosphere at elevated temperature, and then to a hydrocarbon in the reducing atmosphere. The result was decomposition of the polymer and formation of carbon nanotubes on the substrate. The carbon nanotubes were often in the form of an array on the substrate.

  14. Evaluation of Fabry-Perot polymer film sensors made using hard dielectric mirror deposition

    Science.gov (United States)

    Buchmann, Jens; Zhang, Edward; Scharfenorth, Chris; Spannekrebs, Bastian; Villringer, Claus; Laufer, Jan

    2016-03-01

    Fabry-Perot (FP) polymer film sensors offer high acoustic sensitivity, small element sizes, broadband frequency response and optical transmission to enable high resolution, backward mode photoacoustic (PA) imaging. Typical approaches to sensor fabrication involve the deposition of stacks of alternating dielectric materials to form interferometer mirrors, which are separated by a polymer spacer. If hygroscopic soft dielectric materials are used, a protective polymer layer is typically required. In this study, methods for the deposition of water-resistant, hard dielectric materials onto polymers were explored to improve the robustness and performance of the sensors. This involved the optimisation of the fabrication process, the optical and acoustic characterisation of the sensors, and a comparison of the frequency response with the output of an acoustic forward model. The mirrors, which were separated by a 20 μm Parylene spacer, consisted of eight double layers of Ta2O5 and SiO2 deposited onto polymer substrates using temperature-optimised electron vapour deposition. The free spectral range of the interferometer was 32 nm, its finesse FR = 91, and its visibility V = 0.72. The noise-equivalent pressure was 0.3 kPa (20 MHz bandwidth). The measured frequency response was found to be more resonant at 25 MHz compared to sensors with soft dielectric mirrors, which was also in good agreement with the output of a forward model of the sensor. The sensors were used in a PA scanner to acquire 3-D images in tissue phantoms.

  15. Diffusion Performance of Fertilizer Nutrient through Polymer Latex Film.

    Science.gov (United States)

    An, Di; Yang, Ling; Liu, Boyang; Wang, Ting-Jie; Kan, Chengyou

    2017-12-20

    Matching the nutrient release rate of coated fertilizer with the nutrient uptake rate of the crop is the best way to increase the utilization efficiency of nutrients and reduce environmental pollution from the fertilizer. The diffusion property and mechanism of nutrients through the film are the theoretical basis for the product pattern design of coated fertilizers. For the coated fertilizer with a single-component nutrient, an extended solution-diffusion model was used to describe the difference of nutrient release rate, and the release rate is proportional to the permeation coefficient and the solubility of the nutrient. For the double- and triple-component fertilizer of N-K, N-P, and N-P-K, because of the interaction among nutrient molecules and ions, the release rates of different nutrients were significantly affected by the components in the composite fertilizer. Coating the single-component fertilizer (i.e., nitrogen fertilizer, phosphate fertilizer, and potash fertilizer) first and subsequently bulk blending is expected to be a promising way to adjust flexibly the nutrient release rate to meet the nutrient uptake rate of the crop.

  16. Elongated phase separation domains in spin-cast polymer blend thin films characterized using a panoramic image.

    Science.gov (United States)

    Zhang, Hong; Okamura, Yosuke

    2018-02-14

    Polymer thin films with micro/nano-structures can be prepared by a solvent evaporation induced phase separation process via spin-casting a polymer blend, where the elongated phase separation domains are always inevitable. The striation defect, as a thickness nonunifomity in spin-cast films, is generally coexistent with the elongated domains. Herein, the morphologies of polymer blend thin films are recorded from the spin-cast center to the edge in a panoramic view. The elongated domains are inclined to appear at the ridge regions of striations with increasing radial distance and align radially, exhibiting a coupling between the phase separation morphology and the striation defect that may exist. We demonstrate that the formation of elongated domains is not attributed to shape deformation, but is accomplished in situ. A possible model to describe the initiation and evolution of the polymer blend phase separation morphology during spin-casting is proposed.

  17. Electrical and electrochemical studies on sodium ion-based gel polymer electrolytes

    Science.gov (United States)

    Isa, K. B. Md; Othman, L.; Hambali, D.; Osman, Z.

    2017-09-01

    Gel polymer electrolytes (GPEs) have captured great attention because of their unique properties such as good mechanical stability, high flexibility and high conductivity approachable to that of the liquid electrolytes. In this work, we have prepared sodium ion conducting gel polymer electrolyte (GPE) films consisting of polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) as a polymer host using the solution casting technique. Sodium trifluoromethane- sulfonate (NaCF3SO3) was used as an ionic salt and the mixture of ethylene carbonate (EC) and propylene carbonate (PC) as a plasticizing solvent. Impedance spectroscopy measurements were carried out to determine the ionic conductivity of the GPE films. The sample containing 20 wt.% of NaCF3SO3 salt exhibits the highest room temperature ionic conductivity of 2.50 × 10-3 S cm-1. The conductivity of the GPE films was found to depend on the salt concentration that added to the films. The ionic and cationic transference numbers of GPE films were estimated by DC polarization and the combination of AC and DC polarization method, respectively. The results had shown that both ionic and cationic transference numbers are consistent with the conductivity studies. The electrochemical stability of the GPE films was tested using linear sweep voltammetry (LSV) and the value of working voltage range appears to be high enough to be used as an electrolyte in sodium batteries. The cyclic voltammetry (CV) studies confirmed the sodium ion conduction in the GPE films.

  18. Structural measurements of polymer-fullerene blend films for organic photovoltaics

    Science.gov (United States)

    Delongchamp, Dean

    2011-03-01

    Organic photovoltaic (OPV) technology has the potential to greatly lower the cost of solar cell fabrication by enabling ink-based deposition of active layers. In bulk heterojunction (BHJ) OPV devices, the power conversion efficiency critically depends on the distribution of the polymer absorber and the fullerene electron acceptor (e.g., the blend morphology). I will describe measurement methods to probe the structure of OPV devices, with a focus on the morphology of the BHJ layer. For example, the vertical distribution of absorber and electron acceptor in BHJ films follows segregation behavior similar to that of miscible polymer blends. The top (air) interface becomes rich in the polymer absorber, whereas the bottom interface composition depends on the substrate surface energy. Thin film transistors fabricated from BHJs can therefore exhibit ambipolar or hole-only transport depending on the dielectric, because of different interfacial segregation. We extend these results to practical photovoltaic devices by comparing BHJs cast upon hole transport layers that have similar work functions but different surface energies. This study includes the application of variable angle spectroscopic ellipsometry (VASE) to BHJ films, and emphasizes the importance of absorber anisotropy and vertical heterogeneity in the optical model. Additional results will describe the nanometer-scale structure in the BHJ interior. The application of solid-state nuclear magnetic resonance (SS-NMR) can reveal details about the segregation of absorber and acceptor in a BHJ film. Nanoscale BHJ morphology information can also be collected using tomographic transmission electron microscopy (TEM). Together these measurements allow us to reveal a detailed picture of BHJ morphology, explain how the morphology originates from materials and processing choices, and relate the morphology to device performance and stability.

  19. The role of polymer films on the oxidation of magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Letti, C.J. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Paterno, L.G. [Universidade de Brasilia, Instituto de Quimica, 70910-000 Brasilia, DF (Brazil); Pereira-da-Silva, M.A. [Instituto de Fisica de São Carlos, USP, 13560-9700 São Carlos, SP (Brazil); Centro Universitario Central Paulista – UNICEP, 13563-470 São Carlos, SP (Brazil); Morais, P.C. [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil); Soler, M.A.G., E-mail: soler@unb.br [Universidade de Brasilia, Instituto de Fisica, 70910-000 Brasilia, DF (Brazil)

    2017-02-15

    A detailed investigation about the role of polymer films on the oxidation process of magnetite nanoparticles (∼7 nm diameter), under laser irradiation is performed employing micro Raman spectroscopy. To support this investigation, Fe{sub 3}O{sub 4}-np are synthesized by the co-precipitation method and assembled layer-by-layer with sodium sulfonated polystyrene (PSS). Polymer films (Fe{sub 3}O{sub 4}-np/PSS){sub n} with n=2,3,5,7,10 and 25 bilayers are employed as a model system to study the oxidation process under laser irradiation. Raman data are further processed by principal component analysis. Our findings suggest that PSS protects Fe{sub 3}O{sub 4}-np from oxidation when compared to powder samples, even for the sample with the greater number of bilayers. Further, the oxidation of magnetite to maghemite occurs preferably for thinner films up to 7 bilayers, while the onset for the formation of the hematite phase depends on the laser intensity for thicker films. Water takes part on the oxidation processes of magnetite, the oxidation/phase transformation of Fe{sub 3}O{sub 4}-np is intensified in films with more bilayers, since more water is included in those films. Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films showed to be very efficient to avoid the oxidation process in nanosized magnetite. - Graphical abstract: Encapsulation of Fe{sub 3}O{sub 4}-np by PSS in layer-by-layer films avoids the oxidation and phase transformation of nanosized magnetite. - Highlights: • (Fe{sub 3}O{sub 4}-np/PSS){sub n} nanofilms, with n=2 up to 25, where layer-by-layer assembled. • The influence of film architecture on the Fe{sub 3}O{sub 4}-np oxidation was investigated through Raman spectroscopy. • Encapsulation of Fe{sub 3}O{sub 4}-np by PSS showed to be very efficient to avoid the Fe{sub 3}O{sub 4}-np oxidation.

  20. Superhydrophobic polymer films via aerosol assisted deposition - Taking a leaf out of nature's book

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Colin R. [Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ (United Kingdom); Parkin, Ivan P., E-mail: i.p.parkin@ucl.ac.u [Materials Chemistry Research Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ (United Kingdom)

    2010-05-31

    Aerosol assisted deposition of three sets of polymer films based on commercially available resins was achieved on various substrates. The films were characterised using a range of methods, including water contact and slip angle to determine water repellent properties. The aerosol assisted deposition inside the chemical vapour deposition reactor was unique in generating a highly rough superhydrophobic surface with water contact angles up to 170{sup o}. During the deposition process, two of the polymers were cured resulting in the development of high surface morphology. It was observed that the polymer that did not cure did not develop such a rough surface resulting in a lower water contact angle ({approx} 99{sup o}). The superhydrophobic films had a Cassie-Baxter type wetting with water failing to penetrate the surface porosity, water spraying on the surface would bounce off. These films had exceptionally low slide angles of ca 1-2{sup o} from the horizontal.

  1. Heavy ion irradiation effects of polymer film on absorption of light

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Noboru; Seguchi, Tadao [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Arakawa, Tetsuhito

    1997-03-01

    Ion irradiation effects on the absorption of light for three types of polymer films; polyethylene-terephthalate (PET), polyethylene-naphthalate (PEN), and polyether-ether-ketone (PEEK) were investigated by irradiation of heavy ions with Ni{sup 4+}(15MeV), O{sup 6+}(160MeV), and Ar{sup 8+}(175MeV), and compared with electron beams(EB) irradiation. The change of absorption at 400nm by a photometer was almost proportional to total dose for ions and EB. The absorption per absorbed dose was much high in Ni{sup 4+}, but rather small in O{sup 6+} and Ar{sup 8+} irradiation, and the absorption by EB irradiation was accelerated by the temperature of polymer film during irradiation. The beam heating of materials during ion irradiation was assumed, especially for Ni ion irradiation. The heavy ion irradiation effect of polymers was thought to be much affected by the ion beam heating than the linear energy transfer(LET) of radiation source. (author)

  2. Determination of the optical constants of polymer light-emitting diode films from single reflection measurements

    International Nuclear Information System (INIS)

    Zhu Dexi; Shen Weidong; Ye Hui; Liu Xu; Zhen Hongyu

    2008-01-01

    We present a simple and fast method to determine the optical constant and physical thickness of polymer films from a single reflectivity measurement. A self-consistent dispersion formula of the Forouhi-Bloomer model was introduced to fit the measured spectral curves by a modified 'Downhill' simplex algorithm. Four widely used polymer light-emitting diodes materials: poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene], poly(9,9-dioctylfluoreny-2,7-diyl) (PFO), poly(N-vinyl carbazole) and poly(3,4-ethylene dioxythiophene) : poly(styrenesulfonate) were investigated by this technique. The refractive indices over the whole visible region as well as the optical band gap extracted by this method agree well with those reported in the literature. The determined physical thicknesses present a deviation less than 4% compared with the experimental values measured by the stylus profiler. The influence of scattering loss on the fitted results is discussed to demonstrate the applicability of this technology for polymer films.

  3. Corrosion, optical and magnetic properties of flexible iron nitride nano thin films deposited on polymer substrate

    Science.gov (United States)

    Khan, W. Q.; Wang, Qun; Jin, Xin; Yasin, G.

    2017-11-01

    Iron nitride thin films of different compositions and thicknesses were deposited on flexible polymer substrate in Ar/N2 atmosphere by reactive magnetron sputtering under varying nitrogen flow rates. The nano structured films were characterized by X-ray diffraction, UV-visible spectrophotometer, electrochemical impedance (EIS), atomic force (AFM) and transmission electron microscopies. The dependence of their functional properties on coating and growth conditions was studied in detail. It was found that the thin films show a uniform permeability in the frequency range of 200 MHz to 1 Ghz and can be used in this range without appreciable changes. Decrease of nitrogen flow rate resulted in the smoother surfaces which in turn increase transmittance quality and corrosion resistance. Functional properties are dependent of nature, relative concentration of the iron nitride phases and film thickness. Surface integrity is excellent for180 nm thick sample because the films appear to be very dense and free from open pores. By keeping sputtering power stable at 110 W, nitrogen flow rate of 10 sccm was ideal to develop the ferromagnetic γʹFe4N phase at room temperature.

  4. Preparation and Characterization of Space Durable Polymer Nanocomposite Films from Functionalized Carbon Nanotubes

    Science.gov (United States)

    Delozier, D. M.; Connell, J. W.; Smith, J. G.; Watson, K. A.

    2003-01-01

    Low color, flexible, space durable polyimide films with inherent, robust electrical conductivity have been under investigation as part of a continuing materials development activity for future NASA space missions involving Gossamer structures. Electrical conductivity is needed in these films to dissipate electrostatic charge build-up that occurs due to the orbital environment. One method of imparting conductivity is through the use of single walled carbon nanotubes (SWNTs). However, the incompatibility and insolubility of the SWNTs severely hampers their dispersion in polymeric matrices. In an attempt to improve their dispersability, SWNTs were functionalized by the reaction with an alkyl hydrazone. After this functionalization, the SWNTs were soluble in select solvents and dispersed more readily in the polymer matrix. The functionalized SWNTs were characterized by Raman spectroscopy and thermogravimetric analysis (TGA). The functionalized nanotubes were dispersed in the bulk of the films using a solution technique. The functionalized nanotubes were also applied to the surface of polyimide films using a spray coating technique. The resultant polyimide nanocomposite films were evaluated for nanotube dispersion, electrical conductivity, mechanical, and optical properties and compared with previously prepared polyimide-SWNT samples to assess the effects of SWNT functionalization.

  5. Transfer and patterning of chemical vapor deposited graphene by a multifunctional polymer film

    Science.gov (United States)

    Kaplas, Tommi; Bera, Arijit; Matikainen, Antti; Pääkkönen, Pertti; Lipsanen, Harri

    2018-02-01

    Graphene is seeking pathways towards applications, but there are still plenty of unresolved problems on the way. Many of those obstacles are related to synthesis and processing of graphene. Chemical vapor deposition (CVD) of graphene is currently one of the most promising techniques that enable scalable synthesis of high quality graphene on a copper substrate. From the transient metal substrate, the CVD graphene film is transferred to the desired dielectric substrate. Most often, the transfer process is done by using a supporting poly(methyl methacrylate) (PMMA) film, which is also a widely used electron beam resist. Conventionally, after graphene is transferred to the substrate, the supporting PMMA film is removed by organic solvents. Hence, the potential of using the same PMMA layer as a resist mask remains unexplored. Since PMMA is an electron beam resist, the same polymer film can be useful both for transferring and for patterning of graphene. In this work, we demonstrate simultaneous transfer and patterning of graphene by using the same PMMA film. With our demonstrated method, we are able to receive sub-micron resolution very easily. The graphene transfer and its subsequent patterning with the same resist layer may help developing device applications based on graphene and other 2D materials in the near future.

  6. Enzymatic logic calculation systems based on solid-state electrochemiluminescence and molecularly imprinted polymer film electrodes.

    Science.gov (United States)

    Lian, Wenjing; Liang, Jiying; Shen, Li; Jin, Yue; Liu, Hongyun

    2018-02-15

    The molecularly imprinted polymer (MIP) films were electropolymerized on the surface of Au electrodes with luminol and pyrrole (PY) as the two monomers and ampicillin (AM) as the template molecule. The electrochemiluminescence (ECL) intensity peak of polyluminol (PL) of the AM-free MIP films at 0.7V vs Ag/AgCl could be greatly enhanced by AM rebinding. In addition, the ECL signals of the MIP films could also be enhanced by the addition of glucose oxidase (GOD)/glucose and/or ferrocenedicarboxylic acid (Fc(COOH) 2 ) in the testing solution. Moreover, Fc(COOH) 2 exhibited cyclic voltammetric (CV) response at the AM-free MIP film electrodes. Based on these results, a binary 3-input/6-output biomolecular logic gate system was established with AM, GOD and Fc(COOH) 2 as inputs and the ECL responses at different levels and CV signal as outputs. Some functional non-Boolean logic devices such as an encoder, a decoder and a demultiplexer were also constructed on the same platform. Particularly, on the basis of the same system, a ternary AND logic gate was established. The present work combined MIP film electrodes, the solid-state ECL, and the enzymatic reaction together, and various types of biomolecular logic circuits and devices were developed, which opened a novel avenue to construct more complicated bio-logic gate systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser

    Science.gov (United States)

    Kecskemeti, G.; Smausz, T.; Kresz, N.; Tóth, Zs.; Hopp, B.; Chrisey, D.; Berkesi, O.

    2006-11-01

    We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF ( λ = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm -2. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm -2), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence ( λ ˜ 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.

  8. Pulsed laser deposition of polyhydroxybutyrate biodegradable polymer thin films using ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: tomi@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: knr@physx.u-szeged.hu; Toth, Zs. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: ztoth@physx.u-szeged.hu; Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: bhopp@physx.u-szeged.hu; Chrisey, D. [Naval Research Laboratory, Washington, DC 20375 (United States)]. E-mail: chrisey@ccf.nrl.navy.mil; Berkesi, O. [Department of Physical Chemistry, University of Szeged, H-6720 Szeged, Rerrich B. ter 1 (Hungary)]. E-mail: oberkesi@chem.u-szeged.hu

    2006-11-30

    We demonstrated the pulsed laser deposition (PLD) of high quality films of a biodegradable polymer, the polyhydroxybutyrate (PHB). Thin films of PHB were deposited on KBr substrates and fused silica plates using an ArF ({lambda} = 193 nm, FWHM = 30 ns) excimer laser with fluences between 0.05 and 1.5 J cm{sup -2}. FTIR spectroscopic measurements proved that at the appropriate fluence (0.05, 0.09 and 0.12 J cm{sup -2}), the films exhibited similar functional groups with no significant laser-produced modifications present. Optical microscopic images showed that the layers were contiguous with embedded micrometer-sized grains. Ellipsometric results determined the wavelength dependence ({lambda} {approx} 245-1000 nm) of the refractive index and absorption coefficient which were new information about the material and were not published in the scientific literature. We believe that our deposited PHB thin films would have more possible applications. For example to our supposal the thin layers would be applicable in laser induced forward transfer (LIFT) of biological materials using them as absorbing thin films.

  9. Morphology, molecular dynamics and electric conductivity of carbohydrate polymer films based on alginic acid and benzimidazole.

    Science.gov (United States)

    Rachocki, Adam; Pogorzelec-Glaser, Katarzyna; Pawlaczyk, Czesław; Tritt-Goc, Jadwiga

    2011-12-13

    The present paper describes a preparation method and molecular investigations of new biodegradable proton-conducting carbohydrate polymer films based on alginic acid and benzimidazole. Electric conductivity was studied in a wide temperature range in order to check the potential application of these compounds as membranes for electrochemical devices. Compared to pure alginic acid powder or its film, the biodegradable film of alginic acid with an addition of benzimidazole exhibits considerably higher conductivity in the range above water boiling temperature (up to approximately 10(-3) S/cm at 473 K). Due to this important feature the obtained films can be considered as candidates for application in high-temperature electrochemical devices. The microscopic nature and mechanism of the conduction in alginate based materials were studied by proton nuclear magnetic resonance (NMR). The results show specific changes in morphology and molecular dynamics between pure alginate powders and the films obtained without and with the addition of benzimidazole molecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Flexible Ultrahigh-Temperature Polymer-Based Dielectrics with High Permittivity for Film Capacitor Applications

    Directory of Open Access Journals (Sweden)

    Zejun Pu

    2017-11-01

    Full Text Available In this report, flexible cross-linked polyarylene ether nitrile/functionalized barium titanate(CPEN/F-BaTiO3 dielectrics films with high permittivitywere prepared and characterized. The effects of both the F-BaTiO3 and matrix curing on the mechanical, thermal and dielectric properties of the CPEN/F-BaTiO3 dielectric films were investigated in detail. Compared to pristine BaTiO3, the surface modified BaTiO3 particles effectively improved their dispersibility and interfacial adhesion in the polymer matrix. Moreover, the introduction of F-BaTiO3 particles enhanced dielectric properties of the composites, with a relatively high permittivity of 15.2 and a quite low loss tangent of 0.022 (1 kHz when particle contents of 40 wt % were utilized. In addition, the cyano (–CN groups of functional layer also can serve as potential sites for cross-linking with polyarylene ether nitrile terminated phthalonitrile (PEN-Ph matrix and make it transform from thermoplastic to thermosetting. Comparing with the pure PEN-ph film, the latter results indicated that the formation of cross-linked network in the polymer-based system resulted in increased tensile strength by ~67%, improved glass transition temperature (Tg by ~190 °C. More importantly, the CPEN/F-BaTiO3 composite films filled with 30 wt % F-BaTiO3 particles showed greater energy density by nearly 190% when compared to pure CPEN film. These findings enable broader applications of PEN-based composites in high-performance electronics and energy storage devices materials used at high temperature.

  11. Piezoelectric PZT thin films on flexible copper-coated polymer films

    Czech Academy of Sciences Publication Activity Database

    Suchaneck, G.; Volkonskiy, O.; Gerlach, G.; Hubička, Zdeněk; Dejneka, Alexandr; Jastrabík, Lubomír; Kiselev, D.; Bdikin, I.; Kholkin, A.

    636/637, - (2010), s. 392-397 ISSN 0255-5476 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KJB100100703 Institutional research plan: CEZ:AV0Z10100522 Keywords : plasma jet deposition * PZT * kapton® film substrate * piezoresponse force microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Low-voltage electron microscopy of polymer and organic molecular thin films

    International Nuclear Information System (INIS)

    Drummy, L.F.; Yang Junyan; Martin, D.C.

    2004-01-01

    We have demonstrated the capabilities of a novel low-voltage electron microscope (LVEM) for imaging polymer and organic molecular thin films. The LVEM can operate in transmission electron microscopy, scanning transmission electron microscopy, scanning electron microscopy, and electron diffraction modes. The microscope operates at a nominal accelerating voltage of 5 kV and fits on a tabletop. A detailed discussion of the electron-sample interaction processes is presented, and the mean free path for total electron scattering was calculated to be 15 nm for organic samples at 5 kV. The total end point dose for the destruction of crystallinity at 5 kV was estimated at 5x10 -4 and 3.5x10 -2 C/cm 2 for polyethylene and pentacene, respectively. These values are significantly lower than those measured at voltages greater than 100 kV. A defocus series of colloidal gold particles allowed us to estimate the experimental contrast transfer function of the microscope. Images taken of several organic materials have shown high contrast for low atomic number elements and a resolution of 2.5 nm. The materials studied here include thin films of the organic semiconductor pentacene, triblock copolymer films, single-molecule dendrimers, electrospun polymer fibers and gold nanoparticles

  13. Analysis of polymer surfaces and thin-film coatings with Raman and surface enhanced Raman scattering

    CERN Document Server

    McAnally, G D

    2001-01-01

    This thesis investigates the potential of surface-enhanced Raman scattering (SERS) for the analysis and characterisation of polymer surfaces. The Raman and SERS spectra from a PET film are presented. The SERS spectra from the related polyester PBT and from the monomer DMT are identical to PET, showing that only the aromatic signals are enhanced. Evidence from other compounds is presented to show that loss of the carbonyl stretch (1725 cm sup - sup 1) from the spectra is due to a chemical interaction between the silver and surface carbonyl groups. The interaction of other polymer functional groups with silver is discussed. A comparison of Raman and SERS spectra collected from three faces of a single crystal shows the SERS spectra are depolarised. AFM images of the silver films used to obtain SERS are presented. They consist of regular islands of silver, fused together to form a complete film. The stability and reproducibility and of these surfaces is assessed. Band assignments for the SERS spectrum of PET are ...

  14. Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films

    International Nuclear Information System (INIS)

    Park, Myounggu; Kim, Hyonny; Youngblood, Jeffrey P

    2008-01-01

    The strain-dependent electrical resistance characteristics of multi-walled carbon nanotube (MWCNT)/polymer composite films were investigated. In this research, polyethylene oxide (PEO) is used as the polymer matrix. Two representative volume fractions of MWCNT/PEO composite films were selected: 0.56 vol% (near the percolation threshold) and 1.44 vol% (away from the percolation threshold) of MWCNT. An experimental setup which can measure electrical resistance and strain simultaneously and continuously has been developed. Unique and repeatable relationships in resistance versus strain were obtained for multiple specimens with different volume fractions of MWCNT. The overall pattern of electrical resistance change versus strain for the specimens tested consists of linear and nonlinear regions. A resistance change model to describe the combination of linear and nonlinear modes of electrical resistance change as a function of strain is suggested. The unique characteristics in electrical resistance change for different volume fractions imply that MWCNT/PEO composite films can be used as tunable strain sensors and for application into embedded sensor systems in structures

  15. Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms.

    Science.gov (United States)

    Kim, Mi Yeon; Kim, Changman; Moon, Jungheun; Heo, Jinhee; Jung, Sokhee P; Kim, Jung Rae

    2017-02-28

    Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.

  16. Brush-Coated Nanoparticle Polymer Thin Films: structure-mechanical-optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Materials Science and Engineering

    2014-08-15

    Our work was devoted to understanding the structure and properties of a class of thin film polymer nanocomposites (PNCs). PNCs are composed of polymer hosts into which nanoparticles (metallic nanoparticles, quantum dots, nanorods, C60, nanotubes) are incorporated. PNCs exhibit a diverse range of functional properties (optical, electronic, mechanical, biomedical, structural), determined in part by the chemical composition of the polymer host and the type of nanoparticle. The properties PNCs rely not only on specific functional, size-dependent, behavior of the nanoparticles, but also on the dispersion, and organizational order in some cases, inter-nanoparticle separation distances, and on relative interactions between the nanoparticles and the host. Therefore the scientific challenges associated with understanding the interrelations between the structure and function/properties of PNCs are far more complex than may be understood based only on the knowledge of the compositions of the constituents. The challenges of understanding the structure-function behavior of PNCs are further compounded by the fact that control of the dispersion of the nanoparticles within the polymer hosts is difficult; one must learn how to disperse inorganic particles within an organic host. The goal of this proposal was to develop an understanding of the connection between the structure and the thermal (glass transition), mechanical and optical properties of a specific class of PNCs. Specifically PNCs composed of polymer chain grafted gold nanoparticles within polymer hosts. A major objective was to understand how to develop basic principles that enable the fabrication of functional materials possessing optimized morphologies and combinations of materials properties.

  17. Polymer blend effects on fundamental properties of mesogenic phthalocyanine films fabricated by heated spin-coating method

    Science.gov (United States)

    Higashi, Takuya; Fiderana Ramananarivo, Mihary; Ohmori, Masashi; Yoshida, Hiroyuki; Fujii, Akihiko; Ozaki, Masanori

    2015-04-01

    Polymer blending effects on the properties of the mesogenic phthalocyanine thin films fabricated by heated spin-coating method were demonstrated. The spin-coated films of 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH2) blended with poly(3-hexylthiophene) (P3HT) were prepared by controlling the temperatures of substrates and solutions with the mixed material, and the morphology and optical property of the fabricated film were studied. In the case of the low composite ratio of P3HT, the wide crack lines found in pure C6PcH2 films disappeared while maintaining the uniaxial aligned optic axis direction in the large-area with the diameters of exceeding 1 mm. The polymer blend effects were discussed by taking the anisotropic optical absorption and molecular stacking structure in the films into consideration.

  18. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes

    International Nuclear Information System (INIS)

    Peng Chuang; Jin Jun; Chen, George Z.

    2007-01-01

    Composite films of carbon nanotubes (CNTs) with polyaniline (PANI), polypyrrole (PPY) or poly[3,4-ethylenedioxythiophene] (PEDOT) were prepared via electrochemical co-deposition from solutions containing acid treated CNTs and the corresponding monomer. In the cases of PPY and PEDOT, CNTs served as the charge carriers during electro-deposition, and also acted as both the backbone of a three-dimensional micro- and nano-porous structure and the effective charge-balancing dopant within the polymer. All the composites showed improved mechanical integrity, higher electronic and ionic conductivity (even when the polymer was reduced), and exhibited larger electrode specific capacitance than the polymer alone. Under similar conditions, the capacitance was enhanced significantly in as-prepared PPY-CNT and PEDOT-CNT films. However, the fresh PANI-CNT film was electrochemically similar to PANI, but PPY-CNT and PEDOT-CNT differed noticeably from the respective polymers alone. In continuous potential cycling tests, unlike the pure polymer and other composite films, PANI-CNT performed much better in retaining the capacitance of the as-prepared film, and the possible cause is analysed

  19. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    Science.gov (United States)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  20. Hydrodynamic effects on phase separation morphologies in evaporating thin films of polymer solutions

    Science.gov (United States)

    Zoumpouli, Garyfalia A.; Yiantsios, Stergios G.

    2016-08-01

    We examine effects of hydrodynamics on phase separation morphologies developed during drying of thin films containing a volatile solvent and two dissolved polymers. Cahn-Hilliard and Flory-Huggins theories are used to describe the free energy of the phase separating systems. The thin films, considered as Newtonian fluids, flow in response to Korteweg stresses arising due to concentration non-uniformities that develop during solvent evaporation. Numerical simulations are employed to investigate the effects of a Peclet number, defined in terms of system physical properties, as well as the effects of parameters characterizing the speed of evaporation and preferential wetting of the solutes at the gas interface. For systems exhibiting preferential wetting, diffusion alone is known to favor lamellar configurations for the separated phases in the dried film. However, a mechanism of hydrodynamic instability of a short length scale is revealed, which beyond a threshold Peclet number may deform and break the lamellae. The critical Peclet number tends to decrease as the evaporation rate increases and to increase with the tendency of the polymers to selectively wet the gas interface. As the Peclet number increases, the instability moves closer to the gas interface and induces the formation of a lateral segregation template that guides the subsequent evolution of the phase separation process. On the other hand, for systems with no preferential wetting or any other property asymmetries between the two polymers, diffusion alone favors the formation of laterally separated configurations. In this case, concentration perturbation modes that lead to enhanced Korteweg stresses may be favored for sufficiently large Peclet numbers. For such modes, a second mechanism is revealed, which is similar to the solutocapillary Marangoni instability observed in evaporating solutions when interfacial tension increases with the concentration of the non-volatile component. This mechanism may lead

  1. Controlled fragmentation of multimaterial fibres and films via polymer cold-drawing.

    Science.gov (United States)

    Shabahang, Soroush; Tao, Guangming; Kaufman, Joshua J; Qiao, Yangyang; Wei, Lei; Bouchenot, Thomas; Gordon, Ali P; Fink, Yoel; Bai, Yuanli; Hoy, Robert S; Abouraddy, Ayman F

    2016-06-23

    Polymer cold-drawing is a process in which tensile stress reduces the diameter of a drawn fibre (or thickness of a drawn film) and orients the polymeric chains. Cold-drawing has long been used in industrial applications, including the production of flexible fibres with high tensile strength such as polyester and nylon. However, cold-drawing of a composite structure has been less studied. Here we show that in a multimaterial fibre composed of a brittle core embedded in a ductile polymer cladding, cold-drawing results in a surprising phenomenon: controllable and sequential fragmentation of the core to produce uniformly sized rods along metres of fibre, rather than the expected random or chaotic fragmentation. These embedded structures arise from mechanical-geometric instabilities associated with 'neck' propagation. Embedded, structured multimaterial threads with complex transverse geometry are thus fragmented into a periodic train of rods held stationary in the polymer cladding. These rods can then be easily extracted via selective dissolution of the cladding, or can self-heal by thermal restoration to re-form the brittle thread. Our method is also applicable to composites with flat rather than cylindrical geometries, in which case cold-drawing leads to the break-up of an embedded or coated brittle film into narrow parallel strips that are aligned normally to the drawing axis. A range of materials was explored to establish the universality of this effect, including silicon, germanium, gold, glasses, silk, polystyrene, biodegradable polymers and ice. We observe, and verify through nonlinear finite-element simulations, a linear relationship between the smallest transverse scale and the longitudinal break-up period. These results may lead to the development of dynamical and thermoreversible camouflaging via a nanoscale Venetian-blind effect, and the fabrication of large-area structured surfaces that facilitate high-sensitivity bio-detection.

  2. Random lasing in dye-doped polymer dispersed liquid crystal film

    Science.gov (United States)

    Wu, Rina; Shi, Rui-xin; Wu, Xiaojiao; Wu, Jie; Dai, Qin

    2016-09-01

    A dye-doped polymer-dispersed liquid crystal film was designed and fabricated, and random lasing action was studied. A mixture of laser dye, nematic liquid crystal, chiral dopant, and PVA was used to prepare the dye-doped polymer-dispersed liquid crystal film by means of microcapsules. Scanning electron microscopy analysis showed that most liquid crystal droplets in the polymer matrix ranged from 30 μm to 40 μm, the size of the liquid crystal droplets was small. Under frequency doubled 532 nm Nd:YAG laser-pumped optical excitation, a plurality of discrete and sharp random laser radiation peaks could be measured in the range of 575-590 nm. The line-width of the lasing peak was 0.2 nm and the threshold of the random lasing was 9 mJ. Under heating, the emission peaks of random lasing disappeared. By detecting the emission light spot energy distribution, the mechanism of radiation was found to be random lasing. The random lasing radiation mechanism was then analyzed and discussed. Experimental results indicated that the size of the liquid crystal droplets is the decisive factor that influences the lasing mechanism. The surface anchor role can be ignored when the size of the liquid crystal droplets in the polymer matrix is small, which is beneficial to form multiple scattering. The transmission path of photons is similar to that in a ring cavity, providing feedback to obtain random lasing output. Project supported by the National Natural Science Foundation of China (Grant No. 61378042), the Colleges and Universities in Liaoning Province Outstanding Young Scholars Growth Plans, China (Grant No. LJQ2015093), and Shenyang Ligong University Laser and Optical Information of Liaoning Province Key Laboratory Open Funds, China.

  3. Plasma polymer films rf sputtered from PTFE under various argon pressures

    Czech Academy of Sciences Publication Activity Database

    Stelmashuk, Vitaliy; Biederman, H.; Slavinská, D.; Zemek, Josef; Trchová, Miroslava

    2005-01-01

    Roč. 77, č. 2 (2005), s. 131-137 ISSN 0042-207X R&D Projects: GA MŠk(CZ) OC 527.10; GA MŠk(CZ) OC 527.90 Grant - others:EUREKAΣ2080(XE) OE57 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z20430508 Keywords : RF sputtering * PTFE * fluorcarbon plasma polymers * thin film * teflon * deposition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.909, year: 2005

  4. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  5. Solvent-Free Patterning of Colloidal Quantum Dot Films Utilizing Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Hohyun Keum

    2017-01-01

    Full Text Available Colloidal quantum dots (QDs with properties that can be tuned by size, shape, and composition are promising for the next generation of photonic and electronic devices. However, utilization of these materials in such devices is hindered by the limited compatibility of established semiconductor processing techniques. In this context, patterning of QD films formed from colloidal solutions is a critical challenge and alternative methods are currently being developed for the broader adoption of colloidal QDs in functional devices. Here, we present a solvent-free approach to patterning QD films by utilizing a shape memory polymer (SMP. The high pull-off force of the SMP below glass transition temperature (Tg in conjunction with the conformal contact at elevated temperatures (above Tg enables large-area, rate-independent, fine patterning while preserving desired properties of QDs.

  6. High-performance ferroelectric memory based on phase-separated films of polymer blends

    KAUST Repository

    Khan, Yasser

    2013-10-29

    High-performance polymer memory is fabricated using blends of ferroelectric poly(vinylidene-fluoride-trifluoroethylene) (P(VDF-TrFE)) and highly insulating poly(p-phenylene oxide) (PPO). The blend films spontaneously phase separate into amorphous PPO nanospheres embedded in a semicrystalline P(VDF-TrFE) matrix. Using low molecular weight PPO with high miscibility in a common solvent, i.e., methyl ethyl ketone, blend films are spin cast with extremely low roughness (Rrms ≈ 4.92 nm) and achieve nanoscale phase seperation (PPO domain size < 200 nm). These blend devices display highly improved ferroelectric and dielectric performance with low dielectric losses (<0.2 up to 1 MHz), enhanced thermal stability (up to ≈353 K), excellent fatigue endurance (80% retention after 106 cycles at 1 KHz) and high dielectric breakdown fields (≈360 MV/m). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crack density and electrical resistance in indium-tin-oxide/polymer thin films under cyclic loading

    KAUST Repository

    Mora Cordova, Angel

    2014-11-01

    Here, we propose a damage model that describes the degradation of the material properties of indium-tin-oxide (ITO) thin films deposited on polymer substrates under cyclic loading. We base this model on our earlier tensile test model and show that the new model is suitable for cyclic loading. After calibration with experimental data, we are able to capture the stress-strain behavior and changes in electrical resistance of ITO thin films. We are also able to predict the crack density using calibrations from our previous model. Finally, we demonstrate the capabilities of our model based on simulations using material properties reported in the literature. Our model is implemented in the commercially available finite element software ABAQUS using a user subroutine UMAT.[Figure not available: see fulltext.].

  8. Lithium-Ion-Conducting Electrolytes: From an Ionic Liquid to the Polymer Membrane.

    Science.gov (United States)

    Fernicola, A; Weise, F C; Greenbaum, S G; Kagimoto, J; Scrosati, B; Soleto, A

    2009-05-05

    This work concerns the design, the synthesis, and the characterization of the N-butyl-N-ethylpiperidinium N,N-bis(trifluoromethane)sulfonimide (PP(24)TFSI) ionic liquid (IL). To impart Li-ion transport, a suitable amount of lithium N,N-bis-(trifluoromethane)sulfonimide (LiTFSI) is added to the IL. The Li-IL mixture displays ionic conductivity values on the order of 10(-4) S cm(-1) and an electrochemical stability window in the range of 1.8-4.5 V vs Li(+)/Li. The voltammetric analysis demonstrates that the cathodic decomposition gives rise to a passivating layer on the surface of the working electrode, which kinetically extends the stability of the Li/IL interface as confirmed by electrochemical impedance spectroscopy measurements. The LiTFSI-PP(24)TFSI mixture is incorporated in a poly(vinylidene fluoride-co-hexafluoropropylene) matrix to form various electrolyte membranes with different LiTFSI-PP(24)TFSI contents. The ionic conductivity of all the membranes resembles that of the LiTFSI-IL mixture, suggesting an ionic transport mechanism similar to that of the liquid component. NMR measurements demonstrate a reduction in the mobility of all ions following the addition of LiTFSI to the PP(24)TFSI IL and when incorporating the mixture into the membrane. Finally, an unexpected but potentially significant enhancement in Li transference number is observed in passing from the liquid to the membrane electrolyte system.

  9. Ion-conducting lithium bis(oxalato)borate-based polymer electrolytes

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Dominko, R.; Nádherná, Martina; Jakubec, Ivo

    2009-01-01

    Roč. 189, č. 1 (2009), s. 133-138 ISSN 0378-7753 R&D Projects: GA MŠk LC523; GA AV ČR KJB400320701 Institutional research plan: CEZ:AV0Z40320502 Keywords : poly mer electrolyte * 2-ethoxyethyl methacrylate * lithium-ion battery Subject RIV: CG - Electrochemistry Impact factor: 3.792, year: 2009

  10. Nanoengineered Eggshell-Silver Tailored Copolyester Polymer Blend Film with Antimicrobial Properties.

    Science.gov (United States)

    Tiimob, Boniface J; Mwinyelle, Gregory; Abdela, Woubit; Samuel, Temesgen; Jeelani, Shaik; Rangari, Vijaya K

    2017-03-08

    In this study, the reinforcement effect of different proportions of eggshell/silver (ES-Ag) nanomaterial on the structural and antimicrobial properties of 70/30 poly(butylene-co-adipate terephthalate)/polylactic acid (PBAT/PLA) immiscible blends was investigated. The ES-Ag was synthesized using a single step ball milling process and characterized with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). These results confirmed the existence of silver nanoparticles (Ag NPs) in the interstitial spaces of the eggshell particles. The thin films in this study were prepared using hot melt extrusion and 3D printing for mechanical and antimicrobial testing, respectively. These films were also characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), XRD, tensile testing, and antimicrobial analysis. It was found that the incorporation of ES-Ag (0.5-2.0% content) compromised the tensile properties of the blend, due to poor interaction between the matrix and the ES-Ag in the ternary systems, but thermal analysis revealed improvement in the onset of degradation temperature and char yield at 500 °C. Though film toughness was better than that of PLA, the strength was lower, yet synergistic to those of PBAT and PLA. In general, the PBAT/PLA/ES-Ag ternary system had properties intermediate to those of the pure polymers. In vitro assessment of the antimicrobial activity of these films conducted on Listeria monocytogenes and Salmonella Enteritidis bacteria revealed that the blend composite films possessed bacteriostatic effects, due to the immobilized ES-Ag nanomaterials in the blend matrix. Atomic absorption spectroscopy (AAS) analysis of water and food samples exposed to the films showed that Ag NPs were not released in distilled water and chicken breast after 72 and 168 h, respectively.

  11. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing, E-mail: hezhibing802@163.com

    2016-03-15

    Graphical abstract: - Highlights: • The growth mechanism of defects in GDP films was studied upon plasma diagnosis. • Increasing rf power enhanced the etching effects of smaller-mass species. • The “void” defect was caused by high energy hydrocarbons bombardment on the surface. • The surface roughness was only 12.76 nm, and no “void” defect was observed at 30 W. - Abstract: The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T{sub 2}B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no “void” defect was observed.

  12. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    Science.gov (United States)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  13. Tunable Gas Permeability of Polymer-Clay Nano Brick Wall Thin Film Assemblies

    Science.gov (United States)

    Gamboa, Daniel; Priolo, Morgan; Grunlan, Jaime

    2010-03-01

    Thin films of anionic natural montmorrilonite (MMT) clay and cationic polyethylenimine (PEI) have been produced by alternately dipping a plastic substrate into dilute aqueous mixtures containing each ingredient. After 40 polymer-clay layers have been deposited, the resulting transparent film exhibits an oxygen transmission rate (OTR) below 0.35 cm^3/m^2 . day when the pH of PEI solution is 10. This low permeability is due to a brick wall nanostructure comprised of completely exfoliated clay bricks in polymeric mortar. This brick wall creates an extremely tortuous path at thicknesses below 250 nm and clay concentration above 80 wt%. A 70-bilayer PEI-MMT assembly has an undetectable OTR (< 0.005 cm^3/m^2 . day), which equates to a permeability below SiOx when multiplied by its film thickness of 231 nm. With optical transparency greater than 86% and the ability to be microwaved, these thin film composites are good candidates for flexible electronics packaging and foil replacement for food.

  14. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material

    Directory of Open Access Journals (Sweden)

    H. P. S. Abdul Khalil

    2017-04-01

    Full Text Available Seaweed and cellulose are promising natural polymers. This article reviews the basic information and recent developments of both seaweed and cellulose biopolymer materials as well as analyses the feasible formation of seaweed/cellulose composite films. Seaweed and cellulose both exhibit interesting film-forming properties. Nevertheless, seaweed has poor water vapour barrier and mechanical properties, whereas cellulose is neither meltable nor soluble in water or common organic solvents due to its highly crystalline structure. Therefore, modification of these hydrocolloids has been done to exploit their useful properties. Blending of biopolymers is a must recommended approach to improve the desired characteristics. From the review, seaweed is well compatible with cellulose, which possesses excellent mechanical strength and water resistance properties. Moreover, seaweed/cellulose composite films can prolong a product’s shelf life while maintaining its biodegradability. Additionally, the films show potential in contributing to the bioeconomy. In order to widen seaweed and cellulose in biocomposite application across various industries, some of the viewpoints are highlighted to be focused for future developments and applications.

  15. Nanomechanical testing of circular freestanding polymer films with sub-micron thickness

    International Nuclear Information System (INIS)

    Maner, Kyle C.; Begley, Matthew R.; Oliver, Warren C.

    2004-01-01

    This paper describes techniques to create freestanding films over perfectly circular spans (windows) and measure their mechanical properties using instrumented nanoindentation. Test samples were created by spin-casting polymer films over glass plates with embedded fibers, which were subsequently etched using a relatively weak acid to leave freestanding circular spans. The freestanding spans were tested using an instrumented nanoindenter over a wide range of applied loads and displacements. Material properties can be extracted from measured load-deflection responses using straightforward models for point-loads on circular plates or membranes. Results are presented for poly(methyl methacrylate) and poly(2,6,dimethyl,1,4,phenylene ether) films with thickness ranging from 350 to 750 nm. The properties derived from freestanding tests are compared with traditional nanoindentation of films on intact substrates. The freestanding approach has key advantages for characterizing micron-scale behavior of compliant materials, notably greater ease and applicability of sample preparation over other micro-fabrication techniques and straightforward analytical or numerical models

  16. Three-dimensional pore structure and ion conductivity of porous ceramic diaphragms

    OpenAIRE

    Wiedenmann, Daniel; Keller, Lukas; Holzer, Lorenz; Stojadinović, Jelena; Münch, Beat; Suarez, Laura; Fumey, Benjamin; Hagendorfer, Harald; Brönnimann, Rolf; Modregger, Peter; Gorbar, Michal; Vogt, Ulrich F.; Züttel, Andreas; Mantia, Fabio La; Wepf, Roger

    2013-01-01

    The ion conductivity of two series of porous ceramic diaphragms impregnated with caustic potash was investigated by electrochemical impedance spectroscopy. To understand the impact of the pore structure on ion conductivity, the three-dimensional (3-D) pore geometry of the diaphragms was characterized with synchrotron x-ray absorption tomography. Ion migration was calculated based on an extended pore structure model, which includes the electrolyte conductivity and geometric pore parameters, fo...

  17. Poly(ethylene oxide) : succinonitrile-a polymeric matrix for fast-ion conducting redox-couple solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Ravindra Kumar; Kim, Hyun-Min; Rhee, Hee-Woo, E-mail: hwrhee@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2011-05-25

    A blend of poly(ethylene oxide), PEO, and succinonitrile, SN, was investigated for the first time for applying it as a polymeric matrix of low-cost and thermally stable fast-ion conducting redox-couple solid polymer electrolytes. The PEO-SN blend in equal weight fraction showed room temperature ionic conductivity of 1 x 10{sup -8} S cm{sup -1} with nearly two orders of magnitude higher than that of PEO due to reduced crystallinity. The blend resulted in a solid electrolyte with improved ionic conductivity of {approx}7 x 10{sup -4} S cm{sup -1} at 25 deg. C. The blend and its electrolyte showed thermal stability up to 100 deg. C, which is essential for outdoor application of dye-sensitized solar cells.

  18. Finite-size scaling of flexoelectricity in Langmuir-Blodgett polymer thin films

    Science.gov (United States)

    Poddar, Shashi; Foreman, Keith; Adenwalla, Shireen; Ducharme, Stephen

    2016-01-01

    The flexoelectric effect, which is a linear coupling between a strain gradient and electrical polarization, is a fundamental electromechanical property of all materials with potential for use in nanoscale devices, where strain gradients can be quite large. We report a study of the dependence of the flexoelectric response on thickness in ultrathin films of polar and non-polar polymers. The measurements of the flexoelectric response in non-polar polyethylene and the polar relaxor polymer polyvinylidene-co-trifluoroethylene-co-chlorofluoroethylene were made using a bent cantilever method and corrected for the contribution from the electrode oxide. The results show that the value of the flexoelectric coefficient increases with decreasing thickness, by up to a factor of 70 compared to the bulk value, reaching such enhanced values in films of only 10 nm thickness. These results are consistent with a model accounting for interfacial contributions, and underline how large electromechanical coupling can be produced at the nanoscale. The results also distinguish the surface flexoelectric response from that coming from the volume.

  19. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors

    KAUST Repository

    Han, Yang

    2018-03-13

    Molecular doping is an important strategy to improve the charge transport properties of organic semiconductors in various electronic devices. Compared to p-type dopants, the development of n-type dopants is especially challenging due to poor dopant stability against atmospheric conditions. In this article, we report the n-doping of the milestone naphthalenediimide-based conjugated polymer P(NDI2OD-T2) in organic thin film transistor devices by soluble anion dopants. The addition of the dopants resulted in the formation of stable radical anions in thin films, as confirmed by EPR spectroscopy. By tuning the dopant concentration via simple solution mixing, the transistor parameters could be readily controlled. Hence the contact resistance between the electrodes and the semiconducting polymer could be significantly reduced, which resulted in the transistor behaviour approaching the desirable gate voltage-independent model. Reduced hysteresis was also observed, thanks to the trap filling by the dopant. Under optimal doping concentrations the channel on-current was increased several fold whilst the on/off ratio was simultaneously increased by around one order of magnitude. Hence doping with soluble organic salts appears to be a promising route to improve the charge transport properties of n-type organic semiconductors.

  20. Glial cell and fibroblast cytotoxicity study on 4026-cyclotene photosensitive benzocyclobutene (BCB) polymer films.

    Science.gov (United States)

    Ehteshami, Gholamreza; Singh, Amarjit; Coryell, Gene; Massia, Stephen; He, Jiping; Raupp, Gregory

    2003-01-01

    Photosensitive benzocyclobutene (photo-BCB) is a class of polymers with the trade name Cyclotene. The photoimagable property of Cyclotene makes it suitable for the manufacture of microelectronic devices. The motivation behind this study is that we see an exciting application of photo-BCB as substrates in implantable microelectronic biomedical devices due to several desirable properties distinctive from other polymer materials. To our knowledge, however, photo-BCB has never been tested for biomedical implant applications, as evidenced by the lack reported data on its biocompatibility. This study takes the first step towards assessing photo-BCB biocompatibility by evaluating the cytotoxicity and cell adhesion behavior of Cyclotene 4026 coatings exposed to monolayers of glial and fibroblast cells in vitro. It can be concluded from these studies that photo-BCB films deposited on silicon wafers using microfabrication processes did not adversely affect 3T3 fibroblast and T98-G glial cell function in vitro. We also successfully rendered photo-BCB films non-adhesive (no significant fibroblast or glial cell adhesion) with surface immobilized dextran using methods developed for other biomaterials and applications. Future work will further develop prototype photo-BCB microelectrode devices for chronic neural implant applications.

  1. Hierarchical Thin Film Architectures for Enhanced Sensor Performance: Liquid Crystal-Mediated Electrochemical Synthesis of Nanostructured Imprinted Polymer Films for the Selective Recognition of Bupivacaine

    Directory of Open Access Journals (Sweden)

    Subramanian Suriyanarayanan

    2014-04-01

    Full Text Available Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP films have been prepared on gold-coated quartz (Au/quartz resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC medium (triton X-100/water. Films prepared in water and in the absence of template were used for control studies. Infrared spectroscopic studies demonstrated comparable chemical compositions for LC and control polymer films. SEM studies revealed that the topologies of the molecularly imprinted polymer films prepared in the LC medium (LC-MIP exhibit discernible 40 nm thick nano-fiber structures, quite unlike the polymers prepared in the absence of the LC-phase. The sensitivity of the LC-MIP in a quartz crystal microbalance (QCM sensor platform was 67.6 ± 4.9 Hz/mM under flow injection analysis (FIA conditions, which was ≈250% higher than for the sensor prepared using the aqueous medium. Detection was possible at 100 nM (30 ng/mL, and discrimination of bupivacaine from closely related structural analogs was readily achieved as reflected in the corresponding stability constants of the MIP-analyte complexes. The facile fabrication and significant enhancement in sensor sensitivity together highlight the potential of this LC-based imprinting strategy for fabrication of polymeric materials with hierarchical architectures, in particular for use in surface-dependent application areas, e.g., biomaterials or sensing.

  2. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films.

    Science.gov (United States)

    Chan, Edwin P; Lee, Jung-Hyun; Chung, Jun Young; Stafford, Christopher M

    2012-11-01

    We present the design of an automated spin-coater that facilitates fabrication of polymer films based on molecular layer-by-layer (mLbL) assembly. Specifically, we demonstrate the synthesis of ultrathin crosslinked fully-aromatic polyamide (PA) films that are chemically identical to polymer membranes used in water desalination applications as measured by X-ray photoelectron spectroscopy. X-ray reflectivity measurements indicate that the automated mLbL assembly creates films with a constant film growth rate and minimal roughness compared with the traditional interfacial polymerization of PA. This automated spin-coater improves the scalability and sample-to-sample consistency by reducing human involvement in the mLbL assembly.

  3. An automated spin-assisted approach for molecular layer-by-layer assembly of crosslinked polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Edwin P.; Chung, Jun Young; Stafford, Christopher M. [Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Lee, Jung-Hyun [Center for Materials Architecturing, Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2012-11-15

    We present the design of an automated spin-coater that facilitates fabrication of polymer films based on molecular layer-by-layer (mLbL) assembly. Specifically, we demonstrate the synthesis of ultrathin crosslinked fully-aromatic polyamide (PA) films that are chemically identical to polymer membranes used in water desalination applications as measured by X-ray photoelectron spectroscopy. X-ray reflectivity measurements indicate that the automated mLbL assembly creates films with a constant film growth rate and minimal roughness compared with the traditional interfacial polymerization of PA. This automated spin-coater improves the scalability and sample-to-sample consistency by reducing human involvement in the mLbL assembly.

  4. Detection of Carbon Monoxide Using Polymer-Composite Films with a Porphyrin-Functionalized Polypyrrole

    Science.gov (United States)

    Homer, Margie L.; Ryan, Margaret A.; Yen, Shiao-Ping S.; Lara, Liana M.; Shevade, Abhijit V.; Kisor, Adam

    2012-01-01

    Post-fire air constituents that are of interest to NASA include CO and some acid gases (HCl and HCN). CO is an important analyte to be able to sense in human habitats since it is a marker for both prefire detection and post-fire cleanup. The need exists for a sensor that can be incorporated into an existing sensing array architecture. The CO sensor needs to be a low-power chemiresistor that operates at room temperature; the sensor fabrication techniques must be compatible with ceramic substrates. Early work on the JPL ElectronicNose indicated that some of the existing polymer-carbon black sensors might be suitable. In addition, the CO sensor based on polypyrrole functionalized with iron porphyrin was demonstrated to be a promising sensor that could meet the requirements. First, pyrrole was polymerized in a ferric chloride/iron porphyrin solution in methanol. The iron porphyrin is 5, 10, 15, 20-tetraphenyl-21H, 23Hporphine iron (III) chloride. This creates a polypyrrole that is functionalized with the porphyrin. After synthesis, the polymer is dried in an oven. Sensors were made from the functionalized polypyrrole by binding it with a small amount of polyethylene oxide (600 MW). This composite made films that were too resistive to be measured in the device. Subsequently, carbon black was added to the composite to bring the sensing film resistivity within a measurable range. A suspension was created in methanol using the functionalized polypyrrole (90% by weight), polyethylene oxide (600,000 MW, 5% by weight), and carbon black (5% by weight). The sensing films were then deposited, like the polymer-carbon black sensors. After deposition, the substrates were dried in a vacuum oven for four hours at 60 C. These sensors showed good response to CO at concentrations over 100 ppm. While the sensor is based on a functionalized pyrrole, the actual composite is more robust and flexible. A polymer binder was added to help keep the sensor material from delaminating from the

  5. Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review.

    Science.gov (United States)

    Chen, Jem-Kun; Chang, Chi-Jung

    2014-01-28

    In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, and solvent-responsive composites. Many important new applications for stimuli-responsive polymers lie in the field of nano- and micro-fabrication, where stimuli-responsive polymers are being established as important manipulation tools. Some techniques have been developed to selectively position organic molecules and then to obtain well-defined patterned substrates at the micrometer or submicrometer scale. Methods for patterning of stimuli-responsive hydrogels, including photolithography, electron beam lithography, scanning probe writing, and printing techniques (microcontact printing, ink-jet printing) were surveyed. We also surveyed the applications of nanostructured stimuli-responsive hydrogels, such as biotechnology (biological interfaces and purification of biomacromoles), switchable wettability, sensors (optical sensors, biosensors, chemical sensors), and actuators.

  6. Fabrications and Applications of Stimulus-Responsive Polymer Films and Patterns on Surfaces: A Review

    Directory of Open Access Journals (Sweden)

    Jem-Kun Chen

    2014-01-01

    Full Text Available In the past two decades, we have witnessed significant progress in developing high performance stimuli-responsive polymeric materials. This review focuses on recent developments in the preparation and application of patterned stimuli-responsive polymers, including thermoresponsive layers, pH/ionic-responsive hydrogels, photo-responsive film, magnetically-responsive composites, electroactive composites, and solvent-responsive composites. Many important new applications for stimuli-responsive polymers lie in the field of nano- and micro-fabrication, where stimuli-responsive polymers are being established as important manipulation tools. Some techniques have been developed to selectively position organic molecules and then to obtain well-defined patterned substrates at the micrometer or submicrometer scale. Methods for patterning of stimuli-responsive hydrogels, including photolithography, electron beam lithography, scanning probe writing, and printing techniques (microcontact printing, ink-jet printing were surveyed. We also surveyed the applications of nanostructured stimuli-responsive hydrogels, such as biotechnology (biological interfaces and purification of biomacromoles, switchable wettability, sensors (optical sensors, biosensors, chemical sensors, and actuators.

  7. Impact of the glass transition on exciton dynamics in polymer thin films

    Science.gov (United States)

    Ehrenreich, Philipp; Proepper, Daniel; Graf, Alexander; Jores, Stefan; Boris, Alexander V.; Schmidt-Mende, Lukas

    2017-11-01

    In the development of organic electronics, unlimited design possibilities of conjugated polymers offer a wide variety of mechanical and electronic properties. Thereby, it is crucially important to reveal universal physical characteristics that allow efficient and forward developments of new chemical compounds. In particular for organic solar cells, a deeper understanding of exciton dynamics in polymer films can help to improve the charge generation process further. For this purpose, poly(3-hexylthiophene) (P3HT) is commonly used as a model system, although exciton decay kinetics have found different interpretations. Using temperature-dependent time-resolved photoluminescence spectroscopy in combination with low-temperature spectroscopic ellipsometry, we can show that P3HT is indeed a model system in which excitons follow a simple diffusion/hopping model. Based on our results we can exclude the relevance of hot-exciton emission as well as a dynamic torsional relaxation upon photoexcitation on a ps time scale. Instead, we depict the glass transition temperature of polymers to strongly affect exciton dynamics.

  8. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  9. Observation of a distinct surface molecular orientation in films of a high mobility conjugated polymer.

    Science.gov (United States)

    Schuettfort, Torben; Thomsen, Lars; McNeill, Christopher R

    2013-01-23

    The molecular orientation and microstructure of films of the high-mobility semiconducting polymer poly(N,N-bis-2-octyldodecylnaphthalene-1,4,5,8-bis-dicarboximide-2,6-diyl-alt-5,5-2,2-bithiophene) (P(NDI2OD-T2)) are probed using a combination of grazing-incidence wide-angle X-ray scattering (GIWAXS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy. In particular a novel approach is used whereby the bulk molecular orientation and surface molecular orientation are simultaneously measured on the same sample using NEXAFS spectroscopy in an angle-resolved transmission experiment. Furthermore, the acquisition of bulk-sensitive NEXAFS data enables a direct comparison of the information provided by GIWAXS and NEXAFS. By comparison of the bulk-sensitive and surface-sensitive NEXAFS data, a distinctly different molecular orientation is observed at the surface of the film compared to the bulk. While a more "face-on" orientation of the conjugated backbone is observed in the bulk of the film, consistent with the lamella orientation observed by GIWAXS, a more "edge-on" orientation is observed at the surface of the film with surface-sensitive NEXAFS spectroscopy. This distinct edge-on surface orientation explains the high in-plane mobility that is achieved in top-gate P(NDI2OD-T2) field-effect transistors (FETs), while the bulk face-on texture explains the high out-of-plane mobilities that are observed in time-of-flight and diode measurements. These results also stress that GIWAXS lacks the surface sensitivity required to probe the microstructure of the accumulation layer that supports charge transport in organic FETs and hence may not necessarily be appropriate for correlating film microstructure and FET charge transport.

  10. Photocatalytic degradation of dimethoate using LbL fabricated TiO2/polymer hybrid films.

    Science.gov (United States)

    Priya, D Neela; Modak, Jayant M; Trebše, Polonca; Zabar, Romina; Raichur, Ashok M

    2011-11-15

    Degradation of dimethoate under UV irradiation using TiO(2)/polymer films prepared by the layer-by-layer (LbL) method was investigated. The thin films were fabricated on glass slides and the surface morphology and roughness of the thin films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The effect of lamp intensity, catalyst loading in the layers, number of bilayers, pH and initial dimethoate concentration on the degradation of dimethoate was systematically studied. The degradation was monitored using high performance liquid chromatography (HPLC) analysis and total organic carbon (TOC) measurements as a function of irradiation time, to see the change in concentration of dimethoate and mineralization, respectively. Complete degradation of dimethoate was achieved under TiO(2) optimum loading of 4 g/L at an UV irradiation time of 180 min. Increase in the lamp intensity, catalyst loading and number of bilayers increased the rate of degradation. At a pH of 4.62, complete degradation of dimethoate was observed. The degradation efficiency decreased with increase in initial dimethoate concentration. The degradation byproducts were analyzed and confirmed by gas chromatography-mass spectra (GC-MS). Toxicity of the irradiated samples was measured using the luminescence of bacteria Vibrio fischeri after 30 min of incubation and the results showed more toxicity than the parent compound. Catalyst reusability studies revealed that the fabricated thin films could be repeatedly used for up to ten times without affecting the photocatalytic activity of the films. The findings of the present study are very useful for the treatment of wastewaters contaminated with pesticides. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  12. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  13. Multifunctional microstructured polymer films for boosting solar power generation of silicon-based photovoltaic modules.

    Science.gov (United States)

    Leem, Jung Woo; Choi, Minkyu; Yu, Jae Su

    2015-02-04

    We propose two-dimensional periodic conical micrograting structured (MGS) polymer films as a multifunctional layer (i.e., light harvesting and self-cleaning) at the surface of outer polyethylene terephthalate (PET) cover-substrates for boosting the solar power generation in silicon (Si)-based photovoltaic (PV) modules. The surface of ultraviolet-curable NOA63 MGS polymer films fabricated by the soft imprint lithography exhibits a hydrophobic property with water contact angle of ∼121° at no inclination and dynamic advancing/receding water contact angles of ∼132°/111° at the inclination angle of 40°, respectively, which can remove dust particles or contaminants on the surface of PV modules in real outdoor environments (i.e., self-cleaning). The NOA63 MGS film coated on the bare PET leads to the reduction of reflection as well as the enhancement of both the total and diffuse transmissions at wavelengths of 300-1100 nm, indicating lower solar weighted reflectance (RSW) of ∼8.2%, higher solar weighted transmittance (TSW) of ∼93.1%, and considerably improved average haze ratio (HAvg) of ∼88.3% as compared to the bare PET (i.e., RSW ≈ 13.5%, TSW ≈ 86.9%, and HAvg ≈ 9.1%), respectively. Additionally, it shows a relatively good durability at temperatures of ≤160 °C. The resulting Si PV module with the NOA63 MGS/PET has an enhanced power conversion efficiency (PCE) of 13.26% (cf., PCE = 12.55% for the reference PV module with the bare PET) due to the mainly improved short circuit current from 49.35 to 52.01 mA, exhibiting the PCE increment percentage of ∼5.7%. For light incident angle-dependent PV module current-voltage characteristics, superior solar energy conversion properties are also obtained in a broad angle range of 10-80°.

  14. Degradation of spacecraft polymer films by charged particle irradiation and its influences on charging/discharging events

    Science.gov (United States)

    Tahara, Hirokazu

    2003-09-01

    Influences of ion bombardment on chemical structures and negative charging/discharging characteristics of spacecraft polymer films were examined. Furthermore, arcing characteristics of negatively-biased anodized aluminum sample (AAS) plates in plasma environment were investigated. Polyimide Upilex-S and Teflon FEP films were exposed to oxygen and nitrogen ion beams. The in-situ x-ray photoelectron spectroscopy and quadrupole mass spectrometer analyses showed that an addition reaction and a desorption of structural components occurred by ion bombardment. After degradation of film surfaces by ion bombardment, negative charging experiment was carried out by electron beam exposure. The characteristic of the charging current by exposure of electron beams to polymer films showed a periodical time variation with a slow decay after a peak. The variation corresponded to a cyclic phenomenon of negative charging and discharging on the film surfaces. The cyclic period increased with dose of nitrogen ions had attacked. Degradation of polymer films by ion bombardment was considered to influence their charging/discharging phenomenon. The arcing characteristics for AAS in plasma environment showed that both the peak arc current and the total charge emitted by arcing increased with initial charging voltage and neutral particle number density. The diameter of arc spots increased with initial charging voltage although it was almost constant regardless of neutral particle density. Accordingly, high voltage operation of LEO spacecraft might bring degradation of AAS by arcing.

  15. Surface Hydrophilicity of Poly(l-Lactide Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture

    Directory of Open Access Journals (Sweden)

    Chiara Argentati

    2018-02-01

    Full Text Available Current knowledge indicates that the molecular cross-talk between stem cells and biomaterials guides the stem cells’ fate within a tissue engineering system. In this work, we have explored the effects of the interaction between the poly(l-lactide acid (PLLA polymer film and human adult adipose stem cells (hASCs, focusing on the events correlating the materials’ surface characteristics and the cells’ plasma membrane. hASCs were seeded on films of pristine PLLA polymer and on a PLLA surface modified by the radiofrequency plasma method under oxygen flow (PLLA+O2. Comparative experiments were performed using human bone-marrow mesenchymal stem cells (hBM-MSCs and human umbilical matrix stem cells (hUCMSCs. After treatment with oxygen-plasma, the surface of PLLA films became hydrophilic, whereas the bulk properties were not affected. hASCs cultured on pristine PLLA polymer films acquired a spheroid conformation. On the contrary, hASCs seeded on PLLA+O2 film surface maintained the fibroblast-like morphology typically observed on tissue culture polystyrene. This suggests that the surface hydrophilicity is involved in the acquisition of the spheroid conformation. Noteworthy, the oxygen treatment had no effects on hBM-MSC and hUCMSC cultures and both stem cells maintained the same shape observed on PLLA films. This different behavior suggests that the biomaterial-interaction is stem cell specific.

  16. Processing of functional polymers and organic thin films by the matrix-assisted pulsed laser evaporation (MAPLE) technique

    Science.gov (United States)

    Piqué, A.; Wu, P.; Ringeisen, B. R.; Bubb, D. M.; Melinger, J. S.; McGill, R. A.; Chrisey, D. B.

    2002-01-01

    The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully used to deposit highly uniform thin films of various functional materials such as non-linear optical (NLO) organic materials, conductive polymers, luminescent organic molecules and several types of proteinaceous compounds. MAPLE is a laser evaporation technique for growing thin films of organic and polymeric materials which involves directing a pulsed laser beam (λ=193 nm; fluence=0.01-0.5 J cm -2) onto a frozen target (-40 to -160 °C) consisting of a solute polymeric or organic compound dissolved in a solvent matrix. Using MAPLE, thin films of N-(4-nitrophenyl)-( L)-prolinol or NPP, an NLO material; polypyrrole, a conductive polymer; and tris-(8-hydroxyquinoline) aluminum or Alq3, a luminescent organic compound, have been separately deposited with minor (in the case of Alq3) or no degradation (for the NPP and polypyrrole) to their optical and electrical properties. The MAPLE process has also been used to deposit discrete thin film micro-arrays of biotinylated bovine serum albumin (BSA). The deposited BSA films, after washing with a blocking protein and fluorescently tagged streptavidin, fluoresce when exposed to UV. This fluorescence indicates that the biochemical specificity of the transferred biotinylated protein is unaffected by the MAPLE process. These results demonstrate that the MAPLE technique can be used for growing thin films of functional polymer and active biomaterials.

  17. Thin films of polymer blends deposited by matrix-assisted pulsed laser evaporation: Effects of blending ratios

    International Nuclear Information System (INIS)

    Paun, Irina Alexandra; Ion, Valentin; Moldovan, Antoniu; Dinescu, Maria

    2011-01-01

    In this work, we show successful use of matrix-assisted pulsed laser evaporation (MAPLE) for obtaining thin films of PEG:PLGA blends, in the view of their use for controlled drug delivery. In particular, we investigate the influence of the blending ratios on the characteristics of the films. We show that the roughness of the polymeric films is affected by the ratio of each polymer within the blend. In addition, we perform Fourier transformed infrared spectroscopy (FTIR) measurements and we find that the intensities ratios of the infrared absorption bands of the two polymers are consistent with the blending ratios. Finally, we assess the optical constants of the polymeric films by spectroscopic ellipsometry (SE). We point out that the blending ratios exert an influence on the optical characteristics of the films and we validate the SE results by atomic force microscopy and UV-vis spectrophotometry. In all, we stress that the ratios in which the two polymers are blended have significant impact on the morphology, chemical structure and optical characteristics of the polymeric films deposited by MAPLE.

  18. Siloxane-Terminated Solubilizing Side Chains: Bringing Conjugated Polymer Backbones Closer and Boosting Hole Mobilities in Thin-Film Transistors

    KAUST Repository

    Mei, Jianguo

    2011-12-21

    We introduce a novel siloxane-terminated solubilizing group and demonstrate its effectiveness as a side chain in an isoindigo-based conjugated polymer. An average hole mobility of 2.00 cm 2 V -1 s -1 (with a maximum mobility of 2.48 cm 2 V -1 s -1), was obtained from solution-processed thin-film transistors, one of the highest mobilities reported to date. In contrast, the reference polymer with a branched alkyl side chain gave an average hole mobility of 0.30 cm 2 V -1 s -1 and a maximum mobility of 0.57 cm 2 V -1 s -1. This is largely explained by the polymer packing: our new polymer exhibited a π-π stacking distance of 3.58 Å, while the reference polymer showed a distance of 3.76 Å. © 2011 American Chemical Society.

  19. Preparation of hydroxide ion conductive KOH–layered double hydroxide electrolytes for an all-solid-state iron–air secondary battery

    Directory of Open Access Journals (Sweden)

    Taku Tsuneishi

    2014-06-01

    Full Text Available Anion conductive solid electrolytes based on Mg–Al layered double hydroxide (LDH were prepared for application in an all-solid-state Fe–air battery. The ionic conductivity and the conducting ion species were evaluated from impedance and electromotive force measurements. The ion conductivity of LDH was markedly enhanced upon addition of KOH. The electromotive force in a water vapor concentration cell was similar to that of an anion-conducting polymer membrane. The KOH–LDH obtained was used as a hydroxide ion conductive electrolyte for all-solid-state Fe–air batteries. The cell performance of the Fe–air batteries was examined using a mixture of KOH–LDH and iron-oxide-supported carbon as the negative electrode.

  20. Testing of the structure of macromolecular polymer films containing solid active pharmaceutical ingredient (API) particles

    Energy Technology Data Exchange (ETDEWEB)

    Boelcskei, E. [Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eoetvoes u. 6 (Hungary); Suevegh, K. [Laboratory of Nuclear Chemistry, Eoetvoes Lorand University, H-1518 Budapest 112, P.O. Box 32 (Hungary); Marek, T. [Hungarian Academy of Sciences, Research Group for Nuclear Techniques in Structural Chemistry, Eoetvoes Lorand University, H-1518 Budapest 112, P.O. Box 32 (Hungary); Regdon, G. [Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eoetvoes u. 6 (Hungary); Pintye-Hodi, K., E-mail: klara.hodi@pharm.u-szeged.h [Department of Pharmaceutical Technology, University of Szeged, H-6720 Szeged, Eoetvoes u. 6 (Hungary)

    2011-07-15

    The aim of the present study was to investigate the structure of free films of Eudragit{sup L} 30D-55 containing different concentrations (0%, 1% or 5%) of diclofenac sodium by positron annihilation spectroscopy. The data revealed that the size of the free-volume holes and the lifetimes of ortho-positronium atoms decreased with increase of the API concentration. Films containing 5% of the API exhibited a different behavior during storage (17 {sup o}C, 65% relative humidity (RH)) in consequence of the uptake of water from the air. -- Highlights: {yields} The aim of the present study was to investigate the structure of free films of Eudragit{sup L} 30D-55 containing different concentrations (0%, 1% or 5%) of diclofenac sodium by positron annihilation spectroscopy. {yields} The data revealed that the size of the free-volume holes and the lifetimes of ortho-positronium atoms decreased with increase of the API concentration (). {yields} The API distorts the original polymer structure, but as time goes by, the metastable structure relaxes and it is almost totally restored after 3 weeks of storage (17 {sup o}C, 65% RH).

  1. Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Abbas J. Kadhem

    2018-03-01

    Full Text Available The detection of testosterone in aqueous solutions is a difficult task due to the low concentration levels that are relevant in environmental and physiological samples. Current analytical methods are expensive and/or complex. To address this issue, we fabricated a molecularly imprinted polymer (MIP photonic film for the detection of testosterone in water. The films were obtained using colloidal crystals as templates for the pore morphology. Monodispersed silica particles with an average diameter 330 nm were used to obtain the colloidal crystal by vertical deposition. A solution of acrylic acid with testosterone as the imprinted template was infiltrated in the colloidal crystal and polymerized via bulk polymerization; the particles were then removed by acid etching and the testosterone eluted by a suitable solvent. The material was characterized by FTIR, swelling experiments and microscopy; MIPs were investigated by equilibrium rebinding, kinetics and reuse experiments. The results showed that the MIPs exhibited selectivity to the template, a 30-min equilibration time and stability after at least six cycles of use and regeneration. After incubation, the reflectance spectra of the films showed a shift of the Bragg diffraction peak that correlated with testosterone concentration in the 5–100 ppb range.

  2. Interfacial reflection enhanced optical extinction and thermal dynamics in polymer nanocomposite films

    Science.gov (United States)

    Dunklin, Jeremy R.; Forcherio, Gregory T.; Berry, Keith R.; Roper, D. Keith

    2016-09-01

    Polymer films containing plasmonic nanostructures are of increasing interest for development of responsive energy, sensing, and therapeutic systems. A series of novel gold nanoparticle (AuNP)-polydimethylsiloxane (PDMS) films were fabricated to elucidate enhanced optical extinction from diffractive and scattering induced internal reflection. AuNPs with dramatically different scattering-to-absorption ratios were compared at variable interparticle separations to differentiate light trapping from optical diffraction and Mie scattering. Description of interfacial optical and thermal effects due to these interrelated contributions has progressed beyond Mie theory, Beer's law, effective media, and conventional heat transfer descriptions. Thermal dissipation rates in AuNP-PDMS with this interfacial optical reflection was enhanced relative to films containing heterogeneous AuNPs and a developed thermal dissipation description. This heuristic, which accounts for contributions of both internal and external thermal dissipations, has been shown to accurately predict thermal dissipation rates from AuNP-containing insulating and conductive substrates in both two and three-dimensional systems. Enhanced thermal response rates could enable design and adaptive control of thermoplasmonic materials for a variety of implementations.

  3. Optical properties of plasma deposited amorphous carbon nitride films on polymer substrates

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, S.H., E-mail: abo_95@yahoo.co [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); El-Hossary, F.M. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Gamal, G.A.; Kahlid, M.M. [Physics Department, Faculty of Science, South Valley University, 83523 Qena (Egypt)

    2010-01-01

    Amorphous carbon nitride thin films were deposited on polymer substrates using radio frequency (rf) plasma in a mixture of nitrogen (N{sub 2}) and acetylene (C{sub 2}H{sub 2}) gasses. The samples were prepared at different rf plasma power (350, 400, 450, 500, and 550 W), at constant plasma exposure time of 10 min, and constant N{sub 2}/C{sub 2}H{sub 2} ratio of 50%. The crystal structure and surface morphology of the prepared samples were examined using X-ray diffraction and atomic force microscopy analysis, respectively. The absence of the carbon nitride diffraction peaks confirms the amorphous nature of these films. The root mean square roughness of the films increased from 3.77 to 25.22 nm as the power increased from 350 to 550 W. The thickness and the deposition rate were found to increase with increasing plasma power. Over the whole studied wavelength range, from 200 to 2500 nm, the transmittance decreased with increasing plasma power. A shift in the onset of absorption towards higher wavelengths with increasing plasma power, indicating a decrease in the optical band gap, has been observed. The refractive index values were found to decrease while the extinction coefficient increased with increasing plasma power.

  4. Optical properties of plasma deposited amorphous carbon nitride films on polymer substrates

    Science.gov (United States)

    Mohamed, S. H.; El-Hossary, F. M.; Gamal, G. A.; Kahlid, M. M.

    2010-01-01

    Amorphous carbon nitride thin films were deposited on polymer substrates using radio frequency (rf) plasma in a mixture of nitrogen (N 2) and acetylene (C 2H 2) gasses. The samples were prepared at different rf plasma power (350, 400, 450, 500, and 550 W), at constant plasma exposure time of 10 min, and constant N 2/C 2H 2 ratio of 50%. The crystal structure and surface morphology of the prepared samples were examined using X-ray diffraction and atomic force microscopy analysis, respectively. The absence of the carbon nitride diffraction peaks confirms the amorphous nature of these films. The root mean square roughness of the films increased from 3.77 to 25.22 nm as the power increased from 350 to 550 W. The thickness and the deposition rate were found to increase with increasing plasma power. Over the whole studied wavelength range, from 200 to 2500 nm, the transmittance decreased with increasing plasma power. A shift in the onset of absorption towards higher wavelengths with increasing plasma power, indicating a decrease in the optical band gap, has been observed. The refractive index values were found to decrease while the extinction coefficient increased with increasing plasma power.

  5. Effect of Sheet Resistance and Morphology of ITO Thin Films on Polymer Solar Cell Characteristics

    Directory of Open Access Journals (Sweden)

    Ram Narayan Chauhan

    2012-01-01

    Full Text Available Solar cell fabrication on flexible thin plastic sheets needs deposition of transparent conducting anode layers at low temperatures. ITO thin films are deposited on glass by RF sputtering at substrate temperature of 70∘C and compare their phase, morphology, optical, and electrical properties with commercial ITO. The films contain smaller nanocrystallites in (222 preferred orientation and exhibit comparable optical transmittance (~95% in the wavelength range of 550–650 nm, but high sheet resistance of ~103 Ω/□ (the value being ~36 Ω/□ for commercial ITO.The polymer solar cells with PEDOT: PSS and P3HT: PCBM layers realized on RF sputtered vis-a-vis commercial ITO thin films are shown to display a marginal difference in power conversion efficiency, low fill factor, and low open-circuit voltage but increased short-circuit current density. The decrease in fill factor, open-circuit voltage is compensated by increased short-circuit current. Detailed study is made of increased short-circuit current density.

  6. Weathering resistance of thin plasma polymer films on pre-coated steel =

    Science.gov (United States)

    Serra, Ricardo Gil Henriques

    O trabalho apresentado teve origem no projecto de investigacao “Tailored Thin Plasma Polymers Films for Surface Engineering of Coil Coated Steel”, financiado pelo Programa Europeu ECSC Steel Research. Sistemas de aco galvanizado pre-pintado em banda a base de poliester e poliuretano foram submetidos a um processo de polimerizacao por plasma onde um filme fino foi depositado de modo a modificar as propriedades de superficie. Foram usados reactores de catodo oco, microondas e radio frequencia para a deposicao do polimero fino. Os sistemas preparados foram analisados de modo a verificar a influencia do processo de polimerizacao por plasma na alteracao das propriedades barreira dos sistemas pre-pintados em banda. Foi estudado o efeito dos diferentes passos do processo de polimerizacao por plasma, bem como o efeito de diferentes variaveis operatorias. A mistura precursora foi variada de modo a modificar as propriedades da superficie de modo a poder vir a obter maior hidrofobicidade, maior resistencia a marcas digitais, bem como maior facilidade de limpeza. Os testes foram conduzidos em solucao de NaCl 0,5 M. Para o trabalho foram usadas tecnicas de analise da morfologia da superficie como Microscopia de Forca Atomica e Microscopia Electronica de Varrimento. As propriedades electroquimicas dos sistemas foram estudadas por Espectroscopia de Impedancia Electroquimica. A estrutura dos filmes gerados no processo de polimerizacao por plasma foi caracterizada por Microscopia de Transmissao Electronica. A modificacao das propriedades opticas devido ao processo de polimerizacao por plasma foi tambem obtida.

  7. Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity.

    Science.gov (United States)

    Li, Jihui; Li, Yongshen; Song, Yunna; Niu, Shuai; Li, Ning

    2017-11-01

    In this paper, polyvinyl alcohol/phytic acid polymer (PVA/PA polymer) was synthesized through esterification reaction of PVA and PA in the case of acidity and ultrasound irradiation and characterized, and PVA/PA polymer film was prepared by PVA/PA polymer and characterized, and the influence of dosage of PA on the thermal stability, mechanical properties and surface resistivity of PVA/PA polymer film were researched, and the influence of sonication time on the mechanical properties of PVA/PA polymer film was investigated. Based on those, it was concluded that the hydroxyl group on the chain of PVA and the phosphonic group on PA were connected together in the form of phosphonate bond, and the hydroxyl group on the chain of PVA were connected together in the form of ether bond after the intermolecular dehydration; in the meantime, it was also confirmed that PVA/PA polymer film prepared from 1.20mL of PA not only had the high thermal stability and favorable ductility but also the low surface resistivity in comparison with PVA/PA polymer film with 0.00mL of PA, and the ductility of PVA/PA polymer film was very sensitive to the sonication time. Copyright © 2017. Published by Elsevier B.V.

  8. New trivalent ion conducting solid electrolyte with the NASICON type structure

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Y.; Tamura, S.; Imanaka, N.; Adachi, G

    2004-10-06

    New trivalent ion conducting solid electrolytes with NASICON type structure, [(Ce{sub 1-x}La{sub x}){sub 0.1}Zr{sub 0.9}]{sub 40/39}Nb(PO{sub 4}){sub 3}, were successfully developed and their ion conducting behaviors were investigated. Among the [(Ce{sub 1-x}La{sub x}){sub 0.1}Zr{sub 0.9}]{sub 40/39}Nb(PO{sub 4}){sub 3} series prepared, the highest ion conductivity was obtained for [(Ce{sub 1-x}La{sub x}){sub 0.1}Zr{sub 0.9}]{sub 40/39}Nb(PO{sub 4}){sub 3} (x=0.8). The trivalent ion conductivity was approximately four times higher than that of cerium (Ce{sup 3+}) ion conducting (Ce{sub 0.1}Zr{sub 0.9}){sub 40/39}Nb(PO{sub 4}){sub 3}, and the values exceeded the region of the representative divalent oxide anion conductors such as yttria stabilized zirconia (YSZ) and calcia stabilized zirconia (CSZ) at temperatures below 500 deg. C.

  9. Enhancement of electrochemical properties of hot-pressed poly(ethylene oxide)-based nanocomposite polymer electrolyte films for all-solid-state lithium polymer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Lishi; Li Xingwang [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Yang Wensheng, E-mail: yangws@mail.buct.edu.c [State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2010-02-15

    PEO{sub 16}-LiClO{sub 4}-ZnAl{sub 2}O{sub 4} nanocomposite polymer electrolyte (NCPE) films prepared by hot-pressing method have been investigated. In order to compare with the hot-pressed NCPEs, the NCPE films have also been prepared using the conventional solution-casting method. Field emission scanning electron microscopy (FESEM), differential scanning calorimetry (DSC), conductivity (sigma) and interface property studies have been carried out on above two kinds of films. The results show that the NCPE film prepared by hot-pressing method has smoother surface, higher interface stability, lower crystallization and melting temperature values than that prepared by solution-casting method. An all-solid-state lithium polymer battery using the hot-pressed NCPE film as electrolyte, lithium metal and LiFePO{sub 4} as anode and cathode respectively, shows high discharge specific capacity, good rate capacity, high coulombic efficiency, and excellent cycling stability as revealed by galvanostatical charge/discharge cycling tests.

  10. Physical Aging of Thin and Ultrathin Free-Standing Polymer Films: Effect of Stress and Reduced Glass Transitions

    Science.gov (United States)

    Pye, Justin; Roth, Connie

    2014-03-01

    While great effort has been made in elucidating the effect of confinement on the glass transition (Tg) in polymers, considerably less work has been done on physical aging. Starting with supported films, we have previously shown that the reduced physical aging rates in ultrathin polystyrene (PS) films can be linked to the reduced Tg near the free surface [Macromolecules 2010, 43, 8296]. We then showed that high molecular weight (MW) free-standing PS films have two reduced Tgs suggesting that two separate mechanisms are acting simultaneously to propagate enhanced mobility at the free surface deeper into the film [PRL 2011, 107, 235701]. To help determine the mechanisms of these two reduced Tgs, we performed physical aging measurements on these high MW free-standing PS films. For thick films (220-1800 nm) in which there are no Tg reductions, we find that the physical aging rate depends strongly on stress caused by thermal expansion mismatch between film and support. This stress, applied to the films as they are quenched into the glassy state, can nearly double the physical aging rate when changing the frame material from polycarbonate to silicon [Macromolecules 2013, DOI:10.1021/ma401872u]. Finally, ultrathin high MW PS films held at a temperature between the two Tgs do exhibit physical aging, indicating that at least some of the film is glassy between these two transitions.

  11. Bending, wrinkling, and folding of thin polymer film/elastomer interfaces

    Science.gov (United States)

    Ebata, Yuri

    This work focuses on understanding the buckling deformation mechanisms of bending, wrinkling, and folding that occur on the surfaces and interfaces of polymer systems. We gained fundamental insight into the formation mechanism of these buckled structures for thin glassy films placed on an elastomeric substrate. By taking advantage of geometric confinement, we demonstrated new strategies in controlling wrinkling morphologies. We were able to achieve surfaces with controlled patterned structures which will have a broad impact in optical, adhesive, microelectronics, and microfluidics applications. Wrinkles and strain localized features, such as delaminations and folds, are observed in many natural systems and are useful for a wide range of patterning applications. However, the transition from sinusoidal wrinkles to more complex strain localized structures is not well understood. We investigated the onset of wrinkling and strain localizations under uniaxial strain. We show that careful measurement of feature amplitude allowed not only the determination of wrinkle, fold, or delamination onset, but also allowed clear distinction between each feature. The folds observed in this experiment have an outward morphology from the surface in contrast to folds that form into the plane, as observed in a film floating on a liquid substrate. A critical strain map was constructed, where the critical strain was measured experimentally for wrinkling, folding, and delamination with varying film thickness and modulus. Wrinkle morphologies, i.e. amplitude and wavelength of wrinkles, affect properties such as electron transport in stretchable electronics and adhesion properties of smart surfaces. To gain an understanding of how the wrinkle morphology can be controlled, we introduced a geometrical confinement in the form of rigid boundaries. Upon straining, we found that wrinkles started near the rigid boundaries where maximum local strain occurred and propagated towards the middle as more

  12. Polymer relaxations in thin films in the vicinity of a penetrant or a temperature induced glass transition

    NARCIS (Netherlands)

    Ogieglo, Wojciech; Wessling, Matthias; Benes, Nieck Edwin

    2014-01-01

    The transient properties of thin glassy polymer films in the vicinity of the glass transition are investigated. We compare the differences and similarities between sorption and temperature induced glass transitions, referred to as Pg and Tg, respectively. The experimental technique used is in situ

  13. Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form

    International Nuclear Information System (INIS)

    Borcia, G; Anderson, C A; Brown, N M D

    2003-01-01

    In this paper, we report and discuss a surface treatment method, using a dielectric barrier discharge (DBD) of random filamentary type. This offers a convenient, reliable and economic alternative for the controlled modification (so far, largely dependent on surface oxidation) of various categories of material surfaces. Remarkably uniform treatment and markedly stable modified surface properties result over the entire area of the test surfaces exposed to the discharge even at transit speeds simulating those associated with continuous on-line processing. The effects of air-DBD treatment on the surfaces of various polymer films and polymer-based fabrics were studied. The dielectric barrier concerned has been characterized in terms of the energy deposited by the discharge at the processing electrodes and the resultant modifications of the surface properties of the treated samples were investigated using x-ray photoelectron spectroscopy, contact angle/wickability measurement and scanning electron microscopy. The influence of the surface treatment parameters, such as the energy deposited by the discharge, the inter-electrode gap and the treatment time were examined and related to the post-treatment surface characteristics of the materials processed. Relationships between the processing parameters and the properties of the DBD treated samples were thus established. Of the three process variables investigated, the duration of the treatment was found to have a more significant effect on the surface modifications found than did the discharge energy or the inter-electrode gap. Very short air-DBD treatments (fractions of a second in duration) markedly and uniformly modified the surface characteristics for all the materials treated, to the effect that wettability, wickability and the level of oxidation of the surface appear to be increased strongly within the first 0.1-0.2 s of treatment. Any subsequent surface modification following longer treatment (>1.0 s) was less important

  14. Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form

    Science.gov (United States)

    Borcia, G.; Anderson, C. A.; Brown, N. M. D.

    2003-08-01

    In this paper, we report and discuss a surface treatment method, using a dielectric barrier discharge (DBD) of random filamentary type. This offers a convenient, reliable and economic alternative for the controlled modification (so far, largely dependent on surface oxidation) of various categories of material surfaces. Remarkably uniform treatment and markedly stable modified surface properties result over the entire area of the test surfaces exposed to the discharge even at transit speeds simulating those associated with continuous on-line processing. The effects of air-DBD treatment on the surfaces of various polymer films and polymer-based fabrics were studied. The dielectric barrier concerned has been characterized in terms of the energy deposited by the discharge at the processing electrodes and the resultant modifications of the surface properties of the treated samples were investigated using x-ray photoelectron spectroscopy, contact angle/wickability measurement and scanning electron microscopy. The influence of the surface treatment parameters, such as the energy deposited by the discharge, the inter-electrode gap and the treatment time were examined and related to the post-treatment surface characteristics of the materials processed. Relationships between the processing parameters and the properties of the DBD treated samples were thus established. Of the three process variables investigated, the duration of the treatment was found to have a more significant effect on the surface modifications found than did the discharge energy or the inter-electrode gap. Very short air-DBD treatments (fractions of a second in duration) markedly and uniformly modified the surface characteristics for all the materials treated, to the effect that wettability, wickability and the level of oxidation of the surface appear to be increased strongly within the first 0.1-0.2 s of treatment. Any subsequent surface modification following longer treatment (>1.0 s) was less important

  15. Polymer films removed from solid surfaces by nanostructured fluids: microscopic mechanism and implications for the conservation of cultural heritage.

    Science.gov (United States)

    Raudino, Martina; Selvolini, Giulia; Montis, Costanza; Baglioni, Michele; Bonini, Massimo; Berti, Debora; Baglioni, Piero

    2015-03-25

    Complex fluids based on amphiphilic formulations are emerging, particularly in the field of conservation of works of art, as effective and safe liquid media for the removal of hydrophobic polymeric coatings. The comprehension of the cleaning mechanism is key to designing tailored fluids for this purpose. However, the interaction between nanostructured fluids and hydrophobic polymer films is still poorly understood. In this study, we show how the combination of confocal laser scanning microscopy (CLSM) and atomic force microscopy (AFM) provides interesting and complementary insight into this process. We focused on the interaction between an ethyl methacrylate/methyl acrylate 70:30 copolymer film deposited onto a glass surface and a water/nonionic surfactant/2-butanone (MEK) ternary system, with MEK being a good solvent and water being a nonsolvent for the polymer. Our results indicate a synergy between the organic solvent and the surfactant assemblies: MEK rapidly swells the outer layers of the polymer film allowing for the subsequent diffusion of solvent molecules, while the amphiphile decreases the interfacial energy between the polymeric coating and the liquid phase, favoring dewetting and dispersion of swollen polymer droplets in the aqueous phase. The chemical nature of the surfactant and the microstructure of the assemblies determine both the kinetics and the overall efficiency of polymer removal, as assessed by comparing the behavior of similar formulations containing an anionic surfactant (sodium dodecyl sulfate, SDS).

  16. Tracking Solvent Distribution in Block Polymer Thin Films with In Situ Solvent Vapor Annealing during Neutron Scattering

    Science.gov (United States)

    Shelton, Cameron; Jones, Ronald; Dura, Joseph; Epps, Thomas

    Solvent vapor annealing (SVA) is a potential route to controlling the self-assembly of block polymer nanostructures in thin film geometries as it harnesses the ability to tune substrate surface, free surface, and polymer-polymer interactions simultaneously. However, the effect of parameters such as solvent preference and solvent partial pressure on nanostructure self-assembly is still poorly understood. Herein, we quantified the degree of preferential segregation of d-benzene into polystyrene domains of cylinder-forming poly(styrene-b-isoprene-b-styrene) as a function of film thickness and solvent partial pressure. Additionally, measurable changes in lateral domain spacing, vertical layer spacing, film thickness, and the number of stacked domains at set partial pressures were used to determine how solvent-polymer interactions affected nanostructure reorganization. These in situ experiments were conducted with a combination of small-angle neutron scattering (SANS) and neutron reflectivity (NR), which allowed us to obtain a 3-D profile of solvent distribution and nanostructure self-assembly. By studying the underlying solvent-polymer interactions, this work provides an improved understanding of the mechanisms responsible for nanostructure reorganization during SVA.

  17. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    ... of their kind ever published. Standard ambient pressure results for lithium ion conducting polymer electrolytes containing nanoscopic silica are included, as well as the description of a novel scheme to produce highly conducting...

  18. Impact of regioregularity on thin-film transistor and photovoltaic cell performances of pentacene-containing polymers

    KAUST Repository

    Jiang, Ying

    2012-01-01

    Regioregular pentacene-containing polymers were synthesized with alkylated bithiophene (BT) and cyclopentadithiophene (CPDT) as comonomers. Among them, 2,9-conjugated polymers PnBT-2,9 and PnCPDT-2,9 achieved the best performance in transistor and photovoltaic devices respectively. The former achieved the most highly ordered structures in thin films, yielding ambipolar transistor behavior with hole and electron mobilities up to 0.03 and 0.02 cm 2 V -1 s -1 on octadecylsilane-treated substrates. The latter achieved photovoltaic power conversion efficiencies up to 0.33%. The impact of regioregularity and direction of conjugation-extension (2,9 vs. 2,10), on thin-film order and device performance has been demonstrated for the pentacene-containing polymers for the first time, providing insight towards future functional material design. © 2012 The Royal Society of Chemistry.

  19. Block copolymer assisted self-assembly of nanoparticles into Langmuir–Blodgett films: Effect of polymer concentration

    Energy Technology Data Exchange (ETDEWEB)

    Martín-García, Beatriz; Velázquez, M. Mercedes, E-mail: mvsal@usal.es

    2013-08-15

    We propose to use the self-assembly ability of a block copolymer to obtain CdSe quantum dots (QDs) structures of different morphology. The methodology proposed consist in transferring mixed Langmuir monolayers of QDs and the polymer poly (styrene-co-maleic anhydride) partial 2 buthoxy ethyl ester cumene terminated, PS-MA-BEE onto mica by the Langmuir–Blodgett (LB) methodology. The morphology of the LB films was analyzed by AFM and TEM measurements. Our results show that it is possible to modulate the self-assembly process by modifying the composition of the mixed Langmuir monolayer precursor of the LB film. The different morphologies are interpreted according to two different dewetting mechanisms, growth of holes and spinodal-like dewetting. The growth of holes dewetting process is driven by gravitatory effects and was observed for LB films obtained by transferring Langmuir monolayer of the smallest elasticity values in which the polymer is in brush conformation. The spinodal dewetting mechanism prevailed when the Langmuir monolayer presents the highest elasticity values. - Graphical abstract: Display Omitted - Highlights: • Effect of the surface composition on the LB films architecture. • QDs/polymer LB films morphology interpreted in terms of dewetting mechanism. • The dewetting mechanism depends on the Langmuir monolayer state.

  20. Effect of Cross-Linking on the Structure and Growth of Polymer Films Prepared by Interfacial Polymerization.

    Science.gov (United States)

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2015-11-10

    Interfacial polymerization of tri- and bifunctional monomers (A3B2 polymerization) is investigated by dissipative particle dynamics to reveal an effect of cross-linking on the reaction kinetics and structure of the growing polymer film. Regardless of the comonomer reactivity and miscibility, the kinetics in an initially bilayer melt passes from the reaction to diffusion control. Within the crossover period, branched macromolecules undergo gelation, which drastically changes the scenario of the polymerization process. Comparison with the previously studied linear interfacial polymerization (Berezkin, A. V.; Kudryavtsev, Y. V. Linear Interfacial Polymerization: Theory and Simulations with Dissipative Particle Dynamics J. Chem. Phys. 2014, 141, 194906) shows similar conversion rates but very different product characteristics. Cross-linked polymer films are markedly heterogeneous in density, their average polymerization degree grows with the comonomer miscibility, and end groups are mostly trapped deeply in the film core. Products of linear interfacial polymerization demonstrate opposite trends as they are spontaneously homogenized by a convective flow of macromolecules expelled from the reactive zone to the film periphery, which we call the reactive extrusion effect and which is hampered in branched polymerization. Influence of the comonomer architecture on the polymer film characteristics could be used in various practical applications of interfacial polymerization, such as fabrication of membranes, micro- and nanocapsules and 3D printing.

  1. Molecular Orientation of Conjugated Polymer Chains in Nanostructures and Thin Films: Review of Processes and Application to Optoelectronics

    Directory of Open Access Journals (Sweden)

    Varun Vohra

    2017-01-01

    Full Text Available Semiconducting polymers are composed of elongated conjugated polymer backbones and side chains with high solubility and mechanical properties. The combination of these two features results in a high processability and a potential to orient the conjugated backbones in thin films and nanofibers. The thin films and nanofibers are usually composed of highly crystalline (high charge transport and amorphous parts. Orientation of conjugated polymer can result in enhanced charge transport or optical properties as it induces increased crystallinity or preferential orientation of the crystallites. After summarizing the potential strategies to exploit molecular order in conjugated polymer based optoelectronic devices, we will review some of the fabrication processes to induce molecular orientation. In particular, we will review the cases involving molecular and interfacial interactions, unidirectional deposition processes, electrospinning, and postdeposition mechanical treatments. The studies presented here clearly demonstrate that process-controlled molecular orientation of the conjugated polymer chains can result in high device performances (mobilities over 40 cm2·V−1·s−1 and solar cells with efficiencies over 10%. Furthermore, the peculiar interactions between molecularly oriented polymers and polarized light have the potential not only to generate low-cost and low energy consumption polarized light sources but also to fabricate innovative devices such as solar cell integrated LCDs or bipolarized LEDs.

  2. Mapping nanoscale effects of localized noise-source activities on photoconductive charge transports in polymer-blend films.

    Science.gov (United States)

    Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun

    2018-05-18

    We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T ) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T ) and low σ (high N T ) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ [Formula: see text] in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ [Formula: see text] which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T , which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.

  3. Mapping nanoscale effects of localized noise-source activities on photoconductive charge transports in polymer-blend films

    Science.gov (United States)

    Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun

    2018-05-01

    We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T) and low σ (high N T) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ {{N}{{T}}}-0.5 in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ {{Δ }}{{N}{{T}}}0.5, which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T, which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.

  4. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Hao [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States)]. E-mail: hao.jiang@wpafb.af.mil; Hong Lianggou [Materials Sci and Tech Applications, LLC, 409 Maple Springs Drive, Dayton OH 45458 (United States); Venkatasubramanian, N. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Grant, John T. [Research Institute, University of Dayton, 300 College Park, Dayton, OH 45469-0168 (United States); Eyink, Kurt [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Wiacek, Kevin [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Fries-Carr, Sandra [Air Force Research Laboratory, Propulsion Directorate, 1950 Fifth Street, Wright-Patterson Air Force Base, OH 45433-7251 (United States); Enlow, Jesse [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States); Bunning, Timothy J. [Air Force Research Laboratory, Materials Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, OH 45433-7707 (United States)

    2007-02-26

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant ({epsilon} {sub r}) and dielectric loss (tan {delta}) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F {sub b}) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F{sub b} of 610 V/{mu}m, an {epsilon} {sub r} of 3.07, and a tan {delta} of 7.0 x 10{sup -3} at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss.

  5. The relationship between chemical structure and dielectric properties of plasma-enhanced chemical vapor deposited polymer thin films

    International Nuclear Information System (INIS)

    Jiang Hao; Hong Lianggou; Venkatasubramanian, N.; Grant, John T.; Eyink, Kurt; Wiacek, Kevin; Fries-Carr, Sandra; Enlow, Jesse; Bunning, Timothy J.

    2007-01-01

    Polymer dielectric films fabricated by plasma enhanced chemical vapor deposition (PECVD) have unique properties due to their dense crosslinked bulk structure. These spatially uniform films exhibit good adhesion to a variety of substrates, excellent chemical inertness, high thermal resistance, and are formed from an inexpensive, solvent-free, room temperature process. In this work, we studied the dielectric properties of plasma polymerized (PP) carbon-based polymer thin films prepared from two precursors, benzene and octafluorocyclobutane. Two different monomer feed locations, directly in the plasma zone or in the downstream region (DS) and two different pressures, 80 Pa (high pressure) or 6.7 Pa (low pressure), were used. The chemical structure of the PECVD films was examined by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The dielectric constant (ε r ) and dielectric loss (tan δ) of the films were investigated over a range of frequencies up to 1 MHz and the dielectric strength (breakdown voltage) (F b ) was characterized by the current-voltage method. Spectroscopic ellipsometry was performed to determine the film thickness and refractive index. Good dielectric properties were exhibited, as PP-benzene films formed in the high pressure, DS region showed a F b of 610 V/μm, an ε r of 3.07, and a tan δ of 7.0 x 10 -3 at 1 kHz. The PECVD processing pressure has a significant effect on final film structure and the film's physical density has a strong impact on dielectric breakdown strength. Also noted was that the residual oxygen content in the PP-benzene films significantly affected the frequency dependences of the dielectric constant and loss

  6. Ion transport study in polymer-nanocomposite films by dielectric spectroscopy and conductivity scaling

    Science.gov (United States)

    Tripathi, Namrata; Thakur, Awalendra K.; Shukla, Archana; Marx, David T.

    2015-07-01

    The dielectric and conductivity response of polymer nanocomposite electrolytes (films of PMMA4LiClO4 dispersed with nano-CeO2 powder) have been investigated. The dielectric behavior was analyzed via the dielectric permittivity (ε‧) and dissipation factor (tan δ) of the samples. The analysis has shown the presence of space charge polarization at lower frequencies. The real part of ac conductivity spectra of materials obeys the Jonscher power law. Parameters such as dc conductivity, hopping rate, activation energies and the concentration of charge carriers were determined from conductivity data using the Almond West formalism. It is observed that the higher ionic conductivity at higher temperature is due to increased thermally-activated hopping rates accompanied by a significant increase in carrier concentration. The contribution of carrier concentration to the total conductivity is also confirmed from activation energy of migration conduction and from Summerfield scaling. The ac conductivity results are also well correlated with TEM results.

  7. Multiscale Modeling at Nanointerfaces: Polymer Thin Film Materials Discovery via Thermomechanically Consistent Coarse Graining

    Science.gov (United States)

    Hsu, David D.

    Due to high nanointerfacial area to volume ratio, the properties of "nanoconfined" polymer thin films, blends, and composites become highly altered compared to their bulk homopolymer analogues. Understanding the structure-property mechanisms underlying this effect is an active area of research. However, despite extensive work, a fundamental framework for predicting the local and system-averaged thermomechanical properties as a function of configuration and polymer species has yet to be established. Towards bridging this gap, here, we present a novel, systematic coarse-graining (CG) method which is able to capture quantitatively, the thermomechanical properties of real polymer systems in bulk and in nanoconfined geometries. This method, which we call thermomechanically consistent coarse-graining (TCCG), is a two-bead-per-monomer CG hybrid approach through which bonded interactions are optimized to match the atomistic structure via the Iterative Boltzmann Inversion method (IBI), and nonbonded interactions are tuned to macroscopic targets through parametric studies. We validate the TCCG method by systematically developing coarse-grain models for a group of five specialized methacrylate-based polymers including poly(methyl methacrylate) (PMMA). Good correlation with bulk all-atom (AA) simulations and experiments is found for the temperature-dependent glass transition temperature (Tg) Flory-Fox scaling relationships, self-diffusion coefficients of liquid monomers, and modulus of elasticity. We apply this TCCG method also to bulk polystyrene (PS) using a comparable coarse-grain CG bead mapping strategy. The model demonstrates chain stiffness commensurate with experiments, and we utilize a density-correction term to improve the transferability of the elastic modulus over a 500 K range. Additionally, PS and PMMA models capture the unexplained, characteristically dissimilar scaling of Tg with the thickness of free-standing films as seen in experiments. Using vibrational

  8. Polymer-ZnO nanocomposites foils and thin films for UV protection

    International Nuclear Information System (INIS)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya; Yunus, Wan Mahmood Mat

    2014-01-01

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images

  9. Polymer-ZnO nanocomposites foils and thin films for UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang (Malaysia)

    2014-09-03

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images.

  10. Polymer-ZnO nanocomposites foils and thin films for UV protection

    Science.gov (United States)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Yunus, Wan Mahmood Mat; Abdullah, Ibtisam Yahya

    2014-09-01

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images.

  11. A Polymer Film Dye Laser with Spatially Modulated Emission Controlled by Transversely Distributed Pumping

    Directory of Open Access Journals (Sweden)

    Zurab V. Wardosanidze

    2016-01-01

    Full Text Available Spatial modulation of laser emission controlled by the structure of excitation light field was demonstrated. A dye doped polymer film as an active medium was sandwiched between two laser mirrors forming a laser cell. The pumping was performed by an interference pattern formed with two mutually coherent beams of the second harmonic of a Q-switched Nd:YAG laser (532 nm and located in the plane of the laser cell. The laser emission was observed normally on the plane of the cell. The cross section of the obtained laser emission was modulated in intensity with an interval between maximums depending on the period of the pumping interference pattern. Thus, the emitted light field qualitatively looks like diffraction from an elementary dynamic hologram, that is, a holographic diffraction grating.

  12. Characterization of nanocellulose reinforced semi-interpenetrating polymer network of poly(vinyl alcohol) & polyacrylamide composite films.

    Science.gov (United States)

    Mandal, Arup; Chakrabarty, Debabrata

    2015-12-10

    Semi-interpenetrating polymer network (semi-IPN) of poly(vinyl alcohol)/polyacrylamide was reinforced with various doses of nanocellulose. The different composite films thus prepared were characterized with respect to their mechanical, thermal, morphological and barrier properties. The composite film containing 5 wt.% of nanocellulose showed the highest tensile strength. The semi-interpenetrating polymer network of poly(vinyl alcohol)/polyacrylamide; and its various composites with nanocellulose were almost identical in their thermal stability. Each of the composites however exhibited much superior stability with respect to the linear poly(vinyl alcohol) and crosslinked polyacrylamide. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) studies exhibited phase separated morphology where agglomerates of nanocellulose were found to be dispersed in the matrix of the semi-IPN. The moisture vapor transmission rate (MVTR) was the lowest for the film containing 5 wt.% of nanocellulose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application

    Energy Technology Data Exchange (ETDEWEB)

    Rujisamphan, Nopporn [Department of Physics, Faculty of Science, King Mongkut' s University of Technology Thonburi, Bangkok 10140 (Thailand); Murray, Roy E. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Deng, Fei [Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 (United States); Supasai, Thidarat, E-mail: fscitrs@ku.ac.th [Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2016-04-15

    Graphical abstract: - Highlights: • The well-controlled Ti–PTFE composite films were prepared by co-sputtering. • Ti clusters showed particle sizes varied between 10 and 30 nm in the PTFE matrix. • The swelling of polymer is the driving force to change interparticle distance and therefore a change in resistance. • The sensitivities of the Ti–PTFE devices were found to be in a range of 1.01–1.04. - Abstract: Titanium and polytetrafluoroethylene (Ti–PTFE) nanocomposite thin films were successfully fabricated on glass substrates using a combination of dc and rf magnetron sputtering. When the Ti–PTFE composites were prepared at below the percolation threshold i.e. 27% metal volume filling (F), Ti clusters with the average sizes of 7 ± 2 nm were found. As the Ti content was increased above the percolation threshold (F = 62%), the connecting regions of Ti were formed within the polymer matrix and the electrical property changed rapidly from insulator-like to metal-like properties. The Ti–PTFE composites prepared near the percolation threshold showed the electrical response to different volatile organic compounds (VOCs). The sensitivity significantly depended upon the VOCs concentrations. These composites devices showed the presence of distinct chemical bonds of C−C, C−CF, C−F and CF{sub 2} and TiF in TiO{sub 2} on the surface as investigated by X-ray photoelectron spectroscopy (XPS) while the surface morphology, characterized by atomic force microscopy (AFM) presented the root mean square (RMS) surface roughness of 13.3 nm. Cross-section transmission electron microscopy (TEM) images of the device revealed Ti clusters dispersed in PTFE matrix with particle sizes varied between 10 nm and 30 nm.

  14. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet.

  15. Inorganic nanocomposite films with polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition

    Science.gov (United States)

    Darwish, Abdalla M.; Sarkisov, Sergey S.; Mele, Paolo; Saini, Shrikant; Moore, Shaelynn; Bastian, Tyler; Dorlus, Wydglif; Zhang, Xiaodong; Koplitz, Brent

    2017-08-01

    We report on the new class of inorganic nanocomposite films with the inorganic phase hosting the polymer nanofillers made by the concurrent multi-beam multi-target pulsed laser deposition of the inorganic target material and matrix assisted pulsed laser evaporation of the polymer (MBMT-PLD/MAPLE). We used the exemplary nanocomposite thermoelectric films of aluminum-doped ZnO known as AZO with the nanofillers made of poly(methyl methacrylate) known as PMMA on various substrates such as SrTiO3, sapphire, fused silica, and polyimide. The AZO target was ablated with the second harmonic (532 nm) of the Nd:YAG Q-switched laser while PMMA was evaporated from its solution in chlorobenzene frozen in liquid nitrogen with the fundamental harmonic (1064 nm) of the same laser (50 Hz pulse repetition rate). The introduction of the polymer nanofillers increased the electrical conductivity of the nanocomposite films (possibly due to the carbonization of PMMA and the creation of additional channels of electric current) three times and reduced the thermal conductivity by 1.25 times as compared to the pure AZO films. Accordingly, the increase of the thermoelectric figure-of merit ZT would be 4 times. The best performance was observed for the sapphire substrates where the films were the most uniform. The results point to a huge potential of the optimization of a broad variety of optical, opto-electronic, and solar-power nanocomposite inorganic films by the controllable introduction of the polymer nanofillers using the MBMT-PLD/MAPLE method.

  16. Structural and Optical Investigations of Radiation Damage in Transparent PET