WorldWideScience

Sample records for ion slip effects

  1. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Science.gov (United States)

    Hayat, T.; Shafique, Maryam; Tanveer, A.; Alsaedi, A.

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects.

  2. Hall and ion slip effects on peristaltic flow of Jeffrey nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Shafique, Maryam [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Tanveer, A., E-mail: anum@math.qau.edu.pk [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alsaedi, A. [NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-06-01

    This paper addresses mixed convective peristaltic flow of Jeffrey nanofluid in a channel with complaint walls. The present investigation includes the viscous dissipation, thermal radiation and Joule heating. Hall and ion slip effects are also taken into account. Related problems through long wavelength and low Reynolds number are examined for stream function, temperature and concentration. Impacts of thermal radiation, Hartman number, Brownian motion parameter, thermophoresis, Joule heating, Hall and ion slip parameters are investigated in detail. It is observed that velocity increases and temperature decreases with Hall and ion slip parameters. Further the thermal radiation on temperature has qualitatively similar role to that of Hall and ion slip effects. - Highlights: • Peristalsis in the presence of Jeffery nanofluid is formulated. • Compliant properties of channel walls are addressed. • Impact of Hall and ion slip effects is outlined. • Influence of Joule heating and radiation is investigated. • Mixed convection for both heat and mass transfer is present.

  3. Ion slip effect on unsteady Hartmann flow with heat transfer under exponential decaying pressure gradient

    Directory of Open Access Journals (Sweden)

    Hazem A. Attia

    2006-01-01

    Full Text Available The unsteady Hartmann flow of an electrically conducting, viscous, incompressible fluid bounded by two parallel nonconducting porous plates is studied with heat transfer taking the ion slip into consideration. An external uniform magnetic field and a uniform suction and injection are applied perpendicular to the plates, while the fluid motion is subjected to an exponential decaying pressure gradient. The two plates are kept at different but constant temperatures while the Joule and viscous dissipations are included in the energy equation. The effect of the ion slip and the uniform suction and injection on both the velocity and temperature distributions is examined.

  4. HALL CURRENT AND ION SLIP EFFECTS ON THREE DIMENSIONAL UNSTEADY MHD COUETTE FLOW BOUNDED BETWEEN TWO POROUS PLATES WITH SLIP BOUNDARY CONDITION

    Directory of Open Access Journals (Sweden)

    K. Sumathi

    2016-07-01

    Full Text Available This paper deals with the influence of Hall and ion slip effects on three dimensional unsteady MHD flow of a viscous ncompressible fluid between the vertical flat porous plates separated by a finite distance in a slip flow regime. The moving plate is subjected to a constant injection V0 and the stationary plate to a transverse sinusoidal suction velocity distribution, so that the flow becomes three dimensional. Approximate solutions for cross flow, main flow velocities, skin friction and rate of heat transfer were found using perturbation techniques. The effects of various parameters involved in the problem on flow characteristics were studied numerically.

  5. MHD Flow with Hall Current and Ion-Slip Effects due to a Stretching Porous Disk

    Directory of Open Access Journals (Sweden)

    Faiza M. N. El-Fayez

    2013-01-01

    Full Text Available A partially ionized fluid is driven by a stretching disk, in the presence of a magnetic field that is strong enough to produce significant hall current and ion-slip effects. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the disk surface. The two-term expansions of the radial and azimuthal surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions, even at moderate magnetic fields. The effect of mass transfer (suction or injection through the disk is also considered.

  6. Chemically reacting micropolar fluid flow and heat transfer between expanding or contracting walls with ion slip, Soret and Dufour effects

    Directory of Open Access Journals (Sweden)

    Odelu Ojjela

    2016-06-01

    Full Text Available The aim of the present study is to investigate the Hall and ion slip currents on an incompressible free convective flow, heat and mass transfer of a micropolar fluid in a porous medium between expanding or contracting walls with chemical reaction, Soret and Dufour effects. Assume that the walls are moving with a time dependent rate of the distance and the fluid is injecting or sucking with an absolute velocity. The walls are maintained at constant but different temperatures and concentrations. The governing partial differential equations are reduced into nonlinear ordinary differential equations by similarity transformations and then the resultant equations are solved numerically by quasilinearization technique. The results are analyzed for velocity components, microrotation, temperature and concentration with respect to different fluid and geometric parameters and presented in the form of graphs. It is noticed that with the increase in chemical reaction, Hall and ion slip parameters the temperature of the fluid is enhanced whereas the concentration is decreased. Also for the Newtonian fluid, the numerical values of axial velocity are compared with the existing literature and are found to be in good agreement.

  7. The Effects of Chemical Reaction, Hall, and Ion-Slip Currents on MHD Micropolar Fluid Flow with Thermal Diffusivity Using a Novel Numerical Technique

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2012-01-01

    Full Text Available The problem of magnetomicropolar fluid flow, heat, and mass transfer with suction through a porous medium is numerically analyzed. The problem was studied under the effects of chemical reaction, Hall, ion-slip currents, and variable thermal diffusivity. The governing fundamental conservation equations of mass, momentum, angular momentum, energy, and concentration are converted into a system of nonlinear ordinary differential equations by means of similarity transformation. The resulting system of coupled nonlinear ordinary differential equations is the then solved using a fairly new technique known as the successive linearization method together with the Chebyshev collocation method. A parametric study illustrating the influence of the magnetic strength, Hall and ion-slip currents, Eckert number, chemical reaction and permeability on the Nusselt and Sherwood numbers, skin friction coefficients, velocities, temperature, and concentration was carried out.

  8. Effects of ion-slip current on MHD free convection flow in a temperature stratified porous medium in a rotating system

    Science.gov (United States)

    Hossain, Delowar; Samad, Abdus; Alam, Mahmud

    2017-06-01

    The ion-slip effects on unsteady MHD free convection flow past an infinite vertical porous plate with the effect of temperature stratified porous medium in a rotating system with viscous dissipation and Joule heating has been studied numerically. Introducing a time dependent suction to the plate, a similarity procedure has been adopted by taking a time dependent similarity parameter. The governing differential equations are transformed by introducing usual similarity variables. The resultant equations are solved numerically using Runge-Kutta method along with shooting technique. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters entering into the problem.

  9. On the blow-up criterion of strong solutions for the MHD equations with the Hall and ion-slip effects in R3}

    Science.gov (United States)

    Gala, Sadek; Ragusa, Maria Alessandra

    2016-04-01

    In this paper, we establish a blow-up criterion of strong solutions to the 3D incompressible magnetohydrodynamics equations including two nonlinear extra terms: the Hall term (quadratic with respect to the magnetic field) and the ion-slip term (cubic with respect to the magnetic field). This is an improvement of the recent results given by Fan et al. (Z Angew Math Phys, 2015).

  10. Stick-slip nanofriction in cold-ion traps

    Science.gov (United States)

    Mandelli, Davide; Vanossi, Andrea; Tosatti, Erio

    2013-03-01

    Trapped cold ions are known to form linear or planar zigzag chains, helices or clusters depending on trapping conditions. They may be forced to slide over a laser induced corrugated potential, a mimick of sliding friction. We present MD simulations of an incommensurate 101 ions chain sliding subject to an external electric field. As expected with increasing corrugation, we observe the transition from a smooth-sliding, highly lubric regime to a strongly dissipative stick-slip regime. Owing to inhomogeneity the dynamics shows features reminiscent of macroscopic frictional behaviors. While the chain extremities are pinned, the incommensurate central part is initially free to slide. The onset of global sliding is preceded by precursor events consisting of partial slips of chain portions further from the center. We also look for frictional anomalies expected for the chain sliding across the linear-zigzag structural phase transition. Although the chain is too short for a proper critical behavior, the sliding friction displays a frank rise near the transition, due to opening of a new dissipative channel via excitations of transverse modes. Research partly sponsored by Sinergia Project CRSII2 136287/1.

  11. Effects of mental fatigue on biomechanics of slips.

    Science.gov (United States)

    Lew, Fui Ling; Qu, Xingda

    2014-01-01

    The objective of this study was to investigate the effects of mental fatigue on biomechanics of slips. A total of 44 healthy young participants were evenly categorised into two groups: no fatigue and mental fatigue. Mental fatigue was induced by performing an AX-continuous performance test. The participants in both groups were instructed to walk on a linear walkway, and slips were induced unexpectedly during walking. We found that mental fatigue has adverse effects in all the three phases of slips. In particular, it leads to increased likelihood of slip initiation, poorer slip detection and a more insufficient reactive recovery response to slips. Based on the findings from the present study, we can conclude that mental fatigue is a risk factor for slips and falls. In order to prevent slip-induced falls, interventions, such as providing frequent rest breaks, could be applied in the workplace to avoid prolonged exposures to cognitively demanding activities.

  12. Slip Effects in Compressible Turbulent Channel Flow

    CERN Document Server

    Skovorodko, P A

    2012-01-01

    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with equal temperatures moving in opposite directions with some velocity was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients for velocity and temperature of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient for temperature was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  13. Slip effects in compressible turbulent channel flow

    Science.gov (United States)

    Skovorodko, P. A.

    2012-11-01

    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with temperature Tw moving with velocities ±Uw was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients αu and αT of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient αT for fixed value of αu = 1 was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  14. Effective slip for flow in a rotating channel bounded by stick-slip walls

    Science.gov (United States)

    Ng, Chiu-On

    2016-12-01

    This paper aims to look into how system rotation may modify the role played by boundary slip in controlling flow through a rotating channel bounded by stick-slip walls. A semianalytical model is developed for pressure-driven flow in a slit channel that rotates about an axis perpendicular to its walls, which are superhydrophobic surfaces patterned with periodic alternating no-shear and no-slip stripes. The cases where the flow is driven by a pressure gradient parallel or normal to the stripes are considered. The effects of the no-shear area fraction on the velocities and effective slip lengths for the primary and secondary flows are investigated as functions of the rotation rate and the channel height. It is mathematically proved that the secondary flow rate is exactly the same in the two cases, irrespective of whether the primary flow is parallel or normal to the wall stripes. For any rotation speed, there is an optimal value of the no-shear area fraction at which the primary flow rate is maximum. This is a consequence of two competing effects: the no-shear part of the wall may serve to reduce the wall resistance, thereby enhancing the flow especially at low rotation, but it also weakens the formation of the near-wall Ekman layer, which is responsible for pumping the flow especially at high rotation. Wall slip in a rotating environment is to affect flow in the Ekman layer, but not flow in the geostrophic core.

  15. Effect of slip on circulation inside a droplet

    CERN Document Server

    Thalakkottor, Joseph J

    2013-01-01

    Internal recirculation in a moving droplet plays an important role in several droplet-based microfluidic devices as it enhances mixing, chemical reaction and heat transfer. The occurrence of fluid slip at the wall, which becomes prominent at high shear rates and lower length scales, results in a significant change in droplet circulation. Using molecular dynamics (MD) simulations, the presence of circulation in droplets is demonstrated and quantified. Circulation is shown to vary inversely with slip length, which is a measure of interface wettability. A simple circulation model is established that captures the effect of slip on droplet circulation. Scaling parameters for circulation and slip length are identified from the circulation model which leads to the collapse of data for droplets with varying aspect ratio (AR) and slip length. The model is validated using continuum and MD simulations and is shown to be accurate for droplets with high AR.

  16. Comment on "Similarity analysis in magnetohydrodynamics: effects of Hall and ion-slip currents on free convection flow and mass transfer of a gas past a semi-infinite vertical plate," A.A. Megahed, S.R. Komy, A.A. Afify

    CERN Document Server

    Pantokratoras, Asterios

    2007-01-01

    Comment on Similarity analysis in magnetohydrodynamics:effects of Hall and ion-slip currents on free convection flow and mass transfer of a gas past a semi-infinite vertical plate, A.A. Megahed, S.R. Komy, A.A. Afify [Acta Mechanica 151, 185-194 (2001)] In the above paper is investigated the boundary layer flow of an electrically conducting fluid over a vertical, stationary plate placed in a calm fluid. The effects of Hall and ion-slip currents are taken into account. The boundary layer equations are transformed into ordinary ones using a scaling group of transformations and subsequently are solved numerically. However, there are two fundamental errors in the above paper which are presented below.

  17. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity.

    Science.gov (United States)

    Beschorner, Kurt E; Albert, Devon L; Chambers, April J; Redfern, Mark S

    2014-01-22

    Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to (1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; (2) determine the effects of fluid pressure on slip severity; and (3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/-standard deviation) were significantly higher for the untreaded conditions (124+/-75 kPa) than the treaded conditions (1.1+/-0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r=0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. © 2013 Published by Elsevier Ltd.

  18. Ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip

    Science.gov (United States)

    Mukherjee, Siddhartha; Goswami, Prakash; Dhar, Jayabrata; Dasgupta, Sunando; Chakraborty, Suman

    2017-07-01

    We report a study on the ion-size dependent electroosmosis of viscoelastic fluids in microfluidic channels with interfacial slip. Here, we derive an analytical solution for the potential distribution in a parallel plate microchannel, where the effects of finite sized ionic species are taken into account by invoking the free energy formalism. Following this, a purely electroosmotic flow of a simplified Phan-Thien-Tanner (sPTT) fluid is considered. For the sPTT model, linear, quadratic, and exponential kernels are chosen for the stress coefficient function describing its viscoelastic nature across various ranges of Deborah number. The theoretical framework presented in our analysis has been successfully compared with experimental results available in the literature. We believe that the implications of the considered effects on the net volumetric throughput will not only provide a deeper theoretical insight to interpret the electrokinetic data in the presence of ionic species but also serve as a fundamental design tool for novel electrokinetically driven lab-on-a-chip biofluidic devices.

  19. Ion Emittance Growth Due to Focusing Modulation from Slipping Electron Bunch

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2015-02-17

    Low energy RHIC operation has to be operated at an energy ranging from γ = 4.1 to γ = 10. The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency (h=60 for 4.5 MHz rf and h=360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunch from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.

  20. Slip effects on shearing flows in a porous medium

    Institute of Scientific and Technical Information of China (English)

    M.Khan; T.Hayat; Y.Wang

    2008-01-01

    This paper deals with the magnetohydrodynamic (MHD)flow of an Oldroyd 8-constant fluid in a porous mediam when no-slip condition is no longer valid.Modified Darcy's law is used in the flow modelling.The non-linear differential equation with non-linear boundary conditions is solved numerically using finite difference scheme in combination with an iterative technique.Numerical results are obtained for the Conette,Poiseuille and generalized Couette flows.The effects of slip parameters on the velocity profile are discussed.

  1. Topological Effects on Quantum Phase Slips in Superfluid Spin Transport

    Science.gov (United States)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2016-03-01

    We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal magnetoresistance.

  2. Slip effects associated with Knudsen transport phenomena in porous media

    Science.gov (United States)

    Frederking, T. H. K.; Hepler, W. A.; Khandhar, P. K.

    1988-01-01

    Porous media used in phase separators and thermomechanical pumps have been the subject of characterization efforts based on the Darcy permeability of laminar continuum flow. The latter is not always observed at low speed, in particular at permeabilities below 10 to the -9th/squared cm. The present experimental and theoretical studies address questions of slip effects associated with long mean free paths of gas flow at room temperature. Data obtained are in good agreement, within data uncertainty, with a simplified asymptotic Knudsen equation proposed for porous plugs on the basis of Knudsen's classical flow equation for long mean free paths.

  3. Numerical study of the effect of Navier slip on the driven cavity flow

    KAUST Repository

    He, Qiaolin

    2009-10-01

    We study the driven cavity flow using the Navier slip boundary condition. Our results have shown that the Navier slip boundary condition removes the corner singularity induced by the no-slip boundary condition. In the low Reynolds number case, the behavior of the tangential stress is examined and the results are compared with the analytic results obtained in [14]. For the high Reynolds number, we study the effect of the slip on the critical Reynolds number for Hopf bifurcation. Our results show that the first Hopf bifurcation critical Reynolds number is increasing with slip length. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quantifying effective slip length over micropatterned hydrophobic surfaces

    CERN Document Server

    Tsai, Peichun; Pirat, Christophe; Wessling, Matthias; Lammertink, Rob G H; Lohse, Detlef

    2009-01-01

    We employ micro-particle image velocimetry ($\\mu$-PIV) to investigate laminar micro-flows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal micro-grooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. Our measurements reveal an increase of the slip length when the width of the micro-grooves is enlarged. The result of the slip length is smaller than the analytical prediction by Philip et al. [1] for an infinitely large and textured channel comprised of alternating shear-free and no-slip boundary conditions. The smaller slip length (as compared to the prediction) can be attributed to the confinement of the microchannel and the bending of the meniscus (liquid-gas interface). Our experimental studies suggest that the curvature of the meniscus plays an important role in microflows over hydrophobic micro-ridges.

  5. Effects of multi-joint muscular fatigue on biomechanics of slips.

    Science.gov (United States)

    Lew, Fui Ling; Qu, Xingda

    2014-01-03

    The objective of the present study was to investigate the effects of multi-joint muscular fatigue on biomechanics of slips. Both lower-limb fatigue and upper-limb fatigue were examined, and the fatiguing exercises involved multi-joint movements to replicate muscular fatigue in realistic scenarios. Sixty healthy young adults participated in the study, and were evenly categorized into three groups: no fatigue, lower-limb fatigue, and upper-limb fatigue. These participants were instructed to walk on a linear walkway, and slips were induced unexpectedly during walking. The results showed that multi-joint muscular fatigue affects biomechanics of slips in all three phases of slips (i.e. initiation, detection, and recovery). In particular, adaptive safer postural control strategies were adopted with the application of both lower-limb fatigue and upper-limb fatigue to maintain the likelihood of slip initiation as in the no fatigue condition. In the phases of detection and recovery, lower-limb fatigue was found to compromise biomechanics of slips while upper-limb fatigue did not show any effects. Based on these findings, minimizing exposures to lower-limb fatigue should be given higher priority compared to upper-limb fatigue when developing interventions to prevent slip-induced falls. In addition, these findings also suggest that interventions aimed at enhancing proprioceptive acuity and increasing muscular strength in the lower limb could also be effective in slip-induced fall prevention.

  6. Effective slip boundary conditions for arbitrary periodic surfaces: The surface mobility tensor

    CERN Document Server

    Kamrin, Ken; Stone, Howard A

    2009-01-01

    In a variety of applications, most notably microfluidic design, slip-based boundary conditions have been sought to characterize fluid flow over patterned surfaces. We focus on laminar shear flows over surfaces with periodic height fluctuations and/or fluctuating Navier scalar slip properties. We derive a general formula for the "effective slip", which describes equivalent fluid motion at the mean surface as depicted by the linear velocity profile that arises far from it. We show that the slip and the applied stress are related linearly through a tensorial mobility matrix, and the method of domain perturbation is then used to derive an approximate formula for the mobility law directly in terms of surface properties. The specific accuracy of the approximation is detailed, and the mobility relation is then utilized to address several questions, such as the determination of optimal surface shapes and the effect of random surface fluctuations on fluid slip.

  7. The Effects on Tsunami Hazard Assessment in Chile of Assuming Earthquake Scenarios with Spatially Uniform Slip

    Science.gov (United States)

    Carvajal, Matías; Gubler, Alejandra

    2016-12-01

    We investigated the effect that along-dip slip distribution has on the near-shore tsunami amplitudes and on coastal land-level changes in the region of central Chile (29°-37°S). Here and all along the Chilean megathrust, the seismogenic zone extends beneath dry land, and thus, tsunami generation and propagation is limited to its seaward portion, where the sensitivity of the initial tsunami waveform to dislocation model inputs, such as slip distribution, is greater. We considered four distributions of earthquake slip in the dip direction, including a spatially uniform slip source and three others with typical bell-shaped slip patterns that differ in the depth range of slip concentration. We found that a uniform slip scenario predicts much lower tsunami amplitudes and generally less coastal subsidence than scenarios that assume bell-shaped distributions of slip. Although the finding that uniform slip scenarios underestimate tsunami amplitudes is not new, it has been largely ignored for tsunami hazard assessment in Chile. Our simulations results also suggest that uniform slip scenarios tend to predict later arrival times of the leading wave than bell-shaped sources. The time occurrence of the largest wave at a specific site is also dependent on how the slip is distributed in the dip direction; however, other factors, such as local bathymetric configurations and standing edge waves, are also expected to play a role. Arrival time differences are especially critical in Chile, where tsunamis arrive earlier than elsewhere. We believe that the results of this study will be useful to both public and private organizations for mapping tsunami hazard in coastal areas along the Chilean coast, and, therefore, help reduce the risk of loss and damage caused by future tsunamis.

  8. Quantifying effective slip length over micropatterned hydrophobic surfaces

    NARCIS (Netherlands)

    Tsai, Peichun; Peters, Alisia M.; Pirat, Christophe; Wessling, Matthias; Lammertink, Rob G.H.; Lohse, Detlef

    2009-01-01

    We employ microparticle image velocimetry to investigate laminar microflows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal microgrooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. O

  9. Simulation of Effective Slip and Drag in Pressure-Driven Flow on Superhydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-01-01

    Full Text Available The flow on superhydrophobic surfaces was investigated using finite element modeling (FEM. Surfaces with different textures like grooves, square pillars, and cylinders immersed in liquid forming Cassie state were modeled. Nonslip boundary condition was assumed at solid-liquid interface while slip boundary condition was supposed at gas-liquid interface. It was found that the flow rate can be affected by the shape of the texture, the fraction of the gas-liquid area, the height of the channel, and the driving pressure gradient. By extracting the effective boundary slip from the flow rate based on a model, it was found that the shape of the textures and the fraction of the gas-liquid area affect the effective slip significantly while the height of the channel and the driving pressure gradient have no obvious effect on effective slip.

  10. Effects of Velocity-Slip and Viscosity Variation in Squeeze Film Lubrication of Two Circular Plates

    Directory of Open Access Journals (Sweden)

    R.R. Rao

    2013-03-01

    Full Text Available A generalized form of Reynolds equation for two symmetrical surfaces is taken by considering velocity-slip at the bearing surfaces. This equation is applied to study the effects of velocity-slip and viscosity variation for the lubrication of squeeze films between two circular plates. Expressions for the load capacity and squeezing time obtained are also studied theoretically for various parameters. The load capacity and squeezing time decreases due to slip. They increase due to the presence of high viscous layer near the surface and decrease due to low viscous layer.

  11. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    Science.gov (United States)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  12. Mixed Convection Unsteady Stagnation-Point Flow towards a Stretching Sheet with Slip Effects

    Directory of Open Access Journals (Sweden)

    Hui Chen

    2014-01-01

    Full Text Available The paper studies the unsteady mixed convection flow of an incompressible viscous fluid about a stagnation point on a stretching sheet in presence of velocity and thermal slips. The governing equations are transformed into the ordinary differential equations by using similarity transformations. The transformed equations are solved numerically by an efficient shooting method. The characteristics of the flow and heat transfer features for governing parameters are analyzed and discussed for both the assisting and opposing flows. It is found that dual solutions exist for certain range of buoyancy parameter λ which again depend on the unsteadiness parameter α and the slip parameters (i.e., δ and γ. The numerical results show that the increase of unsteadiness parameter and the slip effects cause increment in the existence range of similarity solution. The effects of unsteadiness parameter, the velocity ratio parameter, and the velocity and thermal slip parameters on the velocity and temperature distributions are analyzed and discussed.

  13. Universal slip dynamics in metallic glasses and granular matter – linking frictional weakening with inertial effects

    Science.gov (United States)

    Denisov, Dmitry V.; Lőrincz, Kinga A.; Wright, Wendelin J.; Hufnagel, Todd C.; Nawano, Aya; Gu, Xiaojun; Uhl, Jonathan T.; Dahmen, Karin A.; Schall, Peter

    2017-03-01

    Slowly strained solids deform via intermittent slips that exhibit a material-independent critical size distribution. Here, by comparing two disparate systems - granular materials and bulk metallic glasses - we show evidence that not only the statistics of slips but also their dynamics are remarkably similar, i.e. independent of the microscopic details of the material. By resolving and comparing the full time evolution of avalanches in bulk metallic glasses and granular materials, we uncover a regime of universal deformation dynamics. We experimentally verify the predicted universal scaling functions for the dynamics of individual avalanches in both systems, and show that both the slip statistics and dynamics are independent of the scale and details of the material structure and interactions, thus settling a long-standing debate as to whether or not the claim of universality includes only the slip statistics or also the slip dynamics. The results imply that the frictional weakening in granular materials and the interplay of damping, weakening and inertial effects in bulk metallic glasses have strikingly similar effects on the slip dynamics. These results are important for transferring experimental results across scales and material structures in a single theory of deformation dynamics.

  14. SYNCHRONOUS EFFECT OF SLIPPING HEAVY LOADS ON RO-RO SHIP ROLLING IN WAVES

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yin-long; SHEN Qing; CHEN Xu-jun

    2006-01-01

    Common effect of wave and slip of internal vehicles will make rolling of the roll-on ship serious. This is one of the important reasons for overturn of ro-ro ships. The multibody system with a floating base is composed of ro-ro ship and slipping vehicles.Takes the rolling angle of the ship and the transverse displacements of the slipping vehicles on desk as freedoms. Making use of the analysis of apparent gravitation and apparent buoyancy, the wave rolling moment is derived. By means of dynamic method of multibody system, dynamic equations of the system are established. Taking a certain channel ferry as an example, a set of numerical calculation have been carried out for rolling response of the multibody system with a floating base of a ro-ro ship and displacements response of the slipping vehicles under common effect of free slipping vehicles and wave, and a conclusion has been drawn that the motion of the numerous free slipping heavy loads will trend to be synchronous under restraining of the side-wall bulkhead with time because of repeated collision.

  15. Abating Earthquake Effects on Buildings by Active Slip Brace Devices

    Directory of Open Access Journals (Sweden)

    Zekai Akbay

    1995-01-01

    Full Text Available A hybrid control system for reducing building vibration under a spectrum of earthquake load amplitudes is presented. The hybrid control is accomplished by an energy dissipation device called the active slip brace device (ASBD. The hybrid control system uses the ASBD to regulate the energy dissipation characteristics of the building during its response to earthquakes by utilizing active control principles. The ASBD consists of a Coulomb friction interface with a clamping mechanism on the interface. The clamping force on the friction interface is altered at short time intervals during building vibration. Computer simulations of building response with and without ASBD are compared.

  16. Effective slip for flow through a channel bounded by lubricant-impregnated grooved surfaces

    Science.gov (United States)

    Sun, Rui; Ng, Chiu-On

    2017-04-01

    This study aims to investigate effective slip arising from pressure-driven flow through a slit channel bounded by lubricant-impregnated grooved surfaces. The problem for flow over longitudinal grooves is solved analytically using the methods of domain decomposition and eigenfunction expansion, while that for flow over transverse grooves is solved numerically using the front tracking method. It is found that the effective slip length and the lubricant flow rate can depend strongly on the geometry of the microstructure, the direction of flow, and the lubricant viscosity. In particular, the effective slip can be effectively enhanced by increasing the thickness of a lubricating film atop the ribs. Under the same conditions, a flow that is parallel to the lubricant-impregnated grooves will have a larger effective slip, but also a larger lubricant flow rate, when compared with the case of flow normal to the grooves. It is also shown that, in the case of transverse grooves, because of the downward displacement of the interface between the working/lubricating fluids, the effective slip length and lubricant flow rate may vary non-monotonically with the groove depth.

  17. Investigation of wall-slip effect on lead-free solder paste and isotropic conductive adhesives

    Indian Academy of Sciences (India)

    R Durairaj; S Mallik; A Seman; N N Ekere

    2009-10-01

    Slippage due to wall depletion effect is well-known in rheological investigation. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of different flow geometries, gap heights and surface roughness on the paste viscosity was investigated. The utilisation of different measuring geometries has not clearly showed the presence of wall-slip in the paste samples. The existence of wall-slip was found to be pronounced when gap heights were varied using the parallel plate geometry. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall-slip as expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates and to a certain extent inducing structural breakdown in the paste. Most importantly, the study also demonstrated on how the wall-slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour.

  18. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, T. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Nisar, Z. [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Ahmad, B. [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University, P.O. Box 80257, Jeddah 21589 (Saudi Arabia); Yasmin, H., E-mail: qau2011@gmail.com [Department of Mathematics, COMSATS Institute of Information Technology, G.T. Road, Wah Cantt 47040 (Pakistan)

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters. - Highlights: • Temperature rises when Brownian motion and thermophoresis effects intensify. • Temperature profile increases when thermal slip parameter increases. • Concentration field is a decreasing function of concentration slip parameter. • Temperature decreases whereas concentration increases for Hartman number.

  19. Coupled effects of dehydration reaction, dilatant strengthening and shear heating on dynamic fault slip

    Science.gov (United States)

    Yamashita, T.

    2012-12-01

    It is believed that dynamic fault slip is affected by thermal pressurization. However, dilatant strengthening and dehydration reaction may significantly affect the degree of thermal pressurization. In addition, it is not clear how such effects influence the fault slip as a whole. We theoretically study how dilatant strengthening, frictional heating and dehydration reaction are coupled and how they affect dynamic slip assuming a fault in a thermoporoelastic medium saturated with fluid. After mathematical analysis is carried out for 1D model, the behavior of 2D fault model is studied numerically. The porosity is assumed to increase with increasing fault slip following Suzuki and Yamashita (2008). Our mathematical formulation of dehydration reaction is based on Brantut et al.(2010); the dehydration reaction is assumed to be endothermic. In addition, starting from the temperature Ts, all the frictional energy is assumed to be absorbed by the dehydration reaction rather than converted into heat. Although Brantut et al.(2010) assumed a constant slip velocity, we consider the temporal evolution of slip assuming the Coulomb law of friction on the fault. We first make the analysis assuming adiabatic and undrained conditions for the 1D model. We find that three nondimensional parameters Su, P0 and G0 determine the system behavior if the initial temperature T0 and dehydration starting temperature Ts are given, where Su (>0) is a parameter proportional to the pore creation rate, P0 (>0) is the initial nondimensional frictional stress and G0 (>0) is a parameter proportional to the mass fraction of fluid released per unit of total rock mass divided by the energy change per unit volume of the slip zone. The nondimensional frictional stress P is defined by the Coulomb frictional stress divided by the initial shear stress, which suggests the relation 0Ts, where Te is the temperature. We find for Te>Ts that the evolution of P is described by the equation dP/dT=(1-P)(Su-G0*P), where

  20. Effect of slip boundary conditions on interfacial stability of two-layer viscous fluids under shear

    CERN Document Server

    Patlazhan, Stanislav

    2015-01-01

    The traditional approach in the study of hydrodynamic stability of stratified fluids includes the stick boundary conditions between layers. However, this rule may be violated in polymer systems and as a consequence various instabilities may arise. The main objective of this paper is to analyze theoretically the influence of slip boundary conditions on the hydrodynamic stability of the interface between two immiscible viscous layers subjected to simple shear flow. It is found that the growth rate of long-wave disturbances is fairly sensitive to the slip at the interface between layers as well as at the external boundary. These phenomena are shown to give different contributions to the stability of shear flow depending on viscosity, thickness, and density ratios of the layers. Particularly, the interfacial slip can increase the perturbation growth rate and lead to unstable flow. An important consequence of this effect is the violation of stability for sheared layers with equal viscosities and densities in a bro...

  1. A coal-alkali reagent as an effective thinning agent of ceramic slips

    Energy Technology Data Exchange (ETDEWEB)

    Cherepanov, B.S.; Krivosheeva, R.S.; Opaleichok, L.S.; Ozerova, I.V.

    1986-05-01

    The purpose of this investigation was to search for new effective thinners that make it possible to decrease the moisture content of ceramic slips. The authors used superplasticizers based on sulfonated melamine-and naphthalene formaldehyde resins (MFAS, N-1, S-3) which are employed in cement industry for decrease the water-cement ratio. The studies were conducted on VGO Veselovsk clay. Inspections carried out showed that a coal-alkali reagent makes it possible not only to decrease the moisture content of the slip by 7-10% without affecting its main parameters (the moisture content of the experimental slip amounts to 40%), but also to improve the granulometric composition of the presspowder and to increase the strength of the unfired title. The reduction in the moisture content by 7% permits one to increase the productivity of spray driers by 37% and to decrease the fuel consumption by 27.2%.

  2. Effective boundary condition at a rough surface starting from a slip condition

    CERN Document Server

    Dalibard, Anne-Laure

    2010-01-01

    We consider the homogenization of the Navier-Stokes equation, set in a channel with a rough boundary, of small amplitude and wavelength $\\epsilon$. It was shown recently that, for any non-degenerate roughness pattern, and for any reasonable condition imposed at the rough boundary, the homogenized boundary condition in the limit $\\epsilon = 0$ is always no-slip. We give in this paper error estimates for this homogenized no-slip condition, and provide a more accurate effective boundary condition, of Navier type. Our result extends those obtained in previous works, in which the special case of a Dirichlet condition at the rough boundary was examined.

  3. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5

    Science.gov (United States)

    Zhao, Xinglei; Wang, Shan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2016-10-01

    Fabrication of air filtration materials (AFM) that allow air to easily flow through while retaining particles is a significant and urgent need due to the harmful airborne particulate matter pollution; however, this is still a challenging research area. Herein, we report novel slip-effect functional nanofibrous membranes with decreased air resistance (reduction rate of 40%) due to the slip flow of air molecules on the periphery of nanofibers. This was achieved through careful control over the diameters of electrospun polyacrylonitrile fibers and aperture size of fiber assembly. Fiber assembly with 86% of fiber diameters between 60–100 nm was found to be most effective for slip flow, as these diameters are close to the mean free path of air molecules (65.3 nm). Significantly, an equilibrium factor τ = df/d2 has been introduced to elucidate the effect of distance of adjacent fibers on the drag force of airflow. Furthermore, the most effective aperture size (>3.5 μm) for slip-effect has been determined. Ultimately, the new material displayed low air resistance of 29.5 Pa, high purification efficiency of 99.09%, good transmittance of 77%, and long service life. The successful fabrication of such materials can facilitate the development of high-performance AFMs for various applications.

  4. Lithological effects in soil formation and soil slips on weathering-limited slopes underlain by granitic bedrocks in Japan

    OpenAIRE

    Wakatsuki, Tsuyoshi; Matsukura, Yukinori

    2008-01-01

    Soil slips occur every few years due to heavy rains on biotite granite (Gb) and hornblende biotite granite (Ghb) slopes in the Taga Mountains, Ibaraki Prefecture, Japan. The occurrence density of soil slips per unit area is 2.7 times greater in the Gb slopes than that in Ghb slopes. We examined the chemical, mineral, physical, and mechanical properties of two soil profiles on soil-slip scars in these slopes to study the effect of bedrock mineral composition on the density of soil slips. For a...

  5. The effect of surface charge on the boundary slip of various oleophilic/phobic surfaces immersed in liquids.

    Science.gov (United States)

    Li, Yifan; Bhushan, Bharat

    2015-10-14

    The reduction of fluid drag is an important issue in many fluid flow applications at the micro/nanoscale. Boundary slip is believed to affect fluid drag. Slip length has been measured on various surfaces with different degrees of hydrophobicity and oleophobicity immersed in various liquids of scientific interest. Surface charge has been found to affect slip length in water and electrolytes. However, there are no studies on the effect of surface charge on slip at solid-oil interfaces. This study focuses on the effect of surface charge on the boundary slip of superoleophilic, oleophilic, oleophobic, and superoleophobic surfaces immersed in deionized (DI) water and hexadecane and ethylene glycol, based on atomic force microscopy (AFM). The surface charge was changed by applying a positive electric field to the solid-liquid interface, and by using liquids with different pH values. The results show that slip length increases with an increase in applied positive electric field voltage. Slip length also increases with a decrease in the pH of the solutions. The change in slip length is dependent on the absolute value of the surface charge, and a larger surface charge density results in a smaller slip length. In addition, the surface charge density at different solid-liquid interfaces is related to the dielectric properties of the surface. The underlying mechanisms are analyzed.

  6. Singular effective slip length for longitudinal flow over a dense bubble mattress

    CERN Document Server

    Schnitzer, Ory

    2016-01-01

    We consider the effective hydrophobicity of a Cassie-state liquid above a periodically grooved surface, with trapped shear-free bubbles protruding between no-slip ridges at a pi/2 contact angle. Specifically, we carry out a singular-perturbation analysis in the limit where the bubbles are closely separated, finding the effective slip length for longitudinal flow along the the ridges as a[pi*sqrt(a/d) - 2.53 + o(1)], a being the bubble radius and d the width of the no-slip segments; the square-root divergence with a/d highlights the strong hydrophobic character of this configuration. The leading singular term follows from a local analysis of the gap regions between the bubbles, together with general matching considerations and a global relation linking the applied shear, the protrusion geometry, and the variation of the flow speed transverse to the no-slip ridges. The corrective constant term is found as an integral quantity of the leading-order "outer" problem, where the bubbles appear to be touching. We find...

  7. Singular effective slip length for longitudinal flow over a dense bubble mattress

    Science.gov (United States)

    Schnitzer, Ory

    2016-09-01

    We consider the effective hydrophobicity of a periodically grooved surface immersed in liquid, with trapped shear-free bubbles protruding between the no-slip ridges at a π /2 contact angle. Specifically, we carry out a singular-perturbation analysis in the limit ɛ ≪1 where the bubbles are closely spaced, finding the effective slip length (normalized by the bubble radius) for longitudinal flow along the ridges as π /√{2 ɛ }-(12 /π ) ln2 +(13 π /24 ) √{2 ɛ }+o (√{ɛ }) , the small parameter ɛ being the planform solid fraction. The square-root divergence highlights the strong hydrophobic character of this configuration; this leading singular term (along with the third term) follows from a local lubrication-like analysis of the gap regions between the bubbles, together with general matching considerations and a global conservation relation. The O (1 ) constant term is found by matching with a leading-order solution in the outer region, where the bubbles appear to be touching. We find excellent agreement between our slip-length formula and a numerical scheme recently derived using a unified-transform method [Crowdy, IMA J. Appl. Math. 80, 1902 (2015), 10.1093/imamat/hxv019]. The comparison demonstrates that our asymptotic formula, together with the diametric dilute-limit approximation [Crowdy, J. Fluid Mech. 791, R7 (2016), 10.1017/jfm.2016.88], provides an elementary analytical description for essentially arbitrary no-slip fractions.

  8. Two touching spherical drops in a uniaxial compressional flow: The effect of interfacial slip

    Science.gov (United States)

    Goel, Sachin; Ramachandran, Arun

    2016-05-01

    This study presents a semi-analytical solution for the problem of two touching drops with slipping interfaces pushed against each other in a uniaxial compressional flow at low capillary and Reynolds numbers. The jump in the tangential velocity at the liquid-liquid interface is modeled using the Navier slip condition. Analytical solutions of the contact force, the drop-scale stresses, and the drop-scale pressure are provided as functions of the slip coefficient (" separators=" α ) , the viscosity ratio (" separators=" κ ) , and the drop size ratio (" separators=" k ) . Since unequal drop sizes are considered, two problems are solved in the tangent sphere co-ordinate system to determine the steady state position: a pair of touching drops with its contact point at the origin of an axisymmetric straining flow, and two touching drops placed in a uniform flow parallel to the axis of symmetry of the drops. A general observation is that the effect of slip is manifested most strongly for drops whose viscosity is much greater than the suspending fluid (" separators=" κ ≫ 1 ) . For highly viscous drops, the flow and stress fields transition from those corresponding to solid particles for ακ ≪ 1, to those for inviscid drops in the limit ακ ≫ 1. The analytical expressions provided here for the contact force and the stress distributions will serve to provide the restrictions that complete the definition of the lubrication flow problem in the thin film between the two colliding drops. While the contact force that drains fluid out of the thin film is relatively unaffected by slip, the tangential stress and pressure in the near-contact region are mitigated significantly for ακ ≫ 1. The latter is expected to assist coalescence at high capillary numbers.

  9. Influence of thermal radiation and heat generation/absorption on MHD heat transfer flow of a micropolar fluid past a wedge considering hall and ion slip currents

    Directory of Open Access Journals (Sweden)

    Uddin Ziya

    2014-01-01

    Full Text Available In this paper a numerical model is developed to examine the effect of thermal radiation on magnetohydrodynamic heat transfer flow of a micropolar fluid past a non-conducting wedge in presence of heat source/sink. In the model it is assumed that the fluid is viscous, incompressible and electrically conducting. The Hall and ion slip effects have also been taken into consideration. The model contains highly non-linear coupled partial differential equations which have been converted into ordinary differential equation by using the similarity transformations. These equations are then solved numerically by Shooting technique along with the Runge-Kutta-Fehlberg integration scheme for entire range of parameters with appropriate boundary conditions. The effects of various parameters involved in the problem have been studied with the help of graphs. Numerical values of skin friction coefficients and Nusselt number are presented in tabular form. The results showed that the micropolar fluids are better to reduce local skin drag as compared to Newtonian fluids and the presence of heat sink increases the heat transfer rate.

  10. Effect of Slip Time in Forming Neo-Esophageal Stenosis After Replacement of a Thoracic Esophagus With Nitinol Artificial Esophagus.

    Science.gov (United States)

    Liang, Xian-Liang; Liang, Jian-Hui

    2015-07-01

    Attempts have been made to investigate the effect of slip time of nitinol artificial esophagus for forming neo-esophageal stenosis after replacement of a thoracic esophagus with nitinol artificial esophagus in 20 experimental pigs. The pigs whose slip time was less than 90 days postoperatively had severe dysphagia (Bown's III) immediately after they were fed, and the dysphagia aggravated gradually later on (Bown's III-IV). The pigs whose slip time was more than 90 days postoperatively had mild/moderate dysphagia (Bown's I-II) immediately after they were fed, and the dysphagia relieved gradually later on (Bown's II-I-0). The ratios between the diameter of neo-esophagus in different slip time and normal esophagus were 25% (at 2 months postoperatively), 58% (at 4 months postoperatively), and 93% (at 6 months postoperatively), respectively. The relationship between nitinol artificial esophagus slip time and neo-esophageal stenosis showed a positive correlation. After replacement of a thoracic esophagus with nitinol artificial esophagus, the artificial esophageal slip time not only affected the original diameter of the neo-esophagus immediately, but also affected the neo-esophageal scar stricture forming process later on. The narrowing of neo-esophagus is caused by overgrowth of scar tissue. But there is the positive correlation between artificial esophagus slip time and neo-esophageal stenosis, so this can be a way of overcoming neo-esophageal stenosis by delaying slip time of artificial esophagus.

  11. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-09-01

    Full Text Available The boundary layer flow and heat transfer towards a porous exponential stretching sheet in presence of a magnetic field is presented in this analysis. Velocity slip and thermal slip are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter as well as with the increasing magnetic parameter. Temperature increases with the increasing values of magnetic parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.

  12. A nonlinear effective slip interface law for transport phenomena between a fracture flow and a porous medium

    CERN Document Server

    Marciniak-Czochra, Anna

    2013-01-01

    We present modeling of an incompressible viscous flow through a fracture adjacent to a porous medium. We consider a fast stationary flow, predominantly tangential to the porous medium. Slow flow in such setting can be described by the Beavers-Joseph-Saffman slip. For fast flows, a nonlinear filtration law in the porous medium and a non- linear interface law are expected. In this paper we rigorously derive a quadratic effective slip interface law which holds for a range of Reynolds numbers and fracture widths. The porous medium flow is described by the Darcys law. The result shows that the interface slip law can be nonlinear, independently of the regime for the bulk flow. Since most of the interface and boundary slip laws are obtained via upscaling of complex systems, the result indicates that studying the inviscid limits for the Navier-Stokes equations with linear slip law at the boundary should be rethought.

  13. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  14. Magnetohydrodynamic and Slip Effects on the Flow and Mass Transfer over a Microcantilever-Based Sensor

    Directory of Open Access Journals (Sweden)

    M. B. Akgül

    2012-01-01

    Full Text Available Hydromagnetic flow and mass transfer of a viscous incompressible fluid over a microcantilever sensor surface are studied in the presence of slip flow. In addition, chemical reaction at the sensor surface is taken into account. The governing equations for the flow are reduced to a local nonsimilarity form. Resulting equations are solved numerically for various values of flow parameters. Effects of physical quantities on the velocity and concentration profiles are discussed in detail.

  15. A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    Tasawar Hayat; Najma Saleem; Awatif A. Hendi

    2011-01-01

    A mathematical model is presented with an interest to examine the peristaltic motion in an asymmetric channel by taking into account the slip, heat and mass transfer. Constitutive relationships for a micropolar fluid are used. The solution procedure for nonlinear analysis is given under long wavelength and low Reynolds number approximations. The effects of sundry parameters entering into the expressions of axial velocity,temperature and concentration are explored. Pumping and trapping phenomena are discussed.

  16. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geo- metrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hy- drodynamic load support as high as 2.5 times of what the geometrical conver- gent-wedge can produce. Wall slip usually gives a small surface friction.

  17. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    MA GuoJun; WU ChengWei; ZHOU Ping

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geometrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hydrodynamic load support as high as 2.5 times of what the geometrical convergent-wedge can produce. Wall slip usually gives a small surface friction.

  18. Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate

    Science.gov (United States)

    Ayub, M.; Abbas, T.; Bhatti, M. M.

    2016-06-01

    The boundary layer flow of nanofluid that is electrically conducting over a Riga plate is considered. The Riga plate is an electromagnetic actuator which comprises a spanwise adjusted cluster of substituting terminal and lasting magnets mounted on a plane surface. The numerical model fuses the Brownian motion and the thermophoresis impacts because of the nanofluid and the Grinberg term for the wall parallel Lorentz force due to the Riga plate in the presence of slip effects. The numerical solution of the problem is presented using the shooting method. The novelties of all the physical parameters such as modified Hartmann number, Richardson number, nanoparticle concentration flux parameter, Prandtl number, Lewis number, thermophoresis parameter, Brownian motion parameter and slip parameter are demonstrated graphically. Numerical values of reduced Nusselt number, Sherwood number are discussed in detail.

  19. Slip Flow Effects over Hydromagnetic Forced Convective Flow over a Slendering Stretching Sheet

    Directory of Open Access Journals (Sweden)

    anjali devi

    2016-01-01

    Full Text Available Theobjectiveofthisstudyistodeterminethecharacteristicsofhydromagneticflowoveraslendering stretching sheet in slip flow regime. Steady, two dimensional, nonlinear, hydromagnetic laminar flow of an incompressible, viscous and electrically conducting fluid over a stretching sheet with variable thickness in the presence of variable magnetic field and slip flow regime is considered. Governing equations of the problem are converted into ordinary differential equations utilizing similarity transformations. The resulting non-linear differential equations are solved numerically by utilizing Nachtsheim-swigert shooting iterative scheme for satisfaction of asymptotic boundary conditions along with fourth order Runge-Kutta integration method. Numerical computations are carried out for various values of the physical parameters and their effects over the velocity and temperature are analyzed. Numerical values of dimensionless skin friction coefficient and non-dimensional rate of heat transfer are also obtained.

  20. Dufour and Soret effects on MHD flow of Williamson fluid over an infinite rotating disk with anisotropic slip

    CERN Document Server

    Khan, Najeeb Alam

    2016-01-01

    This study deals with the investigation of MHD flow of Williamson fluid over an infinite rotating disk with the effects of Soret, Dufour, and anisotropic slip. The anisotropic slip and the Soret and Dufour effects are the primary features of this study, which greatly influence the flow, heat and mass transport properties. In simultaneous appearance of heat and mass transfer in a moving fluid, the mass flux generated by temperature gradients is known as the thermal-diffusion or Soret effect and the energy flux created by a composition gradient is called the diffusion-thermo or Dufour effect, however, difference in slip lengths in streamwise and spanwise directions is named as anisotropic slip. The system of nonlinear partial differential equations (PDEs), which governs the flow, heat and mass transfer characteristics, is transformed into ordinary differential equations (ODEs) with the help of von K\\'arm\\'an similarity transformation. A numerical solution of the complicated ODEs is carried out by a MATLAB routi...

  1. Effects of cobalt concentration on the relative resistance to octahedral and cube slip in nickle-base superalloys

    Science.gov (United States)

    Bobeck, Gene E.; Miner, R. V.

    1988-01-01

    Compression yielding tests were performed at 760 C on crystals of the Ni base superalloys Rene 150 and a modified MAR-M247, both having two different Co concentrations. For both alloy bases, increasing Co concentration was shown to decrease the critical resolved shear stress for octahedral slip, but to have little effect on that for cube slip. The results suggest that decreasing complex stacking fault energy in the gamma-prime with increasing Co could account for the observed effects.

  2. Effects of Heat Transfer and Nonlinear Slip on the Steady Flow of Couette Fluid by Means of Chebyshev Spectral Method

    Science.gov (United States)

    Ellahi, Rahmat; Wang, Xinil; Hameed, Muhammad

    2014-02-01

    This article is concerned with the study of heat transfer and nonlinear slip effects on the Couette flow of a third-grade fluid. Numerical solutions are obtained by solving nonlinear differential equations using the higher-order Chebyshev spectral method. The results for no slip and no thermal slip become special cases of this study. Moreover, the results for Poiseuille flow can be obtained as a special case from the generalized Couette flow analysis by setting the plate velocity to zero. Graphical results for involved pertinent parameters are sketched and examined.

  3. Effects of cobalt concentration on the relative resistance to octahedral and cube slip in nickel-base superalloys

    Science.gov (United States)

    Bobeck, Gene E.; Miner, R. V.

    1988-11-01

    Compression yielding tests at 760 °C were performed on near [001]- and [lll]-oriented crystals of the Ni-base superalloys René 150 and a modified MAR-M247, both having two different Co concentrations. Octahedral and cube slip occurred for the near [001]- and [lll]-oriented crystals, respectively, for all compositions. For both alloy bases, increasing Co concentration was found to decrease the critical resolved shear stress for octahedral slip but to have little effect on that for cube slip. In the present work, phase analyses and variations in heat treatment indicated that the effects of Co concentration observed were not due simply to changes in the volume fraction or size of the γ' phase. It is suggested that decreasing complex stacking fault energy in the γ' with increasing Co would lead to the observed effects based on current interpretations of the dislocation locking mechanism by cube cross slip in the γ'.

  4. Effects of viscous heating and wall-fluid interaction energy on rate-dependent slip behavior of simple fluids

    Science.gov (United States)

    Bao, Luyao; Priezjev, Nikolai V.; Hu, Haibao; Luo, Kai

    2017-09-01

    Molecular dynamics simulations are used to investigate the rate and temperature dependence of the slip length in thin liquid films confined by smooth, thermal substrates. In our setup, the heat generated in a force-driven flow is removed by the thermostat applied on several wall layers away from liquid-solid interfaces. We found that for both high and low wall-fluid interaction (WFI) energies, the temperature of the fluid phase rises significantly as the shear rate increases. Surprisingly, with increasing shear rate, the slip length approaches a constant value from above for high WFI energies and from below for low WFI energies. The two distinct trends of the rate-dependent slip length are rationalized by examining S ( G1) , the height of the main peak of the in-plane structure factor of the first fluid layer (FFL) together with DWF, which is the average distance between the wall and FFL. The results of numerical simulations demonstrate that reduced values of the structure factor, S ( G1) , correlate with the enhanced slip, while smaller distances DWF indicate that fluid atoms penetrate deeper into the surface potential leading to larger friction and smaller slip. Interestingly, at the lowest WFI energy, the combined effect of the increase of S ( G1) and decrease of DWF with increasing shear rate results in a dramatic reduction of the slip length.

  5. Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects

    Science.gov (United States)

    Sher Akbar, Noreen; Bintul Huda, A.; Tripathi, D.

    2016-09-01

    We investigate the velocity slip and thermal slip effects on peristaltically driven thermal transport of nanofluids through the vertical parallel plates under the influence of transverse magnetic field. The wall surface is propagating with sinusoidal wave velocity c. The flow characteristics are governed by the mass, momentum and energy conservation principle. Low Reynolds number and large wavelength approximations are taken into consideration to simplify the non-linear terms. Analytical solutions for axial velocity, temperature field, pressure gradient and stream function are obtained under certain physical boundary conditions. Two types of nanoparticles, SiO2 and Ag, are considered for analysis with water as base fluid. This is the first article in the literature that discusses the SiO2 and Ag nanoparticles for a peristaltic flow with variable viscosity. The effects of physical parameters on velocity, temperature, pressure and trapping are discussed. A comparative study of SiO2 nanofluid, Ag nanofluid and pure water is also presented. This model is applicable in biomedical engineering to make thermal peristaltic pumps and other pumping devices like syringe pumps, etc. It is observed that pressure for pure water is maximum and pressure for Ag nanofluid is minimum.

  6. Effect of intermolecular potential on compressible Couette flow in slip and transitional regimes

    Science.gov (United States)

    Weaver, Andrew B.; Venkattraman, A.; Alexeenko, Alina A.

    2014-10-01

    The effect of intermolecular potentials on compressible, planar flow in slip and transitional regimes is investigated using the direct simulation Monte Carlo method. Two intermolecular interaction models, the variable hard sphere (VHS) and the Lennard-Jones (LJ) models, are first compared for subsonic and supersonic Couette flows of argon at temperatures of 40, 273, and 1,000 K, and then for Couette flows in the transitional regime ranging from Knudsen numbers (Kn) of 0.0051 to 1. The binary scattering model for elastic scattering using the Lennard-Jones (LJ) intermolecular potential proposed recently [A. Venkattraman and A. Alexeenko, "Binary scattering model for Lennard-Jones potential: Transport coefficients and collision integrals for non-equilibrium gas flow simulations," Phys. Fluids 24, 027101 (2012)] is shown to accurately reproduce both the theoretical collision frequency in an equilibrium gas as well as the theoretical viscosity variation with temperature. The use of a repulsive-attractive instead of a purely repulsive potential is found to be most important in the continuum and slip regimes as well as in flows with large temperature variations. Differences in shear stress of up to 28% between the VHS and LJ models is observed at Kn=0.0051 and is attributed to differences in collision frequencies, ultimately affecting velocity gradients at the wall. For Kn=1 where the Knudsen layer expands the entire domain, the effect of the larger collision frequency in the LJ model relative to VHS diminishes, and a 7% difference in shear stress is observed.

  7. Analysis of the growth of strike-slip faults using effective medium theory

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, A.; Berryman, J.G.

    2009-10-15

    Increases in the dimensions of strike-slip faults including fault length, thickness of fault rock and the surrounding damage zone collectively provide quantitative definition of fault growth and are commonly measured in terms of the maximum fault slip. The field observations indicate that a common mechanism for fault growth in the brittle upper crust is fault lengthening by linkage and coalescence of neighboring fault segments or strands, and fault rock-zone widening into highly fractured inner damage zone via cataclastic deformation. The most important underlying mechanical reason in both cases is prior weakening of the rocks surrounding a fault's core and between neighboring fault segments by faulting-related fractures. In this paper, using field observations together with effective medium models, we analyze the reduction in the effective elastic properties of rock in terms of density of the fault-related brittle fractures and fracture intersection angles controlled primarily by the splay angles. Fracture densities or equivalent fracture spacing values corresponding to the vanishing Young's, shear, and quasi-pure shear moduli were obtained by extrapolation from the calculated range of these parameters. The fracture densities or the equivalent spacing values obtained using this method compare well with the field data measured along scan lines across the faults in the study area. These findings should be helpful for a better understanding of the fracture density/spacing distribution around faults and the transition from discrete fracturing to cataclastic deformation associated with fault growth and the related instabilities.

  8. Analytical solution for peristaltic flow of conducting nanofluids in an asymmetric channel with slip effect of velocity, temperature and concentration

    Directory of Open Access Journals (Sweden)

    S. Sreenadh

    2016-06-01

    Full Text Available The Peristaltic transport of conducting nanofluids under the effect of slip condition in an asymmetric channel is reported in the present work. The mathematical modelling has been carried out under long wavelength and low Reynolds number approximations. The analytical solutions are obtained for pressure rise, nanoparticle concentration, temperature distribution, velocity profiles and stream function. Influence of various parameters on the flow characteristics has been discussed with the help of graphs. The results showed that the pressure rise increases with increasing magnetic effect and decreases with increasing slip parameter. The effects of thermophoresis parameter and Brownian motion parameter on the nanoparticle concentration and temperature distribution are studied. It is observed that the pressure gradient increases with increasing slip parameter and magnetic effect. The trapping phenomenon for different parameters is presented.

  9. Effects of acoustic waves on stick-slip in granular media and implications for earthquakes

    Science.gov (United States)

    Johnson, P.A.; Savage, H.; Knuth, M.; Gomberg, J.; Marone, Chris

    2008-01-01

    It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be large enough to inhibit triggering by seismic-wave stress perturbations. To understand the physics of dynamic triggering better, as well as the influence of dynamic stressing on earthquake recurrence, we have conducted laboratory studies of stick-slip in granular media with and without applied acoustic vibration. Glass beads were used to simulate granular fault zone material, sheared under constant normal stress, and subject to transient or continuous perturbation by acoustic waves. Here we show that small-magnitude failure events, corresponding to triggered aftershocks, occur when applied sound-wave amplitudes exceed several microstrain. These events are frequently delayed or occur as part of a cascade of small events. Vibrations also cause large slip events to be disrupted in time relative to those without wave perturbation. The effects are observed for many large-event cycles after vibrations cease, indicating a strain memory in the granular material. Dynamic stressing of tectonic faults may play a similar role in determining the complexity of earthquake recurrence. ??2007 Nature Publishing Group.

  10. A distributed mechanical joint contact model with slip/slap coupling effects

    Science.gov (United States)

    Ahmadian, Hamid; Mohammadali, Mohsen

    2016-12-01

    This paper introduces a zero thickness interface model that considers hysteresis effects in both normal and shear directions of a contact. The model is rate independent and represents coupling effects between normal and shear displacements. Contact effects are included through a segment-to-segment contact model which considers stick, micro-slip, slide and slap behaviors at every point within the contact interface. The model has six parameters and three memory variables without the need for integration during response computations. Behavior of the model is validated using the available mechanical joint records in the literature and it is successfully employed for model identification and dynamic response prediction of an internally resonating test structure with frictional support.

  11. Combine effects of Magnetohydrodynamics (MHD and partial slip on peristaltic Blood flow of Ree–Eyring fluid with wall properties

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-09-01

    Full Text Available In this article, combine effects of Magnetohydrodynamics and partial slip on Blood flow of Ree–Eyring fluid through a porous medium have been investigated. The walls of the non-uniform porous channel are considered as compliant. The governing equation of Ree–Eyring fluid for blood flow are simplified using long wavelength and low Reynolds number approximation. The obtained resulting equation are solved analytically and exact solution has been obtained. The impact of different physical parameters such as Hartmann number, slip parameter, porous parameter, wall rigidity parameter, wall tension and mass characterization parameter are taken into account. It is found that velocity distribution increases due to slip effects while its behavior is opposite for Hartmann number. Trapping mechanism has also taken under consideration by drawing contour streamlines.

  12. Investigations of Slip Effect on the Performance of Micro Gas Bearings and Stability of Micro Rotor-Bearing Systems

    Directory of Open Access Journals (Sweden)

    Jieyu Chen

    2007-08-01

    Full Text Available Incorporating the velocity slip effect of the gas flow at the solid boundary, theperformance and dynamic response of a micro gas-bearing-rotor system are investigated inthis paper. For the characteristic length scale of the micro gas bearing, the gas flow in thebearing resides in the slip regime rather than in the continuum regime. The modifiedReynolds equations of different slip models are presented. Gas pressure distribution and loadcarrying capacity are obtained by solving the Reynolds equations with finite differentmethod (FDM. Comparing results from different models, it is found that the second orderslip model agrees reasonably well with the benchmarked solutions obtained from thelinearized Boltzmann equation. Therefore, dynamic coefficients derived from the secondorder slip model are employed to evaluate the linear dynamic stability and vibrationcharacteristics of the system. Compared with the continuum flow model, the slip effectreduces dynamic coefficients of the micro gas bearing, and the threshold speed for stableoperation is consequently raised. Also, dynamic analysis shows that the system responseschange with variation of the operating parameters including the eccentricity ratio, therotational speed, and the unbalance ratio.

  13. Partial slip effect in flow of magnetite-Fe{sub 3}O{sub 4} nanoparticles between rotating stretchable disks

    Energy Technology Data Exchange (ETDEWEB)

    Hayat, Tasawar [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Qayyum, Sumaira [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Imtiaz, Maria, E-mail: mi_qau@yahoo.com [Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000 (Pakistan); Alzahrani, Faris; Alsaedi, Ahmed [Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2016-09-01

    This paper addresses the flow of magnetic nanofluid (ferrofluid) between two parallel rotating stretchable disks with different rotating and stretching velocities. Water based fluid comprising magnetite-Fe{sub 3}O{sub 4} nanoparticles is addressed. Velocity slip and temperature jump at solid–fluid interface are also taken into account. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are obtained. Effects of various pertinent parameters on the velocity and temperature profiles are shown and evaluated. Computations for skin friction coefficient and Nusselt number are presented and examined for the influence of involved parameters. It is noted that tangential velocity of fluid decreases for larger velocity slip parameter. Fluid temperature also reduces for increasing value of thermal slip parameter. Surface drag force and heat transfer rate at lower disk are enhanced when magnetic field strength is increased. - Highlights: • Flow and heat transfer of ferrofluid induced by two stretchable rotating disks with velocity and thermal slips are explored. • Fluid temperature increases for larger solid volume fraction of nanofluid. • Heat transfer rate decreases for increasing values of thermal slip parameter.

  14. Effects of vibration training in reducing risk of slip-related falls among young adults with obesity.

    Science.gov (United States)

    Yang, Feng; Munoz, Jose; Han, Long-Zhu; Yang, Fei

    2017-05-24

    This study examined the effects of controlled whole-body vibration training on reducing risk of slip-related falls in people with obesity. Twenty-three young adults with obesity were randomly assigned into either the vibration or placebo group. The vibration and placebo groups respectively received 6-week vibration and placebo training on a side-alternating vibration platform. Before and after the training, the isometric knee extensors strength capacity was measured for the two groups. Both groups were also exposed to a standardized slip induced by a treadmill during gait prior to and following the training. Dynamic stability and fall incidences responding to the slip were also assessed. The results indicated that vibration training significantly increased the muscle strength and improved dynamic stability control at recovery touchdown after the slip occurrence. The improved dynamic stability could be resulted from the enhanced trunk segment movement control, which may be attributable to the strength increment caused by the vibration training. The decline of the fall rates from the pre-training slip to the post-training one was greater among the vibration group than the placebo group (45% vs. 25%). Vibration-based training could be a promising alternative or additional modality to active exercise-based fall prevention programs for people with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Numerical investigation into the effects of ordered particle packing and slip flow on the performance of chromatography.

    Science.gov (United States)

    Yan, Xiaohong; Wang, Qiuwang

    2013-05-01

    The pressure drop and the plate height of chromatography columns packed with particles in the face-centered cubic, the body-centered cubic and the simple cubic configurations are calculated by a volume averaging method model. It is found that the Kozeny-Carman equation provides a reasonable prediction of the pressure drop when particles are in the face-centered cubic configuration, but overestimates the pressure drop when particles are in the body-centered cubic and the simple cubic configurations. The face-centered cubic configuration has the advantage to provide a smaller longitudinal dispersion coefficient than the body-centered cubic, the simple cubic, and the random configurations. The pressure drop and the plate height for slip flow through particles in the face-centered cubic configuration are lower than that for no-slip flow. The values of the smallest reduced plate height of columns packed with particles in the face-centered cubic configuration for no-slip flow and slip flow are about 0.084 and 0.059, respectively. The plate height of the ordered particle packing structures is smaller and the effect of slip flow on the plate height is less remarkable than results reported in literature.

  16. Slip effects on a generalized Burgers’ fluid flow between two side walls with fractional derivative

    Directory of Open Access Journals (Sweden)

    Shihao Han

    2016-01-01

    Full Text Available This paper presents a research for the 3D flow of a generalized Burgers’ fluid between two side walls generated by an exponential accelerating plate and a constant pressure gradient, where the no-slip assumption between the exponential accelerating plate and the Burgers’ fluid is no longer valid. The governing equations of the generalized Burgers’ fluid flow are established by using the fractional calculus approach. Exact analytic solutions for the 3D flow are established by employing the Laplace transform and the finite Fourier sine transform. Furthermore, some 3D and 2D figures for the fluid velocity and shear stress are plotted to analyze and discuss the effects of various parameters.

  17. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    Science.gov (United States)

    Hayat, T.; Nisar, Z.; Ahmad, B.; Yasmin, H.

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters.

  18. Effects of interface slip and viscoelasticity on the dynamic response of droplet quartz crystal microbalances.

    Science.gov (United States)

    Zhuang, Han; Lu, Pin; Lim, Siak Piang; Lee, Heow Pueh

    2008-10-01

    In the present paper we first present a derivation based on the time-dependent perturbation theory to develop the dynamical equations which can be applied to model the response of a droplet quartz crystal microbalance (QCM) in contact with a single viscoelastic media. Moreover, the no-slip boundary condition across the device-viscoelastic media interface has been relaxed in the present model by using the Ellis-Hayward slip length approach. The model is then used to illustrate the characteristic changes in the frequency and attenuation of the QCM with and without the boundary slippage due to the changes in viscoelasticity as the coated media varies from Newtonian liquid to solid. To complement the theory, experiments have been conducted with microliter droplets of aqueous glycerol solutions and silicone oils with a viscosity in the range of 50 approximately 10,000 cS. The results have confirmed the Newtonian characteristics of the glycerol solutions. In contrast, the acoustic properties of the silicones oils as reflected in the impedance analysis are different from the glycerol solutions. More importantly, it was found that for the silicone oils the frequency steadily increased for several hours and even exceeded the initial value of the unloaded crystal as reflected in the positive frequency shift. Collaborative effects of interfacial slippage and viscoelasticity have been introduced to qualitatively interpret the measured frequency up-shifts for the silicone oils. The present work shows the potential importance of the combined effects of viscoelasticity and interfacial slippage when using the droplet QCM to investigate the rheological behavior of more complex fluids.

  19. Spin, slip, and settle: effects of shape on motion for Taylor-scale particles in homogeneous isotropic turbulence

    Science.gov (United States)

    Byron, Margaret; Tao, Yiheng; Houghton, Isabel; Variano, Evan

    2014-11-01

    We fabricate hydrogel cylinders of varying aspect ratios and suspend them in homogeneous isotropic turbulence at high Reynolds number. Cylinders are nearly neutrally buoyant and refractive-index-matched to water, with characteristic lengthscales that are close to the Taylor microscale. We simultaneously image these cylinders and the surrounding fluid for stereoscopic PIV measurement, permitting calculation of instantaneous particle slip velocity. We measure the particles' settling velocity in quiescent flow and compare this to both the calculated slip velocities and empirically-predicted settling velocities. Particle rotation is determined via the solid-body rotation equation and compared with fluid-phase properties (vorticity, shear, et al). We find that the aspect ratio of the cylinder has only a weak effect on its expected value of angular velocity magnitude, and further examine the influence of aspect ratio on slip and settling velocities. Lastly, we discuss applications of our results to problems of underwater navigation in aquatic organisms.

  20. Partial slip effect in flow of magnetite-Fe3O4 nanoparticles between rotating stretchable disks

    Science.gov (United States)

    Hayat, Tasawar; Qayyum, Sumaira; Imtiaz, Maria; Alzahrani, Faris; Alsaedi, Ahmed

    2016-09-01

    This paper addresses the flow of magnetic nanofluid (ferrofluid) between two parallel rotating stretchable disks with different rotating and stretching velocities. Water based fluid comprising magnetite-Fe3O4 nanoparticles is addressed. Velocity slip and temperature jump at solid-fluid interface are also taken into account. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are obtained. Effects of various pertinent parameters on the velocity and temperature profiles are shown and evaluated. Computations for skin friction coefficient and Nusselt number are presented and examined for the influence of involved parameters. It is noted that tangential velocity of fluid decreases for larger velocity slip parameter. Fluid temperature also reduces for increasing value of thermal slip parameter. Surface drag force and heat transfer rate at lower disk are enhanced when magnetic field strength is increased.

  1. The effect of interfacial slip on the motion and deformation of a droplet in an unbounded arbitrary Stokes flow

    CERN Document Server

    Mandal, Shubhadeep; Chakraborty, Suman

    2015-01-01

    The motion and deformation of a droplet suspended in an unbounded fluid with an arbitrary, but Stokesian, imposed flow is investigated when there is a slip at the interface between the two liquids. The boundary condition at the interface is accounted by means of a simple Navier slip condition. Expressions are derived considering the effect of slip on the velocity and the shape deformation of the droplet for any arbitrary imposed flow field, and results are presented for the specific cases of shear flow and Poiseuille flow with the results of Hetsroni and Haber (J. Fluid Mech., 1970, vol. 41(04), pp. 689-705); and Ramachandran and Leal (J. Rheol., 2012, vol. 56(6), pp. 1555-1587) as the limiting cases of our general expressions. The modification to Fax\\'en's law is also presented in the above perspective.

  2. Advanced Study of Unsteady Heat and Chemical Reaction with Ramped Wall and Slip Effect on a Viscous Fluid

    Science.gov (United States)

    Sohail, Ayesha; Maqbool, K.; Sher Akbar, Noreen; Younas, Muhammad

    2017-03-01

    This paper investigate the effect of slip boundary condition, thermal radiation, heat source, Dufour number, chemical reaction and viscous dissipation on heat and mass transfer of unsteady free convective MHD flow of a viscous fluid past through a vertical plate embedded in a porous media. Numerical results are obtained for solving the nonlinear governing momentum, energy and concentration equations with slip boundary condition, ramped wall temperature and ramped wall concentration on the surface of the vertical plate. The influence of emerging parameters on velocity, temperature and concentration fields are shown graphically.

  3. Effects of layer interface slip on the response and performance of elastic multi-layered flexible airport pavement systems

    CSIR Research Space (South Africa)

    Maina, JW

    2007-08-01

    Full Text Available In this study, the effect of layer interface slip rate on the critical responses such as (primary) tensile strains as well as strain distortion energies for a flexible runway pavement structure is examined based on strain energy of distortion...

  4. Combined Effect of Surface Roughness and Slip Velocity on Jenkins Model Based Magnetic Squeeze Film in Curved Rough Circular Plates

    Directory of Open Access Journals (Sweden)

    Jimit R. Patel

    2014-01-01

    Full Text Available This paper aims to discuss the effect of slip velocity and surface roughness on the performance of Jenkins model based magnetic squeeze film in curved rough circular plates. The upper plate’s curvature parameter is governed by an exponential expression while a hyperbolic form describes the curvature of lower plates. The stochastic model of Christensen and Tonder has been adopted to study the effect of transverse surface roughness of the bearing surfaces. Beavers and Joseph’s slip model has been employed here. The associated Reynolds type equation is solved to obtain the pressure distribution culminating in the calculation of load carrying capacity. The computed results show that the Jenkins model modifies the performance of the bearing system as compared to Neuringer-Rosensweig model, but this model provides little support to the negatively skewed roughness for overcoming the adverse effect of standard deviation and slip velocity even if curvature parameters are suitably chosen. This study establishes that for any type of improvement in the performance characteristics the slip parameter is required to be reduced even if variance (−ve occurs and suitable magnetic strength is in force.

  5. Combined effects of magnetic field and partial slip on obliquely striking rheological fluid over a stretching surface

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, S. [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Mehmood, Rashid, E-mail: rmqau@hotmail.com [Department of Mathematics, Quaid-i-Azam University 45320, Islamabad 44000 (Pakistan); Akbar, Noreen Sher [DBS and H, CEME, National University of Sciences and Technology, Islamabad (Pakistan)

    2015-03-15

    This study explores the collective effects of partial slip and transverse magnetic field on an oblique stagnation point flow of a rheological fluid. The prevailing momentum equations are designed by manipulating Casson fluid model. By applying the suitable similarity transformations, the governing system of equations is being transformed into coupled nonlinear ordinary differential equations. The resulting system is handled numerically through midpoint integration scheme together with Richardson's extrapolation. It is found that both normal and tangential velocity profiles decreases with an increase in magnetic field as well as slip parameter. Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. A suitable comparison with the previous literature is also provided to confirm the accuracy of present results for the limiting case. - Highlights: • The MHD 2-Dimensional flow of Casson fluid is present. • Streamlines pattern are presented to study the actual impact of slip mechanism and magnetic field on the oblique flow. • The prevailing momentum equations are designed by manipulating Casson fluid model. • Obtained coupled ordinary differential equations are investigated numerically. • Graphical results are obtained for each physical parameter.

  6. Effects of temperature, slip amplitude, contact pressure on fretting fatigue behavior of Ti811 alloys at elevated temperatures

    Institute of Scientific and Technical Information of China (English)

    Xiaohua ZHANG; Daoxin LIU

    2009-01-01

    Effects of the temperature, slip amplitude, and contact pressure on fretting fatigue (FF) behavior of the Ti811 titanium alloy were investigated using a high frequency fatigue machine and a home-made high temperature apparatus. The fretting fatigue failure mechanism was studied by observing the fretting surface morphology features. The results show that the sensitivity to fretting fatigue is high at both 350 and 500 ℃. The higher the temperature, the more sensitive to the fretting fatigue failure is. Creep is an important factor that influences the fretting fatigue failure process at elevated temperatures. The fretting fatigue life of the Ti811 alloy does not change in a monotonic way as the slip amplitude and contact pressure increase. This is owing to the fact that the slip amplitude affects the action of fatigue and wear in the fretting process, and the nominal contact pressure affects the distribution and concentration of the stress and the amplitude of fretting slip at the contact surface, and thus further influences the crack initiation probability and the driving force for propagation.

  7. Tensorial hydrodynamic slip

    CERN Document Server

    Bazant, Martin Z

    2008-01-01

    We describe a tensorial generalization of the Navier slip boundary condition and illustrate its use in solving for flows around anisotropic textured surfaces. Tensorial slip can be derived from molecular or microstructural theories or simply postulated as an constitutive relation, subject to certain general constraints on the interfacial mobility. The power of the tensor formalism is to capture complicated effects of surface anisotropy, while preserving a simple fluid domain. This is demonstrated by exact solutions for laminar shear flow and pressure-driven flow between parallel plates of arbitrary and different textures. From such solutions, the effects of rotating a texture follow from simple matrix algebra. Our results may be useful to extracting local slip tensors from global measurements, such as the permeability of a textured channel or the force required to move a patterned surface, in experiments or simulations.

  8. Slip Effects on the Unsteady MHD Pulsatile Blood Flow through Porous Medium in an Artery under the Effect of Body Acceleration

    Directory of Open Access Journals (Sweden)

    Islam M. Eldesoky

    2012-01-01

    Full Text Available Unsteady pulsatile flow of blood through porous medium in an artery has been studied under the influence of periodic body acceleration and slip condition in the presence of magnetic field considering blood as an incompressible electrically conducting fluid. An analytical solution of the equation of motion is obtained by applying the Laplace transform. With a view to illustrating the applicability of the mathematical model developed here, the analytic explicit expressions of axial velocity, wall shear stress, and fluid acceleration are given. The slip condition plays an important role in shear skin, spurt, and hysteresis effects. The fluids that exhibit boundary slip have important technological applications such as in polishing valves of artificial heart and internal cavities. The effects of slip condition, magnetic field, porous medium, and body acceleration have been discussed. The obtained results, for different values of parameters into the problem under consideration, show that the flow is appreciably influenced by the presence of Knudsen number of slip condition, permeability parameter of porous medium, Hartmann number of magnetic field, and frequency of periodic body acceleration. The study is useful for evaluating the role of porosity and slip condition when the body is subjected to magnetic resonance imaging (MRI.

  9. Coseismic temporal changes of slip direction: the effect of absolute stress on dynamic rupture

    Science.gov (United States)

    Guatteri, Mariagiovanna; Spudich, P.

    1998-01-01

    We investigate the dynamics of rupture at low-stress level. We show that one main difference between the dynamics of high- and low-stress events is the amount of coseismic temporal rake rotation occurring at given points on the fault. Curved stations on exposed fault surfaces and earthquake dislocation models derived from ground-motion inversion indicate that the slip direction may change with time at a pointon the fault during dynamic rupture. We use a 3D boundary integral method to model temporal rake variations during dynamic rupture propagation assuming a slip-weakening friction law and isotropic friction. The points at which the slip rotates most are characterized by an initial shear stress direction substantially different from the average stress direction over the fault plane. We show that for a given value of stress drop, the level of initial shear stress (i.e., the fractional stress drop) determines the amount of rotation in slip direction. We infer that seismic events that show evidence of temporal rake rorations are characterized by a low initial shear-stress level with spatially variable direction on the fault (possibly due to changes in fault surface geometry) and an almost complete stress drop. Our models motivate a new interpretation of curved and cross-cutting striations and put new constraints on their analysis. The initial rake is in general collinear with the initial stress at the hypocenter zone, supporting the assumptions made in stress-tensor inversion from first-motion analysis. At other points on the fualt, especially away from the hypocenter, the initial slip rake may not be collinear with the initial shear stress, contradicting a common assumption of structural geology. On the other hand, the later part of slip in our models is systematically more aligned withi the average stress direction than the early slip. Our modeling suggests that the length of the straight part of curved striations is usually an upper bound of the slip

  10. Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium

    Directory of Open Access Journals (Sweden)

    M.M. Bhatti

    2016-06-01

    Full Text Available In this article, the simultaneous effects of slip and Magnetohydrodynamics (MHD on peristaltic blood flow of Jeffrey fluid model have been investigated in a non-uniform porous channel. The governing equation of blood flow for Jeffrey fluid model is solved with the help of long wavelength and creeping flow regime. The solution of the resulting differential equation is solved analytically and a closed form solution is presented. The impact of all the physical parameters is plotted for velocity profile and pressure rise. Nowadays, Magnetohydrodynamics is applicable in various magnetic drug targeting for cancer diseases and also very helpful to control the flow. The present analysis is also described for Newtonian fluid (λ1→0 as a special case of our study. It is observed that magnitude of the velocity is opposite near the walls due to slip effects whereas similar behavior has been observed for magnetic field.

  11. Microstructurally Based Cross-slip Mechanisms and Their Effects on Dislocation Microstructure Evolution in fcc Crystals

    Science.gov (United States)

    2015-01-01

    Annu. Rev. Mater. Res. 39 (1) (2009) 361–386. [69] J.R. Greer, J.Th.M. De Hosson, Plasticity in small-sized metallic systems: Intrinsic versus extrinsic ...incorporated into DDD simulations. Accordingly, the motivation of the current work is to incorporate an atomistically informed cross-slip model into DDD

  12. Cube slip and non-Schmid effects in single crystal Ni-base superalloys

    NARCIS (Netherlands)

    Tinga, T.; Brekelmans, W.A.M.; Geers, M.G.D.

    2010-01-01

    An advanced constitutive model incorporating two specific aspects of Ni-base superalloy deformation behaviour is proposed. Several deformation mechanisms are active in these two-phase materials. In the matrix phase, cube slip plays an important role in the orientation dependence of the material. Mor

  13. Numerical investigation of velocity slip and temperature jump effects on unsteady flow over a stretching permeable surface

    Science.gov (United States)

    Hosseini, E.; Loghmani, G. B.; Heydari, M.; Rashidi, M. M.

    2017-02-01

    In this paper, the boundary layer flow and heat transfer of unsteady flow over a porous accelerating stretching surface in the presence of the velocity slip and temperature jump effects are investigated numerically. A new effective collocation method based on rational Bernstein functions is applied to solve the governing system of nonlinear ordinary differential equations. This method solves the problem on the semi-infinite domain without truncating or transforming it to a finite domain. In addition, the presented method reduces the solution of the problem to the solution of a system of algebraic equations. Graphical and tabular results are presented to investigate the influence of the unsteadiness parameter A , Prandtl number Pr, suction parameter fw, velocity slip parameter γ and thermal slip parameter φ on the velocity and temperature profiles of the fluid. The numerical experiments are reported to show the accuracy and efficiency of the novel proposed computational procedure. Comparisons of present results are made with those obtained by previous works and show excellent agreement.

  14. Effects of Navier slip on unsteady flow of a reactive variable viscosity non- Newtonian fluid through a porous saturated medium with asymmetric convecti- ve boundary conditions

    Institute of Scientific and Technical Information of China (English)

    RUNDORA Lazarus; MAKINDE Oluwole Daniel

    2015-01-01

    A study on the effects of Navier slip, in conjunction with other flow parameters, on unsteady flow of reactive variable viscosity third-grade fluid through a porous saturated medium with asymmetric convective boundary conditions is presented. The channel walls are assumed to be subjected to asymmetric convective heat exchange with the ambient, and exothermic chemical reactions take place within the flow system. The heat exchange with the ambient obeys Newton’s law of cooling. The coupled equations, arising from the law of conservation of momentum and the first law of thermodynamics, then the derived system are non- dimensionalised and solved using a semi-implicit finite difference scheme. The lower wall slip parameter is observed to increase the fluid velocity profiles, whereas the upper wall slip parameter retards them because of backflow at the upper channel wall. Heat pro- duction in the fluid is seen to increase with the slip parameters. The wall shear stress increases with the slip parameters while the wall heat transfer rate is largely unaltered by the lower wall slip parameter but marginally increased by the upper wall slip parameter.

  15. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.

    Science.gov (United States)

    Jing, Dalei; Bhushan, Bharat

    2015-09-15

    Fluid drag of micro/nano fluidic systems has inspired wide scientific interest. Surface charge and boundary slip at the solid-liquid interface are believed to affect fluid drag. This review summarizes the recent studies on the coupling of surface charge and slip, and their combined effect on fluid drag at micro/nano scale. The effect of pH on surface charge of borosilicate glass and silica surfaces in deionized (DI) water and saline solution is discussed using a method based on colloidal probe atomic force microscopy (AFM). The boundary slip of various oil-solid interfaces are discussed for samples with different degrees of oleophobicity prepared by nanoparticle-binder system. By changing the pH of solution or applying an electric field, effect of surface charge on slip of a smooth hydrophobic octadecyltrichlorosilane (OTS) in DI water and saline solution is studied. A theoretical model incorporating the coupling relationship between surface charge and slip is used to discuss the combined effect of surface charge-induced electric double layer (EDL) and slip on fluid drag of pressure-driven flow in a one-dimensional parallel-plates microchannel. A theoretical method is used to reduce the fluid drag. The studies show that the increasing magnitude of surface charge density leads to a decrease in slip length. The surface charge results in a larger fluid drag, and the coupling of surface charge and slip can further increase the fluid drag. Surface charge-induced EDLs with asymmetric zeta potentials can effectively reduce the fluid drag.

  16. Combined effect of couple stresses and heat and mass transfer on peristaltic flow with slip conditions in a tube.

    Science.gov (United States)

    Sobh, Ayman M

    2013-10-01

    In this article, the influence of heat and mass transfer on peristaltic transport of a couple stress fluid in a uniform tube with slip conditions on the wall is studied. The problem can model the blood flow in living creatures. Under long wavelength approximation and zero Reynolds number, exact solutions for the axial velocity component, pressure gradient, and both temperature and concentration fields are derived. The pressure rise is computed numerically and explained graphically. Moreover, effects of various physical parameters of the problem on temperature distribution, concentration field, and trapping are studied and discussed graphically.

  17. Wall Slip Effect on Shear-Induced Crystallization Behavior of Isotactic Polypropylene Containing beta-Nucleating Agent

    DEFF Research Database (Denmark)

    Luo, Baojing; Li, Hongfei; Zhang, Yao

    2014-01-01

    Shearing is unavoidable during the polymer process, and isotactic polypropylene (iPP) is one of the most used commercial polymers. iPP mixed with beta-nucleating agent TMB-5 was isothermally crystallized at 135 degrees C from melts under various shear conditions and investigated via synchrotron r......-iPP are in direct proportion to the orientation degree rather than shear rate especially at high shear rate, which proves that wall slip should not be neglected when taking shear effect or rheological behavior into consideration....

  18. Analogue modelling of the effect of topographic steps in the development of strike-slip faults

    Science.gov (United States)

    Tomás, Ricardo; Duarte, João C.; Rosas, Filipe M.; Schellart, Wouter; Strak, Vincent

    2016-04-01

    Strike-slip faults often cut across regions of overthickened crust, such as oceanic plateaus or islands. These morphological steps likely cause a local variation in the stress field that controls the geometry of these systems. Such variation in the stress field will likely play a role in strain localization and associated seismicity. This is of particular importance since wrench systems can produce very high magnitude earthquakes. However, such systems have been generally overlooked and are still poorly understood. In this work we will present a set of analogue models that were designed with the objective of understanding how a step in the morphology affects the development of a strike-slip fault system. The models consist of a sand-cake with two areas with different thicknesses connected by a gentle ramp perpendicular to a dextral strike-slip basal fault. The sand-cake lies above two basal plates to which the dextral relative motion was imposed using a stepping-motor. Our results show that a Riedel fault system develops across the two flat areas. However, a very asymmetric fault pattern develops across the morphological step. A deltoid constrictional bulge develops in the thinner part of the model, which progressively acquires a sigmoidal shape with increasing offset. In the thicker part of the domain, the deformation is mostly accommodated by Riedel faults and the one closer to the step acquires a relatively lower angle. Associated to this Riedel fault a collapse area develops and amplifies with increasing offset. For high topographic steps, the propagation of the main fault across the step area only occurs in the final stages of the experiments, contrary to what happens when the step is small or inexistent. These results strongly suggest a major impact of the variation of topography on the development of strike-slip fault systems. The step in the morphology causes variations in the potential energy that changes the local stress field (mainly the vertical

  19. Effects of partial slip boundary condition and radiation on the heat and mass transfer of MHD-nanofluid flow

    Science.gov (United States)

    Abd Elazem, Nader Y.; Ebaid, Abdelhalim

    2017-07-01

    In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.

  20. Unsteady MHD Slip Flow of a Non-Newtonian Casson Fluid due to Stretching Sheet with Suction or Blowing Effect

    Directory of Open Access Journals (Sweden)

    A Mahdy

    2016-01-01

    Full Text Available In this contribution a numerical study is carried out to analyze the effect of slip at the boundary of unsteady two-dimensional MHD flow of a non-Newtonian fluid over a stretching surface having a prescribed surface temperature in the presence of suction or blowing at the surface. Casson fluid model is used to characterize the non-Newtonian fluid behavior. With the help of similarity transformations, the governing partial differential equations corresponding to the momentum and heat transfer are reduced to a set of non-linear ordinary differential equations, which are then solved for local similar solutions using the very robust computer algebra software MATLAB. The flow features and heat transfer characteristics for different values of the governing parameters are graphically presented and discussed in detail. Comparison with available results for certain cases is excellent. The effect of increasing values of the Casson parameter is seen to suppress the velocity field. But the temperature is enhanced with increasing Casson parameter. For increasing slip parameter, velocity increases and thermal boundary layer becomes thinner in the case of suction or blowing.

  1. Joule heating effects on electromagnetohydrodynamic flow through a peristaltically induced micro-channel with different zeta potential and wall slip

    Science.gov (United States)

    Ranjit, N. K.; Shit, G. C.

    2017-09-01

    This paper aims to develop a mathematical model for magnetohydrodynamic flow of biofluids through a hydrophobic micro-channel with periodically contracting and expanding walls under the influence of an axially applied electric field. The velocity slip effects have been taken into account at the channel walls by employing different slip lengths due to hydrophobic gating. Different temperature jump factors have also been used to investigate the thermomechanical interactions at the fluid-solid interface. The electromagnetohydrodynamic flow in a microchannel is simplified under the framework of Debye-Hückel linearization approximation. We have derived the closed-form solutions for the linearized dimensionless boundary value problem under the assumptions of long wave length and low Reynolds number. The axial velocity, temperature, pressure distribution, stream function, wall shear stress and the Nusselt number have been appraised for diverse values of the parameters approaching into the problem. Our main focus is to determine the effects of different zeta potential on the axial velocity and temperature distribution under electromagnetic environment. This study puts forward an important observation that the different zeta potential plays an important role in controlling fluid velocity. The study further reveals that the temperature increases significantly with the Joule heating parameter and the Brinkman number (arises due to the dissipation of energy).

  2. Effect of the Loma Prieta Earthquake on surface slip along the Calaveras Fault in the Hollister area

    Science.gov (United States)

    Galehouse, Jon S.

    Over the past ten years we have made over 800 measurements of slip rates at 20 sites on various faults in the San Francisco Bay region. This data set enables us to compare rates and amounts of slip on these various faults before and after the Loma Prieta earthquake (LPEQ) on the San Andreas fault. No surface slip rate changes associated with the earthquake occurred at any of our sites on the San Andreas, Hayward, northern Calaveras, Concord-Green Valley, Seal Cove-San Gregorio, Antioch, Rodgers Creek, or West Napa faults. The LPEQ apparently triggered up to 12-14 mm of right slip on the southern Calaveras fault at our two sites in the Hollister area less than 50 km from the epicenter. Most of this slip was probably coseismic or nearly so. About the same amount of slip was triggered at these sites in 1984 by the Morgan Hill earthquake. This slip, in contrast, occurred as afterslip within about a 2.5-month interval. The Calaveras fault in the Hollister area moves episodically, with shorter times of more rapid slip alternating with longer times of slower slip. The alternation occurs whether or not the times of faster slip are triggered by any nearby seismic event(s).

  3. Effect of the Loma Prieta earthquake on surface slip along the Calaveras fault in the Hollister area

    Energy Technology Data Exchange (ETDEWEB)

    Galehouse, J.S. (San Francisco State Univ., CA (USA))

    1990-07-01

    Over the past ten years the author has made over 800 measurements of slip rates at 20 sites on various faults in the San Francisco Bay region. This data set enables them to compare rates and amounts of slip on these various faults before and after the Loma Prieta earthquake (LPEQ) on the San Andreas fault. No surface slip rate changes associated with the earthquake occurred at any of the sites on the San Andreas, Hayward, northern Calaveras, Concord-Green Valley, Seal Cove-San Gregorio, Antioch, Rodgers Creek, or West Napa faults. The LPEQ apparently triggered up to 12-14 mm of right slip on the southern Calaveras fault at two sites in the Hollister area less than 50 km from the epicenter. Most of this slip was probably coseismic or nearly so. About the same amount of slip was triggered at these sites in 1984 by the Morgan Hill earthquake. This slip, in contrast, occurred as afterslip within about a 2.5-month interval. The Calaveras fault in the Hollister area moves episodically, with shorter times of more rapid slip alternating with longer times of slower slip. The alternation occurs whether or not the times of faster slip are triggered by any nearby seismic event(s).

  4. Magnetic field effect on second order slip flow of nanofluid over a stretching/shrinking sheet with thermal radiation effect

    Science.gov (United States)

    Abdul Hakeem, A. K.; Vishnu Ganesh, N.; Ganga, B.

    2015-05-01

    The magnetic field effect on a steady two dimensional laminar radiative flow of an incompressible viscous water based nanofluid over a stretching/shrinking sheet with second order slip boundary condition is investigated both analytically and numerically. The governing partial differential equations are reduced to nonlinear ordinary differential equations by means of Lie symmetry group transformations. The dimensionless governing equations for this investigation are solved analytically using hyper-geometric function and numerically by the fourth order Runge-Kutta method with the shooting technique. A unique exact solution exists for momentum equation in stretching sheet case and dual solutions are obtained for shrinking sheet case which has upper and lower branches. It is found that the lower branch solution vanishes in the presence of higher magnetic field. The velocity and temperature profiles, the local skin friction coefficient and the reduced Nusselt number are examined and discussed for different spherical nanoparticles such as Au, Ag, Cu, Al, Al2 O3 and TiO2. A comparative study between the previously published results and the present analytical and numerical results for a special case is found to be in good agreement.

  5. Effect of slip-area scaling on the earthquake frequency-magnitude relationship

    Science.gov (United States)

    Senatorski, Piotr

    2017-06-01

    The earthquake frequency-magnitude relationship is considered in the maximum entropy principle (MEP) perspective. The MEP suggests sampling with constraints as a simple stochastic model of seismicity. The model is based on the von Neumann's acceptance-rejection method, with b-value as the parameter that breaks symmetry between small and large earthquakes. The Gutenberg-Richter law's b-value forms a link between earthquake statistics and physics. Dependence between b-value and the rupture area vs. slip scaling exponent is derived. The relationship enables us to explain observed ranges of b-values for different types of earthquakes. Specifically, different b-value ranges for tectonic and induced, hydraulic fracturing seismicity is explained in terms of their different triggering mechanisms: by the applied stress increase and fault strength reduction, respectively.

  6. Singular effective slip length for longitudinal flow over a dense bubble mattress

    Science.gov (United States)

    Schnitzer, Ory

    2016-11-01

    We derive accurate asymptotic expansions in the small-solid-fraction limit ɛ segments with 'outer' expansions valid on the scale of the periodicity, where the protruding bubbles appear to touch. For θ close to π / 2 , the inner-region geometry is narrow and the analysis there resembles lubrication theory; for smaller contact angles the inner region is resolved using a Schwarz-Christoffel mapping. In both cases the outer problem is solved using a mapping from a degenerate curvilinear triangle to an auxiliary half plane. The asymptotic analysis explicitly illustrates the logarithmic-to-algebraic transition, and yields a uniformly valid approximation for the slip length for arbitrary contact angles 0 <= θ <= π / 2 . We demonstrate good agreement with a numerical solution (courtesy of Ms Elena Luca).

  7. Effects of Apparent Supersonic Ruptures for Strike-slip Rupture: Should We Consider it in the Seismic Hazard Analysis?

    Science.gov (United States)

    Barrows, M. B.; Shao, G.; Ji, C.

    2009-12-01

    Recent numerical studies indicated that the supersonic rupture could produce larger off-fault damage at distant sites than the sub-shear rupture, due to the famous "mach cone" effect (Dunham and Archuleta, 2005; Bhat et al, 2007). These results were obtained using the steady-state rupture simulations in a half-space earth. For more realistic layered or 3D earth models, we should also consider the effects of apparent supersonic rupture, i.e., the deep rupture is still in a speed slower than the local shear velocity, but faster than the near surface S or even the P wave velocity. The apparent super-shear rupture could excite the mach effect, but how large it is has not yet been quantitatively addressed. In this study, we explore this possibility by performing numerical simulations for pure strike-slip ruptures on a vertical fault inside various layered earth models.

  8. GPS dynamic cycle slip detection and correction with baseline constraint

    Institute of Scientific and Technical Information of China (English)

    Liu Zhenkun; Huang Ahunji

    2009-01-01

    When the cycle slips take place in the attitude determination of a moving platform, the precision of the attitude will be impaired badly. A method of cycle slip detection and correction is proposed, which is suitable to the dynamic measurement using GPS carrier phase: the cycle slips detection is first achieved by triple difference observables, then the cycle slips correction is performed with baseline length constraint. The simulation results show that the proposed method is effective to the dynamic cycle slips problem.

  9. Effect of heat source on MHD free convection flow past an oscillating porous plate in the slip flow regime

    Directory of Open Access Journals (Sweden)

    S. S. Das, L. K. Mishra, P. K. Mishra

    2011-09-01

    Full Text Available This paper investigates the effect of heat source on free convective flow of a viscous incompressible electrically conducting fluid through a porous medium bounded by an oscillating porous plate in the slip flow regime in presence of a transverse magnetic field. The governing equations of the flow field are solved analytically and the expressions for velocity, temperature, skin friction t and the heat flux in terms of Nusselts number Nu are obtained. The effects of the important flow parameters such as magnetic parameter M, permeability parameter Kp, Grashof number for heat transfer Gr, heat source parameter S and rarefaction parameter R on the velocity of the flow field are analyzed quantitatively with the help of figures.

  10. Magnetohydrodynamic and thermal radiation effects on the boundary-layer flow due to a moving extensible surface with the velocity slip model: A comparative study of four nanofluids

    Science.gov (United States)

    Aly, Emad H.; Sayed, Hamed M.

    2017-01-01

    In the current work, we investigated effects of the velocity slip for the flow and heat transfer of four nanofluids over a non-linear stretching sheet taking into account the thermal radiation and magnetic field in presence of the effective electrical conductivity. The governing partial differential equations were transformed into a set of nonlinear ordinary differential equation using similarity transformations before being solved numerically by the Chebyshev pseudospectral differentiation matrix (ChPDM). It was found that the investigated parameters affect remarkably on the nanofluid stream function for the whole investigated nanoparticles. In addition, velocity and skin friction profiles of the four investigated nanofluids decreases and increases, respectively, with the increase of the magnetic parameter, first-order and second-order velocity slips. Further, the flow velocity, surface shear stress and temperature are strongly influenced on applying the velocity slip model, where lower values of the second-order imply higher surface heat flux and thereby making the fluid warmer.

  11. Analysis of fluid motion and heat transport on magnetohydrodynamic boundary layer past a vertical power law stretching sheet with hydrodynamic and thermal slip effects

    Directory of Open Access Journals (Sweden)

    Badr Alkahtani

    2015-12-01

    Full Text Available The present model is committed to the study of MHD boundary layer flow and heat transfer past a nonlinear vertically stretching porous stretching sheet with the effects of hydrodynamic and thermal slip. The boundary value problem, consisting of boundary layer equations of motion and heat transfer, which are nonlinear partial differential equations are transformed into nonlinear ordinary differential equations, with the aid of similarity transformation. This problem has been solved, using Runge Kutta fourth order method with shooting technique. The effects of various physical parameters, such as, stretching parameter m, magnetic parameter M, porosity parameter fw, buoyancy parameter λ, Prandtl number Pr, Eckert number Ec, hydrodynamic slip parameter γ, and thermal slip parameter δ, on flow and heat transfer characteristics, are computed and represented graphically.

  12. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip.

    Science.gov (United States)

    Yasin, Mohd Hafizi Mat; Ishak, Anuar; Pop, Ioan

    2015-12-09

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.

  13. Effects of chemical reactions on MHD micropolar fluid flow past a vertical plate in slip-flow regime

    Institute of Scientific and Technical Information of China (English)

    R.C.Chaudhary; Abhay Kumar Jha

    2008-01-01

    Heat and mass transfer effects on the unsteady flow of a micropolar fluid through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime are studied taking into account a homogeneous chemical reaction of the first order.A uniform magnetic field acts perpendicular to the porous surface absorb micropolar fluid with a suction velocity varying with time.The free stream velocity follows an exponentially increasing or decreasing small perturbation law.Using the approximate method,the expressions for the velocity microrotation,temperature,and concentration are obtained.Futher,the results of the skin friction coefficient,the couple stress coefficient,and the rate of heat and mass transfer at the wall are presented with various values of fluid properties and flow conditions.

  14. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip

    Science.gov (United States)

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2015-12-01

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.

  15. Longitudinal pressure-driven flows between superhydrophobic grooved surfaces: Large effective slip in the narrow-channel limit

    Science.gov (United States)

    Schnitzer, Ory; Yariv, Ehud

    2017-07-01

    The gross amplification of the fluid velocity in pressure-driven flows due to the introduction of superhydrophobic walls is commonly quantified by an effective slip length. The canonical duct-flow geometry involves a periodic structure of longitudinal shear-free stripes at either one or both of the bounding walls, corresponding to flat-meniscus gas bubbles trapped within a periodic array of grooves. This grating configuration is characterized by two geometric parameters, namely the ratio κ of channel width to microstructure period and the areal fraction Δ of the shear-free stripes. For wide channels, κ ≫1 , this geometry is known to possess an approximate solution where the dimensionless slip length λ , normalized by the duct semiwidth, is small, indicating a weak superhydrophobic effect. We here address the other extreme of narrow channels, κ ≪1 , identifying large O (κ-2) values of λ for the symmetric configuration, where both bounding walls are superhydrophobic. This velocity enhancement is associated with an unconventional Poiseuille-like flow profile where the parabolic velocity variation takes place in a direction parallel (rather than perpendicular) to the boundaries. Use of matched asymptotic expansions and conformal-mapping techniques provides λ up to O (κ-1) , establishing the approximationλ ˜κ-2Δ/33 +κ-1Δ/2π ln4 +⋯, which is in excellent agreement with a semianalytic solution of the dual equations governing the respective coefficients of a Fourier-series representation of the fluid velocity. No similar singularity occurs in the corresponding asymmetric configuration, involving a single superhydrophobic wall; in that geometry, a Hele-Shaw approximation shows that λ =O (1 ) .

  16. Effect of Pore Pressure on Slip Failure of an Impermeable Fault: A Coupled Micro Hydro-Geomechanical Model

    Science.gov (United States)

    Yang, Z.; Juanes, R.

    2015-12-01

    The geomechanical processes associated with subsurface fluid injection/extraction is of central importance for many industrial operations related to energy and water resources. However, the mechanisms controlling the stability and slip motion of a preexisting geologic fault remain poorly understood and are critical for the assessment of seismic risk. In this work, we develop a coupled hydro-geomechanical model to investigate the effect of fluid injection induced pressure perturbation on the slip behavior of a sealing fault. The model couples single-phase flow in the pores and mechanics of the solid phase. Granular packs (see example in Fig. 1a) are numerically generated where the grains can be either bonded or not, depending on the degree of cementation. A pore network is extracted for each granular pack with pore body volumes and pore throat conductivities calculated rigorously based on geometry of the local pore space. The pore fluid pressure is solved via an explicit scheme, taking into account the effect of deformation of the solid matrix. The mechanics part of the model is solved using the discrete element method (DEM). We first test the validity of the model with regard to the classical one-dimensional consolidation problem where an analytical solution exists. We then demonstrate the ability of the coupled model to reproduce rock deformation behavior measured in triaxial laboratory tests under the influence of pore pressure. We proceed to study the fault stability in presence of a pressure discontinuity across the impermeable fault which is implemented as a plane with its intersected pore throats being deactivated and thus obstructing fluid flow (Fig. 1b, c). We focus on the onset of shear failure along preexisting faults. We discuss the fault stability criterion in light of the numerical results obtained from the DEM simulations coupled with pore fluid flow. The implication on how should faults be treated in a large-scale continuum model is also presented.

  17. Effects of hysteresis of static contact angle (HSCA) and boundary slip on the hydrodynamics of water striders

    Science.gov (United States)

    Zheng, J.; Wang, B. S.; Chen, W. Q.; Han, X. Y.; Li, C. F.; Zhang, J. Z.; Yu, K. P.

    2017-02-01

    It is known that contact lines keep relatively still on solids until static contact angles exceed an interval of hysteresis of static contact angle (HSCA), and contact angles keep changing as contact lines relatively slide on the solid. Here, the effects of HSCA and boundary slip were first distinguished on the micro-curvature force (MCF) on the seta. Hence, the total MCF is partitioned into static and dynamic MCFs correspondingly. The static MCF was found proportional to the HSCA and related with the asymmetry of the micro-meniscus near the seta. The dynamic MCF, exerting on the relatively sliding contact line, is aroused by the boundary slip. Based on the Blake-Haynes mechanism, the dynamic MCF was proved important for water walking insects with legs slower than the minimum wave speed 23 cm\\cdot s^{-1}. As insects brush the water by laterally swinging legs backwards, setae on the front side of the leg are pulled and the ones on the back side are pushed to cooperatively propel bodies forward. If they pierce the water surface by vertically swinging legs downwards, setae on the upside of the legs are pulled, and the ones on the downside are pushed to cooperatively obtain a jumping force. Based on the dependency between the slip length and shear rate, the dynamic MCF was found correlated with the leg speed U, as F˜ C1U+C2 U^{2+ɛ}, where C1 and C2 are determined by the dimple depth. Discrete points on this curve could give fitted relations as F˜ Ub (Suter et al., J. Exp. Biol. 200, 2523-2538, 1997). Finally, the axial torque on the inclined and partially submerged seta was found determined by the surface tension, contact angle, HSCA, seta width, and tilt angle. The torque direction coincides with the orientation of the spiral grooves of the seta, which encourages us to surmise it is a mechanical incentive for the formation of the spiral morphology of the setae of water striders.

  18. Effects of three-dimensional crustal structure and smoothing constraint on earthquake slip inversions: Case study of the Mw6.3 2009 L'Aquila earthquake

    KAUST Repository

    Gallovič, František

    2015-01-01

    Earthquake slip inversions aiming to retrieve kinematic rupture characteristics typically assume 1-D velocity models and a flat Earth surface. However, heterogeneous nature of the crust and presence of rough topography lead to seismic scattering and other wave propagation phenomena, introducing complex 3-D effects on ground motions. Here we investigate how the use of imprecise Green\\'s functions - achieved by including 3-D velocity perturbations and topography - affect slip-inversion results. We create sets of synthetic seismograms, including 3-D heterogeneous Earth structure and topography, and then invert these synthetics using Green\\'s functions computed for a horizontally layered 1-D Earth model. We apply a linear inversion, regularized by smoothing and positivity constraint, and examine in detail how smoothing effects perturb the solution. Among others, our tests and resolution analyses demonstrate how imprecise Green\\'s functions introduce artificial slip rate multiples especially at shallow depths and that the timing of the peak slip rate is hardly affected by the chosen smoothing. The investigation is extended to recordings of the 2009 Mw6.3 L\\'Aquila earthquake, considering both strong motion and high-rate GPS stations. We interpret the inversion results taking into account the lessons learned from the synthetic tests. The retrieved slip model resembles previously published solutions using geodetic data, showing a large-slip asperity southeast of the hypocenter. In agreement with other studies, we find evidence for fast but subshear rupture propagation in updip direction, followed by a delayed propagation along strike. We conjecture that rupture was partially inhibited by a deep localized velocity-strengthening patch that subsequently experienced afterslip.

  19. Effects of three-dimensional crustal structure and smoothing constraint on earthquake slip inversions: Case study of the Mw6.3 2009 L'Aquila earthquake

    Science.gov (United States)

    Gallovič, František; Imperatori, Walter; Mai, P. Martin

    2015-01-01

    Earthquake slip inversions aiming to retrieve kinematic rupture characteristics typically assume 1-D velocity models and a flat Earth surface. However, heterogeneous nature of the crust and presence of rough topography lead to seismic scattering and other wave propagation phenomena, introducing complex 3-D effects on ground motions. Here we investigate how the use of imprecise Green's functions—achieved by including 3-D velocity perturbations and topography—affect slip-inversion results. We create sets of synthetic seismograms, including 3-D heterogeneous Earth structure and topography, and then invert these synthetics using Green's functions computed for a horizontally layered 1-D Earth model. We apply a linear inversion, regularized by smoothing and positivity constraint, and examine in detail how smoothing effects perturb the solution. Among others, our tests and resolution analyses demonstrate how imprecise Green's functions introduce artificial slip rate multiples especially at shallow depths and that the timing of the peak slip rate is hardly affected by the chosen smoothing. The investigation is extended to recordings of the 2009 Mw6.3 L'Aquila earthquake, considering both strong motion and high-rate GPS stations. We interpret the inversion results taking into account the lessons learned from the synthetic tests. The retrieved slip model resembles previously published solutions using geodetic data, showing a large-slip asperity southeast of the hypocenter. In agreement with other studies, we find evidence for fast but subshear rupture propagation in updip direction, followed by a delayed propagation along strike. We conjecture that rupture was partially inhibited by a deep localized velocity-strengthening patch that subsequently experienced afterslip.

  20. Age related effects of transitional floor surfaces and obstruction of view on gait characteristics related to slips and falls.

    Science.gov (United States)

    Bunterngchit, Yuthachai; Lockhart, Thurmon; Woldstad, Jeffrey C; Smith, James L

    2000-02-01

    A laboratory study was conducted to examine gait changes between younger and older subjects as they walked across different floor surfaces. Twenty subjects participated in the experiment (five each of older and younger males and females). For half of the trials, subjects carried light loads that blocked their view of the floor surface immediately in front of them. Subjects walked on slippery (soapy water on vinyl) and stable (outdoor carpet) floor surfaces, as well as transitioning from one surface to another. Responses studied included: required coefficient of friction (RCOF), stride length (SL), and minimum toe clearance (MTC). Significant effects were found for the floor surface, load versus no load condition, and some interactions involving age (older versus younger subjects). Not all expected differences due to age were found in this experiment. The lack of significant differences between younger and older subjects could be due to the older subjects that participated in the experiment. They were volunteers at a local medical center, were in good physical shape, and were probably not typical of the population of people over 65 years of age. RELEVANCE TO INDUSTRY: Slips and falls in industry are costly safety issues in terms of human suffering as well as financial compensation. In many facilities and at home, people make transitions from one floor surface to another many times each day, while carrying loads or just walking. A better understanding of characteristics of people as they walk on slippery floor surfaces and the changes that might occur with age, will allow engineers to design better floor surfaces to reduce the incidence of slips and falls.

  1. Combined Effect of Slip Velocity and Roughness on the Jenkins Model Based Ferrofluid Lubrication of a Curved Rough Annular Squeeze Film

    Directory of Open Access Journals (Sweden)

    JIMITKUMAR PATEL

    2016-01-01

    Full Text Available This paper theoretically analyzes the combined effect of slip velocity and surface roughness on the performance of Jenkins model based ferrofluid squeeze film in curved annular plates. The effect of slip velocity has been studied resorting to the slip model of Beavers and Joseph. The stochastically averaging method of Christensen and Tonders has been deployed for studying the effect of surface roughness. The pressure distribution is derived by solving the associated stochastically averaged Reynolds type equation with suitable boundary conditions, leading to the computation of load carrying capacity. The graphical representations reveal that the transverse surface roughness adversely affects the bearing performance. However, Jenkins model based ferrofluid lubrication offers some scopes in minimizing this adverse effect when the slip parameter is kept at minimum. Of course, an appropriate choice of curvature parameters adds to this positive effect in the case of negatively skewed roughness. Moreover, it is established that this type of bearing system supports certain amount of load; even when there is no flow which does not happen in the case of conventional lubricant based bearing system.

  2. MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, D.; Bég, O. Anwar; Khan, Z. H.

    2016-11-01

    A theoretical investigation of magnetohydrodynamic (MHD) flow and heat transfer of electrically-conducting viscoplastic fluids through a channel is conducted. The robust Casson model is implemented to simulate viscoplastic behavior of fluids. The external magnetic field is oblique to the fluid flow direction. Viscous dissipation effects are included. The flow is controlled by the metachronal wave propagation generated by cilia beating on the inner walls of the channel. The mathematical formulation is based on deformation in longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The model also features velocity and thermal slip boundary conditions. Closed-form solutions to the non-dimensional boundary value problem are obtained under physiological limitations of low Reynolds number and large wavelength. The influence of key hydrodynamic and thermo-physical parameters i.e. Hartmann (magnetic) number, Casson (viscoplastic) fluid parameter, thermal slip parameter and velocity slip parameter on flow characteristics are investigated. A comparative study is also made with Newtonian fluids (corresponding to massive values of plastic viscosity). Stream lines are plotted to visualize trapping phenomenon. The computations reveal that velocity increases with increasing the magnitude of Hartmann number near the channel walls whereas in the core flow region (center of the channel) significant deceleration is observed. Temperature is elevated with greater Casson parameter, Hartmann number, velocity slip, eccentricity parameter, thermal slip and also Brinkmann (dissipation) number. Furthermore greater Casson parameter is found to elevate the quantity and size of the trapped bolus. In the pumping region, the pressure rise is reduced with greater Hartmann number, velocity slip, and wave number whereas it is enhanced with greater cilia length.

  3. Ion specific effects on charged interfaces

    OpenAIRE

    Medda, Luca

    2013-01-01

    The physico-chemical phenomena occurring at charged interfaces are specifically affected by the type and the concentration of electrolytes. This has implications both in living and in inorganic systems. The discovery of the ‘ion specific effects’ dates back to Hofmeister (1888), who observed the specific effect of salts in promoting egg white proteins precipitation. Nowadays we are aware that ion specific effects are ubiquitous in all fields of science and technology where electrolytes play a...

  4. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    Science.gov (United States)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  5. Effect of Atmospheric Ions on Interfacial Water

    Directory of Open Access Journals (Sweden)

    Chien-Chang Kurt Kung

    2014-11-01

    Full Text Available The effect of atmospheric positivity on the electrical properties of interfacial water was explored. Interfacial, or exclusion zone (EZ water was created in the standard way, next to a sheet of Nafion placed horizontally at the bottom of a water-filled chamber. Positive atmospheric ions were created from a high voltage source placed above the chamber. Electrical potential distribution in the interfacial water was measured using microelectrodes. We found that beyond a threshold, the positive ions diminished the magnitude of the negative electrical potential in the interfacial water, sometimes even turning it to positive. Additionally, positive ions produced by an air conditioner were observed to generate similar effects; i.e., the electrical potential shifted in the positive direction but returned to negative when the air conditioner stopped blowing. Sometimes, the effect of the positive ions from the air conditioner was strong enough to destroy the structure of interfacial water by turning the potential decidedly positive. Thus, positive air ions can compromise interfacial water negativity and may explain the known negative impact of positive ions on health.

  6. Pore Pressure Evolution in Shallow Subduction Earthquake Sequences and Effects on Aseismic Slip Transients -- Numerical Modeling With Rate and State Friction

    Science.gov (United States)

    Liu, Y.; Rice, J. R.

    2005-12-01

    In 3D modeling of long tectonic loading and earthquake sequences on a shallow subduction fault [Liu and Rice, 2005], with depth-variable rate and state friction properties, we found that aseismic transient slip episodes emerge spontaneously with only a simplified representation of effects of metamorphic fluid release. That involved assumption of a constant in time but uniformly low effective normal stress in the downdip region. As suggested by observations in several major subduction zones [Obara, 2002; Rogers and Dragert, 2003; Kodaira et al, 2004], the presence of fluids, possibly released from dehydration reactions beneath the seismogenic zone, and their pressurization within the fault zone may play an important role in causing aseismic transients and associated non-volcanic tremors. To investigate the effects of fluids in the subduction zone, particularly on the generation of aseismic transients and their various features, we develop a more complete physical description of the pore pressure evolution (specifically, pore pressure increase due to supply from dehydration reactions and shear heating, decrease due to transport and dilatancy during slip), and incorporate that into the rate and state based 3D modeling. We first incorporated two important factors, dilatancy and shear heating, following Segall and Rice [1995, 2004] and Taylor [1998]. In the 2D simulations (slip varies with depth only), a dilatancy-stabilizing effect is seen which slows down the seismic rupture front and can prevent rapid slip from extending all the way to the trench, similarly to Taylor [1998]. Shear heating increases the pore pressure, and results in faster coseismic rupture propagation and larger final slips. In the 3D simulations, dilatancy also stabilizes the along-strike rupture propagation of both seismic and aseismic slips. That is, aseismic slip transients migrate along the strike faster with a shorter Tp (the characteristic time for pore pressure in the fault core to re

  7. Effect of viscous dissipation and suction/injection on MHD nanofluid flow over a wedge with porous medium and slip

    Directory of Open Access Journals (Sweden)

    Alok Kumar Pandey

    2016-12-01

    Full Text Available The purpose of present study is to identify the effects of viscous dissipation and suction/injection on MHD flow of a nanofluid past a wedge with convective surface in the appearance of slip flow and porous medium. The basic non-linear PDEs of flow and energy are altered into a set of non-linear ODEs using auxiliary similarity transformations. The system of equations together with coupled boundary conditions have been solved numerically by applying Runge-Kutta-Fehlberg procedure via shooting scheme. The influence of relevant parameters on non-dimensional velocity and temperature profiles are depicted graphically and investigated in detail. The results elucidate that as enhance in the Eckert number, the skin friction coefficient increases, while heat transfer rate decreases. The outcomes also specify that thermal boundary layer thickness declines with an increase in suction parameter. Moreover, it is accelerated with augment in injection parameter. The results are analogized with the study published earlier and it creates a fine concord.

  8. Effect of source parameters on forward-directivity velocity pulse for vertical strike slip fault in half space

    Institute of Scientific and Technical Information of China (English)

    Liu Qifang; Yuan Yifan; Jin Xing

    2006-01-01

    It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler ( 2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period of a forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault,rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.

  9. Effect of source parameters on forward-directivity velocity pulse for vertical strike slip fault in half space

    Science.gov (United States)

    Liu, Qifang; Yuan, Yifan; Jin, Xing

    2006-06-01

    It has been found that the large velocity pulse is one of the most important characteristics of near-fault strong ground motions. Some statistical relationships between pulse period and the moment magnitude for near-fault strong ground motions have been established by Somerville (1998); Alavi and Krawinkler (2000); and Mavroeidis and Papageorgiou (2003), where no variety of rupture velocity, fault depth, and fault distance, etc. were considered. Since near-fault ground motions are significantly influenced by the rupture process and source parameters, the effects of some source parameters on the amplitude and the period of a forward-directivity velocity pulse in a half space are analyzed by the finite difference method combined with the kinematic source model in this paper. The study shows that the rupture velocity, fault depth, position of the initial rupture point and distribution of asperities are the most important parameters to the velocity pulse. Generally, the pulse period decreases and the pulse amplitude increases as the rupture velocity increases for shallow crustal earthquakes. In a definite region besides the fault trace, the pulse period increases as the fault depth increases. For a uniform strike slip fault, rupture initiating from one end of a fault and propagating to the other always generates a higher pulse amplitude and longer pulse period than in other cases.

  10. Specific Ion Effects in Cholesterol Monolayers

    Directory of Open Access Journals (Sweden)

    Teresa Del Castillo-Santaella

    2016-05-01

    Full Text Available The interaction of ions with interfaces and, in particular, the high specificity of these interactions to the particular ions considered, are central questions in the field of surface forces. Here we study the effect of different salts (NaI, NaCl, CaCl2 and MgCl2 on monolayers made of cholesterol molecules, both experimentally (surface area vs. lateral pressure isotherms measured by a Langmuir Film Balance and theoretically (molecular dynamics (MD all-atomic simulations. We found that surface isotherms depend, both quantitatively and qualitatively, on the nature of the ions by altering the shape and features of the isotherm. In line with the experiments, MD simulations show clear evidences of specific ionic effects and also provide molecular level details on ion specific interactions with cholesterol. More importantly, MD simulations show that the interaction of a particular ion with the surface depends strongly on its counterion, a feature ignored so far in most theories of specific ionic effects in surface forces.

  11. Microstructure and Slip Character in Titanium Alloys

    Directory of Open Access Journals (Sweden)

    D. Banerjee

    1986-04-01

    Full Text Available Influence of microstructures in titanium alloys on the basic parameters of deformation behaviour such as slip character, slip length and slip intensity have been explored. Commercial titanium alloys contain the hexagonal close packed (alpha and body centred cubic (bita phases. Slip in these individual phases is shown to be dependent on the nature of alloying elements through their effect on phase stability as related to decomposition into ordered or w structures. When alpha and bita coexist, their relative crystallographic orientations, size, shape and volume fraction, control the nature of slip. For a given composition, structure may be manipulated through appropriate thermomechanical treatment to obtain the desired deformation behaviour and therefore fracture mode.

  12. Krypton ion implantation effect on selenium nanowires

    Science.gov (United States)

    Panchal, Suresh; Chauhan, R. P.

    2017-08-01

    Among the rapidly progressing interdisciplinary areas of physics, chemistry, material science etc. ion induced modifications of materials is one such evolving field. It has been realized in recent years that a material, in the form of an accelerated ion beam, embedded into a target specimen offers a most productive tool for transforming its properties in a controlled manner. In semiconductors particularly, where the transport behavior is determined by very small concentrations of certain impurities, implantation of ions may bring considerable changes. The present work is based on the study of the effect of krypton ion implantation on selenium nanowires. Selenium nanowires of diameter 80 nm were synthesized by template assisted electro deposition technique. Implantation of krypton ions was done at Inter University Accelerator Centre (IUAC), New Delhi, India. The effect of implantation on structural, electrical and optical properties of selenium nanowires was investigated. XRD analysis of pristine and implanted nanowires shows no shifting in the peak position but there is a variation in the relative intensity with fluence. UV-Visible spectroscopy shows the decrease in the optical band gap with fluence. PL spectra showed emission peak at higher wavelength. A substantial rise in the current was observed from I-V measurements, after implantation and with the increase in fluence. The increase in current conduction may be due to the increase in the current carriers.

  13. Magnetic Field and Slip Effects on the Flow and Heat Transfer of Stagnation Point Jeffrey Fluid over Deformable Surfaces

    Science.gov (United States)

    Turkyilmazoglu, Mustafa

    2016-06-01

    The Mhd slip flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces are the state of the art of this article. Following an analytical approach, the existence, uniqueness, and possible multiplicity of the physical solutions affected by several physical parameters are investigated. Particularly, magnetic interaction and slip factor are shown to much influence the structure of the solutions regarding both momentum and thermal boundary layers. The presented exact solutions not only provide a clear understanding of fruitful physical mechanisms present in this nonlinear flow problem but they have also merits in calculations by means of numerous numerical schemes aiming to explore further complex phenomena.

  14. Combined Effect of Buoyancy Force and Navier Slip on MHD Flow of a Nanofluid over a Convectively Heated Vertical Porous Plate

    Directory of Open Access Journals (Sweden)

    Winifred Nduku Mutuku-Njane

    2013-01-01

    Full Text Available We examine the effect of magnetic field on boundary layer flow of an incompressible electrically conducting water-based nanofluids past a convectively heated vertical porous plate with Navier slip boundary condition. A suitable similarity transformation is employed to reduce the governing partial differential equations into nonlinear ordinary differential equations, which are solved numerically by employing fourth-order Runge-Kutta with a shooting technique. Three different water-based nanofluids containing copper (Cu, aluminium oxide (Al2O3, and titanium dioxide (TiO2 are taken into consideration. Graphical results are presented and discussed quantitatively with respect to the influence of pertinent parameters, such as solid volume fraction of nanoparticles (φ, magnetic field parameter (Ha, buoyancy effect (Gr, Eckert number (Ec, suction/injection parameter (fw, Biot number (Bi, and slip parameter (β, on the dimensionless velocity, temperature, skin friction coefficient, and heat transfer rate.

  15. Provide a suitable range to include the thermal creeping effect on slip velocity and temperature jump of an air flow in a nanochannel by lattice Boltzmann method

    Science.gov (United States)

    Karimipour, Arash

    2017-01-01

    The thermal creeping effect on slip velocity of air forced convection through a nanochannel is studied for the first time by using a lattice Boltzmann method. The nanochannel side walls are kept hot while the cold inlet air streams along them. The computations are presented for the wide range of Reynolds number, Knudsen number and Eckert number while slip velocity and temperature jump effects are involved. Moreover appropriate validations are performed versus previous works concerned the micro-nanoflows. The achieved results are shown as the velocity and temperature profiles at different cross sections, streamlines and isotherms and also the values of slip velocity and temperature jump along the nanochannel walls. The ability of the lattice Boltzmann method to simulate the thermal creeping effects on hydrodynamic and thermal domains of flow is shown at this study; so that its effects should be involved at lower values of Eckert number and higher values of Reynolds number especially at entrance region where the most temperature gradient exists.

  16. Numerical Simulation of Williamson Combined Natural and Forced Convective Fluid Flow between Parallel Vertical Walls with Slip Effects and Radiative Heat Transfer in a Porous Medium

    Directory of Open Access Journals (Sweden)

    Mohammad Yaghoub Abdollahzadeh Jamalabadi

    2016-04-01

    Full Text Available Numerical study of the slip effects and radiative heat transfer on a steady state fully developed Williamson flow of an incompressible Newtonian fluid; between parallel vertical walls of a microchannel with isothermal walls in a porous medium is performed. The slip effects are considered at both boundary conditions. Radiative highly absorbing medium is modeled by the Rosseland approximation. The non-dimensional governing Navier–Stokes and energy coupled partial differential equations formed a boundary problem are solved numerically using the fourth order Runge–Kutta algorithm by means of a shooting method. Numerical outcomes for the skin friction coefficient, the rate of heat transfer represented by the local Nusselt number were presented even as the velocity and temperature profiles illustrated graphically and analyzed. The effects of the temperature number, Grashof number, thermal radiation parameter, Reynolds number, velocity slip length, Darcy number, and temperature jump, on the flow field and temperature field and their effects on the boundaries are presented and discussed.

  17. Effects of fluids on rock deformation and fault slip: From nature to societal impact (Louis Néel Medal Lecture)

    Science.gov (United States)

    Spiers, Christopher J.

    2017-04-01

    . The effects of gas and CO2 sorption on the stress-strain behaviour and permeability of clay and shale caprocks, recently reported in relation to seal integrity, will be addressed too, and compared with similar phenomena familiar in seen in coal seams. Lastly, I will address the effects of fluid-rock interaction on the frictional behaviour of faults. Recent low velocity friction experiments (<100 μm/s) performed on simulated carbonate, evaporite and quartz gouges, with varying phyllosilicate content, indicate that pressure solution is key to determining whether frictional slip is velocity-strengthening (stable) or velocity weakening (potentially seismogenic). An important trend seen is a transition from velocity strengthening at low temperatures, to velocity weakening at intermediate temperatures, and back to velocity strengthening at high temperatures. This behaviour and the restrengthening observed when shearing is stopped are strongly influenced by water content. It is inferred that mechanistic models for the frictional behaviour of gouge-filled faults, under crustal conditions, must account for diffusion and stress corrosion cracking, and for slip on grain boundaries. First attempts to do this, assuming diffusive mass transfer as the fluid-assisted mechanism, successfully predict the steady state and transient behaviour seen in experiments and offer new perspectives for providing friction laws as for modelling earthquake rupture nucleation and evaluating seismic hazard, in the context of both natural and induced seismicity.

  18. Ion thermal effects on slow mode solitary waves in plasmas with two adiabatic ion species

    Energy Technology Data Exchange (ETDEWEB)

    Nsengiyumva, F., E-mail: franco.nseng@gmail.com; Hellberg, M. A., E-mail: hellberg@ukzn.ac.za; Mace, R. L., E-mail: macer@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2015-09-15

    Using both the Sagdeev and Korteweg-de Vries (KdV) methods, ion thermal effects on slow mode ion acoustic solitons and double layers are investigated in a plasma with two adiabatic positive ion species. It is found that reducing the gap between the two ion thermal speeds by increasing the relative temperature of the cool ions increases the typical soliton/double layer speeds for all values of the ion-ion density ratio and reduces the range in the density ratio that supports double layers. The effect of increasing the relative cool ion temperature on the soliton/double layer amplitudes depends on the relative densities. For lower values of the ion density ratio, an increase in cool ion temperature leads to a significant decrease in soliton/double layer amplitude, so one may find that solitons of all permissible speeds lie within the range of KdV theory.

  19. Radiation effects on ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Gangwer, T.E.; Goldstein, M.; Pillay, K.K.S.

    1977-11-01

    An extensive literature review and data compilation has been completed on the radiation-damage of ion exchange resins. The primary goal of the study has been to review the available literature on ion exchange materials used in, as well as those with potential for use in, the nuclear fuel and waste reprocessing areas. The physical and chemical properties of ion exchangers are reviewed. Experimental parameters useful in characterizing the effects of radiation on synthetic ion exchange resins are identified or defined. In compiling the diverse types of data, an effort was made to present the experimental data or experimentally based parameters in a format that would be useful for inter-comparing radiation effects on resins. When subject to radiation there are various general trends or qualitative effects displayed by the different types of resins. These radiation-trends and effects have been formulated into qualitative statements. The present day level of understanding of the behavior of resins under ionizing radiation is too limited to justify quantitative predictive modeling. The limitations and deficiencies of the literature are discussed and the experimentation needed to achieve quantitative modeling are outlined. 14 figs., 108 references.

  20. Flexural-slip during visco-elastic buckle folding

    Science.gov (United States)

    Damasceno, Davi R.; Eckert, Andreas; Liu, Xiaolong

    2017-07-01

    Flexural-slip is considered as an important mechanism during folding and a general conceptual and qualitative understanding has been provided by various field studies. However, quantitative evidence of the importance of the flexural-slip mechanism during fold evolution is sparse due to the lack of suitable strain markers. In this study, 2D finite element analysis is used to overcome these disadvantages and to simulate flexural-slip during visco-elastic buckle folding. Variations of single and multilayer layer fold configurations are investigated, showing that flexural-slip is most likely to occur in effective single layer buckle folds, where slip occurs between contacts of competent layers. Based on effective single layer buckle folds, the influence of the number of slip surfaces, the degree of mechanical coupling (based on the friction coefficient), and layer thickness, on the resulting slip distribution are investigated. The results are in agreement with the conceptual flexural-slip model and show that slip is initiated sequentially during the deformation history and is maximum along the central slip surface of the fold limb. The cumulative amount of slip increases as the number of slip surfaces is increased. For a lower degree of mechanical coupling increased slip results in different fold shapes, such as box folds, during buckling. In comparison with laboratory experiments, geometrical relationships and field observations, the numerical modeling results show similar slip magnitudes. It is concluded that flexural-slip should represent a significant contribution during buckle folding, affecting the resulting fold shape for increased amounts of slip.

  1. Are non-slip socks really 'non-slip'? An analysis of slip resistance

    OpenAIRE

    Haines Terrence; Chari Satyan; Varghese Paul; Economidis Alyssia

    2009-01-01

    Abstract Background Non-slip socks have been suggested as a means of preventing accidental falls due to slips. This study compared the relative slip resistance of commercially available non-slip socks with other foot conditions, namely bare feet, compression stockings and conventional socks, in order to determine any traction benefit. Methods Phase one involved slip resistance testing of two commercially available non-slip socks and one compression-stocking sample through an independent blind...

  2. Peristaltic transport of Carreau-Yasuda fluid in a curved channel with slip effects.

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available The wide occurrence of peristaltic pumping should not be surprising at all since it results physiologically from neuro-muscular properties of any tubular smooth muscle. Of special concern here is to predict the rheological effects on the peristaltic motion in a curved channel. Attention is focused to develop and simulate a nonlinear mathematical model for Carreau-Yasuda fluid. The progressive wave front of peristaltic flow is taken sinusoidal (expansion/contraction type. The governing problem is challenge since it has nonlinear differential equation and nonlinear boundary conditions even in the long wavelength and low Reynolds number regime. Numerical solutions for various flow quantities of interest are presented. Comparison for different flow situations is also made. Results of physical quantities are interpreted with particular emphasis to rheological characteristics.

  3. Conjugated Effect of Joule Heating and Magnetohydrodynamic on Laminar Convective Heat Transfer of Nanofluids Inside a Concentric Annulus in the Presence of Slip Condition

    Science.gov (United States)

    Moshizi, S. A.; Pop, I.

    2016-07-01

    In the current study, the conjugated effect of Joule heating and magnetohydrodynamics (MHD) on the forced convective heat transfer of fully developed laminar nanofluid flows inside annular pipes, under the influence of MHD field, has been investigated. The temperature and nanoparticle distributions at both the inner and outer walls are assumed to vary in the direction of the fluid. Furthermore, owing to the nanoparticle migrations in the fluid, a slip condition becomes far more important than the no-slip condition of the fluid-solid interface, which appropriately represents the non-equilibrium region near the interface. The governing equations—obtained by employing the Buongiorno's model for nanofluid in cylindrical coordinates—are converted into two-point ordinary boundary value differential equations and solved numerically. The effects of various controlling parameters on the flow characteristics, the average Nusselt number and the average Sherwood number have been assessed in detail. Additionally, the effect of the inner to outer diameter ratio on the heat and mass transfer rate has been studied. The results obtained indicate that, in the presence of a magnetic field when the fluid is electrically conductive, heat transfer will be reduced significantly due to the influences of Joule heating, while the average mass transfer rate experiences an opposite trend. Moreover, the increase in the slip velocity on both the walls causes the average heat transfer to rise and the average mass transfer to decrease.

  4. Ion irradiation effects on metallic nanocrystals

    Science.gov (United States)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C. S.; Foran, G. J.; Cookson, D. J.; Byrne, A. P.; Ridgway, M. C.

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  5. Effects of 8 Weeks of Balance or Weight Training for the Independently Living Elderly on the Outcomes of Induced Slips

    Science.gov (United States)

    Kim, Sukwon; Lockhart, Thurmon

    2010-01-01

    The study was conducted to evaluate whether the balance or weight training could alter gait characteristics of elderly contributing to a reduction in the likelihood of slip-induced falls. A total of 18 elderly were evaluated for the study. The results indicated decreases in heel contact velocities and the friction demand characteristics after 8…

  6. Effects of 8 Weeks of Balance or Weight Training for the Independently Living Elderly on the Outcomes of Induced Slips

    Science.gov (United States)

    Kim, Sukwon; Lockhart, Thurmon

    2010-01-01

    The study was conducted to evaluate whether the balance or weight training could alter gait characteristics of elderly contributing to a reduction in the likelihood of slip-induced falls. A total of 18 elderly were evaluated for the study. The results indicated decreases in heel contact velocities and the friction demand characteristics after 8…

  7. Combined Effects of Chemical Reaction and Wall Slip on MHD Flow in a Vertical Wavy Porous Space with Traveling Thermal Waves

    Directory of Open Access Journals (Sweden)

    Ramamoorthy MUTHURAJ

    2013-07-01

    Full Text Available This paper investigates the magnetohydrodynamic (MHD mixed convective heat and mass transfer flow in a vertical wavy porous space in the presence of a heat source with the combined effects of chemical reaction and wall slip condition. The dimensionless governing equations are perturbed into: mean (zeroth-order part and a perturbed part, using amplitude as a small parameter. The perturbed quantities are obtained by perturbation series expansion for small wavelength in which terms of exponential order arise. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the presence of chemical reaction, magnetic field, porous medium, heat source/sink parameter and wall slip condition. Further, the results of the skin friction and rate of heat and mass transfer at the wall are presented for various values of parameters entering into the problem and discussed with the help of graphs.

  8. Slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating

    Science.gov (United States)

    Mohamed, Muhammad Khairul Anuar; Noar, Nor Aida Zuraimi Md; Ismail, Zulkhibri; Kasim, Abdul Rahman Mohd; Sarif, Norhafizah Md; Salleh, Mohd Zuki; Ishak, Anuar

    2017-08-01

    Present study solved numerically the velocity slip effect on stagnation point flow past a stretching surface with the presence of heat generation/absorption and Newtonian heating. The governing equations which in the form of partial differential equations are transformed to ordinary differential equations before being solved numerically using the Runge-Kutta-Fehlberg method in MAPLE. The numerical solution is obtained for the surface temperature, heat transfer coefficient, reduced skin friction coefficient as well as the temperature and velocity profiles. The flow features and the heat transfer characteristic for the pertinent parameter such as Prandtl number, stretching parameter, heat generation/absorption parameter, velocity slip parameter and conjugate parameter are analyzed and discussed.

  9. Velocity slip effects on heat and mass fluxes of MHD viscous–Ohmic dissipative flow over a stretching sheet with thermal radiation

    Directory of Open Access Journals (Sweden)

    M. Kayalvizhi

    2016-06-01

    Full Text Available In the present article, we discussed the velocity slip effects on the heat and mass fluxes of a viscous electrically conducting fluid flow over a stretching sheet in the presence of viscous dissipation, Ohmic dissipation and thermal radiation. A system of governing nonlinear PDEs is converted into a set of nonlinear ODEs by suitable similarity transformations. The numerical and analytical solutions are presented for the governing non-dimensional ODEs using shooting method and hypergeometric function respectively. The results are discussed for skin friction coefficient, concentration field, non-dimensional wall temperature and non-dimensional wall concentration. The non-dimensional wall concentration increases with slip and magnetic parameters and decreases with Schmidt number. Furthermore, comparisons are found to be good with bench mark solutions.

  10. Analytical solutions for wall slip effects on magnetohydrodynamic oscillatory rotating plate and channel flows in porous media using a fractional Burgers viscoelastic model

    Science.gov (United States)

    Maqbool, Khadija; Anwar Bég, O.; Sohail, Ayesha; Idreesa, Shafaq

    2016-05-01

    The theoretical analysis of magnetohydrodynamic (MHD) incompressible flows of a Burgers fluid through a porous medium in a rotating frame of reference is presented. The constitutive model of a Burgers fluid is used based on a fractional calculus formulation. Hydrodynamic slip at the wall (plate) is incorporated and the fractional generalized Darcy model deployed to simulate porous medium drag force effects. Three different cases are considered: namely, the flow induced by a general periodic oscillation at a rigid plate, the periodic flow in a parallel plate channel and, finally, the Poiseuille flow. In all cases the plate(s) boundary(ies) are electrically non-conducting and a small magnetic Reynolds number is assumed, negating magnetic induction effects. The well-posed boundary value problems associated with each case are solved via Fourier transforms. Comparisons are made between the results derived with and without slip conditions. Four special cases are retrieved from the general fractional Burgers model, viz. Newtonian fluid, general Maxwell viscoelastic fluid, generalized Oldroyd-B fluid and the conventional Burgers viscoelastic model. Extensive interpretation of graphical plots is included. We study explicitly the influence of the wall slip on primary and secondary velocity evolution. The model is relevant to MHD rotating energy generators employing rheological working fluids.

  11. Stick-slip control in nanoscale boundary lubrication by surface wettability.

    Science.gov (United States)

    Chen, Wei; Foster, Adam S; Alava, Mikko J; Laurson, Lasse

    2015-03-06

    We study the effect of atomic-scale surface-lubricant interactions on nanoscale boundary-lubricated friction by considering two example surfaces-hydrophilic mica and hydrophobic graphene-confining thin layers of water in molecular dynamics simulations. We observe stick-slip dynamics for thin water films confined by mica sheets, involving periodic breaking-reforming transitions of atomic-scale capillary water bridges formed around the potassium ions of mica. However, only smooth sliding without stick-slip events is observed for water confined by graphene, as well as for thicker water layers confined by mica. Thus, our results illustrate how atomic-scale details affect the wettability of the confining surfaces and consequently control the presence or absence of stick-slip dynamics in nanoscale friction.

  12. On the effective stress law for rock-on-rock frictional sliding, and fault slip triggered by means of fluid injection.

    Science.gov (United States)

    Rutter, Ernest; Hackston, Abigail

    2017-09-28

    Fluid injection into rocks is increasingly used for energy extraction and for fluid wastes disposal, and can trigger/induce small- to medium-scale seismicity. Fluctuations in pore fluid pressure may also be associated with natural seismicity. The energy release in anthropogenically induced seismicity is sensitive to amount and pressure of fluid injected, through the way that seismic moment release is related to slipped area, and is strongly affected by the hydraulic conductance of the faulted rock mass. Bearing in mind the scaling issues that apply, fluid injection-driven fault motion can be studied on laboratory-sized samples. Here, we investigate both stable and unstable induced fault slip on pre-cut planar surfaces in Darley Dale and Pennant sandstones, with or without granular gouge. They display contrasting permeabilities, differing by a factor of 10(5), but mineralogies are broadly comparable. In permeable Darley Dale sandstone, fluid can access the fault plane through the rock matrix and the effective stress law is followed closely. Pore pressure change shifts the whole Mohr circle laterally. In tight Pennant sandstone, fluid only injects into the fault plane itself; stress state in the rock matrix is unaffected. Sudden access by overpressured fluid to the fault plane via hydrofracture causes seismogenic fault slips.This article is part of the themed issue 'Faulting, friction and weakening: from slow to fast motion'. © 2017 The Authors.

  13. Slip Effect on an Unsteady MHD Stagnation-Point Flow of a Micropolar Fluid towards a Shrinking Sheet with Thermophoresis Effect

    Science.gov (United States)

    Zaib, Aurang; Shafie, Sharidan

    2015-09-01

    The effect of slip and thermophoresis on an unsteady magnetohydrodynamic stagnation-point-flow micropolar fluid with heat and mass transfer towards a shrinking sheet has been investigated. The governing equations are reduced to a system of non-dimensional partial differential equations by using similarity transformation, before being solved numerically using the Keller-box method. The effects of various physical parameters on the velocity, microrotation, temperature, and concentration profiles as well as the reduced skin friction, the reduced Nusselt number, and the reduced Sherwood number are analyzed and discussed graphically. It is found that the concentration boundary layer thickness decreases with increasing values of the thermophoresis. Comparison with previously published results under the limiting cases is made and found to be in excellent agreement.

  14. Reducing Space Charge Effects in a Linear Ion Trap by Rhombic Ion Excitation and Ejection

    Science.gov (United States)

    Zhang, Xiaohua; Wang, Yuzhuo; Hu, Lili; Guo, Dan; Fang, Xiang; Zhou, Mingfei; Xu, Wei

    2016-07-01

    Space charge effects play important roles in ion trap operations, which typically limit the ion trapping capacity, dynamic range, mass accuracy, and resolving power of a quadrupole ion trap. In this study, a rhombic ion excitation and ejection method was proposed to minimize space charge effects in a linear ion trap. Instead of applying a single dipolar AC excitation signal, two dipolar AC excitation signals with the same frequency and amplitude but 90° phase difference were applied in the x- and y-directions of the linear ion trap, respectively. As a result, mass selective excited ions would circle around the ion cloud located at the center of the ion trap, rather than go through the ion cloud. In this work, excited ions were then axially ejected and detected, but this rhombic ion excitation method could also be applied to linear ion traps with ion radial ejection capabilities. Experiments show that space charge induced mass resolution degradation and mass shift could be alleviated with this method. For the experimental conditions in this work, space charge induced mass shift could be decreased by ~50%, and the mass resolving power could be improved by ~2 times at the same time.

  15. Modeling the Effects of a Normal-Stress-Dependent State Variable, Within the Rate- and State-Dependent Friction Framework, at Stepovers and Dip-Slip Faults

    Science.gov (United States)

    Ryan, Kenny J.; Oglesby, David D.

    2017-03-01

    The development of the rate- and state-dependent friction framework (Dieterich Appl Geophys 116:790-806, 1978; J Geophys Res 84, 2161-2168, 1979; Ruina Friction laws and instabilities: a quasistatic analysis of some dry friction behavior, Ph.D. Thesis, Brown Univ., Providence, R.I., 1980; J Geophys Res 88:10359-10370, 1983) includes the dependence of friction coefficient on normal stress (Linker and Dieterich J Geophys Res 97:4923-4940, 1992); however, a direct dependence of the friction law on time-varying normal stress in dynamic stepover and dip-slip fault models has not yet been extensively explored. Using rate- and state-dependent friction laws and a 2-D dynamic finite element code (Barall J Int 178, 845-859, 2009), we investigate the effect of the Linker-Dieterich dependence of state variable on normal stress at stepovers and dip-slip faults, where normal stress should not be constant with time (e.g., Harris and Day J Geophys Res 98:4461-4472, 1993; Nielsen Geophys Res Lett 25:125-128, 1998). Specifically, we use the relation d ψ/d t = -( α/ σ)(d σ/d t) from Linker and Dieterich (J Geophys Res 97:4923-4940, 1992), in which a change in normal stress leads to a change in state variable of the opposite sign. We investigate a range of values for alpha, which scales the impact of the normal stress change on state, from 0 to 0.5 (laboratory values range from 0.2 to 0.56). For stepovers, we find that adding normal-stress dependence to the state variable delays or stops re-nucleation on the secondary fault segment when compared to normal-stress-independent state evolution. This inhibition of jumping rupture is due to the fact that re-nucleation along the secondary segment occurs in areas of decreased normal stress in both compressional and dilational stepovers. However, the magnitude of such an effect differs between dilational and compressional systems. Additionally, it is well known that the asymmetric geometry of reverse and normal faults can lead to greater

  16. Wall-slip of highly filled powder injection molding compounds: Effect of flow channel geometry and roughness

    Energy Technology Data Exchange (ETDEWEB)

    Hausnerova, Berenika; Sanetrnik, Daniel [Dept. of Production Engineering, Faculty of Technology, Tomas Bata University in Zlin, nám. T.G. Masaryka 5555, 760 01 Zlín, Czech Republic and Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovc (Czech Republic); Paravanova, Gordana [Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Nad Ovcírnou 3685, 760 01 Zlín (Czech Republic)

    2014-05-15

    The paper deals with the rheological behavior of highly filled compounds proceeded via powder injection molding (PIM) and applied in many sectors of industry (automotive, medicine, electronic or military). Online rheometer equipped with slit dies varying in surface roughness and dimensions was applied to investigate the wall-slip as a rheological phenomenon, which can be considered as a parameter indicating the separation of compound components (polymer binder and metallic powder) during high shear rates when injection molded.

  17. Tsunami Hazards From Strike-Slip Earthquakes

    Science.gov (United States)

    Legg, M. R.; Borrero, J. C.; Synolakis, C. E.

    2003-12-01

    Strike-slip faulting is often considered unfavorable for tsunami generation during large earthquakes. Although large strike-slip earthquakes triggering landslides and then generating substantial tsunamis are now recognized hazards, many continue to ignore the threat from submarine tectonic displacement during strike-slip earthquakes. Historical data record the occurrence of tsunamis from strike-slip earthquakes, for example, 1906 San Francisco, California, 1994 Mindoro, Philippines, and 1999 Izmit, Turkey. Recognizing that strike-slip fault zones are often curved and comprise numerous en echelon step-overs, we model tsunami generation from realistic strike-slip faulting scenarios. We find that tectonic seafloor uplift, at a restraining bend or"pop-up" structure, provides an efficient mechanism to generate destructive local tsunamis; likewise for subsidence at divergent pull-apart basin structures. Large earthquakes on complex strike-slip fault systems may involve both types of structures. The California Continental Borderland is a high-relief submarine part of the active Pacific-North America transform plate boundary. Natural harbors and bays created by long term vertical motion associated with strike-slip structural irregularities are now sites of burgeoning population and major coastal infrastructure. Significant local tsunamis generated by large strike-slip earthquakes pose a serious, and previously unrecognized threat. We model several restraining bend pop-up structures offshore southern California to quantify the local tsunami hazard. Maximum runup derived in our scenarios ranges from one to several meters, similar to runup observed from the 1994 Mindoro, Philippines, (M=7.1) earthquake. The runup pattern is highly variable, with local extremes along the coast. We only model the static displacement field for the strike-slip earthquake source; dynamic effects of moving large island or submerged banks laterally during strike-slip events remains to be examined

  18. Ion beam radiation effects in monazite

    Energy Technology Data Exchange (ETDEWEB)

    Picot, V. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France); Deschanels, X. [Institut de Chimie Separative de Marcoule, UMR 5257, BP 17171, 30207 Bagnols-sur-Ceze (France)], E-mail: xavier.deschanels@cea.fr; Peuget, S. [CEA Centre de Marcoule, BP 17171, 30207 Bagnols-sur-Ceze (France); Glorieux, B. [Laboratoire des Procedes, Materiaux et Energie Solaire, UPR 8521, Rambla de la Thermodynamique, 66100 Perpignan (France); Seydoux-Guillaume, A.M. [Laboratoire des Mecanismes et Transferts en Geologie, CNRS, Universite Paul Sabatier, IRD, OMP, 14 Avenue Edouard Belin, 31400 Toulouse (France); Wirth, R. [GeoForschungsZentrum Potsdam, PB 4.1, Telegrafenberg, 14473 Potsdam (Germany)

    2008-11-15

    Monazite is a potential matrix for conditioning minor actinides arising from spent fuel reprocessing. The matrix behavior under irradiation must be investigated to ensure long-term containment performance. Monazite compounds were irradiated by gold and helium ions to simulate the consequences of alpha decay. This article describes the effects of such irradiation on the structural and macroscopic properties (density and hardness) of monazites LaPO{sub 4} and La{sub 0.73}Ce{sub 0.27}PO{sub 4}. Irradiation by gold ions results in major changes in the material properties. At a damage level of 6.7 dpa, monazite exhibits volume expansion of about 8.1%, a 59% drop in hardness, and structure amorphization, although Raman spectroscopy analysis shows that the phosphate-oxygen bond is unaffected. Conversely, no change in the properties of these compounds was observed after He ion implantation. These results indicate that ballistic effects predominate in the studied dose range.

  19. Mutagenic effects of heavy ions in bacteria

    Science.gov (United States)

    Horneck, G.; Krasavin, E. A.; Kozubek, S.

    1994-10-01

    Various mutagenic effects by heavy ions were studied in bacteria, irradiated at accelerators in Dubna, Prague, Berkeley or Darmstadt. Endpoints investigated are histidine reversion (B. subtilis, S. typhimurium), azide resistance (B. subtilis), mutation in the lactose operon (E. coli), SOS chromotest (E. coli) and λ-prophage induction (E. coli). It was found that the cross sections of the different endpoints show a similar dependence on energy. For light ions (Z = 26) it increases with energy up to a maximum or saturation. The increment becomes steeper with increasing Z. This dependence on energy suggests a ``mutagenic belt'' inside the track that is restricted to an area where the density of departed energy is low enough not to kill the cell, but high enough to induce mutations.

  20. Chiral Magnetic Effect in Heavy Ion Collisions

    CERN Document Server

    Liao, Jinfeng

    2016-01-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.

  1. Falls study: Proprioception, postural stability, and slips.

    Science.gov (United States)

    Sohn, Jeehoon; Kim, Sukwon

    2015-01-01

    The present study evaluated effects of exercise training on the proprioception sensitivity, postural stability, and the likelihood of slip-induced falls. Eighteen older adults (6 in balance, 6 in weight, and 6 in control groups) participated in this study. Three groups met three times per week over the course of eight weeks. Ankle and knee proprioception sensitivities and postural stability were measured. Slip-induced events were introduced for all participants before and after training. The results indicated that, overall, strength and postural stability were improved only in the training group, although proprioception sensitivity was improved in all groups. Training for older adults resulted in decreased likelihood of slip-induced falls. The study suggested that proprioception can be improved by simply being active, however, the results suggested that training would aid older adults in reducing the likelihood of slip-induced falls.

  2. Crystal effects in the neutralization of He+ ions in the low energy ion scattering regime.

    Science.gov (United States)

    Primetzhofer, D; Markin, S N; Juaristi, J I; Taglauer, E; Bauer, P

    2008-05-30

    Investigating possible crystal effects in ion scattering from elemental surfaces, measurements of the positive ion fraction P+ are reported for He+ ions scattered from single and polycrystalline Cu surfaces. In the Auger neutralization regime, the ion yield is determined by scattering from the outermost atomic layer. For Cu(110) P+ exceeds that for polycrystalline Cu by up to a factor of 2.5, thus exhibiting a strong crystal effect. It is much less pronounced at higher energies, i.e., in the reionization regime. However, there a completely different angular dependence of the ion yield is observed for poly- and single crystals, due to massive subsurface contributions in nonchanneling directions.

  3. Ion-mediated RNA structural collapse: effect of spatial confinement

    CERN Document Server

    Tan, Zhi-Jie

    2013-01-01

    RNAs are negatively charged molecules residing in macromolecular crowding cellular environments. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the confinement effect on the ion-mediated RNA structural collapse for a simple model system. We found that, for both Na$^+$ and Mg$^{2+}$, ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. Such an enhancement in the ion efficiency is attributed to the decreased electrostatic free energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.

  4. Slip effects on flow, heat, and mass transfer of nanofluid over stretching horizontal cylinder in the prescence of suction/injection

    Directory of Open Access Journals (Sweden)

    Elbashbeshy Elsayed M.A.

    2016-01-01

    Full Text Available Two slip effects, Brownian diffusion and thermophoresis, on flow, heat, and mass transfer of an incompressible viscous nanofluid over a stretching horizontal cylinder in the presence of suction/injection are discussed numerically. The governing boundary layer equations are reduced to a system of ordinary differential equations. Mathematica has been used to solve such system after obtaining the missed initial conditions. Comparison of obtained numerical results is made with previously published results in some special cases and found to be in a good agreement.

  5. Effects of Slip Condition, Variable Viscosity and Inclined Magnetic Field on the Peristaltic Motion of a Non-Newtonian Fluid in an Inclined Asymmetric Channel

    Directory of Open Access Journals (Sweden)

    A. Afsar Khan

    2016-01-01

    Full Text Available The peristaltic motion of a third order fluid due to asymmetric waves propagating on the sidewalls of a inclined asymmetric channel is discussed. The key features of the problem includes longwavelength and low-Reynolds number assumptions. A mathematical analysis has been carried out to investigate the effect of slip condition, variable viscosity and magnetohydrodynamics (MHD. Followed by the nondimensionalization of the nonlinear governing equations along with the nonlinear boundary conditions, a perturbation analysis is made. For the validity of the approximate solution, a numerical solution is obtained using the iterative collocation technique.

  6. Mathematical modelling of couple stresses on fluid flow in constricted tapered artery in presence of slip velocity-effects of catheter

    Institute of Scientific and Technical Information of China (English)

    J. V. R. REDDY; D. SRIKANTH; S. K. MURTHY

    2014-01-01

    This paper explores the mathematical model for couple stress fluid flow through an annular region. The above model is used for studying the blood flow be-tween the clogged (stenotic) artery and the catheter. The asymmetric nature of the stenosis is considered. The closed form expressions for the physiological parameters such as impedance and shear stress at the wall are obtained. The effects of various geomet-ric parameters and the parameters arising out of the fluid considered are discussed by considering the slip velocity and tapering angle. The study of the above model is very significant as it has direct applications in the treatment of cardiovascular diseases.

  7. Effects of Interfaces on Dynamics in Micro-Fluidic Devices: Slip-Boundaries’ Impact on Rotation Characteristics of Polar Liquid Film Motors

    Science.gov (United States)

    Jiang, Su-Rong; Liu, Zhong-Qiang; Amos Yinnon, Tamar; Kong, Xiang-Mu

    2017-05-01

    A new approach for exploring effects of interfaces on polar liquids is presented. Their impact on the polar liquid film motor (PLFM) - a novel micro-fluidic device - is studied. We account for the interface’s impact by modeling slip boundary effects on the PLFM’s electro-hydro-dynamical rotations. Our analytical results show as k={l}s/R increases (with {l}s denoting the slip length resulting from the interface’s impact on the film’s properties, k > -1 and R denoting the film’s radius): (a) PLFMs subsequently exhibit rotation characteristics under “negative-”, “no-”, “partial-” and “perfect-” slip boundary conditions; (b) The maximum value of the linear velocity of the steady rotating film increases linearly and its location approaches the film’s border; (c) The decay of the angular velocities’ dependency on the distance from the center of the film slows down, resulting in a macroscopic flow near the boundary. With our calculated rotation speed distributions consistent with the existing experimental ones, research aiming at fitting computed to measured distributions promises identifying the factors affecting {l}s, e.g., solid-fluid potential interactions and surface roughness. The consistency also is advantageous for optimizing PLFM’s applications as micro-washers, centrifuges, mixers in the lab-on-a-chip. Supported by National Natural Science Foundation of China under Grant Nos. 11302118, 11275112, and Natural Science Foundation of Shandong Province under Grant No. ZR2013AQ015

  8. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfven Eigenmodes in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, K. [Nagoya University, Japan; Isobe, M. [National Institute for Fusion Science, Toki, Japan; Watanabe, F. [Kyoto University, Japan; Spong, Donald A [ORNL; Shimizu, A. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Ohdachi, S. [National Institute for Fusion Science, Toki, Japan; Sakakibara, S. [National Institute for Fusion Science, Toki, Japan

    2012-01-01

    Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes (TAE) were measured with a scintillator-based lost fast-ion probe (SLIP) in the large helical device (LHD). The SLIP gave simultaneously the energy E and the pitch angle chi = arccos(v(parallel to)/v) distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of R{sub ax{_}vac} = 3.60 m, 3.75 m, and 3.90 m, where R{sub ax{_}vac} is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/chi regions of 50 similar to 190 keV/40 degrees, 40 similar to 170 keV/25 degrees, and 30 similar to 190 keV/30 degrees, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, R{sub ax{_}vac} and the toroidal field strength B{sub t}. The increment of the loss fluxes has the dependence of (b{sub TAE}/B{sub t}){sup s}. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.

  9. Phase Slips in Topological Superconductor Wire Devices

    Science.gov (United States)

    Goldberg, Samuel; Bergman, Doron; Pekker, David; Refael, Gil

    2012-02-01

    We make a detailed study of phase slips in topological superconducting wires and devices based on topological wires. We begin by investigating a device composed of a topological superconducting wire connected to a non-topological wire (T-S). In the T-segment only slips of the phase by multiples of 4π are allowed, while in the S-segment slips by 2π are also allowed. We show that near the interface, 2π phase slips are also allowed and we comment on the consequences of such phase slips for the Aharonov-Casher effect. We also consider an implementation of a q-bit consisting of a T-S-T device, where the quantum information is stored in the parity of the two topological segments via the four Majorana modes. We show that the central S-segment of this type of device can support 2π phase-slips which result in the decoherence of the q-bit.

  10. Concentrated aqueous Si3N4 -Y2O3 -Al2O3 slips stabalized with tetramethylammonium hydroxide

    Directory of Open Access Journals (Sweden)

    Albano M. P.

    1999-01-01

    Full Text Available In order to obtain well dispersed concentrated aqueous Si3N4 slips for slip casting, the influence of pH and sintering aid powders (Y2O3 and Al2O3 on the viscosity and on the amount of tetramethylammonium ions adsorbed were determined. 35 vol% aqueous Si3N4 and Si3N4-6wt%Y2O3-4wt% Al2O3 slips were prepared in an attrition mill. Tetramethylammonium hydroxide was added to adjust the pH values in a range of 9.7 to 12.3. The viscosity of Si3N4 slips and the amount of [(CH34N]+ ions in solution increased with increasing pH. These counterions contributed mainly to increase the ionic strength of the solution with increasing the slip viscosity. The sintering aid powders had a positive effect on the dispersion of the Si3N4 powder at pH 10.3-12.3 since low viscosity values could be obtained. This was attributed to the lower concentration of counterions in solution.

  11. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes

    KAUST Repository

    Geise, Geoffrey M.

    2014-08-26

    © the Partner Organisations 2014. Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The

  12. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump

    Science.gov (United States)

    Karimipour, Arash; D'Orazio, Annunziata; Shadloo, Mostafa Safdari

    2017-02-01

    The forced convection of nanofluid flow in a long microchannel is studied numerically according to the finite volume approach and by using a developed computer code. Microchannel domain is under the influence of a magnetic field with uniform strength. The hot inlet nanofluid is cooled by the heat exchange with the cold microchannel walls. Different types of nanoparticles such as Al2O3 and Ag are examined while the base fluid is considered as water. Reynolds number are chosen as Re=10 and Re=100. Slip velocity and temperature jump boundary conditions are simulated along the microchannel walls at different values of slip coefficient for different amounts of Hartmann number. The investigation of magnetic field effect on slip velocity and temperature jump of nanofluid is presented for the first time. The results are shown as streamlines and isotherms; moreover the profiles of slip velocity and temperature jump are drawn. It is observed that more slip coefficient corresponds to less Nusselt number and more slip velocity especially at larger Hartmann number. It is recommended to use Al2O3-water nanofluid instead of Ag-water to increase the heat transfer rate from the microchannel walls at low values of Re. However at larger amounts of Re, the nanofluid composed of nanoparticles with higher thermal conductivity works better.

  13. Influence of wall texture on slip effect of magnetorheological fluids%壁面形貌对磁流变液滑移特性的影响

    Institute of Scientific and Technical Information of China (English)

    陈飞; 侯友夫; 田祖织

    2013-01-01

    To obtain the wall slip effect of magnetorheological fluids, the magnetorheological transmission properties test-bed was established, the influence rules of groove shapes, groove densities, groove depths, texture types of wall were researched respectively, the results indicate that wall slip intensity has relationship with surface textures of disk, of which the influence of groove shape of disk was indistinctive, and the triangular section shape was slightly better than rectangular; the increase of groove density can improve the capacity of torque transmitted, and the groove depth has a optimized value range from 0-0. 5mm, the wall texture slip intensity range from small to big is radialized wall, potholed wall, smooth wall and annular wall, the appearance of wall texture can improve the wall slip intensity about 10%.%为了分析传动壁面形貌对磁流变液滑移特性的影响规律,建立磁流变传动性能实验台,分析了传动壁面沟槽形状、沟槽密度、沟槽深度、纹理类型等对滑移强度的影响规律,研究发现,滑移强度与传动壁面表面形貌有关,壁面沟槽形状对滑移强度影响并不明显,三角形截面形状略优于矩形;增加沟槽密度可提升磁流变液的传动能力,沟槽深度在0~0.5mm范围内存在最优值;同心圆、光滑、凹坑及径向辐射条纹4种壁面形貌中,滑移强度由大到小依次是:径向辐射条纹、凹坑、光滑、同心圆,改变壁面形貌可使滑移强度提高10%.

  14. Fault Scaling Relationships Depend on the Average Geological Slip Rate

    Science.gov (United States)

    Anderson, J. G.; Biasi, G. P.; Wesnousky, S. G.

    2016-12-01

    This study addresses whether knowing the geological slip rates on a fault in addition to the rupture length improves estimates of magnitude (Mw) of continental earthquakes that rupture the surface, based on a database of 80 events that includes 57 strike-slip, 12 reverse, and 11 normal faulting events. Three functional forms are tested to relate rupture length L to magnitude Mw: linear, bilinear, and a shape with constant static stress drop. The slip rate dependence is tested as a perturbation to the estimates of magnitude from rupture length. When the data are subdivided by fault mechanism, magnitude predictions from rupture length are improved for strike-slip faults when slip rate is included, but not for reverse or normal faults. This conclusion is robust, independent of the functional form used to relate L to Mw. Our preferred model is the constant stress drop model, because teleseismic observations of earthquakes favor that result. Because a dependence on slip rate is only significant for strike-slip events, a combined relationship for all rupture mechanisms is not appropriate. The observed effect of slip rate for strike-slip faults implies that the static stress drop, on average, tends to decrease as the fault slip rate increases.

  15. Physical effects of negative air ions in a wet sauna

    Science.gov (United States)

    Watanabe, I.; Noro, Hiroshi; Ohtsuka, Yoshinori; Mano, Yukio; Agishi, Yuko

    The physical effects of negative air ions on humans were determined in an experimental sauna room equipped with an ionizer. Thirteen healthy persons took a wet sauna bath (dry bulb temperature 42° C, relative humidity 100%, 10 min exposure) with or without negative air ions. The subjects were not told when they were being exposed to negative air ions. There were no differences in the moods of these persons or changes in their blood pressures between the two saunas. The surface temperatures of the foreheads, hands, and legs in the sauna with negative ions were significantly higher than those in the sauna without ions. The pulse rates and sweat produced in the sauna with ions were singificantly higher than those in the sauna without ions. The results suggest that negative ions may amplify the effects on humans of the sauna.

  16. Polycrystalline silicon ion sensitive field effect transistors

    Science.gov (United States)

    Yan, F.; Estrela, P.; Mo, Y.; Migliorato, P.; Maeda, H.; Inoue, S.; Shimoda, T.

    2005-01-01

    We report the operation of polycrystalline silicon ion sensitive field effect transistors. These devices can be fabricated on inexpensive disposable substrates such as glass or plastics and are, therefore, promising candidates for low cost single-use intelligent multisensors. In this work we have developed an extended gate structure with a Si3N4 sensing layer. Nearly ideal pH sensitivity (54mV /pH) and stable operation have been achieved. Temperature effects have been characterized. A penicillin sensor has been fabricated by functionalizing the sensing area with penicillinase. The sensitivity to penicillin G is about 10mV/mM, in solutions with concentration lower than the saturation value, which is about 7 mM.

  17. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE

    2010-12-10

    triggered slow-slip on the San Andreas Fault at Parkfield, CA., due to December, 2003 Mw6.5 San Simeon Earthquake (Breguier et al., Science 321, p.1478, 2008) shows very similar characteristics to what we observe in the laboratory, suggesting an extremely low in situ effective stress or a weak fault and a nonlinear-dynamical triggering mechanism.

  18. Thermal radiation and chemical reaction effects on boundary layer slip flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet

    Science.gov (United States)

    Krishnamurthy, M. R.; Gireesha, B. J.; Prasannakumara, B. C.; Gorla, Rama Subba Reddy

    2016-09-01

    A theoretically investigation has been performed to study the effects of thermal radiation and chemical reaction on MHD velocity slip boundary layer flow and melting heat transfer of nanofluid induced by a nonlinear stretching sheet. The Brownian motion and thermophoresis effects are incorporated in the present nanofluid model. A set of proper similarity variables is used to reduce the governing equations into a system of nonlinear ordinary differential equations. An efficient numerical method like Runge-Kutta-Fehlberg-45 order is used to solve the resultant equations for velocity, temperature and volume fraction of the nanoparticle. The effects of different flow parameters on flow fields are elucidated through graphs and tables. The present results have been compared with existing one for some limiting case and found excellent validation.

  19. Ion-ion correlation effects in opacities of ultra-dense and hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sauvan, P.; Minguez, E. [Instituto de Fusion Nuclear, E.T.S. de Ingenieros Industriales U.P.M., Jose Gutierrez Abascal, Madrid (Spain); Angelo, P.; Derfoul, H.; Ceccotti, T.; Poquerusse, A.; Gharbi, I.; Leboucher-Dalimier, E. [Ecole Polytechnique, Lab. pour l' Utilisation des Lasers Intenses, UMR 7605 CNRS, CEA, Ecole Polytechnique, Universite Paris 6, 91 - Palaiseau (France)

    2000-07-01

    The present work is devoted to the study of opacities for ultra-dense, hot, low Z (Z{<=}15) plasmas. The required photo-excitation and photo-ionisation cross sections are determined by the JIMENA code which allows the postprocessing of atomic data (dipole transition moments and line profiles) taking care of ion-ion correlations. These atomic data are computed with the radiative property code IDEFIX. The strong ion-ion correlation effects predicted by the simulations reinforce the impact of the experiment designed for this purpose. (authors)

  20. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure...... due to high heath fluxes, the controllability of the ion incidence angle, and charge accumulation when treating insulating materials. Despite of a large variety of plasma sources available for ion beam extraction, there is a clear need for new extraction mechanisms that can make available ion beams...... with high current densities that can treat surfaces placed adjacent to the extraction region. This work introduces a new phenomenology for ion beam extraction using the discrete ion-focusing effect associated with three-dimensional plasma-sheath-lenses [1, 2]. Experiments are performed in a matrix...

  1. The effect of velocity slip and multiple convective boundary conditions in a Darcian porous media with microorganism past a vertical stretching/shrinking sheet

    Science.gov (United States)

    Latiff, Nur Amalina Abdul; Yahya, Elisa; Ismail, Ahmad Izani Md.; Amirsom, Ardiana; Basir, Faisal

    2017-08-01

    An analysis is carried out to study the steady mixed convective boundary layer flow of a nanofluid in a Darcian porous media with microorganisms past a vertical stretching/shrinking sheet. Heat generation/absorption and chemical reaction effects are incorporated in the model. The partial differential equations are transformed into a system of ordinary differential equations by using similarity transformations generated by scaling group transformations. The transformed equations with boundary conditions are solved numerically. The effects of controlling parameters such as velocity slip, Darcy number, heat generation/absorption and chemical reaction on the skin friction factor, heat transfer, mass transfer and microorganism transfer are shown and discuss through graphs. Comparison of numerical solutions in the present study with the previous existing results in literature are made and comparison results are in very good agreement.

  2. Effects of metal ions on recombinant calcineurin A subunit

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Effects of metal ions on activities and solution conformations of calcineurin A subunit have been examined.The ability of several metal ions to activate calcineurin A has been tested with Ni2+>Mn2+>Mg2+/Ca2+.The corresponding CD spectra and intrinsic fluorescent emission spectra show that calcineurin A exists in different metal ion-dependent conformation states.Effects of the different concentritions of Ni2+ on activities and solution conformations of calcineurin A have been tested too.Results indicate that effects of these metal ions to activate calcineurin are due to their conformational changes.

  3. EFFECT OF METAL IONS ON THE LACCASE ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    XiwenWang; HuaiyuZhan; WeiHe

    2004-01-01

    The effects of five metal ions(Fe-'~,Ca-~*,Mg2*,Mn-'-"Cu2") on ABTS oxidation catalyzed by laccase werestudied under condition of pH=4.5 byspectrophotometer. The results show that Fe2+ ionhas obvious effect on the activity and the nature ofinhibition is competitive type. It is found that theinhibition is realized through the reduction ofABTS.by Fe2+ ion. Other metal ions have slight influence onlaccase activity.

  4. Mixed convection peristaltic motion of copper-water nanomaterial with velocity slip effects in a curved channel.

    Science.gov (United States)

    Hayat, T; Farooq, S; Alsaedi, A

    2017-04-01

    The primary objective of present analysis is to model the peristalsis of copper-water based nanoliquid in the presence of first order velocity and thermal slip conditions in a curved channel. Mixed convection, viscous dissipation and heat generation/absorption are also accounted. Mathematical formulation is simplified under the assumption of small Reynolds number and large wavelength. Regular perturbation technique is employed to find the solution of the resulting equations in terms of series for small Brinkman number. The final expression for pressure gradient, pressure rise, stream function, velocity and temperature are obtained and discussed through graphs. Mathematica software is utilized to compute the solution of the system of equations and to plot the graphical results. Results indicates that insertion of 30% copper nanoparticles in the basefluid (water) velocity and temperature reduces by almost 3% and 40% respecively. Moreover it is seen that size of the trapped bolus also reduces almost 20% with the insertion of 20% nanoparticles (copper) in the basefluid (water). It is noted that velocity and temperature are decreasing functions of nanoparticle volume fraction. Moreover the temperature rises when heat generation parameter and Brinkman number are enhanced. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Hofmeister effects: interplay of hydration, nonelectrostatic potentials, and ion size.

    Science.gov (United States)

    Parsons, Drew F; Boström, Mathias; Lo Nostro, Pierandrea; Ninham, Barry W

    2011-07-21

    The classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory of colloids, and corresponding theories of electrolytes, are unable to explain ion specific forces between colloidal particles quantitatively. The same is true generally, for surfactant aggregates, lipids, proteins, for zeta and membrane potentials and in adsorption phenomena. Even with fitting parameters the theory is not predictive. The classical theories of interactions begin with continuum solvent electrostatic (double layer) forces. Extensions to include surface hydration are taken care of with concepts like inner and outer Helmholtz planes, and "dressed" ion sizes. The opposing quantum mechanical attractive forces (variously termed van der Waals, Hamaker, Lifshitz, dispersion, nonelectrostatic forces) are treated separately from electrostatic forces. The ansatz that separates electrostatic and quantum forces can be shown to be thermodynamically inconsistent. Hofmeister or specific ion effects usually show up above ≈10(-2) molar salt. Parameters to accommodate these in terms of hydration and ion size had to be invoked, specific to each case. Ionic dispersion forces, between ions and solvent, for ion-ion and ion-surface interactions are not explicit in classical theories that use "effective" potentials. It can be shown that the missing ionic quantum fluctuation forces have a large role to play in specific ion effects, and in hydration. In a consistent predictive theory they have to be included at the same level as the nonlinear electrostatic forces that form the skeletal framework of standard theory. This poses a challenge. The challenges go further than academic theory and have implications for the interpretation and meaning of concepts like pH, buffers and membrane potentials, and for their experimental interpretation. In this article we overview recent quantitative developments in our evolving understanding of the theoretical origins of specific ion, or Hofmeister effects. These are demonstrated

  6. Scaling group transformation for MHD boundary layer flow over permeable stretching sheet in presence of slip flow with Newtonian heating effects

    Institute of Scientific and Technical Information of China (English)

    A A AFIFY; M J UDDIN; M FERDOWS

    2014-01-01

    Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transfor-mation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The ob-tained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta-Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.

  7. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  8. Ion charge neutralization effects in scanning electron microscopes.

    Science.gov (United States)

    Crawford, C K

    1980-01-01

    The use of low energy ion charge neutralization to stabilize surface potentials in scanning microscopes leads to the observation of new effects. Among the most important of these, are effects which result from the primary beam being scanned in a raster. A new theory which describes raster charge-up for highly insulating specimens is presented. It is shown that the required neutralizing ion current is a surprisingly strong function of the primary electron current, the raster parameters, specimen parameters, and magnification. Contrary to intuition, the required ion current is not linearly related to the primary electron current. Methods of adjusting parameters to achieve better ion charge neutralization are discussed.

  9. ION EFFECTS IN THE APS PARTICLE ACCUMULATOR RING

    Energy Technology Data Exchange (ETDEWEB)

    Calvey, J.; Harkay, K.; Yao, CY.

    2017-06-25

    Trapped ions in the APS Particle Accumulator Ring (PAR) lead to a positive coherent tune shift in both planes, which increases along the PAR cycle as more ions accumulate. This effect has been studied using an ion simulation code developed at SLAC. After modifying the code to include a realistic vacuum profile, multiple ionization, and the effect of shaking the beam to measure the tune, the simulation agrees well with our measurements. This code has also been used to evaluate the possibility of ion instabilities at the high bunch charge needed for the APS-Upgrade.

  10. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  11. EFFECT OF METAL IONS ON THE LACCASE ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    Xiwen Wang; Huaiyu Zhan; Wei He

    2004-01-01

    The effects of five metal ions(Fe2+、Ca2+、Mg2+、Mn2+、Cu2+) on ABTS oxidation catalyzed by laccase were studied under condition of pH=4.5 by spectrophotometer. The results show that Fe2+ ion has obvious effect on the activity and the nature of inhibition is competitive type. It is found that the inhibition is realized through the reduction ofABTS.by Fe2+ ion. Other metal ions have slight influence on laccase activity.

  12. Slip flow in graphene nanochannels

    Science.gov (United States)

    Kannam, Sridhar Kumar; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.

    2011-10-01

    We investigate the hydrodynamic boundary condition for simple nanofluidic systems such as argon and methane flowing in graphene nanochannels using equilibrium molecular dynamics simulations (EMD) in conjunction with our recently proposed method [J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev. E 84, 016313 (2011), 10.1103/PhysRevE.84.016313]. We first calculate the fluid-graphene interfacial friction coefficient, from which we can predict the slip length and the average velocity of the first fluid layer close to the wall (referred to as the slip velocity). Using direct nonequilibrium molecular dynamics simulations (NEMD) we then calculate the slip length and slip velocity from the streaming velocity profiles in Poiseuille and Couette flows. The slip lengths and slip velocities from the NEMD simulations are found to be in excellent agreement with our EMD predictions. Our EMD method therefore enables one to directly calculate this intrinsic friction coefficient between fluid and solid and the slip length for a given fluid and solid, which is otherwise tedious to calculate using direct NEMD simulations at low pressure gradients or shear rates. The advantages of the EMD method over the NEMD method to calculate the slip lengths/flow rates for nanofluidic systems are discussed, and we finally examine the dynamic behaviour of slip due to an externally applied field and shear rate.

  13. Predicting Molecular Crowding Effects in Ion-RNA Interactions.

    Science.gov (United States)

    Yu, Tao; Zhu, Yuhong; He, Zhaojian; Chen, Shi-Jie

    2016-09-01

    We develop a new statistical mechanical model to predict the molecular crowding effects in ion-RNA interactions. By considering discrete distributions of the crowders, the model can treat the main crowder-induced effects, such as the competition with ions for RNA binding, changes of electrostatic interaction due to crowder-induced changes in the dielectric environment, and changes in the nonpolar hydration state of the crowder-RNA system. To enhance the computational efficiency, we sample the crowder distribution using a hybrid approach: For crowders in the close vicinity of RNA surface, we sample their discrete distributions; for crowders in the bulk solvent away from the RNA surface, we use a continuous mean-field distribution for the crowders. Moreover, using the tightly bound ion (TBI) model, we account for ion fluctuation and correlation effects in the calculation for ion-RNA interactions. Applications of the model to a variety of simple RNA structures such as RNA helices show a crowder-induced increase in free energy and decrease in ion binding. Such crowding effects tend to contribute to the destabilization of RNA structure. Further analysis indicates that these effects are associated with the crowder-ion competition in RNA binding and the effective decrease in the dielectric constant. This simple ion effect model may serve as a useful framework for modeling more realistic crowders with larger, more complex RNA structures.

  14. Isotope effects in a multicusp tandem ion source

    Energy Technology Data Exchange (ETDEWEB)

    Graham, W.G. (Department of Pure and Applied Physics, Queen' s University, Belfast BT7 1NN (Northern Ireland))

    1992-10-05

    Measurements of plasma parameters, including electron density, electron energy distribution function (eedf), and negative ion density, have been made in the driver and extractor regions of a multicusp tandem ion source. Here results which focus on comparing operation in hydrogen and deuterium are presented. Several isotope effects are evident. In particular, for the same operating conditions, the electron density is found to be higher in deuterium than in hydrogen while the negative ion density is consistently lower.

  15. Ion irradiation induced effects in polyamidoimide

    Energy Technology Data Exchange (ETDEWEB)

    Merhari, L.; Belorgeot, C.; Moliton, J.P. (Laboratoire d' Electronique des Polymeres sous Faisceaux Ioniques 123, avenue Albert Thomas, 87060 Limoges Cedex (France))

    1991-09-01

    The interaction between ion beam and polyamidoimide (PAI) is studied by means of low-temperature infrared spectroscopy. 200 keV Ar{sup +} and 250 keV He{sup +} beams with fluences ranging from 10{sup 13} ions cm{sup {minus}2} to 5{times}10{sup 16} ions cm{sup {minus}2} are found to induce atomic bond breaks leading to absorption bands at 2344, 2261, and 2125 cm{sup {minus}1} corresponding respectively to CO{sub 2}, C=N=N and C=N--R vibrations. Shrinkage of the polymer along with a drastic decrease of the resistivity during Ar{sup +} and He{sup +} irradiation are observed. Speculations on the respective role of electronic processes and atomic collisions in the evolution of the polymer are made. No evidence of PAI modification through knock-on mechanism for fluences lower than 5{times}10{sup 15} ions cm{sup {minus}2} is noticed. In fact, our results would suggest a predominant role of the electronic processes for the low fluences (up to 5{times}10{sup 15} ions cm{sup {minus}2} ), whereas a degradation mechanism based on atomic collisions is more likely to take place for higher fluences. A theoretical mechanism of reactions based upon our Fourier transform infrared (FTIR) and secondary ion mass spectroscopies (SIMS) results, describing the chemical changes occurring in the PAI, is presented and briefly discussed.

  16. Fault zone roughness controls slip stability

    Science.gov (United States)

    Harbord, Christopher; Nielsen, Stefan; De Paola, Nicola

    2016-04-01

    Fault roughness is an important control factor in the mechanical behaviour of fault zones, in particular the frictional slip stability and subsequent earthquake nucleation. Despite this, there is little experimental quantification as to the effects of varying roughness upon rate- and state-dependant friction (RSF). Utilising a triaxial deformation apparatus and a novel adaptation of the direct shear methodology to simulate initially bare faults in Westerly Granite, we performed a series of velocity step frictional sliding experiments. Initial root mean square roughnesses (Sq) was varied in the range 6x10-7 - 2.4x10-5 m. We also investigated the effects upon slip stability of normal stress variation in the range σn = 30 - 200 MPa, and slip velocity between 0.1 - 10 μm s-1. A transition from stable sliding to unstable slip (manifested by stick-slip and slow slip events) was observed, depending on the parameter combination, thus covering the full spectrum of fault slip behaviours. At low normal stress (σn = 30MPa) smooth faults (Sqstress drops on slow slip events upon velocity increase), with strongly velocity weakening friction. When normal stress is increased to intermediate values (σn = 100 - 150 MPa), smooth faults (Sqstress (σn = 200 MPa) a transition from unstable to stable sliding is observed for smooth faults, which is not expected using RSF stability criteria. At all conditions sliding is stable for rough faults (Sq> 1x10-6 m). We find that instability can develop when the ratio of fault to critical stiffness kf kc > 10, or, alternatively, even when a - b > 0 at σn = 150MPa, suggesting that bare surfaces may not strictly obey the R+S stability condition. Additionally we present white light interferometry and SEM analysis of experimentally deformed samples which provide information about the distribution and physical nature of frictional contact. Significantly we suggest that bare fault surfaces may require a different stability criterion (based on

  17. Dimension effects in plasma immersion ion implantation of cylindrical bore

    CERN Document Server

    Tian Xiu Bo; Tong Hong Hui; Chu, P K

    2002-01-01

    Plasma immersion ion implantation is a new technique pertaining to ion implantation. Different from the case of exterior surface treatment, plasma immersion ion implantation of interior surface possesses dimension effects. Consequently it is a challenge to implant the inner wall of a cylindrical bore due to this finite dimension.The ion energy cannot be linearly changed with applied voltage and there exists a saturation value due to overlap effect of plasma sheath. The plasma in the bore may rapidly be depleted, which is attributed to finite plasma volume and plasma-sheath con-flowing effect. For instance the plasma depletion time is about 0.55 mu s when a bore with a diameter of 20 cm is treated under conditions of applied voltage of 30 kV and plasma density of 2 x 10 sup 1 sup 5 ions/cm sup 3. Interior plasma-source hardware may be an effective solution

  18. Are non-slip socks really 'non-slip'? An analysis of slip resistance

    Directory of Open Access Journals (Sweden)

    Haines Terrence

    2009-08-01

    Full Text Available Abstract Background Non-slip socks have been suggested as a means of preventing accidental falls due to slips. This study compared the relative slip resistance of commercially available non-slip socks with other foot conditions, namely bare feet, compression stockings and conventional socks, in order to determine any traction benefit. Methods Phase one involved slip resistance testing of two commercially available non-slip socks and one compression-stocking sample through an independent blinded materials testing laboratory using a Wet Pendulum Test. Phase two of the study involved in-situ testing among healthy adult subjects (n = 3. Subjects stood unsupported on a variable angle, inclined platform topped with hospital grade vinyl, in a range of foot conditions (bare feet, non-slip socks, conventional socks and compression stockings. Inclination was increased incrementally for each condition until slippage of any magnitude was detected. The platform angle was monitored using a spatial orientation tracking sensor and slippage point was recorded on video. Results Phase one results generated through Wet Pendulum Test suggested that non-slip socks did not offer better traction than compression stockings. However, in phase two, slippage in compression stockings was detected at the lowest angles across all participants. Amongst the foot conditions tested, barefoot conditions produced the highest slip angles for all participants indicating that this foot condition provided the highest slip resistance. Conclusion It is evident that bare feet provide better slip resistance than non-slip socks and therefore might represent a safer foot condition. This study did not explore whether traction provided by bare feet was comparable to 'optimal' footwear such as shoes. However, previous studies have associated barefoot mobilisation with increased falls. Therefore, it is suggested that all patients continue to be encouraged to mobilise in appropriate, well

  19. Antimicrobial Effect of Metal Ions Substitution to HAp, Zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. J.; Kim, S. B.; Cho, S. B; Cho, K. J.; Lee, T. H. [Pai Chai University, Taejeon (Korea); Kim, T. N. [Korea Institute of Geoscience and Mineral Resources, Taejeon (Korea)

    2001-02-01

    Generally, hydroxyapatite(HAp), zeolite, carbon molecular sieve, activated carbon and alumina are used as heavy metal ions adsorption materials. Among those adsorption materials, HAp which has good positive ion-exchange ability with metal ion, and zeolite are utilized in wastewater treatment. Most of water pollutions are caused by hazardous heavy metals ions as well as bacteria in waste water. In this study, a adsorption materials (HAp and zeolite) are ion-exchanged with a well known antimicrobial metal ions, such as Ag{sup +}, Cu{sup 2+}, and Zn{sup 2+}, in order to give a adsorption of heavy metal ions and a killing effects of bacteria. The antimicrobial effects of adsorption materials are observed using by E. Coli. The results show that there is a complete antimicrobial effect in the adsorption materials with Ag{sup +} at the concentration of 1x10{sup -4}cell/ml of E. Coli until 24 hours. However, there is not good antimicrobial effects in the adsorption materials with Cu{sup 2+} and Zn{sup 2+} substitution. Feng et. al. showed the denaturation effects of silver ions which induces the condensed DNA molecules and losing their replication abilities. (author). 13 refs., 6 figs., 2 tabs.

  20. Biological Effects on Fruit Fly by N+ ion Beam Implantation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mutation induced by low energy ion beam implantation has beenapplied widely both in plants and microbes. However, due to the vacuum limitation, such ion implantation into animals was never studied except for silkworm. In this study, Pupae of fruit fly were irradiated with different dosage N+ ions at energy 20 KeV to study the biological effect of ion beam on animal. The results showed a saddle-like curve exists between incubate rate and dosage. Damage of pupae by ion beam implantation was observed using scanning electron microscope. Some individuals with incomplete wing were obtained after implantation but no similar character was observed in their offspring. Furthermore, about 5.47% mutants with wide variation appeared in M1 generation. Therefore, ion beam implantation could be widely used for mutation breeding.

  1. The Temperature Effects on the Ion Trap Quantum Computer

    Institute of Scientific and Technical Information of China (English)

    Hongmin; JiatiLIN

    2001-01-01

    We consider one source of decoherence for a quantum computer composed of many trapped ions due to the thermal effects of the system in the presence of laser-ion interaction.The upper limit of the temperature at which the logical gate operations could be carried out reliably is given,and our result is agreement with the experiment.

  2. Effects of ion beam irradiation on semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Nashiyama, Isamu; Hirao, Toshio; Itoh, Hisayoshi; Ohshima, Takeshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    Energetic heavy-ion irradiation apparatus has been developed for single-event effects (SEE) testing. We have applied three irradiation methods such as a scattered-ion irradiation method, a recoiled-atom irradiation method, and a direct-beam irradiation method to perform SEE testing efficiently. (author)

  3. Handling a slip | Smokefree 60+

    Science.gov (United States)

    Plan how you will recover from a slip—before it happens. You can recover from a slip If you do go back to smoking, you are not a failure. Don't toss aside your attempt as worthless. Use it to try and succeed. Think of your quit attempt as a learning experience, and if you do slip, try again.

  4. PTHA Slip Models in the Aftermath of the 2011 Tohoku Earthquake and Tsunami

    Science.gov (United States)

    Geist, E. L.; Parsons, T.; Oglesby, D. D.

    2011-12-01

    Inter-plate thrust slip models used in Probabilistic Tsunami Hazard Analysis (PTHA) are re-evaluated in light of the 2011 Tohoku earthquake and tsunami. Whereas recurrence is typically linked to seismic moment in PTHA, the magnitude and distribution of slip are the primary variables that affect tsunami generation. Because of the self-similar nature of rupture, the slip model is dependent on other scaling relationships, such as magnitude-area and magnitude-mean slip. In the past, various slip models have been used to calculate tsunami generation, ranging from uniform slip to stochastic models. Uniform slip models systematically underestimate the amplitude and leading-wave steepness for the local, broadside tsunami. Stochastic slip models, constrained by the seismic displacement spectrum, produce a range of possible slip distributions for a given seismic moment and slip spectrum and more accurately represent heterogeneous earthquake ruptures. Conventional stochastic slip models based on a k-2 slip spectrum and Gaussian random variables result in a coefficient of variation (c.v.) approximately equal to 0.5. However, slip inversion results of recent tsunamigenic earthquakes indicate that the observed c.v. is significantly greater than 0.5. This is particularly evident for the 2011 Tohoku earthquake, in which the c.v. for slip is approximately 1.0. Recent updates to the stochastic slip model can retain a k-2 slip spectrum, but use non-Gaussian distributed random variables. The updated stochastic slip model is more consistent with the observed fluctuations in slip. We investigate how these models can be applied in a PTHA framework. In addition, dynamic effects such as amplification of slip near the free surface, partitioning of slip between different overlapping fault segments, and dynamic overshoot can strongly modify the slip pattern in ways that may be correlated with geometrical and frictional properties on the fault; such effects potentially may be predictable prior

  5. Numerical modeling of short-term slow slip events in the Shikoku region considering the effect of earth tides and plate configuration

    Science.gov (United States)

    Matsuzawa, T.; Tanaka, Y.; Shibazaki, B.

    2016-12-01

    Several studies reported that occurrence of slow slip events (SSEs) in the Nankai region is affected by earth tides (e.g., Nakata et al., 2008; Ide and Tanaka, 2014; Yabe et al., 2015). The tidal effect on the SSEs is also examined by numerical studies (e.g., Hawthorne and Rubin, 2013). In our previous study, repeating SSEs in the Shikoku region are numerically reproduced, incorporating the actual plate configuration (Matsuzawa et al., 2013). In this study, we examined the behavior of SSEs in the Shikoku region, considering stress perturbation by earth tides. Our numerical model is similar to our previous study (Matsuzawa et al., 2013). A plate interface is expressed by small triangular elements. A rate- and state-dependent friction law (RS-law) with cutoff velocities is adopted as the friction law on each element. We assumed that (a-b) value in the RS-law is negative within the short-term SSE region, and positive outside the region. The short-term SSE region is based on the actual distribution of low-frequency tremor. Low effective normal stress is assumed at the depth of short-term SSEs. Calculating stress change by earth tides as in Yabe et al., (2015), we assume that the stress change is represented by periods of 10 major tides. Incorporating this stress perturbation, we calculate the evolution of slip on the plate interface. In the numerical result, repeating short-term SSEs are reproduced in the short-term SSE region. Recurrent intervals of SSEs at an isolated patch (e.g., northeastern Shikoku) have small fluctuation. Introducing tidal effect, peak velocity becomes faster than that in the case without tidal effect. On the other hand, the difference of peak velocities is not clear between the cases with and without tidal effect at widely connected SSE region (e.g., western Shikoku), as the intervals and peak velocities of SSEs are largely fluctuated in both cases. Hirahara (2016) suggested that the recurrence interval of events is synchronized to the period of

  6. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  7. Hydrodynamic slip length as a surface property.

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G P

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  8. MHD Flow and Heat Transfer of a Generalized Burgers’ Fluid Due to an Exponential Accelerating Plate with Effects of the Second Order Slip and Viscous Dissipation

    Science.gov (United States)

    Zhang, Yan; Zhao, Hao-Jie; Bai, Yu

    2017-06-01

    In classical study on generalized viscoelastic fluid, the momentum equation was derived by considering the fractional constitutive model, while the energy equation was ignored its effect. This paper presents an investigation for the magnetohydrodynamic (MHD) flow and heat transfer of an incompressible generalized Burgers’ fluid due to an exponential accelerating plate with the effect of the second order velocity slip. The energy equation and momentum equation are coupled by the fractional Burgers’ fluid constitutive model. Numerical solutions for velocity, temperature and shear stress are obtained using the modified implicit finite difference method combined with the G1-algorithm, whose validity is confirmed by the comparison with the analytical solution. Our results show that the influences of the fractional parameters α and β on the flow are opposite each other, which is just like the effects of the two parameters on the temperature. Moreover, the impact trends of the relaxation time λ 1 and retardation time λ 3 on the velocity are opposite each other. Increasing the boundary parameter will promote the temperature, but has little effect on the temperature boundary layer thickness. Supported by the National Natural Science Foundations of China under Grant Nos. 21576023, 51406008, and the National Key Research Program of China under Grant Nos. 2016YFC0700601, 2016YFC0700603, and 2016YFE0115500

  9. Thermal slip for liquids at rough solid surfaces

    Science.gov (United States)

    Zhang, Chengbin; Chen, Yongping; Peterson, G. P.

    2014-06-01

    Molecular dynamics simulation is used to examine the thermal slip of liquids at rough solid surfaces as characterized by fractal Cantor structures. The temperature profiles, potential energy distributions, thermal slip, and interfacial thermal resistance are investigated and evaluated for a variety of surface topographies. In addition, the effects of liquid-solid interaction, surface stiffness, and boundary condition on thermal slip length are presented. Our results indicate that the presence of roughness expands the low potential energy regions in adjacent liquids, enhances the energy transfer at liquid-solid interface, and decreases the thermal slip. Interestingly, the thermal slip length and thermal resistance for liquids in contact with solid surfaces depends not only on the statistical roughness height, but also on the fractal dimension (i.e., topographical spectrum).

  10. Instability of some divalent rare earth ions and photochromic effect

    Science.gov (United States)

    Egranov, A. V.; Sizova, T. Yu.; Shendrik, R. Yu.; Smirnova, N. A.

    2016-03-01

    It was shown that the divalent rare earth ions (La, Ce, Gd, Tb, Lu, and Y) in cubic sites in alkaline earth fluorides are unstable with respect to electron autodetachment since its d1(eg) ground state is located in the conduction band which is consistent with the general tendency of these ions in various compounds. The localization of doubly degenerate d1(eg) level in the conduction band creates a configuration instability around the divalent rare earth ion that leading to the formation of anion vacancy in the nearest neighborhood, as was reported in the previous paper [A. Egranov, T. Sizova, Configurational instability at the excited impurity ions in alkaline earth fluorites, J. Phys. Chem. Solids 74 (2013) 530-534]. Thus, the formation of the stable divalent ions as La, Ce, Gd, Tb, Lu, and Y (PC+ centers) in CaF2 and SrF2 crystals during x-ray irradiation occurs via the formation of charged anion vacancies near divalent ions (Re2+va), which lower the ground state of the divalent ion relative to the conductivity band. Photochromic effect occurs under thermally or optically stimulated electron transition from the divalent rare earth ion to the neighboring anion vacancy and reverse under ultraviolet light irradiation. It is shown that the optical absorption of the PC+ centers due to d → d and d → f transitions of the divalent rare-earth ion.

  11. Polydimethylsiloxane SlipChip for mammalian cell culture applications.

    Science.gov (United States)

    Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2015-11-07

    This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.

  12. The phase slip factor of the electrostatic cryogenic storage ring CSR

    Science.gov (United States)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  13. Effect of magnesium ion on human osteoblast activity

    Directory of Open Access Journals (Sweden)

    L.Y. He

    2016-01-01

    Full Text Available Magnesium, a promising biodegradable metal, has been reported in several studies to increase bone formation. Although there is some information regarding the concentrations of magnesium ions that affect bone remodeling at a cellular level, little is known about the effect of magnesium ions on cell gap junctions. Therefore, this study aimed to systematically investigate the effects of different concentrations of magnesium on bone cells, and further evaluate its effect on gap junctions of osteoblasts. Cultures of normal human osteoblasts were treated with magnesium ions at concentrations of 1, 2 and 3 mM, for 24, 48 and 72 h. The effects of magnesium ions on viability and function of normal human osteoblasts and on gap junction intercellular communication (GJIC in osteoblasts were investigated. Magnesium ions induced significant (P<0.05 increases in cell viability, alkaline phosphate activity and osteocalcin levels of human osteoblasts. These stimulatory actions were positively associated with the concentration of magnesium and the time of exposure. Furthermore, the GJIC of osteoblasts was significantly promoted by magnesium ions. In conclusion, this study demonstrated that magnesium ions induced the activity of osteoblasts by enhancing GJIC between cells, and influenced bone formation. These findings may contribute to a better understanding of the influence of magnesium on bone remodeling and to the advance of its application in clinical practice.

  14. Effect of ion interactions on the IR spectrum of benzenesulfonate ion. Restoration of sulfonate ion symmetry in sodium benzenesulfonate dimer

    Science.gov (United States)

    Shishlov, N. M.; Khursan, S. L.

    2016-11-01

    Literature data concerning the assignment of IR spectra of benzenesulfonate salts that serve as model compounds for aromatic sulfonate-containing ionomers and polyelectrolytes have been analyzed. The structures and IR spectra of free benzenesulfonate ion and its potassium and sodium salts have been calculated in B3LYP/6-311G(d,p) approximation. The bidentate coordination of counter-ions is energetically favorable for isolated ion pairs. In this coordination, the symmetry of sulfonate ion changes noticeably, which manifests itself as strong splitting of calculated vibrational modes of asymmetric stretching vibrations of Ssbnd O bonds, Δνas(SO3) = 154 cm-1 (K) and 180 cm-1 (Na). For sodium benzenesulfonate it is thermodynamically favorable to form a dimer (ΔG° = -37.6 kcal/mol) in which the joint effects of monodentate and bidentate coordinated Na cations result in equalization of Ssbnd O bond lengths and thus a considerable restoration of C3V symmetry of the sulfonate ion. The IR spectrum of the dimer in which Δνas(SO3) splitting is considerably smaller much better matches the experimental spectrum than the spectrum of an isolated ion pair. The major absorption bands in the IR spectrum of sodium benzenesulfonate have been assigned to theoretical vibrational modes of the dimer and, based on visualization of modes, to vibrations of certain bonds in the anion. In particular, the bands at 1200 and 1186 cm-1 have been assigned to νas(SO3), that at 1049 cm-1 to νs(SO3), and those at 628 and 572 cm-1 to δ(oop)s(SO3), and δ(ip)as(SO3), respectively. The strong effect of sulfonate ion environment on the positions of the absorption bands of stretching vibrations of Ssbnd O bonds makes it necessary to obtain data on exact structures of ion clusters for reliable assignment of absorption bands in experimental IR spectra of real sulfonate-containing systems.

  15. Size Effects in Heavy Ions Fragmentation

    CERN Document Server

    Barrañon, A; Dorso, C O

    2003-01-01

    Rise-Plateau Caloric curves for different Heavy Ion collisions have been obtained, in the range of experimental observations. Limit temperature decreases when the residual size is increased, in agreement with recent theoretical analysis of experimental results reported by other Collaborations. Besides, promptly emitted particles influence on temperature plateau is shown. LATINO binary interaction semiclassical model is used to reproduce the inter-nucleonic forces via Pandharipande Potential and fragments are detected with an Early Cluster Recognition Algorithm.

  16. Effects of chemical reaction and partial slip on the three-dimensional flow of a nanofluid impinging on an exponentially stretching surface

    Science.gov (United States)

    Mahanthesh, B.; Mabood, F.; Gireesha, B. J.; Gorla, R. S. R.

    2017-03-01

    The three-dimensional mixed convection boundary layer flow of a nanofluid induced by an exponentially stretching sheet is numerically investigated in the presence of thermal radiation, heat source/sink and first-order chemical reaction effects. The adopted nanofluid model incorporates the effects of Brownian motion and thermophoresis into the mathematical model. The first-order velocity slip boundary conditions are also taken into account. The governing boundary layer equations are transformed into a set of nonlinear ordinary differential equations by employing suitable similarity variables. The resultant equations are solved numerically using the Runge-Kutta-Fehlberg method. Obtained solutions are compared with previous results in a limiting sense from the literature, demonstrating an excellent agreement. To show the typical trend of the solutions, a parametric study is conducted. The axial velocity, transverse velocity, temperature and nanoparticle volume fraction profiles as well as the skin-friction coefficient, Nusselt and Sherwood numbers are demonstrated graphically as a representative set of numerical results and discussed comprehensively.

  17. Effect of a Convective Boundary Condition on Boundary Layer Slip Flow and Heat Transfer Over a Stretching Sheet in View of the Exact Solution

    Science.gov (United States)

    Aljoufi, Mona D.; Ebaid, Abdelhalim

    2016-12-01

    The exact solutions of a nonlinear differential equations system, describing the boundary layer flow over a stretching sheet with a convective boundary condition and a slip effect have been obtained in this paper. This problem has been numerically solved by using the shooting method in literature. The aim of the current paper is to check the accuracy of these published numerical results. This goal has been achieved via first obtaining the exact solutions of the governing nonlinear differential equations and then, by comparing them with the approximate numerical results reported in literature. The effects of the physical parameters on the flow field and the temperature distribution have been re-investigated through the new exact solutions. The main advantage of the current paper is the simple computational approach that has been introduced to analyze exactly the present physical problem. This simple analytical approach can be further applied to investigate similar problems. Although no remarkable differences have been detected between the current figures and those obtained in literature, the authors believe that if some numerical calculations were available for the fluid velocity and the temperature in literature then the convergence criteria and the accuracy of the shooting method used in Ref. [15] can be validated in view of the current exact expressions.

  18. Effect of electrode materials on a negative ion production in a cesium seeded negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi; Morishita, Takutoshi; Kashiwagi, Mieko; Hanada, Masaya; Iga, Takashi; Inoue, Takashi; Watanabe, Kazuhiro; Imai, Tsuyoshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Wada, Motoi [Doshisha Univ., Kyoto (Japan)

    2003-03-01

    Effects of plasma grid materials on the negative ion production efficiency in a cesium seeded ion source have been experimentally studied. Grid materials of Au, Ag, Cu, Ni, and Mo were examined. A 2.45 GHz microwave ion source was utilized in the experiment to avoid contamination of tungsten from filament cathode. Relations between the negative ion currents and work functions of the grid were measured for these materials. Influence of the contamination by tungsten on the grid was also investigated. If was clarified that the negative ion production efficiency was determined only by the work function of the grid. The efficiency did not depend on the material itself. The lowest work function of 1.42 eV was obtained for Au grid with Cs, and a high H{sup -} production efficiency of 20.7 mA/kW was measured. This efficiency is about 1.3 times larger than that of Cs/Mo and Cs/Cu. Further improvement of the production efficiency was observed by covering the plasma grid with tungsten and cesium simultaneously. Such co-deposition of W and Cs on the plasma grid produced the negative ion production efficiency of 1.7 times higher than that from the tungsten grid simply covered with Cs. (author)

  19. Does aging with a cortical lesion increase fall-risk: Examining effect of age versus stroke on intensity modulation of reactive balance responses from slip-like perturbations.

    Science.gov (United States)

    Patel, Prakruti J; Bhatt, Tanvi

    2016-10-01

    We examined whether aging with and without a cerebral lesion such as stroke affects modulation of reactive balance response for recovery from increasing intensity of sudden slip-like stance perturbations. Ten young adults, older age-match adults and older chronic stroke survivors were exposed to three different levels of slip-like perturbations, level 1 (7.75m/s(2)), Level II (12.00m/s(2)) and level III (16.75m/s(2)) in stance. The center of mass (COM) state stability was computed as the shortest distance of the instantaneous COM position and velocity relative to base of support (BOS) from a theoretical threshold for backward loss of balance (BLOB). The COM position (XCOM/BOS) and velocity (ẊCOM/BOS) relative to BOS at compensatory step touchdown, compensatory step length and trunk angle at touchdown were also recorded. At liftoff, stability reduced with increasing perturbation intensity across all groups (main effect of intensity pintensity, such a trend was absent in other groups (intensity×group interaction, plevels II and III. Further, greater stability at touchdown positively correlated with anterior XCOM/BOS however not with ẊCOM/BOS. Young adults maintained anterior XCOM/BOS by increasing compensatory step length and preventing greater trunk extension at higher perturbation intensities. The age-match group attempted to increase step length from intensity I to II to maintain stability however could not further increase step length at intensity III, resulting in lower stability on this level compared with the young group. Stroke group on the other hand was unable to modulate compensatory step length or control trunk extension at higher perturbation intensities resulting in reduced stability on levels II and III compared with the other groups. The findings reflect impaired modulation of recovery response with increasing intensity of sudden perturbations among stroke survivors compared with their healthy counter parts. Thus, aging superimposed with a

  20. Research of the Effect of the Characteristic of Silicone Oil Viscous Limited Slip Differential to the Vehicle's Controllability%硅油式防滑差速器特性对汽车操纵性能的影响研究

    Institute of Scientific and Technical Information of China (English)

    盛德号; 王志

    2012-01-01

    The mensuration test on the characteristic of transferring torque of viscous limited slip differential is introduced by using of electrical - control driveline test - rig, in order to study the torque characteristic of the viscous limited slip differential. In addition, the contrast parameters determined by computer simulation experiment, such as turning radius ratio, yaw velocity, lateral acceleration and etc, are analyzed to research on the effect of torque charac-teristic of viscous limited slip differential to the vehicle's controllability. The test results show that if the limited torque of viscous limited slip differential is appropriate, the vehicle of viscous limited slip differential is better controllable than the ordinary vehicle Differential.%为了研究硅油式防滑差速器的转矩输出特性,通过电控动力传动系试验台对硅油式防滑差速器转矩输出特性进行了测定试验.通过仿真对比试验测定汽车转弯半径比、横摆角速度及侧向加速度等,并作为对比参数来考察硅油式防滑差速器转矩特性对汽车操纵稳定性的影响.仿真试验结果表明,若硅油式防滑差速器的防滑转矩设计合适,汽车装硅油式防滑差速器比装普通差速器更有利于汽车的操纵稳定性.

  1. Effect of surfactant concentration and interfacial slip on the flow past a viscous drop at low surface P\\'eclet number

    CERN Document Server

    Sekhar, G P Raja; Rohde, Christian

    2016-01-01

    The motion of a viscous drop is investigated when the interface is fully covered with a stagnant layer of surfactant in an arbitrary unsteady Stokes flow for the low surface P\\'eclet number limit. The effect of the interfacial slip coefficient on the behavior of the flow field is also considered. The hydrodynamic problem is solved by the solenoidal decomposition method and the drag force is computed in terms of Faxen's laws using a perturbation ansatz in powers of the surface P\\'eclet number. The analytical expressions for the migration velocity of the drop are also obtained in powers of the surface P\\'eclet number. Further instances corresponding to a given ambient flow as uniform flow, Couette flow, Poiseuille flow are analyzed. Moreover, it is observed that, a surfactant-induced cross-stream migration of the drop occur towards the centre-line in both Couette flow and Poiseuille flow cases. The variation of the drag force and migration velocity is computed for different parameters such as P\\'eclet number, M...

  2. Effects of Ions Charge-Mass Ratio on Energy and Energy Spread of Accelerated Ions in Laser Driven Plasma

    Institute of Scientific and Technical Information of China (English)

    SANG Hai-Bo; DENG Shi-Qiang; XIE Bai-Song

    2013-01-01

    Effects of ions charge-mass ratio on energy and energy spread of accelerated ions in laser driven plasma are investigated in detail by proposing a simple double-layer model for a foil target driven by an ultrastrong laser.The radiation pressure acceleration mechanism plays an important role on the studied problem.For the ions near the plasma mirror,i.e.electrons layer,the dependence of ions energy on their charge-mass ratio is derived theoretically.It is found that the larger the charge-mass ratio is,the higher the accelerated ions energy gets.For those ions far away from the layer,the dependence of energy and energy spread on ions charge-mass ratio are also obtained by numerical performance.It exhibits that,as ions charge-mass ratio increases,not only the accelerated ions energy but also the energy spread will become large.

  3. Slips of the Typewriter Key.

    Science.gov (United States)

    Berg, Thomas

    2002-01-01

    Presents an analysis of 500 submorphemic slips of the typewriter key that escaped the notice of authors and other proofreaders and thereby made their way into the published records of scientific research. (Author/VWL)

  4. Effect of Cu2+ ions on bioleaching of marmatite

    Institute of Scientific and Technical Information of China (English)

    CHEN Song; QIN Wen-qing; QIU Guan-zhou

    2008-01-01

    The effect of Cu2+ ions on bioleaching of marmatite was investigated through shake leaching experiments.The bacteria inoculated are a mixed culture of Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans and Lepthospirillum ferrooxidans.The results show that zinc is selectively leached,and the addition of appropriate content of Cu2+ ions has positive effect on the bioleaching of marmatite.SEM and EDX analyses of the leaching residue reveal that a product layer composed of iron sulfide,elemental sulfur and jarosite forms on the mineral surface.The biooxidation of elemental sulfur is catalyzed by the Cu2+ ions,which eliminate the barrier to bioleaching of marmatite and keep low pH value.With the addition of 0.5 g/L Cu2+ ions,the maximum zinc extraction rate reaches 73% after 23 d at the temperature of 30 ℃ with the pulp density of 10%,while that of iron is only about 10%.

  5. Effects of Lanthanide Ions on Electrooxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    WANG Hai-tao; YIN Yu-chun; GAO Shu-juan

    2008-01-01

    Four kinds of lanthanide ions(Sm3+,Yb3+,Eu3+,La3+) as an additive were added into the aqueous solution containing methanol,respectively,and their effects on methanol elecotrooxidation in aqueous solutions were studied with cyclic voltammetry.The results show that the four kinds of ions have promotion action upon the electrooxidation of methanol to different degrees.The best additive,Sm3+,can increase the anodic oxidation current of methanol by 80% and the peak potential shifted negatively about 50 mV.The promotion effects of the lanthanide ions were considered to be related to the extranuclear electron distribution of these ions and their adsorption on the Pt electrode surface.

  6. Effects of ion/ion proton transfer reactions on conformation of gas-phase cytochrome c ions.

    Science.gov (United States)

    Zhao, Qin; Schieffer, Gregg M; Soyk, Matthew W; Anderson, Timothy J; Houk, R S; Badman, Ethan R

    2010-07-01

    Positive ions from cytochrome c are studied in a 3-D ion trap/ion mobility (IM)/quadrupole-time-of-flight (TOF) instrument with three independent ion sources. The IM separation allows measurement of the cross section of the ions. Ion/ion reactions in the 3-D ion trap that remove protons cause the cytochrome c ions to refold gently without other degradation of protein structure, i.e., fragmentation or loss of heme group or metal ion. The conformation(s) of the product ions generated by ion/ion reactions in a given charge state are similar regardless of whether the cytochrome c ions are originally in +8 or +9 charge states. In the lower charge states (+1 to +5) cytochrome c ions made by the ion/ion reaction yield a single IM peak with cross section of approximately 1110 to 1180 A(2), even if the original +8 ion started with multiple conformations. The conformation expands slightly when the charge state is reduced from +5 to +1. For product ions in the +6 to +8 charge states, ions created from higher charge states (+9 to +16) by ion/ion reaction produce more compact conformation(s) in somewhat higher abundances compared with those produced directly by the electrospray ionization (ESI) source. For ions in intermediate charge states that have a variety of resolvable conformers, the voltage used to inject the ions into the drift tube, and the voltage and duration of the pulse that extracts ions from the ion trap, can affect the observed abundances of various conformers.

  7. Pengurangan Hambatan Aliran pada Celah Silinder Koaksial Akibat Slip

    OpenAIRE

    Yanuar; Gunawan; M. Baqi

    2010-01-01

    Slip effect which occurs at the wall due to the layer of water repellent wall can reduce the pressure drop. The highly water repellent wall coating on the inside coaxial viscometer slip will be occur. The aim of experiment is proving drag reducing of the torque on the cylinder and the coefficient of velocity slip due to the water repellent coating on the wall. Teflon and wax materials are used to coat the surface of the wall. Contact angle of water droplets with a Teflon-coated walls and waxe...

  8. Effect of Energetic Ion on Spatial Distribution of Recombining Plasma

    Science.gov (United States)

    Okamoto, A.; Daibo, A.; Kitajima, S.; Kumagai, T.; Takahashi, H.; Takahashi, T.; Tsubota, S.

    Spatial distribution of electron density is considered. By using a one-dimensional recombining plasma model, effects of transient energetic ion flux are investigated. The time response of the system against the transient flux is dominated by the recombination frequency. The magnitude of modification of the spatial distribution is determined by the ratio between the ionization due to the energetic ion and the recombination of the bulk plasma.

  9. Time fractional effect on ion acoustic shock waves in ion-pair plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abdelwahed, H. G., E-mail: hgomaa-eg@hotmail.com [Prince Sattam Bin Abdulaziz University, College of Science and Humanitarian Studies, Physics Department (Saudi Arabia); El-Shewy, E. K.; Mahmoud, A. A. [Faculty of Science, Mansoura University, Theoretical Physics Group, Physics Department (Egypt)

    2016-06-15

    The nonlinear properties of ion acoustic shock waves are studied. The Burgers equation is derived and converted into the time fractional Burgers equation by Agrawal’s method. Using the Adomian decomposition method, shock wave solutions of the time fractional Burgers equation are constructed. The effect of the time fractional parameter on the shock wave properties in ion-pair plasma is investigated. The results obtained may be important in investigating the broadband electrostatic shock noise in D- and F-regions of Earth’s ionosphere.

  10. Effect of viscosity on dust–ion acoustic shock wave in dusty plasma with negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, Nirab C., E-mail: nirab_iasst@yahoo.co.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India)

    2012-03-26

    The properties of dust–ion acoustic (DIA) shock wave in a dusty plasma containing positive and negative ions is investigated. The reductive perturbation method has been used to derive the Korteweg–de Vries–Burgers equation for dust acoustic shock waves in a homogeneous, unmagnetized and collisionless plasma whose constituents are Boltzmann distributed electrons, singly charged positive ions, singly charged negative ions and cold static dust particles. The KdV–Burgers equation is derived and its stationary analytical solution is numerically analyzed where the effect of viscosity on the DIA shock wave propagation is taken into account. It is found that the viscosity in the dusty plasma plays as a key role in dissipation for the propagation of DIA shock. -- Highlights: ► Dust–ion acoustic shock wave propagation is studied in multi-component dusty plasma. ► KdV–Burgers equation is derived and its stationary solution is numerically analyzed. ► Viscosity in dusty plasma plays as a key role in dissipation of DIA shock wave.

  11. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  12. Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron-ion recombination in storage rings

    OpenAIRE

    Schippers, Stefan

    2008-01-01

    Dielectronic recombination (DR) of few-electron ions has evolved into a sensitive spectroscopic tool for highly charged ions. This is due to technological advances in electron-beam preparation and ion-beam cooling techniques at heavy-ion storage rings. Recent experiments prove unambiguously that DR collision spectroscopy has become sensitive to 2nd order QED and to nuclear effects. This review discusses the most recent developments in high-resolution spectroscopy of low-energy DR resonances, ...

  13. Pressure effect on forsterite dislocation slip systems: Implications for upper-mantle LPO and low viscosity zone

    NARCIS (Netherlands)

    Raterron, P.; Chen, J.; Geenen, T.; Girard, J.

    2011-01-01

    In order to better constrained the effect of pressure (P) on olivine dislocationslip-system activities, deformation experiments were carried out in a Deformation-DIA apparatus (D-DIA) on pure forsterite (Fo100) single crystals, at P ⩾ 5.7 GPa, temperature T ∼ 1675 K, differential stress σ < 350 MPa

  14. Pressure effect on forsterite dislocation slip systems: Implications for upper-mantle LPO and low viscosity zone

    NARCIS (Netherlands)

    Raterron, P.; Chen, J.; Geenen, T.; Girard, J.

    2011-01-01

    In order to better constrained the effect of pressure (P) on olivine dislocationslip-system activities, deformation experiments were carried out in a Deformation-DIA apparatus (D-DIA) on pure forsterite (Fo100) single crystals, at P ⩾ 5.7 GPa, temperature T ∼ 1675 K, differential stress σ < 350 MPa

  15. An Automatic Cycle-Slip Processing Method and Its Precision Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zuoya; LU Xiushan

    2006-01-01

    On the basis of analyzing and researching the current algorithms of cycle-slip detection and correction, a new method of cycle-slip detection and correction is put forward in this paper, that is, a reasonable cycle-slip detection condition and algorithm with corresponding program COMPRE (COMpass PRE-processing) to detect and correct cycle-slip automatically, compared with GIPSY and GAMIT software, for example, it is proved that this method is effective and credible to cycle-slip detection and correction in GPS data pre-processing.

  16. An intrinsic effect of hydrogen on cyclic slip deformation around a {l_brace}1 1 0{r_brace} fatigue crack in Fe-3.2 wt.% Si alloy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Y., E-mail: yoshim.takahashi@aist.go.jp [National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Tanaka, M.; Higashida, K. [Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Yamaguchi, K.; Noguchi, H. [Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2010-04-15

    The effect of gaseous hydrogen on cyclic slip behavior around a fatigue crack tip introduced along the {l_brace}1 1 0{r_brace} plane in a Fe-3.2 wt.% Si alloy is precisely investigated by cross-sectional transmission electron microscopy and fractography. The results clearly suggest that the fatigue crack growth rate is promoted by hydrogen, whereas the number of dislocations emitted per load cycle is reduced. In addition, dislocation distribution is localized around the crack, causing quasi-brittle crack morphology. A sustained load test confirms that no subcritical crack growth caused by cleavage or micro-void coalescence exists along the {l_brace}1 1 0{r_brace} plane, which indicates that the observed increase in the fatigue crack growth rate is correlated solely to the intrinsic effect of hydrogen on the cyclic slip-off process around the crack tip.

  17. Effect of Velocity Slip Boundary Condition on the Flow and Heat Transfer of Cu-Water and TiO2-Water Nanofluids in the Presence of a Magnetic Field

    Directory of Open Access Journals (Sweden)

    Abdelhalim Ebaid

    2014-01-01

    Full Text Available In nanofluid mechanics, it has been proven recently that the no slip condition at the boundary is no longer valid which is the reason that we consider the effect of such slip condition on the flow and heat transfer of two types of nanofluids. The present paper considers the effect of the velocity slip condition on the flow and heat transfer of the Cu-water and the TiO2-water nanofluids over stretching/shrinking sheets in the presence of a magnetic field. The exact expression for the fluid velocity is obtained in terms of the exponential function, while an effective analytical procedure is suggested and successfully applied to obtain the exact temperature in terms of the generalized incomplete gamma function. It is found in this paper that the Cu-water nanofluid is slower than the TiO2-water nanofluid for both cases of the stretching/shrinking sheets. However, the temperature of the Cu-water nanofluid is always higher than the temperature of the TiO2-water nanofluid. In the case of shrinking sheet the dual solutions have been obtained at particular values of the physical parameters. In addition, the effect of various physical parameters on such dual solutions is discussed through the graphs.

  18. Lifting of a Jeffrey fluid on a vertical belt under the simultaneous effects of magnetic field and wall slip conditions

    Directory of Open Access Journals (Sweden)

    Ali Farooq

    2013-03-01

    Full Text Available Magnetohydrodynamic (MHD thin film flow of an electrically conducting Jeffrey fluid over a vertically moving belt is investigated when a slippage between the surface and the fluid occurs. Exact expression for velocity profile is obtained and is displayed graphically to illustrate the effects of interesting flow parameters. Expressions for some important physical quantities such as volume flux, average velocity and the belt speed for the lifting of the Jeffrey fluid are also derived.

  19. Multiple ion implantation effects on hardness and fatigue properties of Fe13Cr15Ni alloys

    Science.gov (United States)

    Rao, G. R.; Lee, E. H.; Boatner, L. A.; Chin, B. A.; Mansur, L. K.

    1992-09-01

    Eight complex alloys based on the composition Fe13Cr15Ni2Mo2Mn0.2Ti0.8Si0.06C were implanted simultaneously with 400 keV boron and 550 keV nitrogen, and investigated for microhardness changes and bending fatigue life. The dual implantation was found to decrease the fatigue life of all eight alloys although the implantation increased near-surface hardness of all eight alloys. This result was in contrast to the significant improvements found in the fatigue life of four B, N implanted simple Fe13Cr15Ni alloys. It was determined that the implantation suppressed surface slip band formation, the usual crack initiation site, but in the complex alloys, this suppression promoted a shift to grain boundary cracking. A similar phenomenon was also observed when the simple Fe13Cr15Ni alloys were simultaneously implanted with boron, nitrogen and carbon wherein fatigue life decreased, and gain, grain boundary cracks were observed. To test the hypothesis that ion implantation made the overall surface more fatigue resistant but led to a shift to grain boundary cracking, single crystal specimens of the ternary Fe15Cr15Ni were also implanted with boron and nitrogen ions. The fatigue life decreased for the single crystal specimens also, due to concentration of applied stress along fewer slip bands as compared to the control single crystal specimens were applied stress was relieved by slip band formation over the entire gauge region.

  20. Stick-slip behavior identified in helium cluster growth in the subsurface of tungsten: effects of cluster depth

    Science.gov (United States)

    Wang, Jinlong; Niu, Liang-Liang; Shu, Xiaolin; Zhang, Ying

    2015-10-01

    We have performed a molecular dynamics study on the growth of helium (He) clusters in the subsurface of tungsten (W) (1 0 0) at 300 K, focusing on the role of cluster depth. Irregular ‘stick-slip’ behavior exhibited during the evolution of the He cluster growth is identified, which is due to the combined effects of the continuous cluster growth and the loop punching induced pressure relief. We demonstrate that the He cluster grows via trap-mutation and loop punching mechanisms. Initially, the self-interstitial atom SIA clusters are almost always attached to the He cluster; while they are instantly emitted to the surface once a critical cluster pressure is reached. The repetition of this process results in the He cluster approaching the surface via a ‘stop-and-go’ manner and the formation of surface adatom islands (surface roughening), ultimately leading to cluster bursting and He escape. We reveal that, for the Nth loop punching event, the critical size of the He cluster to trigger loop punching and the size of the emitted SIA clusters are correspondingly increased with the increasing initial cluster depth. We tentatively attribute the observed depth effects to the lower formation energies of Frenkel pairs and the greatly reduced barriers for loop punching in the stress field of the W subsurface. In addition, some intriguing features emerge, such as the morphological transformation of the He cluster from ‘platelet-like’ to spherical, to ellipsoidal with a ‘bullet-like’ tip, and finally to a ‘bottle-like’ shape after cluster rupture.

  1. Irradiation of graphene field effect transistors with highly charged ions

    Science.gov (United States)

    Ernst, P.; Kozubek, R.; Madauß, L.; Sonntag, J.; Lorke, A.; Schleberger, M.

    2016-09-01

    In this work, graphene field-effect transistors are used to detect defects due to irradiation with slow, highly charged ions. In order to avoid contamination effects, a dedicated ultra-high vacuum set up has been designed and installed for the in situ cleaning and electrical characterization of graphene field-effect transistors during irradiation. To investigate the electrical and structural modifications of irradiated graphene field-effect transistors, their transfer characteristics as well as the corresponding Raman spectra are analyzed as a function of ion fluence for two different charge states. The irradiation experiments show a decreasing mobility with increasing fluences. The mobility reduction scales with the potential energy of the ions. In comparison to Raman spectroscopy, the transport properties of graphene show an extremely high sensitivity with respect to ion irradiation: a significant drop of the mobility is observed already at fluences below 15 ions/μm2, which is more than one order of magnitude lower than what is required for Raman spectroscopy.

  2. Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet

    Institute of Scientific and Technical Information of China (English)

    FANG Tie-Gang; ZHANG Ji; YAO Shan-shan

    2010-01-01

    @@ The magnetohydrodynamic(MHD)flow under slip conditions over a shrinMng sheet js solved analytically.The solution is given in a closed form equation and is an exact solution of the full governing Navier-Stokes equations.Interesting solution behavior is observed with muiriple solution branches for certain parameter domain.The effects of the mass transfer,slip,andmagnetic parameters are discussed.

  3. Focused Ion Beam Induced Effects on MOS Transistor Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Abramo, Marsha T.; Antoniou, Nicholas; Campbell, Ann N.; Fleetwood, Daniel M.; Hembree, Charles E.; Jessing, Jeffrey R.; Soden, Jerry M.; Swanson, Scot E.; Tangyunyong, Paiboon; Vanderlinde, William E.

    1999-07-28

    We report on recent studies of the effects of 50 keV focused ion beam (FIB) exposure on MOS transistors. We demonstrate that the changes in value of transistor parameters (such as threshold voltage, V{sub t}) are essentially the same for exposure to a Ga+ ion beam at 30 and 50 keV under the same exposure conditions. We characterize the effects of FIB exposure on test transistors fabricated in both 0.5 {micro}m and 0.225 {micro}m technologies from two different vendors. We report on the effectiveness of overlying metal layers in screening MOS transistors from FIB-induced damage and examine the importance of ion dose rate and the physical dimensions of the exposed area.

  4. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

    Science.gov (United States)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim

    2016-09-01

    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  5. Simulation of the frictional stick-slip instability

    Science.gov (United States)

    Mora, Peter; Place, David

    1994-03-01

    A lattice solid model capable of simulating rock friction, fracture and the associated seismic wave radiation is developed in order to study the origin of the stick-slip instability that is responsible for earthquakes. The model consists of a lattice of interacting particles. In order to study the effect of surface roughness on the frictional behavior of elastic blocks being rubbed past one another, the simplest possible particle interactions were specified corresponding to radially dependent elastic-brittle bonds. The model material can therefore be considered as round elastic grains with negligible friction between their surfaces. Although breaking of the bonds can occur, fracturing energy is not considered. Stick-slip behavior is observed in a numerical experiment involving 2D blocks with rough surfaces being rubbed past one another at a constant rate. Slip is initiated when two interlocking asperities push past one another exciting a slip pulse. The pulse fronts propagate with speeds ranging from the Rayleigh wave speed up to a value between the shear and compressional wave speeds in agreement with field observations and theoretical analyses of mode-II rupture. Slip rates are comparable to seismic rates in the initial part of one slip pulse whose front propagates at the Rayleigh wave speed. However, the slip rate is an order of magnitude higher in the main part of pulses, possibly because of the simplified model description that neglected intrinsic friction and the high rates at which the blocks were driven, or alternatively, uncertainty in slip rates obtained through the inversion of seismograms. Particle trajectories during slip have motions normal to the fault, indicating that the fault surfaces jump apart during the passage of the slip pulse. Normal motion is expected as the asperities on the two surfaces ride over one another. The form of the particle trajectories is similar to those observed in stick-slip experiments involving foam rubber blocks ( Brune

  6. Effect of ion-assisted deposition on optical properties of thin films

    Science.gov (United States)

    Tang, Xuefei; Fan, Zhengxiu

    1990-12-01

    Effects of ion assisted deposition on the propertes of Ti02, Zr02 and 5102 optical coatings were investigated. Substrates were bombarded with different ions--- oxygen ions , argon ions , and the mixture ions of oxygen-argon during deposition. The refractive indices, optical absorptions and laser-induced damage thresholds (LIDT) measurments of these films are reported.

  7. Effect of tooth displacement and vibration on frictional force and stick-slip phenomenon in conventional brackets: a preliminary in vitro mechanical analysis.

    Science.gov (United States)

    Seo, Yu-Jin; Lim, Bum-Soon; Park, Young Guk; Yang, Il-Hyung; Ahn, Seok-Joon; Kim, Tae-Woo; Baek, Seung-Hak

    2015-04-01

    To evaluate the effects of tooth displacement and vibration on frictional force and stick-slip phenomenon (SSP) when conventional brackets were used with a levelling/alignment wire. The samples consisted of six groups (n = 10 per group) with combinations of tooth displacement (2mm lingual displacement [LD], 2mm gingival displacement [GD], and no displacement [control]) and vibration conditions (absence and presence at 30 Hz and 0.25 N). A stereolithographically made typodont system was used with conventional brackets and elastomeric ligatures. After application of artificial saliva, static/kinetic frictional forces (SFF/KFF) and frequency/amplitude of SSP were measured while drawing a 0.018-inch copper nickel-titanium (Cu-NiTi) archwire at a speed of 0.5mm/min for 5 minutes at 36.5 degree celsius. Two-way analysis of variance and independent t-test were performed. Tooth displacement increased SFF and KFF (control [LD, GD], P < 0.01). Vibration reduced SFF, KFF, and SSP amplitude in the control group (P < 0.05, P < 0.05, and P < 0.001, respectively), but not in the LD and GD groups. SSP frequency was increased by vibration in the control, LD, and GD groups (all P < 0.001), and it was lower in the LD and GD groups than in the control group (P < 0.01). When conventional brackets and a 0.018-inch Cu-NiTi archwire were used in the tooth displacement conditions (LD and GD), vibration did not significantly reduce SFF, KFF, or SSP amplitude. © The Author 2014. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    Science.gov (United States)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  9. Probing ion-specific effects on aqueous acetate solutions: Ion pairing versus water structure modifications

    Directory of Open Access Journals (Sweden)

    Tristan Petit

    2014-05-01

    Full Text Available The effect of monovalent cations (Li+, K+, NH4+, Na+ on the water structure in aqueous chloride and acetate solutions was characterized by oxygen K-edge X-ray absorption spectroscopy (XAS, X-ray emission spectroscopy, and resonant inelastic X-ray scattering (RIXS of a liquid microjet. We show ion- and counterion dependent effects on the emission spectra of the oxygen K-edge, which we attribute to modifications of the hydrogen bond network of water. For acetates, ion pairing with carboxylates was also probed selectively by XAS and RIXS. We correlate our experimental results to speciation data and to the salting-out properties of the cations.

  10. Synchronous Effect of Slipping Heavy Loads on a Ro-Ro Ship Rolling in Waves%滚装船在波浪中横摇时船上滑动重载荷的同步效应

    Institute of Scientific and Technical Information of China (English)

    张银龙; 沈庆; 陈徐均

    2005-01-01

    When a heavy load such as a vehicle slips freely on a ro-ro ship due to malfunction of its securing device, the heavy load slipping on deck will become more and more with the time going on because of repeated collision. Common effect of wave and slip of internal vehicles will induce serious rolling of the roll-on ship. This is one of the important reasons for overturn of the ro-ro ships.The multibody system with a floating base is composed of ro-ro ship and two slipping vehicles.This paper takes the rolling angle of the ship and the transverse displacements of the two slipping vehicles on deck as three degrees of freedom. Making use of dynamic method of multibody system, dynamic equations of the system are established.Taking a certain channel ferry as an example, numerical calculations were carried out for rolling response of the multibody system with a floating base of a ro-ro ship and displacements response of the two slipping vehicles under both effects of free slipping vehicles and wave,and a conclusion was drawn that the motion of the numerous free slipping heavy loads may lead to be synchronous under restraining of the side-wall bulkhead with the time going on because of repeated collision.%滚装船中车辆等重载荷由于固定装置失效而随船摇荡作自由滑动时,往往由于反复碰撞致使在甲板上作自由滑动的重载荷随着时间增多.由于波浪和内部滑动车辆共同作用,使滚装船的横摇加剧.这是许多滚装船发生倾覆的重要原因之一.本文对由滚装船和两辆滑动车辆组成的浮基多体系统,取滚装船的横摇角和两辆自由滑动车辆在甲板上的横向位移为此系统的三个自由度,运用多体系统动力学方法,建立了系统的动力学方程.以某型海峡滚装渡轮为例,对在两辆车自由滑动和波浪共同作用下的滚装船浮基多体系统的横摇响应和车辆位移响应进行了数值计算,得出了多个自由滑动的重载荷因相互碰撞在

  11. Study of multiple scattering effects in heavy ion RBS

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Z.; O`Connor, D.J. [Newcastle Univ., NSW (Australia). Dept. of Physics

    1996-12-31

    Multiple scattering effect is normally neglected in conventional Rutherford Backscattering (RBS) analysis. The backscattered particle yield normally agrees well with the theory based on the single scattering model. However, when heavy incident ions are used such as in heavy ion Rutherford backscattering (HIRBS), or the incident ion energy is reduced, multiple scattering effect starts to play a role in the analysis. In this paper, the experimental data of 6MeV C ions backscattered from a Au target are presented. In measured time of flight spectrum a small step in front of the Au high energy edge is observed. The high energy edge of the step is about 3.4 ns ahead of the Au signal which corresponds to an energy {approx} 300 keV higher than the 135 degree single scattering energy. This value coincides with the double scattering energy of C ion undergoes two consecutive 67.5 degree scattering. Efforts made to investigate the origin of the high energy step observed lead to an Monte Carlo simulation aimed to reproduce the experimental spectrum on computer. As a large angle scattering event is a rare event, two consecutive large angle scattering is extremely hard to reproduce in a random simulation process. Thus, the simulation has not found a particle scattering into 130-140 deg with an energy higher than the single scattering energy. Obviously faster algorithms and a better physical model are necessary for a successful simulation. 16 refs., 3 figs.

  12. Slipping rib syndrome in childhood.

    Science.gov (United States)

    Mooney, D P; Shorter, N A

    1997-07-01

    Slipping rib syndrome is an unusual cause of lower chest and upper abdominal pain in children not mentioned in major pediatric surgical texts. The syndrome occurs when the medial fibrous attachments of the eighth, ninth, or tenth ribs are inadequate or ruptured, allowing their cartilage tip to slip superiorly and impinge on the intervening intercostal nerve. This may cause a variety of somatic and visceral complaints. Although the diagnosis may be made based on history and physical examination, lack of recognition of this disorder frequently leads to extensive diagnostic evaluations before definitive therapy. The authors report on four children who have this disorder.

  13. Slip flow in graphene nanochannels

    DEFF Research Database (Denmark)

    . Kannam, Sridhar; Billy, Todd; Hansen, Jesper Schmidt

    2011-01-01

    We investigate the hydrodynamic boundary condition for simple nanofluidic systems such as argon and methane flowing in graphene nanochannels using equilibrium molecular dynamics simulations (EMD) in conjunction with our recently proposed method [J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev....... E 84, 016313 (2011)10.1103/PhysRevE.84.016313]. We first calculate the fluid-graphene interfacial friction coefficient, from which we can predict the slip length and the average velocity of the first fluid layer close to the wall (referred to as the slip velocity). Using direct nonequilibrium...

  14. Whillans Ice Plain Stick Slip

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2015-12-01

    Concern about future sea level rise motivates the study of fast flowing ice. The Whillans Ice Plain (WIP) region of the West Antarctic Ice Sheet is notable for decelerating from previously fast motion during the instrumental record. Since most ice flux in Antarctica occurs through ice streams, understanding the conditions that cause ice stream stagnation is of basic importance in understanding the continent's contribution to future sea level rise. Although recent progress has been made in understanding the relationship between basal conditions and ice stream motion, direct observation of the temporal variation in subglacial conditions during ice stream stagnation has remained elusive. The Whillans Ice Plain flows to the sea mostly by way of stick-slip motion. We present numerical simulations of this stick-slip motion that capture the inertial dynamics, seismic waves, and the evolution of sliding with rate- and state-dependent basal friction. Large scale stick-slip behavior is tidally modulated and encompasses the entire WIP. Sliding initiates within one of several locked regions and then propagates outward with low average rupture velocity (~ 200 m/s). Sliding accelerates over a period of 200 s attain values as large as 65 m/d. From Newton's second law, this acceleration is ~ T / (rho H) for average shear stress drop T, ice thickness H, and ice density rho. This implies a 3 Pa stress drop that must be reconciled with the final stress drop of 300 Pa inferred from the total slip and fault dimensions. A possible explanation of this apparent discrepancy is that deceleration of the ice is associated with a substantial decrease in traction within rate-strengthening regions of the bed. During these large-scale sliding events, m-scale patches at the bed produce rapid (20 Hz) stick-slip motion. Each small event occurs over ~ 1/100 s, produces ~ 40 microns of slip, and gives rise to a spectacular form of seismic tremor. Variation between successive tremor episodes allows us

  15. The stress shadow effect: a mechanical analysis of the evenly-spaced parallel strike-slip faults in the San Andreas fault system

    Science.gov (United States)

    Zuza, A. V.; Yin, A.; Lin, J. C.

    2015-12-01

    Parallel evenly-spaced strike-slip faults are prominent in the southern San Andreas fault system, as well as other settings along plate boundaries (e.g., the Alpine fault) and within continental interiors (e.g., the North Anatolian, central Asian, and northern Tibetan faults). In southern California, the parallel San Jacinto, Elsinore, Rose Canyon, and San Clemente faults to the west of the San Andreas are regularly spaced at ~40 km. In the Eastern California Shear Zone, east of the San Andreas, faults are spaced at ~15 km. These characteristic spacings provide unique mechanical constraints on how the faults interact. Despite the common occurrence of parallel strike-slip faults, the fundamental questions of how and why these fault systems form remain unanswered. We address this issue by using the stress shadow concept of Lachenbruch (1961)—developed to explain extensional joints by using the stress-free condition on the crack surface—to present a mechanical analysis of the formation of parallel strike-slip faults that relates fault spacing and brittle-crust thickness to fault strength, crustal strength, and the crustal stress state. We discuss three independent models: (1) a fracture mechanics model, (2) an empirical stress-rise function model embedded in a plastic medium, and (3) an elastic-plate model. The assumptions and predictions of these models are quantitatively tested using scaled analogue sandbox experiments that show that strike-slip fault spacing is linearly related to the brittle-crust thickness. We derive constraints on the mechanical properties of the southern San Andreas strike-slip faults and fault-bounded crust (e.g., local fault strength and crustal/regional stress) given the observed fault spacing and brittle-crust thickness, which is obtained by defining the base of the seismogenic zone with high-resolution earthquake data. Our models allow direct comparison of the parallel faults in the southern San Andreas system with other similar strike-slip

  16. Mutagenic effects of heavy ion radiation in plants

    Science.gov (United States)

    Mei, M.; Deng, H.; Lu, Y.; Zhuang, C.; Liu, Z.; Qiu, Q.; Qiu, Y.; Yang, T. C.

    1994-01-01

    Genetic and developmental effects of heavy ions in maize and rice were investigated. Heavy particles with various charges and energies were accelerated at the BEVALAC. The frequency of occurrence of white-yellow stripes on leaves of plants developed from irradiated maize seeds increased linearly with dose, and high Linear Energy Transfer (LET) heavy charged particles, e.g., neon, argon, and iron, were 2-12 times as effective as gamma rays in inducing this type of mutation. The effectiveness of high-LET heavy ion in (1) inhibiting rice seedling growth, (2) reducing plant fertility, (3) inducing chromosome aberration and micronuclei in root tip cells and pollen mother cells of the first generation plants developed from exposed seeds, and (4) inducing mutation in the second generation, were greater than that of low-LET gamma rays. All effects observed were dose-dependent; however, there appeared to be an optimal range of doses for inducing certain types of mutation, for example, for argon ions (400 MeV/u) at 90-100 Gy, several valuable mutant lines with favorable characters, such as semidwarf, early maturity and high yield ability, were obtained. Experimental results suggest that the potential application of heavy ions in crop improvement is promising. Restriction-fragment-length-polymorphism (RFLP) analysis of two semidwarf mutants induced by argon particles revealed that large DNA alterations might be involved in these mutants.

  17. Proximity effect in ion-beam-induced deposition of nanopillars

    NARCIS (Netherlands)

    Chen, P.; Salemink, H.W.M.; Alkemade, P.F.A.

    2009-01-01

    Ion-beam-induced deposition (IBID) is a powerful technique for prototyping three-dimensional nanostructures. To study its capability for this purpose, the authors investigate the proximity effect in IBID of nanopillars. In particular, the changes in shape and dimension of pillars are studied when a

  18. Suppression of strike-slip fault systems

    Science.gov (United States)

    Curren, I. S.

    2012-12-01

    In orogens elongated parallel to a great circle about the Euler pole for the two bounding plates, theory requires simple-shear deformation in the form of distributed deformation or velocity discontinuities across strike-slip faults. This type of deformation, however, does not develop at all plate boundaries requiring toroidal motion. Using the global plate boundary model, PB2002 [Bird, 2003], as the basis for identifying areas where expected simple-shear deformation is absent or underdeveloped, it was also possible to identify two potential causes for this behavior: (1) the presence of extensive fracturing at right angles to the shear plane and (2) regional cover of flood basalts or andesites with columnar joints. To test this hypothesis, a new plane-stress finite-strain model was developed to study the effects of such pre-existing structures on the development of simple shear in a clay cake. A homogenous kaolinite-water mixture was poured into a deforming parallelogram box and partially dried to allow for brittle and plastic deformation at and below the surface of the clay, respectively. This was floated on a dense fluid foundation, effectively removing basal friction, and driven by a motor in a sinistral direction from the sides of the box. Control experiments produced classic Riedel model fault assemblages and discrete, through-going primary deformation zones (PDZs); experiments with pre-existing structures developed the same, though subdued and distributed, fault assemblages but did not develop through-going PDZs. Although formation of strike-slip faults was underdeveloped at the surface in clay with pre-existing structures, offset within the clay cake (measured, with respect to a fixed point, by markers on the clay surface) as a fraction of total offset of the box was consistently larger than that of the control experiments. This suggests that while the extent of surface faulting was lessened in clay with pre-existing structures, slip was still occurring at

  19. Effect of fluoride ion on the stability of DNA hairpin

    Science.gov (United States)

    Liu, Chao; Zhai, Weili; Gong, Hongling; Liu, Yanhui; Chen, Hu

    2017-06-01

    Fluoride prevents tooth decay as an additive in oral hygiene products, while high dose intake of fluoride from contaminated drinking water leads to fluorosis. Here we studied the effect of fluoride ion on the stability of DNA double helix using magnetic tweezers. The equilibrium critical force decreases with increasing concentration of fluoride in the range from 1 mM to 100 mM. Our results give the first quantitative measurement of DNA stability in the presence of fluoride ion, which might disturb DNA-related biological processes to cause fluorosis.

  20. Effect of advection on transient ion concentration-polarization phenomenon

    Science.gov (United States)

    Rosentsvit, Leon; Park, Sinwook; Yossifon, Gilad

    2017-08-01

    Here, we studied the effect of advection on the transient ion concentration-polarization phenomenon in microchannel-membrane systems. Specifically, the temporal evolution of the depletion layer in a system that supports net flow rates with varying Péclet values was examined. Experiments complemented with simplified analytical one-dimensional semi-infinite modeling and numerical simulations demonstrated either suppression or enhancement of the depletion layer propagation against or with the direction of the net flow, respectively. Of particular interest was the third-species fluorescent dye ion concentration-polarization dynamics which was further explained using two-dimensional numerical simulations that accounted for the device complex geometry.

  1. Calcium Ion Detection Using Miniaturized InN-based Ion Sensitive Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Kun-Wei Kao

    2012-03-01

    Full Text Available An Ultrathin (~10 nm InN ion sensitive field effect transistor (ISFET with gate regions functionalized with phosphotyrosine (p-Tyr is proposed to detect calcium ions (Ca2+ in aqueous solution. The ISFET was miniaturized to a chip size of 1.1 mm by 1.5 mm and integrated at the tip of a hypodermic injection needle (18 G for real-time and continuous monitoring. The sensor shows a current variation ratio of 1.11% with per decade change of Ca2+ and a detection limit of 10-6 M. The response time of 5 sec. reveals its great potential for accomplishing fast detection in chemical and physiological sensing applications. The sensor would be applied in medical diagnosis and used to monitor continuous and real-time variations of Ca2+ levels in human blood in the near future.

  2. Mutagenic effects of heavy ion irradiation on rice seeds

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xue [School of Agronomy, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036 (China); Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Liu Binmei; Zhang Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China); Wu Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering, 350 Shushanhu Road, Hefei 230031 (China)

    2012-11-01

    Three varieties of rice seeds were subjected to irradiation using low-energy and medium-energy ions. The damage and mutations induced by the ions were examined. In addition, genetic analysis and gene mapping of spotted leaf (spl) mutants were performed. Low-energy ions had no significant influence on germination, survival or seedling height, except for the survival of Nipponbare. Medium-energy ions had a significant influence on germination and survival but had no significant effect on seedling height. In the low-energy group, among 60,000 M{sub 2} plants, 2823 putative morphological mutants were found, and the mutation frequency was approximately 4.71%. In the medium-energy group, 3132 putative morphological mutants were found, and the mutation frequency was approximately 5.22%. Five spl mutants (spl29-spl33) were obtained by ion irradiation, and the heredity of the spl mutants was stable. The characteristics of the spl mutants were found, by genetic analysis and preliminary mapping, to be controlled by a single recessive gene, and spl30 and spl33 were found to be new lesion-mimic mutants.

  3. Ion-Trapping Effect in UVSOR Storage Ring

    Science.gov (United States)

    Kasuga, Toshio; Yonehara, Hiroto; Kinoshita, Toshio; Hasumoto, Masami

    1985-09-01

    UVSOR is an electron-stage ring dedicated to vacuum ultraviolet synchrotron radiation research. The first beam was stored in the ring in November 1983, and from that time on, efforts have been devoted to improving the performance of the ring. Some inconvenient phenomena have been found during the accelerator studies. One of the most serious problems is the growth of the vertical size of the electron beam. This phenomenon is explained by the ion-trapping effect, in which the ions trapped in the electron beam change the operating point of the storage ring and enhance the coupling between horizontal and vertical oscillations, resulting in a considerable increase in the vertical beam size. This ion trapping was successfully cured by the RF knockout method, which excited the betatron oscillation.

  4. Heavy-ion radiation induced bystander effect in mice

    Science.gov (United States)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  5. Isotope Effects in Low Energy Ion-Atom Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Havener, Charles C [ORNL; Seely, D. G. [Albion College; Thomas, J. D. [University of Toledo, Toledo, OH; Kvale, Thomas Jay [University of Toledo, Toledo, OH

    2009-01-01

    Isotope effects for charge transfer processes have recently received increased attention. The ion-atom merged-beams apparatus at Oak Ridge National Laboratory is used to measure charge transfer for low energy collisions of multi-charged ions with H and D and is therefore well suited to investigate isotope effects. The apparatus has been relocated and upgraded to accept high velocity beams from the 250 kV High Voltage Platform at the Multi-Charged Ion Research Facility. The intense higher velocity multi-charged ion beams allow, for the first time, measurements with both H and D from keV/u down to meV/u collision energies in the center-of-mass frame. When charge transfer occurs at relatively large inter-nuclear distances (via radial couplings) the ion-induced dipole attraction can lead to trajectory effects, causing differences in the charge transfer cross sections for H and D. A strong isotope effect (nearly a factor of two) has been observed in the cross section for Si4+ + H(D) below 0.1 eV/u. However, little or no difference is observed for N2+ + H(D). Recently, strong effects have been predicted for the fundamental system He2+ + H(D,T) at collision energies below 200 eV/u where charge transfer occurs primarily through united-atom rotational coupling. We are currently exploring systems where rotational coupling is important and isotopic differences in the cross section can be observed.

  6. Hydrodynamic slip in silicon nanochannels

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-03-01

    Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.

  7. Formation of multi-charged ion beams by focusing effect of mid-electrode on electron cyclotron resonance ion source

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Youta, E-mail: imai@nf.eie.eng.osaka-u.ac.jp; Kimura, Daiju; Kurisu, Yosuke; Nozaki, Dai; Yano, Keisuke; Kumakura, Sho; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita-shi, Osaka 565-0871 (Japan)

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance ion source (ECRIS) and a beam line for extracting ion beams. The ion beam is extracted from the second stage by an accel-decel extraction system with a single-hole and the ion beam current on each electrode is measured. The total ion beam current is measured by a faraday cup downstream the extraction electrodes. We measure these currents as a function of the mid-electrode potential. We also change the gap length between electrodes and perform similar measurement. The behaviors of these currents obtained experimentally against the mid-electrode potential show qualitatively good agreement with a simple theoretical consideration including sheath potential effects. The effect of mid-electrode potential is very useful for decreasing the beam loss for enhancing ion beam current extracted from ECRIS.

  8. Simulation of electron cloud effects to heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, Fatih; Gjonaj, Erion; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder

    2011-07-01

    Electron cloud (EC) driven instability can cause beam loss, emittance growth, trajectory change and wake fields. Mentioned crucial effects of EC motivated researchers to understand the EC build up mechanism and the effects of EC to the beam. This motivation also induced the progress of developing new simulation codes. EC simulations can roughly be divided into two classes such as, softwares whose goals are to simulate the build up of the EC during the passage of a bunch train and the codes which model the interaction of a bunch with an EC. The aim of this study is to simulate the effects of electron cloud (EC) on the dynamics of heavy ion beams which are used in heavy ion synchrotron (SIS-18) at GSI. To do this, a 3-D and self-consistent simulation program based on particle in cell (PIC) method is used. In the PIC cycle, accurate solution of the Maxwell equations is obtained by employing discontinuous Galerkin finite element method. As a model, we assumed a perfectly conducting beam pipe which was uniformly (or randomly) loaded with the electrons. Then as parallel with the realistic cases in SIS-18, a single bunch consisting of U{sup +73} ions was extracted which could propagate in this pipe. Due to EC-ion bunch interaction, electrons gained energy and their displacements were observed. Electric and magnetic field components and EC charge density were calculated, numerically.

  9. Slip rate and tremor genesis in Cascadia

    Science.gov (United States)

    Wech, Aaron G.; Bartlow, Noel M.

    2014-01-01

    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  10. TBI server: a web server for predicting ion effects in RNA folding.

    Directory of Open Access Journals (Sweden)

    Yuhong Zhu

    Full Text Available Metal ions play a critical role in the stabilization of RNA structures. Therefore, accurate prediction of the ion effects in RNA folding can have a far-reaching impact on our understanding of RNA structure and function. Multivalent ions, especially Mg²⁺, are essential for RNA tertiary structure formation. These ions can possibly become strongly correlated in the close vicinity of RNA surface. Most of the currently available software packages, which have widespread success in predicting ion effects in biomolecular systems, however, do not explicitly account for the ion correlation effect. Therefore, it is important to develop a software package/web server for the prediction of ion electrostatics in RNA folding by including ion correlation effects.The TBI web server http://rna.physics.missouri.edu/tbi_index.html provides predictions for the total electrostatic free energy, the different free energy components, and the mean number and the most probable distributions of the bound ions. A novel feature of the TBI server is its ability to account for ion correlation and ion distribution fluctuation effects.By accounting for the ion correlation and fluctuation effects, the TBI server is a unique online tool for computing ion-mediated electrostatic properties for given RNA structures. The results can provide important data for in-depth analysis for ion effects in RNA folding including the ion-dependence of folding stability, ion uptake in the folding process, and the interplay between the different energetic components.

  11. QED Effects in Heavy Few-Electron Ions

    CERN Document Server

    Shabaev, V M; Artemiev, A N; Baturin, S S; Elizarov, A A; Kozhedub, Y S; Oreshkina, N S; Tupitsyn, I I; Yerokhin, V A; Zherebtsov, O M

    2006-01-01

    Accurate calculations of the binding energies, the hyperfine splitting, the bound-electron g-factor, and the parity nonconservation effects in heavy few-electron ions are considered. The calculations include the relativistic, quantum electrodynamic (QED), electron-correlation, and nuclear effects. The theoretical results are compared with available experimental data. A special attention is focused on tests of QED in a strong Coulomb field.

  12. Effects of metal ion adduction on the gas-phase conformations of protein ions.

    Science.gov (United States)

    Flick, Tawnya G; Merenbloom, Samuel I; Williams, Evan R

    2013-11-01

    Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.

  13. Ion Effects in the DARHT-II Downstream Transport

    CERN Document Server

    Chan, Kwok-Chi D; Ekdahl, Carl; Genoni, Thomas C; Hughes, Thomas P; Schulze, Martin E

    2005-01-01

    The DARHT-II accelerator produces an 18-MeV, 2-kA, 2-μs electron beam pulse. After the accelerator, the pulse is delivered to the final focus on an x-ray producing target via a beam transport section called the Downstream Transport. Ions produced due to beam ionization of residual gases in the Downstream Transport can affect the beam dynamics. Ions generated by the head of the pulse will cause modification of space-charge forces at the tail of the pulse so that the beam head and tail will have different beam envelopes. They may also induce ion-hose instability at the tail of the pulse. If these effects are significant, the focusing requirements of beam head and tail at the final focus will become very different. The focusing of the complete beam pulse will be time dependent and difficult to achieve, leading to less efficient x-ray production. In this paper, we will describe the results of our calculations of these ion effects at different residual-gas pressure levels. Our goal is to determine the ma...

  14. Slipping properties of ceramic tiles / Quantification of slip resistance

    Science.gov (United States)

    Terjek, Anita

    2013-12-01

    Regarding the research and application of ceramic tiles there is a great importance of defining precisely the interaction and friction between surfaces. Measuring slip resistance of floor coverings is a complex problem; slipperiness is always interpreted relatively. In the lack of a consistent and clear EU standard, it is practical to use more method in combination. It is necessary to examine the structure of materials in order to get adequate correlation. That is why measuring techniques of surface roughness, an important contributor to slip resistance and cleaning, is fundamental in the research. By comparing the obtained test results, relationship between individual methods of analysis and values may be determined and based on these information recommendations shall be prepared concerning the selection and application of tiles.

  15. Interfacial slip on a transverse-shear mode acoustic wave device

    Science.gov (United States)

    Ellis, Jonathan S.; Hayward, Gordon L.

    2003-12-01

    This article describes a mathematical relationship between the slip parameter α and the slip length b for a slip boundary condition applied to the transverse-shear model for a quartz-crystal acoustic wave device. The theory presented here reduces empirical determination of slip to a one-parameter fit. It shows that the magnitude and phase of the slip parameter, which describes the relative motion of the surface and liquid in the transverse-shear model, can be linked to the slip length. Furthermore, the magnitude and phase of the slip parameter are shown to depend on one another. An experiment is described to compare the effects of liquid-surface affinity on the resonant properties of a transverse-shear mode wave device by applying different polar and nonpolar liquids to surfaces of different polarity. The theory is validated with slip values determined from the transverse-shear model and compared to slip length values from literature. Agreement with literature values of slip length is within one order of magnitude.

  16. Radiation and MHD Boundary Layer Stagnation-Point of Nanofluid Flow towards a Stretching Sheet Embedded in a Porous Medium: Analysis of Suction/Injection and Heat Generation/Absorption with Effect of the Slip Model

    Directory of Open Access Journals (Sweden)

    Emad H. Aly

    2015-01-01

    Full Text Available In existence of the velocity slip model, suction/injection, and heat source/sink, the boundary layer flow near a stagnation-point over a heated stretching sheet in a porous medium saturated by a nanofluid, with effect of the thermal radiation and magnetic field, has been studied. The governing system of partial differential equations was transformed into a system of nonlinear ordinary equations using the appropriate similarity transforms. Then, the obtained system has been numerically solved by the Chebyshev pseudospectral differentiation matrix (ChPDM approach. It was found that, at some special cases, the current results are in a very good agreement with those presented in the literature. In addition, the flow velocity, surface shear stress, temperature, and concentration are strongly influenced on applying the slip model, which is, therefore, extremely important to predict the flow characteristics accurately in the nanofluid mechanics. It was proved that this velocity slip condition is mandatory and should be taken into account in nanoscale research; otherwise, false results and a spurious physical sight are to be gained. Further, it was deduced that the influence of the stream velocity and shear stress reaches very rapidly the stable manner for both cases of the velocity ratio. However, when this ratio is equal to one, the skin friction coefficient, reduced Nusselt number, and reduced Sherwood number are constant and equal to zero, 0.721082, and 3.06155, respectively. Furthermore, it was proved that the reduced Nusselt number decreases with increase of Brownian motion and thermophoresis; has a very weak effect on increasing Lewis number; increases with increase of Prandtl number; and is higher in the cases of suction, velocity ratio > 1 and heat source in comparison with injection, velocity ratio 1 in comparison with injection and velocity ratio < 1, respectively; and is approximately the same in the heat source and heat sink cases. Finally

  17. Flow past superhydrophobic surfaces with cosine variation in local slip length

    CERN Document Server

    Asmolov, Evgeny S; Harting, Jens; Vinogradova, Olga I

    2012-01-01

    Anisotropic super-hydrophobic surfaces have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused mostly on cases of super-hydrophobic stripes. Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulae for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement with the exact numerical solution and lattice-Bolzmann simulations for any surface slip fraction. The cosine texture can provide a very large effective (forward) slip, but it was found to be less efficient in generating a transverse flow as compared to super-hydrophobic stripes.

  18. Side-effects of protein kinase inhibitors on ion channels

    Indian Academy of Sciences (India)

    Youn Kyoung Son; Hongzoo Park; Amy L Firth; Won Sun Park

    2013-12-01

    Protein kinases are one of the largest gene families and have regulatory roles in all aspects of eukaryotic cell function. Modulation of protein kinase activity is a desirable therapeutic approach for a number of human diseases associated with aberrant kinase activity, including cancers, arthritis and cardiovascular disorders. Several strategies have been used to develop specific and selective protein kinase modulators, primarily via inhibition of phosphorylation and down-regulation of kinase gene expression. These strategies are effective at regulating intracellular signalling pathways, but are unfortunately associated with several undesirable effects, particularly those that modulate ion channel function. In fact, the side-effects have precluded these inhibitors from being both useful experimental tools and therapeutically viable. This review focuses on the ion channel side-effects of several protein kinase inhibitors and specifically on those modulating K+, Na+ and Ca2+ ion channels. It is hoped that the information provided with a detailed summary in this review will assist the future development of novel specific and selective compounds targeting protein kinases both for experimental tools and for therapeutic approaches.

  19. Slip of polymer melts over micro/nano-patterned metallic surfaces.

    Science.gov (United States)

    Ebrahimi, Marzieh; Konaganti, Vinod Kumar; Moradi, Sona; Doufas, Antonios K; Hatzikiriakos, Savvas G

    2016-12-06

    The slip behavior of high-density polyethylenes (HDPEs) is studied over surfaces of different topology and surface energy. Laser ablation has been used to micro/nano-pattern the surface of dies in order to examine the effect of surface roughness on slip. In addition, fluoroalkyl silane-based coatings on smooth and patterned substrates were used to understand the effect of surface energy on slip. Surface roughness and surface energy effects were incorporated into the double reptation slip model (Ebrahimi et al., J. Rheol., 2015, 59, 885-901) in order to predict the slip velocity of studied polymers on different substrates. It was found that for dies with rough surfaces, polymer melt penetrates into the cavities of the substrate (depending on the depth and the distance between the asperities), thus decreasing wall slip. On the other hand, silanization of the surface increases the slip velocity of polymers in the case of smooth die, although it has a negligible effect on rough dies. Interestingly, the slip velocity of the studied polymers on various substrates of different degrees of roughness and surface energy, were brought into a mastercurve by modifying the double reptation slip velocity model.

  20. Effect of Implantation Machine Parameters on N+ ion Implantation for Upland Cotton (Gossypium hirsutum L.) Pollen

    Institute of Scientific and Technical Information of China (English)

    YUE Jieyu; YU Lixiang; WU Yuejin; TANG Canming

    2008-01-01

    Effect of parameters of ion implantation machine,including ion energy,total dose,dose rate,impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied.The best parameters were screened out.The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.

  1. Negative ion formation in lanthanide atoms: Many-body effects

    CERN Document Server

    Felfli, Z; Sokolovski, D

    2016-01-01

    Investigations of low-energy electron-scattering of the lanthanide atoms Eu, Nd, Tb, Tm demonstrate that electron-correlation effects and core polarization are the dominant fundamental many-body effects responsible for the formation of metastable states of negative ions. Ramsauer Townsend minima, shape resonances and binding energies of the resultant anions are identified and extracted from the elastic total cross sections calculated using the complex angular momentum method. The large discrepancy between the recently measured electron affinity of 0.116 and the previously measured value of 1.053 eV for Eu is resolved. Also, the previously measured electron affinities for Nd, Tb and Tm are reconciled and new values are extracted from the calculated total cross sections. The large electron affinities found here for these atoms, should be useful in negative ion nanocatalysis, including methane conversion to methanol without CO2 emission, with significant environmental impact.. The powerful complex angular moment...

  2. Scaling analysis for the investigation of slip mechanisms in nanofluids

    Directory of Open Access Journals (Sweden)

    Savithiri S

    2011-01-01

    Full Text Available Abstract The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

  3. Scaling analysis for the investigation of slip mechanisms in nanofluids

    Science.gov (United States)

    Savithiri, S.; Pattamatta, Arvind; Das, Sarit K.

    2011-07-01

    The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

  4. Applications of heavy ion microprobe for single event effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Robert A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States)]. E-mail: robert.reed@vanderbilt.edu; Vizkelethy, Gyorgy [Sandia National Laboratory, Albuquerque, NM 87185 (United States); Pellish, Jonathan A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Sierawski, Brian [Institute for Space and Defense Electronics, Vanderbilt University, Box 351821 Station B, Nashville, TN 37235 (United States); Warren, Kevin M. [Institute for Space and Defense Electronics, Vanderbilt University, Box 351821 Station B, Nashville, TN 37235 (United States); Porter, Mark [Medtronic Microelectronics Center, 2343 W. Medtronic Way, Tempe, AZ 85281 (United States); Wilkinson, Jeff [Medtronic, CRDM Device Technology, 7000 Central Avenue NE, Minneapolis, MN 55432 (United States); Marshall, Paul W. [NASA consultant, Brookneal, VA 24528 (United States); Niu, Guofu [Auburn University, Auburn, AL 36894 (United States); Cressler, John D. [Georgia Institute of Technology, Atlanta, GA 30332 (United States); Schrimpf, Ronald D. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Tipton, Alan [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States); Weller, Robert A. [Electrical Engineering and Computer Science, Vanderbilt University, 5635 Stevenson Center, Nashville, TN 37235 (United States)

    2007-08-15

    The motion of ionizing-radiation-induced rogue charge carriers in a semiconductor can create unwanted voltage and current conditions within a microelectronic circuit. If sufficient unwanted charge or current occurs on a sensitive node, a variety of single event effects (SEEs) can occur with consequences ranging from trivial to catastrophic. This paper describes the application of heavy ion microprobes to assist with calibration and validation of SEE modeling approaches.

  5. Breit interaction effect on dielectronic recombination of heavy ions

    Science.gov (United States)

    Nakamura, Nobuyuki

    2016-11-01

    Interaction of highly charged heavy ions with electrons is one of the most important atomic processes in high temperature plasmas, including astrophysical plasmas such as solar corona and artificial plasmas such as fusion reactor plasmas. Therefore it has been well studied to date, both theoretically and experimentally, to accumulate the atomic data required for understanding or controlling such plasmas. However, there still remains interesting subjects that receive remarkable attention from the atomic physics point of view. One of them, which is the subject of this review, is substantially large Breit interaction effects on the resonance recombination process called dielectronic recombination. The Breit interaction is a relativistic effect in the electron-electron interaction potential; it is thus generally important for highly charged heavy ions. However, in the calculation of the energy levels for heavy ions, the Breit interaction is still a small perturbation compared with the main Coulomb term. On the other hand for the dielectronic recombination, it was found that the Breit interaction can enhance the cross sections significantly. It was also found that the Breit interaction can play not only an important, but even a dominant role in determining the angular distribution of x-rays emitted in the recombination processes. This topical review introduces the recent experimental and theoretical activities to clarify the essential origin of the strong effects.

  6. Corrected second-order slip boundary condition for fluid flows in nanochannels.

    Science.gov (United States)

    Zhang, Hongwu; Zhang, Zhongqiang; Zheng, Yonggang; Ye, Hongfei

    2010-06-01

    A corrected second-order slip boundary condition is proposed to solve the Navier-Stokes equations for fluid flows confined in parallel-plate nanochannels. Compared with the classical second-order slip boundary condition proposed by Beskok and Karniadakis, the corrected slip boundary condition is not only dependent on the Knudsen number and the tangential momentum accommodation coefficient, but also dependent on the relative position of the slip surface in the Knudsen layer. For the fluid flows in slip-flow regime with the Knudsen number less than 0.3, Couette cell is investigated using molecular-dynamics simulations to verify Newtonian flow behaviors by examining the constitutive relationship between shear stress and strain rate. By comparing the velocity profiles of Poiseuille flows predicted from the Navier-Stokes equations with the corrected slip boundary condition with that from molecular-dynamics simulations, it is found that the flow behaviors in our models can be effectively captured.

  7. Na+ Cl- ion pair association in water-DMSO mixtures: Effect of ion pair model potentials

    Indian Academy of Sciences (India)

    ATANU SARKAR; ANUPAM CHATTERJEE; S C TIWARI; B L TEMBE

    2016-06-01

    Potentials of Mean Force (PMF) for the Na+ Cl- ion pair in water–dimethyl sulfoxide (DMSO)mixtures for three DMSO mole fractions have been computed using constrained Molecular Dynamics (MD)simulations and confirmed by dynamical trajectories and residence times of the ion pair at various inter-ionicseparations. The three ion-ion direct potentials used are 12-6-1, exp-6-1 and exp-8-6-1. The physical picturethat emerges is that there is a strong contact ion pair (CIP) and strong to moderate solvent separated ion pair(SSIP) in these solutions. Analysis of local ion clusters shows that ions are dominantly solvated by watermolecules. The 12-6-1 potential model predicts running coordination numbers closest to experimental data.

  8. Measurement of Quantum Phase-Slips in Josephson Junction Chains

    Science.gov (United States)

    Guichard, Wiebke

    2011-03-01

    Quantum phase-slip dynamics in Josephson junction chains could provide the basis for the realization of a new type of topologically protected qubit or for the implementation of a new current standard. I will present measurements of the effect of quantum phase-slips on the ground state of a Josephson junction chain. We can tune in situ the strength of the phase-slips. These phase-slips are the result of fluctuations induced by the finite charging energy of each junction in the chain. Our measurements demonstrate that a Josephson junction chain under phase bias constraint behaves in a collective way. I will also show evidence of coherent phase-slip interference, the so called Aharonov-Casher effect. This phenomenon is the dual of the well known Aharonov-Bohm interference. In collaboration with I.M. Pop, Institut Neel, C.N.R.S. and Universite Joseph Fourier, BP 166, 38042 Grenoble, France; I. Protopopov, L. D. Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow 119334, Russia and Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie, 76021 Karlsruhe, Germany; and F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, Institut Neel, C.N.R.S. and Universite Joseph Fourier. European STREP MIDAS, ANR QUANTJO.

  9. Matrix-assisted laser desorption ion trap mass spectrometry: efficient isolation and effective fragmentation of peptide ions.

    Science.gov (United States)

    Qin, J; Chait, B T

    1996-07-01

    Effective analysis of the sequence of peptides using matrix-assisted laser desorption/ionization (MALDI) tandem ion trap mass spectrometry requires efficient mass isolation and the ability to induce extensive sequence-specific fragmentation. The present paper describes a new excitation scheme, which we term red-shifted off-resonance large-amplitude excitation (RSORLAE), that can deposit higher amounts of internal energy in ions than is feasible with conventional resonant excitation. The new method provides an effective means for inducing fragmentation of MALDI-produced peptide ions with m/z values up to 3500. Prior to excitation, it is necessary to isolate ions of interest with high efficiency. We demonstrate that isolation efficiencies of > 95% can be achieved by careful design of the rf scan functions used during ion isolation. In particular, sudden transitions in the amplitude of the rf field (from low to high amplitudes) must be avoided. The combined improvements in the efficiency for ion isolation and the efficacy of ion activation make MALDI tandem ion trap mass spectrometry a practical tool for the characterization of proteins with high sensitivity.

  10. DEM simulation of growth normal fault slip

    Science.gov (United States)

    Chu, Sheng-Shin; Lin, Ming-Lang; Nien, Wie-Tung; Chan, Pei-Chen

    2014-05-01

    Slip of the fault can cause deformation of shallower soil layers and lead to the destruction of infrastructures. Shanchiao fault on the west side of the Taipei basin is categorized. The activities of Shanchiao fault will cause the quaternary sediments underneath the Taipei basin to become deformed. This will cause damage to structures, traffic construction, and utility lines within the area. It is determined from data of geological drilling and dating, Shanchiao fault has growth fault. In experiment, a sand box model was built with non-cohesive sand soil to simulate the existence of growth fault in Shanchiao Fault and forecast the effect on scope of shear band development and ground differential deformation. The results of the experiment showed that when a normal fault containing growth fault, at the offset of base rock the shear band will develop upward along with the weak side of shear band of the original topped soil layer, and this shear band will develop to surface much faster than that of single top layer. The offset ratio (basement slip / lower top soil thickness) required is only about 1/3 of that of single cover soil layer. In this research, it is tried to conduct numerical simulation of sand box experiment with a Discrete Element Method program, PFC2D, to simulate the upper covering sand layer shear band development pace and scope of normal growth fault slip. Results of simulation indicated, it is very close to the outcome of sand box experiment. It can be extended to application in water pipeline project design around fault zone in the future. Keywords: Taipei Basin, Shanchiao fault, growth fault, PFC2D

  11. High-voltage electron-microscopic observation of cyclic slip behavior around a fatigue crack tip in an iron alloy

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yoshimasa [National Institute of Advanced Industrial Science and Technology (AIST), 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)], E-mail: yoshim.takahashi@aist.go.jp; Tanaka, Masaki; Higashida, Kenji [Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Noguchi, Hiroshi [Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-04-15

    The cyclic slip behavior around a fatigue crack tip originally located inside a bulk Fe-Si alloy was successfully observed by a high-voltage electron microscope in combination with a novel specimen preparation method. The method, by taking advantages of ion milling and focused ion beam techniques, ensures that the original shape of the crack tip is preserved without introducing additional slips. The observation confirms that the slip bands emitted from the fatigue crack tip are bounded by a labyrinth-like wall structure.

  12. On a credit oscillatory system with the inclusion of stick-slip

    Directory of Open Access Journals (Sweden)

    Parovik Roman

    2016-01-01

    Full Text Available The work was a mathematical model that describes the effect of the sliding attachment (stick-slip, taking into account hereditarity. This model can be regarded as a mechanical model of earthquake preparation. For such a model was proposed explicit finite- difference scheme, on which were built the waveform and phase trajectories hereditarity effect of stick-slip.

  13. Effects of trapped electrons on the oblique propagation of ion acoustic solitary waves in electron-positron-ion plasmas

    Science.gov (United States)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-08-01

    The characteristics of the nonlinear oblique propagation of ion acoustic solitary waves in unmagnetized plasmas consisting of Boltzmann positrons, trapped electrons and ions are investigated. The modified Kadomtsev-Petviashivili ( m K P ) equation is derived employing the reductive perturbation technique. The parametric effects on phase velocity, Sagdeev potential, amplitude and width of solitons, and electrostatic ion acoustic solitary structures are graphically presented with the relevant physical explanations. This study may be useful for the better understanding of physical phenomena concerned in plasmas in which the effects of trapped electrons control the dynamics of wave.

  14. Ion size effect on colloidal forces within the primitive model

    Directory of Open Access Journals (Sweden)

    J.Wu

    2005-01-01

    Full Text Available The effect of ion size on the mean force between a pair of isolated charged particles in an electrolyte solution is investigated using Monte Carlo simulations within the framework of the primitive model where both colloidal particles and small ions are represented by charged hard spheres and the solvent is treated as a dielectric continuum. It is found that the short-ranged attraction between like-charged macroions diminishes as the diameter of the intermediating divalent counterions and coions increases and the maximum attractive force is approximately a linear function of the counterion diameter. This size effect contradicts the prediction of the Asakura-Oosawa theory suggesting that an increase in the excluded volume of small ions would lead to a stronger depletion between colloidal particles. Interestingly, the simulation results indicate that both the hard-sphere collision and the electrostatic contributions to the mean force are insensitive to the size disparity of colloidal particles with the same average diameter.

  15. Effects of ionizing radiation on modern ion exchange materials

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  16. Ion irradiation and biomolecular radiation damage II. Indirect effect

    CERN Document Server

    Wang, Wei; Su, Wenhui

    2010-01-01

    It has been reported that damage of genome in a living cell by ionizing radiation is about one-third direct and two-thirds indirect. The former which has been introduced in our last paper, concerns direct energy deposition and ionizing reactions in the biomolecules; the latter results from radiation induced reactive species (mainly radicals) in the medium (mainly water) surrounding the biomolecules. In this review, a short description of ion implantation induced radical formation in water is presented. Then we summarize the aqueous radical reaction chemistry of DNA, protein and their components, followed by a brief introduction of biomolecular damage induced by secondary particles (ions and electron). Some downstream biological effects are also discussed.

  17. Toxic effect of terbium ion on horseradish cell.

    Science.gov (United States)

    Jiang, Na; Wang, Lihong; Lu, Tianhong; Huang, Xiaohua

    2011-12-01

    The toxic effect of terbium (III) ion on the horseradish cell was investigated by scanning electron microscopy, gas chromatography, and standard biochemical methods. It was found that the activity of horseradish peroxidase in the horseradish treated with 0.2 mM terbium (III) ion decreased and led to the excessive accumulation of free radicals compared with that in the control horseradish. The excessive free radicals could oxidize unsaturated fatty acids in the horseradish cell and then increase the cell membrane lipid peroxidation of horseradish. The increase in the lipid peroxidation could lead to the destruction of the structure and function of the cell membrane and then damage of the horseradish cell. We propose that this is a possible mechanism for the toxic action of terbium in the biological systems.

  18. Probing isotope effects in chemical reactions using single ions

    CERN Document Server

    Staanum, Peter F; Wester, Roland; Drewsen, Michael

    2008-01-01

    Isotope effects in reactions between Mg+ in the 3p 2P3/2 excited state and molecular hydrogen at thermal energies are studied through single reaction events. From only ~250 reactions with HD, the branching ratio between formation of MgD+ and MgH+ is found to be larger than 5. From additional 65 reactions with H2 and D2 we find that the overall decay probability of the intermediate MgH2+, MgHD+ or MgD2+ complexes is the same. Our study shows that few single ion reactions can provide quantitative information on ion-neutral reactions. Hence, the method is well-suited for reaction studies involving rare species, e.g., rare isotopes or short-lived unstable elements.

  19. Effects of chloride and silver ions on gold nanorod formation

    Science.gov (United States)

    Ock Park, Jin; Cho, So-Hye; Jeong, Dae-Yong; Kong, Young-Min; Lee, Seung Yong

    2015-01-01

    The ability to tune the longitudinal localized surface plasmon resonance of gold nanorods (AuNRs) via simple modification of their aspect ratio is a large contributing factor to their widespread use across multiple fields. An understanding of the synthesis conditions that affect the aspect ratio and yield of AuNRs is therefore of utmost importance. From this perspective, we take a systematic approach in investigating the effect of the following conditions on the seed-mediated formation of AuNRs: the addition of chloride or silver ions, and the use of a hexadecyltrimethylammonium bromide (CTAB) source with different levels of effectiveness on controlling the shape of growing AuNRs.

  20. Effect of conical nanopore diameter on ion current rectification.

    Science.gov (United States)

    Kovarik, Michelle L; Zhou, Kaimeng; Jacobson, Stephen C

    2009-12-10

    Asymmetric nanoscale conduits, such as conical track-etch pores, rectify ion current due to surface charge effects. To date, most data concerning this phenomenon have been obtained for small nanopores with diameters comparable to the electrical double layer thickness. Here, we systematically evaluate rectification for nanopores in poly(ethylene terephthalate) membranes with tip diameters of 10, 35, 85, and 380 nm. Current-voltage behavior is determined for buffer concentrations from 1 mM to 1 M and pHs 3.4 and 6.7. In general, ion current rectification increases with decreasing tip diameter, with decreasing ionic strength, and at higher pH. Surface charge contributes to increased pore conductivities compared to bulk buffer conductivities, though double layer overlap is not necessary for rectification to occur. Interestingly, the 35 nm pore exhibits a maximum rectification ratio for the 0.01 M buffer at pH 6.7, and the 380 nm pores exhibit nearly diodelike current-voltage curves when initially etched and strong rectification after the ion current has stabilized.

  1. Ion-specific effects influencing the dissolution of tricalcium silicate

    Energy Technology Data Exchange (ETDEWEB)

    Nicoleau, L. [BASF Research Construction Materials and Systems, BASF Construction Chemicals GmbH, 83308 Trostberg (Germany); Schreiner, E., E-mail: eduard.schreiner@basf.com [BASF Materials and Systems, BASF SE, 67056 Ludwigshafen (Germany); Nonat, A., E-mail: andre.nonat@u-bourgogne.fr [Institut Carnot de Bourgogne, UMR6303 CNRS, 9 avenue Alain Savary, BP 47870, 21078 Dijon Cedex (France)

    2014-05-01

    It has been recently demonstrated that the dissolution kinetics of tricalcium silicate (C{sub 3}S) is driven by the deviation from its solubility equilibrium. In this article, special attention is paid to ions relevant in cement chemistry likely to interact with C{sub 3}S. In order to determine whether specific effects occur at the interface C{sub 3}S–water, particular efforts have been made to model ion activities using Pitzer's model. It has been found that monovalent cations and monovalent anions interact very little with the surface of C{sub 3}S. On the other side, divalent anions like sulfate slow down the dissolution more strongly by modifying the surface charging of C{sub 3}S. Third, aluminate ions covalently bind to surface silicate monomers and inhibit the dissolution in mildly alkaline conditions. The formation and the breaking of these bonds depend on pH and on [Ca{sup 2+}]. Thermodynamic calculations performed using DFT combined with the COSMO-RS solvation method support the experimental findings.

  2. Effects of heavy ion radiation on digital micromirror device performance

    Science.gov (United States)

    Travinsky, Anton; Vorobiev, Dmitry; Ninkov, Zoran; Raisanen, Alan D.; Pellish, Jonny; Robberto, Massimo; Heap, Sara

    2016-09-01

    There is a pressing need in the astronomical community for space-suitable multiobject spectrometers (MOSs). Several digital micromirror device (DMD)-based prototype MOSs have been developed for ground-based observatories; however, their main use will come with deployment on a space-based mission. Therefore, the performance of DMDs under exoatmospheric radiation needs to be evaluated. DMDs were rewindowed with 2-μm thick pellicle and tested under accelerated heavy-ion radiation (control electronics shielded from radiation), with a focus on the detection of single-event effects (SEEs) including latch-up events. Testing showed that while DMDs are sensitive to nondestructive ion-induced state changes, all SEEs are cleared with a soft reset (i.e., sending a pattern to the device). The DMDs did not experience single-event induced permanent damage or functional changes that required a hard reset (power cycle), even at high ion fluences. This suggests that the SSE rate burden will be manageable for a DMD-based instrument when exposed to solar particle fluxes and cosmic rays in orbit.

  3. The effect of ion implantation on cellular adhesion.

    Science.gov (United States)

    Howlett, C R; Evans, M D; Wildish, K L; Kelly, J C; Fisher, L R; Francis, G W; Best, D J

    1993-01-01

    As there are only a finite number of materials suitable for orthopaedic reconstruction, considerable effort has been devoted recently to investigating ways of altering the surface chemistry of prosthetic materials without altering their bulk properties. Ion beam implantation is one such technique which is appropriate for orthopaedic reconstructive materials. This paper investigates the early effect of ion beam modification on cellular attachment of bone derived cells using a prototype device which measures the strength of attachment of individual cells to a silicon substratum. The results point to several conclusions. (1) There is no evidence that ion beam implantation with nitrogen, phosphorus, manganese or magnesium produces increased adhesion of human bone derived cells. (2) Surface etching with hydrofluoric acid, electron bombardment and thermal oxidation increases the strength of attachment between cells and substrata. (3) There is a correlation between wettability and rate of cellular attachment to oxygen implanted substrata during the first 2 h after cellular seeding. However, the increase in cellular attachment cannot be entirely explained by the change in critical surface tension or via increased fibronectin attachment to the substrata.

  4. Effect of Pb2+ ions on photosynthetic apparatus.

    Science.gov (United States)

    Sersen, Frantisek; Kralova, Katarina; Pesko, Matus; Cigan, Marek

    2014-01-01

    Using model lead compounds Pb(NO3)2 and Pb(CH3CHOO)2, the mechanism and the site of action of Pb2+ ions in the photosynthetic apparatus of spinach chloroplasts were studied. Both compounds inhibited photosynthetic electron transport (PET) through photosystem 1 (PS1) and photosystem 2 (PS2), while Pb(NO3)2 was found to be more effective PET inhibitor. Using EPR spectroscopy the following sites of Pb2+ action in the photosynthetic apparatus were determined: the water-splitting complex and the Z•/D• intermediates on the donor side of PS2 and probably also the ferredoxin on the acceptor side of PS1, because cyclic electron flow in chloroplasts was impaired by treatment with Pb2+ ions. Study of chlorophyll fluorescence in suspension of spinach chloroplasts in the presence of Pb2+ ions confirmed their site of action in PS2. Using fluorescence spectroscopy also formation of complexes between Pb2+ and amino acid residues in photosynthetic proteins was confirmed and constants of complex formation among Pb2+ and aromatic amino acids were calculated for both studied lead compounds.

  5. Effects of Magnetic Shear on Ion-Cyclotron Modes.

    Science.gov (United States)

    Ganguli, Gurudas

    Effects of Magnetic Shear on electrostatic Ion -Bernstein Modes (IBM) are examined. Shear affects the mode structure in 3 principal ways: (i) Local effect, (ii) Global effect and (iii) Orbital effect. The role of shear at the above three levels is investigated for IBM in general and in the context of parametric instability of two Ion-Bernstein modes by a magnetosonic wave in a multispecies plasma in particular. An improved marginal stability criterion is presented at Local and Global levels and the region where the Orbital effects are influential is defined and discussed. An electron drift relative to the ions is introduced parallel to the external magnetic field giving rise to Current Driven Ion Cyclotron Instability (CDICI). An improved theory of CDICI in a sheared magnetic field is given. For temperature ratios (tau) = T(,i)/T(,e) > .25, the imaginary part of the local dispersion relation, (as a function of k(,(PARLL)) (('x)), the local parallel wavevector), can be approximated by a parabola, while for weaker (tau) it can be approximated by a pair of straight lines; in each case a second order differential equation is solved for complex roots, (omega). Growth rates ((gamma)/(OMEGA)), are plotted against the square of the normalized pependicular wavevector ((TURN)b) for various values of shear, temperature ratios and electron drift strengths. The main effect of shear is to localize this instability in x-space around some x(,0) such that k(,(PARLL))('0) = ('s)k(,y)x(,0), (('s) being inverse shear length), corresponds to the ((gamma)/(OMEGA))(,max) in the absence of shear. Shear also reduces the growth rate in general: however, ((gamma)/(OMEGA)) for the b values away from the value corresponding to the maximum growth rate are affected more than those which are closer, thereby making the instability more coherent in b. Operator methods employing the Vlasov operator to obtain orbits and velocities in external magnetic fields are studied. Particle orbits and

  6. Simulation of an anion in water: effect of ion polarizability

    Science.gov (United States)

    Karim, Omar A.

    1991-10-01

    A polarizable-polar water model is used to study the structure of wate near a chloride ion. A semi-classical description of ion polarizability is included. Significant changes in the solute-solvent distribution functions are observed. When compared with a simulation without ion polarizability, it is found that the hydration number is further decreased when ion polarizability is present.

  7. Ultrafiltration Membrane Fouling and the Effect of Ion Exchange Resins

    KAUST Repository

    Jamaly, Sanaa

    2011-12-01

    Membrane fouling is a challenging process for the ultrafiltration membrane during wastewater treatment. This research paper determines the organic character of foulants of different kinds of wastewater before and after adding some ion exchange resins. Two advanced organic characterization methods are compared in terms of concentration of dissolved organic carbons: The liquid chromatography with organic carbon (LC-OCD) and Shimadzu total organic carbon (TOC). In this study, two secondary wastewater effluents were treated using ultrafiltration membrane. To reduce fouling, pretreatment using some adsorbents were used in the study. Six ion exchange resins out of twenty were chosen to compare the effect of adsorbents on fouling membrane. Based on the percent of dissolved organic carbon’s removal, three adsorbents were determined to be the most efficient (DOWEX Marathon 11 anion exchange resin, DOWEX Optipore SD2 polymeric adsorbent, and DOWEX PSR2 anion exchange), and three other ones were determined to the least efficient (DOWEX Marathon A2 anion exchange resin, DOWEX SAR anion exchange resin, and DOWEX Optipore L493 polymeric adsorbent). Organic characterization for feed, permeate, and backwash samples were tested using LC-OCD and TOC to better understand the characteristics of foulants to prevent ultrafiltration membrane fouling. The results suggested that the polymeric ion exchange resin, DOWEX SD2, reduced fouling potential for both treated wastewaters. All the six ion exchange resins removed more humic fraction than other organic fractions in different percent, so this fraction is not the main for cause for UF membrane fouling. The fouling of colloids was tested before and after adding calcium. There is a severe fouling after adding Ca2+ to effluent colloids.

  8. Effects of magnesium ions on ribosomes: a fluorescence study.

    Science.gov (United States)

    Bonincontro, A; Briganti, G; Giansanti, A; Pedone, F; Risuleo, G

    1993-07-18

    Fluorescence intensity measurements of ethidium bromide (EB) bound to ribosomal RNA (rRNA) in suspensions of 30S and 50S subunits, of 70S ribosomal particles and of protein-free extracted rRNA are presented. Changes in the intercalation of EB reflect changes in conformation and degree of exposure of rRNA. The effect of removal of magnesium ions on the binding of EB is compared in protein-free rRNA and in ribosomal particles by a Scatchard plot analysis. In free ribosomal RNA the number of bound EBs do not depend on magnesium content, only the association constant is affected. In intact 70S particles and both in the separated 50S and 30S subunits the presence of magnesium greatly reduces binding of EB and no saturation of the fluorescence intensity with rRNA concentration is observed, preventing a Scatchard plot analysis. Removal of magnesium restores a strong EB intercalation. Then magnesium ions induce a conformational change in the 70S particles as well as in the separated subunits. The different behavior of the free-rRNA and of the ribosomal particles indicates that ribosomal proteins are relevant to the structural changes induced by magnesium ions. The comparison of the number of excluded sites and of the association constant in the 30S, 50S subunits and in the 70S particles indicates that even without Mg2+ ions the two subunits still interact, at variance with the commonly shared opinion that subunits dissociation takes place at low magnesium concentration.

  9. Composition demixing effect on cathodic arc ion plating

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The composition demixing effect has been found often in alloy coatings deposited by cathodic arc ion plating using various alloy cathode targets.The characteristics of composition demixing phenomena were summarized.Beginning with the ionization zone near the surface of the cathode target, a physical model in terms of the ions generated in the ionization zone and their movement in the plating room modified by bias electric field was proposed.Based on the concept of electric charge state, the simulation calculation of the composition demixing effect was carried out.The percentage of atoms of an element in coating and from the alloy target was demonstrated by direct comparison.The influences of the composition change of the alloy target and the bias electric field on the composition demixing effect were discussed in detail.It is also proposed that the average charge states of the elements may be used to calculate the composition demixing effect and to design the composition of the alloy target.

  10. SLIP VELOCITY IN PULSED DISC AND DOUGHNUT EXTRACTION COLUMN

    Directory of Open Access Journals (Sweden)

    Mohammad Outokesh

    2011-09-01

    Full Text Available In the present work, slip velocity has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for four different liquid-liquid systems. The effects of operating variables including pulsation intensity and dispersed and continuous phase flow rates on slip velocity have been investigated. The existence of three different operational regimes, namely mixersettler, transition, and emulsion regimes, was observed when the energy input was changed. Empirical correlations are derived for prediction of the slip velocity in terms of operating variables, physical properties of the liquid systems, and column geometry for different regimes. Good agreement between prediction and experiments was found for all operating conditions that were investigated.

  11. Shock slip-relations for thermal and chemical nonequilibrium flows

    Science.gov (United States)

    Jinrong, Tang

    1996-05-01

    This paper appears to be the first where the multi-temperature shock slip-relations for the thermal and chemical nonequilibrium flows are derived. The derivation is based on analysis of the influences of thermal nonequilibrium and viscous effects on the mass, momentum and emergy flux balance relations at the shock wave. When the relaxation times for all internal energy modes tend to zero, the multi-tmperature shock slip-relations are converted into single-temperature ones for thermal equilibrium flows. The present results can be applied to flow over vehicles of different geometries with or without angles of attack. In addition, the present single-temperature shock slip-relations are compared with those in the literature, and some defects and limitations in the latter are clarified.

  12. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  13. Promoter Effects of Rare Earth Ions on Electrocatalytic Oxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The promoter effects of rare earth ions on the electrocatalytic oxidation of methanol at the Pt electrode were studied using the cyclic voltammetry and stable polarization techniques. It was found for the first time that Eu、Ho、Dy ions could accelerate the electrocatalytic oxidation of methanol at the Pt electrode, while Lu、Pr、Yb、Sm ions showed inhibitor effects.

  14. Phase slips in superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.

  15. Charge Exchange Effect on Space-Charge-Limited Current Densities in Ion Diode

    Institute of Scientific and Technical Information of China (English)

    石磊

    2002-01-01

    The article theoretically studied the charge-exchange effects on space charge limited electron and ion current densities of non-relativistic one-dimensional slab ion diode, and compared with those of without charge exchange.

  16. Nonplanar ion-acoustic shocks in electron–positron–ion plasmas: Effect of superthermal electrons

    Indian Academy of Sciences (India)

    Deb Kumar Ghosh; Prasantha Chatterjee; Pankaj Kumar Mandal; Biswajit Sahu

    2013-09-01

    Ion-acoustic shock waves (IASWs) in a homogeneous unmagnetized plasma, comprising superthermal electrons, positrons, and singly charged adiabatically hot positive ions are investigated via two-dimensional nonplanar Kadomstev–Petviashvili–Burgers (KPB) equation. It is found that the profiles of the nonlinear shock structures depend on the superthermality of electrons. The influence of other plasma parameters such as, ion kinematic viscosity and ion temperature, is discussed in the presence of superthermal electrons in nonplanar geometry. It is also seen that the IASWs propagating in cylindrical/spherical geometry with transverse perturbation will be deformed as time goes on.

  17. Superplastic flow lubricates carbonate faults during earthquake slip

    Science.gov (United States)

    De Paola, Nicola; Holdsworth, Robert; Viti, Cecilia; Collettini, Cristiano; Faoro, Igor; Bullock, Rachael

    2014-05-01

    Tectonic earthquakes are hosted in the shallower portion of crustal fault zones, where fracturing and cataclasis are thought to be the dominant processes during frictional sliding. Aseismic shear in lower crust and lithospheric mantle shear zones is accomplished by crystal plasticity, including superplastic flow acting at low strain rates on ultrafine-grained rocks. Superplasticity has also been observed at high strain rates for a range of nano-phase alloys and ceramics, and could potentially occur in fine-grained geological materials, if deformed at high strain rates and temperatures. We performed a set of displacement-controlled experiments to explore whether superplastic flow can effectively weaken faults, and facilitate earthquake propagation. The experiments were performed on fine-grained synthetic gouges (63 lubrication mechanisms. When T ≥ 800 °C are attained, micro-textures diagnostic of diffusion-dominated grain boundary sliding are widespread within the slip zone, and suggest bulk superplastic flow. Flow stresses predicted by superplasticity constitutive laws at the slip zone temperatures, grain sizes and strain rates attained during the experiments match those we measured in the laboratory (μ = 0.16). We propose therefore that the activation of diffusion creep at high temperatures (T ≥ 800 °C) leads to slip zone-localised superplastic flow and that this causes the dynamic weakening of carbonate faults at seismic slip rates. Note, however, that both cataclasis and dislocation creep operating at lower temperatures, during the earlier stages of slip, are critical, precursory processes needed to produce the nanoscale grain sizes required to activate grainsize sensitive mechanisms during superplastic flow. Finally, the re-strengthening observed during the decelerating phase of deformation can be explained by the falling temperature "switching off" slip zone-localized superplasticity, leading to a return to frictional sliding. These results indicate

  18. Effects of cobalt and chromium ions on lymphocyte migration.

    Science.gov (United States)

    Baskey, Stephen J; Lehoux, Eric A; Catelas, Isabelle

    2017-04-01

    A T cell-mediated hypersensitivity reaction has been reported in some patients with CoCrMo-based implants. However, the role of cobalt and chromium ions in this reaction remains unclear. The objective of the present study was to analyze the effects of Co(2+) and Cr(3+) in culture medium, as well as the effects of culture supernatants of macrophages exposed to Co(2+) or Cr(3+) , on the migration of lymphocytes. The release of cytokines/chemokines by macrophages exposed to Co(2+) and Cr(3+) was also analyzed. The migration of murine lymphocytes was quantified using the Boyden chamber assay and flow cytometry, while cytokine/chemokine release by J774A.1 macrophages was measured by ELISA. Results showed an ion concentration-dependent increase in TNF-α and MIP-1α release and a decrease in MCP-1 and RANTES release. Migration analysis showed that the presence of Co(2+) (8 ppm) and Cr(3+) (100 ppm) in culture medium increased the migration of T lymphocytes, while it had little or no effect on the migration of B lymphocytes, suggesting that Co(2+) and Cr(3+) can stimulate the migration of T but not B lymphocytes. Levels of T lymphocyte migration in culture medium containing Co(2+) or Cr(3+) were not statistically different from those in culture supernatants of macrophages exposed to Co(2+) or Cr(3+) , suggesting that the effects of the ions and chemokines were not additive, possibly because of ion interference with the chemokines and/or their cognate receptors. Overall, results suggest that Co(2+) and Cr(3+) are capable of stimulating the migration of T (but not B) lymphocytes in the absence of cytokines/chemokines, and could thereby contribute to the accumulation of more T than B lymphocytes in periprosthetic tissues of some patients with CoCrMo-based implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:916-924, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Learning to predict slip for ground robots

    Science.gov (United States)

    Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Sibley, Gabe; Perona, Pietro

    2006-01-01

    In this paper we predict the amount of slip an exploration rover would experience using stereo imagery by learning from previous examples of traversing similar terrain. To do that, the information of terrain appearance and geometry regarding some location is correlated to the slip measured by the rover while this location is being traversed. This relationship is learned from previous experience, so slip can be predicted later at a distance from visual information only.

  20. Slip resistance testing - Zones of uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, R.

    2010-07-01

    This paper considers recent and current potential developments in the international standardisation of slip resistance. It identifies some limitations of the wet barefoot ramp test, such that changes should be made if it is to be more widely used. It also identifies some limitations of the new European SlipSTD Publicly Available Specification, such as insufficient allowance for the deterioration of slip resistance as tiles inevitably wear. (Author) 22 refs.

  1. Large Slip Length over a Nanopatterned Surface

    Institute of Scientific and Technical Information of China (English)

    LI Ding; DI Qin-Feng; LI Jing-Yuan; QIAN Yue-Hong; FANG Hai-Ping

    2007-01-01

    A thermodynamic method is employed to analyse the slip length of hydrophobic nanopatterned surface.The maximal slip lengths with respect to the hydrophobicity of the nanopatterned surface are computed.It is found that the slip length reaches more than 50μm if the nanopatterned surfaces have a contact angle larger than 160°.Such results are expected to find extensive applications in micro-channels and helpful to understand recent experimental observations of the slippage of nanopatterned surfaces.

  2. Stick–slip behaviour on Au(111 with adsorption of copper and sulfate

    Directory of Open Access Journals (Sweden)

    Nikolay Podgaynyy

    2015-03-01

    Full Text Available Several transitions in the friction coefficient with increasing load are found on Au(111 in sulfuric acid electrolyte containing Cu ions when a monolayer (or submonolayer of Cu is adsorbed. At the corresponding normal loads, a transition to double or multiple slips in stick–slip friction is observed. The stick length in this case corresponds to multiples of the lattice distance of the adsorbed sulfate, which is adsorbed in a √3 × √7 superstructure on the copper monolayer. Stick–slip behaviour for the copper monolayer as well as for 2/3 coverage can be observed at FN ≥ 15 nN. At this normal load, a change from a small to a large friction coefficient occurs. This leads to the interpretation that the tip penetrates the electrochemical double layer at this point. At the potential (or point of zero charge (pzc, stick–slip resolution persists at all normal forces investigated.

  3. Nanoscale patterns produced by self-sputtering of solid surfaces: The effect of ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R. Mark [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States); Hofsäss, Hans [II. Physikalisches Institut, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2016-08-21

    A theory of the effect that ion implantation has on the patterns produced by ion bombardment of solid surfaces is introduced. For simplicity, the case of self-sputtering of an elemental material is studied. We find that implantation of self-ions has a destabilizing effect along the projected beam direction for angles of incidence θ that exceed a critical value. In the transverse direction, ion implantation has a stabilizing influence for all θ.

  4. Divalent Metal Ion Transport across Large Biological Ion Channels and Their Effect on Conductance and Selectivity

    Directory of Open Access Journals (Sweden)

    Elena García-Giménez

    2012-01-01

    Full Text Available Electrophysiological characterization of large protein channels, usually displaying multi-ionic transport and weak ion selectivity, is commonly performed at physiological conditions (moderate gradients of KCl solutions at decimolar concentrations buffered at neutral pH. We extend here the characterization of the OmpF porin, a wide channel of the outer membrane of E. coli, by studying the effect of salts of divalent cations on the transport properties of the channel. The regulation of divalent cations concentration is essential in cell metabolism and understanding their effects is of key importance, not only in the channels specifically designed to control their passage but also in other multiionic channels. In particular, in porin channels like OmpF, divalent cations modulate the efficiency of molecules having antimicrobial activity. Taking advantage of the fact that the OmpF channel atomic structure has been resolved both in water and in MgCl2 aqueous solutions, we analyze the single channel conductance and the channel selectivity inversion aiming to separate the role of the electrolyte itself, and the counterion accumulation induced by the protein channel charges and other factors (binding, steric effects, etc. that being of minor importance in salts of monovalent cations become crucial in the case of divalent cations.

  5. Cycle slipping in phase synchronization systems

    Science.gov (United States)

    Yang, Ying; Huang, Lin

    2007-02-01

    Cycle slipping is a characteristically nonlinear phenomenon in phase synchronization systems, which is highly dependent of the initial state of the system. Slipping a cycle means that the phase error is increased to such an extent that the generator to be synchronized slips one complete cycle with respect to the input phase. In this Letter, a linear matrix inequality (LMI) based approach is proposed and the estimation of the number of cycles which slips a solution of the system is obtained by solving a quasi-convex optimization problem of LMI. Applications to phase locked loops demonstrate the validity of the proposed approach.

  6. Observation of slip flow in thermophoresis.

    Science.gov (United States)

    Weinert, Franz M; Braun, Dieter

    2008-10-17

    Two differing theories aim to describe fluidic thermophoresis, the movement of particles along a temperature gradient. While thermodynamic approaches rely on local equilibrium, hydrodynamic descriptions assume a quasi-slip-flow boundary condition at the particle's surface. Evidence for slip flow is presented for the case of thermal gradients exceeding (aS_(T)(-1) with particle radius a and Soret coefficient S_(T). Thermophoretic slip flow at spheres near a surface attracts or repels tracer particles perpendicular to the thermal gradient. Moreover, particles mutually attract and form colloidal crystals. Fluid dynamic slip explains the latter quantitatively.

  7. Cyclotron resonance effects on stochastic acceleration of light ionospheric ions

    Science.gov (United States)

    Singh, N.; Schunk, R. W.; Sojka, J. J.

    1982-01-01

    The production of energetic ions with conical pitch angle distributions along the auroral field lines is a subject of considerable current interest. There are several theoretical treatments showing the acceleration (heating) of the ions by ion cyclotron waves. The quasi-linear theory predicts no acceleration when the ions are nonresonant. In the present investigation, it is demonstrated that the cyclotron resonances are not crucial for the transverse acceleration of ions by ion cyclotron waves. It is found that transverse energization of ionospheric ions, such as He(+), He(++), O(++), and O(+), is possible by an Electrostatic Hydrogen Cyclotron (EHC) wave even in the absence of cyclotron resonance. The mechanism of acceleration is the nonresonant stochastic heating. However, when there are resonant ions both the total energy gain and the number of accelerated ions increase with increasing parallel wave number.

  8. Slip resistance of non-slip socks--an accelerometer-based approach.

    Science.gov (United States)

    Hübscher, Markus; Thiel, Christian; Schmidt, Jens; Bach, Matthias; Banzer, Winfried; Vogt, Lutz

    2011-04-01

    The present study investigated the relative slip resistance of commercially available non-slip socks during gait. Twenty-four healthy subjects (29.3±10.4 years) participated in the study. Each subject completed 4 different test conditions (barefoot, non-slip socks, conventional socks, backless slippers) in a randomized, balanced order. The slip resistance was estimated by measuring the heel deceleration time using a heel-mounted accelerometer. Repeated measures ANOVA and post hoc paired-sample t-test with Bonferroni correction were used for statistical analysis. Compared to barefoot walking absolute deceleration times [ms] were significantly increased when wearing conventional socks or slippers. No significant differences were observed between the barefoot and non-slip socks conditions. The present study shows that non-slip socks improved slip-resistance during gait when compared to conventional socks and slippers. Future investigations should verify the present findings in hospital populations prone to slip-related falls.

  9. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfv~n Eigenmodes in the Large Helical Device

    Institute of Scientific and Technical Information of China (English)

    K. OGAWA; M. ISOBE; K. TOI; F. WATANABE; D. A. SPONG; A. SHIMIZU; M. OSAKABE; D. S. DARROW; S. OHDACHI; S. SAKAKIBARA; LHD Experiment -Group

    2012-01-01

    Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes (TAE) were measured with a scintillator-based lost fast-ion probe (SLIP) in the large helical device (LHD). The SLIP gave simultaneously the energy E and the pitch angle X=arccos(v///v) distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of Rax-vac=3.60 m, 3.75 m. and 3.90 m, where Rax-vac is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/X regions of 50-190 keV/40°, 40-170 keV/25°, and 30-190 keV/30°, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, Rax-vac and the toroidal field strength Bt. The increment of the loss fluxes has the dependence of (bTAE/Bt)s. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.

  10. Knowledge Representation of Ion-Sensitive Field-Effect Transistor Voltage Response for Potassium Ion Concentration Detection in Mixed Potassium/Ammonium Ion Solutions

    Directory of Open Access Journals (Sweden)

    Wan F.H. Abdullah

    2010-01-01

    Full Text Available Problem statement: The Ion-Sensitive Field-Effect Transistor (ISFET is a metal-oxide field-effect transistor-based sensor that reacts to ionic activity at the electrolye/membrane/gate interface. The ionic sensor faces issue of selectivity from interfering ions that contribute to the sensor electrical response in mixed solutions. Approach: We present the training data collection of ISFET voltage response for the purpose of post-processing stage neural network supervised learning. The role of the neural network is to estimate the main ionic activity from the interfering ion contribution in mixed solutions given time-independent input voltages. In this work, potassium ion (K+ and ammonium ion (NH4+ ISFET response data are collected with readout interface circuit that maintains constant voltage and current bias levels to the ISFET drain-source terminals. Sample solutions are prepared by keeping the main ion concentration fixed while the activity of an interfering ion varied based on the fixed interference method. Results: Sensor demonstrates linear relationship to the ion concentration within detection limit but has low repeatability of 0.52 regression factor and 0.16 mean squared error between similarly repeated measurements. We find that referencing the voltage response to the sensor response in DIW prior to measurement significantly improves the repeatability by 15.5% for correlation and 98.3% for MSE. Demonstration of multilayer perceptron feed-forward neural network estimation of ionic concentration from the data collection shows a recognition of >0.8 regression factor. Conclusion: Time-independent DC voltage response of ISFET of the proposed setup can be used as training data for neural network supervised learning for the estimation of K+ in mixed K+/NH4+ solutions.

  11. Volcano instability induced by strike-slip faulting

    Science.gov (United States)

    Lagmay, A. M. F.; van Wyk de Vries, B.; Kerle, N.; Pyle, D. M.

    2000-09-01

    Analogue sand cone experiments were conducted to study instability generated on volcanic cones by basal strike-slip movement. The results of the analogue models demonstrate that edifice instability may be generated when strike-slip faults underlying a volcano move as a result of tectonic adjustment. This instability occurs on flanks of the volcano above the strike-slip shear. On the surface of the volcano this appears as a pair of sigmoids composed of one reverse and one normal fault. In the interior of the cone the faults form a flower structure. Two destabilised regions are created on the cone flanks between the traces of the sigmoidal faults. Bulging, intense fracturing and landsliding characterise these unstable flanks. Additional analogue experiments conducted to model magmatic intrusion show that fractures and faults developed within the volcanic cone due to basal strike-slip motions strongly control the path of the intruding magma. Intrusion is diverted towards the areas where previous development of reverse and normal faults have occurred, thus causing further instability. We compare our model results to two examples of volcanoes on strike-slip faults: Iriga volcano (Philippines), which underwent non-magmatic collapse, and Mount St. Helens (USA), where a cryptodome was emplaced prior to failure. In the analogue and natural examples, the direction of collapse takes place roughly parallel to the orientation of the underlying shear. The model presented proposes one mechanism for strike-parallel breaching of volcanoes, recently recognised as a common failure direction of volcanoes found in regions with transcurrent and transtensional deformation. The recognition of the effect of basal shearing on volcano stability enables prediction of the likely direction of eventual flank failure in volcanoes overlying strike-slip faults.

  12. Electric field effects on resonance structures in negative ion photodetachment

    Science.gov (United States)

    Slonim, V. Z.; Greene, C. H.

    1991-12-01

    The photodetachment of negative ions in a static electric field exhibits some new characteristic features and has beer considered in various theortical approaches.1 Most of them, however, neglect the short-range interaction between the escaping electron and the atomic core, and must be modified to describe various resonant effects. Experiments2 have shown very rich resonant structure in a dc-field, which can be attributed to the mixing of different excited states in the negative ion, to competition between elastic and inelastic decay channels, and to tunneling effects induced by the field. It is known that various resonant structures in Photoprocesses can be successfully described within standard multichannel quantum defect theory (MQDT). We present a modified MQDT frame transformation approach to extend the standard method to long-range potentials with nonspherical symmetry. In our treatment both the electron-field and electron-atom interactions are treated nonperturbatively and on an equal footing. The resulting theoretical calculations are compared with experimental data on field-modified H? photodetachment in the vicinity of the n = 2 resonances.

  13. Theoretical Calculation and Analysis of Slip and Deformation for Concrete Sandwich Panels

    Institute of Scientific and Technical Information of China (English)

    LI Yanbo; ZHANG Shaohua; XIA Baoyang

    2007-01-01

    Slip and deformation of concrete sandwich panels under uniformly distributed loads is concerned. The effect of slip on the deformation of concrete sandwich panels are studied, and the analytical expressions of slip and deformation for concrete sandwich panels is obtained. These formulae can describe the slip distribution and account for its effect on deformation. In order to restrict the bound of formula, the formula of crack moment is obtained. The results of theoretical calculation are compared with those of tests and finite element methods. The comparison shows that the results of theoretical calculation are in accord with those of tests and finite element methods. So the theoretical calculation can be used to calculate slip and deformation of concrete sandwich panels in practical projects.

  14. A Simple Technique to Determine Interface Slip of Stud Connected SCC Girders

    Directory of Open Access Journals (Sweden)

    Rajasankar J.

    2012-01-01

    Full Text Available A simple technique is proposed to compute interface slip of stud connected steel-concrete composite (SCC girders based on the results of a flexure test. The technique makes use of relative longitudinal displacement of the concrete slab and steel beam to calculate the interface slip. In the flexure test of a SCC girder, a cost-effective instrumentation arrangement consisting of mechanical dial gauges is used to measure the relative longitudinal displacement. Responses measured from experiments on SCC girders conducted by the authors are used for numerical implementation and validation of the technique. Alternatively, interface slip is also evaluated by applying an analytical model which is based on first principles of mechanics. The values of interface slip computed by using the proposed technique are found to have close correlation with those of the analytical model. The effect of edge restraint on slip due to friction between steel and concrete is also studied

  15. Effect of Energetic-Ion-Driven MHD Instabilities on Energetic-Ion-Transport in Compact Helical System and Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M. [National Institute for Fusion Science, Toki, Japan; Ogawa, K. [Nagoya University, Japan; Toi, K. [National Institute for Fusion Science, Toki, Japan; Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Nagaoka, K. [National Institute for Fusion Science, Toki, Japan; Shimizu, A. [National Institute for Fusion Science, Toki, Japan; Spong, Donald A [ORNL; Okumura, S. [National Institute for Fusion Science, Toki, Japan

    2010-01-01

    This paper describes 1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and 2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma.

  16. Effect of energetic-ion-driven MHD instabilities on energetic-ion-transport in compact helical system and large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, M.; Toi, K.; Osakabe, M.; Nagaoka, K.; Shimizu, A.; Okamura, S. [National Institute for Fusion Science, Toki (Japan); Ogawa, K. [Department of Energy Science and Engineering, Nagoya University, Nagoya (Japan); Spong, D.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2010-08-15

    This paper describes (1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and (2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Predicting the probability of slip in gait: methodology and distribution study.

    Science.gov (United States)

    Gragg, Jared; Yang, James

    2016-01-01

    The likelihood of a slip is related to the available and required friction for a certain activity, here gait. Classical slip and fall analysis presumed that a walking surface was safe if the difference between the mean available and required friction coefficients exceeded a certain threshold. Previous research was dedicated to reformulating the classical slip and fall theory to include the stochastic variation of the available and required friction when predicting the probability of slip in gait. However, when predicting the probability of a slip, previous researchers have either ignored the variation in the required friction or assumed the available and required friction to be normally distributed. Also, there are no published results that actually give the probability of slip for various combinations of required and available frictions. This study proposes a modification to the equation for predicting the probability of slip, reducing the previous equation from a double-integral to a more convenient single-integral form. Also, a simple numerical integration technique is provided to predict the probability of slip in gait: the trapezoidal method. The effect of the random variable distributions on the probability of slip is also studied. It is shown that both the required and available friction distributions cannot automatically be assumed as being normally distributed. The proposed methods allow for any combination of distributions for the available and required friction, and numerical results are compared to analytical solutions for an error analysis. The trapezoidal method is shown to be highly accurate and efficient. The probability of slip is also shown to be sensitive to the input distributions of the required and available friction. Lastly, a critical value for the probability of slip is proposed based on the number of steps taken by an average person in a single day.

  18. Effects of electrolytes on ion transport in Chitosan membranes

    Science.gov (United States)

    Rupiasih, N. N.

    2016-11-01

    Recently, charged polymer membranes are widely used for water purification applications involving control of water and ion transport, such as reverse osmosis and electrodialysis. In this study, we have explored the effects of electrolyte solutions on ion transport properties of chitosan synthetic membranes via concentration gradient driven transport. Also, the water uptake of those membranes, before (control) as well used membranes have studied. The membrane used was chitosan membrane 2%. The electrolyte solutions used were HCl, KCl, CaCl2, MgCl2 and AlCl3, with various concentrations of 0.1 mM, 1 mM, 10 mM, 100 mM and 1000 mM. Ion transport experiments were carried out in a cell membrane model which composed of two compartments and the potential difference of membrane was measured using Ag/AgCl calomel electrodes. Those measurements were conducted at ambient temperature 28.8 °C. The results showed that the current density (J) increased with increased in concentration gradient of solution. The current density was higher in electrolyte solution which has higher molar conductivity than those of a solution with a small molar conductivity. Meanwhile the current density was smaller in electrolyte solution which has larger Stokes radii than those of a solution with small Stokes radii. Except membrane which has been used in HCl solution, the water uptakes of the used membranes were greater than the control membrane. These results can develop and validate a common framework to interpret data of concentration gradient driven transport in chitosan synthetic membranes and to use it to design of membranes with improved performance.

  19. EFFECTS OF METAL IONS ON THE CONFORMATIONAL CHANGES OF DNA

    Institute of Scientific and Technical Information of China (English)

    G. Q. Liu; Y.Y. Meng; S.H. Liu; Y.H. Hu

    2005-01-01

    DNA takes on multi-different conformations such as A-, B-, C-, D- and Z-form. These conformations can transit to one another when DNA deposited in some metal ions solutions or when changing the concentrations of the same metal ions. Here, several major conformational transitions of DNA induced by metal ions under different environment were introduced and the mechanism of the interaction of metal ions with DNA was discuss in detail.

  20. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    Energy Technology Data Exchange (ETDEWEB)

    Goto, I., E-mail: goto@ppl.appi.keio.ac.jp; Nishioka, S.; Abe, S.; Hatayama, A. [Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Mattei, S.; Lettry, J. [CERN, 1211 Geneva 23 (Switzerland)

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  1. Mutagenic effect of accelerated heavy ions on bacterial cells

    Science.gov (United States)

    Boreyko, A. V.; Krasavin, E. A.

    2011-11-01

    The heavy ion accelerators of the Joint Institute for Nuclear Research were used to study the regularities and mechanisms of formation of different types of mutations in prokaryote cells. The induction of direct (lac-, ton B-, col B) mutations for Esherichia coli cells and reverse his- → His+ mutations of Salmonella typhimurium, Bacillus subtilis cells under the action of radiation in a wide range of linear energy transfer (LET) was studied. The regularities of formation of gene and structural (tonB trp-) mutations for Esherichia coli bacteria under the action of accelerated heavy ions were studied. It was demonstrated that the rate of gene mutations as a function of the dose under the action of Γ rays and accelerated heavy ions is described by linear-quadratic functions. For structural mutations, linear "dose-effect" dependences are typical. The quadratic character of mutagenesis dose curves is determined by the "interaction" of two independent "hitting" events in the course of SOS repair of genetic structures. The conclusion made was that gene mutations under the action of accelerated heavy ions are induced by δ electron regions of charged particle tracks. The methods of SOS chromotest, SOS lux test, and λ prophage induction were used to study the regularities of SOS response of cells under the action of radiations in a wide LET range. The following proposition was substantiated: the molecular basis for formation of gene mutations are cluster single-strand DNA breaks, and that for structural mutations, double-strand DNA breaks. It was found out that the LET dependence of the relative biological efficiency of accelerated ions is described by curves with a local maximum. It was demonstrated that the biological efficiency of ionizing radiations with different physical characteristics on cells with different genotype, estimated by the lethal action, induction of gene and deletion mutations, precision excision of transposons, is determined by the specific

  2. Effect of correlation on cumulants in heavy-ion collisions

    CERN Document Server

    Mishra, D K; Netrakanti, P K

    2015-01-01

    We study the effects of correlation on cumulants and their ratios of net-proton multiplicity distribution which have been measured for central (0-5\\%) Au+Au collisions at Relativistic Heavy Ion Collider (RHIC). This effect has been studied assuming individual proton and anti-proton distributions as Poisson or Negative Binomial Distribution (NBD). In-spite of significantly correlated production due to baryon number, electric charge conservation and kinematical correlations of protons and anti-protons, the measured cumulants of net-proton distribution follow the independent production model. In the present work we demonstrate how the introduction of correlations will affect the cumulants and their ratios for the difference distributions. We have also demonstrated this study using the proton and anti-proton distributions obtained from HIJING event generator.

  3. Effects of ion-fluid temperature on dust-ion-acoustic solitons

    Indian Academy of Sciences (India)

    Fatema Sayed; A A Mamun

    2008-03-01

    The properties of dust-ion-acoustic (DIA) solitons in an unmagnetized dusty plasma, whose constituents are adiabatic ion-fluid, Boltzmann electrons, and static dust particles, are investigated by employing the reductive perturbation method. The Korteweg-de Vries equation is derived and its stationary solution is numerically analyzed. The parametric regimes for the existence of positive and negative solitons are found. It has been shown that ion-fluid temperature not only significantly modifies the basic features (width and amplitude) of DIA solitons, but also introduces some new features of DIA solitons.

  4. Self-heating effect induced by ion bombardment on polycrystalline Al surface nanostructures evolution

    Indian Academy of Sciences (India)

    H Wang; Y Zhen; H Wjiang; J T Liu

    2012-06-01

    We studied the self-heating effect during ion bombardment process on polycrystalline Al foils. An anisotropic surface morphology evolution has been observed. The adjacent peaks’ fusion along the direction perpendicular to the ion beam projection smoothen the surface. Fusion along the parallel direction has been suppressed due to Ar+ ion bombardment. It attributes to the result of the competition between the isotropic thermal effect, due to the self-heating effect by energy exchange between incident ions and Al surface, and the suppression by continuous ion bombardment with a certain incident angle. Varying the incident ion beam angle with the angular range 32° < < 82°, the ripple wave vector, , is found to be parallel to the ion beam direction, whereas for > 82° , is perpendicular to the beam direction. The critical angle, c, is close to 82°, which is different from Bradley and Harper’s prediction and attributes to the self-heating effect.

  5. Effect of Mo ion-implantation on the adhesion of diamond coatings

    CERN Document Server

    Yang Shie; Wang Xiao Ping; Li Hui; Ma Bing Xian; Qin Guang Yong; Zhang Bing Lin

    2002-01-01

    Diamond coatings were deposited on the cobalt-cemented tungsten carbide (YG6) substrates, which have been implanted with Mo ions, by microwave plasma CVD (MPCVD) method. The effect of ion-implantation on the adhesion of diamond coatings was studied. The results showed that the chemical compositions of cemented carbide substrate surfaces change obviously after Mo ion-implantation; and the adhesion strength between the CVD diamond coatings and the substrates implanted with Mo ions in proper concentration is improved remarkably

  6. Theory of fluid slip in charged capillary nanopores

    CERN Document Server

    Catalano, J; Biesheuvel, P M

    2016-01-01

    Based on the capillary pore model (space-charge theory) for combined fluid and ion flow through cylindrical nanopores or nanotubes, we derive the continuum equations modified to include wall slip. We focus on the ionic conductance and streaming conductance, cross-coefficients of relevance for electrokinetic energy conversion and electro-osmotic pumping. We combine the theory with a Langmuir-Stern 1-pK charge regulation boundary condition resulting in a non-monotonic dependence of the cross-coefficients on salt concentration.

  7. A Brief Analysis on Slips of Tongue

    Institute of Scientific and Technical Information of China (English)

    孟庆瑜

    2015-01-01

    The phenomenon of slips of tongue is very common in our daily life.And it is closely related to some psychological reasons.This paper aims to introduce the research about this phenomenon, to present the types of slips of tongue and some analysis on it.

  8. Slip versus Friction : Modifying the Navier condition

    Science.gov (United States)

    Kotsalis, Evangelos; Walther, Jens; Koumoutsakos, Petros

    2006-03-01

    The modeling of fluid-solid interfaces remains one of the key challenges in fluid mechanics. The prevailing model, attributed to Navier, defines the fluid ``slip'' velocity as proportional to the wall shear and a parameter defined as the slip length. Several works have in turn proposed models for this slip length but no universal model for the slip velocity has been accepted. We present results from large scale molecular dynamics simulations of canonical flow problems, indicating, that the inadequacy of this classic model, stems from not properly accounting for the pressure field. We propose and validate a new model, based on the fundamental observation that the finite ``slip'' velocity is a result of an imbalance between fluid and solid intermolecular forces. An excess force on the fluid elements will lead to their acceleration which in turn may result in a slip velocity at the interface. We formulate the slip velocity in terms of fluid-solid friction Ff and propose a generalized boundary condition: Ff= Fs+ Fp= λuus+ λpp where p denotes the pressure, and λuand λp the viscous and static friction coefficients, for which universal constants are presented. We demonstrate that the present model can overcome difficulties encountered by the classical slip model in canonical flow configurations.

  9. Nano-textured high sensitivity ion sensitive field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Hajmirzaheydarali, M.; Sadeghipari, M.; Akbari, M.; Shahsafi, A.; Mohajerzadeh, S., E-mail: mohajer@ut.ac.ir [Thin Film and Nanoelectronics Lab, Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran 143957131 (Iran, Islamic Republic of)

    2016-02-07

    Nano-textured gate engineered ion sensitive field effect transistors (ISFETs), suitable for high sensitivity pH sensors, have been realized. Utilizing a mask-less deep reactive ion etching results in ultra-fine poly-Si features on the gate of ISFET devices where spacing of the order of 10 nm and less is achieved. Incorporation of these nano-sized features on the gate is responsible for high sensitivities up to 400 mV/pH in contrast to conventional planar structures. The fabrication process for this transistor is inexpensive, and it is fully compatible with standard complementary metal oxide semiconductor fabrication procedure. A theoretical modeling has also been presented to predict the extension of the diffuse layer into the electrolyte solution for highly featured structures and to correlate this extension with the high sensitivity of the device. The observed ultra-fine features by means of scanning electron microscopy and transmission electron microscopy tools corroborate the theoretical prediction.

  10. Bambusurils as effective ion caging agents: Does desolvation guide conformation?

    Science.gov (United States)

    Cova, Tânia F. G. G.; Nunes, Sandra C. C.; Pinho e Melo, Teresa M. V. D.; Pais, Alberto A. C. C.

    2017-03-01

    Water soluble bambusurils can bind and isolate inorganic anions in the center of the hydrophobic cavity, with high affinity and selectivity. This makes them appealing anion carriers and ion transporters for a wide range of biomedical applications, including in ion-channel diseases of the muscles, bones and brain. For understanding the bambusuril ion caging ability in aqueous media, molecular dynamics simulations, including free energy calculations are used. It is seen that the ion is hermetically sealed inside the cavity, as a result of a concerted action involving conformation and desolvation of both ion and bambusuril cavity.

  11. Effect of Nitrite Ions on Steel Corrosion Induced by Chloride or Sulfate Ions

    Directory of Open Access Journals (Sweden)

    Zhonglu Cao

    2013-01-01

    Full Text Available The influence of nitrite concentration on the corrosion of steel immersed in three simulated pH environments containing chloride ions or sulfate ions has been investigated by comparing and analyzing the change of half-cell potential, the change of threshold level of Cl- or SO42-, the change of threshold level of NO2-/Cl- or NO2-/SO42- mole ratio, and the changes of anodic/cathodic polarization curves and Stern-Geary constant B. The corrosivity of chloride ions against sulfate ions also has been discussed in pH 12.6, pH 10.3, and pH 8.1 environments containing 0, 0.053, and 0.2 mol/L NO2, respectively.

  12. Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ovanesyan, Zaven; Marucho, Marcelo, E-mail: marcelo.marucho@utsa.edu [Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003 (United States); Medasani, Bharat [Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, Texas 78249-5003 (United States); Computational Research Division, Lawrence Berkeley National Lab, Berkeley, California 94700 (United States); Fenley, Marcia O. [Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306 (United States); Guerrero-García, Guillermo Iván [Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, San Luis Potosí (Mexico); Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Olvera de la Cruz, Mónica [Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208 (United States)

    2014-12-14

    The ionic atmosphere around a nucleic acid regulates its stability in aqueous salt solutions. One major source of complexity in biological activities involving nucleic acids arises from the strong influence of the surrounding ions and water molecules on their structural and thermodynamic properties. Here, we implement a classical density functional theory for cylindrical polyelectrolytes embedded in aqueous electrolytes containing explicit (neutral hard sphere) water molecules at experimental solvent concentrations. Our approach allows us to include ion correlations as well as solvent and ion excluded volume effects for studying the structural and thermodynamic properties of highly charged cylindrical polyelectrolytes. Several models of size and charge asymmetric mixtures of aqueous electrolytes at physiological concentrations are studied. Our results are in good agreement with Monte Carlo simulations. Our numerical calculations display significant differences in the ion density profiles for the different aqueous electrolyte models studied. However, similar results regarding the excess number of ions adsorbed to the B-DNA molecule are predicted by our theoretical approach for different aqueous electrolyte models. These findings suggest that ion counting experimental data should not be used alone to validate the performance of aqueous DNA-electrolyte models.

  13. Interfacial Slip in Soap Films with Hydrosoluble Polymer

    Science.gov (United States)

    Adelizzi, E. A.; Berg, S.; Troian, S. M.

    2003-11-01

    The thickness of a Newtonian soap film entrained at small capillary number should scale as Ca^2/3 provided the bounding surfaces are rigid. Previous studies show that soap films containing associating, low concentration, high molecular weight (M_w) polymer exhibit strong deviations from this scaling. We report results by laser interferometry of the entrained film thickness for the associating pair SDS/PEO over a large range in polymer molecular weight. Direct comparison to predictions of hydrodynamic models based on viscoelastic behavior shows poor agreement.Modification of the Frankel analysis to account for mobile films through a Navier slip condition yields good agreement. In addition, the slip length Ls increases as M_w^3/5, consistent with a correlation based on a polymer chain size for freely jointed chains with excluded volume effects. Although developed to explain slip at liquid-solid interfaces, the Tolstoi-Larson prediction that Ls scales as the polymer size agrees favorably with our results. Whether the slip behavior is due to Marangoni effects cannot be ruled out.

  14. Effects of ion-atom collisions on the propagation and damping of ion-acoustic waves

    DEFF Research Database (Denmark)

    Andersen, H.K.; D'Angelo, N.; Jensen, Vagn Orla;

    1968-01-01

    Experiments are described on ion-acoustic wave propagation and damping in alkali plasmas of various degrees of ionization. An increase of the ratio Te/Ti from 1 to approximately 3-4, caused by ion-atom collisions, results in a decrease of the (Landau) damping of the waves. At high gas pressure and....../or low wave frequency a "fluid" picture adequately describes the experimental results....

  15. Investigation of active slip systems in high purity single crystal niobium

    Science.gov (United States)

    Baars, Derek

    The superconducting radio-frequency (SRF) community uses high purity niobium to manufacture SRF cavities for a variety of accelerator applications. Cavities are either made from large-grain sheets cut directly from the ingot and formed, or the ingot microstructure is broken down to form polycrystalline sheets or tubes. Reducing the number of costly electron beam welds to assemble the cavities is also desired. A greater understanding of the active slip systems and their relation to subsequent dislocation substructure would be of use in all these areas, to better understand how large grain niobium deforms and to develop more accurate computational models that will aid in the design and use of more cost-effective forming methods. Studies of slip in high-purity niobium suggest that temperature, material purity, and crystal orientation affect which slip systems are active during deformation, though have not examined the somewhat lesser purity niobium used for SRF cavities. As a step toward these goals, two sets of SRF-purity single crystal niobium samples were deformed to 40% strain in tension at room temperature. The first set was cut and welded back together. The second set consisted of deliberately orientated samples that resolved shear stress onto desired slip systems to evaluate different combinations of slip. Determining likely active slip systems was complex, though the evidence suggests that {112} slip may be dominant at yield at room temperature as suggested by theory, though {110} slip could not be ruled out.

  16. Apparent slip of shear thinning fluid in a microchannel with a superhydrophobic wall

    Science.gov (United States)

    Patlazhan, Stanislav; Vagner, Sergei

    2017-07-01

    The peculiarities of simple shear flow of shear thinning fluids over a superhydrophobic wall consisting of a set of parallel gas-filled grooves and solid stripes (domains with slip and stick boundary conditions) are studied numerically. The Carreau-Yasuda model is used to provide further insight into the problem of the slip behavior of non-Newtonian fluids having a decreasing viscosity with a shear rate increase. This feature is demonstrated to cause a nonlinear velocity profile leading to the apparent slip. The corresponding transverse and longitudinal apparent slip lengths of a striped texture are found to be noticeably larger than the respective effective slip lengths of Newtonian liquids in microchannels of various thicknesses and surface fractions of the slip domains. The viscosity distribution of the shear thinning fluid over the superhydrophobic wall is carefully investigated to describe the mechanism of the apparent slip. Nonmonotonic behavior of the apparent slip length as a function of the applied shear rate is revealed. This important property of shear thinning fluids is considered to be sensitive to the steepness of the viscosity flow curve, thus providing a way to decrease considerably the flow resistance in microchannels.

  17. Aseismic slip on the San Andreas Fault south of Loma Prieta

    Science.gov (United States)

    Behr, J.; Bilham, R.; Bodin, P.; Burfoid, R. O.; Bürgmann, R.

    Two digital creepmeters installed within the San Andreas fault zone after the 18 Oct 1989 Loma Prieta main shock show less than 1 cm of post seismic right-lateral slip in the four months following the earthquake. At Mt. Madonna road a 23 mm coseismic fracture slipped a further 3 mm after heavy rain, and at Nyland Ranch near San Juan Bautista the fault slipped approximately 9 mm starting 42 days after the main shock. If the current trend at Nyland Ranch persists, more than 2 cm of post seismic slip will develop by 1991. At both sites minor left-lateral displacements occurred which are attributed to near-surface soil effects. The abutments of the railroad bridge across the Pajaro River at Chittenden, which were extended by the 1906 earthquake, were not extended during the Loma Prieta event although they have evidently moved apart by more than 7 cm since bridge reconstruction in 1940. This corresponds to 10 cm of right-lateral slip which could be related to M>5 events in mid-century or could be due to aseismic slip at a mean rate of 2.1 mm/a. The absence of significant surface slip within the fault zone in the decades before and the months following the Loma Prieta event suggests either that near-surface deformation is distributed over a wide zone or that a slip deficit remains. Several authors have proposed this region as a future location for M≈5 events.

  18. The effect of copper ions, aluminium ions and their mixtures on separation of pectin from the sugar beet juice

    Directory of Open Access Journals (Sweden)

    Kuljanin Tatjana A.

    2013-01-01

    Full Text Available In sugar industry there is a problem of the presence of undesirable macromolecules compounds such as pectin in sugar beet juice. The affinity of calcium ions commonly used in the sugar industry for the removal of pectin from the sugar beet juice is relatively small. Coagulation and precipitation of pectin can be performed by process of discharging that is chemically induced. Compounds with di- and trivalent cations such as pure CuSO4, Al2(SO43 or their mixtures can be applied for clarification of pectin colloidal systems. According to data from the order of pectin selectivity to divalent metal ions, Cu2+ ions are the first order of ion binding. Also, aluminum sulfate is commonly used in the waste water treatment. Two model solutions of pectin whose concentration corresponds to the concentration of these macromolecules in sugar beet juice (0.1% w/w are investigated. Using a method of measuring zeta potential, it was proven for both investigated pectin that fewer quantities of Cu2+ ions compared to the values of Al3+ ions are needed to reach zero zeta potential. In all the investigated coagulants and their mixtures, zeta potential has changed the sign. In experiments with mixtures has been shown that pure salts showed better coagulation properties. The reduced strength of binding of cations in the case of most of the applied mixture of Cu2+ and Al3+ ions, can be explained by the mutual competition of these ions for the adsorption site (COO- groups on the surface of macromolecules. Mixture with approximately equal shares of ions Cu2+ and Al3+ had the most unfavorable coagulation ability (ion antagonism. Mechanism of discharge as well as the model of double electric layer surrounding pectin macromolecules in the presence of mixtures of Cu2+ and Al3+ ions are suggested. However, due to possible undesirable effects of CuSO4 on food processing, Al2(SO43 is proposed instead of traditional coagulant CaO, not only because of lower consumptions of

  19. Theoretical research of hydraulic turbine performance based on slip factor within centripetal impeller

    Directory of Open Access Journals (Sweden)

    Guangtai Shi

    2015-07-01

    Full Text Available The impeller of hydraulic turbine is a kind of centripetal impeller. The slip phenomenon within centripetal impeller is different with centrifugal impeller. In this study, the velocity distribution and the flow form of fluid within centripetal impeller are analyzed, the slip factor within centripetal impeller is calculated, and the basic energy equation of hydraulic turbine is deduced when the slip within centripetal impeller is considered. The results of theoretical calculation, the results of experiment, and the results of computational fluid dynamics calculation are compared. The formula of slip factor within centripetal impeller is obtained, and the relative error between the results of theoretical calculation using the formula and experimental data is less than 5%. The effect factors of slip factor have entrance diameter of centripetal impeller, blade numbers, entrance and outlet blade angles, rotating speed of centripetal impeller, and flow rate.

  20. Geodetic and seismic signatures of episodic tremor and slip in the northern Cascadia subduction zone

    Science.gov (United States)

    Dragert, H.; Wang, K.; Rogers, G.

    2004-12-01

    Slip events with an average duration of about 10 days and effective total slip displacements of severalc entimetres have been detected on the deeper (25 to 45 km) part of the northern Cascadia subduction zone interface by observing transient surface deformation on a network of continuously recording Global Positioning System (GPS) sites. The slip events occur down-dip from the currently locked, seismogenic portion of the subduction zone, and, for the geographic region around Victoria, British Columbia, repeat at 13 to 16 month intervals. These episodes of slip are accompanied by distinct, low-frequency tremors, similar to those reported in the forearc region of southern Japan. Although the processes which generate this phenomenon of episodic tremor and slip (ETS) are not well understood, it is possible that the ETS zone may constrain the landward extent of megathrust rupture, and conceivable that an ETS event could precede the next great thrust earthquake.

  1. Slip length measurement of confined air flow on three smooth surfaces.

    Science.gov (United States)

    Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid

    2013-04-01

    An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.

  2. Comparison between Free and Immobilized Ion Effects on Hydrophobic Interactions: A Molecular Dynamics Study

    CERN Document Server

    Huang, Kai; Ma, C Derek; Abbott, Nicholas L; Szlufarska, Izabela

    2016-01-01

    Fundamental studies of the effect of specific ions on hydrophobic interactions are driven by the need to understand phenomena such as hydrophobically driven self-assembly or protein folding. Using beta-peptide-inspired nano-rods, we investigate the effects of both free ions (dissolved salts) and proximally immobilized ions on hydrophobic interactions. We find that the free ion effect is correlated with the water density fluctuation near a non-polar molecular surface, showing that such fluctuation can be an indicator of hydrophobic interactions in the case of solution additives. In the case of immobilized ion, our results demonstrate that hydrophobic interactions can be switched on and off by choosing different spatial arrangements of proximal ions on a nano-rod. For globally amphiphilic nano-rods, we find that the magnitude of the interaction can be further tuned using proximal ions with varying ionic sizes. In general, univalent proximal anions are found to weaken hydrophobic interactions. This is in contras...

  3. Effects of irradiation of energetic heavy ions on digital pulse shape analysis with silicon detectors

    Science.gov (United States)

    Barlini, S.; Carboni, S.; Bardelli, L.; Le Neindre, N.; Bini, M.; Borderie, B.; Bougault, R.; Casini, G.; Edelbruck, P.; Olmi, A.; Pasquali, G.; Poggi, G.; Rivet, M. F.; Stefanini, A. A.; Baiocco, G.; Berjillos, R.; Bonnet, E.; Bruno, M.; Chbihi, A.; Cruceru, I.; Degerlier, M.; Dueñas, J. A.; Galichet, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lopez, O.; Marchi, T.; Martel, I.; Morelli, L.; Parlog, M.; Piantelli, S.; Petrascu, H.; Rosato, E.; Seredov, V.; Vient, E.; Vigilante, M.; Fazia Collaboration

    2013-04-01

    The next generation of 4π detector arrays for heavy ion studies will largely use Pulse Shape Analysis to push the performance of silicon detectors with respect to ion identification. Energy resolution and pulse shape identification capabilities of silicon detectors under prolonged irradiation by energetic heavy ions have thus become a major issue. In this framework, we have studied the effects of irradiation by energetic heavy ions on the response of neutron transmutation doped (nTD) silicon detectors. Sizeable effects on the amplitude and the risetime of the charge signal have been found for detectors irradiated with large fluences of stopped heavy ions, while much weaker effects were observed by punching-through ions. The robustness of ion identification based on digital pulse shape techniques has been evaluated.

  4. Quantitative evaluation of charge-reduction effect in cluster constituent ions passing through a foil

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, A., E-mail: chiba.atsuya@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Saitoh, Y.; Narumi, K.; Yamada, K. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), 1233 Watanuki-machi, Takasaki-shi, Gunma 370-1292 (Japan); Kaneko, T. [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, kita-ku, Okayama-shi, Okayama 700-0005 (Japan)

    2013-11-15

    Swift cluster ions, which cause characteristic irradiation effects on a solid surface, have a possibility of establishing a new ion irradiation technique for high-sensitivity surface analysis and innovative surface modification. However, the mechanism of cluster irradiation effects has not been understood completely. We have focused on the charge reduction effect in some physical phenomena and performed a quantitative evaluation of the relationship between the charge state and the interatomic distance of the constituent ions moving in the solid. This technique is based on the refined analysis of the divergence angle of the constituent ions resulting from the foil-induced dissociation of the two-atomic molecular ion. The results derived from this analytical approach clearly showed the correlation between the average charge and the interatomic distance of the constituent ions and implied that the average charge of the constituent ions emerging from the foil varies according to the interatomic distance at the instant of cluster dissociation.

  5. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  6. Effect of initial ion positions on the interactions of monovalent and divalent ions with a DNA duplex as revealed with atomistic molecular dynamics simulations.

    Science.gov (United States)

    Robbins, Timothy J; Wang, Yongmei

    2013-01-01

    Monovalent (Na(+)) and divalent (Mg(2+)) ion distributions around the Dickerson-Drew dodecamer were studied by atomistic molecular dynamics (MD) simulations with AMBER molecular modeling software. Different initial placements of ions were tried and the resulting effects on the ion distributions around DNA were investigated. For monovalent ions, results were found to be nearly independent of initial cation coordinates. However, Mg(2+) ions demonstrated a strong initial coordinate dependent behavior. While some divalent ions initially placed near the DNA formed essentially permanent direct coordination complexes with electronegative DNA atoms, Mg(2+) ions initially placed further away from the duplex formed a full, nonexchanging, octahedral first solvation shell. These fully solvated cations were still capable of binding with DNA with events lasting up to 20 ns, and in comparison were bound much longer than Na(+) ions. Force field parameters were also investigated with modest and little differences arising from ion (ions94 and ions08) and nucleic acid description (ff99, ff99bsc0, and ff10), respectively. Based on known Mg(2+) ion solvation structure, we conclude that in most cases Mg(2+) ions retain their first solvation shell, making only solvent-mediated contacts with DNA duplex. The proper way to simulate Mg(2+) ions around DNA duplex, therefore, should begin with ions placed in the bulk water.

  7. 考虑弹塑性结构退化和捏拢滑移效应的光滑滞回模型%A Smooth Hysteretic Model Considering Degrading and Slip Pinching Effects of Inelastic Structures

    Institute of Scientific and Technical Information of China (English)

    赵冠远; 安明结; 季文玉; 王艳

    2011-01-01

    Based on Bouc-Wen differential hysteretic model, an improved smooth hysteretic model which can take account of stiffness degradation, strength decay and slip pinching effects of inelastic structures is proposed. In the proposed model, the stiffness degrading rate is controlled by parameters associated with the maximum displacement ductility attained in the cyclic loading history. The damage index based on displacement and dissipation energy is adopted to describe strength decay of the inelastic structure. By introducing the slip-lock element, the pinching characteristic is included in the model. Nine control parameters are used to control the hysteresis loop shape in the proposed model, but it is possible to generate a large variety of different shapes of the hysteresis loops through modifying suitably only six of them associated with stiffness degradation, strength decay and slip pinching characteristics. The proposed hysteretic model is used to simulate the seismic tests of reinforced concrete columns characterized by bending failure and shear failure modes. It is found that the model can simulate the hysteresis loops of reinforced concrete members with different failure modes well.%基于Bouc-Wen微分滞回模型,提出考虑弹塑性结构刚度退化、强度退化和捏拢滑移效应的光滑滞回模型.在该滞回模型中,弹塑性结构滞同反应的刚度退化程度由与加载历史上最大位移延性相关的参数控制,强度退化规律通过引入基于变形和滞回耗能双参数指标的损伤指数描述,捏拢滑移特征通过增加滑移-锁定单元模拟.滞回模型的控制参数为9个,一般只需调整其中与刚度退化、强度退化和捏拢滑移特征相关的6个参数便可模拟多种形状的滞回曲线.应用该滞回模型对弯曲破坏型和剪切破坏型钢筋混凝土柱抗震试验进行数值仿真,结果表明该滞回模型可较好地模拟不同破坏模式钢筋混凝土构件的滞回曲线.

  8. Effect of silver ions on the energy transfer from host defects to Tb ions in sol–gel silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Abbass, Abd Ellateef [Department of Physics, University of the Free State, Bloemfontein (South Africa); Department of Physics, Sudan University of Science and Technology (Sudan); Swart, H.C. [Department of Physics, University of the Free State, Bloemfontein (South Africa); Kroon, R.E., E-mail: KroonRE@ufs.ac.za [Department of Physics, University of the Free State, Bloemfontein (South Africa)

    2015-04-15

    Plasmonic metal structures have been suggested to enhance the luminescence from rare-earth (RE) ions, but this enhancement is not yet well understood or applied to phosphor materials. Although some reports using Ag nanoparticles (NPs) in glass have attributed enhancement of RE emission to the strong electric fields associated with Ag NPs, it has also been proposed that the enhancement is instead due to energy transfer from Ag ions to RE ions. Our work using sol–gel silica shows a third possibility, namely that enhancement of the RE (e.g. Tb) emission is due to energy transfer from defects of the host material to the Tb ions, where the addition of Ag influences the silica host defects. The oxidation state of Ag as a function of annealing temperature was investigated by x-ray diffraction, transmission electron microscopy, UV–vis measurements and x-ray photoelectron spectroscopy, while optical properties were investigated using a Cary Eclipse fluorescence spectrophotometer or by exciting samples with a 325 nm He–Cd laser. The results showed that Ag ions have a significant effect on the silica host defects, which resulted in enhancement of the green Tb emission at 544 nm for non-resonant excitation using a wavelength of 325 nm. - Highlights: • Conversion of Ag ions to metallic nanoparticles after annealing of sol–gel silica. • Addition of Ag resulted in enhanced green luminescence from Tb ions in silica. • Enhancement is attributed to the effect of added Ag on the host defects of silica.

  9. Slow slip generated by dehydration reaction coupled with slip-induced dilatancy and thermal pressurization

    Science.gov (United States)

    Yamashita, Teruo; Schubnel, Alexandre

    2016-05-01

    Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb's frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.

  10. Effect of polyamine reagents on exchange capacity in ion exchangers

    Science.gov (United States)

    Petrova, T. I.; Dyachenko, F. V.; Bogatyreva, Yu. V.; Borodastov, A. K.; Ershova, I. S.

    2016-05-01

    Effect of compounds involved in complex reagents is described using Helamin 906H reagent as an example. The working exchange capacity of KU-2-8chs cation exchanger in hydrogen form and Amberlite IRA 900Cl anion exchanger in OH form remained almost unchanged when they were used repeatedly to purify water that contained Helamin 906H reagent; in addition, this capacity was the same upon filtration of water that did not contain this reagent. Leakage of total organic carbon was observed earlier than that of calcium ions upon filtration of the solution through the cation exchanger layer. The test results obtained in industrial conditions indicated that using H-OH filters to purify turbine condensate enables the decrease of the concentration of organic and other impurities therein.

  11. Particles inside electrolytes with ion-specific interactions, their effective charge distributions, and effective interactions

    Science.gov (United States)

    Ding, Mingnan; Liang, Yihao; Xing, Xiangjun

    2016-10-01

    In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).

  12. Irradiation effects of swift heavy ions in matter

    Energy Technology Data Exchange (ETDEWEB)

    Osmani, Orkhan

    2011-12-22

    In the this thesis irradiation effects of swift heavy ions in matter are studied. The focus lies on the projectiles charge exchange and energy loss processes. A commonly used computer code which employs rate equations is the so called ETACHA code. This computer code is capable to also calculate the required input cross-sections. Within this thesis a new model to compute the charge state of swift heavy ions is explored. This model, the so called matrix method, takes the form of a simple algebraic expression, which also requires cross-sections as input. In the present implementation of the matrix method, cross-sections are taken from the ETACHA code, while excitation and deexcitation processes are neglected. Charge fractions for selected ion/target combinations, computed by the ETACHA code and the matrix method are compared. It is shown, that for sufficient large ion energies, both methods agree very well with each other. However, for lower energies pronounced differences are observed. These differences are believed to stem from the fact, that no excited states as well as the decay of theses excited states are included in the present implementation of the matrix method. Both methods are then compared with experimental measurements, where significant deviations are observed for both methods. While the predicted equilibrium charge state by both methods is in good agreement with the experiments, the matrix method predicts a much too large equilibrium thickness compared to both the ETACHA calculation as well as the experiment. Again, these deviations are believed to stem from the fact, that excitation and the decay of excited states are not included in the matrix method. A possible way to include decay processes into the matrix method is presented, while the accuracy of the applied capture cross-sections is tested by comparison with scaling rules. Swift heavy ions penetrating a dielectric are known to induced structural modifications both on the surface and in the bulk

  13. Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion Relation

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    Electromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by

  14. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.

    2014-11-10

    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  15. Analytical solutions for squeeze flow with partial wall slip

    DEFF Research Database (Denmark)

    Laun, HM; Rady, M; Hassager, Ole

    1999-01-01

    Squeeze flow between parallel plates of a purely viscous material is considered for small gaps both for a Newtonian and power law fluid with partial wall slip. The results for the squeeze force as a function of the squeezing speed reduce to the Stefan and Scott equations in the no slip limit......, respectively. The slip velocity at the plate increases linearly with the radius up to the rim slip velocity upsilon(s). For small Saps H, the resulting apparent Newtonian rim shear rate-measured for a constant rim shear stress, i.e. an imposed force increasing proportional to 1/H-yields a straight line...... if plotted versus 1/H. The slope of the straight line is equal to 6 upsilon(s) whereas the intersect with the ordinate yields the effective Newtonian rim shear rate to be converted into the true rim shear rate by means of the power law exponent. The advantage of the new technique is the separation of bulk...

  16. Transformation of fault slip modes in laboratory experiments

    Science.gov (United States)

    Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim

    2017-04-01

    stochastic (irregular mode). To investigate regularities of transformation and get statistically correct results we simulated only regular mode. During the experiments, after the establishment of a regular mode, we injected fluid into central part of interblock contact. Varying injecting fluid we were able both to decrease and increase amplitude of events. For example, after injection of 1 mPa x s fluid (water) in gouge, moisturized with 100 mPa x s fluid (ethylene glycol), peak velocity rose by almost an order. But after injection of an aqueous solution of starch (big viscosity and dilatant rheology) amplitude decreased 1.5 times and then slip almost completely stabilized. It's probably connected with the viscosity of solution, which increases with quick shift. Time of injection also has the significant impact on the possibility of transformation and its efficiency. Thus, it is well known that if the time of injection is in the vicinity of loss of strength moment, any external influence only initiates slip events. Preliminary results of our laboratory experiments show that the fluid injection can both reduce the part of deformation energy going seismic wave radiation, and to increase it. The most effective action observed in experinemts with injection of dilatant fluid. Findings demonstrate the prospectivity of further research in this direction. The work was supported by the Russian Science Foundation (Grant No. 16-17-00095) [1] Fagereng A., Sibson R.H. 2010. Melange rheology and seismic style. Geology. Vol.38, p.751-754. [2] Kocharyan G.G., et al. 2017. A study of different fault slip modes governed by the gouge material composition in laboratory experiments. Geophys. J. Int. Vol.208, p. 521-528. [3] Yamashita T. 2013. Generation of slow slip coupled with tremor due to fluid flow along a fault. Geophys. J. Int. Vol.193, p.375-393. [4] Guglielmi Y., et. al. 2015. Seismicity triggered by fluid injection-induced aseismic slip. Science. Vol.348, p.1224-1226. [5] Wei S., et al

  17. Effect of Background Ions on the Selection of the Discharge Path

    Institute of Scientific and Technical Information of China (English)

    HE Zheng-Hao; LI Jin

    2001-01-01

    The effects of the background ions on the selection of the discharge path in an air gap have been studied with two different methods. The lightning impulse air discharge experiment is conducted using an independent ion generator, while the air discharge experiment uses a lightning impulse superimposed on a dc high voltage used to produce background ions. The influence of different background ions on the leader development, and thus on the discharge path, is observed. Consistent results have been obtained with the two methods. The probability for the discharge path passing through the negative ion space is much higher than that for the passing through the positive ion space. The mechanism of the effects of background ions is analysed based on the eleetron avalanche and the electric field.

  18. Electrophoresis of particles with Navier velocity slip.

    Science.gov (United States)

    Park, Hung Mok

    2013-03-01

    In the present investigation, it is found that the electrophoretic mobility of hydrophobic particles is affected not only by the zeta potential but also by the velocity slip at the particle surface. From a physicochemical viewpoint, zeta potential represents the surface charge properties and the slip coefficient indicates the hydrophobicity of the particle surface. Thus, it is necessary to separate the contribution of zeta potential from that of slip coefficient to the particle mobility, since zeta potential can be changed by varying the bulk ionic concentration while the slip coefficient can be modified by adjusting surfactant concentration. In the present investigation, a method is devised that allows a simultaneous estimation of zeta potential and slip coefficient of micro and nanoparticles using measurements of electrophoretic mobility at various bulk ionic concentrations. Employing a nonlinear curve-fitting technique and an analytic solution of electrophoresis for a particle with velocity slip, the present technique predicts both zeta potential and slip coefficient simultaneously with reasonable accuracy using the measured values of electrophoretic mobility at various bulk ionic concentrations.

  19. New Ion Beam Materials Laboratory for Materials Modification and Irradiation Effects Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanwen [ORNL; Crespillo, Miguel L [University of Tennessee (UT); Xue, Haizhou [University of Tennessee, Knoxville (UTK); Jin, Ke [University of Tennessee, Knoxville (UTK); Chen, Chien-Hung [University of Tennessee, Knoxville (UTK); Fontana, Cristiano L [ORNL; Graham, Dr. Joseph T. [The University of Tennessee; Weber, William J [ORNL

    2014-11-01

    A new multifunctional ion beam materials laboratory (IBML) has been established at the University of Tennessee, in partnership with Oak Ridge National Laboratory. The IBML is currently equipped with two ion sources, a 3 MV tandem accelerator, three beamlines and three endstations. The IBML is primarily dedicated to fundamental research on ion-solid interaction, ion beam analysis, ion beam modification, and other basic and applied research on irradiation effects in a wide range of materials. An overview of the IBML facility is provided, and experimental results are reported to demonstrate the specific capabilities.

  20. Time resolved measurements of the biased disk effect at an Electron Cyclotron Resonance Ion Source

    Directory of Open Access Journals (Sweden)

    K. E. Stiebing

    1999-12-01

    Full Text Available First results are reported from time resolved measurements of ion currents extracted from the Frankfurt 14 GHz Electron Cyclotron Resonance Ion Source with pulsed biased-disk voltage. It was found that the ion currents react promptly to changes of the bias. From the experimental results it is concluded that the biased disk effect is mainly due to improvements of the extraction conditions for the source and/or an enhanced transport of ions into the extraction area. By pulsing the disk voltage, short current pulses of highly charged ions can be generated with amplitudes significantly higher than the currents obtained in continuous mode.

  1. Calculation of the ionization differential effective cross sections in fast ion-atom collisions

    CERN Document Server

    Kaminskij, A K

    2002-01-01

    The method of the calculations of the ionization effective cross sections d sigma/d OMEGA differential in the incident ion scattering angle is described in fast collisions of light ions and atoms. The calculated values of angular distributions of the ions Al, Mg (for the different values of charge and energy of ions) after their collisions with the Ne, Mg atoms being ionized are reported. The dependence of such angular distributions on the incident ion charge and energy and the initial state of ejected electron is investigated

  2. The effect of biasing the plasma electrode on hydrogen ion formations in a multicusp ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ego, Hiroyasu; Iwashita, Yoshihisa (Kyoto Univ., Uji (Japan). Inst. for Chemical Research); Takekoshi, Hidekuni

    1992-03-01

    The plasma electrode covered with magnetic cusp fields acting as a magnetic filter was installed in a multicusp ion source. The formation processes of the negative and positive hydrogen ions in this source have been investigated when an electrostatic positive bias is applied to the plasma electrode with respect to the anode chamber. The dominant H[sup -] volume-production process is the recombinational attachment rather than the dissociative attachment when the bias voltage is more than +3V. This recombinational attachment improves the H[sup +] ratio in the extracted positive beam, keeping its current value. (author) 52 refs.

  3. A Global Review of Slow Slip Events and Seismic Tremor at Circum-Pacific Subduction Zones

    Science.gov (United States)

    Schwartz, S. Y.; Rokosky, J. M.

    2006-12-01

    It has been known for a long time that slip accompanying earthquakes accounts for only a fraction of plate tectonic displacements. However, only recently has a fuller spectrum of strain release processes, including normal, slow and silent earthquakes (or slow slip events), and continuous and episodic creep, been observed and generated by numerical simulations of the earthquake cycle. Despite a profusion of observations and modeling studies, the physical mechanism of slow slip events (SSEs) remains elusive. The concurrence of seismic tremor, similar to signals observed at volcanoes, with slow slip episodes in Cascadia and southwestern Japan suggests that SSEs may be related to fluid migration on or near the plate interface. We compare the location, spatial extent, magnitude, duration, slip rate, recurrence behavior and associated tremor and seismicity of aseismic slip transients worldwide to better understand their generation and earthquake hazard implications. We find that slow slip events occur at either the down-dip edge of the seismogenic zone, or at complementary locations to strongly locked patches or co-seismic asperities within the seismogenic zone. Nucleation of SSEs at frictional transitions is supported by rate- and state-dependent frictional modeling. We find a global scaling relationship between SSE duration and equivalent moment magnitude that implies a constant rate of slow slip propagation, consistent with the small range in observed SSE migration rates. Afterslip following moderate to large earthquakes suggests a relationship between slow slip and higher velocity rupture (earthquakes). We assess if such a cause-and-effect relationship exists between interseismic SSEs and earthquake activity. We find that although isolated episodes of interseismic slow slip can be related to nearby earthquake activity, a consistent triggering pattern has yet to emerge and further study is clearly warranted.

  4. Model of Deep Non-Volcanic Tremor in Episodic Tremor and Slip Events

    Science.gov (United States)

    Gershenzon, N. I.; Bambakidis, G.

    2014-12-01

    Bursts of tremor accompany a moving slip pulse in Episodic Tremor and Slip (ETS) events. The sources of this non-volcanic tremor (NVT) are largely unknown. We have developed a model describing the mechanism of NTV generation. According to this model, NTV is a reflection of resonant-type oscillations excited in a fault at certain depth ranges. From a mathematical viewpoint, tremor (phonons) and slip pulses (solitons) are two different solutions of the sine-Gordon equation describing frictional processes inside a fault. In an ETS event, a moving slip pulse generates tremor due to interaction with structural heterogeneities in a fault and to failures of small asperities (see Figure). Observed tremor parameters, such as central frequency and frequency attenuation curve, are associated with fault parameters and conditions, such as elastic modulus, effective normal stress, penetration hardness and friction. Model prediction of NTV frequency content is consistent with observations. In the framework of this model it is possible to explain the complicated pattern of tremor migration, including rapid tremor propagation and reverse tremor migration. Migration along the strike direction is associated with movement of the slip pulse. Rapid tremor propagation in the slip-parallel direction is associated with movement of kinks along a 2D slip pulse. A slip pulse, pinned in some places, can fragment into several pulses, causing tremor associated with some of these pulse fragments to move opposite to the main propagation direction. The model predicts that the frequency content of tremor during an ETS event is slightly different from the frequency content of ambient tremor and tremor triggered by earthquakes. Figure 1. The slip velocity w of a slip pulse in time-space (x-t) coordinates moving in (a) ideal substrate and (b) substrate with a structural heterogeneity. Pulse is driven by constant external shear stress. Figure 1(b) shows that the pulse oscillates about an obstacle

  5. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    CERN Document Server

    Lu, Ding; Xie, Bai-Song

    2013-01-01

    Effects of ion mobility and positron fraction on solitary waves of envelop of laser field and potential of electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and the reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of approximate perturbation analytical method are consistent well with that by exact numerical calculations. However as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. Implication of our results to the particle acceleration is also discussed briefly.

  6. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    Science.gov (United States)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2013-09-01

    The effects of ion mobility and positron fraction on the solitary waves of the laser field envelope and the potential of the electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and a reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of the approximate perturbation analytical method are very consistent with those by exact numerical calculations. However, as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. The implications of our results to particle acceleration are also discussed briefly.

  7. Dynamical Stability of Slip-stacking Particles

    CERN Document Server

    Eldred, Jeffrey

    2014-01-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97\\% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  8. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  9. Slow slip event at Kilauea Volcano

    Science.gov (United States)

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford

    2010-01-01

    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  10. Dynamical Stability of Slip-stacking Particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Zwaska, Robert [Fermilab

    2014-09-04

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  11. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the elect...

  12. Dick Effect in a Microwave Frequency Standard Based on Laser-Cooled 113Cd+ Ions

    Science.gov (United States)

    Zhang, Jian-Wei; Miao, Kai; Wang, Li-Jun

    2015-01-01

    The Dick effect is one of the main limits to the frequency stability of a passive frequency standard, especially for the fountain clock and ion clock operated in pulsed mode which require unavoidable dead time during interrogation. Here we measure the phase noise of the interrogation oscillator applied in the microwave frequency standard based on laser-cooled 113Cd+ ions, and analyze the Allan deviation limited by the Dick effect. The results indicate that the Dick effect is one of the key issues for the cadmium ion clock to reach expected frequency stability. This problem can be resolved by interrogating the local oscillator continuously with two ion traps.

  13. Ion-sensitive field effect transistors for pH and potassium ion concentration sensing: towards detection of myocardial ischemia

    Science.gov (United States)

    Rai, Pratyush; Jung, Soyoun; Ji, Taeksoo; Varadan, Vijay K.

    2008-03-01

    Ion Sensitive Field Effect Transistors (ISFETs) for sensing change in ionic concentration in biological systems can be used for detecting critical conditions like Myocardial Ischemia. Having the ability to yield steady signal characteristics can be used to observe the ionic concentration gradients which mark the onset of ischemia. Two ionic concentrations, pH and [K +], have been considered as the indicator for Myocardial Ischemia in this study. The ISFETs in this study have an organic semi-conductor film as the electronically active component. Poly-3 hexylthiophene was chosen for its compatibility to the solution processing, which is a simple and economical method of thin film fabrication. The gate electrode, which regulates the current in the active layer, has been employed as the sensor element. The devices under study here were fabricated on a flexible substrate PEN. The pH sensor was designed with the Tantalum Oxide gate dielectric as the ion selective component. The charge accumulated on the surface of the metal oxide acts as the source of the effecter electric field. The device was tested for pH values between 6.5 and 7.5, which comprises the variation observed during ischemic attack. The potassium ion sensor has got a floating gate electrode which is functionalized to be selective to potassium ion. The device was tested for potassium ion concentration between 5 and 25 mM, which constitutes the variation in extra cellular potassium ion concentration during ischemic attack. The device incorporated a monolayer of Valinomycin, a potassium specific ionophore, on top of the gate electrode.

  14. Effect of ion velocity on SHI-induced mixing in Ti/Bi system

    Science.gov (United States)

    Bansal, Nisha; Kumar, Sarvesh; Khan, Saif Ahmad; Chauhan, R. S.

    2016-03-01

    Energetic ion beams are proving to be versatile tools for modification and depth profiling of materials. The energy and ion species are the deciding factor in the ion-beam-induced materials modification. Among the various parameters such as electronic energy loss, fluence and heat of mixing, velocity of the ions used for irradiation plays an important role in mixing at the interface. The present study is carried out to find the effect of the velocity of swift heavy ions on interface mixing of a Ti/Bi bilayer system. Ti/Bi/C was deposited on Si substrate at room temperature by an electron gun in a high-vacuum deposition system. Carbon layer is deposited on top to avoid oxidation of the samples. Eighty mega electron volts Au ions and 100 MeV Ag ions with same value of Se for Ti are used for the irradiation of samples at the fluences 1 × 1013-1 × 1014 ions/cm2. Different techniques like Rutherford backscattering spectroscopy, atomic force microscopy and grazing incidence X-ray diffraction were used to characterize the pristine and irradiated samples. The mixing effect is explained in the framework of the thermal spike model. It has been found that the mixing rate is higher for low-velocity Au ions in comparison to high-velocity Ag ions. The result could be explained as due to less energy deposition in thermal spike by high-velocity ions.

  15. An ion species model for positive ion sources - part II analysis of hydrogen isotope effects

    CERN Document Server

    Surrey, E

    2014-01-01

    A one dimensional model of the magnetic multipole volume plasma source has been developed for application to intense ion/neutral atom beam injectors. The model uses plasma transport coefficients for particle and energy flow to create a detailed description of the plasma parameters along an axis parallel to that of the extracted beam. In this paper the isotopic modelling of positive hydrogenic ions is considered and compared with experimental data from the neutral beam injectors of the Joint European Torus. The use of the code to gain insights into the processes contributing to the ratios of the ionic species is demonstrated and the conclusion is drawn that 75% of the atomic ion species arises from ionization of dissociated molecules and 25% from dissociation of the molecular ions. However whilst the former process is independent of the filter field, the latter is sensitive to the change in distribution of fast and thermal electrons produced by the magnetic filter field and an optimum combination of field stre...

  16. Ion beam extraction from a matrix ECR plasma source by discrete ion-focusing effect

    DEFF Research Database (Denmark)

    Stamate, Eugen; Draghici, Mihai

    2010-01-01

    Positive or negative ion beams extracted from plasma are used in a large variety of surface functionalization techniques such as implantation, etching, surface activation, passivation or oxidation. Of particular importance is the surface treatment of materials sensitive to direct plasma exposure ...

  17. Mutagenic effects of carbon ions near the range end in plants

    Energy Technology Data Exchange (ETDEWEB)

    Hase, Yoshihiro, E-mail: hase.yoshihiro@jaea.go.jp [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Yoshihara, Ryouhei; Nozawa, Shigeki; Narumi, Issay [Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2012-03-01

    To gain insight into the mutagenic effects of accelerated heavy ions in plants, the mutagenic effects of carbon ions near the range end (mean linear energy transfer (LET): 425 keV/{mu}m) were compared with the effects of carbon ions penetrating the seeds (mean LET: 113 keV/{mu}m). Mutational analysis by plasmid rescue of Escherichia coli rpsL from irradiated Arabidopsis plants showed a 2.7-fold increase in mutant frequency for 113 keV/{mu}m carbon ions, whereas no enhancement of mutant frequency was observed for carbon ions near the range end. This suggested that carbon ions near the range end induced mutations that were not recovered by plasmid rescue. An Arabidopsis DNA ligase IV mutant, deficient in non-homologous end-joining repair, showed hyper-sensitivity to both types of carbon-ion irradiation. The difference in radiation sensitivity between the wild type and the repair-deficient mutant was greatly diminished for carbon ions near the range end, suggesting that these ions induce irreparable DNA damage. Mutational analysis of the Arabidopsis GL1 locus showed that while the frequency of generation of glabrous mutant sectors was not different between the two types of carbon-ion irradiation, large deletions (>{approx}30 kb) were six times more frequently induced by carbon ions near the range end. When 352 keV/{mu}m neon ions were used, these showed a 6.4 times increase in the frequency of induced large deletions compared with the 113 keV/{mu}m carbon ions. We suggest that the proportion of large deletions increases with LET in plants, as has been reported for mammalian cells. The nature of mutations induced in plants by carbon ions near the range end is discussed in relation to mutation detection by plasmid rescue and transmissibility to progeny.

  18. SLIP VELOCITY MODEL OF POROUS WALLS ABSORBED BY HYDROPHOBIC NANOPARTICLES SIO2

    Institute of Scientific and Technical Information of China (English)

    GU Chun-yuan; DI Qin-feng; FANG Hai-ping

    2007-01-01

    According to new slip effects on nanopatterned interfaces,the mechanism of enhancing water injection into hydrophobic nanomaterial SiO2 was proposed. When Hydrophobic Nanoparticles(HNPs)are adsorbed on surfaces of porous walls,hydrophobic nanoparticles layers are formed instead of hydrated layer, and slip effects appear on the pore wall when a driving pressure is applied to the rock cores sample. It makes fluid to move more quickly and the flow capacity increases greatly. Experiments on changing wettability of porous walls were conducted, and the phenomenon that porous walls surfaces were adsorbed by nanoparticles was validated with the Environment Scan Electron Microscopy(ESEM). The results of displacement experiments show that flowing resistance is greatly reduced,and water-phase effective permeability is increased by 47% averagely after being treated by nanofluid. These results indicate that the slip effect may occur on nanoparticle film of porous walls. Based on this new mechanism of enhancing water injection about hydrophobic nanomaterial SiO2,a slip velocity model in uniform porous media was introduced, and some formulas for the ratio of slip length to radius, slip length ,stream slip velocity and flux increment were deduced. and calculated results indicate that the ratio of slip length to radius is about 3.54%-6.97%, and the slip length is about 0.024μm -0.063μm. The proposed model can give a good interpretation for the mechanisms of enhancing water injection with the HNPs.

  19. Effects of potassium ion supplementation on survival and ion regulation in Gulf killifish Fundulus grandis larvae reared in ion deficient saline waters.

    Science.gov (United States)

    Fisher, Calvin; Bodinier, Charlotte; Kuhl, Adam; Green, Christopher

    2013-04-01

    Teleost fish often live in an environment in which osmoregulatory mechanisms are critical for survival and largely unknown in larval fish. The effects of a single important marine ion (K(+)) on survival and ion regulation of larval Gulf killifish, an estuarine, euryhaline teleost, were determined. A four-week study was completed in four separate recirculating systems with newly hatched larvae. Salinity in all four systems was maintained between 9.5 and 10‰. Two systems were maintained using crystal salt (99.6% NaCl) with K(+) supplementation (1.31±0.04mmol/L and 2.06±0.04mmol/L K(+); mean±SEM), one was maintained with crystal salt and no K(+) supplementation (0.33±0.05mmol/L K(+)), the fourth system was maintained using a standard marine mix salt (2.96±0.04mmol/L K(+)), the salt mix also included standard ranges of other ions such as calcium and magnesium. Larvae were sampled throughout the experiment for dry mass, Na(+)/K(+)-ATPase (NKA) activity, whole body ion composition, relative gene expression (NKA, Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and cystic fibrosis transmembrane conductance regulator (CFTR)), and immunocytochemistry staining for NKA, NKCC, and CFTR. Larvae stocked into water with no K(+) supplementation resulted in 100% mortality within 24h. Mortality and dry mass were significantly influenced by K(+) concentration (P≤0.05). No differences were observed among treatment groups for NKA activity. At 1dph NKA mRNA expression was higher in the 0.3mmol [K(+)] group than in other treatment groups and at 7dph differences in intestinal NKA and CFTR staining were observed. These data indicate that the rearing of larval Gulf killifish may be possible in ion deficient water utilizing specific ion supplementation.

  20. Swift Heavy Ion Irradiation Effects on NPN rf Power Transistors

    Science.gov (United States)

    Pushpa, N.; Prakash, A. P. Gnana; Gupta, S. K.; Revannasiddaiah, D.

    2011-07-01

    The dc characteristics of NPN rf power transistors were studied systematically before and after irradiation by 50 MeV Li3+ ions, 100 MeV F8+ ions and 140 MeV Si10+ ions in the dose range of 100 krad to 100 Mrad. The transistor parameters such as excess base current (ΔIB = IBpost-IBpre), dc current gain (hFE), and collector-saturation current (ICSat) were determined before and after irradiation. The base current (IB) was found to increase significantly after ion irradiation and this in turn decreases the hFE of the transistors. Further, the output characteristics of the irradiated devices exhibit the decrease in the collector current at the saturation region (ICSat) with increase of ion dose.

  1. Effective doping of low energy ions into superfluid helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Lei; Freund, William M.; Kong, Wei, E-mail: wei.kong@oregonstate.edu [Department of Chemistry, Oregon State University, Corvallis, Oregon 97331 (United States)

    2015-08-21

    We report a facile method of doping cations from an electrospray ionization (ESI) source into superfluid helium droplets. By decelerating and stopping the ion pulse of reserpine and substance P from an ESI source in the path of the droplet beam, about 10{sup 4} ion-doped droplets (one ion per droplet) can be recorded, corresponding to a pickup efficiency of nearly 1 out of 1000 ions. We attribute the success of this simple approach to the long residence time of the cations in the droplet beam. The resulting size of the doped droplets, on the order of 10{sup 5}/droplet, is measured using deflection and retardation methods. Our method does not require an ion trap in the doping region, which significantly simplifies the experimental setup and procedure for future spectroscopic and diffraction studies.

  2. Internal target effects in ion storage rings with beam cooling

    Energy Technology Data Exchange (ETDEWEB)

    Gostishchev, Vitaly

    2008-06-15

    The accurate description of internal target effects is important for the prediction of operation conditions which are required for experiments in the planned storage rings of the FAIR facility. The BETACOOL code developed by the Dubna group has been used to evaluate beam dynamics in ion storage rings, where electron cooling in combination with an internal target is applied. Systematic benchmarking experiments of this code were carried out at the ESR storage ring at GSI. A mode with vanishing dispersion in the target position was applied to evaluate the influence of the dispersion function on the parameters when the target is heating the beam. The influence of the internal target on the beam parameters is demonstrated in the present work. A comparison of experimental results with simple models describing the energy loss of the beam particles in the target as well as with more sophisticated simulations with the BETACOOL code is given. In order to study the conditions which can be achieved in the proposed experiments the simulation results were quantitatively compared with experimental results and simulations for the ESR. The results of this comparison are discussed in the present thesis. BETACOOL simulations of target effects were performed for the NESR and the HESR of the future FAIR facility in order to predict the beam parameters for the planned experiments. (orig.)

  3. Modulation Effects of Curcumin on Erythrocyte Ion-Transporter Activity

    Directory of Open Access Journals (Sweden)

    Prabhakar Singh

    2015-01-01

    Full Text Available Curcumin ((1E,6E-1,7-Bis(4-hydroxy-3-methoxyphenyl-1,6-heptadiene-3,5-dione, the yellow biphenolic pigment isolated from turmeric (Curcuma longa, has various medicinal benefits through antioxidation, anti-inflammation, cardiovascular protection, immunomodulation, enhancing of the apoptotic process, and antiangiogenic property. We explored the effects of curcumin in vitro (10−5 M to 10−8 M and in vivo (340 and 170 mg/kg b.w., oral on Na+/K+ ATPase (NKA, Na+/H+ exchanger (NHE activity, and membrane lipid hydroperoxides (ROOH in control and experimental oxidative stress erythrocytes of Wistar rats. As a result, we found that curcumin potently modulated the membrane transporters activity with protecting membrane lipids against hydro-peroxidation in control as well as oxidatively challenged erythrocytes evidenced by stimulation of NKA, downregulation of NHE, and reduction of ROOH in the membrane. The observed results corroborate membrane transporters activity with susceptibility of erythrocyte membrane towards oxidative damage. Results explain the protective mechanism of curcumin against oxidative stress mediated impairment in ions-transporters activity and health beneficial effects.

  4. Soft matter dynamics: Accelerated fluid squeeze-out during slip

    Science.gov (United States)

    Hutt, W.; Persson, B. N. J.

    2016-03-01

    Using a Leonardo da Vinci experimental setup (constant driving force), we study the dependency of lubricated rubber friction on the time of stationary contact and on the sliding distance. We slide rectangular rubber blocks on smooth polymer surfaces lubricated by glycerol or by a grease. We observe a remarkable effect: during stationary contact the lubricant is only very slowly removed from the rubber-polymer interface, while during slip it is very rapidly removed resulting (for the grease lubricated surface) in complete stop of motion after a short time period, corresponding to a slip distance typically of order only a few times the length of the rubber block in the sliding direction. For an elastically stiff material, poly(methyl methacrylate), we observe the opposite effect: the sliding speed increases with time (acceleration), and the lubricant film thickness appears to increase. We propose an explanation for the observed effect based on transient elastohydrodynamics, which may be relevant also for other soft contacts.

  5. Evidence for coherent quantum phase slips across a Josephson junction array

    Science.gov (United States)

    Manucharyan, Vladimir E.; Masluk, Nicholas A.; Kamal, Archana; Koch, Jens; Glazman, Leonid I.; Devoret, Michel H.

    2012-01-01

    Superconducting order in a sufficiently narrow and infinitely long wire is destroyed at zero temperature by quantum fluctuations, which induce 2π slips of the phase of the order parameter. However, in a finite-length wire, coherent quantum phase slips would manifest themselves simply as shifts of energy levels in the excitation spectrum of an electrical circuit incorporating this wire. The higher the phase slips' probability amplitude, the larger are the shifts. Phase slips occurring at different locations along the wire interfere with each other. Due to the Aharonov-Casher effect, the resulting full amplitude of a phase slip depends on the offset charges surrounding the wire. Slow temporal fluctuations of the offset charges make the phase-slip amplitudes random functions of time, and therefore turn energy level shifts into linewidths. We experimentally observed this effect on a long Josephson junction array acting as a “slippery” wire. The slip-induced linewidths, despite being only of order 100kHz, were resolved from the flux-dependent dephasing of the fluxonium qubit.

  6. Absence of molecular slip on ultraclean and SAM-coated surfaces

    Science.gov (United States)

    Pye, Justin; Wood, Clay; Burton, Justin

    2016-11-01

    The liquid/solid boundary condition is a complex problem that is becoming increasingly important for the development of nanoscale fluidic devices. Many groups have now measured slip near an interface at nanoscale dimensions using a variety of experimental techniques. In simple systems, large slip lengths are generally measured for non-wetting liquid/solid combinations, but many conflicting measurements and interpretations remain. We have developed a novel pseudo-differential technique using a quartz crystal microbalance (QCM) to measure slip lengths on various surfaces. A drop of one liquid is grown on the QCM in the presence of a second, ambient liquid. We have isolated any anomalous boundary effects such as interfacial slip by choosing two liquids which have identical bulk effects on the QCM frequency and dissipation in the presence of no-slip. Slip lengths are -less than 2 nm- for water (relative to undecane) on all surfaces measured, including plasma cleaned gold, SiO2, and two different self assembled monolayers (SAMs), regardless of contact angle. We also find that surface cleanliness is crucial to accurately measure slip lengths. Additionally, clean glass substrates appear to have a significant adsorbed water layer and SAM surfaces show excess dissipation, possibly associated with contact line motion. In addition to investigating other liquid pairs, future work will include extending this technique to surfaces with independently controllable chemistry and roughness, both of which are known to strongly affect interfacial hydrodynamics.

  7. The effect of metal ion implantation on the surface mechanical properties of Mylar (PET)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia); Yao, X.; Brown, I.G. [California Univ., Berkeley, CA (United States). Lawrence Berkeley Lab.

    1993-12-31

    Ion implantation of polymers leads to the formation of new carbonaceous materials, the revolution during implantation of various species consists of (1) ion beam induced damage: chain scission, crosslinking, molecular emission of volatile elements and compounds, stoichiometric change in the surface layer of pristine polymers; and (2) chemical effect between ion and target materials: microalloying and precipitation. Literature regarding ion implanted polymers shows that the reorganisation of the carbon network after implantation can dramatically modify several properties of pristine polymers solubility, molecular weight, and electrical, optical and mechanical properties. However, ion implantation of polymers is actually a very complex interaction which depends on not only ion species, implantation condition, but also polymer type and specific structure. In this paper the effect of Ag or Ti ions implantation on surface mechanical properties of PET (polyethylenne terephthalate) polymer is reported. There was a clear deterioration in wear resistance after implantation of both Ag and Ti ions. It is suggested that the increment of wear after implantation may result from not only ion damage but also chemical effect between ion and target material. 3 refs., 1 tab., 2 figs.

  8. Effect of low energy electron irradiation on DNA damage by Cu{sup 2+} ion

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Ah; Cho, Hyuck [Dept. of Physics, Chungnam National University, Daejeon (Korea, Republic of); Park, Yeun Soo [Plasma Technology Research Center, National Fusion Research Institute, Gunsan (Korea, Republic of)

    2017-03-15

    The combined effect of the low energy electron (LEE) irradiation and Cu{sup 2+} ion on DNA damage was investigated. Lyophilized pBR322 plasmid DNA films with various concentrations (1–15 mM) of Cu{sup 2+} ion were independently irradiated by monochromatic LEEs with 5 eV. The types of DNA damage, single strand break (SSB) and double strand break (DSB), were separated and quantified by gel electrophoresis. Without electron irradiation, DNA damage was slightly increased with increasing Cu ion concentration via Fenton reaction. LEE-induced DNA damage, with no Cu ion, was only 6.6% via dissociative electron attachment (DEA) process. However, DNA damage was significantly increased through the combined effect of LEE-irradiation and Cu ion, except around 9 mM Cu ion. The possible pathways of DNA damage for each of these different cases were suggested. The combined effect of LEE-irradiation and Cu ion is likely to cause increasing dissociation after elevated transient negative ion state, resulting in the enhanced DNA damage. For the decrease of DNA damage at around 9-mM Cu ion, it is assumed to be related to the structural stabilization due to DNA inter- and intra-crosslinks via Cu ion.

  9. Inhibitory effects of berberine on ion channels of rat hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Fang Wang; Hong-Yi Zhou; Gang Zhao; Li-Ying Fu; Lan Cheng; Jian-Guo Chen; Wei-Xing Yao

    2004-01-01

    AIM: To examine the effects of berberine, an isoquinoline alkaloid with a long history used as a tonic remedy for liver and heart, on ion channels of isolated rat hepatocytes.METHODS: Tight-seal whole-cell patch-clamp techniques were performed to investigate the effects of berberine on the delayed outward potassium currents (IK), inward rectifier potassium currents (IK1) and Ca2+ release-activated Ca2+currents (ICRAC) in enzymatically isolated rat hepatocytes.RESULTS: Berberine 1-300 nmol/L reduced IK in a concentration dependent manner with EC50 of 38.86±5.37 μmol/L and nH of 0.82±0.05 (n = 8). When the bath solution was changed to tetraethylammonium (TEA) 8 mmol/L, IK was inhibited.Berberine 30 μmol/L reduced IK at all examined membrane potentials, especially at potentials positive to +60 mV (n = 8,P<0.05 or P<0.01 vs control). Berberine had mild inhibitory effects on IK1 in rat hepatocytes. Berberine 1-300 μmol/L also inhibited ICRAC in a concentration-dependent fashion.The fitting parameters were EC50 = 47.20±10.86 μmol/L,nH = 0.71±0.09 (n = 8). The peak value of ICRAC in the Ⅰ-Ⅴrelationship was decreased by berberine 30 μmol/L at potential negative to -80 mV (n = 8, P<0.05 vscontrol). But the reverse potential of ICRAC occurred at voltage 0 mV in all cells.CONCLUSION: Berberine has inhibitory effects on potassium and calcium currents in isolated rat hepatocytes, which may be involved in hepatoprotection.

  10. Action slips during whole-body vibration.

    Science.gov (United States)

    Ishimatsu, Kazuma; Meland, Anders; Hansen, Tor Are S; Kåsin, Jan Ivar; Wagstaff, Anthony S

    2016-07-01

    Helicopter aircrew members engage in highly demanding cognitive tasks in an environment subject to whole-body vibration (WBV). Sometimes their actions may not be according to plan (e.g. action slips and lapses). This study used a Sustained Attention to Response Task (SART) to examine whether action slips were more frequent during exposure to WBV. Nineteen participants performed the SART in two blocks. In the WBV block participants were exposed to 17 Hz vertical WBV, which is typical of larger helicopter working environments. In the No-WBV block there was no WBV. There were more responses to the rare no-go digit 3 (i.e. action slips) in the WBV block, and participants responded faster in the WBV block. These results suggest that WBV influences response inhibition, and can induce impulsive responding. WBV may increase the likelihood of action slips, mainly due to failure of response inhibition.

  11. Deterministic phase slips in mesoscopic superconducting rings

    Science.gov (United States)

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.

    2016-11-01

    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.

  12. The slipping rib syndrome in children.

    Science.gov (United States)

    Saltzman, D A; Schmitz, M L; Smith, S D; Wagner, C W; Jackson, R J; Harp, S

    2001-11-01

    The slipping rib syndrome is an infrequent cause of thoracic and upper abdominal pain and is thought to arise from the inadequacy or rupture of the interchondral fibrous attachments of the anterior ribs. This disruption allows the costal cartilage tips to sublux, impinging on the intercostal nerves. Children with this entity are seldom described in the literature. We present a retrospective review of 12 children and young adults with slipping rib syndrome and a systematic approach for evaluation and treatment.

  13. 以一敌百Slip-on

    Institute of Scientific and Technical Information of China (English)

    王海琳

    2016-01-01

    在运动鞋爆红的当下,一种不系带的Slip-on Sneakers成为了时尚人士的必备单品。Slip-on Sneakers就是把脚放进去即可的休闲鞋,由于穿脱方便,有了一个可爱的别名——"一脚蹬"。

  14. Instability of some divalent rare earth ions and photochromic effect

    OpenAIRE

    Egranov, A. V.; Sizova, T. Yu.; Shendrik, R. Yu.; Smirnova, N. A.

    2015-01-01

    It was shown that the divalent rare earth ions (La, Ce, Gd, Tb, Lu, and Y) in cubic sites in alkaline earth fluorides are unstable with respect to electron autodetachment since its d1(eg) ground state is located in the conduction band which is consistent with the general tendency of these ions in various compounds. The localization of doubly degenerate d1(eg) level in the conduction band creates a configuration instability around the divalent rare earth ion that leading to the formation of an...

  15. Magnetohydrodynamic Viscous Flow Over a Shrinking Sheet With Second Order Slip Flow Model

    CERN Document Server

    Mahmood, T; Abbas, G

    2014-01-01

    In this paper, we investigate the magnetohydrodynamic viscous flow with second order slip flow model over a permeable shrinking surface. We have obtained the closed form of exact solution of Navier-Stokes equations by using similarity variable technique. The effects of slip, suction and magnetic parameter have been investigated in detail. The results show that there are two solution branches, namely lower and upper solution branch. The behavior of velocity and shear stress profiles for different values of slip, suction and magnetic parameters has been discussed through graphs.

  16. Interfacial stick–slip transition in hydroxyapatite filled high density polyethylene composite

    Indian Academy of Sciences (India)

    Roy Joseph; M T Martyn; K E Tanner; P D Coates

    2006-02-01

    Effect of filler addition and temperature on the stick–slip transition in high density polyethylene melt was studied. Results showed that shear stresses corresponding to stick–slip transition increases with the addition of filler. Increase in temperature also increases the shear stresses for stick–slip transition. The features of the flow curves of composites and that of unfilled system remain identical. Filler addition lowers the shear rate at which the transition occurs. The composite extrudate did not show characteristic extrudate distortions associated with the unfilled polymer.

  17. Effect of Calendering on Electrode Wettability in Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yangping eSheng

    2014-12-01

    Full Text Available Controlling the wettability between the porous electrode and the electrolyte in lithium ion batteries can improve both the manufacturing process and the electrochemical performance of the cell. The wetting rate, which is the electrolyte transport rate in the porous electrode, can be quantified using the wetting balance. The effect of the calendering process on the wettability of anode electrodes was investigated. A graphite anode film with an as-coated thickness of 59 μm was used as baseline electrode film and was calendered to produce films with thickness ranging from 55 to 41 µm. Results show that wettability is improved by light calendering from an initial thickness of 59 μm to a calendered thickness of 53 μm where the wetting rate increased from 0.375 to 0.589 mm/s0.5. Further calendering below 53 µm resulted in a decrease in wetting rates to a minimum observed value of 0.206 mm/s0.5 at a calendered thickness of 41 μm. Under the same electrolyte, wettability of the electrode is controlled to a great extent by the pore structure in the electrode film which includes parameters such as porosity, pore size distribution, pore geometry and topology. Relations between the wetting behavior and the pore structure as characterized by mercury intrusion and electron microscopy exist and can be used to manipulate the wetting behavior of electrodes.

  18. Harmonics Effect on Ion-Bulk Waves in CH Plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Cao, L H; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    The harmonics effect on ion-bulk (IBk) waves has been researched by Vlasov simulation. The condition of excitation of a large-amplitude IBk waves is given to explain the phenomenon of strong short-wavelength electrostatic activity in solar wind. When $k$ is much lower than $k_{lor}/2$ ($k_{lor}$ is the wave number at loss-of-resonance point), the IBk waves will not be excited to a large amplitude, because a large part of energy will be spread to harmonics. The nature of nonlinear IBk waves in the condition of $k

  19. Effects of Photon Absorption in High Energy Heavy Ion Collisions

    Science.gov (United States)

    Winchell, Joshua; Somanathan, Sidharth; Fries, Ranier

    2014-09-01

    Photons are an important probe of the hot and dense nuclear matter created in high-energy collisions of nuclei at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Since the mean free path of photons is larger than the size of the fireball of nuclear matter, final state interactions of photons are usually neglected. In light of recent tension between theoretical calculations and data from RHIC and LHC, we study the effect of reabsorption of photons on elliptic flow v2 and on the nuclear modification factor RAA. We consider photons emitted in primary hard collisions and thermal photons from quark-gluon plasma and hot hadron gas. We use the jet-quenching code PPM to simulate the propagation of those photons in a fireball of quark-gluon plasma and hot hadron gas created by collisions of heavy nuclei. For the absorption cross-sections we consider three different approaches: (a) Compton and pair production processes calculated by us in a static approximation, (b) the photon damping rates calculated by Thoma (1995), and (c) absorption rates derived from a recent photon calculation by van Hees et al.

  20. Effects of Longitudinal Fluctuations in Heavy-Ion Collisions

    CERN Document Server

    Raniwala, Rashmi; Loizides, Constantin

    2016-01-01

    In collisions of identical nuclei at a given impact parameter, the number of nucleons participating in the overlap region of each nucleus can be unequal due to nuclear density fluctuations. The asymmetry due to the unequal number of participating nucleons, which may be experimentally accessible by measuring either the energy in ZDC or the number of spectator nucleons, causes a shift of the center of mass rapidity of the participant zone. In a Monte Carlo Glauber model the average rapidity-shift is found to be almost linearly related to the asymmetry. Using Monte Carlo data for Pb-Pb collisions at 2.76 TeV generated with the HIJING model, we demonstrate that the rapidity distribution of produced particles is affected by the asymmetry, and that the effect can be quantitatively related to the average rapidity-shift via a third-order polynomial with a dominantly linear term. Experimental estimates of the spectator asymmetry may be used to further constrain the initial conditions in ultra-relativistic heavy ion co...

  1. Effect of ion radiation on the electrical conductivity of zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Frangul' yan, T.; Pichugin, V.; Ryabchikov, A. [and others

    2001-07-01

    It is well-known that ion bombardment of the surface of a large number of dielectrics causes the surface the transfer to the conducting state. When the heating the specimens to high temperature in vacuum, oxygen is removed in the neutral state from the zirconia lattice, leaving a vacancy in the lattice and two electrons (non-stoichiometry of the second type). The formation of non-stoichiometry in this case takes place under thermodynamically equilibrium conditions. The deviation of stoichiometry is accompanied by changes of the electronic states in the lattice. The excess electrons are distributed between internal and impunity defects of the crystal lattice, filling the levels in the forbidden zone of the dielectrics. This is reflected in the change of the colour (darkening) of the specimens. In radiation treatment, the formation of non-stoichiometry with respect to the oxygen of the second type takes place on the background of the global structural rearrangement of the lattice, associated with the formation of radiation defects. In this work, we have attempted to analyse the effect of these types of non-stoichiometry on the formation of the conducting state in the dielectrics.

  2. Effects of heavy-ion irradiation on FeSe

    Science.gov (United States)

    Sun, Yue; Park, Akiyoshi; Pyon, Sunseng; Tamegai, Tsuyoshi; Kambara, Tadashi; Ichinose, Ataru

    2017-03-01

    We report the effects of heavy-ion irradiation on FeSe single crystals by irradiating uranium up to a dose-equivalent matching field of Bϕ=16 T. Almost continuous columnar defects along the c axis with a diameter of ˜10 nm are confirmed by high-resolution transmission electron microscopy. Tc is found to be suppressed by introducing columnar defects at a rate of d Tc/d Bϕ˜-0.29 K/T, which is much larger than those observed in iron pnictides. This unexpected large suppression of Tc in FeSe is discussed in relation to the large diameter of the columnar defects as well as its unique band structure with a remarkably small Fermi energy. The critical current density is first dramatically enhanced with irradiation reaching a value over ˜2 ×105A /cm2 (˜5 times larger than that of the pristine sample) at 2 K (self-field) with Bϕ=2 T, then gradually suppressed with increasing Bϕ. The δ l pinning associated with charge-carrier mean-free-path fluctuations and the δ Tc pinning associated with spatial fluctuations of the transition temperature are found to coexist in the pristine FeSe, while the irradiation increases the contribution from δ l pinning and makes it dominant over Bϕ=4 T.

  3. Investigation of ion kinetic effects in direct-drive exploding-pusher implosions at the NIF

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mrosenbe@mit.edu; Zylstra, A. B.; Séguin, F. H.; Rinderknecht, H. G.; Frenje, J. A.; Gatu Johnson, M.; Sio, H.; Waugh, C. J.; Sinenian, N.; Li, C. K.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McKenty, P. W.; Hohenberger, M.; Radha, P. B.; Delettrez, J. A.; Glebov, V. Yu.; Betti, R.; Goncharov, V. N.; Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); and others

    2014-12-15

    Measurements of yield, ion temperature, areal density (ρR), shell convergence, and bang time have been obtained in shock-driven, D{sub 2} and D{sup 3}He gas-filled “exploding-pusher” inertial confinement fusion (ICF) implosions at the National Ignition Facility to assess the impact of ion kinetic effects. These measurements probed the shock convergence phase of ICF implosions, a critical stage in hot-spot ignition experiments. The data complement previous studies of kinetic effects in shock-driven implosions. Ion temperature and fuel ρR inferred from fusion-product spectroscopy are used to estimate the ion-ion mean free path in the gas. A trend of decreasing yields relative to the predictions of 2D DRACO hydrodynamics simulations with increasing Knudsen number (the ratio of ion-ion mean free path to minimum shell radius) suggests that ion kinetic effects are increasingly impacting the hot fuel region, in general agreement with previous results. The long mean free path conditions giving rise to ion kinetic effects in the gas are often prevalent during the shock phase of both exploding pushers and ablatively driven implosions, including ignition-relevant implosions.

  4. The effect of plasma shear flow on drift Alfven instabilities of a finite beta plasma and on anomalous heating of ions by ion cyclotron turbulence

    Science.gov (United States)

    Jo, Young Hyun; Lee, Hae June; Mikhailenko, Vladimir V.; Mikhailenko, Vladimir S.

    2016-01-01

    It was derived that the drift-Alfven instabilities with the shear flow parallel to the magnetic field have significant difference from the drift-Alfven instabilities of a shearless plasma when the ion temperature is comparable with electron temperature for a finite plasma beta. The velocity shear not only modifies the frequency and the growth rate of the known drift-Alfven instability, which develops due to the inverse electron Landau damping, but also triggers a combined effect of the velocity shear and the inverse ion Landau damping, which manifests the development of the ion kinetic shear-flow-driven drift-Alfven instability. The excited unstable waves have the phase velocities along the magnetic field comparable with the ion thermal velocity, and the growth rate is comparable with the frequency. The development of this instability may be the efficient mechanism of the ion energization in shear flows. The levels of the drift--Alfven turbulence, resulted from the development of both instabilities, are determined from the renormalized nonlinear dispersion equation, which accounts for the nonlinear effect of the scattering of ions by the electromagnetic turbulence. The renormalized quasilinear equation for the ion distribution function, which accounts for the same effect of the scattering of ions by electromagnetic turbulence, is derived and employed for the analysis of the ion viscosity and ions heating, resulted from the interactions of ions with drift-Alfven turbulence. In the same way, the phenomena of the ion cyclotron turbulence and anomalous anisotropic heating of ions by ion cyclotron plasma turbulence has numerous practical applications in physics of the near-Earth space plasmas. Using the methodology of the shearing modes, the kinetic theory of the ion cyclotron turbulence of the plasma with transverse current with strong velocity shear has been developed.

  5. Blasius flow and heat transfer of fourth-grade fluid with slip

    Institute of Scientific and Technical Information of China (English)

    B SAHOO; S PONCET

    2013-01-01

    This investigation deals with the effects of slip, magnetic field, and non-Newtonian flow parameters on the flow and heat transfer of an incompressible, electrically conducting fourth-grade fluid past an infinite porous plate. The heat transfer analysis is carried out for two heating processes. The system of highly non-linear differential equations is solved by the shooting method with the fourth-order Runge-Kutta method for moderate values of the parameters. The effective Broyden technique is adopted in order to improve the initial guesses and to satisfy the boundary conditions at infinity. An exceptional cross-over is obtained in the velocity profile in the presence of slip. The fourth-grade fluid parameter is found to increase the momentum boundary layer thickness, whereas the slip parameter substantially decreases it. Similarly, the non-Newtonian fluid parameters and the slip have opposite effects on the thermal boundary layer thickness.

  6. Collisional Effects on Nonlinear Ion Drag Force for Small Grains

    CERN Document Server

    Hutchinson, I H

    2013-01-01

    The ion drag force arising from plasma flow past an embedded spherical grain is calculated self-consistently and non-linearly using particle in cell codes, accounting for ion-neutral collisions. Using ion velocity distribution appropriate for ion drift driven by a force field gives wake potential and force greatly different from a shifted Maxwellian distribution, regardless of collisionality. The low-collisionality forces are shown to be consistent with estimates based upon cross-sections for scattering in a Yukawa (shielded) grain field, but only if non-linear shielding length is used. Finite collisionality initially enhances the drag force, but only by up to a factor of 2. Larger collisionality eventually reduces the drag force. In the collisional regime, the drift distribution gives larger drag than the shift distribution even at velocities where their collisionless drags are equal. Comprehensive practical analytic formulas for force that fit the calculations are provided.

  7. Stick-slip at soft adhesive interfaces mediated by slow frictional waves.

    Science.gov (United States)

    Viswanathan, Koushik; Sundaram, Narayan K; Chandrasekar, Srinivasan

    2016-06-28

    Stick-slip is a friction instability that governs diverse phenomena from squealing automobile brakes to earthquakes. At soft adhesive interfaces, this instability has long been attributed to Schallamach waves, which are a type of slow frictional wave. We use a contact configuration capable of isolating single wave events, coupled with high speed in situ imaging, to demonstrate the existence of two new stick-slip modes. It is shown that these modes also correspond to the passage of slow waves-separation pulse and slip pulse-with distinct nucleation and propagation characteristics. The slip pulse, characterized by a sharp stress front, propagates in the same direction as the Schallamach wave. In contrast, the separation pulse, involving local interface detachment and resembling a tensile neck, travels in exactly the opposite direction. A change in the stick-slip mode from the separation to the slip pulse is effected simply by increasing the normal force. Taken together, the three waves constitute all possible stick-slip modes in low-velocity sliding. The detailed observations enable us to present a phase diagram delineating the domains of occurrence of these waves. We suggest a direct analogy between the observed slow frictional waves and well known muscular locomotory waves in soft bodied organisms. Our work answers basic questions about adhesive mechanisms of frictional instabilities in natural and engineered systems, with broader implications for slow surface wave phenomena.

  8. Slip detection and grip adjustment using optical tracking in prosthetic hands.

    Science.gov (United States)

    Roberts, Luke; Singhal, Girish; Kaliki, Rahul

    2011-01-01

    We have designed a closed loop control system that adjusts the grasping force of a prosthetic hand based on the amount of object slip detected by an optical tracking sensor. The system was designed for the i-Limb (a multi-fingered prosthetic hand from Touch Bionics Inc.) and is comprised of an optical sensor embedded inside a silicone prosthetic glove and a control algorithm. In a proof of concept study to demonstrate the effectiveness of optical tracking in slip sensing, we record slip rate while increasing the weight held in the grasp of the hand and compare two cases: grip adjustment on and grip adjustment off. The average slip rate was found to be 0.314 slips/(s · oz) without grip adjustment and 0.0411 slips/(s · oz) with grip adjustment. This paper discusses the advantages of the optical approach in slip detection and presents the experiment and results utilizing the optical sensor and grip control algorithm.

  9. MAGNETIC FIELD GRADIENT EFFECTS ON ION FLUX BEHAVIORS IN ECR PLASMA SOURCES

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The available electron cyclotron resonance plasma source has been simulated in two-dimensional configuration space (z, r) and three-dimensional velocity space (Vz, Vr Vθ). The simulation is focused on the magnetic field gradient effects on ion flux behaviors in electron cyclotron resonance plasma sources. The simulation results show that, when the magnetic field gradients increase, electron temperature, plasma density, ionization rate, and ion flux in Zdirection would decrease, while ion energy and plasma potential would increase.

  10. Effect of resonant microwave power on a PIG ion source. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 32 refs., 2 figs.

  11. Effect of resonant microwave power on a PIG ion source. Revision

    Energy Technology Data Exchange (ETDEWEB)

    Brown, I.G.; Galvin, J.E.; Gavin, B.F.; MacGill, R.A.

    1984-08-01

    We have investigated the effect of applying microwave power at the electron cyclotron frequency on the characteristics of the ion beam extracted from a hot-cathode PIG ion source. No change was seen in the ion charge state distribution. A small but significant reduction in the beam noise level was seen, and it is possible that the technique may find application in situations where beam quiescence is important. 32 refs., 2 figs.

  12. Study of Mutagenic Effects of M1 Generation of Maize Seeds Irradiated by Heavy Ions

    Institute of Scientific and Technical Information of China (English)

    LUOHong-bing; ZHAOKui; GUOJi-yu; SUILi; NIMei-nan; MEIJun-ping; LUXiu-qin; ZHOUPing; KONGFu-quan; ZHANGGen-fa

    2003-01-01

    In order to study M1 biological effects induced by heavy ion irradiation on maize seeds, the embryos of dry maize seeds are irradiated with 7Li and 12C ions. The experiment is performed at the heavy ion scanning tube of the HI-13 tandem accelerator. The beam goes through a thickness of 25μm. Then the maize seeds are irradiated in the air uniformly.

  13. Slip Development and Instability on a Heterogeneously Loaded Fault with Power-Law Slip-Weakening

    Science.gov (United States)

    Rice, J. R.; Uenishi, K.

    2002-12-01

    We consider slip initiation and rupture instability on planar faults that follow a non-linear slip-weakening relation and are subjected to a locally peaked loading stress, the level of which changes quasi-statically in time. For the case in which strength weakens linearly with slip, Uenishi and Rice [2002] (http://esag.harvard.edu/uenishi/research/nl/nl.html) have shown there exists a universal length of the slipping region at instability, independent of any length scales entering into the description of the shape of the loading stress distribution. Here we study slip development and its (in)stability for a power-law slip-weakening relation, giving fault strength as τ = τ p - Aδn where τ p is the peak strength at which slip initiates, δ is the slip, and A is a constant. Such a form with n ≈ 0.2-0.4 has been inferred, for slips from 1 to 500 mm, as an interpretation of seismological observations on the scaling of radiated energy with slip [Abercrombie and Rice, EOS, 2001; SCEC, 2002]. It is also consistent with laboratory experiments involving large rotary shear [Chambon et al., GRL, 2002]. We first employed an energy approach to give a Rayleigh-Ritz approximation for the dependence of slipping length and maximum slip on the level and shape of the loading stress distribution. That was done for a loading stress distribution τ p + Rt - κ x2 / 2 where x is distance along the fault, κ is a constant, and Rt is the stress change from that for which the peak in the loading stress distribution equals the strength τ p. Results show there is no longer a universal nucleation length, independent of κ , when n != 1, and that qualitative features of the slip development are significantly controlled by n. We also obtained full numerical solutions for the slip development. Remarkably, predictions of the simple energy approach are in reasonable quantitative agreement with them and give all qualitative features correctly. Principal results are as follows: If n > 2/3, the

  14. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    Science.gov (United States)

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  15. Weakly nonlinear stability of ultra-thin slipping films

    Institute of Scientific and Technical Information of China (English)

    HU Guohui

    2005-01-01

    A weakly nonlinear theory is presented to study the effects of slippage on the stability of the ultra-thin polymer films.The nonlinear mathematical model is constructed for perturbations of small finite amplitude based on hydrodynamic equations with the long wave approximation. Results reveal that the nonlinearity always accelerates the rupture of the films. The influences of the slip length, film thickness, and initial amplitude of perturbations on the rupture of the films are investigated.

  16. Spacing and strength of active continental strike-slip faults

    Science.gov (United States)

    Zuza, Andrew V.; Yin, An; Lin, Jessica; Sun, Ming

    2017-01-01

    Parallel and evenly-spaced active strike-slip faults occur widely in nature across diverse tectonic settings. Despite their common existence, the fundamental question of what controls fault spacing remains unanswered. Here we present a mechanical model for the generation of parallel strike-slip faults that relates fault spacing to the following parameters: (1) brittle-crust thickness, (2) fault strength, (3) crustal strength, and (4) crustal stress state. Scaled analogue experiments using dry sand, dry crushed walnut shells, and viscous putty were employed to test the key assumptions of our quantitative model. The physical models demonstrate that fault spacing (S) is linearly proportional to brittle-layer thickness (h), both in experiments with only brittle materials and in two-layer trials involving dry sand overlying viscous putty. The S / h slope in the two-layer sand-putty experiments may be controlled by the (1) rheological/geometric properties of the viscous layer, (2) effects of distributed basal loading caused by the viscous shear of the putty layer, and/or (3) frictional interaction at the sand-putty interface (i.e., coupling between the viscous and brittle layers). We tentatively suggest that this third effect exerts the strongest control on fault spacing in the analogue experiments. By applying our quantitative model to crustal-scale strike-slip faults using fault spacing and the seismogenic-zone thickness obtained from high-resolution earthquake-location data, we estimate absolute fault friction of active strike-slip faults in Asia and along the San Andreas fault system in California. We show that the average friction coefficient of strike-slip faults in the India-Asia collisional orogen is lower than that of faults in the San Andreas fault system. Weaker faults explain why deformation penetrates >3500 km into Asia from the Himalaya and why the interior of Asia is prone to large (M > 7.0) devastating earthquakes along major intra-continental strike-slip

  17. Field-effect ion-transport devices with carbon nanotube channels: schematics and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ju Yul; Kang, Jeong Won; Byun, Ki Ryang; Kang, Eu Seok; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Joo [Sangmyung University, Chonan (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Kim, Young Min [Chung-Cheong University, Cheongwon (Korea, Republic of)

    2004-08-15

    We investigated field-effect ion-transport devices based on carbon nanotubes by using classical molecular dynamics simulations under applied external force fields, and we present model schematics that can be applied to the nanoscale data storage devices and unipolar ionic field-effect transistors. As the applied external force field is increased, potassium ions rapidly flow through the nanochannel. Under low external force fields, thermal fluctuations of the nanochannels affect tunneling of the potassium ions whereas the effects of thermal fluctuations are negligible under high external force fields. Since the electric current conductivity increases when potassium ions are inserted into fullerenes or carbon nanotubes, the field effect due to the gate, which can modify the position of the potassium ions, changes the tunneling current between the drain and the source.

  18. Effect of metal ions on some pharmacologically relevant interactions involving fluoroquinolone antibiotics.

    Science.gov (United States)

    Seedher, Neelam; Agarwal, Pooja

    2010-01-01

    Complexation of five metal cations, Fe(3+), Al(3+), Zn(2+), Cu(2+) and Mg(2+) with four fluoroquinolones, levofloxacin, sparfloxacin, ciprofloxacin hydrochloride and enrofloxacin and human serum albumin (HSA) has been studied for better understanding of bioavailability of drugs interacting with metals and proteins. The binding parameters have been determined using fluorescence and ultraviolet absorption spectroscopic techniques. The effect of metal cations on the interaction of fluoroquinolones with HSA has also been investigated. The association constants were of the order of 10(2)-10(4) for the fluoroquinolone-metal ion interaction. For a given drug, the chelation potential of Al(3+) was highest, whereas that of Mg(2+) was lowest. At a metal ion/drug ratio of 1:1, approximately 50%-73% of metal ion was bound per mole drug in most cases. In the case of HSA-metal ion interaction, for Fe(3+) and Zn(2+) ions, there was only one class of binding site, whereas for Al(3+) and Cu(2+) ions, two types of binding sites were found. The relative affinity of various metal ions was found to vary as Al(3+)>Cu(2+)>Zn(2+)>Fe(3+). The extent of binding was found to be independent of the charge on the ion. Owing to very weak quenching of fluorescence, the association constant for the interaction of Mg(2+) ion could not be determined by this technique. The binding affinity of all the fluoroquinolones to HSA was found to increase in the presence of Cu(2+) ions, whereas all other metal ions decreased the binding -affinity with the exception of levofloxacin in the presence of Zn(2+) and Al(3+) ions. Increase in the binding affinity indicated that the metal ions facilitate HSA-fluoroquinolone interaction and fluoroquinolones probably interact with HSA via a metal ion bridge. Decrease in the binding affinity, by contrast, can either be due to the fact that fluoroquinolone-metal ion complex inhibits fluoroquinolone-HSA interaction or metal ions produce conformational changes in the HSA

  19. Effect of temperature, chloride ions and sulfide ions on the electrochemical properties of 316L stainless steel in simulated cooling water

    Institute of Scientific and Technical Information of China (English)

    Li Jinbo; Zhai Wen; Zheng Maosheng; Zhu Jiewu

    2008-01-01

    The influence of temperature, chloride ions and sulfide ions on the anticorrosion behavior of 316L stainless steel in simulated cooling water was studied by electrochemical impedance spectroscopy and anodic polarization curves. The results show that the film resistance increases with the solution temperature but decreases after 8 days' immersion, which indicates that the film formed at higher temperature has inferior anticorrosion behavior; Chloride ions and sulfide ions have remarkable effects on the electrochemical property of 316L stainless steel in simulated cooling water and the pitting potential declines with the concentration of chloride ions; the passivation current has no obvious effect; the rise of the concentration of sulfide ions obviously increases the passivation current, but the pitting potential changes little, which indicates that the two types of ions may have different effects on destructing passive film of stainless steel. The critical concentration of chloride ions causing anodic potential curve's change in simulated cooling water is 250 mg/L for 316 L stainless. The effect of sulfide ions on the corrosion resistance behavior of stainless steel is increasing the passivation current density Ip. The addition of 6mg/L sulfide ions to the solution makes Ip of 316 L increase by 0.5 times.

  20. Connecting Aseismic Slip and Microseismicity on the Central San Andreas Fault

    Science.gov (United States)

    Johanson, I. A.; Bürgmann, R.

    2003-12-01

    High precision micro-earthquake relocations have revealed seismicity structures that may be an indicator of the fault's slip characteristics. Characteristically repeating micro-earthquakes and aligned streaks of micro-seismicity suggest that these structures are associated with areas of active aseismic fault slip. A general inverse correspondence between zones of abundant micro-seismicity and the coseismic slip area of large earthquakes also implies a relationship between creep and micro-earthquakes. We test this relationship using geodetic measurements of near-fault deformation. Modeling of such measurements allow for determination of locked and creeping sections of the fault. We focus on the central San Andreas fault near San Juan Bautista; a segment which experiences both aseismic and seismic fault slip and where there is a long history of geodetic measurements. Aseismic slip on the central San Andreas is time dependent and has varied in response to regional earthquakes and in the form of slow earthquakes. Dislocations in an elastic half space are used to evaluate a range of scenario fault slip models whose geometry is guided by the locations of micro-seismic streaks. The inversions for distributed sub-surface slip are constrained by range-change data from InSAR and GPS site velocities. The InSAR data (ERS1&2 track 299 frame 2861) spans from 1996-2000 and were processed using ROI_Pac with the SNAPHU unwrapper and combined in a patchwork stack to reduce atmospheric errors. Campaign and continuous GPS data were processed using GAMIT/GLOBK and form part of the regional BA¯VU¯ dataset. To minimize the effect on our analysis of transient slip induced by the 1989 Loma Prieta earthquake, we limit our dataset to GPS observations from 1994 to 2003. Preliminary results confirm that the presence of seismicity streaks and characteristically repeating micro-earthquakes are indicative of aseismic slip. However, the absence of such seismicity patterns does not necessarily

  1. Phase-slip-induced dissipation in an atomic Bose-Hubbard system.

    Science.gov (United States)

    McKay, D; White, M; Pasienski, M; DeMarco, B

    2008-05-01

    Phase-slips control dissipation in many bosonic systems, determining the critical velocity of superfluid helium and the generation of resistance in thin superconducting wires. Technological interest has been largely motivated by applications involving nanoscale superconducting circuit elements, such as standards based on quantum phase-slip junctions. Although phase slips caused by thermal fluctuations at high temperatures are well understood, controversy remains over the role of phase slips in small-scale superconductors--in solids, problems such as uncontrolled noise sources and disorder complicate their study and application. Here we show that phase slips can lead to dissipation in a clean and well-characterized Bose-Hubbard system, by experimentally studying the transport of ultracold atoms trapped in an optical lattice. In contrast to previous work, we explore a low-velocity regime described by the three-dimensional Bose-Hubbard model that is unaffected by instabilities, and we measure the effect of temperature on the dissipation strength. The damping rate of atomic motion (the analogue of electrical resistance in a solid) in the confining parabolic potential is well fitted by a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, whereas at higher temperatures a crossover consistent with a transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging. These results clarify the role of phase slips in superfluid systems. They may also be of relevance in understanding the source of metallic phases observed in thin films, or serve as a test bed for theories of bosonic dissipation based upon variants of the Bose-Hubbard model.

  2. A new dual-plate slipometer for measuring slip between molten polymers and extrusion die materials.

    Science.gov (United States)

    Schmalzer, A M; Giacomin, A J

    2014-04-01

    In this work, we study the slip behaviors common to plastics die extrusion metals or platings using a new instrument called a dual-plate slipometer. By dual-plate, we mean that whereas the stationary plate incorporates a local shear stress transducer, the moving plate does not. The stationary plate and transducer are made of one stainless steel, but the moving plate is made from, or plated with, different extrusion die materials under study. This new instrument allows slip velocity to be measured without having to build a new shear stress transducer from each extrusion metal or plating under study. We explore the effect of extrusion die composition and die metal surface morphology on the slip properties of polyolefins using a sliding plate rheometer. In this work, we studied the slip behaviors of polyolefins on four common plastics die extrusion metals or platings, without having to build a new shear stress transducer from each. Specifically, our new method replaces the moving plate; with each of the four die metals or platings under study without changing the stainless steel material of the shear stress transducer and its stationary plate. Our experiments include high-density polyethylene, low-density polyethylene, and polypropylene (PP) on four different die metals or platings. We use steady simple shear to obtain shear stress versus nominal shear rate for different gaps, from which we can then deduce the slip velocity using the Mooney analysis. We then fit four slip models to our experimental measurements, and we find the Hatzikiriakos hyperbolic sine model to be accurate, even for the measured inflections in the slip velocity as a function of shear stress curves. Our analysis includes detailed characterization of the die metal plating surfaces, including measurements of the composition of the sliding plates by energy dispersive spectroscopy, surface energy by contact angle goniometry, and surface roughness by both white light interference and stylus

  3. Longitudinal and lateral slip control of autonomous wheeled mobile robot for trajectory tracking

    Institute of Scientific and Technical Information of China (English)

    Hamza KHAN; Jamshed IQBAL; Khelifa BAIZID; Teresa ZIELINSKA

    2015-01-01

    This research formulates a path-following control problem subjected to wheel slippage and skid and solves it using a logic-based control scheme for a wheeled mobile robot (WMR). The novelty of the proposed scheme lies in its methodology that considers both longitudinal and lateral slip components. Based on the derived slip model, the controller for longitudinal motion slip has been synthesized. Various control parameters have been studied to investigate their effects on the performance of the controller resulting in selection of their optimum values. The designed controller for lateral slip or skid is based on the proposed side friction model and skid check condition. Considering a car-like WMR, simulation results demonstrate the effectiveness of the proposed control scheme. The robot successfully followed the desired circular trajectory in the presence of wheel slippage and skid. This research finds its potential in various applications involving WMR navigation and control.

  4. Characterization of transmission line effects and ion-ion plasma formation in an inductively coupled plasma etch reactor

    Science.gov (United States)

    Khater, Marwan H.

    2000-10-01

    The plasma and processing uniformity are greatly affected by the gas flow distribution and the source geometry in inductively coupled plasma (ICP) etch reactors. However, a reasonably uniform source design, along with uniform gas distribution, does not always guarantee uniform plasma, because transmission line (i.e. standing wave) effects also impact its performance. In this work, we demonstrate that the gas flow distribution can have a major impact on both the plasma density profiles and etch rate uniformity at low pressures where one might expect diffusion to make gas flow distribution less important. We also present an ICP source design with a geometry that enables better control over the field profiles azimuthal symmetry despite transmission line effects. B-dot probe measurements of the free space electromagnetic fields for the new source and a comparably dimensioned standard planar coil showed improved azimuthal symmetry for the new source. We have also developed a three-dimensional electromagnetic model for ICP sources that accounts for current variations along the source length due to standing wave effects. The electromagnetic field profiles obtained from the model showed good agreement with the measured field profiles. Langmuir probe measurements showed that the new ICP source generated high density (1011--1012 cm-3) plasmas at low pressures with significantly improved azimuthal symmetry of power deposition and plasma generation. In addition, polysilicon etch rate profiles on 150 mm wafers also showed improved azimuthal symmetry and uniformity with the new ICP source. The new source was then used to investigate chlorine discharge properties and their spatial profiles in continuous wave (CW) and pulsed operation. Time-resolved Langmuir probe measurements showed that electron-free or "ion-ion" chlorine plasma forms during the afterglow (i.e. power-off) due to electron attachment. Such electron-free plasma can provide both positive and negative ion fluxes to a

  5. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  6. New ion beam materials laboratory for materials modification and irradiation effects research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y., E-mail: Zhangy1@ornl.gov [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Crespillo, M.L.; Xue, H.; Jin, K.; Chen, C.H. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Fontana, C.L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Graham, J.T. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Weber, W.J., E-mail: wjweber@utk.edu [Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2014-11-01

    A new multifunctional ion beam materials laboratory (IBML) has been established at the University of Tennessee, in partnership with Oak Ridge National Laboratory. The IBML is currently equipped with two ion sources, a 3 MV tandem accelerator, three beamlines and three endstations. The IBML is primarily dedicated to fundamental research on ion–solid interaction, ion beam analysis, ion beam modification, and other basic and applied research on irradiation effects in a wide range of materials. An overview of the IBML facility is provided, and experimental results are reported to demonstrate the specific capabilities.

  7. Microwave chemistry: Effect of ions on dielectric heating in microwave ovens

    Directory of Open Access Journals (Sweden)

    Jamil Anwar

    2015-01-01

    Full Text Available To understand the interactions of microwaves with dielectric materials and their conversion to thermal energy in aqueous systems, the effect of ionic concentration has been studied. Aqueous solutions of inorganic ions were exposed to microwaves (2.45 GHz in a modified oven under identical conditions. Difference in solution temperatures with reference to pure (deionized water was monitored in each case. A significant decrease in the temperature was observed with an increase in the quantity of ions. Experiments were repeated with several inorganic ions varying in size and charge. The information can be helpful in understanding the role of ions during dielectric heating.

  8. CrossRef Space-charge effects in Penning ion traps

    CERN Document Server

    Porobić, T; Breitenfeldt, M; Couratin, C; Finlay, P; Knecht, A; Fabian, X; Friedag, P; Fléchard, X; Liénard, E; Ban, G; Zákoucký, D; Soti, G; Van Gorp, S; Weinheimer, Ch; Wursten, E; Severijns, N

    2015-01-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with View the MathML source using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  9. Aberration of a negative ion beam caused by space charge effect

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, K. [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan); Wada, S.; Hatayama, A. [Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2010-02-15

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  10. Collision induced fragmentation of fast molecular ions in solids and gases. [Review, wake effects, excited states

    Energy Technology Data Exchange (ETDEWEB)

    Gemmell, D S

    1979-01-01

    A brief review is given of recent high resolution measurements on fragments arising from the collision-induced dissociation of fast (MeV) molecular ions. For solid targets, strong wake effects are observed. For gaseous targets, excited electronic states of the projectile ions play an important role. Measurements of this type provide useful information on the charge states of fast ions traversing matter. The experimental techniques show promise as a unique method for determining the geometrical structures of the molecular-ion projectiles. 41 references.

  11. Effect of Implantation Machine Parameters on N+ ion Implantation for Upland Cotton(Gossypium hirsutum L.) Pollen

    Science.gov (United States)

    Yue, Jieyu; Yu, Lixiang; Wu, Yuejin; Tang, Canming

    2008-10-01

    Effect of parameters of ion implantation machine, including ion energy, total dose, dose rate, impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ion beam were studied. The best parameters were screened out. The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability.

  12. Modeling of Slow Slip Events at the Hikurangi Subduction Margin

    Science.gov (United States)

    Williams, C. A.; Wallace, L. M.; Beavan, R. J.; Lohman, R. B.; Ellis, S. M.; Marson-Pidgeon, K.; Eberhart-Phillips, D. M.; Reyners, M.; Henrys, S. A.; Bell, R. E.

    2011-12-01

    inversion. In this study, we estimate the slip distributions for the 2010 Gisborne event (northern part of the margin) and the ongoing Castle Point event (southern part of the margin). The inversion work is the first step in an attempt to understand the factors controlling SSE occurrence along the Hikurangi Margin. We have also begun initial modeling of fluid flow in the vicinity of a subducting seamount (as is inferred for the Gisborne SSE events) to evaluate the effects of variations in pore fluid pressure on fault frictional parameters.

  13. Effect of Different Metal Ions on the Biological Properties of Cefadroxil

    Directory of Open Access Journals (Sweden)

    Reinhard H. H. Neubert

    2009-12-01

    Full Text Available The effect of different metal ions on the intestinal transport and the antibacterial activity of cefadroxil [(6R,7R-7-{[(2R-2-amino-2-(4-hydroxyphenylacetyl]amino}-3-methyl-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid] was investigated. The [14C]Gly-Sar uptake via PEPT1 was inhibited by Zn2+ and Cu2+ treatment in a concentration-dependent manner (Ki values 107 ± 23 and 19 ± 5 μM, respectively. Kinetic analysis showed that the Kt of Gly-Sar uptake was increased 2-fold in the presence of zinc sulphate (150 μM whereas the Vmax value were not affected suggesting that zinc ions inhibited Gly-Sar uptake by PEPT1 in a competitively manner. Ni2+ exhibited moderate inhibitory effect, whereas Co2+, Mg2+, Al3+ ions showed no inhibitory effect on Gly-Sar uptake via PEPT1. Subsequently, we examined the effect of Zn2+ and Al3+ ions on the transepithelial transport of cefadroxil across Caco-2 cells cultured on permeable supports. The results showed that zinc ions inhibited the transepithelial flux of cefadroxil at Caco-2 cell monolayers while Al3+ ions had no effect. The interaction of cephalosporins with the metal ions could suggest negative effects of some metal ions on the clinical aspects of small intestinal peptide and drug transport. Finally, the effect of Zn2+, Cu2+ and Al3+ ions on the antibacterial activity of cefadroxil was tested. It was found that there is no significant difference between the activity of cefadroxil and the cefadroxil metal ion complexes studied against the investigated sensitive bacterial species.

  14. Effect of electron cyclotron resonance ion source frequency tuning on ion beam intensity and quality at Department of Physics, University of Jyvaeskylae

    Energy Technology Data Exchange (ETDEWEB)

    Toivanen, V.; Koivisto, H.; Steczkiewicz, O.; Tarvainen, O.; Ropponen, T. [Department of Physics, University of Jyvaeskylae (JYFL) (Finland); Celona, L.; Gammino, S.; Mascali, D.; Ciavola, G. [Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, 95123 Catania (Italy)

    2010-02-15

    Ion beam intensity and quality have a crucial effect on the operation efficiency of the accelerator facilities. This paper presents the investigations on the ion beam intensity and quality after the mass separation performed with the Department of Physics, University of Jyvaeskylae 14 GHz electron cyclotron resonance ion source by sweeping the microwave in the 14.05-14.13 GHz range. In many cases a clear variation in the ion beam intensity and quality as a function of the frequency was observed. The effect of frequency tuning increased with the charge state. In addition, clear changes in the beam structure seen with the beam viewer were observed. The results confirmed that frequency tuning can have a remarkable effect on ion beam intensity and quality especially in the case of highly charged ion beams. The examples presented here represent the typical charge state behavior observed during the measurements.

  15. Progressive slip after removal of screw fixation in slipped capital femoral epiphysis: two case reports

    Directory of Open Access Journals (Sweden)

    Engelsma Yde

    2012-11-01

    Full Text Available Abstract Introduction In slipped capital femoral epiphysis the femoral neck displaces relative to the head due to weakening of the epiphysis. Early recognition and adequate surgical fixation is essential for a good functional outcome. The fixation should be secured until the closure of the epiphysis to prevent further slippage. A slipped capital femoral epiphysis should not be confused with a femoral neck fracture. Case presentation Case 1 concerns a 15-year-old boy with an adequate initial screw fixation of his slipped capital femoral epiphysis. Unfortunately, it was thought that the epiphysis had healed and the screw was removed after 11 weeks. This caused new instability with a progressive slip of the femoral epiphysis and subsequently re-fixation and a subtrochanteric correction osteotomy was obligatory. Case 2 concerns a 13-year-old girl with persistent hip pain after screw fixation for slipped capital femoral epiphysis. The screw was removed as lysis was seen around the screw on the hip X-ray. This operation created a new unstable situation and the slip progressed resulting in poor hip function. A correction osteotomy with re-screw fixation was performed with a good functional result. Conclusion A slipped epiphysis of the hip is not considered ‘healed’ after a few months. Given the risk of progression of the slip the fixation material cannot be removed before closure of the growth plate.

  16. The unreasonable effectiveness of hydrodynamics in heavy ion collisions

    Science.gov (United States)

    Noronha-Hostler, Jacquelyn; Noronha, Jorge; Gyulassy, Miklos

    2016-12-01

    Event-by-event hydrodynamic simulations of AA and pA collisions involve initial energy densities with large spatial gradients. This is associated with the presence of large Knudsen numbers (Kn ≈ 1) at early times, which may lead one to question the validity of the hydrodynamic approach in these rapidly evolving, largely inhomogeneous systems. A new procedure to smooth out the initial energy densities is employed to show that the initial spatial eccentricities, εn, are remarkably robust with respect to variations in the underlying scale of initial energy density spatial gradients, λ. For √{sNN} = 2.76 TeV LHC initial conditions generated by the MCKLN code, εn (across centralities) remains nearly constant if the fluctuation scale varies by an order of magnitude, i.e., when λ varies from 0.1 to 1 fm. Given that the local Knudsen number Kn ≈ 1 / λ, the robustness of the initial eccentricities with respect to changes in the fluctuation scale suggests that the vn's cannot be used to distinguish between events with large Kn from events where Kn is in the hydrodynamic regime. We use the 2+1 Lagrangian hydrodynamic code v-USPhydro to show that this is indeed the case: anisotropic flow coefficients computed within event-by-event viscous hydrodynamics are only sensitive to long wavelength scales of order 1 /ΛQCD ≈ 1 fm and are incredibly robust with respect to variations in the initial local Knudsen number. This robustness can be used to justify the somewhat unreasonable effectiveness of the nearly perfect fluid paradigm in heavy ion collisions.

  17. Effects of meteoric smoke particles on the D region ion chemistry

    Science.gov (United States)

    Baumann, Carsten; Rapp, Markus; Anttila, Milla; Kero, Antti; Verronen, Pekka T.

    2015-12-01

    This study focuses on meteor smoke particle (MSP) induced effects on the D region ion chemistry. Hereby, MSPs, represented with an 11 bin size distribution, have been included as an active component into the Sodankyä Ion and Neutral Chemistry model. By doing that, we model the diurnal variation of the negatively and positively charged MSPs as well as ions and the electron density under quiet ionospheric conditions. Two distinct points in time are studied in more detail, i.e., one for sunlit conditions (Solar zenith angle is 72°) and one for dark conditions (Solar zenith angle is 103°). We find nightly decrease of free electrons and negative ions, the positive ion density is enhanced at altitudes above 80 km and reduced below. During sunlit conditions the electron density is enhanced between 60 and 70 km altitude, while there is a reduction in negative and positive ions densities. In general, the MSP influence on the ion chemistry is caused by changes in the electron density. On the one hand, these changes occur due to nightly electron scavenging by MSPs resulting in a reduced electron-ion recombination. As a consequence positive ion density increase, especially water cluster ions are highly affected. On the other hand, the electron density is slightly increased during daytime by a MSP-related production due to solar radiation. Thus, more electrons attach to neutrals and short-lived negative ions increase in number density. The direct attachment of ions to MSPs is a minor process, but important for long living ions.

  18. Investigation of fast ion pressure effects in ASDEX Upgrade by spectral MSE measurements

    Science.gov (United States)

    Reimer, René; Dinklage, Andreas; Wolf, Robert; Dunne, Mike; Geiger, Benedikt; Hobirk, Jörg; Reich, Matthias; ASDEX Upgrade Team; McCarthy, Patrick J.

    2017-04-01

    High precision measurements of fast ion effects on the magnetic equilibrium in the ASDEX Upgrade tokamak have been conducted in a high-power (10 MW) neutral-beam injection discharge. An improved analysis of the spectral motional Stark effect data based on forward-modeling, including the Zeeman effect, fine-structure and non-statistical sub-level distribution, revealed changes in the order of 1% in |B| . The results were found to be consistent with results from the equilibrium solver CLISTE. The measurements allowed us to derive the fast ion pressure fraction to be Δ {{p}\\text{FI}}/{{p}\\text{mhd}}≈ 10 % and variations of the fast ion pressure are consistent with calculations of the transport code TRANSP. The results advance the understanding of fast ion confinement and magneto-hydrodynamic stability in the presence of fast ions.

  19. Effects of nitrogen ion implantation on Ca2+ concentration and membrane potential of pollen cell

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effects of low energy nitrogen ion implantation on Ca2+ concentration and membrane potential of lily (lilium davidii Duch) pollen cell have been studied. The results showed that the Ca2+ concentration was increased when pollen grain was implanted by nitrogen ion with energy 100keV and dose 1013 ions/cra2. However, the increase of Ca2+ concentration was partly inhibited by the addition of Ca2+channel inhibitor depending on dose. And nitrogen ion implantation caused depolarization of pollen cell membrane potential. In other words, membrane potential was increased,but the effect decreased by adding Ca2+ channel inhibitor.However, it was still significantly higher than the membrane potential of control cells. It was indicated that the depolarization of cell membrane potential opened the calcium channel on the membrane that caused the increasing of intraceilular calcium concentration. This might be an earlier step of the effect of low energy nitrogen ion implantation on pollen germination.

  20. Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles.

    Science.gov (United States)

    Ovanesyan, Zaven; Aljzmi, Amal; Almusaynid, Manal; Khan, Asrar; Valderrama, Esteban; Nash, Kelly L; Marucho, Marcelo

    2016-01-15

    One major source of complexity in the implementation of nanoparticles in aqueous electrolytes arises from the strong influence that biological environments has on their physicochemical properties. A key parameter for understanding the molecular mechanisms governing the physicochemical properties of nanoparticles is the formation of the surface charge density. In this article, we present an efficient and accurate approach that combines a recently introduced classical solvation density functional theory for spherical electrical double layers with a surface complexation model to account for ion-ion correlation and excluded volume effects on the surface titration of spherical nanoparticles. We apply the proposed computational approach to account for the charge-regulated mechanisms on the surface chemistry of spherical silica (SiO2) nanoparticles. We analyze the effects of the nanoparticle size, as well as pH level and electrolyte concentration of the aqueous solution on the nanoparticle's surface charge density and Zeta potential. We validate our predictions for 580Å and 200Å nanoparticles immersed in acid, neutral and alkaline mono-valent aqueous electrolyte solutions against experimental data. Our results on mono-valent electrolyte show that the excluded volume and ion-ion correlations contribute significantly to the surface charge density and Zeta potential of the nanoparticle at high electrolyte concentration and pH levels, where the solvent crowding effects and electrostatic screening have shown a profound influence on the protonation/deprotonation reactions at the liquid/solute interface. The success of this approach in describing physicochemical properties of silica nanoparticles supports its broader application to study other spherical metal oxide nanoparticles.

  1. Effect of upward ion on field-aligned currents in the near-earth magnetotail

    Institute of Scientific and Technical Information of China (English)

    ZHANG; LingQian; LIU; ZhenXing; MA; ZhiWei; SHEN; Chao; ZHOU; XuZhi; ZHANG; XianGuo

    2007-01-01

    A 3-dimensional resistive MHD simulation was carried out to study the effect of the upward ions on the field-aligned currents (FACs) in the near-earth magnetotail. The simulation results show that the up-flow ions originating from the nightside auroral oval would drift into the center plasma sheet along the magnetic field lines in the plasma sheet boundary, and have an important effect on the field-aligned currents. The main conclusions include that: 1) the upward-ions mainly affect the field- aligned currents in the near-earth magnetotail (inside 15 Re); 2) the generated FACs in the near-earth region have two types, i.e., Region 1 FAC in the high-latitude and Region 2 FAC in the low-latitude; 3) FACs increase with the enhancement of the upward ion flux; 4) with the same flux of the upward ions, FACs enhance with the increase of the velocity of the up-flow ions; 5) the intensification of FACs is also closely related with the latitude of the upward ions, and the ions from the closed field line region generate larger FACs; 6) the generation of FACs is closely related with By created by the upward ions.

  2. The Effect of Ion Current Density on Target Etching in Radio Frequency-Magnetron Sputtering Process

    Institute of Scientific and Technical Information of China (English)

    王庆; 王永富; 巴德纯; 岳向吉

    2012-01-01

    The effect of ion current density of argon plasma on target sputtering in magnetron sputtering process was investigated. Using home-made ion probe with computer-based data acquisition system, the ion current density as functions of discharge power, gas pressure and positions was measured. A double-hump shape was found in ion current density curve after the analysis of the effects of power and pressure. The data demonstrate that ion current density increases with the increase in gas pressure in spite of slightly at the double-hump site, sharply at wave-trough and side positions. Simultaneously, the ion current density increases upon increase in power. Es- pecially, the ion current density steeply increases at the double-hump site. The highest energy of the secondary electrons arising from Larmor precession was found at the double-hump position, which results in high ion density. The target was etched seriously at the double-hump position due to the high ion density there. The data indicates that the increase in power can lead to a high sputtering speed rate.

  3. Research report on the physiological effects of air ions and their significance as environmental factors

    Science.gov (United States)

    Varga, A.

    1978-01-01

    The series of experiments performed have shown that small air ions generated artificially using radioactive materials produced physiological effects in all test subjects, which are described. These results show that the air ions were important climatic factors in the production of comfortable and healthy room climates.

  4. Effects of Lability of Metal Complex on Free Ion Measurement Using DMT

    NARCIS (Netherlands)

    Weng, L.P.; Riemsdijk, van W.H.; Temminghoff, E.J.M.

    2010-01-01

    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically

  5. The Reduction in the Rate of Hydrolysis of Diphenylbromomethane by the Common-Ion Effect

    Science.gov (United States)

    Cameron-Holford, Richard; Ratneswaren, Tarini; Hughes, D. E. Peter

    2010-01-01

    Kinetic study on the hydrolysis of diphenylbromomethane does not provide clear-cut evidence for the mechanism of the reaction. The reduction in the rate of the reaction by added bromide ions suggested that the reaction took place by a S[subscript N]1 mechanism. A more detailed study of this common-ion effect, using conductivity to measure the rate…

  6. Electrolyte-gated organic field-effect transistor for selective reversible ion detection.

    Science.gov (United States)

    Schmoltner, Kerstin; Kofler, Johannes; Klug, Andreas; List-Kratochvil, Emil J W

    2013-12-17

    An ion-sensitive electrolyte-gated organic field-effect transistor for selective and reversible detection of sodium (Na(+) ) down to 10(-6) M is presented. The inherent low voltage - high current operation of these transistors in combination with a state-of-the-art ion-selective membrane proves to be a novel, versatile modular sensor platform.

  7. The Effect of Slip Casting Processon on Density of Coated SiC Body%改性SiC注浆工艺对坯体密度的影响

    Institute of Scientific and Technical Information of China (English)

    郑彩华

    2014-01-01

    主要研究了固相含量与粘度、消泡剂和石膏模对亚氨基二乙酸改性S iC料浆注浆成形坯体密度的影响。结果表明,当料浆固相含量较低、粘度较小时,增大固相含量能提高坯体密度;而当固相含量较高、粘度较大时,降低粘度能有效地提高坯体密度。加入适量合适的消泡剂可适当提高坯体的致密性,同时石膏模的成分和膏水比对坯体密度的影响较大。当半水石膏的两种类型的比例(β/α)为5∶5、膏水比为1.8∶1时,注浆成形坯体密度达最大,为2.5894 g/cm3。%In this paper ,the effects of solid loading ,viscosity ,defoaming agent and cast on the density of body which was formed by slip casting with iminodiacetic acid coated SiC slurry were studied .The results indicated that increasing solid loading could improve the density of body when the slurry had lower solid loading and viscosity ,and reducing viscosity could improve the density of body when the slurry had higher solid loading and viscosity .It could improve the densification of body through adding some suitable defoaming agent ,and there were some impacts on the density of body that components and the ratio of gypsum powder to water of cast .When semi-hydrated gypsumβ/αwas 5∶5 and the ratio of gypsum pow-der to water was 1 .8∶1 ,the density of body by slip casting achieved biggest and was 2 .589 4 g/cm3 .

  8. High-transparency, self-standable gel-SLIPS fabricated by a facile nanoscale phase separation.

    Science.gov (United States)

    Okada, Issei; Shiratori, Seimei

    2014-02-12

    Slippery liquid-infused porous surfaces (SLIPSs) that were both highly transparent and free-standing (self-standability) were fabricated by an extremely simple process using non-solvent-induced phase separation (NIPS) of a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)/di-n-butyl phthalate solution. We call these "Gel-SLIPS" because the porous PVDF-HFP film fabricated using the NIPS process has been used as a gel electrolyte in a lithium-ion battery. In previous reports, SLIPS fabrication required complex processes, high annealing temperatures, and drying. Gel-SLIPS can be fabricated from the adjusted solution and the lubricant at room temperature and pressure in 5 min by squeegee, cast, or dip methods. NIPS is based on a quick phase separation process in situ, and reduction of the surface energy is not required because of the considerable fluorine in PVDF-HFP. Moreover, because of the flexible nanonetwork structure of PVDF-HFP, Gel-SLIPS exhibited self-standability and high transmittance (>87% at 600 nm). Gel-SLIPS is thus highly versatile in terms of the fabrication process and film characteristics.

  9. Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition

    Institute of Scientific and Technical Information of China (English)

    谭臻; 齐海涛; 蒋晓芸

    2014-01-01

    In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier’s slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn.

  10. Laboratory study of electromagnetic initiation of slip

    Directory of Open Access Journals (Sweden)

    V. Chikhladze

    2002-06-01

    Full Text Available Recently Russian seismologists reported the triggering effect of MHD soundings on microseismic activity in the Central Asia test area.The paper focuses on an experimental test of the possibility of triggering the mechanical instability of a system that is close to critical state by a series of electromagnetic pulses.The mechanical system consisted of two pieces of rock;the upper piece can slip on the fixed supporting sample if the latter one is tilted up to the critical angle.In this state,the triggering of mechanical instability by some weak impact such as electrical pulse became more probable.The slope of support in the experiment is an analogue of tectonic stress in natural conditions.The preliminary experiments,carried out in a dry environment,at the humidity of atmosphere 30-50%,show that a strong EM-pulse induces sliding of a sample of rock (granite,basalt,labradoriteplaced on the supporting sample which is inclined at the slope close to,but less than,the critical angle with a probability 0.07.

  11. LET effects of high energy ion beam irradiation on polysilanes

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Shu; Kanzaki, Kenichi; Tagawa, Seiichi; Yoshida, Yoichi [Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research; Kudoh, Hisaaki; Sugimoto, Masaki; Sasuga, Tsuneo; Seguchi, Tadao; Shibata, Hiromi

    1997-03-01

    Thin films of poly(di-n-hexylsilane) were irradiated with 2-20 MeV H{sup +} and He{sup +} ion beams. The beams caused heterogeneous reactions of crosslinking and main chain scission in the films. The relative efficiency of the crosslinking was drastically changed in comparison with that of main chain scission. The anomalous change in the molecular weight distribution was analyzed with increasing irradiation fluence, and the ion beam induced reaction radius; track radius was determined for the radiation sources by the function of molecular weight dispersion. Obtained values were 59{+-}15 A and 14{+-}6 A for 2 MeV He{sup +} and 20 MeV H{sup +} ion beams respectively. (author)

  12. Laboratory Observations of the Spectrum of Fault Slip: Implications for Slow Earthquakes

    Science.gov (United States)

    Leeman, John; Saffer, Demian; Scuderi, Marco; Marone, Chris

    2016-04-01

    Fault zone failure spans a wide range of slip modes, including normal earthquakes, low-frequency earthquakes, episodic tremor and slip, non-volcanic tremor, slow slip events, and steady aseismic creep. Despite widespread observations in a range of tectonic and geologic environments, the physics underlying these events remain poorly understood. Here we present a systematic laboratory study of slow slip and build a mechanical explanation for the spectrum of fault slip modes. We show that complex behaviors can arise from relatively simple models using traditional rate-and-state friction (RSF) concepts. We sheared quartz gouge at constant velocity in a double-direct shear configuration. We controlled the effective stiffness of the system by changing the normal stress and changing the material of the loading blocks from steel to acrylic. There is a critical stiffness value (kc) that represents a bifurcation point separating stable and unstable systems. For systems in which k energy into the system, therefore generating a force imbalance and acceleration to fully dynamic and unstable stick-slip. For systems in which k > kc, the surrounding media unloads energy faster than the fault can weaken and therefore the system is stable. For experiments that exhibited stable behavior, we used velocity step tests and RSF modeling tools to independently determine constitutive frictional parameters and calculate the system critical stiffness. For experiments that exhibited unstable behavior we measured the stiffness of the layer directly from displacement and load measurements during individual stick-slip events, and compared it to the calculated value of kc. We find that the predicted stability boundary (defined by k/kc = 1) delineates stable and unstable slip behavior in our experiments, but rather than a strict bifurcation, slow slip and quasi-dynamic failure occur at and very near k/kc = 1. We also find that the peak slip velocity and duration of stick slip events also vary

  13. The Hills are Alive: Dynamic Ridges and Valleys in a Strike-Slip Environment

    Science.gov (United States)

    Duvall, A. R.; Tucker, G. E.

    2014-12-01

    Strike-slip fault zones have long been known for characteristic landforms such as offset and deflected rivers, linear strike-parallel valleys, and shutter ridges. Despite their common presence, questions remain about the mechanics of how these landforms arise or how their form varies as a function of slip rate, geomorphic process, or material properties. We know even less about what happens far from the fault, in drainage basin headwaters, as a result of strike-slip motion. Here we explore the effects of horizontal fault slip rate, bedrock erodibility, and hillslope diffusivity on river catchments that drain across an active strike-slip fault using the CHILD landscape evolution model. Model calculations demonstrate that lateral fault motion induces a permanent state of landscape disequilibrium brought about by fault offset-generated river lengthening alternating with abrupt shortening due to stream capture. This cycle of shifting drainage patterns and base level change continues until fault motion ceases thus creating a perpetual state of transience unique to strike-slip systems. Our models also make the surprising prediction that, in some cases, hillslope ridges oriented perpendicular to the fault migrate laterally in conjunction with fault motion. Ridge migration happens when slip rate is slow enough and/or diffusion and river incision are fast enough that the hillslopes can respond to the disequilibrium brought about by strike-slip motion. In models with faster slip rates, stronger rocks or less-diffusive hillslopes, ridge mobility is limited or arrested despite the fact that the process of river lengthening and capture continues. Fast-slip cases also develop prominent steep fault-facing hillslope facets proximal to the fault valley and along-strike topographic profiles with reduced local relief between ridges and valleys. Our results demonstrate the dynamic nature of strike-slip landscapes that vary systematically with a ratio of bedrock erodibility (K) and

  14. A geological perspective on the source(s) of slow slip and tremor

    Science.gov (United States)

    Fagereng, Ake

    2016-04-01

    'characteristic earthquakes', SSEs repeating at the same location have approximately characteristic slip magnitude and duration. Contrary to earthquakes, however, average slip relates to neither duration nor area, and average slip velocity is considerably greater in shallow events than in deep events. If the rheology of the SSE source is related to the viscosity of a tabular shear zone, SSEs may be controlled by microscale deformation mechanisms other than cataclasis. In the matrix of brittle-ductile shear zones, deformation structures imply diffusion and dislocation creep as possible microscale deformation mechanisms, and these mechanisms may allow slow slip strain rates if shear is distributed. There is also field evidence for a widening of the subduction thrust shear zone with increasing depth, leading to increased effective viscosity where deep SSEs have longer and slower average slip rate than shallow SSEs.

  15. ATOMIC-FORCE MICROSCOPY IMAGING OF TRANSITION-METAL LAYERED COMPOUNDS - A 2-DIMENSIONAL STICK-SLIP SYSTEM

    NARCIS (Netherlands)

    Kerssemakers, J.W J; de Hosson, J.T.M.

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick-slip effects. In this letter, two models are presented to describe the observations due to stick-slip, i.e.,

  16. ATOMIC-FORCE MICROSCOPY IMAGING OF TRANSITION-METAL LAYERED COMPOUNDS - A 2-DIMENSIONAL STICK-SLIP SYSTEM

    NARCIS (Netherlands)

    Kerssemakers, J.W J; de Hosson, J.T.M.

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick-slip effects. In this letter, two models are presented to describe the observations due to stick-slip, i.e., eithe

  17. Atomic force microscopy imaging of transition metal layered compounds : A two-dimensional stick–slip system

    NARCIS (Netherlands)

    Kerssemakers, J.; Hosson, J.Th.M. De

    1995-01-01

    Various layered transition metal dichalcogenides were scanned with an optical-lever atomic force microscope (AFM). The microscopic images indicate the occurrence of strong lateral stick–slip effects. In this letter, two models are presented to describe the observations due to stick–slip, i.e., eithe

  18. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    Science.gov (United States)

    Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.

    2015-06-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  19. Nanofluidic channels by anodic bonding of amorphous silicon to glass to study ion-accumulation and ion-depletion effect.

    Science.gov (United States)

    Datta, Arindom; Gangopadhyay, Shubhra; Temkin, Henryk; Pu, Qiaosheng; Liu, Shaorong

    2006-01-15

    A unique phenomenon, ion-enrichment and ion-depletion effect, exists in nanofluidic channels and is observed in amorphous silicon (alpha-Si) nanochannels as shallow as 50 nm. As a voltage is applied across a nanochannel, ions are rapidly enriched at one end and depleted at the other end of the nanochannel. alpha-Si is deposited on glass by plasma enhanced chemical vapor deposition and is selectively etched to form nanochannels. The depth of nanochannels is defined by the thickness of the alpha-Si layer. Low temperature anodic bonding of alpha-Si to glass was used to seal the channel with a second glass wafer. The strength of the anodic bond was optimized by the introduction of a silicon nitride adhesion promoting layer and double-sided bonding resulting from the electric field reversal. Completed channels, 50 nm in depth, 5 micron wide, and 1 mm long were completely and reliably sealed. Structures based on nanochannels 50-300 nm deep were successfully incorporated into nanofluidic devices to investigate ionic accumulation and depletion effect due to overlapping of electric double layer.

  20. Slip in viscous contact-line movement

    Science.gov (United States)

    van Lengerich, Henrik; Steen, Paul; Breuer, Kenneth

    2011-11-01

    The typical continuum fluid dynamics formulation cannot be used to model the spreading of a liquid on a solid because a stress singularity prevents contact-line motion. It is well known that this situation can be remedied by introducing a slip. We perform Stokes-flow simulations with slip and compare these with experiments. In the experiment, liquid (squalane) is forced through two parallel sapphire plates (roughness 0.6nm), and the meniscus shape and its speed are measured. The slip-length for this liquid/solid pair has been measured previously in an independent experiment absent of contact lines (T. Schmatko et. al. PRL 94, 244501). The same geometry is used in a boundary integral method simulation, accurate to within a few molecular diameters in the vicinity of the contact-line. The slip-length in the simulations can be varied such that the meniscus shape matches the experiment. Preliminary results suggest this slip-length is an order of magnitude lower than that reported by Schmatko. Now at the University of Minnesota TC

  1. Gait abnormalities following slipped capital femoral epiphysis.

    Science.gov (United States)

    Song, Kit M; Halliday, Suzanne; Reilly, Chris; Keezel, William

    2004-01-01

    The authors evaluated 30 subjects with treated unilateral slipped capital femoral epiphysis and a range of severity from mild to severe to characterize gait and strength abnormalities using instrumented three-dimensional gait analysis and isokinetic muscle testing. For slip angles less than 30 degrees, kinematic, kinetic, and strength variables were not significantly different from age- and weight-matched controls. For moderate to severe slips, as slip angle increased, passive hip flexion, hip abduction, and internal rotation in the flexed and extended positions decreased significantly. Persistent pelvic obliquity, medial lateral trunk sway, and trunk obliquity in stance increased, as did extension, adduction, and external rotation during gait. Gait velocity and step length decreased with increased amount of time spent in double limb stance. Hip abductor moment, hip extension moment, knee flexion moment, and ankle dorsiflexion moment were all decreased on the involved side. Hip and knee strength also decreased with increasing slip severity. All of these changes were present on the affected and to a lesser degree the unaffected side. Body center of mass translation or pelvic obliquity in mid-stance greater than one standard deviation above normal correlated well with the impression of compensated or uncompensated Trendelenburg gait.

  2. [An experimental study on freudian slips].

    Science.gov (United States)

    Köhler, Thomas; Simon, Patrick

    2002-01-01

    We attempted to replicate findings of a frequently cited study by Motley. This author had used a tachistoskope to present his participants pairs of words which had a meaning after exchanging the initial letters of each word ("spoonerisms"). In accordance with the psychoanalytic theory of Freudian slips, Motley was able to show that under the impression of a sexually stimulating situation more sexual words were read; under the threat of electric shock spoonerisms appeared more often in words with reference to electricity. In our study we tried to induce spoonerisms by presentation of short written texts of erotic, aggressive and neutral content. It could be shown that after reading the erotic and the aggressive text, slips were produced more often than following the text of neutral content. In addition, significantly more slips of erotic kind occurred after reading the erotic text, whereas more aggressive slips were observed immediately after lecture of the text with aggressive content. We were therefore able to replicate Motley's findings and thus also corroborated assumptions made by Freud on the origin of slips of the tongue.

  3. Slip patterns and preferred dislocation boundary planes

    DEFF Research Database (Denmark)

    Winther, G.

    2003-01-01

    The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...

  4. Constraining the roughness degree of slip heterogeneity

    KAUST Repository

    Causse, Mathieu

    2010-05-07

    This article investigates different approaches for assessing the degree of roughness of the slip distribution of future earthquakes. First, we analyze a database of slip images extracted from a suite of 152 finite-source rupture models from 80 events (Mw = 4.1–8.9). This results in an empirical model defining the distribution of the slip spectrum corner wave numbers (kc) as a function of moment magnitude. To reduce the “epistemic” uncertainty, we select a single slip model per event and screen out poorly resolved models. The number of remaining models (30) is thus rather small. In addition, the robustness of the empirical model rests on a reliable estimation of kc by kinematic inversion methods. We address this issue by performing tests on synthetic data with a frequency domain inversion method. These tests reveal that due to smoothing constraints used to stabilize the inversion process, kc tends to be underestimated. We then develop an alternative approach: (1) we establish a proportionality relationship between kc and the peak ground acceleration (PGA), using a k−2 kinematic source model, and (2) we analyze the PGA distribution, which is believed to be better constrained than slip images. These two methods reveal that kc follows a lognormal distribution, with similar standard deviations for both methods.

  5. Breddin's Graph For Fault and Slip Data

    Science.gov (United States)

    Célérier, B.

    A simple plot of rake versus strike of fault and slip or earthquake focal mechanism data provides insight into the stress regime that caused slippage on these faults provided one of the principal stress direction is near vertical. By overlaying an abacus on this plot, one can evaluate both the orientation of the horizontal principal stress directions and the stress tensor aspect ratio, (s1-s2)/(s1-s3), where s1, s2, s3 are the principal stress magnitudes ranked in decreasing order. The underlying geometrical properties are that the slip data that are near strike-slip, and that are mainly found on steeply dipping planes, constrain the horizontal principal stress directions whereas the slip data that are near dip-slip and that occur on shallow dipping planes striking away from the principal stress directions constrain the stress tensor aspect ratio. This abacus is an extension of the Breddin's abacus used to analyze two dimensional deformation in structural geology and it is used in a similar fashion. Its application to synthetic and natural monophase data show both its usefulness and limitation. It is not intended to replace stress inversion techniques because of limiting assumptions, but it is expected to provide insight into the complexity of natural data set from a simple viewpoint.

  6. Effects of COOH+ ion implantation on hemocompatibility of polypropylene

    Institute of Scientific and Technical Information of China (English)

    LI; Dejun(李德军); NIU; Lifang(牛丽芳)

    2002-01-01

    Carboxyl ion (COOH+) implantation was performed at 50 keV with different fluences for polypropylene. Hemocompatibility tests show that blood coagulation time and recalcification time of polypropylene were enhanced significantly with the increasing fluence. At the same time, the human endothelial cells grown on the surface of the implanted samples exhibited normal cellular growth and morphology. X-ray photoelectron spectroscopy and water contact angle analysis showed that COOH+ ion implantation rearranges chemical bonds and produces some new polar O-containing groups on the surface. The formation of polar functional groups, together with increase of roughness, induced an increase in hydrophilicity, which in turn improved the surface hemocompatibility of polypropylene.

  7. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng

    2015-11-11

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  8. The collision effect between dust grains and ions to the dust ion acoustic waves in a dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xue; Wang Canglong; Liu Congbo; Zhang Jianrong; Shi Yuren; Duan Wenshan [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yang Lei [College of Physics and Electronic Engineering and Joint Laboratory of Atomic and Molecular Physics of NWNU and IMP CAS, Northwest Normal University, Lanzhou 730070 (China) and Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Department of Physics, Lanzhou University, Lanzhou 730000 (China)

    2012-10-15

    Damping solitary wave in dusty plasma is studied by considering the collision effect between dust grains and ions. It can be described by a KdV type equation in which a damping term of {phi}{sup 2} exist. It is found that both the amplitude and propagation velocity of the solitary wave decrease with time exponentially. Our results are compared with another KdV type equation with the damping term of {phi}. It is noted that the damping rate of the KdV type equation with the damping term of {phi}{sup 2} is larger than that with the term of {phi}. It is found that the damping rate is proportional to the collision frequency between dust grains and ions.

  9. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia)

    Science.gov (United States)

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.

    2011-01-01

    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500

  10. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, S.B., E-mail: ahmad.rabilal@gmail.com [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); McNeill, F.E., E-mail: fmcneill@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Byun, S.H., E-mail: soohyun@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Prestwich, W.V., E-mail: prestwic@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Seymour, C., E-mail: seymouc@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada); Mothersill, C.E., E-mail: mothers@mcmaster.ca [Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, Ontario (Canada)

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced 'bystander effects' studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 Multiplication-Sign 10{sup 13} H{sup +}/cm{sup 2} s. The average saturation value for the photon output was found to be 40 Multiplication-Sign 10{sup 6} cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 Multiplication-Sign 10{sup 3}, 10 Multiplication-Sign 10{sup 6}, and 35 Multiplication-Sign 10{sup 6} cps for wavelengths of 280 {+-} 5 nm, 320 {+-} 5 nm and 340 {+-} 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a 'damage cross section' of the order of 10{sup -14} cm{sup 2}. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  11. Application and development of ion-source technology for radiation-effects testing of electronics

    Science.gov (United States)

    Kalvas, T.; Javanainen, A.; Kettunen, H.; Koivisto, H.; Tarvainen, O.; Virtanen, A.

    2017-09-01

    Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laboratories reaching the necessary beam energies requires very high charge state ions. There are two main technologies producing these beams: The electron beam ion source EBIS and the electron cyclotron resonance ion source ECRIS. The EBIS is most suitable for pulsed accelerators, while ECRIS is most suitable for use with cyclotrons, which are the most common accelerators used in these applications. At the Accelerator Laboratory of the University of Jyväskylä (JYFL), radiation effects testing is currently performed using a K130 cyclotron and a 14 GHz ECRIS at a beam energy of 9.3 MeV/u. A new 18 GHz ECRIS, pushing the limits of the normal conducting ECR technology is under development at JYFL. The performances of existing 18 GHz ion sources have been compared, and based on this analysis, a 16.2 MeV/u beam cocktail with 1999 MeV 126Xe44+ being the most challenging component to has been chosen for development at JYFL. The properties of the suggested beam cocktail are introduced and discussed.

  12. Stability of viscosity stratified flows down an incline: Role of miscibility and wall slip

    Science.gov (United States)

    Ghosh, Sukhendu; Usha, R.

    2016-10-01

    The effects of wall velocity slip on the linear stability of a gravity-driven miscible two-fluid flow down an incline are examined. The fluids have the matched density but different viscosity. A smooth viscosity stratification is achieved due to the presence of a thin mixed layer between the fluids. The results show that the presence of slip exhibits a promise for stabilizing the miscible flow system by raising the critical Reynolds number at the onset and decreasing the bandwidth of unstable wave numbers beyond the threshold of the dominant instability. This is different from its role in the case of a single fluid down a slippery substrate where slip destabilizes the flow system at the onset. Though the stability properties are analogous to the same flow system down a rigid substrate, slip is shown to delay the surface mode instability for any viscosity contrast. It has a damping/promoting effect on the overlap modes (which exist due to the overlap of critical layer of dominant disturbance with the mixed layer) when the mixed layer is away/close from/to the slippery inclined wall. The trend of slip effect is influenced by the location of the mixed layer, the location of more viscous fluid, and the mass diffusivity of the two fluids. The stabilizing characteristics of slip can be favourably used to suppress the non-linear breakdown which may happen due to the coexistence of the unstable modes in a flow over a substrate with no slip. The results of the present study suggest that it is desirable to design a slippery surface with appropriate slip sensitivity in order to meet a particular need for a specific application.

  13. Model of deep non-volcanic tremor part II: episodic tremor and slip

    CERN Document Server

    Gershenzon, Naum I

    2014-01-01

    Bursts of tremor accompany a moving slip pulse in Episodic Tremor and Slip (ETS) events. The sources of this non-volcanic tremor (NVT) are largely unknown. We have developed a model describing the mechanism of NTV generation. According to this model, NTV is a reflection of resonant-type oscillations excited in a fault at certain depth ranges. From a mathematical viewpoint, tremor (phonons) and slip pulses (solitons) are two different solutions of the sine-Gordon equation describing frictional processes inside a fault. In an ETS event, a moving slip pulse generates tremor due to interaction with structural heterogeneities in a fault and to failures of small asperities. Observed tremor parameters, such as central frequency and frequency attenuation curve, are associated with fault parameters and conditions, such as elastic modulus, effective normal stress, penetration hardness and friction. Model prediction of NTV frequency content is consistent with observations. In the framework of this model it is possible t...

  14. Lattice Boltzmann simulations of apparent slip and contact angle in hydrophobic micro-channels

    CERN Document Server

    Zhang, Renliang; Gao, Guohua; Wang, Xinliang; Ding, Weipeng; Gong, Wei

    2013-01-01

    In this paper, we applied the Shan-Chen multiphase Lattice Boltzmann method to simulate two different parameters, contact angle (a static parameter) and slip length (a dynamic parameter), and we proposed a relationship between them by fitting those numerical simulation results. By changing the values of the strength of interaction between fluid particles (SIF) and the strength of interaction between fluid and solid surface (SIFS), we simulated a series of contact angles and slip lengths. Our numerical simulation results show that both SIF and SIFS have little effects on the relationship between contact angle and slip length. Using the proposed relationship between slip length and contact angle, we further derived an equation to determine the upper limit of nano-particles' diameter under which drag-reduction can be achieved when using nano-particles adsorbing method.

  15. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction.

    Science.gov (United States)

    Li, Zhencai; Wang, Yang; Liu, Zhen

    2016-01-01

    The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state-space NN, and the unscented Kalman filter is used to train NN's weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model.

  16. Performance and Lifetime Limiting Effects in Li-ion Batteries

    DEFF Research Database (Denmark)

    Scipioni, Roberto

    Lithium-ion batteries (LIBs) find widespread use for electricity storage, from portable devices such as smart phones to electric vehicles (EV), because of their high energy density and design flexibility. However, limited lifetime is still a challenge for several LIB materials. Specifically...

  17. Effects of the Safety Factor on Ion Temperature Gradient Modes

    Institute of Scientific and Technical Information of China (English)

    WANGAike; DONGJiaqi; H.Sanuki; K.Itoh

    2002-01-01

    In the previous models for the ion temperature(ITG)driven instability,the safety factor (r) is introduced into the model through the wavenumber or relative derivative,such sa kθ=lq(r)/r and △1=ik1=(Rq)-1э/эθ.since the safety factor

  18. Structure investigation of metal ions clustering in dehydrated gel using x-ray anomalous dispersion effect

    CERN Document Server

    Soejima, Y; Sugiyama, M; Annaka, M; Nakamura, A; Hiramatsu, N; Hara, K

    2003-01-01

    The structure of copper ion clusters in dehydrated N-isopropylacrylamide/sodium acrylate (NIPA/SA) gel has been studied by means of small angle X-ray scattering (SAXS) method. In order to distinguish the intensity scattered by Cu ions, the X-ray anomalous dispersion effect around the Cu K absorption edge has been coupled with SAXS. It is found that the dispersion effect dependent on the incident X-ray energy is remarkable only at the momentum transfer q = 0.031 A sup - sup 1 , where a SAXS peak is observed. The results indicate that copper ions form clusters in the dehydrated gel, and that the mean size of clusters is the same as that of SA clusters produced by microphase separation. It is therefore naturally presumed that copper ions are adsorbed into the SA molecules. On the basis of the presumption, a mechanism is proposed for microphase-separation and clustering of Cu ions.

  19. Space charge effect on parametric resonances of ion cloud in a linear Paul trap

    CERN Document Server

    Mandal, P; De Munshi, D; Dutta, T; Mukherjee, M

    2013-01-01

    The effect of the presence of a finite number of ions on their parametric resonances inside a Paul trap has been investigated both experimentally and theoretically. The Coulomb coupling among the charged particles results in two distinct phenomena: one is the frequency shift of the trapped ion oscillators and second is the collective oscillation of the trapped ion cloud. We observe both in a linear trap configuration. It is found that the strength and the secular frequency of individual ion-oscillation decrease while the strength of the collective oscillation increases with increasing number of trapped ions. The observation has been modeled by considering the space charge potential as an effective dc potential inside the trap. It describes the observations well within the experimental uncertainties.

  20. Effects of lability of metal complex on free ion measurement using DMT.

    Science.gov (United States)

    Weng, Liping; Van Riemsdijk, Willem H; Temminghoff, Erwin J M

    2010-04-01

    Very low concentrations of free metal ion in natural samples can be measured using the Donnan membrane technique (DMT) based on ion transport kinetics. In this paper, the possible effects of slow dissociation of metal complexes on the interpretation of kinetic DMT are investigated both theoretically and experimentally. The expressions of the lability parameter, Lgrangian , were derived for DMT. Analysis of new experimental studies using synthetic solution containing NTA as the ligand and Cu(2+) ions shows that when the ionic strength is low (DMT measurement. In natural waters, dissolved organic matter (DOM) is the most important source of ligands that complex metals. By comparing the fraction of labile species measured using other dynamic sensors (DGT, GIME) in several freshwaters, it is concluded that in most waters ion transport in DMT is controlled by diffusion in the membrane. Only in very soft waters (DMT. In this case, neglecting this effect may lead to an underestimation of the free metal ion concentration measured.